

Life Cycle Assessment, EPDs and modified wood

Koper, Slovenia August 25th – August 26th, 2015

COST Action FP1407

Understanding wood modification through an integrated scientific and environmental impact approach (ModWoodLife)

Life Cycle Assessment, EPDs, and modified wood

First COST Action FP1407 International Conference Koper, Slovenia 25 – 26 August 2015

Editors: Andreja Kutnar, Michael Burnard, Matthew Schwarzkopf, and Amy Simmons

University of Primorska Koper, 2015 Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood

Edited by ■ Andreja Kutnar, Michael Burnard, Matthew Schwarzkopf, and Amy Simmons Organizer ■ University of Primorska

All papers have been reviewed.

Cover design ■ Sara Petretič, University of Primorska

Published by ■ University of Primorska Press, Titov trg 4, SI-6000 Koper, Koper 2015

Editor-in-Chief ■ Jonatan Vinkler *Managing Editor* ■ Alen Ježovnik

ISBN 978-961-6963-87-9 (www.hippocampus.si/ISBN/978-961-6963-87-9.pdf)
ISBN 978-961-6963-88-6 (www.hippocampus.si/ISBN/ 978-961-6963-88-6/index.html)
ISBN 978-961-6963-89-3 (printed edition; not for sale)

Print ■ Grafika 3000, d. o. o., Dob

Print-run ■ 200 copies

© 2015 University of Primorska Press

CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana

581.1:551.521.17(082)

COST Action FP1407. International Conference (2015; Koper)

Life cycle assessment, EPDs and modified wood / first COST Action FP1407 International Conference Koper, Slovenia 25 - 26 August 2015 ; [organizer University of Primorska] ; editors Andreja Kutnar ... [et al.]. - Koper : University of Primorska, 2015

ISBN 978-961-6963-89-3

1. Gl. stv. nasl. 2. Kutnar, Andreja, 1980- 3. Univerza na Primorskem (Koper) 280724992

The organizers would like to acknowledge the scientific committee of the first COST Action FP1407 International Conference, *Life Cycle Assessment, EPDs, and modified wood*:

Andreja Kutnar – Slovenia

Dennis Jones – Sweden

Dick Sandberg – Sweden

Robert Németh – Hungary

Christelle Ganne-Chedeville – Switzerland

Lauri Linkosalmi – Finland

Callum Hill – The United Kingdom

Ana Dias – Portugal

Edo Kegel – Netherlands

Michael Burnard – Slovenia

Lauri Rautkari – Finland

Content

Preface

Preface	
Andreja Kutnar	viii
Conference program	ix
PCR development and EPD (for wood products) - the European context.	
Frank Werner	1
Experiences with PCR for wood products and EPDs for modified wood in Norway – The	
role of biogenic carbon	
Tellnes, L.G.F.	2
PEnA-Db: Integration of LCI and EPDs with decision making	
Tarmo Räty	4
Experience in environmental declarations programme ZAG EPD	
Friderik Knez	6
Materials credits within BREEAM – LCA, the Green Guide and timber	
Flavie Lowres, Elodie Macé, Nigel Jones, Ed Suttie	8
The Wood for Good life cycle database of timber products	
David Hopkins, Ed Suttie, Owen Abbe	10
Bio-materials for building envelope - expected performance, life cycle costing &	
controlled degradation - Bio4ever project approach	
Anna Sandak	12
Bio-based building materials: aesthetical service life and customer's environmental	
conciseness	
Jakub Sandak, Anna Sandak, Mariapaola Riggio	14
Life cycle assessment of pre-fabricated timber houses according to the European state-of-	
the-art standards	
Herman Achenbach, Sebastian Rüter	16
Traceability within the wood supply chain: an opportunity defining system boundaries	
Johann Charwat-Pessler, Rudolf Schraml, Karl Entacher, Andreas Uhl, Alexander	
Petutschnigg	18
Life Cycle Assessment of ThermoVacuum treated softwood timber with comparison to	
untreated and preserved cladding	
Mario Marra, Ottaviano Allegretti, Stefano Guercini	20
Life cycle assessment of a novel tannin-boron association for wood protection	
Jin-Bo Hu, Campbell Skinner, Graham Ormondroyd, Gianluca Tondi, Antonio Pizzi, Marie-	
France Thevenon	22
Life cycle impacts of modified wood products	
Lauri Linkosalmi, Kristiina Laine, Lauri Rautkari	24
VOC emissions from linear vibration	
Mojgan Vaziri, Caroline Rogaume, Eric Masson, Antonio Pizzi, Dick Sandberg	26
Improvement of wood properties due to impregnation of wood with renewable liquids	
from different process residues of native origin	
P. Rademacher, P. Pařil, J. Baar, P. Čermák, R. Rousek, D. Meier, G. Koch, U.Schmitt	28
Development of a continuous wood surface densification process with a reduced	
environmental impact	
Benedikt Neyses, Dick Sandberg, Olle Hagman, Magnus Wålinder	30
beneative region, Diek Jahraberg, One Hagman, Magnus Walling	30

Primary analysis methods used to control thermal treatments of wood and its effect on	
decay resistance	
Kévin Candelier, Marie-France Thévenon, Anélie Pétrissans, Stéphane Dumarçay,	
Philippe Gérardin, Mathieu Pétrissans	32
InnoRenew CoE - Renewable Materials and Healthy Environments Research and	
Innovation Centre of Excellence	
Andreja Kutnar, Michael Burnard, Matthew Schwarzkopf, Črtomir Tavzes	34
Advancing LCA application in the wood sector	
Rajat Panwar	36
The use of modified wood in Slovenia	
Manja Kitek Kuzman, Mirko Kariž	37
Experimental characterization of the mechanical performance of wood in a controlled	
environment: use of acoustic emission to monitor crack tip propagation	
Malick Diakhaté, Seif Eddine Hamdi, Emilio Bastidas-Arteaga, Rostand Moutou-Pitti	39
Effect of natural weathering and accelerated aging on Pinus sp.	
Patrícia S. B. dos Santos, Silvia H. F. da Silva, Caroline R. Soares, Darci A. Gatto, Jalel	
Labidi	41
Characterisation of interactions between thermally modified wood and water	
Miha Humar, Davor Kržišnik, Boštjan Lesar, Nejc Thaler, Mojca Žlahtič	43
Study of interactions between PVAC adhesives and wood after thermo- mechanical (TM)	
modification	
Tomasz Krystofiak, Barbara Lis, Monika Muszyńska	45
Tests to increase preservative retention in fir	
Seref Kurt, Hüseyin Yörür, Muhammed Nuri Günay, Taner Yildiz	47
Analysis of neutral axis position in thermally modified wood using DIC	
Václav Sebera, Martin Brabec, Petr Čermák, Jan Tippner, Jaromír Milch	48
Decay resistance and physicochemical properties of wood preservatives based on	
extractives from Ocotea acutifolia leaves	
Daniela T. Silva, René Herrera, Berta M. Heinzmann, Jalel Labidi	50
Effects of bio and epoxidised oil on physical and biological properties of treated wood	
Ali Temiz, Engin Derya Gezer, Selçuk Akbaş, Gaye Köse Demirel	52
Structure evaluation of the modified wood through different spectral techniques	
Maria-Cristina Popescu, Carmen-Mihaela Popescu	54
Feasibility of highly durable plywood production with poplar wood as a substitute of	
tropical species	
Giacomo Goli, Francesco Negro, Corrado Cremonini, Roberto Zanuttini, Marco Fioravanti	55
Mineral-plant-fibre composite coating as a cellular wood protector against fire	
Andris Morozovs, Edgars Bukšāns and Uldis Spulle	57
Waste wood management and processing - opportunities for reducing the environmental	
impact of ports	
Lilijana Rušnjak, Michael Burnard, Andreja Kutnar	59
Perceptions of innovation in wood-based products from Slovenia	
Michael Burnard, Andreja Kutnar, Aleksandar Tošić, Manja Kitek Kuzman	61
Characterization of cracked wood under thermo-hydro-mechanical and viscoelastic	<u></u>
behaviour	
Seif Eddine Hamdi, Rostand Moutou Pitti	63

Novel moisture sorption model explaining parallel kinetics of transient wood moisture	
content	
Wim Willems	65
Changes in the modulus of elasticity of beeswax impregnated wood during soil contact	t
Róbert Németh, Dimitrios Tsalagkas, Miklós Bak	67
Impact of thermal treatment on moisture-dependent elasto-plastic behaviour of beech	1
Straže A., Fajdiga G., Pervan S., Gorišek Ž.	69
Influence of thermal modification of poplar veneers and plywood construction on shea	r
strength	
Aleksandar Lovrić, Vladislav Zdravković, Nebojša Todorović, Goran Milić	71
Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash	
application to a pasture grassland soil	
L. Beesley, K. Mitchell, L. Mollon, G.J. Norton	73
Working Groups	75

Feasibility of highly durable plywood production with poplar wood as a substitute of tropical species

Giacomo Goli¹, Francesco Negro², Corrado Cremonini², Roberto Zanuttini², Marco Fioravanti¹

Keywords: Poplar, Plywood, Durability, Heat treatment, Mechanical properties

Naturally durable tropical species such as Okoumè (*Aucoumea klaineana* Pierre) are used for the production of plywood in highly demanding environments. The use of these species could result in environmental risks and high impact operations in tropical forests and soils. In this work the feasibility of the production of plywood panels using local fast growing species with durability enhanced by heat treatment is analysed.

The heat treatment was performed on poplar (*Populus sp.*, I-214 euro-american clone) veneers to be glued after heat treatment (post) and on panels glued before heat treatment (pre) both with melamine-urea-formaldehyde (MUF) resins. Veneers and panels were treated at 180 °C for 8 hours with a dry mass loss of about 5 %. Two groups of untreated and treated samples are shown in Figure 1.

Figure 1: Heat treated (on the left) and untreated samples (on the right).

¹ GESAAF - University of Florence, Via S. Bonaventura, 13, 50145 Firenze IT, giacomo.goli@unifi.it – marco.fioravanti@unifi.it

² DISAFA – University of Turin. Largo Paolo Braccini, 2, 10095 Grugliasco IT, francesco.negro@unito.it - corrado.cremonini@unito.it - roberto.zanuttini@unito.it

The mechanical properties were assessed according to the reference testing standard EN 310. Test results in terms of strength and stiffness reduction are presented in Table 1.

Table 1: Reduction of the mechanical properties of the panels as a percentage of the initial value.

	MOR L [%]	MOR T [%]	MOE L [%]	MOE T [%]
pre	38	30	10	3
post	25	37	0	7

For both cases, according to Kruskal-Wallis and Pairwise Wilcoxon Test for independent values used as post-hoc, MOE did not show significant differences compared to the control, while MOR suffered serious reductions. The bonding quality was investigated according to the EN 314 standard using the pre-treatment 5.1.2 and the shear strength (f_v) determined (Table 2). ACWF (Apparent cohesive wood failure) is not reported because a large part of the samples broke across the glue layers.

Table 2: Reduction of the glue performance as a percentage of the initial value.

f	v [%]
Pre	69
Post	64

The panels obtained after heat treatment show very large reductions of MOR for both samples glued before and after treatment. The variation of MOR was verified not to be statistically significant. The reduction of the gules shear strength is very large. This research showed that production of heat treated poplar plywood is feasible but needs important improvements in order to avoid reductions in mechanical properties.

References

EN 310. 1994. Wood-based panels - Determination of modulus of elasticity in bending and of bending strength.

EN 314-1. 2005. Plywood - Bonding quality - Part 1: Test methods.

Acknowledgments

The authors acknowledge the financial support of Toscana Regional Administration with the POR CReO projects line as well as the FESR.

Working Groups

The main (although not exclusive) aim of this Action is to characterize the relationship between modification processing, product properties, and the associated environmental impacts and their comparison to normal wood based products and alternative (often) non-renewable materials. This includes the development and optimization of modified processing to maximize sustainability and minimize environmental impacts. The benefits of performance improvement need to be measured against 'baseline' scenarios with more conventional wood products. The key research and activities needed to achieve the goal are presented in Section D.1 of the MoU (available online at http://costfp1407.iam.upr.si), where academic and industry researchers along with other experts will join the interdisciplinary research theme. The Action's members are grouped in the 4 Working Groups described below, although there will be strong collaboration and networking among Working Groups.

Working Group 1: Product Category Rules

Objectives: To develop product category rules for modified wood based on the scientific and industrial state-of-the-art of commercialized and developing modified wood products and technologies. Evaluation of current PCRs and adoption where appropriate.

Activities:

- Thermodynamics and chemical reactions associated with wood modification processing
- Process parameters leading to thermal degradation and chemical, structural, mechanical, and physical properties changes
- Innovative wood modification processing for specific applications in construction and interior design.
- Performance of modified wood: machining of the wood surface (with reference to FP0802; see also partial results of E35); the impact of the combined actions of heat, moisture, and mechanical pressure (results of FP0904), surfaces (FP1006) and wider issues (FP1303).

Leader: Dick Sandberg (Sweden); Deputy leader: Robert Nemeth(Hungary)

Working Group 2: Life Cycle Assessments

Objectives: To perform objective environmental impact assessments of commercial modification processes and incorporate environmental impact assessments into wood modification processing and product development, including recycling and upgrading at the end of service life.

Activities:

 Crucial environmental aspects associated with innovative wood modification processing technologies and resulting products

- Reference service life of the product, maintenance requirements and performance in service (in cooperation with FP1303).
- Optimization of the developed processes from the sustainability point of view.
- Scenarios for up-cycling after product service life based on the cradle to cradle concept.

Leader: Christelle Ganne-Chedeville (Switzerland); Deputy leader: Lauri Linkosalmi (Finland)

Working Group 3: Environmental products declarations

Objectives: To develop environmental product declarations based on WG1 and WG2 and force a harmonization of various national EPDs in the field of wood modification.

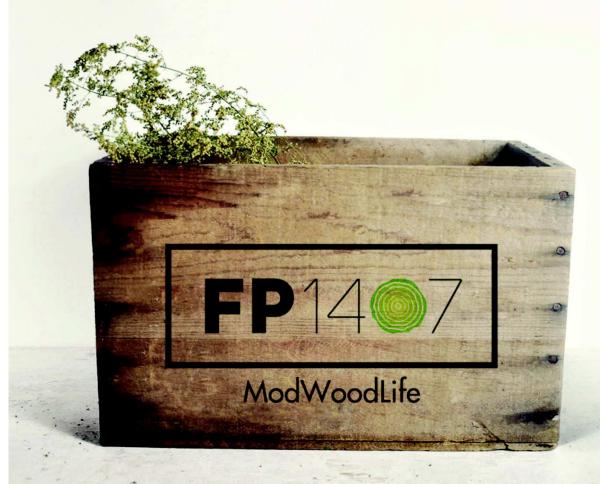
Activities:

- Environmental product declarations of modified wood
- Product design guidelines and properties of assemblies made of modified wood
- Data to architects, engineers, and industry of the physical and structural properties, combined with environmental impacts of the wood modification processing in a clear and consolidated form

Leader: Callum Hill (UK); Deputy leader: Ana Dias (Portugal)

Working Group 4: Integration, dissemination and exploitation

Objectives: To ensure dissemination, evaluation, and exploitation of the Action's results together with establishing a strong network with the relevant industrial stakeholders.


Activities:

- · Promotion, dissemination and commercialization of knowledge acquired in WG1-WG3
- Evaluation of research results of WG1-WG3 by the industry stakeholders
- Marketing campaigns on social networks with the aim to increase social awareness and acceptance
- Lobbying reaching policy makers and European and national program operators.

Leader: Edo Kegel (Netherlands); Deputy leader: Michael Burnard (Slovenia)

COST Action FP1407

Understanding wood modification through an integrated scientific and environmental impact approach (ModWoodLife)

COST is supported by the EU Framework Programme Horizon 2020