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Abstract. In this paper the problem of ideal magnetohydrody-
namic equilibria with mass flow is treated. Under the assumption
of general symmetry (i.e. one ignorable spatial coordinate) we
derive a generalized Grad-Shafranov equation in an unspecified
curvilinear coordinate system. If incompressibility is assumed
an elliptical equation is derived and a new, fotally analytical
method of solution is proposed. This is based on a particular self-
similar separation of the variables in the unknown flux function
and leads to an ordinary, non-linear differential equation for the
profile of the magnetic and flow surfaces.

Three novel classes of solutions are derived in different ge-
ometries, all being flexible (they contain a minimum of three
free functions) and regular, which makes them suitable for as-
trophysical applications. These are flows in magnetic flux tubes
with non-circular section, flows in magnetic arcades above the
solar surface and collimated, axisymmetric outflows.

Key words: magnetohydrodynamics (MHD) — plasmas — meth-
ods: analytical — Sun: corona — ISM: jets and outflows

1. Introduction

The purpose of this paper is to present a general and completely
analytical method of solution to the set of stationary, symmetric,
ideal magnetohydrodynamic (MHD) equations with mass flow,
where symmetric means that one of the three spatial coordinates
is ignorable. Symmetric configuration of plasmas with steady
mass flows occur both in laboratory applications (generally in
axial symmetry) and in a great variety of astrophysical situa-
tions, such as stellar and extra-galactic winds or collimated out-
flows (again in axial symmetry) and flows within coronal loops
or arcades in the solar atmosphere (usually with translational
symmetry).
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Symmetric MHD flows were first considered by Chan-
drasekhar (1956), who treated the case of an axisymmetric, in-
compressible plasma. After the formalism of the magnetic flux
function had been introduced by Shafranov (1957) for static
equilibria, Woltjer (1959a, 1959b) was the first to apply this
formalism to the dynamic problem, deriving some integrals of
the system. Helical symmetry, the most general kind of spatial
invariance, including translational and azimuthal invariances as
sub-cases, was first treated by Morozov & Solov’ev (1963),
who derived the set of reduced equations for an adiabatic flow
in the non-orthogonal helical coordinate system. A systematic
review of the equations of MHD symmetric equilibria in the
three different geometries can be found in the series of papers
by Tsinganos (1981, 1982a, 1982b, 1982c), whereas the rela-
tivistic case is treated in Lovelace et al. (1986) and in Bogovalov
(1994). Unified treatments in a general curvilinear coordinate
system are given by Edenstrasser (1980a) for the static case and
by Agim & Tataronis (1985) for the dynamic problem.

The analytical resolution of the set of ideal MHD equations,
despite the hypotheses of stationarity and symmetry, is still a
hard task. As we shall see, the MHD equations can be reduced
to a second order, quasi-linear, partial differential equation for
a magnetic flux function and a non-linear, algebraic, Bernoulli-
type equation for the mass density, strongly coupled together.
Unlike the classical Grad-Shafranov equation for static equilib-
ria, which is always elliptical, the equation for dynamic equilib-
ria may become hyperbolic at certain critical speeds. Usually a
semi-analytical approach is followed: a self-similar behaviour
for the flux function is assumed and then the two coupled equa-
tions are solved numerically. To this class belong works on poly-
tropic MHD jets from disks in axisymmetry (Bardeen & Berger
1978; Blandford & Payne 1982; Contopoulos & Lovelace 1994;
Ferreira & Pelletier 1994) or isothermal flows in uniform grav-
ity for solar applications (Tsinganos et al. 1993; Del Zanna &
Hood 1995). A way to avoid the difficulties related with the
coupling of the two equations consists in not specifying any
energy equation and in deriving the temperature and the other
thermodynamical quantities only a-posteriori. Examples of this
approach are models of non-polytropic, MHD, axisymmetric
winds and outflows from a central object (Trussoni & Tsinganos
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1993; Lima & Priest 1993; Sauty & Tsinganos 1994). Again,
the solutions found in the cited works are not fully analytical,
in the sense that a final numerical integration is required. Ex-
act solutions for symmetric MHD equilibria with mass flows
have been found so far only in the particular case of flow along
the invariance direction for applications to laboratory plasmas
(Masche & Perrin 1980; Agim & Tataronis 1985) or assuming an
incompressible plasma (Bacciotti & Chiuderi 1992, from now
on BC; Villata & Ferrari 1994b). An interesting general method
for generating incompressible non-linear solutions from given
static equilibria is presented in Gebhardt & Kiessling (1992).
Finally, some simple solutions with constant density for the lin-
earized Grad-Shafranov equation are given in the cited series
by Tsinganos.

The method of solution proposed here, a generalization of
that used first in BC, is applied in three different geometries
to the case of an incompressible mass flow with a non-constant
density. In this situation the two equations are uncoupled and the
second order differential equation is always elliptical, as in the
static case (apart from a critical magnetic surface). Our method
does not require the linearization of the equations and it is based
on the assumption of self-similarity for the shape of the magnetic
and flow surfaces. Hence, the solutions we find all show aregular
nesting around the magnetic axis, and this makes them suitable
for physical applications. Namely we derive exact solutions for
flows inside a cylindrical magnetic flux tube with a non-circular
section, exact solutions for flows in magnetic arcades in uniform
gravity (for solar applications) and axisymmetric jet-type MHD
structures.

However, apart from the obvious use of the solutions as ba-
sic models for the astrophysical situations in which incompress-
ibility may be considered as a realistic approximation (such as
some kinds of flows in solar magnetic flux tubes or loops and
slow stellar outflows), simple and general exact solutions such
as described here can be very useful in testing numerical MHD
codes or in stability calculations.

The paper is structured as follows. In Sect. 2 the integrals
and the reduced equations for the adiabatic or isothermal cases
are derived and the problems that arise due to the coupling of
the equations discussed. Then the analysis is restricted to the in-
compressible case, where the coupling is removed and a single
elliptical equation is derived. Sect. 3 is devoted to the presen-
tation of the method of solution, which is then applied to three
different kinds of geometries and a correspondent number of
novel classes of exact solutions are presented. Finally Sect. 4
contains a discussion of the work and the conclusions.

2. Steady MHD flows for systems with spatial symmetry

In this paper we shall consider a magnetized, inviscid, perfectly
conducting plasma in a stationary and non relativistic state. Thus
the basic equations are:

V-B=0, ey

V- (pV) =0, 2
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VxB=V®, 3)

4)

where @ is proportional to the electrostatic potential, U is the
gravitational potential energy and all the other symbols have
their usual meaning.

Consider now a physical system described by a set of co-
ordinates (z!, 22, 2*), provided with invariance along the third
direction:
i =0.
oz3
For the sake of generality we shall carry on the calculations
in a general curvilinear (not necessarily orthogonal) coordinate
system. For a review on tensor notation and for the mathemat-
ical demonstrations the reader is referred to Agim & Tataronis
(1985). As it is well known, in the Euclidean ordinary space
there are only three kinds of spatial symmetry: translational,
rotational and helical, the last one being the most general as
it includes the first two as subcases (e.g. Morozov & Solov’ev
1963; Edenstrasser 1980b).

Thanks to the symmetry assumption it is possible to write
the two components normal to the invariance direction of a
divergence-free vector in terms of the spatial derivatives of a
scalar function, so that

p(V-V)V =-VP —pVU +(1/4m)(V x B) x B,

&)

B=VAxg’+Bgs, (6)

_ Vv 3 1
V=g xa'+ Ve, )
where g3 and g3 are the third components of respectively the
contravariant and covariant vector bases (which are not nec-
essarily non-dimensional or normalized). Since B - VA =
V -VV¥ = 0, the magnetic and flow surfaces are characterized re-
spectively by the conditions A(z!, %) = const and ¥(z', 2?) =
const. Besides, since they are related to the flux of the cor-
responding vector field, they are generally referred to as flux
functions.

From the third covariant component of Eq. (3) it is obvious
that these two scalar functions are not independent but each of
them may be considered as a function of the other. However,
instead of setting ¥ = W(A) and considering A(z', z?) as the
unknown function, as usually done, a new function £(z!, z?) is
introduced, so that

A=A©, =Y. (®)
In this way, symmetry between B and V' is maintained and
besides, as clarified in the following section, the freedom in
choosing the new unknown function £ will be very helpful for
the application of our method of solution. The two functions
A(€) and U () are integrals since they do not simply depend on
the coordinates 2! and z2, but on their combination &(z!, z?).
Note that magnetic and flow surfaces necessarily coincide and
are characterized by £ = const. From now on, all the scalar

functions of £ only will be called surface functions.
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Other two integrals of £ may be found from the third covari-
ant component of Eq. (4) and from the component of Eq. (3)
parallel to V¢, namely

AB;y — V5 = x(9), &)
45 - 2B g, (10)
g3 4mpgs

where the dot implies differentiation with respect to £. In ax-
isymmetry these functions are usually replaced respectively by
the total angular momentum per mass unit L(¢) = —x /¥ and by
the total angular velocity Q(¢) = ®/A (for a purely azimuthal
flow, ¥ = 0, Eq. (10) is known as isorotation law).

Making use of the definitions of the four surface functions,
the vectors B and V' can be rewritten in terms of new orthogonal
vectors with components that lie on surfaces with £ = const.
These vectors are V& x g3 and g3 (the third component of this
basis is obviously V¢, which is normal to the surface containing
B and V), so the new expressions for the two vectors are

B=Avex L +—XA+933‘I)\II£,

1n
933 h g33
=iV£X&+X\II/47rp+g33<I>A£’ 12)
dmp 933 h 933
where
hE, p) = A> — W2 Jamp, (13)

that, in general, it is not a surface function. From Egs. (11) and
(12) the relation

. v .
AV — ZE)B = dg; 149
is derived, from which it is clear that the two vectors are parallel
only if & = 0 (i.e. if E = 0, according to Ohm’s law Eq. (3)).
The function h defined in Eq. (13) has a remarkable physical
meaning, being related to the Alfvénic Mach number M4 for
the components of velocity normal to the invariance direction
gs:

|V x gs| _ v
[Vaxgs| AJanp’

where V 4 = B/+/4mp is the Alfvén velocity (we note that
when ® = const M4 becomes the real Alfvénic Mach num-
ber |V'|/|V a]). The relation between h and M, is simply
h = A%(1 — M3%), so, always referring to the normal com-
ponents, h is positive for sub-Alfvénic flows and negative for
super-Alfvénic flows. When the values of £ and p are such as
to satisfy A% = U2 /47mp < h =0« My = 1, in order to avoid
physical discontinuities it becomes necessary to impose a con-
dition on the surface functions involved in the definitions of the
third components of the magnetic and velocity fields, otherwise
completely arbitrary.

Ma(€,p)= A#0, (15)
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In order to close our system, two scalar equations for the un-
known functions &(z', z2) and p(z!, x%) are required and these
can only be derived from Euler’s equation, Eq. (4). This can be
done if an equation of state connecting P and p is introduced.
Consider, for example, the adiabatic case P = P(p, S), V-V.S =
0, where S is the entropy per mass unit. Because of the symme-
try we have S = S(€), that is the entropy is another free surface
function. Introducing the enthalpy per mass unit w, defined by
dw=dP+TdS (w = f& dP/p), the component along V¢ of
Eq. (4) is found to be, after some lengthy algebra:

vg) 1 8h |VE]? ( ¥ )2 (vp-vg)
Vil—=)+z%= +47 | — _— ] -
(933 20¢ g% " 4mp 933

g3 X 93) 1 0 <X2) 933 0 (47l'p(i)2>
Vi|l=—— |+ —= 5 )+=== +
X ( g5 ) 2gm0\h) 206\ h

o (xd¥ . .
— =] +4 - =0.
P < v )+ oW — 4npTS =0 (16)
The sixth surface function W (¢) is defined as
1 (qf )2|vg|2 1 (X\i//47rp+gg3<i>/1)2
=) ——+— +
2| \4mp) g3  gn h
o) U /4mp + g1a A
v-2 (X / ph 933 ) — W), (a7

where the terms in round brackets are V3, as may be recog-
nized from Eq. (12), while that within square brackets is simply
|[V'|2. It is worth noticing that the cross product vanishes in an
orthogonal coordinate system. Moreover, in Egs. (16) and (17)
the ratios ¥/ A may be replaced by 47pA /¥, thus the symmetry
between B and V is maintained and both the limits to A = 0
and ¥ = 0 can be taken. Finally, when the isothermal assump-
tion is made, Gibbs’ energy per mass unit g has to replace the
enthalpy w; using then the relation dg = dP/p — SdT it is
easy to see that the last term in Eq. (16) becomes +47pST. It is
clear that in these equations w and T (or g and S in the isother-
mal case) must be expressed as functions of £ and p. Another
possibility is to assume a barotropic relation P = P(p) as equa-
tion of state. In this situation the last term in Eq. (16) vanishes
and the enthalpy in Eq. (17) has to be replaced by [ dP(p)/p.
For example, assuming a polytropic relation P = kp?, where
« can be different from the adiabatic index, the enthalpy is re-
placed by ;ﬂ—ﬂcp"" = =17 P/p. Eq. (16) is commonly known
as generalized Grad-Shafranov equation, as it represents the
generalization to dynamical equilibria of the equation obtained
for the static case. Once the geometry of the system and the
analytical form of the six arbitrary functions of £ are chosen,
Eq. (16) becomes a non-linear, second order partial differential
equation for the unknown function &(z!, 22).

A great simplification of the problem is introduced by as-
suming incompressibility. Because of the symmetry we have

V-V=0&p=p&) (18)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996A%26A...310..341D

aD;

34

FTY90BACA - ~310C ™

344

and the density is now a free surface function, replacing the en-
tropy S(€) or the temperature 7°(€). In this case the last term in
Eq. (16) vanishes and the enthalpy in Eq. (17) is to be replaced
by its incompressible limit P/p. In the absence of a-priori re-
lations between P and p the pressure is simply derived from
the Bernoulli equation so that the two equations are finally de-
coupled. Moreover, the function h, and consequently also the
Alfvénic Mach number M4 defined in Eq. (15), are now sur-
face functions, so that h = h(§), M4 = M 4(§). Physically this
is very important because it means that the critical surface, i.e.
the surface on which |V x g3] = |V 4 X g3, coincides both
with a magnetic and a flow surface.

In the incompressible case it is convenient to introduce
three new surface functions, namely H(¢) = x/h, G(§) =
®/h, TI(€) = p(W + x®¥ /47w phA). Choosing then as our ba-
sic set of surface functions p(§), H(§), G(£) and II(£), together
with A(&) and ¥(£), Eq. (16) reduces to:

3
_hHY. (2}19_) pardl,
933 d¢

g3 d 2N dp
2+ 2d§(4 phG*) 47rUd§

1 dn|veP

Vé )
hV - + =
(933 2d¢ g3
1 d

——(h

2g33 d¢

The vector fields B and V are still given by Egs. (11) and (12),
but now

19

By=HA+guG¥, V3= HJIL + gnGA. (20)
4Tp

Finally, recalling that in the incompressible limit the enthalpy
is given by w = P/ p, the pressure can be obtained directly from
the definition of IT:

P=II - -p|V|2 — pU + g3phG? > 0. 1)
We note that the expression for I, that can be regarded as a gen-
eralized pressure, as well as the incompressible Grad-Shafranov
Eq. (19), retain their validity for A = 0.

From the general theory of second order differential opera-
tors, it is now easy to draw another fundamental property that
distinguishes it from the barotropic, adiabatic and isothermal
cases. The discriminant of the matrix associated with the oper-
ator in Eq. (19) turns out to be A = h?/ggs3. Since the metric
quantities g and gs3 are always positive in a finite domain, the
equation for incompressible flows is always elliptical, exactly
as the original Grad-Shafranov equation for the static case. Al-
though Eq. (19) is in general non-linear, it can easily be made
linear by properly choosing the arbitrary surface functions. This
is the most frequently used method to find analytical solutions
to the generalized Grad-Shafranov equation for £, but not the
only one. In the next sections we shall in fact propose a dif-
ferent approach which will allow to find several new classes of
solutions of physical interest without recourse to linearization.

The necessity of having the Grad-Shafranov equation de-
coupled from the Bernoulli equation when looking for totally
analytical solutions to symmetric MHD equilibria is universally

L. Del Zanna & C. Chiuderi: Exact solutions for MHD equilibria with mass flow

recognized. With fotally analytical we mean that the solutions
for all the physical quantities can be derived without the aid of
any numerical integration, so that they can be written in terms of
analytical functions or series. The assumption of incompress-
ibility is a simple way in which this can be achieved but its
physical meaning should be always kept in mind. For example,
in Villata & Tsinganos (1993) and Villata & Ferrari (1994a) the
two relations P = P(p) and p = p(£) are assumed together.
This means that the pressure is a free surface function, but this
is impossible in the general dynamical case because of the ve-
locity (and gravity) terms in the Bernoulli equation. Moreover,
in Villata & Ferrari (1994b) the discovery of novel exact non-
barotropic solutions is announced, without specifying that they
simply refer to the incompressible case. However, this paper is
very interesting since it presents general and completely analyt-
ical solutions for the linearized Grad-Shafranov equation, both
in helical and axial symmetry. These solutions are applied in a
model for extra-galactic jets in Villata & Ferrari (1995), again
without recognizing the assumption of incompressibility.

Another situation in which the relation p = p(£) can be
freely assumed is when a flow along the direction of invariance
is considered, that is ¥ = 0 <& V = Q(¢)gs. In this case
the equation of continuity (2) is automatically satisfied by any
functional form of p, exactly as in the static case. However,
all the relations and the equation for ¢ are the same as in the
incompressible case with ¥ = 0.

3. Exact solutions for incompressible flows

In this section we shall present a method of solution of the gen-
eralized, incompressible, non-linear Grad-Shafranov equation
(19). This method was first applied to the axisymmetric case in
BC, in absence of gravity and assuming that the magnetic and
velocity fields are parallel. We now generalize that approach to
different geometries and relax the two assumptions, establishing
the existence of novel classes of exact analytical solutions.

The standard technique, adopted by many other authors (for
example the works cited just above), consists in taking advan-
tage of the freedom in the form of the surface functions to lin-
earize the generalized Grad-Shafranov equation, which is fur-
ther assumed to be separable in terms of the two spatial coordi-
nates left 2! and 2. Such an approach has the advantage that
the unknown magnetic flux function A can be often expressed
in terms of known functions of mathematical physics, but the
resulting solutions may be affected by singularities or diver-
gences in the analytical shapes of the magnetic surfaces, which
makes them unsuitable for physical applications. To avoid these
difficulties we impose right from the start that the magnetic and
flow surfaces are regularly nested one inside the other. In other
words, let us suppose that the profile of the magnetic and flow
surfaces in the 2! — 22 plane (i.e. the surface z*> = const) can
be expressed as

z' = pf(z?),

where f is any regular and limited function of z2, while p is
the scale factor characterizing the surface. Now, it is clear that
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1 must be a surface quantity, thus, due to the freedom in the
definition of &, we are free to choose £ = p. Then, it suits us to
substitute the two geometrical coordinates z! and z? with two
new magnetic coordinates, defined as

¢=z'/f@?), X =f@h,

with X having the same dimensions as z? and so letting ¢ to
be an nondimensional variable. The meaning of these magnetic
coordinates is rather simple: given a point P in the z' —2? plane,
¢ determines the magnetic surface containing P while X deter-
mines the position of P along the profile of the surface. At this
stage, all the physical and geometrical quantities can be rewrit-
ten in terms of £ and X ; proceeding in this way, it will be shown
that Eq. (19) becomes a second order differential equation for
the unknown function X (x?) with coefficients depending on ¢
and on the surface functions. Since the solution for X has to be
valid for every £, we must then require the coefficients of the
equation to be constant. This produces a number of compatibil-
ity conditions for the functions of £, reducing at the same time
the original Grad-Shafranov equation to an ordinary, non-linear,
differential equation for the function X. Obviously, boundary
conditions must be restricted to be consistent with the assumed
separation.

Finally, note that the separation adopted for the flux function
& is self-similar, as £ is written as product of two functions where
one of them is given analytically. We shall see that our method,
outlined above, allows to derive simple analytical solutions also
for the unknown function X (£), so that all the physical quantities
will be given in a completely analytical form. This will be done
both in translational and azimuthal symmetry. Unfortunately,
our particular separation does not apply to the more general
helical symmetry.

3.1. Translational symmetry: flows in a magnetic flux tube with
non-circular section

The translational symmetry is the simplest to treat, since the
geometrical factor g33 equals unity. The first consequence is
that, from Eq. (20), the third components of the magnetic and
velocity fields become surface functions, so that H(&) and G(€)
can be replaced by B3(§) and V5(£), with a more immediate
physical meaning. Moreover, the structure of Eq. (19) suggests,
in the present symmetry, to define the new surface function
T1(¢) = IT + (1/2)phG? + (1/87)h H?, which turns out to be:

- 1 P2
) =P+— (B} +-—|VE? | +pU. 22
©=P+g (B3+47rp|v5|) p (22)
Therefore, using this new function I1 instead of II, the equation
to solve reduces to
1dh

2 Il 2
AV g+2d£|vg| +4r

df1 dp
— —4nU— =0.
ae ~ "ae

In the present section our method of solution is applied to a
case with no external gravitational field (U = 0 in Egs. (22) and
(23)), with magnetic and flow surfaces nested around a straight

(23)
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magnetic axis parallel with the direction of invariance. Let z be
the ignorable coordinate (z* = z,3/0z = 0) in a cylindrical set
of coordinates (r, ¢, z). Thus we write the unknown function
&(ryp) as

£ =r/R(p),

where R(¢) is an unspecified function. The profile of the inter-
sections of the magnetic surfaces with the planes of constant z
are given in the form r = £ R(yp), for every positive value of £
(€ = 0 is the magnetic axis). For its geometrical meaning, it is
clear that R(,) has to be a continuous function, limited within
two positive values R,,;, and R4, and periodic with period
27 /n, where n is a natural number.

In order to get an equation for R(ip) from Eq. (23), the dif-
ferential operators need to be rewritten in terms of the new
magnetic coordinates. These are (g33 = 1, \/g = 7):

VE\ 10 [ o€
V'(@)?E(’E)*

9e\* 1 (e’

2_ (98 N G T

IVel™= (37‘) T (&p) ’

after changing into the new coordinates £ and R, Eq. (23) be-
comes

RII

— — |2
R

where, according to the discussion made in the previous section,

the terms in square brackets must be constant since the profile

R(p) has to be the same for every value of £. The results of
these compatibility conditions are

Lo
72 0p?’

Ed—ﬁ—] R+ [1+

¢ dh] R?
] [4“5 a€

, £ dr] B2 ¢ dh
2hdé| R2 ~ ’

2h dé

- . h
h() = hi €, Ti(g) =TTy + £,

8y @49

where hg, Iy, u and v are arbitrary constants, with v > 0 to
avoid divergences in Eqgs. (24) for £ — 0. The equation for R
now becomes
R/I RIZ )
i (V+2)727 =puR*+ (v +1),
which can be rewritten in the form of a simple first order linear
differential equation for R'2, with the general solution
R?=-CR*? 1+ DR* - R?, (25)
where C is an arbitrary constant, while D = —p/v. A careful
examination of Eq. (25) would show that both C' and D have to
be positive in order to have closed magnetic surfaces.

A simple solution of Eq. (25) with the right periodicity is
easily found by setting v = 1:

Ry

Rp) = V1 =[Bcos2p’

(26)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996A%26A...310..341D

aD;

34

FTY90BACA - ~310C ™

346

r=ER(p).
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Fig. 1. Projection of field lines in the z — y
Ry=1,=0.2].

plane [from Eq. (26) with

where Ry = \/2/D and 3 = /1 —4C/D?, with C < D?/4.
The profiles = £ R(), on the planes z = const, are then ellipses
(see Fig. 1) with eccentricity e = /23/(8 + 1) and semiaxes
a = ERpmagz, b = ERpin, Where Riyae = Ro/v/1— B, Rin =
Ry /+/1 + B. Consequently, the magnetic and flow surfaces are
cylinders with elliptical section, nested one inside the other
around the z axis. Note that only in the case v = 1 it is pos-
sible to derive a simple analytical form of the function R(yp);
apart from the two cases v = 1/2 and v = 2, for which expres-
sions involving elliptical functions can be found, Eq. (25) must
be solved numerically.

It is now practical to obtain the expressions for the physical
quantities involved in the problem. Together with B,(£) and
V,(£), other two free surface functions may be chosen in order
to satisfy Eq. (24) (let v = 1), for example the density and
the Alfvénic Mach number normal to the z axis, namely p =
p0-F (&) and My = M, (&). Thus, the two flux functions A and
¥ are given by

A= —Ag M), b =—Tt\/FON ), @7

where

06 = '—1_—1\4"2— " - O o, o9
- M5

and My = M(0) = Uy/\/Fmpodo, ho = A% — 2 /4mp, =

A3(1 — MP). In the limit M4 = M, the two functions .Z4 and
V" equal unity. The magnetic and velocity fields are respec-
tively

B,

Aot Ao, .
O R%TﬁSIszﬂ(f),

% _ 4

g r(l

B,=-A B cos 2p) Ab(E),
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and
_ W18 ¥ A7)
SImrde T dwR Y e
_ Y B NAG)
th = —n—p ar 47’_'00}?%7'(1 ﬂCOS 2(,0) y(g),

Note that on the magnetic axis only the z components of the
two vectors can be non-null. The analytical form of the fotal
pressure may be found from Eqgs. (22) and (24); in the simple
case M, = const it reads

2 A2 2 2
p.,.B__fIO_ €2( i%),

87 4T R? 1 —Bcos2¢p 2
which is a surface function only when M), = 0, as expected. It
is interesting to notice that the presence of a flow in the x — y
plane allows for a larger pressure, while V,(£) does not enter at
all in this balance relation. These properties may have a great
importance for the study of the stability of steady flows inside
magnetic flux tubes and our solution can be used as a non-trivial
unperturbed configuration.

Finally, we want to point out that this solution could also
be found using the standard mathematical methods, but only in
the particular case V = Q({) e, & ¥ = 0; in this situation the
magnetic flux function A can be used directly instead of £, so
the equation to solve is simply:

dII
2 — O
\V, A+47rd 0.

In order to linearize it, the generalized pressure can be chosen
to be TI(A) = Iy — (k/4n)(A — A), where k and A are ar-
bitrary constants, so the equation to solve becomes (in polar
coordinates):

10 (,04Y,
ror \| or

The general solution of this Poisson equation is

17
r2 dp?

+00

A(r,p) = §r2 +3 " aprm cos(ng — ),

n=0

where all the constants a,, and ¢, are arbitrary and where all
the terms diverging for  — 0 have been rejected. Choosing
ao= A, a3 = BAo/2Ry, k = =24 / R(z) and setting all the other
constants to zero, the magnetic flux function becomes

A= Z Ao T 2
=A-—= <—R—O\/1 — ﬂcosZgo) ,
that is the known solution, since the term within brackets is
just the function £ = r/R(yp), satisfying the second relation
in (27). Note that our corresponding dynamical solution could
have been also derived from this relation making use of the
method described by Gebhardt & Kiessling (1992), with the
same choice for the function A(£).
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3.2. Translational symmetry: plasma in a uniform gravitational
field

As a second application of our method of solution, we con-
sider the situation in which there are two mutually orthogonal
preferential directions: that of a uniform gravitational field and
the direction of invariance. Using cartesian coordinates, the as-
sumptions U = gz and /8y = 0 can be freely chosen, so that
the unknown function £(z', z2) will be separated this time as

§=2/Z(z),

2 = z and 22 = y in order to follow the previous

where z' = 2,z
notation.

This time g33 = /g = 1, sothat the expressions for the differ-
ential operators and field components are trivial. The equation

to solve is again Eq. (23), but now we consider the gravity term

with U = g€Z. After some rearranging, the equation reduces to
Z// ”y E dh Z/Z
zZ 2h d€ -

1 dh] 1 47 dil 47rg dp
— | =t ||t Z.
26h dé | Z* | hE dE hode
By imposing the constancy of the coefficients within the square
brackets, as required by our method, we get the compatibility
conditions

_ h Ah
h=ho, T=Tlo+g2€, p=po— 726 29)
The last condition holds only for g # 0. With these assumptions
the equation to solve becomes
Z// ZIZ
7 — 2? =)\Z + 17

with the first integral

2 -0CZ*+DZ*+EZ?, (30)

where C is a new arbitrary constant, while D = —2X and FE =
._./1“

Assuming Z > 0 for every z, in order to describe, for ex-
ample, the atmosphere just above a stellar surface (coincident
with £ = 0), three different cases are considered depending on
the values of E:

1. E = 0. In this case II = [Ty = const and the solution is (see
Fig. 2)
Zo

Z(z) = T+ 522
with Zy = D/|C|,3 = D*/4|C|,D > 0 and C < 0.
2. E < 0. In this case a periodic solution is found (see Fig. 3):
Zy
—_— 32
1 - Bcosax’ (32)

where Zy = 2|E|/D,B = \/1—4|E||C]/D?,a = VE,
with D > 0 and —D?/4|E| < C < 0.

(€Y

Z(x) =

347

Fig. 2. Projection of field lines in the z — z plane [from Eq. (31) with
Zy=1,8=0.1].

z2=¢2(x)

20T T T T T — T T T

0.5~ 0.4 —

0.0 n ! 1 1

ax/2m

Fig. 3. Projection of field lines in the z — z plane [from Eq. (32) with
Zy=1,8=0.1].

3. E > 0. This last case is the only one that allows realistic
solutions in absence of gravity, that is when D = 0. Here
there are again three different cases:

(a) D < 0; the solution is (see Fig. 4)

Z(z) = Zo

_— 33
1+ﬂcoshax’ (33)

where Zo = 2E/|D|,a = vVEand 3 = \/1 — 4EC/D?,
with C < D?/4E.
(b) D > 0; the sol%tion is
0
. — 4
(@) —1+ Bcoshazx’ (34
where Zo = 2E/D,a = vE and 8 = /1 + 4E|C|/D?,

with C' < 0 in order to avoid divergencies (3 > 1).
(c) D = 0; the solution is
Z
Z(z) = ——,

cosh ax
where Zg = y/E/|C| and o = VE, with C < 0.

(35)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996A%26A...310..341D

aD;

34

FTY90BACA - ~310C ™

348

2=£2(x)

1.0

Fig. 4. Projection of field lines in the  — z plane [from Eq. (33) with
Zy=1,6=0.1].

The most interesting case for astrophysical applications is
the solution with £ > 0 and D < 0 (Eq. (33) and Fig. 4),
which is also that resembling more closely a magnetic arcade
in the solar corona. For sub-Alfvénic flows, as expected in the
low-beta corona, both the density and the total pressure surface
functions are decreasing with height. Taking

=/ F (A7), (36)

where all the symbols retain the same meaning as in the previous

p=poF (&), A= —AoAlb(&), ¥ =

sub-section, the density reads
o? 0 2
FE)=1- - M,
©=1-3, 4wp‘glz< D

(when g = Othe density is still a free function of £). The magnetic
field components are

7 A .
B, = —A§~Z— = -Z—az,B sinh ax A6(€),
0

B, = _AL ﬁ(l + (B cosh ax) A6(€),
Z  Zy
while the velocity components are
A 0 . )
= - — = ————azf3sinh ax ,
z 471'p£ 47 py 2y s 7€)
v o1 T, A€)
= ——— — 1+ Bcoshazx s
4wp Z 47rpoZ yr AU ) F(€)

while the expression for P may be derived from Egs. (22) and
(29).
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3.3. The axisymmetric case

In this section the validity of the solution found in BC, for a
system with azimuthal invariance and an incompressible flow
parallel to the direction of the magnetic field, will be extended
by removing the assumption that V' is parallel to B. In our
formulation this means G # 0. The coordinate system suitable
for the axisymmetric case is obviously the cylindrical system
with 2! = 2,22 = r,2* = ¢ and the condition 8/0¢ = 0. The
function €(z, r) is assumed to be separable in the form

£=7/R(2),

so that the magnetic magnetic and flow surfaces are given by
the relation 7 = £R(z), with R > 0, for every positive value of

&
In axisymmetry the differential operators in Eq. (19) are

(gn=712 /g=r):
Ve | 16% 19¢
V.<g33> r28z2+r3r ror)’

Vel = 1[(25) (%ﬂ

hence the equation becomes

R § dh R/Z B 3 d ) 4
£dlt] o o], [Ldh_ 1)1
[‘”h d&] B e e ~ 7] w
The compatibility conditions give
h
p=pF ), h=he’, M=Th+E2e,

G=Go/EVF (&), H=+)2,

where pg, ho, I1y, ;4 and X are arbitrary constants (py > 0, A >
0), F (&) is a free surface function. The last two relations are
not the most general, but these forms have been chosen in order
to avoid singularities in the physical quantities as £ — 0. Now,
the equation for R reduces simply to

@37

1" 2
IZ - 3% =pR*+ ),

with its first integral given by

= -CR°+DR* - ER?, (38)
where E =\/2 > 0,D = —p and C is an integration constant.
Eq. (38) is analogous to the one found in Sect. 3.1 in the only
analytically integrable case, that is when v = 1. Since £ > 0,

the conditions D > 0 and 0 < C < D?/4E must be imposed
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r=R(2)

az/2n
o
T T T
S FERE TR RN EE R

IEE BN

LI R

1l

-2 4 VY 1 M|

Fig. 5. Projection of field lines in the  — 2 plane [from Eq. (39) with
Ry=1,p=0.1].

in order to find well behaved solutions. The shape function is
then

R,

R = T—Fewar &)
being Ry = +/2E/D, = \/1 —4EC/D? o = 2\/E (see

Fig. 5). As previously anticipated, the periodic solution (39) is
the same found in BC, but now G(&) # 0, that is to say that the
two vectors V' and B are not parallel.

The usual choice of M4 = M 4(&) as free surface functions,
together with the assumptions

U = W&/ F (A7),

leads to the following expressions for the magnetic field com-
ponents:

A= At A(8), (40)

¢ Ay
B, = A B R2(1 — Bcos az) A6(E),
_ ;0 Aja
B, = — e R2 rﬁ sin az 26(§),
B(p = ﬂ + TGIIJ =
Ao

23 r( 1 — Bcos az) A6E) + VoGor N (£),
0

and for the velocity field components:

_ oo U, A7(6)
Ve = 47rp ar 47rp0R2(1 feosaz) 37(5),

= v 85 Yo arﬂ sin qz ————= A
"7 4mpdz  4mpoR22 VF©
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+7GA =

HY /4np
Vo = —

Yo 3] O

e Rozr(l —ﬂcosaz)\/____ + ApG \/_

Finally the pressure can be derived from Eq. (21). It is interest-
ing to notice that in the particular case M 4 = const the choice of
the free surface functions is exactly the same as in Villata & Fer-
rari (1994b). Therefore, despite the different methods adopted
to solve the equations (self-similarity in the present work, lin-
earization in the other), the same solutions may be derived. In
fact, when M 4 = M our solutions reduce to one of their classes
of axisymmetric solutions.

The obvious astrophysical application of this class of so-
lutions is the modeling of the knotty jet-type structures in the
outflows from both proto-stellar object and extra-galactic nu-
clei. Although our solution refers to the incompressible case
the basic structure of the jet could be modeled in these sim-
ple terms. An example of this approach is given in Villata &
Ferrari (1995), where the M 87 jet is modeled matching the
synchrotron emissivity that results from their incompressible
solutions (taken as proportional to the plasma density times the
magnetic field squared) with the observed radio contours.

4. Conclusions

In this paper the problem of finding exact solutions to the set of
steady ideal MHD equations has been treated. Assuming general
symmetry with one ignorable spatial coordinate, a set of reduced
equations and integrals have been derived in general curvilinear
coordinates. Discussing the equations we have seen that the
major problem is the coupling between the generalized Grad-
Shafranov and Bernoulli equations due to the equation of state
relating P and p, even for simple thermodynamical situations
such as the adiabatic, isothermal or barotropic cases. In order to
avoid this difficulty incompressibility has been assumed and a
single elliptical equation for the non-dimensional flux function
¢ has been derived.

A new, general, completely analytical and non-linear
method of solution has been proposed and applied to three kinds
of geometries and several classes of solutions have been ob-
tained. Due to the self-similarity assumption the magnetic and
flow surfaces are regularly nested around the magnetic axis and
so physical discontinuities are avoided a-priori. All our classes
of solutions are general and flexible, since they contain a mini-
mum of three free surface functions. In translational symmetry
we found flows in a magnetic flux tube with elliptical section.
This solution might represent a starting point to the study of
its stability properties, since usually only cylindrical flux tubes
with circular section are considered. Moreover, elliptical flows
are known to be unstable (Lifschitz & Hameiri 1991) but it is
not clear whether the presence of the magnetic field can stabi-
lize them. Solutions in translational symmetry are also found
for a plasma in a uniform gravity field. Some of these resemble
arcade-type structures above the solar surface. Our incompress-
ible solutions may be considered a first step towards more ac-
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curate modeling of the flows in this kind of structures. Finally,
an interesting class of jet-type, axisymmetric solutions has been
found. Again, we must keep in mind that these are only incom-
pressible solutions and that for realistic modeling of jets from
proto-steallar objects or active galaxies more complex energy
equations have to be considered.

However, we want to underline once again that apart from
the direct application of our solutions for models of astrophys-
ical structures, the importance of having non-linear, exact so-
lutions to the stationary, ideal, MHD equations is universally
recognized. For example, these can provide a valuable basis for
stability calculations or may be used as a test for numerical
codes.
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