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Abstract The evaluation of the intensity of unrest phases at active volcanoes is a crucial

topic in volcano hazard studies. This is particularly troublesome in the case of persistently

active volcanoes like Stromboli (Southern Italy), where intense eruptive summit activity

(overflows, strong spattering, powerful explosions) has in some cases anticipated a flank

eruption. In this context, a new approach for the analysis of displacement data is intro-

duced. Daily displacements of the Stromboli crater terrace measured between January 1,

2010, and August 7, 2014, by a ground-based interferometric synthetic aperture radar

system were compared, in retrospect, to displacement predictions provided by an auto-

regressive integrated moving average-based model. The methodology consisted in

assessing when the actual displacements exceeded a fixed probability threshold for the

forecasts (*95 %). Two sets of data were consequently produced: (1) series of residuals

between actual displacements and model threshold (‘‘anomalies’’) and (2) series of nor-

malized residuals between actual displacements and model threshold (‘‘normalized

anomalies’’). This permitted to statistically identify and quantify the anomalous defor-

mation at the crater terrace over the reference time interval of the analysis. Anomalies

started to occur before each period of intense volcanic activity, highlighting the possibility

to discern between background activity and unrest. Moreover, results indicated that the

inflation of the crater terrace during the preparatory phase of the 2014 flank eruption was

characterized by the greatest amount of anomalous deformation.
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1 Introduction

Volcanic unrests, defined as ‘‘changes from the normal state’’ at volcanoes (Newhall and

Dzurisin 1988), are common phenomena frequently recorded by monitoring networks. The

shift from background activity to unrest depends on the approach used to define the

threshold between these two states of a volcano (Potter et al. 2015). A generic and

exportable statistical method is used herein to identify different levels of volcanic activity

from volcano displacement data recorded by a ground-based interferometric synthetic

aperture radar (GBInSAR) system (Rudolf et al. 1999; Luzi et al. 2004; Barla et al. 2010;

Intrieri et al. 2015) at Stromboli volcano (Southern Italy). Stromboli is a persistently

erupting volcano that experiences frequent unrest phases, sometimes followed by flank

eruptions, strong explosive activity and tsunamis (Barberi et al. 1993; Rosi et al. 2013).

GBInSAR is an efficient technique for capturing inflation in open vent volcanoes like

Stromboli, because it can detect very shallow magma storage, which is difficult to identify

using other methods (Casagli et al. 2007; Di Traglia et al. 2013, 2014a, b, c, 2015). A

ground-based radar permits the user to choose the optimal instrument location for mea-

surements (Wadge et al. 2008, 2014), providing also an exceptional geometrical resolution

and allowing for continuous monitoring of the displacements with a very high sampling

rate (up to 1 min; Di Traglia et al. 2014a), if compared to space-borne InSAR data (up to

4 days; Pinel et al. 2014). Daily displacements acquired by the GBInSAR between January

1, 2010, and August 7, 2014, were analyzed in order to define the periods of anomalous

deformation of the summit crater terrace. The study focused on determining whether the

inflation of the summit crater terrace prior to the August 2014 flank eruption could be

numerically distinguished from the inflation occurred during periods of volcanic activity

which did not lead to flank effusions. In particular, the method involved employing a well-

established statistical approach largely used in the field of econometrics for time series

analysis, derived from the work of Box and Jenkins (1976) and Box et al. (1994) on the

auto-regressive integrated moving average (ARIMA) models.

2 Geological and volcanological background

Stromboli volcano is located in the Tyrrhenian Sea off the Southern coast of Italy (Fig. 1).

Stromboli gives the name to Strombolian activity (Mercalli 1881), which is characterized

by intermittent explosions at a typical rate of 1–10 events per hour (Blackburn et al. 1976;

Patrick et al. 2007; Harris and Ripepe 2007). The ordinary Strombolian activity is occa-

sionally interrupted by higher-intensity explosions, usually referred to as ‘‘major’’ or

‘‘paroxysmal’’ events (Barberi et al. 1993; Rosi et al. 2013). Effusive eruptions can occur at

Stromboli volcano as overflows (103 m3–105 m3 volume), generally short-lived (up to

1 day; Rosi et al. 2013) and comprising both intra-crater lavas flowing within the crater

terrace and lava tongues that descend the NW flank of the volcano, and large lava flows

(106–107 m3 volume) fed by fissures or ephemeral vents that can remain active for months

(Barberi et al. 1993; Rosi et al. 2013). These lavas use to form lava flow fields which

eventually can reach the coast, where they can form lava deltas. The volcano was affected

by three sector collapses, one of which occurred 13 ka in the NW part of the edifice and

produced a scar called ‘‘Sciara del Fuoco’’ (Tibaldi 2001). Another large collapse event

took place 5.6 ± 3.3 ka (Tibaldi 2001), producing a massive landslide (0.73 ± 0.22 km3,

Di Roberto et al. 2008); this event has been related to a large explosive eruption
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(Bertagnini and Landi 1996; Petrone et al. 2009). The most recent landslide of

notable importance (25–30 9 106 m3) happened during the 2002–03 flank eruption

(Bonaccorso et al. 2003; Baldi et al. 2008), which was triggered by the injection of a lateral

intrusion (Neri et al. 2008) and caused two tsunami sequences with a maximum run-up of

6–7 m at Stromboli village (Tinti et al. 2006a, b). In this instance, the GBInSAR system

detected low displacement rates (0.001–0.01 mm/h) along the Sciara del Fuoco, suggesting

creep behavior of the volcaniclastic material filling the depression (Nolesini et al. 2013).

Fig. 1 Localization of Stromboli volcano (upper left) and recent history of its deformation.* a Cumulative
displacement map recorded by the GBInSAR system of the crater terrace and of the northwestern flank of
the Sciara del Fuoco at Stromboli volcano, showing the total line-of-sight (LOS) displacement as measured
in recent years (January 1, 2010–August 7, 2014). The red circle indicates the reference point used for the
time series displayed in b–d. b–c Daily and cumulative displacements of the radar-monitored area shown in
a. d Cumulative displacements of the same monitored area during the three time segments indicated in b,
c. Each of these periods has been characterized by intense volcanic activity, raising the level of concern of
the civil protection. However, only the last one evolved into a flank eruption.
* The cumulated displacement map and time series are produced by the LiSA (Linear SAR) system
developed by Ellegi LLC using proprietary GBInSAR technology by LiSALab LLC, a European
Commission Joint Research Centre spin-off, and installed at Stromboli by the Dipartimento di Scienze della
Terra—Università di Firenze (owner of the system), in the framework of the research agreements (SAR.net,
SAR.net2, InGrID and InGrID2015 projects) with the ‘‘Presidenza del Consiglio dei Ministri—Dipartimento
della Protezione Civile’’ (Presidency of the Council of Ministers—Department of Civil Protection). The
background topographic data are represented by a very high resolution digital elevation model (DEM)
having a spatial resolution of 50 cm provided by the ‘‘Presidenza del Consiglio dei Ministri—Dipartimento
della Protezione Civile’’ (Presidency of the Council of Ministers—Department of Civil Protection) to the
Dipartimento di Scienze della Terra—Università di Firenze in the framework of the research agreements
SAR.net, SAR.net2, InGrID and InGrID2015 projects. This DEM was obtained elaborating the 3D data (8
pt/m2) acquired during the airborne laser scanning survey carried out from May 04, 2012, to May 18, 2012,
by BLOM Compagnia Generale Riprese aeree S.P.A. (www.blomasa.com). The data were acquired using
the Leica ADS80 sensor, whose instrumental vertical and horizontal accuracy is ±10/20 and ±25 cm,
respectively. Map was generated using ESRI platform
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Planar deep creep occurs in fact on long slopes when the strata dip parallel to the

slope (Intrieri et al. 2013a; Di Traglia et al. 2014b).

Unrests at Stromboli are characterized by changes in the background activity of the

volcano in terms of frequency and intensity of the Strombolian explosions. On average,

during the background activity, the explosions occur at a rate of \10 events/hour,

shifting to a rate of [14 events/hour during unrests (measured by thermal cameras,

Calvari et al. 2014). This shift is commonly associated with changes in the features of

the erupted products (Lautze and Houghton 2005, 2007; D’Oriano et al. 2011) and in the

parameters monitored by the geophysical (Casagli et al. 2007; Ripepe et al. 2009;

Calvari et al. 2014; Coppola et al. 2012; Di Traglia et al. 2014b) and geochemical

monitoring network (Aiuppa et al. 2009, 2011; Inguaggiato et al. 2011). Modeling

ground displacements collected at Stromboli by the GBInSAR from January 2010 to

August 2014 revealed a deformation source at 482 ± 46 m a.s.l. (Di Traglia et al. 2015).

During this period, the volcano experienced several episodes of intense volcanic activity,

culminated in the effusive flank eruption of the August 7, 2014. The modeled defor-

mation allowed Di Traglia et al. (2015) to estimate a cumulative volume change of

4.7 ± 2.6 9 105 m3 and a stored strain energy of the source available on 6–7 August of

3.3 ± 1.8 9 1014 J, 3–5 times greater than the surface energy needed to open the

eruptive fissure.

Ground deformation analysis by Di Traglia et al. (2014c) revealed that changes in the

displacement time series extracted in this area are coupled with variations in seismic

tremor amplitude and are anticipated by few days by the changes in the amplitude of the

very-long-period (VLP) signals. This temporal delay between the changes in tremor

amplitude of the VLP signals and the GBInSAR displacements is interpreted in terms of

the different timescales characterizing bulk gas transfer versus slug formation and ascent

(Di Traglia et al. 2014c). Moreover, discrete Fourier transform analysis of the same dis-

placement time series shows that the most energetic peaks correspond to a period of

256 days, comparable to the residence time in the very shallow magma storage system

(10–213 days; Gauthier and Condomines 1999; Gauthier et al. 2000). This suggested that

the deformation of the crater terrace area is controlled by the accumulation of magma in

the shallow storage system (Di Traglia et al. 2015).

3 Materials and methods

3.1 The GBInSAR system

GBInSAR is a system able to measure line-of-sight (LOS) ground displacement in the

time interval between two acquisitions. The displacement is calculated from the phase

difference between the back-scattered microwave signals received at different times

through the cross-correlation of two SAR images. Images are obtained through sampling

techniques, so frequency and spatial steps have to be selected in order to avoid ambiguity

in range and cross-range (Antonello et al. 2004). At Stromboli, the GBInSAR produces

one SAR image of the NE flank of the crater area and of the upper part of the Sciara del

Fuoco every 11 min. Range and cross-range resolutions are on average 2 m x 2 m, with

a measurement precision referred to the displacement of less than 1 mm (Casagli et al.

2007). A coherence threshold (0.8) is set to mask the noisy areas of the interferogram
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(Luzi et al. 2010). The phase values can be affected by ambiguity (unwrapped phase)

but, due to the short elapsed time (11 min) between two subsequent measurements on

Stromboli volcano, the interferometric displacements are usually smaller than half

wavelength, and therefore, unwrapping procedures are not necessary. Displacements can

be estimated with high accuracy by stacking the phase of the interferograms, i.e., by

processing many images together rather than adopting a more classic two-image

approach. At Stromboli, the GBInSAR combines all the 8-hour-averaged images (Zebker

et al. 1997; Antonello et al. 2004; Intrieri et al. 2013a), producing cumulative dis-

placement maps and displacement time series with an accuracy of ±0.5 mm (Di Traglia

et al. 2014c, 2015). Interferometric stacks are useful to highlight persistent deformation,

suppressing other random signals, like atmospheric anomalies (Pinel et al. 2014). This

approach is appropriate when the deformation is episodic with no change in source

parameters over time, as observed by Di Traglia et al. (2015) at Stromboli. The

GBInSAR time series extracted in this study derives from an area located on the external

part of the crater terrace (red circle in Fig. 1), characterized by a high coherence of the

signal and by measurements that have displayed over time the best consistency and

accuracy. The time series in Fig. 1 are those used by Di Traglia et al. (2014c, 2015).

Time series data were synthesized to daily displacement values spanning from January 1,

2010, to August 7, 2014. Data from Di Traglia et al. (2013, 2014a, b, c, 2015) revealed

that remarkable inflation of the crater terrace area occurred in three different periods

(Fig. 1):

• July–December 2011 (blue box and line);

• September 2012–May 2013 (red box and line);

• May–August 2014 (green box and line).

The range of variation of the daily displacements appears to be similar across the three

phases of inflation. Peak values were registered on August 22, 2011, March 28, 2013, and

August 2, 2014. The greatest amount of cumulative deformation was measured between

September 2012 and May 2013.

Similarly, three periods of volcanic unrest were defined by several authors based on the

observation of intense volcanic activity (Coppola et al. 2012; Calvari et al. 2014; Di

Traglia et al. 2014a, b, c, 2015; Rizzo et al. 2015; Calvari et al. 2016):

• the 2011 unrest (June 2011–September 2011), characterized by the occurrence of 7

major explosions and 2 effusions from the crater terrace (major eruptive events in July

and August 2011).

• the 2012–2013 unrest (December 2012–May 2013), characterized by several small

effusions from the crater terrace, with phases of intense effusive activity. However, no

major explosion was detected (major effusive events in December 2012–January 2013

and April 2013).

• the 2014 flank eruption (June 2014–November 2014), characterized by several small

effusions from the crater terrace between June and August 2014; the peak of activity

was reached on August 7, 2014 with the opening of a fissure and the onset of an

effusive eruption on the NE flank of the summit cone.

These unrest periods led the civil protection authorities to require a level of attention to

the scientific institutions involved in the monitoring network at Stromboli (Istituto

Nazionale di Geofisica e Vulcanologia and the Department of Earth Sciences—University

of Firenze). In the following sections, both the 2011 and 2012–2013 unrest phases will be
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indicated as ‘‘minor’’ unrests, as opposed to the 2014 ‘‘major’’ unrest which evolved to a

flank eruption.

3.2 ARIMA models

ARIMA models are well-established statistical methods for time series fitting and fore-

casting originally born in econometrics (Box and Jenkins 1976; Box et al. 1994; Bour-

bounnais 2005). They soon became widely applied in a variety of other scientific fields as

well, such as civil engineering, environmental engineering and meteorology (e.g., Van der

Voort et al. 1996; Rajesh and Krithika 2009; Faruk 2010). They incorporate both an

autoregressive and a moving average approaches, as follows:

Xt ¼ cþ et þ
Xp

i¼1

uiXt�i þ
Xq

i¼1

#iet�i ð1Þ

where u1; . . .;up are the parameters of the autoregressive model, C is a constant, et a white
noise variable, and #1,…, #q are the parameters of the moving average model. The notation

ARIMA (p,q) therefore refers to a model with p autoregressive (AR) and q moving average

(MA) terms. An additional d order (I) might be introduced if the original series must be

differentiated to make it stationary, thus leading to an ARIMA (p, d, q) model. The Box–

Jenkins procedure is a schematic and standard method of determining the correct p and

q terms, thereby evaluating which is the most adequate model among the ARIMA family

models to properly describe the generating process of the studied time series. It consists of

three main steps:

1. Model identification: mainly based on the analysis of the series ACF (auto-correlation

function) and PACF (partial auto-correlation function). Since pure AR and MA

processes have distinctive characteristics in both their respective ACF and PACF, the

goal is to recognize in the ACF and PACF of the actual series patterns that are

attributable to specific AR and/or MA processes.

2. Model estimation: the method used in this study for determining the parameters in (1)

is a nonlinear least square estimate. Most of the dedicated statistics software packages

use nonlinear least square or maximum likelihood estimations.

3. Model validation: the series of residuals (that is the series of the errors calculated as

the difference between the actual and fitted values) generated by the execution of the

model is expected to be equivalent to a white noise process with constant mean and

variance. If diagnostic tests show that these assumptions are not verified, it is expected

to rerun the model identification step and find a more suitable model.

For a complete and more thorough description of the Box and Jenkins procedure, see for

reference Box and Jenkins (1976), Box et al. (1994) and Bourbounnais (2005). Relatively

to the Stromboli case study, the estimation procedure led to the selection of a pure auto-

regressive process of order 16 (AR16) as a suitable model for fitting the GBInSAR dis-

placement data (2) and performing forecasts:

Xt ¼ cþ
X16

i¼1

uiXt�i þ et ð2Þ

where the parameters are those defined in (1).
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3.3 Definition of probabilistic thresholds and anomalies

With the aim of performing a back-analysis of the displacements, one-step-ahead (i.e.,

daily) forecasts were sequentially performed at each point of the time series according to

Eq. (2) (except for the first year of the dataset, needed as ‘‘calibration’’ period for the

model). One fundamental aspect of the ARIMA family models relies on their ability to

provide confidence intervals for the forecasts. Assuming that the model is correctly

specified, the residuals are random values whose distribution can be represented as a

Gaussian curve. Therefore, the variability of forecasts can be measured by a forecast

standard error (r). It follows that the probability of the future actual measurement to fall

inside the ±2r range of the respective forecast is approximately 95 %. Initially, the r of

the forecasts for the Stromboli time series is not constant over time, but is slowly

increasing. It becomes steady only after the first unrest period, that is, when the series has

displayed his characteristic amplitude of oscillation. For this reason, it was decided to

employ an averaged and fixed r: the interquartile average of the complete series of r
calculated after the first crisis was chosen as a constant confidence interval for the forecasts

made over the reference time frame of the study. As a consequence of the one-step-ahead

forecasting process, a four-column output was obtained with the following information

made available for each day of the time series:

• actual displacement;

• forecasted displacement;

• two ‘‘thresholds’’ of displacement (equal to forecast ± 2r).

When the actual displacement exceeds the lower displacement threshold (i.e., fore-

cast -2r), an ‘‘anomaly’’ is found. In fact, since only the inflation pulses of the crater

terrace (which is by far the dominant process during unrest phases at Stromboli volcano)

are of interest, only the lower bound of the aforementioned confidence interval was con-

sidered for detecting anomalous deformation. An anomaly is thus equivalent to the dif-

ference between actual displacement and model threshold and is considered an event of

inflation of the Stromboli crater terrace which was not consistent with its normal defor-

mation behavior. Contrariwise, when the actual displacement is lower than the respective

threshold provided by the model, the amount of anomalous deformation was set to 0. The

detected anomalies were both examined in terms of their distribution with time and also

normalized with respect to the highest anomaly in the dataset in order to get a better

understanding of their intensity. This allowed the identification and characterization of the

most intense phases of anomalous deformation.

The methodology is summarized in the flowchart of Fig. 2: the GBInSAR displace-

ment time series was fitted with an ARIMA-type model defined through the Box–Jenkins

estimation procedure. A time series of predicted displacements was thus generated along

with the confidence interval for each forecast, allowing for the comparison with the

respective actual measurements. Anomalies were detected when the measured daily

inflation of the crater terrace exceeded the respective model threshold, which was defined

as forecast -2r. Finally, through the analysis of the frequency and intensity of the

anomalies, the trend of anomalous deformation with time was determined and related to

the three unrest phases of Stromboli volcano between January 2010 and August 2014

(Sect. 2).
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4 Results

4.1 Analysis of anomalies

The anomalous deformation of the crater terrace was analyzed, considering running time

windows of different length. Since periods of inflation and of intense volcanic activity at

Stromboli typically last for no more than 3–4 months (Aiuppa et al. 2011; Calvari et al.

2014; Di Traglia et al. 2014b), anomalies were cumulated over running time windows of 7,

30 and 60 days (Fig. 3). As a result, it can be observed that the rate of anomalous

deformation during the preparatory phase of the August–November 2014 flank eruption is

significantly higher than the rates obtained during the whole 2011 and 2012–2013 minor

unrest phases. This is mostly evident by looking at the 60-day curve: on August 5, 2014, a

peak of more than 32 mm of anomalous deformation over 60 days is displayed, whereas

across the two previous unrest phases a maximum of *18 mm of anomalous deformation

over 60 days can be appreciated. Concerning the 7- and 30-day curves, the peculiarity of

the 2014 major unrest phase, although less evident, is still clearly present. Peak values of

*4, *5.5, *7.5 mm of anomalous deformation over 7 days and of *11, *14,

*21.5 mm of anomalous deformation over 30 days characterize the 2011, 2012–2013 and

2014 unrest phases, respectively. It is also important to note that the model generates a very

limited amount of anomalous ground deformation during quiet intervals of volcanic

activity (background activity), thus providing no false alarms.

Fig. 2 Flowchart showing the developed ARIMA-based approach for the back-analysis of the displacement
time series of the Stromboli crater terrace
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4.2 Analysis of normalized anomalies

As mentioned, the normalization was simply performed by dividing each anomaly by the

greatest value of daily anomalous deformation detected in the dataset. The following

classes were created to classify the anomalies based on their intensity:

(a) normalized anomalies[0

(b) normalized anomalies[0.2

(c) normalized anomalies[0.4

Since the largest difference in peaks of cumulated anomalous deformation was achieved

considering a 60-day running time window, the same reference interval was used for the

analysis of the normalized anomalies. Figure 4 shows that the preparatory phase of the

August 2014 flank eruption was characterized not only by the most amount of cumulative

anomalous deformation (Fig. 3), but also by the largest number of anomalies. This is

particularly evident for classes b and c. Periods of normal background activity are featured

by much fewer anomalies. In particular, chart shows that:

• the largest number of anomalies (46 in 60 days) is relative to the 2014 major unrest

phase, just prior to the onset of the flank eruption on August 7, 2014;

• while the number of low-intensity anomalies (class a) is fairly similar concerning the

2012–2013 and 2014 unrest phases, with regard to the higher-intensity classes (b and

c) the difference is noticeably larger (Fig. 4). This suggests that, prior to the flank

eruption, the crater terrace was characterized by the most intense pulses of inflation as

well.

Fig. 3 Anomalous ground deformation cumulated over running time windows of 7, 30 and 60 days from
early 2011 to the onset of the flank eruption on August 7, 2014. Red triangles mark days characterized by
intense volcanic activity (i.e., overflows, strong spattering, powerful explosions, flank eruptions). The
colored boxes comprise the time intervals defined in Fig. 1 and Sect. 3.1
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5 Discussion

Defining the intensity of unrest phases is of crucial importance for volcanic hazard miti-

gation and eruption management. The use of forecasting methods and the definition of

warning thresholds are both activities constituting early warning systems (Intrieri et al.

2013b). Short-term event forecasting is mainly based on deterministic approaches (Voight

1988, 1989; Voight and Cornelius 1991). One of the most known is probably Voight’s

(1988, 1989), who finds a relation based on Saito’s (1969) inverse velocity method in order

to determine the time of failure of rock slopes and uses it to forecast, in retrospect, the

eruption of Mt. St. Helens. However, Voight’s method can only be applied during the

terminal stage of failure (Voight 1988); its hypothetical assumption of constant stress

conditions and the use of empirical parameters (called A and a) also limit its application as

a real operational tool. An alternative approach is probabilistic, which introduce a method

to quantify the volcanic hazard and risk (e.g., Newhall and Hoblitt 2002; Marzocchi et al.

2008; Sobradelo et al. 2014). Probabilistic approaches are mainly based on the so-called

event tree (Newhall and Hoblitt 2002), a tree graph representation of events in the form of

nodes (steps) and branches (outcomes for that particular category). The objective of

probabilistic approaches is to outline all the relevant possible outcomes of volcanic unrest,

assessing the probability of each hazard scenario occurring within a specified future time

interval (Sobradelo et al. 2014). Recent researches on probabilistic evaluation of volcanic

scenarios (e.g., Sobradelo et al. 2014) include ‘‘a priori’’ the capacity to differentiate the

origin of the precursory signals recorded by the monitoring network. This would imply that

a rigorous threshold definition between the background and unrest activity is crucial not

only for short-term event forecast, but also for long-term probabilistic approaches. Dif-

ferent methods were proposed for the definitions of warning thresholds from displacement

Fig. 4 Number of normalized anomalies counted over a 60-day running time window from early 2011 to
the onset of the flank eruption on August 7, 2014. Red triangles mark days characterized by intense volcanic
activity (i.e., overflows, strong spattering, powerful explosions, flank eruptions). Boxes comprise the time
intervals defined in Fig. 1 and Sect. 3.1
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data (Crosta and Agliardi 2002). This can be a challenging task and not rarely raises

uncertainties in predicting the evolution of the studied phenomenon. Often methodical

procedures to set warning thresholds are lacking and are identified on empirical basis.

Cigna et al. (2012) developed a method for the definition of thresholds of displacement,

reportedly also usable for volcanoes. However, this is strongly based on the arbitrary

choice of the calibration period for which a linear trend must be assumed. Moreover, it

does not provide a probabilistic reliability. At Stromboli, warning thresholds were pro-

posed by Ripepe et al. (2009), Inguaggiato et al. (2011) and Di Traglia et al. (2014b), based

on observed recordings of geophysical/geochemical data. Coppola et al. (2012) used

Moderate Resolution Imaging Spectroradiometer (MODIS) data, classified using a rank

ordered statistical plot. To the best of our knowledge, these are the only works where

thresholds between background activity and unrest were defined for Stromboli volcano. In

general, the impossibility to predict with different degrees of confidence the evolution of

the phenomenon under investigation leaves scientific and administrative competent bodies

exposed to internal indecision and external criticism.

The statistical approach proposed here for the analysis of the displacement time series

of the Stromboli crater terrace is descriptive of the state of activity of the volcano and can

be employed during both background and unrest phases. It is based on the concept that

monitoring data can be compared to displacements predicted by numerical models in order

to identify and quantify anomalous ground deformation (Newcomen and Dick 2015).

Stromboli volcano offers a suitable test site for this approach, mainly because the avail-

ability of a long and complete dataset of the displacements facilitates the application of the

Box–Jenkins procedure for ARIMA model estimation. The structure of the ARIMA models

implies that they are particularly sensitive to sudden accelerations in the time series (unless

these are related to precise seasonal cycles) rather than to long-term trend variations.

Therefore, in the case of Stromboli what the model identifies as an anomaly reflects the

occurrence of an abrupt inflation pulse of the crater terrace. It follows that more infor-

mation is provided beyond the simple qualitative analysis of the trends of daily and

cumulative displacement and a quantitative, statistically based description, and classifi-

cation of the single small-scale pulses of inflation is produced.

The ability to characterize background activity and unrest is even more important when

monitoring persistently active volcanoes. In the case of Stromboli, a precise, well-accepted

definition of what parameters and activity must be observed to declare the onset of an

unrest and to evaluate its intensity still does not exist. Furthermore, a major source of risk

at Stromboli is that unrest phases can occasionally evolve into a flank eruption. No evident

difference was detected between the style of the inflation that preceded the opening of

ephemeral vents at the base of the crater terrace in August 2014, with the subsequent onset

of a flank eruption (which can trigger gravitational collapses and tsunamis) and the style of

the inflations during the minor unrest phases in 2011 and 2012–2013 (Fig. 1). In fact, the

trends of daily displacement of the crater terrace in the last three unrest phases were

extremely similar (Fig. 1). Moreover, the total amount of cumulative displacement was

actually larger in the 2012–2013 minor unrest than in the preparatory phase of the 2014

flank eruption (Fig. 1).

The results of the ARIMA-based analysis methodology described in Sect. 3 show that

anomalies started to occur before all periods characterized by intense volcanic activity

(overflows, strong spattering, powerful explosions, flank eruptions), providing no false

alarms during quiet time intervals of normal background activity (Figs. 3, 4). Although this

gives support to the validity of the method, introducing an arbitrary threshold of anomalous

deformation of the crater terrace between background activity and unrest would just push
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this issue into a different parameter with respect to those proposed already by several

authors (Aiuppa et al. 2009; Casagli et al. 2007; Ripepe et al. 2009; Aiuppa et al. 2011;

Inguaggiato et al. 2011; Coppola et al. 2012; Calvari et al. 2014; Di Traglia et al. 2014b).

More significantly, evident differences were produced concerning the characteristics of the

crater terrace inflation during the three periods of volcanic unrest. In fact, the trend of

anomalous deformation relative to the 2014 major unrest substantially differs from the

trends of anomalous deformation relative to the 2011 and 2012–2013 minor unrests. The

preparatory phase of the 2014 flank eruption was characterized by both a larger amount of

anomalous deformation and a higher number of anomalies. Specifically, just 2 days before

the onset of the flank eruption on August 7, 2014, the crater terrace reached a state where

the amount of anomalous deformation cumulated for the previous 60 days was equal to

*32 mm (Fig. 3), nearly doubling the maximum values obtained along the previous unrest

phases (*18 mm/60 days). Of the anomalies that ultimately composed these 32 mm,

many were of strong intensity (Fig. 4). Considering again a 60-day running time window,

25 anomalies of class b and 13 anomalies of class c anticipated the onset of the flank

eruption. Conversely, a maximum of 13 anomalies of class b and 5 anomalies of class

c over 60 days occurred during the 2012–2013 minor unrest phase. Even fewer anomalies

occurred during the 2011 minor unrest phase.

Given that a limited number of unrest phases characterize the dataset (a total of 3, of

which only one major unrest), it is currently not convenient to propose a fixed and arbitrary

threshold of anomalous deformation between minor unrest (i.e., not leading to a flank

eruption) and major unrest (i.e., leading to a flank eruption) at Stromboli. Moreover, it is

probable that this arbitrary threshold would not be applicable to other volcanoes or even

other time periods at Stromboli when the underlying magmatic system may have a dif-

ferent configuration. Nonetheless, the trend of anomalous deformation between early 2011

and August 2014 permits to clearly recognize in retrospect the greater intensity of the

unrest phase which anticipated the onset of the flank eruption on August 7, 2014. The

methodology promises therefore to provide crucial information concerning the intensity of

future unrest phases and the prediction of flank eruptions at Stromboli. Being based on a

generic approach for the analysis of time series, the former is also suitable to be tested on

case studies similar to Stromboli.

6 Conclusions

An innovative statistical approach which makes use of ARIMA models has been applied to

the displacement time series of the crater terrace at Stromboli volcano in order to dis-

criminate, in retrospect, the intensity of three phases of inflation. The methodology con-

sisted in comparing the series of actual measurements with a series of one-step-ahead

forecasts and in individuating when the measured displacements exceeded a fixed proba-

bility threshold for the forecasts (*95 %). The analysis of such occurrences (named

‘‘anomalies’’) highlighted significant differences in the trends of anomalous deformation

between background activity and unrest and, more importantly, also between an unrest

phase that culminated into a flank eruption and two that did not.

Data can be updated every time a new measurement is added to the time series (i.e.,

daily in the case of Stromboli). Therefore, measurements from the GBInSAR system can

provide probabilistic daily estimates on the state of anomalous deformation of the crater

terrace. The trend of the anomalies can then be compared to the results obtained for
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previous unrest phases, in order to verify whether the intensity of the inflation is consistent

with the onset of a flank eruption. The ability to predict whether summit activity will likely

evolve into a flank eruption is in fact a crucial point for the purposes of civil protection

planning at Stromboli, since in the past flank eruptions have triggered landslides that

reached the sea and generated tsunami sequences. The methodology is generic and theo-

retically exportable. Assumed the availability of a long and complete dataset, its suitability

for the analysis of the displacements from case studies similar to Stromboli can be tested.
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• Tommaso Carlà: conception and realization of the manuscript, GBInSAR data analysis

and modeling.

• Emanuele Intrieri: conception and realization of the manuscript, GBInSAR data

analysis and modeling.

• Federico Di Traglia: conception and realization of the manuscript, GBInSAR data

analysis, field validation, GBInSAR maintenance.

• Nicola Casagli: realization of the manuscript, financial support, responsible of the

SAR.net, SAR.net2, InGrID and InGrID2015 projects.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Aiuppa A et al (2009) The 2007 eruption of Stromboli volcano: insights from real-time measurement of the
volcanic gas plume CO2/SO2 ratio. J Volcanol Geotherm Res 182(3–4):221–230

Aiuppa A et al (2011) First observational evidence for the CO2-driven origin of Stromboli’s major
explosions. Solid Earth 2(2):135–142

Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Ground-based SAR
interferometry for monitoring mass movements. Landslides 1(1):21–28

Baldi P et al (2008) High precision photogrammetry for monitoring the evolution of the NW flank of
Stromboli volcano during and after the 2002–2003 eruption. Bull Volcanol 70:703–715

Barberi F et al (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta
Vulcanol 3:173–187

Barla G et al (2010) Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and
conventional techniques. Eng Geol 116:218–235

Bertagnini A, Landi P (1996) The Secche di Lazzaro pyroclastics of Stromboli volcano: a phreatomagmatic
eruption related to the Sciara del Fuoco sector collapse. Bull Volcanol 58:239–245

Blackburn EA, Wilson L, Sparks RSJ (1976) Mechanisms and dynamics of Strombolian activity. J Geol Soc
Lond 132:429–440

Bonaccorso A et al (2003) Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano
inferred by volcanological and geophysical observations. Geophys Res Lett 30(18):1941–1948

Nat Hazards (2016) 84:669–683 681

123

http://creativecommons.org/licenses/by/4.0/


Bourbounnais R (2005) Econométrie, 6th edn. Dunod, Paris
Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco
Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control, 3rd edn. Prentice

Hall, Englewood Cliffs, pp 197–199
Calvari S et al (2014) Major eruptive style changes induced by structural modifications of a shallow conduit

system: the 2007–2012 Stromboli case. Bull Volcanol 76:841
Calvari S et al (2016) Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013

event at Stromboli. Bull Volcanol 78:1–16
Casagli N et al (2007) Deformation of Stromboli Volcano (Italy) during the 2007 crisis by radar interfer-

ometry, numerical modeling and field structural data. J Volcanol Geotherm Res 182:182
Cigna F, Tapete D, Casagli N (2012) Semi-automated extraction of Deviation Indexes (DI) from satellite

Persistent Scatterers time series: tests on sedimentary volcanism and tectonically-induced motions.
Nonlinear Process Geophys 19:643–655

Coppola D et al (2012) ‘‘Radiative heat power at Stromboli volcano during 2000–2011: twelve years of
MODIS observations. J Volcanol Geotherm Res 215–216:48–60

Crosta GB, Agliardi F (2002) How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth
Parts A/B/C 27:1557–1565

D’Oriano C, Bertagnini A, Pompilio M (2011) Ash erupted during normal activity at Stromboli (Aeolian
Islands, Italy) raises questions on how the feeding system works. Bull Volcanol 73(5):471–477

Di Roberto A et al (2008) Deep water gravity core from the Marsili Basin (Tyrrhenian Sea) records
Pleistocenic-Holocenic explosive events and instability of the Aeolian Archipelago (Italy). J Volcanol
Geotherm Res 177:133–144

Di Traglia F, Del Ventisette C, Rosi M, Mugnai F, Intrieri E, Moretti S, Casagli N (2013) Ground-based
InSAR reveals conduit pressurization pulses at Stromboli volcano. Terra Nova 25(3):192–198

Di Traglia F et al (2014a) The ground-based InSAR monitoring system at Stromboli volcano: linking
changes in displacement rate and intensity of persistent volcanic activity. Bull Volcanol 76:786–803

Di Traglia F et al (2014b) Review of ten years of volcano deformations recorded by the ground-based
InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense
volcanic activity. Earth Sci Rev 139:317–335

Di Traglia F et al (2014c) Decrypting geophysical signals at Stromboli Volcano (Italy): integration of
seismic and Ground-Based InSAR displacement data. Geophys Res Lett 41(8):2753–2761

Di Traglia F, Battaglia M, Nolesini T, Lagomarsino D, Casagli N (2015) Shifts in the eruptive styles at
Stromboli in 2010-2014 revealed by ground-based InSAR data. Sci Rep. doi:10.1038/srep13569

Faruk DO (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng
Appl Artif Intell 23:586–594

Gauthier PJ, Condomines M (1999) 210Pb–226Ra radioactive disequilibria in recent lavas and radon
degassing: inferences on the magma chamber dynamics at Stromboli and Merapi volcanoes. Earth
Planet Sci Lett 172:111–126

Gauthier PJ, Le Cloarec MF, Condomines M (2000) Degassing processes at Stromboli volcano inferred from
short-lived disequilibria (210Pb–210Bi–210Po) in volcanic gases. J Volcanol Geotherm Res 102:1–19

Harris A, Ripepe M (2007) Temperature and dynamics of degassing at Stromboli. J Geophys Res
112:B03205. doi:10.1029/2006JB004393

Inguaggiato S, Vita F, Rouwet D, Bobrowski N, Morici S, Sollami A (2011) Geochemical evidence of the
renewal of volcanic activity inferred from CO2 soil and SO2 plume fluxes: the 2007 Stromboli
eruption (Italy). Bull Volcanol 73(4):443–456

Intrieri E, Di Traglia F, Del Ventisette C, Gigli G, Mugnai F, Luzi G, Casagli N (2013a) Flank instability of
Stromboli volcano (Aeolian Islands, Southern Italy): integration of GB-InSAR and geomorphological
observations. Geomorphology 201:60–69

Intrieri E, Gigli G, Casagli N, Nadim F (2013b) Brief communication—Landslide early warning system:
toolbox and general concepts. Nat Hazards Earth Syst Sci 13:85–90

Intrieri E et al (2015) Sinkhole monitoring and early warning: an experimental and successful GB-InSAR
application. Geomorphology 241:304–314

Lautze NC, Houghton BF (2005) Physical mingling of magma and complex eruption dynamics in the
shallow conduit at Stromboli volcano, Italy. Geology 33:425–428

Lautze NC, Houghton BF (2007) ‘‘Linking variable explosion style and magma textures during 2002 at
Stromboli volcano, Italy. Bull Volcanol 69(4):445–460

Luzi G et al (2004) Ground-based radar interferometry for landslides monitoring: atmospheric and instru-
mental decorrelation sources on experimental data. IEEE Trans Geosci Remote Sens 42:2454–2466

682 Nat Hazards (2016) 84:669–683

123

http://dx.doi.org/10.1038/srep13569
http://dx.doi.org/10.1029/2006JB004393


Luzi G, Monserrat O, Crosetto M, Copons R, Altimir J (2010) Ground-based SAR interferometry applied to
landslide monitoring in mountainous areas. In: International conference on ‘‘mountain risks: bringing
science to society’’, 24–26 November 2010, Firenze, Italy

Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long-and short-term eruption
forecasting. Bull Volcanol 70(5):623–632

Mercalli G (1881) Natura nelle eruzioni dello Stromboli ed in generale dell’attività sismo-vulcanica delle
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