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ABSTRACT

We study the linear and nonlinear evolution of the tearing instability on thin current sheets by means of two-
dimensional numerical simulations, within the framework of compressible, resistive MHD. In particular we
analyze the behavior of current sheets whose inverse aspect ratio scales with the Lundquist number S as S~'/3. This
scaling has been recently recognized to yield the threshold separating fast, ideal reconnection, with an evolution
and growth that are independent of S provided this is high enough, as it should be natural having the ideal case as a
limit for § — oo. Our simulations confirm that the tearing instability growth rate can be as fast as v ~ 0.6 74!,
where 7, is the ideal Alfvénic time set by the macroscopic scales, for our least diffusive case with S = 107. The
expected instability dispersion relation and eigenmodes are also retrieved in the linear regime, for the values of S
explored here. Moreover, in the nonlinear stage of the simulations we observe secondary events obeying the same
critical scaling with S, here calculated on the local, much smaller lengths, leading to increasingly faster
reconnection. These findings strongly support the idea that in a fully dynamic regime, as soon as current sheets
develop, thin, and reach this critical threshold in their aspect ratio, the tearing mode is able to trigger plasmoid
formation and reconnection on the local (ideal) Alfvénic timescales, as required to explain the explosive flaring
activity often observed in solar and astrophysical plasmas.
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1. INTRODUCTION

Magnetic reconnection is thought to be the primary
mechanism providing fast energy release, readily channeled
into heat and particle acceleration, in astrophysical and
laboratory magnetically dominated plasmas. Within the
macroscopic regime of resistive MHD, however, classical
reconnection models predict timescales, in highly conducting
plasmas, which are too slow to explain bursty phenomena such
as solar flares in the corona or tokamak disruptions. In
particular, the Sweet-Parker model (hereafter SP) of two-
dimensional, steady, incompressible reconnection (Parker
1957; Sweet 1958) predicts a reconnection rate M = v /cp ~

§~172, where v is the speed of the flow entering the reconnecting
site, ca the Alfvén velocity based on the field far from the sheet
and § = Lca/n is the Lundquist number for a given magnetic
diffusivity 7 (L is the current sheet length or breadth, identified
with the macroscopic scale), which can be as high as § ~ 102
in the solar corona, if simply due to collisional resistivity. Such
a rate is way too slow to explain any of the impulsive
phenomena described above.

As first demonstrated by means of 2D MHD simulations by
Biskamp (1986), however, stationary reconnecting, SP-like
sites become unstable once the Lundquist number exceeds a
critical value of order S ~ 104, and are subject to fast tearing
modes and plasmoid formation when their aspect ratio L/a
becomes large enough, also increasing the local reconnection
rate. Recent detailed linear analyses and simulations have
confirmed these findings (Loureiro et al. 2007; Lapenta 2008;
Bhattacharjee et al. 2009; Cassak et al. 2009; Samtaney et al.
2009; Huang & Bhattacharjee 2010; Uzdensky et al. 2010). In
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particular, the SP current sheet, of inverse aspect ratio
a/L ~ §7'2, in the presence of the typical inflow/outflow
pattern characterizing steady reconnection, was shown to be
tearing unstable with growth rates ~y7y ~ S'4, where
7a = L/ca. For a recent review on the latest theoretical works
on 2D reconnection and secondary island (plasmoid) instabil-
ities, from MHD to Hall regimes, see Cassak & Shay (2012).

The existence of instabilities with growth rates scaling as a
positive power of S poses severe conceptual problems, since
the ideal limit, corresponding to § — co would lead to
infinitely fast instabilities, while it is well known that in ideal
MHD reconnection is impossible.

This issue was resolved by Pucci & Velli (2014, PV
hereafter), who studied the stability of current sheets with
generic inverse aspect ratios a/L ~ S~. The authors found that
a critical exponent separates current sheets subject to slow
instabilities, with growth rates scaling as a negative power of S,
from the unphysical fast instabilities scaling as a positive power
of S. Indeed, for @ = 1/3, they found the growth rate of the
fastest reconnecting mode to become independent of the
Lundquist number. They therefore conjectured that current
sheets should not collapse to aspect ratios greater than this
critical value, at which point the instability, which they called
the “ideal” tearing mode, leads to Lundquist-independent
reconnection. For this aspect ratio, current sheets have a
thickness up to 100 times larger than a typical SP reconnecting
layer, and the instability developed X-points and plasmoids,
thus preventing any collapse to the standard SP current sheet or
any other steady configuration with « > 1/3. This novel
“ideal” tearing instability is very fast, with an asymptotic
growth rate y74 ~ 0.62, and leads to the sudden formation of
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several plasmoids. In particular, PV found the relation
kL ~ S, with k the fastest growing wave-vector along the
current sheet.

In the present work we investigate numerically, by means of
(compressible) resistive 2D-MHD simulations, the linear and
nonlinear stages of the tearing mode for a current sheet at the
critical thickness a/L = S~'73. Several initial configurations are
tested, from the Harris sheet with fluid pressure balance, to the
purely force-free case, with magnetic field rotation inside the
current sheet, and also different values for the asymptotic
plasma beta.

The goal of this paper is, on the one hand, to retrieve all of
the known linear results and scalings, namely the expected
instability dispersion relation and eigenmode structure (within
the range of Lundquist numbers accessible to our simulations,
that is up to § = 107 to limit the computation time), on the
other hand to explore the nonlinear regime of the “ideal”
tearing instability for the first time. Our simulations provide
further proof of the existence of such an instability, which is
expected to set in during current sheet collapse arising in any
turbulent scenario of plasma dynamics (Loureiro et al. 2009;
Servidio et al. 2009; Rappazzo & Parker 2013).

The paper is structured as follows. In Section 2 we describe
the set of equations, the initial conditions, and our numerical
setup. Section 3 is devoted to the numerical validation of the
linear theory of PV. In Section 4 we show the nonlinear results.
Section 5 contains the discussions and conclusions.

2. NUMERICAL SETUP

We integrate the compressible, resistive MHD equations
numerically, with the adiabatic index v = 5/3, in the form

9% 5. (=0 (1)
ot
ov 1
— +@-V)yy=—[-Vp +(V x B) x B], 2
ot 0
%—j + @ -WNT=(n—-D[—(V-»T
1|V x BP
— - 3
S P (3)
a—B=V><(v><3)+lsz 4)
ot S ’

where S is the Lundquist number defined above and other
quantities retain their obvious meaning. Physical quantities are
normalized using Alfvénic units, namely a characteristic length
scale L, a characteristic density p,, and a characteristic

magnetic field strength Bo/ J4r (the background values
measured far from the current sheet). Velocities are then
expressed in terms of the Alfvén speed cy = By / 47p,, time
in terms of 74 = L /ca, the fluid pressure in terms of B()2/47r.
Note that we are using the energy Equation (3) written for the
normalized temperature T = p/p, where we use as a reference
value Ty = (m /kB)cﬁ. With the given normalizations the
Lundquist number is basically the inverse of the magnetic
diffusivity, namely S = coL/n — n~ L.

The initial conditions at r=0 for our two-dimensional
simulations of the tearing instability are different forms of the
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Harris current sheet configuration in which the equilibrium
magnetic field varies only in the x direction, reaching an
asymptotic magnitude B = 1 far from x = 0, the plasma density
is uniform p = 1, and the pressure (and temperature)
p=T= (/2 far from the current sheet, localized around
x =0, the asymptotic plasma beta being a given parameter.
Two types of equilibrium are considered: in the first case, the
classical Harris sheet, the field has only one component, the
magnetic pressure gradient is balanced by a temperature
enhancement in the current sheet itself (requiring a local
plasma beta of the order of one, regardless of the value of the
parameter (3), whereas in the second case the magnetic field is
in a force-free equilibrium (FFE), p and T are taken constant
everywhere, the condition B> = const being preserved by the
fact that the magnetic field rotates across the sheet, so that there
is a non-vanishing component B, = 0 inside the current sheet
itself. Introducing a new parameter ¢, the (normalized)
maximum amplitude of the z component of the magnetic field,
both equilibria can be described writing:

B = tanh

x]f’ + ¢ sech [i]i, 5)
a

a

and for the fluid pressure is

2
1D=T:ﬁ~6-1 2C sechz[g], (6)

with ¢ = 0 for the first case with B, = 0 in pressure equilibrium
(PE hereafter), and ¢ = 1 for the FFE. Intermediate cases of
mixed fluid/magnetic equilibria with 0 < { < 1 can are also
equilibria.

With these normalizations, it is the thickness a of the current
sheet that defines the growth rate of the tearing instability: in
the incompressible linear analysis by PV it has been shown
that, when a ~ S~'3, for sufficiently high values of the
Lundquist number (larger than 10’—10%) the growth rate of the
instability -, measured in terms of the macroscopic Alfvénic
time 7, becomes independent of the magnetic diffusivity and
of the order of unity. For the set of simulations shown below
the current sheet thickness has been taken precisely a = §~'73,
regardless of the equilibrium model chosen, i.e., the adopted
values of 3 and (.

The compressible, resistive MHD Equations (1)—(4) are
solved in a rectangular domain [—L,, L] x [0, L,] with
resolution N, and N, respectively. In the x direction, in order
to resolve the steep gradients inside the current sheet using a
reasonable number of grid points, we limit our domain to a few
times the current sheet thickness, i.e., we set L, = 20 a: this is a
good compromise between the high resolution required inside
the current sheet and the need to have boundaries sufficiently
far from the reconnecting region. Along the y direction the
length is chosen in order to resolve for the fastest growing
modes of the instability (see below).

The tearing instability is characterized by the exponential
growth of modes with wavelength larger than the current sheet
thickness, that is with ka < 1 (k being the mode wave-vector
along y). The length L, along the current sheet is thus adapted
to cover the range of unstable modes, namely we choose
L, = m), where m is the number of wavelengths A\ = 27/k that
we wish to simulate in our numerical box. Both lengths are
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chosen to decrease with S,

Ly=m\= mzlS_l/3,

L, =20a = 205173,
ka

(N
where the value of ka ~ S0 is of order 0.1 for S = 107, from
the linear analysis by PV. The linear analysis in the next section
is performed by taking sheet lengths for which only one mode
(m=1), the most unstable one, is excited, whereas for the
nonlinear simulations we will choose L, so that several unstable
modes are independently excited (typically m =4), so to allow
the subsequent mode-coupling and inverse cascade (i.e., the
merging of plasmoids).

In order to trigger the tearing instability, the equilibrium
configuration is modified at r = 0 with velocity perturbations of
amplitude ¢ ~ 1073 (the rather large value speeds up the
evolution) and wave-vector k = k j, where k is the same
quantity appearing in Equation (7), namely the wave-vector of
the fastest growing mode selected for the analysis, as expected
from the linear theory. Along the x direction these velocities are
concentrated at the current sheet location and vanish far from
the current sheet. Moreover, the v, component is taken to be
odd across the reconnection layer, whereas the y-component v,,
is obtained by imposing the perturbation velocity field to be
incompressible. The analytical expressions for the perturba-
tions are

v, = € tanh £ e=¢’ cos(ky + <pk>, (8)
= g(2§ tanh £ — sech® £ )e’fzS”zlfl sin(ky + @), (9)

where ¢, is a random phase (for each mode k) and & = x S'72.

The numerical simulations are performed by integrating
Equations (1)—(4) with an MHD code developed by our group.
Along the current sheet, where periodicity is assumed, spatial
integration is performed by using pseudo-spectral methods,
while in the x direction integration is performed by the use of a
fourth-order scheme based on compact finite-differences
(Lele 1992). The boundary conditions in the non-periodic
direction are treated with the method of projected character-
istics (Poinsot & Lele 1992; Roe & Balsara 1996; Del Zanna
et al. 2001; Landi et al. 2005), here assuming non-reflecting
boundary conditions. Time integration is performed using a
third-order Runge—Kutta method. Details of the code are
described in Landi et al. (2005).

The resolution is adapted to the Lundquist number we use:
for § = 10° and § = 10° we choose N, = 1024 and N, = 128,

while for § = 107 the number of cells in the x direction is
increased up to N, = 2048. In the periodic direction we use
N, = 128 for the single-mode runs (in order to reduce the
computational costs as many simulations are required to
reproduce the instability dispersion relation curves), while we
take N, = 256 in the nonlinear reference simulation. We have
verified that this relatively low resolution along the periodic
direction is adequate, due the extreme accuracy of Fourier
methods and the rather smooth gradients observed in the y
direction. In spite of the relatively high values of S, in addition
to instability, the equilibrium diffuses on timescales which
although long compared to the instability, are still sufficient to
affect linear evolution leading to slightly underestimate the
growth rates of linear modes (Landi et al. 2008). To avoid this,
in the single mode linear analysis described below, the
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Figure 1. Instability dispersion relation (growth rate as a function of k,
normalized against a~! = §'/3) for different values of the asymptotic beta (top
panel: 3 = 0.1; bottom panel: 5 = 1.6), and Lundquist numbers (red color:
S = 103; green color S = 10% blue color: S = 107). Solid lines are the
theoretical expectations, symbols are for numerical results (crosses: PE;
squares: FFE).

diffusion term of the initial equilibrium is subtracted on the
rhs of the induction equation at all times.

3. SINGLE MODE SIMULATIONS: LINEAR ANALYSIS

A first set of simulations of the tearing instability in current
sheets with a = S~1” is performed to confirm the expected
linear behavior, i.e., the scalings reported in Pucci & Velli
(2014), and in particular the instability dispersion relation as a
function of the model parameters, here reported in Figure 1
(solid lines).

Even in the presence of the general equilibrium in
Equations (5)-(6) with ( = By /By = 0, it is easy to show
that the linear analysis of the instability is unchanged with
respect to PV (in the incompressible limit p = 1 and assuming
perturbations in the x—y plane alone with 9, = 0). The
governing equations for the tearing mode are still (Furth
et al. 1963)

v (v = kw) = ik[Boy(b;/ k)~ B,

. (10)
v by = ikBo,v, + 57 (b! — kb)), (11)

where we have assumed that perturbations are factorized as
o f (x)exp(yt + ky) and the prime denotes derivation with
respect to x. Thus, even when ( = 0 there is no coupling of
modes with the BoZ component, and the PV results for initial
equilibria with @ = S~'”3 should remain unchanged. Moreover,
no dependency on (3 is expected, as neither this parameter
enters the instability equations above, thus the theoretical
dispersion relation curves only depend by the choice of S.

In spite of the expectations commented above for an
incompressible situation, the results of a numerical simulation
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Figure 2. Profiles across the current sheet of the tearing instability eigenmodes b, (b, is automatically determined by the solenoidal constraint), vy, and v. Top panel:
analytical linear theory; bottom panel: numerical results. All profiles are normalized to their maximum value.

can deviate from the analytical case, due to the compressible
regime, to differences in the treatment of boundary conditions
(see below), and in general to discretization errors and other
numerical approximations. Therefore, we choose to test the two
limits of our initial equilibria for the current sheet, namely PE
(¢ =0) and FFE (¢ = 1). Moreover, we investigate both cases
with 8 <1 (8 =0.1) and 8> 1 (8 = 1.6), where § is the
asymptotic plasma beta in Equation (6). Finally, three different
values of the Lundquist number are tested here, namely
S =10, 106, and 107, for a total of 12 sets of simulations of
the linear phase of the tearing instability, with the aim of
reproducing the expected dispersion relations numerically , as
shown in Figure 1.

As anticipated in the previous section, for each value of ka
we vary L, while always selecting a single mode m = 1. The
growth rate of the instability is computed by measuring the
x-averaged amplitude of the component b, of the perturbed
magnetic field (b, = 0 at the initial time). In order to better
compare with theoretical expectations, the PV eigenmode
analysis has been redone here for a limited region across the
current sheet of —20 < x/a < 20, precisely as in our simula-
tions. However, additional discrepancies are still expected,
since the v, eigenmode is forced to vanish at the boundaries in
the PV calculations, whereas in simulations we impose non-
reflecting boundary conditions.

The first thing to notice by inspecting the computed
dispersion relations is that, as predicted by the classical linear
theory, for each value of S the curves have a maximum at a
given k, the peak location decreasing in k as S increases. The
growth rate of the instability (normalized to the inverse of the
large-scale Alfvén time 74 ) has peaks ranging from 7 = 0.5 for
S =103to vy > 0.6 for S = 10.

In general we find that the simulations with 5 = 1.6 (bottom
panel) are more precise in matching the analytical results than
those with 5 = 0.1 (top panel), since a large beta is a condition
closer to incompressibility (formally corresponding to an
infinite value for the sound speed). Moreover, we find that
simulations of the FFE scenario (squares) yield higher and
usually more accurate values of the growth rates as compared

to those employing the PE settings (crosses): this is probably
due to the fact that the purely FFE leads to intrinsically less
compressible fluctuations. Finally, rather large discrepancies
are observed for small scales (large values of ka), especially in
the PE case.

In Figure 2 we plot the profiles of the perturbations b, (b, is
determined by V - B = 0), v, and vy, all normalized to their
respective maximum, across the current sheet in the x direction.
In the top panels we show the analytical results, that is the
eigenmodes of the linear analysis (here the PV calculations
have been recomputed by imposing v, = 0 for x = £20a), and
in the lower panels we report the numerical solutions for a
simulation in the FFE scenario with S = 107 and ka = 0.10, at
a given time of the linear evolution of the instability. In order to
recover the theoretical eigenmodes, velocity and magnetic field
perturbations are shown with a 7/2 shift in ky, as expected.
Notice the steep gradients arising within the current sheet
(x| € a), where a high resolution is needed to resolve the
small scales developed during the instability evolution.

As seen, the eigenmodes are very well reproduced: the
magnetic field perturbations are identical to the analytical
expected ones, while in the velocity perturbations the only
major difference is, as anticipated, due to the non-reflecting
free-outflow boundary conditions, that do not force v, = 0 at
X = =a and result in a slightly different profile even in the
vicinity of the reconnecting region.

4. NONLINEAR SIMULATIONS

In the present section we investigate the nonlinear stages of
the evolution of the tearing instability. Since we are interested
in its late development, where interaction and merging of
plasmoids is expected, we trigger the instability by selecting an
initial spectrum of modes, rather than a single one as in the
previous set of simulations, and we choose a maximum mode
number My, = 10. We also choose L, = 1 and § = 107, so
the modes with

ka ~0.029m; m=1,10
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Figure 3. Nonlinear evolution of the tearing instability of a current sheet (FFE,
(=1, 3=1.6) witha = S~'/3. Growth of the excited perturbations (the first 8
modes, multiples of ka = 0.03) measured on the x average of the B,
component.

are all excited. From the theoretical curves in the previous
section we expect mainly a competition between modes m = 3
and m =4 as the fast growing ones. As a reference run, we
analyze the instability of an FFE (¢ = 1) with constant
temperature, and we select the case with § = 1.6. This
combination was shown to provide a linear phase that is the
closest to the analytical expectations (see Figure 1). The
resolution employed for this run is 2048 x 256, which is very
high if one considers that the code employs high-order methods
(compact finite-differences along x and Fourier transforms
along y, where periodical boundary conditions apply).

In Figure 3 we show the growth in time of the first 8 excited
modes, based on a Fourier analysis along y of the B,
component averaged in the x direction. Notice that toward
the end of the linear phase (¢ ~ 5) the dominant modes are
m=3 (ka ~ 0.09), with contributions from m = 4, 5, as
expected since their growth rates are similar. After t+ ~ 6-7
nonlinearities become important starts and the energy in the
longer wavelength modes increases due to the merging of
smaller wavelength modes: as the m =3 mode is the most
energetic one at this time, it keeps increasing its energy at the
expense of higher m modes. At ¢t ~ 9 it has become dominant
and the corresponding islands start to merge (see the full
evolution described below): in the spectra this corresponds to a
flattening of the m =3 energy curve and to a strong increase
first of the m =2 and finally the m = 1 modes (ka = 0.03), the
largest available island in our y-periodic domain. This behavior
is compatible with other 2D simulations of the tearing
instability (see, for example, Figure 3 in Landi et al. 2008).

The complete evolution is shown in Figure 4, where 2D
snapshots for selected times are provided, of the region
|x/a| < 10. Note that the figure has different scales in x and
¥, the x axis is normalized against a, the y axis against L, with
L/a = §'3 ~ 215). Panels on the left show the J. current
component, whereas panels on the right show the distorted field
lines superimposed on a map of temperature 7. It is easy to
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recognize the end of the linear phase of the tearing instability
(top row), with the dominant m = 3 mode still clearly apparent.

When the tearing instability growth is over, the nonlinear
phase sets in leading to further reconnection events and
eventually to island coalescence, departing from the dominant
phase with m =3. First, due to the attraction of current
concentrations of the same sign, the X-points elongate and
stretch along the y direction (Malara et al. 1991, 1992). This
process leads to a strong increase of the electric current
concentrations and thus to the formation of new, elongated
current sheets (see the second row, details of this phase will be
discussed further on).

Beyond ¢ ~ 9 (third row) the evolution has become fully
nonlinear and we clearly observe the process leading to the
creation of a single, large magnetic island as arising from
coalescence. The situation is very dynamic, especially near the
major X-point where explosive expulsion of smaller and
smaller islands is observed, typical of the plasmoid instability
described in Loureiro et al. (2007) and subsequent papers (in
the spectra, as those shown in Figure 3, the emergence of
plasmoids is revealed by the oscillations of modes with m > 1)
. These islands then move toward the largest one, which is
continually fed and thus further increases its size (approxi-
mately with a linear behavior in time, until the boundaries are
eventually reached) in a sort of inverse cascade eventually
leading to the largest m = 1 mode. Notice also the temperature
enhancement at the reconnection sites. This long-term evolu-
tion is essentially determined by the imposed periodic
boundary conditions along y.

At time ¢ = 9.5 (bottom row) both the current concentration
and the plasma temperature around the X-point are so high that
we need to saturate their values in order to retain an appropriate
dynamical range in the color bar. The initial macroscopic
current sheet is basically disrupted in a series of highly
dynamical features. The current and temperature enhancements
are stronger at the X-point and at the boundaries of the
magnetic islands. Moreover, from the major reconnecting site
we clearly see the production of magnetosonic waves, which
propagate and soon steepen into shocks.

At times ¢ > 11 the nonlinearities are so strong that the code,
which is not conservative, cannot properly resolve the shock
propagation and the simulation is interrupted. In addition, the
largest island prevents the formation of new, smaller current
sheets further feeding it, and the subsequent growth appears to
proceed slowly, compatibly with the linear growth predicted by
Rutherford (1973).

Let us now investigate in more detail the situation right after
the end of the linear phase of the tearing instability, when the
islands coalescence is about to set in and the local current
sheets have just formed and started to further evolve. In
Figure 5 (left panel) we show the zoom around the X-point
(which is just about to develop) near y = 0.2 at r = 8.25, the
first row of Figure 4. Here we display the electric current by
using the same scale in both x and y directions, normalized
against the macroscopic current sheet’s width a = S~/ ~
1/200 ~ 5 x 1073, thus the position of the reconnection zone
is now expressed as y =~ 40a.

The local current sheet has just formed as the result of a
stretching process in the y direction (and shrinking across the
other direction), as a typical output of the nonlinear phase of
the tearing instability. We are now in the phase in which, in the
center of the current sheet, reconnection is about to take place,
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Figure 4. Nonlinear evolution of the tearing instability of a current sheet (FFE, ¢ = 1, 3 = 1.6) with @ = S~!/3. In the left panels we show the intensity of the J,
electric current component, while in the right panels the magnetic fieldlines and the plasma temperature are displayed. Notice that the x and y scales are different and
that we are zooming the inner region |x| < 10a, while the computation extends out to |x| = 20a.

leading to a topology change in the magnetic structure and to of this reconnection site. From the white box in the figure,
the disruption of the current sheet itself, initially into two defined by the rectangular region where the J, component has
smaller strips. It is very interesting to measure the aspect ratio values that are roughly half of those of the central peak, we
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Figure 5. Zoom of the most prominent X-point reconnecting region, during the early nonlinear stage of the tearing instability. Colors refer to the strength of the J,
component of the electric current. On the left panel we show the situation for the reference run with § = 107, in the central panel the case S = 10°, in the right panel

the case S = 10°.

estimate L*/a* ~ 200, where we have used an asterisk to
indicate the local values and to differentiate with respect to the
macroscopic ones (we also recall that in the whole paper we
identify a as the half width of a current sheet). Additional
simulations for § = 10° and S = 107, reported in the second
and third panels, lead to local aspect ratios of L*/a™ ~ 80 and
L*/a* ~ 50, respectively.

If we now compare these numbers with $*, trying to find a
value of « that fits the data best, it is easy to see that the value
a = 1/3 is a very good guess. Here S* = (L*/L)S is the local
Lundquist number, which is obviously smaller than the
macroscopic one, due to the much smaller length of the local
current sheet (to be measured in each case). Therefore, based
on our very limited data set, we derive the scaling

13
L¥/a* =k §* (12)

where k >~ 2.1-2.3, that is of the order of unity, as expected.
These findings are very important, in our opinion. For the
first time we clearly see in simulations that, even in the
nonlinear stages of the tearing instability, the new current
sheets that form locally become unstable when the inverse
aspect ratio of these structures reaches the critical threshold of

a* /L* ~ §*¥713  precisely the same limit found by PV for the
fast reconnection of the initial, macroscopic current sheet. After
that, a new “ideal” tearing instability starts, with time occurring

on a faster timescale 75 = L*/c,, since typically L* < L.
As the time proceeds, smaller and smaller scales are
nonlinearly produced, forming new local current sheets that
elongate and, according to Equation (12), reach their own
critical value. Faster and faster reconnection will arise
producing a cascading, accelerating process: this, we believe,
is the real nature of the plasmoid (or super-tearing) instability.
In order to complete our numerical investigation, we have
also performed nonlinear simulations for other settings, like the
PE initial configuration and § = 0.1. Some changes are seen
during the linear stage, because of the slightly different growth
rates, though the number of islands created by the fastest

growing mode is always m = 3. Coalescence to the m =2 and
m =1 modes is invariably observed, as well as the rapid onset
of the plasmoid instability. The runs with 3 = 0.1 are less
robust than the reference one with 3 = 1.6, due to the stronger
compressibility effects and faster growth of shock waves. We
therefore deem that the nonlinear stages of the fast reconnec-
tion process described in this section have been captured
correctly, and the crucial observation that even the secondary
reconnection events occur when the local current sheets reach
an inverse aspect ratio xS* 13 as for the initial settings,
confirms that the physics of the “ideal” tearing instability is
indeed robust.

5. CONCLUSIONS

In the present paper we have studied, by means of
compressible, resistive MHD simulations, the linear and
nonlinear stages of the tearing instability of a current sheet
with inverse aspect ratio a/L ~ S, where § > 1 is the
Lundquist number measured on the macroscopic scale (the
current sheet length) and the asymptotic Alfvén speed. Our
results confirm the linear analysis of PV of the “ideal” tearing
mode, while our nonlinear simulations show that the current
sheet elongation and reconnection follows what appears to be a
quasi-self-similar path, with subsequent collapse, current sheet
thinning, elongation, and destabilization starting from the X-
points formed in the original sheet. As scales become smaller,
and the effective Lundquist numbers decrease, the dynamical
timescales decrease, leading to explosive behavior.

In particular, we have verified that the secondary reconnec-
tion events start their fast evolution precisely when the critical
threshold a/L ~ S~'73 predicted in PV is replicated on the local
scale, according to Equation (12). We believe that this could be
a universal behavior. Though a detailed renormalization-type
analysis is beyond the scope of this paper, requiring the
inclusion of finite inertial-length effects and therefore also the
presence of guide fields etc., it seems clear that scaling phase
diagrams for reconnection (as provided for example by Cassak
& Shay 2012; Cassak & Drake 2013), might end up being
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modified by the presence of this additional “ideal” tearing
regime and its kinetic generalizations currently under study.

Notice that our analysis begins with a current sheet that has
already reached the critical aspect ratio, but it is natural to
speculate that because the tearing instability is incredibly slow,
at large Lundquist numbers, this critical aspect ratio becomes
de-facto a trigger for explosive energy release. It would be
interesting to perform large-Reynolds number simulations in
which the current sheet thins, so that the aspect ratio increases
with time: in such a case the triggering of reconnection could
be examined in greater detail. Even more realistic would be to
perform simulations of turbulent reconnection (see Lazarian
et al. 2015, and references therein), though it would be hard to
reach the accuracy needed to recognize our critical scaling in
current sheets forming at all spatial scales.

Moreover, here only 2D MHD reconnection has been
considered, while additional dynamics is expected in 3D
simulations, with or without the presence of a guide field and/or
shear flows, where the onset of the secondary plasmoid
instability may be heavily modified by the interaction with
other modes (Onofri et al. 2004; Landi et al. 2008; Bettarini
et al. 2009; Landi & Bettarini 2012).

An important limitation of our simulations is the use of only
a resistive term in Ohm’s law. Tenerani et al. (2015) have
considered the effects of viscosity on the “ideal” tearing
scenario, showing that the main result is unchanged at Prandtl
numbers of the order of unity, while greater critical aspect
ratios, even close to the SP limit, are possible in more viscous
regimes. On the other hand, for typical conditions of the solar
corona, the smaller scales arising in nonlinear evolution require
the inclusion of further kinetic effects, such as the Hall term
and electron pressure and inertial terms, in Ohm’s law. While
effects on the linear stability are presently being considered
(D. Del Sarto et al., in preparation) it would be important for
understanding the partitioning of energy between the bulk of
the plasma and accelerated particles for fully kinetic simula-
tions to be carried out.

The “ideal” tearing mode occurring on Alfvénic timescales
naturally applies to the solar coronal plasma, where heating is
supposed to be caused by the flaring activity at all scales (the
Parker nanoflares scenario) inside coronal loops (Rappazzo
et al. 2007, 2008). In addition, the same scenario could most
probably be relevant also to relativistic pair plasmas (see
Kagan et al. 2015, and references therein), and in particular to
the modeling of Pulsar Wind Nebulae (e.g., Olmi et al. 2014;
Porth et al. 2014) in the light of the recent discovery of major
gamma-ray flares observed in the Crab Nebula (Komissarov &
Lyutikov 2011; Tavani et al. 2011; Cerutti et al. 2012; Biihler
& Blandford 2014).
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