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ABSTRACT

We study the evolution of an accelerating hyperrelativistic shock under the presence of upstream inhomogeneities
wrinkling the discontinuity surface. The investigation is conducted by means of numerical simulations using the
PLUTO code for astrophysical fluid dynamics. The reliability and robustness of the code are demonstrated against
well-known results coming from the linear perturbation theory.We then follow the nonlinear evolution of two classes
of perturbing upstream atmospheres and conclude that no lasting wrinkle can be preserved indefinitely by the flow.
Finally, we derive analytically a description of the geometrical effects of a turbulent upstream ambient on the dis-
continuity surface.

Subject headinggs: hydrodynamics — shock waves

1. INTRODUCTION

There seems to be strong evidences that gamma-ray bursts
(GRBs; see Piran 2005 for a review) involve flows of dense shells
thrown by a dying compact star in the ambient medium at Lorentz
factors � > 102Y103. When the ejecta impact the surrounding
matter carried by a preexisting stellar wind, a shock is formed and
begins to propagate into a decreasing atmosphere, which leads, for
sufficiently steep density profiles, to the shock acceleration. The
length scale k �1

0
on which the stellar atmosphere rarefies may

be reasonably much smaller than the distance from the center of
the star, thus justifying the approximation of planar symmetry in
studying the shock evolution.

The problem of a blast wave moving into a decreasing atmo-
sphere has been analyzed both in its Newtonian (Gandel’man &
Frank-Kamenetskii 1956; Sakurai 1960; Raizer 1964; Grover &
Hardy 1966; Hayes 1968) and relativistic (Blandford & McKee
1976; Best & Sari 2000; Perna & Vietri 2002; Nakayama &
Shigeyama 2005; Pan & Sari 2006; Sari 2006) regimes, and sev-
eral self-similar solutions have been found for the flow in both
power-law and exponentially shaped density profiles. Despite the
importance of the issue, very few papers have been spent to study
the stability of the system subject to wrinkling perturbations. In
the Newtonian regime, Chevalier (1990) and Luo & Chevalier
(1994) studied the exponential atmosphere; power-law profiles
have been considered in Sari et al. (2000).Wang et al. (2003),while
taking into account relativistic effects, were not able to find any
self-similarity in the perturbation analysis of a spherical blast wave
propagating in a power-law atmosphere.

Palma & Vietri (2006) performed a linear stability analysis of
a highly relativistic planar shock propagating in an exponential
atmosphere and retrieved a self-similar solution for the first-order
problem. They obtained that, at least in the small-perturbation
limit, with respect to what happens in the Newtonian regime, the
corrugation wavelength k�1 can drop by a factor of � and still
give rise to no sensible restoring effect in the flow, a behavior
reminiscent of the infinite-wavelength case, even for small ratios

k0/k. This allows the instability of the downstream energy den-
sity to persist, thus delaying the saturation phase. Of course, as
the instability exits the linear regime, a numerical approach has to
be adopted, since the arguments that exclude the arising of sta-
bilizing phenomena in the flow may become weaker and not so
pertinent.

The plan of the paper is as follows. In x 2 we review the ana-
lytical properties of the problem extensively discussed in Perna
& Vietri (2002) and Palma & Vietri (2006); these predictions
provide useful benchmarks to which our numerical scheme can
be compared. In x 3 we describe the code used to integrate the
relativistic hydrodynamics equations; x 3.1 is reserved to explain
how we overcome the relevant technical difficulties. Section 4
lists all the major tests through which we run the code before
declaring it reliable for our purposes. In x 5 we tackle the central
subject of the paper, thus reporting several results of simulations
dealing with nonlinear variations of the perturbations introduced
into the system in x 4. Lastly, in x 6we show that self-similarity is
reached fast enough to allow for an analytical expression for the
shock speed in a quite arbitrarily shaped atmosphere. By means
of such a result we develop a technique to calculate the shock
positionwithout making time-expensive simulations and apply it
to describe the shape evolution of a planar shock impacting
a turbulent upstream. Conclusions are drawn in the shape of an
excursus in x 7.

2. SELF-SIMILAR SOLUTION

In this section we summarize the predictions, analytically
derived in Perna & Vietri (2002) and in Palma & Vietri (2006),
whose accuracy we check in the following. In the first one the
self-similar solution for an accelerating hyperrelativistic shock
propagating in a planar exponential atmosphere is derived. As-
suming an ambient density given by

�(x) ¼ �0e
�k 0x; ð1Þ

dimensional and covariance arguments impose the self-similar
shock speed V (t) (hereafter we set c ¼ 1) to satisfy

k0t

��
¼ 1

2
log

(1þ V )(1� V0)

(1� V )(1þ V0)
� 1

V
þ 1

V0

; ð2Þ

where V0 is the shock speed at time t ¼ 0 and � is a dimen-
sionless (negative) constant to be determined by imposing a
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smooth passage of the flow through a critical point. As the shock
enters the hyperrelativistic regime, equation (2) becomes

�(t) � �i exp
k0(t � ti)

��

� �
� �i

�

�i

� �1=�

; ð3Þ

where � is the shock Lorentz factor and the subscript i refers to
the initial condition.

In order to determine the value of � and the downstream
profiles of the relevant hydrodynamical quantities, the exact
adiabatic fluid flow equations as well as Taub’s jump conditions
across the shock are considered in their highly relativistic limit.
Choosing the self-similarity variable

� ¼ k0½x� X (t)��2(t); ð4Þ

with X (t) being the shock position, the hydrodynamics equations
can be cast into self-similar form by means of the following
separations of variables,

� 2(x; t) ¼ g(�)�2(t); e(x; t) ¼ q0R(�)�
2þ� (t); ð5Þ

n(x; t) ¼ z0N (�)�2þ� (t); ð6Þ

with �, e, and n being, respectively, the fluid local Lorentz factor,
the proper energy density, and the baryon number density (the
first and last ones as seen from the upstream frame), q0 � �0/�

�
i ,

and z0 � n0/�
�
i . Taub’s jump conditions are satisfied simply by

fixing

g(0) ¼ 1

2
; R(0) ¼ 2; N (0) ¼ 2: ð7Þ

Solving the equations with respect to g(�), R(�), and N (�), one
finds that self-similar quantities satisfy the following Cauchy
problem,

R 0 ¼ 2g �2� (4þ � )þ (2þ � )(� � 4�)g½ �R
�2 þ (� � 4�)g �4� þ (� � 4�)g½ � ; ð8Þ

g 0 ¼ g2 4(� � 4�)g� 14� � 3�2½ �
�2 þ (� � 4�)g �4� þ (� � 4�)g½ � ; ð9Þ

N 0 ¼ N
2g½(2þ � )=� � � g 0=g

g(1� 4�=� )� 1
: ð10Þ

Demanding the simultaneous vanishing of the numerators and
denominators of equations (8) and (9) at a critical point (thus

TABLE 1

Physical Parameters and Resolution Adopted in the Two-Dimensional Simulations

k/k0 " rk0 ½xb; xe� ; ½ yb; ye� Resolution Figures

4.8 0.5 . . . ½0; 1� ; ½�5; 5� (2 ; 103) ; (5 ; 103) 5

24 2 . . . ½0; 1� ; ½�1; 1� (1:2 ; 103) ; (2:4 ; 103) 6, 7, 8

4:8 ; 102 0.5 . . . ½0; 1� ; ½�5 ; 10�2; 5 ; 10�2� (4 ; 103) ; (4 ; 102) 9, 10, 11, 12

4:8 ; 102 2 . . . ½0; 1� ; ½�5 ; 10�2; 5 ; 10�2� (4 ; 103) ; (4 ; 102) 13, 14, 15, 16

4:8 ; 103 0.5 . . . ½0; 1� ; ½�5 ; 10�3; 5 ; 10�3� 104 ; (4 ; 102) 17, 18

. . . 3 2:4 ; 10�1 ½0; 1:6� ; ½0; 2:285714� (1:92 ; 103) ; (1:38 ; 103) 19, 20, 21

Notes.—The domain box is defined by the lower and upper coordinates ½xb; xe� (in the x-direction) and ½ yb; ye� (in the
y-direction). Both the domain box and the resolution refer to the base computational grid used in the code.

Fig. 1.—Spatial dependence of the dimensionless density n(�), pressure e(�),
and squared Lorentz factor g(�), from top to bottom; theory predictions (solid lines)
are compared with numerical results (40 crosses, stars, and diamonds sample the
numerical data).

Fig. 2.—Evolution of the shock Lorentz factor as obtained by simulation (stars)
together with exact self-similar solution (solid line) and its hyperrelativistic ap-
proximation (dashed line).
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specifying the ‘‘second-type’’ nature of this self-similar problem),
it is possible to find

� ¼ � 2þ 4=
ffiffiffi
3

p� �
: ð11Þ

Lying on the zeroth-order solution hitherto reviewed, Palma&
Vietri (2006) performed a linear stability analysis with respect to
a shock wrinkle of wavenumber k. In the k/(k0�)T1 limit, it is
shown that causal phenomena transverse to the shock direction
of motion cannot carry disturbances too far. This justifies the
approximation of infinite wavelength and independent (zeroth-
order) evolution of each flow columnwith slightly perturbed con-
stants in the equation for the shock location. Strictly speaking,
equation (3) can be integrated to give

X ¼ t � �

k0

1

2�

� �2

þc1; � ¼ �i exp � k0t

�

� �
: ð12Þ

If we perturb c1, we obtain

�X / �0; ð13Þ

�e / R 0(�)�4þ� (t); ð14Þ

�n / N 0(�)�4þ� (t); ð15Þ

�� 2 / g 0(�)�4(t): ð16Þ

Alternatively, perturbing �i,

�X ¼ �c1 / ��2; ð17Þ

�e / 4R(�)þ 4�R 0(�)� �R 0(�)½ ��2þ� (t); ð18Þ

�n / 4N (�)þ 4�N 0(�)� �N 0(�)½ ��2þ� (t); ð19Þ

�� 2 / 2g(�)þ 2�g 0(�)� �

2
g 0(�)

h i
�2(t): ð20Þ

It is clear that the first mode is the most severe and, thus, phys-
ically relevant for the instability.

Nevertheless, they perform the full perturbation analysis which
takes explicitly into account the transverse mixing between ad-
jacent columns, thus also obtaining a complete description for
the y-component of the four-velocity,

�uy / gy(�)�
s�2(t); ð21Þ

with s being the parameter which selects the strong (s ¼ 3) or the
weak (s ¼ 1) mode and gy being the self-similar profile satisfying

g 0y ¼
g 0gy
2g

þ
�R 0 þ 4gR(s� 3)½ �gy � i� (k=k0)

ffiffiffi
g

p
R1

2R (� � 4�)g� �½ � ; ð22Þ

gy(0) ¼ � ikffiffiffi
2

p
k0

: ð23Þ

Here, gy is purely imaginary, since it is shifted by �/2 with re-
spect to the other perturbations. In xx 3 and 4 we try to numer-
ically recover nearly all the theoretical results stated above.

3. NUMERICAL SETUP

Numerical simulations are carried out by solving the equa-
tions of number density and momentum-energy conservation,
i.e.,

@n

@t
þ: = nvð Þ ¼ 0; ð24Þ

@m

@t
þ: = mvþ pð Þ ¼ 0; ð25Þ

@E

@t
þ: = m ¼ 0; ð26Þ

Fig. 3.—Spatial dependence of the perturbations to pressure �e(�), density
�n(�), and squared Lorentz factor ��2(�), from top to bottom, normalized to the
immediate downstream value; theory predictions (solid lines) are compared with
numerical results (40 stars, crosses, and diamonds sample the numerical data).

Fig. 4.—Temporal evolution of perturbation amplitude normalized to the
expected growth. The quantity Q is defined as the ratio between simulated and
expected perturbation growth; consequently, any gap between theory and numer-
ical test should have as a counterpart a departure ofQ from 1, commensurate with
the gap.
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where v is the fluid velocity, m ¼ nmph�v and E ¼ nmph�� p
are, respectively, the momentum and energy density (mp being
the proton mass).

Proper closure of equations (24)Y(26) is specified in the form
of an equation of state (EOS), relating the specific enthalpy
h ¼ 1þ �þ p�/(nmp) with pressure p and the (specific) internal
energy of the fluid �. For a relativistic perfect fluid, the desired
closure is given by the Synge gas (Synge 1957). For a single-
species fluid given by amixture of protons and electrons, the EOS
can be approximated by an analytical expression recently pre-

sented inMignone et al. (2005) and further discussed inMignone
& McKinney (2007),

h ¼ 5

2
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
�2 þ 1

r
; ð27Þ

where � ¼ p/(nmp) is a temperature-like variable. Compared to
the ideal gas EOS with constant adiabatic index �g for which the
enthalpy takes the form h ¼ 1þ �g/(�g � 1)�, equation (27)
yields the correct asymptotic limits for very high (� ! 1) and

Fig. 5.—Hydrodynamical quantities in the linear perturbation regime (k � 4:8k0, " � 0:5, and � � 1).
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low (� ! 0) temperatures, reducing to an ideal EOS with �g ¼
4/3 and 5/3, respectively. In Mignone et al. (2005) it is shown
that this expression differs by less than 4% from the theoretical
prescription given by the Synge gas. Since the EOS is frequently
invoked in the process of obtaining the numerical solution, com-
putational efficiency issues largely require one to use an approx-
imated relation.

The conservation laws (eqs. [24]Y[26]) are solved using the
relativistic module available in the PLUTO code (Mignone et al.
2007). PLUTO is a Godunov-type code offering a variety of com-
putational strategies for the numerical solution of hyperbolic
conservation laws in one, two, or three dimensions. For an ex-
tensive review of such techniques, seeMartı́ &Müller (2003) and
references therein. Being Riemann solver based, it is particularly
fit for the simulation of highYMach number flows, as is the case
here. For the present application, we employ second-order ac-
curacy in time by using characteristic backtracing (see Colella
1990) and linear interpolation with second-order limited slopes.
This scheme yields a one-step time integration by providing
time-centered fluxes at zone boundaries, computed by solving a
Riemann problemwith suitable time-centered left and right states.
For the one- (1D) and two-dimensional (2D) simulations pre-
sented below, we adopt the approximate HLLC Riemann solver
of Mignone & Bodo (2005).

3.1. The Choice of the Reference Frame

Before presenting our numerical results, we discuss how we
faced a number of numerical issues. Let us begin by considering

the fate of an upstream slab one length scale long; because
of the highly relativistic shock compression, it will be roughly
resized by a factor �2. In order to justify the hyperrelativistic
approximations assumed above, we would be willing to deal
with � at least as big as 10; even higher Lorentz factors are
involved with realistic models of GRBs, wherein the com-
pactness problem solution imposes � to be 1 or 2 orders of
magnitude higher.

However, such large Lorentz factors demand an increasingly
high resolution if one wishes to properly capture the dynamics of
the slab profile once it enters the downstream region. This re-
quirement becomes even more severe if the evolution of the
perturbations has to be followed accurately. In this case, in order
to overcome spurious numerical fluctuations, a resolution of
thousands of computational zones per length scale is needed.
From these considerations, we conclude that adopting a static
uniform grid would result in extremely inefficient calculations.
To overcome this limitation, a reasonable alternative is to resort
to adaptive mesh refinement (AMR) techniques, thus providing
adequate resolution on the regions of interest. Even in this case,
however, we still have to face a subtler problem.

It is known that relativistic shock-capturing codes may suffer
from excessive dissipation when a region of fluid with exceed-
ingly large inertia interacts with stationary fluid adjacent to it
(Mignone et al. 2005). This is actually the unfavorable situation
we are coping with, since in the upstream rest frame (URF), an
ultrarelativistic shock advances in a cold, pressureless static gas.
In this reference frame the jumps of the hydrodynamical variables

Fig. 6.—Density logarithm (left) and the parallel 4-velocity ux (right) for k � 24k0 and " � 2. Please note that each panel refers to a different time, according to the
different phases discussed in the text.
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(in particular, the energy density) across the front are maximized,
leading to an excessive smearing of the shock profile. The de-
ficiency is inherent to any finite-difference method attempting to
solve the fluid equations on meshes of finite width. Indeed, even
a first-order upwind discretization of the scalar advection equa-
tion with linear constant velocity c > 0,

unþ1
j � unj

� t
þ c

unj � unj�1

�x
¼ 0; ð28Þ

shows that u satisfies exactly another convection-diffusion prob-
lem, namely,

@u

@t
þ c

@u

@x
¼ c�x

2
1� c� t

�x

� �
@2u

@x2
þ O �x2

� 	
þ O � t 2

� 	
;

ð29Þ

where the term in parentheses on the right-hand sidemust be posi-
tive for stability reasons. Thus, roughly speaking, the magnitude

Fig. 7.—Transverse 4-velocity uy for k � 24k0 and " � 2.
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of the second derivative provides a rough estimate of the diffusion
introduced by the numerical algorithm. The situation does not im-
prove with the employment of higher order methods, since the
accuracy reverts to first order in the proximity of a discontinuity
anyway. This conclusion is supported by several numerical ex-
periments (not shown here) showing that the largest dissipation
terms, taken to be proportional to the magnitude of the second
derivative of the hydrodynamic variables, result in the frame of
the upstream fluid, whereas they areminimized in the shock frame.

In this respect, it is conceivable to study the shock evolution in
its initial instantaneously comoving frame (IICF). In fact, in such

an inertial reference frame, shock compression results in a modest
factor of 3 (i.e., an upstream slab of unitary length will be resized
by a factor 3). Moreover, in the same frame, due to the favorable
Lorentz factor composition law,

� 0 ¼ ��0(1þ ��0); ð30Þ

the shock will hardly become hyperrelativistic even in the late
acceleration stages. This allows one to follow the long-term evo-
lution of the downstream self-similar lengths as well as the up-
stream length scales with a comparable number of points.

Fig. 8.—Density logarithm for k � 24k0 and " � 2.
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The price one pays for reducing in such a drastic way the
computational cost consists in a quite complex procedure to re-
cover a snapshot of the system as seen by an observer at rest
with respect to the upstream. Because of the relativistic non-
absoluteness of simultaneity, we had to make a collage with
several (ideally infinitely many) pieces of IICF snapshots, each
depicting a particular (ideally infinitely narrow) slab (normal to
the x-axis) of the flow at a particular IICF time.

In particular, referring to IICF quantities by means of primes,
we chose as the initial condition a planar shock located at X0 �

X 0
0 � 0 moving rightward in a grid covering a unitary IICF

length along the x-axis. We assumed a uniform downstream
flow connected to immediately preshock upstream by the usual
Taub’s jump conditions; such a choice corresponds to a shock
which at t; t 0 < 0 propagates in a uniform, cold (hence station-
ary) atmosphere which, at x ¼ x 0 ¼ 0, turns exponential. If the
simulation lasts t 0e and we are interested in the x 0 > x 0L region
(corresponding, in the URF, to a semi-infinite patch which closely
follows on the left the hyperrelativistic motion of the shock), we
can only inquire into shock evolution up to t � �0(t

0
e þ V0x

0
L).

Fig. 9.—Density logarithm for k � 4:8 ; 102k0 and " � 0:5.
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Let us consider now an array X̂ 0 � x 0i

 �

containing the distinct
x-component of the grid. The Lorentz-transformed array of X̂ 0 in
the URF,

X̂ ¼ X̂ 0

�0

þ �0t; ð31Þ

contains the x-components of the leftmost sector of the patch
introduced above. In order to derive hydrodynamical quantities

Q̂ as measured in the URF at point xi and time t, one has to
analyze the snapshot taken in the IICF at time t 0 ¼ �0(t � �0xi),

Q̂(xi; t) ¼ F̂ Q̂ 0(x 0i ; t
0)

� 	
: ð32Þ

Here, F̂ denotes the map functions transforming density, velocity,
and pressure from the IICF to URF. Since the time-marching al-
gorithm evolves by discrete time steps, we performed a linear
interpolation between the two set of quantities obtained by replac-
ing t 0 in equation (32) with, respectively, t 0n�1 and t 0n such that

Fig. 10.—Density logarithm for k � 4:8 ; 102k0 and " � 0:5.
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t 0n�1 � t 0(t; xi) � t 0n. Such a discussion can be easily extended to
an AMR structure, taking care to perform temporal interpolation
between the finest level step times available at each spatial position.

3.2. Simulation Settings

In all the simulations described in xx 4 and 5 the initial shock
Lorentz factor �0 is set to 50. Similar results have been obtained
by studying the evolution of shocks with different highly rela-
tivistic initial Lorentz factors. The upstream density of the atmo-
sphere swept up by the shock spans over 2 orders of magnitude,
with a value of k�1

0 � 11. The only exception concerning �0 is

the simulation described in x 4.2 and illustrated in Figure 2, while
in x 5.2 we followed the shock evolution over �7 length scales.
In all the 1D simulations described in this paper, an effective

resolution of 2:56 ; 105 grid points has been reached by means
of eight refinement levels on a base gridwith 103 cells; the domain
box was ½0; 1�. The 2D simulations were performed on static grids
with spatial resolutions indicated in Table 1.

4. CODE VERIFICATION

In the following subsections we try to recover nearly all the
theoretical results discussed in x 2. Such an ‘‘exercise’’ will

Fig. 11.—Transverse 4-velocity uy for k � 4:8 ; 102k0 and " � 0:5.
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provide us a powerful tool to test the code and the analysis pro-
cedure itself together with a measure of the reliability of those
simulations having no clear theoretical counterpart (nonlinear
perturbation, transient to self-similarity).

4.1. Zeroth-Order Solution: Hyperrelativistic Regime

Let us consider the simulation of a shock propagating until a
fixed point in a homogeneous atmosphere. As it enters a region
with an exponentially decreasing density profile, the shock ex-
hibits some inertia and its speed sets up to the self-similar value
(eq. [3]) after a little while, see x 6.

Incidentally, we would like to point out that such a problem is
totally scalable with respect to the length scale k�1

0 ; having set
c ¼ 1, we are still free to choose the space (and, therefore, time)
measurement unit. As a consequence, all the results we obtain in
this paper are completely independent of the specific value as-
sumed for k0.

As the shock advances into the stratified atmosphere, it ap-
pears possible to study both the spatial profile of the downstream
hydrodynamical quantities and their temporal evolution. The snap-
shot in Figure 1 shows the density, pressure, and Lorentz factor
(normalized to immediate postshock values of 2, 2, and 1/2,

Fig. 12.—Transverse 4-velocity uy for k � 4:8 ; 102k0 and " � 0:5.
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respectively) in a small region immediately behind the shock
front. The size of this region is a factor of �2 smaller than the
length traversed by the point originally marking the atmosphere
change from homogeneous to exponential. We also overplot the
curves obtained by direct integration of equations (8)Y(10). As is
clear from the plot, we obtain an excellent agreement.

On the other hand, one can check theoretical rules about
Lorentz factor growth as a function of time (or, equivalently, under
the number of length scales swept up by the shock throughout
the simulation). This can be done by means of several, some-
times equivalent, ways. Here we report only two of the most

direct methods to be implemented (those our experience sug-
gests to be likely the most robust ones).
A first consistency check can be made by comparing the theo-

retical value of � predicted by equation (3) with the one computed
from our numerical simulations. The latter can be recovered by
solving Taub’s jump condition with respect to the shock Lorentz
factor once pre- and postshock values have been identified.
As an alternative, one can consider the value �L of the self-

similar variable corresponding, in previous fits, to the leftmost
point plotted in Figure 1. Strictly speaking, �L must be calculated
by numerical inversion, for example, of R(�) at the point RL

Fig. 13.—Density logarithm for k � 4:8 ; 102k0 and " � 2.
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measured as the leftmost theoretical prediction in Figure 1. Once
�L is known, one can recover the shock Lorentz factor connected
to the simulation by inverting equation (4),

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�L
xL � X

r
: ð33Þ

A comparison with the usual theoretical value completes the test.
Perhaps, it is a point worthy of remark that the latter sounds like
a bit more stringent of a test than the former, since it explicitly
assigns a fundamental role to the spatial profile of the down-

stream in determining the shock speed evolution, thus allowing a
more complete point of view on the issue.

Both tests provide excellent agreement with the related pre-
dictions. Deviations from theoretical rules appear to be nothing
but numerical noise and, at almost any time t > 0, remain below
a small fraction, typically less than 1%.

As a measure of the code reliability we report what simulations
predict about the parameter �. From equation (3),

� ¼ log �=�ið Þ
log �=�ið Þ ; ð34Þ

Fig. 14.—Density logarithm for k � 4:8 ; 102k0 and " � 2.
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substituting simulation values and averaging over several snap-
shot times, we obtain

� ¼ �4:3102: : : ; ð35Þ

a value which differs from the correct one by less than 0.02%.

4.2. Zeroth-Order Solution: Transrelativistic Regime

In this subsection we focus on the only prediction we have
as long as the shock is neither Newtonian nor hyperrelativistic:
the rule about shock speed given by equation (2). We consider a

shock with an initial Lorentz factor �0 ¼ 1:1 and follow its evo-
lution for the crossing of �4 length scales. In Figure 2 we plot �
as a function of traversed length (in units of k�1

0
), together with

the exact self-similar prediction (eq. [2]) and the run as expected
if the shock would have been highly relativistic. The excellent
agreement we observe in this plot completes the thorough picture
about the zeroth-order problem.

4.3. First-Order Solution

In principle, the linear perturbation analysis of a planar shock
is a fully 2D problem (Chevalier 1990; Palma & Vietri 2006).

Fig. 15.—Parallel 4 -velocity ux for k � 4:8 ; 102k0 and " � 2.
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However, in order to approach the problem from a numerical
point of view, it is convenient to take advantage of the infinite-
wavelength approximation, whose applicability in the hyper-
relativistic regime has been discussed in detail in Palma & Vietri
(2006). Such a scheme enables an almost full investigation of the
physically relevant phenomena while still allowing for a reduced
numerical cost.

The idea can be summarized as follows. First, we perform the
usual 1D simulation of a planar, unperturbed shock wave, as de-

scribed above. Then we carry out a second 1D run by perturbing
the upstream regionwith an overdense (by a factor ") bar, limited
in extension to a fraction � of the length scale (hereafter � �
1:32); since this last simulation is also 1D, the reader should
imagine such a bar indefinitely extended perpendicular to the
shock speed. Moreover—in order to avoid spurious structures,
here as well as in x 5—we joined smoothly the perturbing bar
to the background up to the fourth derivative by means of the
factor cos4½�k0(x� x̄)/��, x̄ being the center of the bar (hereafter

Fig. 16.—Parallel 4-velocity ux for k � 4:8 ; 102k0 and " � 2.
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x̄ � 0:79k�1
0 ), thus obtaining the following upstream density

profile,

�(x) ¼ �0e
�k0x

�
1þ " cos4

�k0(x� x̄)

�

� �

;H xþ �

2k0
� x̄

� �
H x̄þ �

2k0
� x

� �

; ð36Þ

where H is the Heaviside step function. Perturbations to hydro-
dynamical quantities are simply obtained by subtracting term-to-

term the values of the second set from the first ones. No 2D
simulations were needed, and the original resolution along the
x-axis of the zeroth-order analysis has been maintained.
Nonetheless, we warn the reader that any spurious oscillation

that might marginally affect the zeroth-order profiles will result
here in severe noise when trying to recover a variable value as the
difference between two slightly different quantities. This justifies
such a high resolution, which prevents us from performing di-
rectly a 2D simulation; only in this way can we keep the noise
down to a reasonable threshold. In order to fix this problem we
smoothed the data by performing a local regression usingweighted

Fig. 17.—Density logarithm for k � 4:8 ; 103k0 and " � 0:5.
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linear least squares with a second-degree polynomial. In this way
we were allowed to recover the physically relevant development
of the perturbation by smoothing away less than 5% noise.

As in x 4.1, the work can be split up into two stages: the study
of the spatial perturbation profile and the test of correct temporal
growth. Results for the spatial dependence of perturbations of
the hydrodynamical quantities (at a fixed time) are reported in
Figure 3, according to theory predictions and to our numerical
scheme. The agreement is acceptable, especially considering the
way such numerical results are achieved.

Concerning the instability rate, it is possible to compare the
temporal dependence of theoretical and numerical perturbations
by studying how the simulated amplitude—normalized to the
expected growth—diverges from unity. In Figure 4 the results of
such a study are reported; only a minor gap of a few percentage
points appears, thus stressing once again the good suitability of
our scheme even for the subtle task of studying wrinkle pertur-
bations to a hyperrelativistic shock.

4.4. Finite-Wavelength Wrinkles

Here we just report the results of a 2D simulation (obviously
much less resolved in the x-direction than the previous 1D ones)
dealing with an overdense upstream bar not uniformly extended
along the y-axis as in x 4.3. Instead,we impose a finite-wavelength
(k ¼ 2�k�1) sinusoidal profile (along with periodic y-boundary
conditions), thus allowing in x 5 a direct comparison with the
effects of an analogous bar introducing nonlinear perturbations
to the system.

If k � 4:8k0, the effect of a bar of amplitude " � 0:5 and
extended � are reported in Figure 5. We emphasize that the
finiteness of the wavelength implies a nonzero y-component of
the velocity. In particular, it appears noteworthy that the down-
stream profiles of uy in Figure 5, although not sufficiently refined
to test the code strictly speaking, are nevertheless completely con-
sistent with theoretical predictions given by equations (22)Y(23)
for the strong mode s ¼ 3.

5. NONLINEAR PERTURBATIONS

Once the robustness and consistency of the scheme has been
demonstrated, we are allowed to study 2D problems heavily in-
volving completely new phenomena or, at least, processes ne-
glected in the small-perturbation regime. In the following we
present first an idealized problem, aimed at inquiring about
whether or not the instability reaches any sensible saturation
point; the weak sinusoidal bar discussed in x 4 is replaced by a
more substantial one. In the followingwe showwhat happens if a
dense cylindrical cloud hampers the downhill path of the shock.

5.1. Sinusoidal Bars

Aiming to study the nonlinear phase of shock perturbations,
we impose here the sinusoidal profile of the perturbing upstream
on the density logarithm [i.e., �(x; y) ¼ �(x) ; 10" sin ky] rather
than on the density itself—as done previously. In this way we are
allowed to use larger amplitude perturbations which often imply
a contrast of several orders of magnitude between overdense
regions and adjacent vacua. As usual, in all the following sim-
ulations, the sinusoidal bars have a width �k�1

0 .
Let us begin by considering a long-wavelength density bar

(k � 24k0) with an amplitude of about 2 orders of magnitude
(" � 2). Such an upstream inhomogeneity induces a strong cor-
rugation (see left panel in Fig. 6 depicting the baryonic density in
a late phase of the bar-shocking process) and highly nonlinear
perturbations to downstream flow. In Figure 6, for instance, the
right panel shows ux just after the shock emerges from the bar.
The high-speed blob we observe just behind the crest is the relic
of the flow corresponding to the acceleration phase in the bar
vacuum. Once the shock emerges from the low-density region,
the impact on the unperturbed atmosphere produces the reverse
shock which separates the fast blob from the main discontinuity.

Moreover, similarly to the linear case discussed in x 4.4, the
shock tends to fill the valleys present in its profile simply by
means of something like a potential flow of matter along the
normal to the discontinuity; Figure 7 shows that the matter flows
from the crest to the valley. However, at least on the explored
timescales, such a long perturbation wavelength prevents almost
perfectly the gap between crest and valley from a quick damping
that the mechanism described above would cause to higher wave-
number wrinkles (see the sequence of snapshots in Fig. 8).

At shorter wavelengths, the system evolves in a quite different
way. Let us focus our attention on a bar with k � 4:8 ; 102k0 and
" � 0:5. One can argue that, due to the reduced transverse dis-
tance between equally out of phase flow columns (or, equivalently,
thanks to the higher gradients involved), the evolution observed
in the previous run resembles the present case in slow motion;
the more k/k0 grows, the faster the evolution gets. In fact, looking
at the sequences of snapshot in Figures 9Y10 and 11Y12 which
depict the time evolution, respectively, of baryonic density and
uy, it is possible to see that a situation similar to the last snapshots
in both Figures 7 and 8 here is reached on a reduced timescale.
What we observe in all its progression is the sharpening of the
valley, which starts beingU-shaped and evolves into the shape of
a V. At that point, in practice, we have two distinct shocks which
intersect, with the resulting formation of two secondary shocks
in the downstream. Such an X-shaped structure evolves with the
secondary shocks which advance toward the adjacent crests. In

Fig. 18.—Transverse 4-velocity uy for k � 4:8 ; 103k0 and " � 0:5.
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this context, the valley closes the gap on the crest in the short and
within another few fractions of the length scale comes to over-
take the leading front of the shock. At this point the play of the
flow columns repeats with reversed roles. However, it should be
plain to see that, with each role reverse, two main things happen:
first, a new layer is added to the existing pattern of hydrody-
namical fluctuations the flow advects far in the downstream; and
second, the wrinkle amplitude gets smaller and smaller, thus
coming to restore the original zeroth-order solution. Having
these facts in mind, it is possible to give an estimate of the time

Tsm needed by the shock, once it comes out of the perturbing
region, to restore the original planar shape. Palma & Vietri (2006)
most clearly discussed the scaling of such a time, so that we can
say Tsm / �/k. The coefficient of proportionality can be esti-
mated from the simulation; if we say that planarity is restored in
the last snapshot in Figure 10 and remember that the shock comes
out of the perturbing bar (of width �k0) at t � 11, we obtain

Tsm � 25
�

k
: ð37Þ

Fig. 19.—Density logarithm for r � 2:4 ; 10�1k�1
0 and " � 3.
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We also include some snapshots of two other simulations
showing close analogies with the previous one. The first and most
spectacular one dealswith k � 4:8 ; 102k0 and " � 2 and presents
clear evidence of Kelvin-Helmholtz instabilities; compare Fig-
ures 13Y14 and 15Y16: at early times, behind the valley, due to the
stopping presence of the overdensity, a thin, slow layer courses
through the unperturbed, fast flow, giving rise to the instability.
The second one, realizedwith k � 4:8 ; 103k0 and "� 0:5, quickly
comes to restore the shock surface planarity (Fig. 17). The com-
plexity of the fluctuation pattern described above can be seen

from this last simulation; Figure 18 shows the tightly arranged
warp of uy already at an intermediate evolutionary phase.

5.2. Cylindrical Clouds

The perturbations we are going to deal with here complement
the ones we explored above. Indeed, if the sinusoidal bars pro-
vide a quite thorough description of those phenomena occurring
during the sweeping up of a smoothly inhomogeneous upstream,
a cylindrical overdensity can well represent the sharp contrast of
a typical cloud in a clumpy circumburst medium.

Fig. 20.—Parallel 4-velocity ux for r � 2:4 ; 10�1k�1
0 and " � 3.
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We present here the results of a simulation with a homoge-
neous cylindrical cloud (with axis parallel to the z-axis) of radius
r � 2:4 ; 10�1k�1

0 placed in the upstream of the usual planar
shock. The cloud density is larger by a factor 103 than the unper-
turbed upstream one. In order to save computational time, we only
considered half the cloud and substituted periodic y-boundary
conditions with reflective ones (rigid walls).

Figures 19 and 20 show the main evolution phases of the
system; closely related to the first widest sinusoidal case, the
unperturbed shock tends to fill the valley from the boundary of
the cloud. However, in this case, because of the steeper wrinkle
in the shock, the nonadiabaticity of the flow across the discon-
tinuity surface allows a vortex to develop and to be advected
downstream (Fig. 21). The study of the vortex dynamics and its
relevance with regard to GRB physics will be discussed in a
forthcoming paper.

6. TURBULENT AMBIENT DENSITY

We discussed above the evolution of a shock in a self-similar
regime under the effect of some perturbing agent. We now wish
to investigate how fast such a self-similar regime is reached.

Let us consider the usual shock with initial Lorentz factor �0

which, at t ¼ 0, comes out of a homogeneous upstream and starts
to propagate into an exponential atmosphere. In Figures 22Y24
we compare (for three different values of �0 spanning a wide
range of relativistic regimes) the simulated Lorentz factor as a
function of the length scale fraction covered by the shock with
the prediction given by the self-similar theory (eq. [3]).

It is quite a significant fact that self-similarity is reached al-
most immediately after the exponential length scale switch (in
our scheme, the length scale of the atmosphere switches from1
for x < 0 to k�1

0 for x > 0), with a very weak dependence on �0.
One senses that larger Lorentz factors help the shock to more
closely follow the self-similar run of the acceleration in the first
15%Y20% of length scale after the atmosphere transition.

We now show that such a property allows us to consider the
shock behavior as uniquely ruled by the atmosphere density value

at the point of interest. Obviously, the second-type nature of this
self-similar problem will play a fundamental role here, since
we are actually requiring the shock to have an infinite piston
behind it which compensates for the indefinite energy supply in
the upstream.
Let us consider a generic upstream atmosphere density profile

�(x). We assume �(x) to be a monotonic decreasing function. It
is possible to approximate�(x) with a finely broken line made up
by a set of segments of exponentials. At least as self-similarity is
reached on temporal—and thus spatial—scales smaller than the
spatial scales required by �(x) to appreciably depart from the
local tangent exponential, one is allowed to determine the in-
finitesimal increases of � by means of equation (3),

�þ d� ¼ �
�þ d�

�

� �1=�

: ð38Þ

Integrating step-by-step equation (38), the generalization to an
arbitrary density profile of equation (3) is easily obtained,

� � �i

�

�i

� �1=�

: ð39Þ

As a result, shock speed will depend only on the initial Lorentz
factor and on the local density value.
Having this fact on our mind, we can calculate how much a

shock propagating in an atmosphere �(x) will fall behind an
initially identical one (also �0 ¼ �0) which propagates—
unperturbed—in the usual exponential profile �(x). Calling X1

the former’s position and X0 the latter’s one and imposing
X0(t ¼ 0) ¼ X1(t ¼ 0) ¼ 0,

Ẋ0 ¼ v �0 exp � k0X0

�

� �� �
� 1� exp 2k0t=�ð Þ

2�2
0

; ð40Þ

Ẋ1 ¼ v �0

�(X1)

�0

� �1=�( )
� 1� �0=�(t)½ �2=�

2�2
0

: ð41Þ

Fig. 21.—Vorticity : < (h�v) for r � 2:4 ; 10�1k�1
0 and " � 3.

Fig. 22.—Shock Lorentz factor evolution as a function of the distance traveled
into the exponential atmosphere for �0 ¼ 2 (stars for simulation, solid line for self-
similar prediction, dashed line for the hyperrelativistic limit of the latter).
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Subtracting equation (40) from equation (41), one obtains the
equation for the delay,

d

dt
�X � 1

2�2
0

exp
2k0t

�

� �
� �0

�(t)

� �2=�( )
: ð42Þ

Equation (42) is an interesting result, since it may prove to be
useful for accurately estimating the shock position in an arbitrary
atmosphere without wasting any time in full-blown simulations.

As an example, let us write the density profile as

�(x) ¼ �(x) 1þ "��(x)½ �: ð43Þ

If we are dealing with a slightly perturbed upstream, " will be
much smaller than 1, thus justifying the following simplifications
to equation (42),

d

dt
�X � 1

2�0

exp
2k0t

�

� �
1� 1þ "��(t)½ ��2=�

n o

� "��(t) exp 2k0t=�ð Þ
��2

0

: ð44Þ

Let us suppose now that a planar shock encounters a turbulent
upstream. According to the approximation of independent evo-
lution of each flow cylinder we extensively discussed above, we
can derive the statistical properties of the shock wrinkles at each
x (or, equivalently, at each t). As a starting point we can imagine
that each upstream cylinder perturbation [identified by a pair
( y; z)] is a particular realization of a power spectrum A(k), such
that A(k) ¼ j�̃�(k; y; z)j; 8y; z,

��(x; y; z) ¼
Z 1

0

dk A(k) cos kxþ �(k)½ �; ð45Þ

where the phase �(k) is a random variable determining each
realization with a probability distribution given by

P �(k)ð Þ ¼ H �(k)ð ÞH 2�� �(k)ð Þ
2�

: ð46Þ

Integrating equation (44)

�X (t) ¼
Z t

0

"��(	) exp 2k0	=�ð Þd	
��2

0

ð47Þ

and substituting equation (45), we obtain

�X (t) ¼
Z K




"A(k)

��2
0

Z t

0

cos k	 þ �(k)½ � exp 2k0	

�

� �
d	 dk: ð48Þ

Here, two cuts have been introduced in order to exclude from
the computation turbulence wavelengths larger than x � t itself
(infrared cut 
 � t�1) or smaller than the scales reached by
transverse diffusive phenomena smoothing out high wavenumber
wrinkles (ultraviolet cut K � 25�t�1; see eq. [37]). From equa-
tion (48) it is obvious that �X is itself a random variable given
by the sum of (infinite) random variables, each of them identified
by the parameter k and depending on the random phase �(k). The
central limit theorem completely characterizes (from a statistical
point of view)�X as a randomvariableGaussian distributedwith
an average over the ensemble of cylinders h�X (t)i ¼ 0 and a
variance � � h�X 2i given by the (infinite) sum of the variances
d�(k),

d�

dk
�

R 2�
0

"A(k)= ��2
0

� 	� �R t

0
cos (k	þ�) exp 2k0	=�ð Þd	


 �2
d�

2�
;

ð49Þ

whence, summing over k, it results in

�X 2
� �

(t)

¼ "2
Z K




A2(k) 1þexp 4k0t=�ð Þ�2 cos (kt) exp 2k0t=�ð Þ½ �
2�4

0 �2k2 þ 4k20
� 	 dk:

ð50Þ

The characterization of the shock position distribution provided
by equation (50) may represent a benchmark for several appli-
cations.Minor modifications should be sufficient, for instance, to

Fig. 23.—Shock Lorentz factor evolution as a function of the distance trav-
eled into the exponential atmosphere for �0 ¼ 10 (stars for simulation and solid
line for self-similar prediction).

Fig. 24.—Same as Fig. 23, but for �0 ¼ 50.
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obtain an estimate of the features in the fluctuations in the af-
terglow light curve, provided a model of upstream turbulence is
given. Such a kind of study is considered to be of great interest,
particularly in light of the recent Swift observations: bumps,
flares, and plateaus have often been observed in place of smooth
power-law decays, thus challenging our understanding of the
afterglow production.

7. CONCLUSIONS

We started by testing whether the PLUTO code is appropriate
for treating the evolution of hyperrelativistic shock waves with
Lorentz factors even in excess of 102, obtaining satisfactory evi-
dence of coherency with the self-similar theory developed by
Perna & Vietri (2002) and Palma & Vietri (2006) for shock ac-
celeration in an exponential atmosphere.

Above we tried to answer the question on how nonlinear ef-
fects may let the instability evolution depart from the linear
behavior. We studied several perturbing agent configurations,
concluding that the shock will tend to restore the original planar
shape of the discontinuity surface on a timescale given by
Tsm � 25�k�1. We intend to remark that such a behavior does
not appear as a typical saturation phenomenon, due to the lack of
competition between a destabilizing factor (which is actually
missing) and a restoring agent. The reason is easily found; while
in the Newtonian counterpart of the problem the destabilizing
factor is given by the tendency of the zeroth-order solution to
preserve any speed difference between adjacent flow columns
(even better, it grows indefinitely; see Chevalier 1990), here the
acceleration is in terms of a homogeneous growth of the Lorentz
� factor. As a consequence, in the hyperrelativistic regime, es-
sentially due to the existence of the speed limit c, even in absence
of restoring effects, the maximum gap that a difference of �
between two distinct cylinders can produce is

�X max �
� �2

2 � �2
1

� 	
4k0�

2
1�

2
2

¼ k�1
0 O ��3

� 	
: ð51Þ

This explains the lack of a substantial destabilizing factor; even
if two regions of the shock—for example, as a consequence of
an inhomogeneous upstream—travel with different speeds and
are at different positions, as soon as the perturbing agent dis-
appears, they will tend to reach a maximum gap sooner or later.
At that point the only acting process is the smoothening influ-
ence of the secondary shocks. As a result, the shock will tend
inexorably to the zeroth-order solution (in other word, the sat-
uration point is that of no perturbation).
In x 6 we found that self-similarity is reached almost imme-

diately in the flow and concluded that this allows us to predict the
shock position as a function of only the initial and final upstream
densities.We applied this result to the case of a turbulent ambient
density and derived an analytical expression for the dispersion of
the shock positions at different transverse positions.
The subject we treated in this paper is expected to have a great

relevance with regard to models describing GRB radiation, es-
pecially those concerning the afterglow emission at the external
forward shock. The recent Swift observations have shown lots of
bump, flares, and plateaus in place of smooth power-law decays
in the light curves (Fox &Mészáros 2006), thus challenging our
understanding of the afterglow production. Lazzati et al. (2002),
Heyl & Perna (2003), and Nakar & Oren (2004) suggested that
this variability in the light curves may be the result of the pres-
ence of density bumps in the upstream medium. The upcoming
launch of GLAST is likely to provide an even more detailed de-
scription of such events, thus requiring a more accurate modeling
of the underlying physics. It goes without saying, therefore, that
having a good theory for the dynamics of highly relativistic shock
waves represents a key point of our capability to properly predict
the emission expected from an afterglow.
Future developments of this work will involve the evolution

of shocks propagating in a magnetized ambient medium. An easy
and straightforward extension of the numerical setup hitherto
developed would dispel the uncertainties greatly affecting at the
moment this theoretical issue and may provide unambiguous
evidence on a hot topic of the GRB theory.
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