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Abstract
In this paper we investigate the properties of the set of T -periodic solutions of
semi-explicit parametrized differential-algebraic equations with non-autonomous
constraints of a particular type. We provide simple, degree-theoretic conditions for
the existence of branches of T -periodic solutions of the considered equations. Our
approach is based on topological arguments as regards differential equations on
implicitly defined manifolds, combined with elementary facts of matrix analysis.
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1 Introduction
Several mathematical models arising from physical and engineering problems can be de-
scribed in terms of differential-algebraic equations (DAEs). Because of this, in recent years,
there has been a lot of interest on these equations from both the point of view of pure
and of applied mathematicians. Beside the more genuinely modelistic or numerical ap-
proaches, there are many books and papers that treat DAEs from an analytical perspec-
tive. Of all those, in order to avoid an impossibly long and necessarily incomplete list, we
only mention [–] and references therein.

A relevant case is represented by first-order semi-explicit DAEs in Hessenberg form (see,
e.g., []) that is,

⎧
⎨

⎩

ẋ = f (t, x, y),

G(t, x, y) = ,
(.)

where f : R×R
m ×R

s →R
m is a continuous map, and G : R×R

m ×R
s →R

s is sufficiently
smooth. If we assume that the partial derivative, ∂G , of G with respect to the third variable
y is invertible, then (.) is said to be of index .
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In this paper we are concerned with a parametrized special case of (.). In fact, we
assume that the constraint G has the form

G(t, x, y) = g
(
A(t)x, B(t)y

)
,

where g : Rm × R
s → R

s is C∞, and the square-matrix-valued maps A : R → O(Rm) and
B : R → GL(Rs) are continuous. Here O(Rm) denotes the group of orthogonal m × m ma-
trices and GL(Rs) the group of s × s invertible ones.

Namely, we consider parametrized DAEs of the following form:

⎧
⎨

⎩

ẋ = λf (t, x, y), λ ≥ ,

g(A(t)x, B(t)y) = ,
(.)

with f as in (.), and we assume that ∂g(x, y) is invertible for all (x, y) ∈R
m ×R

s and (for
technical reasons) that A is of class C.

We also treat, in parallel, the following parametrized second-order DAEs:

⎧
⎨

⎩

ẍ = λf (t, x, y, ẋ, ẏ), λ ≥ ,

g(A(t)x, B(t)y) = .
(.)

In this case we assume the matrix-valued maps A and B to be of class C and C, respec-
tively. The latter type of equations, in particular, may be used to represent some nontrivial
physical systems as, for instance, constrained systems (see e.g. []).

We will assume throughout the paper that the matrix-valued function A satisfies the
following property:

A(t)Ȧ(t)� is constant ∀t ∈R. (.)

This assumption might seem unnatural, but it is not so. To understand why, consider the
case when m = . In that case, if {e, e, e} is a fixed reference frame in R

 and T (t) =
{A(t)e, A(t)e, A(t)e} is a moving frame, our assumption is equivalent to imposing the
requirement that the angular velocity of T is the zero vector. This is, in fact, an immediate
consequence of the definition of angular velocity. An entirely similar statement holds for
m = .

Furthermore, in this paper we will always assume that, for some given T > , the map
f is T-periodic in the first variable and that A and B are periodic of the same period T .
Following the approach of [–], we study qualitative properties of the set of T-periodic
solutions of (.) and (.). Roughly speaking, we show the existence of an unbounded
connected component of ‘nontrivial’ T-periodic solutions of (.) or (.) emanating from
the set of the ‘trivial’ ones. In this setting, a trivial solution is a solution which is con-
stant with respect to the moving frame defined by the time-dependent change of variable
(x, y) �→ (A(t)x, B(t)y). However, precise statements will be given in Section . for first-
order equations and in Section . for second-order ones. We also show, through some
examples and remarks, how our constructions can be extended to include several equa-
tions of different forms.
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Our continuation results are in the spirit of analogous ones by Furi and Pera for
parametrized first- and second-order equations on differentiable manifolds (for more de-
tails see the survey []) and could be considered, in some sense, as consequences of re-
cent results obtained by the last two authors in [–]. However, we wish to point out the
following facts. First of all, while the continuation results on differentiable manifolds by
Furi and Pera require the knowledge of the degree (often called characteristic or rotation)
of suitable tangent vector fields, here (as in [–]) we give conditions only in terms of the
well-known Brouwer degree, which is also easier to compute explicitly. On the other hand,
in the present paper we tackle the case of time-dependent constraints (even if of a pecu-
liar form). In other words, our results can be regarded as concerning ODEs on particular
T-periodically moving manifolds defined implicitly. As already pointed out, we slightly
modify and adapt to the present context the concept of ‘trivial’ and ‘nontrivial’ T-periodic
solution. As far as we know, the techniques of Furi and Pera have never been applied to
moving manifolds, and this novelty is our main original contribution to the subject.

This paper is organized as follows. In Section  we collect the preliminaries needed
to approach the DAEs in (.) and (.). In Section  we give our main results and we
get topological information on the set of T-periodic pairs to the considered equations;
examples of applications of our methods are provided. Finally, in the Appendix, we give
the proofs of the technical results of matrix analysis used throughout the paper.

2 Notation and preliminary results
Throughout the paper, CT (Rk) will denote the Banach space of all the T-periodic contin-
uous maps ζ : R → R

k with the usual supremum norm, and C
T (Rk) will be the Banach

space of all the T-periodic C maps ζ : R →R
k with the C norm.

We will make use of the (extended) theory of the Brouwer degree for maps between open
sets of Rk . Namely, we say that a triple (F , U , z), with z ∈ R

k and F a proper map defined
in some neighborhood of the open set U ⊆R

k , is admissible if F–(z) ∩ U is compact. For
any admissible triple (F , U , z), the Brouwer degree degB(F , U , z) of B in U respect to z is an
integer that, roughly speaking, counts algebraically the elements of F–(z) which lie in U .
See e.g. [] for a broader definition in the more general case of maps between oriented
manifolds, or [] for a quick introduction. Since in this paper the target point z will always
be the origin, for the sake of simplicity, we will always omit it and write deg(F , U) instead
of degB(F , U , z).

2.1 First-order DAEs
Let us consider semi-explicit DAEs, depending on a parameter λ ≥ , of the following
forms:

⎧
⎨

⎩

ẋ = f(x, y) + λh(t, x, y),

g(x, y) = ,
(.)

and

⎧
⎨

⎩

ẋ = λh(t, x, y),

g(x, y) = ,
(.)

http://www.boundaryvalueproblems.com/content/2014/1/179
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where we assume that f : Rm ×R
s →R

m and h : R×R
m ×R

s →R
m are continuous maps,

h is T-periodic in the first variable, and g : Rm ×R
s → R

s is C∞ and such that ∂g(x, y) is
invertible for all (x, y). Notice that, consequently, M := g–() is a closed submanifold of
R

m × R
s. Furthermore observe that, even if (.) can be considered as a particular case

of (.) (i.e. with f(x, y) =  identically), for our purposes the two equations need to be
treated separately.

Given λ ≥ , by a solution of (.) we mean a pair of C functions x and y defined
on an interval I with the property that the following equalities hold for all t ∈ I : ẋ(t) =
f(x(t), y(t)) + λh(t, x(t), y(t)) and g(x(t), y(t)) = . The notion of solution of (.) is analo-
gous. Notice that one might wish to ask only the continuity of y. In fact, if x is C, the
assumptions on g together with the implicit function theorem imply that y is C.

In this section we recall two results from [, ] and [] (see also [, ] for more general
results) about the sets of T-pairs of (.) and of (.), namely, of those pairs (λ; (x, y)) ∈
[,∞) × CT (Rm × R

s) with (x, y) a T-periodic solution of (.) and of (.), respectively.
Recall that a T-pair (λ; (x, y)) of (.) or of (.) is said to be trivial if λ =  and (x, y)
is constant. Observe that any T-pair of (.) of the form (; (x, y)) is necessarily trivial,
because all solutions of (.) corresponding to λ =  are constant (because ∂g(x, y) is
nonsingular). However, the same statement is not true for (.) as shown by the following
trivial example with m =  and s = :

⎧
⎨

⎩

ẋ = x, ẋ = –x,

y = .

For the sake of simplicity we make some conventions. We will regard every space as its
image in the following diagram of natural inclusions:

R
m ×R

s ––––––→ CT (Rm ×R
s)

⏐
⏐
�

⏐
⏐
�

[,∞) ×R
m ×R

s ––––––→ [,∞) × CT (Rm ×R
s).

(.)

In particular, we will identify Rm ×R
s with its image in CT (Rm ×R

s) under the embedding
which associates to any (p, q) ∈R

m ×R
s the map (p̄, q̄) ∈ CT (Rm ×R

s) constantly equal to
(p, q). Moreover, we will regard R

m × R
s as the slice {} × R

m × R
s ⊂ [,∞) × R

m × R
s

and, analogously, CT (Rm ×R
s) as {} × CT (Rm ×R

s). We point out that the images of the
above inclusions are closed.

For simplicity, given � ⊆ [,∞) × CT (Rm ×R
s), we will denote by �# ⊆R

m ×R
s the set

consisting of all pairs (p, q) such that (; (p̄, q̄)) ∈ �.
The following is a consequence of Theorem . in [].

Theorem . Let f, h, g be as above. Define F : Rm ×R
s →R

m ×R
s by

F (x, y) =
(
f(x, y),g(x, y)

)
.

Let � ⊆ [,∞) × CT (Rm × R
s) be open and assume that deg(F ,�#) is well defined and

nonzero. Then there exists a connected component � of nontrivial T-pairs for (.) whose
closure in [,∞) × CT (Rm × R

s) meets F–(, ) ∩ �# and cannot be both bounded and
contained in �.

http://www.boundaryvalueproblems.com/content/2014/1/179
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Sketch of the proof Taking U = R
m ×R

s in [, Theorem .] we see that there exists a con-
nected set G of nontrivial T-pairs for (.) whose closure in [,∞) × CT (Rm ×R

s) meets
F–(, )∩�#, which, according to our identification in (.), means {}× (F–(, )∩�#)
and is not contained in any compact subset of �. Let � be the connected component of the
set of nontrivial T-pairs for (.) that contains G. Observe that since [,∞)×CT (Rm ×R

s)
is a complete metric space, the theorem of Ascoli-Arzelà implies that any bounded set of
T-pairs for (.) is actually relatively compact. Hence, if � is bounded then it is compact
(being closed), but G cannot be contained in a compact subset of �. This implies that �

cannot be both compact and contained in �. �

The same argument of the above proof shows that the following is a consequence of
Theorem . in [].

Theorem . Let h and g be as above. Define ω : Rm ×R
s →R

m ×R
s by

ω(x, y) =
(


T

∫ T


h(x, y) dt,g(x, y)

)

.

Let � ⊆ [,∞) × CT (Rm × R
s) be open and assume that deg(ω,�#) is well defined and

nonzero. Then there exists a connected component � of nontrivial T-pairs for (.) whose
closure in [,∞) × CT (Rm × R

s) meets ω–(, ) ∩ �# and cannot be both bounded and
contained in �.

2.2 Second-order DAEs
Consider the following second-order parametrized DAEs:

⎧
⎨

⎩

ẍ = f(x, y, ẋ, ẏ) + λh(t, x, y, ẋ, ẏ),

g(x, y) = ,
(.)

and
⎧
⎨

⎩

ẍ = λh(t, x, y, ẋ, ẏ),

g(x, y) = ,
(.)

where we assume that f : Rm ×R
s ×R

m ×R
s → R

m and h : R×R
m ×R

s ×R
m ×R

s →R
m

are continuous maps, h is T-periodic in the first variable, and g : Rm ×R
s →R

s is C∞ and
such that ∂g(x, y) is invertible for all (x, y).

Given λ ≥ , by a solution of (.) we mean a pair of C functions x and y defined
on an interval I with the property that the following equalities hold for all t ∈ I : ẍ(t) =
f(t, x(t), y(t), ẋ(t), ẏ(t)) + λh(t, x(t), y(t), ẋ(t), ẏ(t)) and g(x(t), y(t)) = . Notice that, as in the
first-order case, it is equivalent to ask only the continuity of y.

The structure of the set of solution pairs of (.) and of (.) has been studied in []. As
in Section ., we recall that by a T-pair of (.) and of (.) we mean a pair (λ; (x, y)) ∈
[,∞) × C

T (Rm ×R
s) with (x, y) a T-periodic solution of (.) and of (.), respectively.

Again, a T-pair (λ; (x, y)) of (.) or of (.) is said to be trivial if λ =  and (x, y) is constant.
Unlike in the first-order case, it is not necessarily true that any T-pair of (.) of the form

http://www.boundaryvalueproblems.com/content/2014/1/179
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(; (x, y)) is trivial. In fact, if (x, y) were a closed geodesics of the manifold M := g–() with
appropriate initial velocity then (; (x, y)) would be a nontrivial T-pair of (.). Similarly,
it is not necessarily true that any T-pair of (.) of the form (; (x, y)) is trivial.

As in Section ., for simplicity we will regard every space as its image in the following
diagram of natural inclusions:

R
m ×R

s ––––––→ C
T (Rm ×R

s)
⏐
⏐
�

⏐
⏐
�

[,∞) ×R
m ×R

s ––––––→ [,∞) × C
T (Rm ×R

s)

(.)

with the obvious analogous identifications.
Again, given � ⊆ [,∞) × C

T (Rm × R
s), we will denote by �# ⊆ R

m × R
s the set con-

sisting of all pairs (p, q) such that (; (p̄, q̄)) ∈ �.
The next results are straightforward consequences of Corollary . and Corollary .

in [], respectively (the arguments are similar to the proof of Theorem .).

Theorem . Let f, h, g be as above. Define F : Rm ×R
s →R

m ×R
s by

F (x, y) =
(
f(x, y),g(x, y)

)
,

where f(x, y) := f(x, y, , ). Let � ⊆ [,∞) × C
T (Rm × R

s) be open and assume that
deg(F ,�#) is well defined and nonzero. Then there exists a connected component � of non-
trivial T-pairs for (.) whose closure in [,∞) × C

T (Rm ×R
s) meets F–(, ) ∩ �# and

cannot be both bounded and contained in �.

Theorem . Let h and g be as above. Define ω : Rm ×R
s →R

m ×R
s by

ω(x, y) =
(


T

∫ T


h(x, y) dt,g(x, y)

)

,

where h(x, y) := h(x, y, , ). Let � ⊆ [,∞) × CT (Rm × R
s) be open and assume that

deg(ω,�#) is well defined and nonzero. Then there exists a connected component � of non-
trivial T-pairs for (.) whose closure in [,∞) × C

T (Rm × R
s) meets ω–(, ) ∩ �# and

cannot be both bounded and contained in �.

Remark . Common manipulations employed for order reduction of differential equa-
tions, when applied to (.) or (.) might not work for deducing Theorems . or . di-
rectly from Theorems . or .. In fact, those procedures usually lead to equations whose
form is not suited for our first-order results. Thus, despite the similar structure of (.)
and (.) to (.) and (.), respectively, the former equations seem to need a specific study.

3 Coordinate transformation and main results
3.1 First-order DAEs
We first investigate parametrized DAEs of the following form:

⎧
⎨

⎩

ẋ = λf (t, x, y), λ ≥ ,

g(A(t)x, B(t)y) = ,
(.)

http://www.boundaryvalueproblems.com/content/2014/1/179
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where, as in the introduction, the map f : R × R
m × R

s → R
m is continuous and T-

periodic in the first variable, g : Rm × R
s → R

s is C∞ and such that ∂g(ξ ,η) is invertible
for all (ξ ,η), and A : R → O(Rm) and B : R → GL(Rs) are T-periodic continuous (square-)
matrix-valued maps. We will assume that A is of class C. The constraint that appears in
(.) forces the motion to occur on a manifold M := {(p, q) ∈ R

m × R
s : g(p, q) = } that

moves integrally to a reference frame defined by the time-dependent change of variable
(x, y) �→ (A(t)x, B(t)y). As before, we consider the set of T-pairs of (.), namely, of those
pairs (λ; (x, y)) ∈ [,∞) × CT (Rm × R

s) with (x, y) a T-periodic solution of (.). A T-
pair (λ; (x, y)) of (.) is trivial if λ =  and (A(t)x(t), B(t)y(t)) is constant. In other words,
(; (x, y)) is trivial if (x, y) is constant with respect to the moving reference above, i.e., to
the moving manifold that constitutes the constraint. Thus, loosely speaking, we could say
that in this case (x, y) is constant with respect to the ‘moving constraint’. Observe that
when (; (x, y)) is trivial, then A(t)x(t) must be constantly equal to A()x() and similarly
B(t)y(t) ≡ B()y(), so that for all t we have A()�A(t)x(t) = x() and B()–B(t)y(t) = y().
The former fact has an interesting consequence for x. Since ẋ(t) = , x(t) ≡ x() =: x must
be constant. Thus, when (; (x, y)) is trivial, we have A()�A(t)x ≡ x, i.e., x(t) ≡ x is
invariant for A()�A(t) for all t’s.

Let us apply, for all t, a change of coordinates in R
m ×R

s:

ξ (t) = A(t)x(t), η(t) = B(t)y(t). (.)

Let us rewrite the first of these two equations as x(t) = A�(t)ξ (t). Differentiating with re-
spect to t we get

ẋ(t) = Ȧ(t)�ξ (t) + A(t)�ξ̇ (t). (.)

Observe, in fact, that the operations of differentiation and transposition commute; that is,

(
Ȧ(t)

)� =
d
dt

(
A(t)�

)
.

From (.) we get ξ̇ (t) = –A(t)Ȧ(t)�ξ (t) + A(t)ẋ(t). Thus, (.) can be rewritten in the new
coordinates (ξ ,η) as follows:

⎧
⎨

⎩

ξ̇ = –A(t)Ȧ(t)�ξ + λF(t, ξ ,η), λ ≥ ,

g(ξ ,η) = ,
(.)

where F : R×R
m ×R

s →R
m is defined by

F(t, ξ ,η) = A(t)f
(
t, A(t)�ξ , B–(t)η

)
. (.)

If we assume that the matrix M := A(t)Ȧ(t)� is constant, then we can obtain continuation
results for T-pairs of (.) as consequences of the results in the previous section.

In the following we will adopt the same notation as in Section ..

Theorem . Let f , g , A, and B be as above. Assume that M := A(t)Ȧ(t)� is constant and
defineF : Rm ×R

s →R
m ×R

s byF (x, y) = (–Mx, g(x, y)). Let � ⊆ [,∞)×CT (Rm ×R
s) be

http://www.boundaryvalueproblems.com/content/2014/1/179
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open and assume that deg(F ,�#) is well defined and nonzero. Then there exists a connected
component � of nontrivial T-pairs for (.) whose closure in [,∞) × CT (Rm ×R

s) meets
F–(, ) ∩ �# and cannot be both bounded and contained in �.

Proof Consider the transformation (.). As discussed above, in the new coordinates ξ , η,
(.) becomes (.), which we write as

⎧
⎨

⎩

ξ̇ = –Mξ + λF(t, ξ ,η),

g(ξ ,η) = ,
(.)

where F is defined as in (.). Consider also the homeomorphism H : [,∞) × CT (Rm ×
R

s) → [,∞) × CT (Rm × R
s) given by H(λ, (x, y)) = (λ, (ξ ,η)) with ξ and η given by (.).

Clearly H establishes a homeomorphism between the space X of T-pairs of (.) and the
space X of T-pairs of (.), which preserves triviality. In the sense that H takes trivial
T-pairs of (.) to trivial ones of (.) and, vice versa, H– makes trivial T-pairs of (.)
correspond to trivial ones of (.).

Let W = H(�). Applying Theorem . we get the existence of a connected component,
let us say ϒ , of nontrivial T-pairs for (.) whose closure in [,∞) × CT (Rm ×R

s) meets
F–() ∩W and cannot be both bounded and contained in W . One sees immediately that
� = H–(ϒ) has the required properties. �

In the following consequence of Theorem . we further assume that M is nonsingular
and use the properties of the Brouwer degree to get a continuation result with the sole
assumption that �# ∩ ({} × [g(, ·)]–()) is a nonempty and compact subset of Rm ×R

s.

Corollary . Let f , g , A, and B be as above. Assume that M := A(t)Ȧ(t)� is con-
stant and nonsingular. Let � ⊆ [,∞) × CT (Rm × R

s) be open. Assume that the set
�# ∩ ({} × [g(, ·)]–()) is nonempty and compact. Then there exists a connected com-
ponent � of nontrivial T-pairs for (.) whose closure in [,∞) × CT (Rm × R

s) meets
�# ∩ ({} × [g(, ·)]–()) and cannot be both bounded and contained in �.

Proof Let F be as in the assertion of Theorem .. Since the first component of F is non-
singular, the reduction property of the Brouwer degree implies

deg(F ,�#) = (–)m sign det M · deg
(
g(, ·),�# ∩ ({} ×R

s)).

Observe now that since ∂g(ξ ,η) is never singular,

∣
∣deg

(
g(, ·),�# ∩ ({} ×R

s))∣∣ = #
(
�# ∩ ({} × [

g(, ·)]–()
))

,

which is finite and nonzero. �

In the next result we assume M =  and apply Theorem ..

Theorem . Let f , g , A, and B be as above. Assume that A(t)Ȧ(t)� is identically zero and
define ω : Rm ×R

s → R
m ×R

s by

ω(ξ ,η) =
(


T

∫ T


A(t)f

(
t, A(t)�ξ , B–(t)η

)
dt, g(ξ ,η)

)

.

http://www.boundaryvalueproblems.com/content/2014/1/179
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Let � ⊆ [,∞) × CT (Rm × R
s) be open and assume that deg(ω,�#) is well defined and

nonzero. Then there exists a connected component � of nontrivial T-pairs for (.) whose
closure in [,∞) × CT (Rm × R

s) meets ω–(, ) ∩ �# and cannot be both bounded and
contained in �.

Proof It follows from Theorem . with the same proof as of Theorem .. �

Example . Take m =  and s = . Let f : R×R
 ×R →R

 be any continuous mapping
π-periodic in the first variable. Consider

⎧
⎨

⎩

ẋ = λf (t, x, y), λ ≥ ,

y + y – x
 – x

 – (x sin t + x cos t) = ,
(.)

where x = (x, x). It is readily verified that

y + y – x
 – x

 – (x sin t + x cos t) = g
(
A(t)x, y

)
,

where

A(t) :=

(
cos t – sin t
sin t cos t

)

and g(p, p, q) = q + q – p
 – p

.

Thus, the constraint can be regarded as the surface obeying the equation q + q = p
 + p

,
in the space (p, p, q), revolving around the q axis (a full rotation takes time π ). With the
transformation (.) the above DAE becomes

⎧
⎨

⎩

ξ̇ = –Mξ + λF(t, ξ ,η),

g(ξ ,η) = ,

where

M = A(t)Ȧ�(t) =

(
 

– 

)

and F(t, ξ ,η) = A(t)f
(
t, A(t)�ξ , B–(t)η

)
.

Let � = [,∞) × CT (R ×R). Since M is nonsingular and [g(, ·)]–() = {}, Corollary .
yields an unbounded connected component of nontrivial π-pairs for (.) that meets
(; (, ; )) ∈ [,∞) ×R

 ×R (regarded as a π-pair).

Remark . Notice that a similar coordinate transformation applies also to a slightly dif-
ferent situation. Consider the following DAE:

⎧
⎨

⎩

ẋ = Hx + λf (t, x, y), λ ≥ ,

g(A(t)x, B(t)y) = ,
(.)

where A, B, f , and g are as in (.) and H is a matrix that commutes with A. Suppose, as
above, that M := A(t)Ȧ(t)� is constant (not necessarily invertible) and apply the transfor-
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mation as indicated above. Equation (.) becomes

⎧
⎨

⎩

ξ̇ = (H – M)ξ + λF(t, ξ ,η), λ ≥ ,

g(ξ ,η) = 
(.)

with F as in (.), so that the results of the previous section are applicable to (.).

Example . Consider the following DAE:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = x + λf(t, x, x, y),

ẋ = λf(t, x, x, y),

y + y = x cos t + x sin t,

(.)

where fi : R×R×R×R →R
, i = , , are continuous mappings π-periodic in the first

variable. If we put x = (x, x), (.) is of the form (.) with

H =

(
 
 

)

, A(t) =

(
cos t sin t

– sin t cos t

)

, B(t) ≡
(

 
 

)

,

and f : R×R
 →R

 and g : R ×R→ R defined by

f (t, x) =
(
f(t, x, x, y), f(t, x, x, y)

)
and g(x, y) = y + y – x,

respectively. Clearly, as in Remark ., (.) becomes

⎧
⎨

⎩

ξ̇ = (H – M)ξ + λF(t, ξ ,η),

η + η – ξ = ,
(.)

where

M = A(t)Ȧ�(t) =

(
 –
 

)

and F(t, ξ ,η) = A(t)f
(
t, A(t)�ξ , B–(t)η

)
.

Equation (.) is of the form considered in Corollary ..

In our next example we consider periodic perturbations of a class of semi-linear DAEs
(semi-linear DAEs find practical applications in robotics and electrical circuit modeling
see e.g. [, ]). We will restrict ourselves to the case when the equation has a particular
‘separated variables’ form, that is,

Eẋ = F(t)x + λC(t)S(x), (.)

F : R → R
n×n, C : R → R

n×n and S : Rn → R
n are continuous maps, and E ∈ R

n×n is a
constant matrix (here R

n×n denotes the set of real n × n matrices). Further, we assume
that F and C are T-periodic, T >  given.
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Example . Consider (.) with n =  and

E =

⎛

⎜
⎜
⎜
⎝

   
   
   
   

⎞

⎟
⎟
⎟
⎠

, F(t) =

⎛

⎜
⎜
⎜
⎝

   
cos t   – sin t

   
sin t   cos t

⎞

⎟
⎟
⎟
⎠

,

and

C(t) =

⎛

⎜
⎜
⎜
⎝

 + cos t   
   
  + sin t  
   

⎞

⎟
⎟
⎟
⎠

, S(x) = x.

The orthogonal matrices

P =

⎛

⎜
⎜
⎜
⎝

   
   
   
   

⎞

⎟
⎟
⎟
⎠

and Q =

⎛

⎜
⎜
⎜
⎝

   
   
   
   

⎞

⎟
⎟
⎟
⎠

realize a singular value decomposition for E. In particular, we have

P�EQ =

⎛

⎜
⎜
⎜
⎝

   
   
   
   

⎞

⎟
⎟
⎟
⎠

=:

(
Ẽ 
 

)

,

P�F(t)Q =

⎛

⎜
⎜
⎜
⎝

   
   

cos t – sin t  
sin t cos t  

⎞

⎟
⎟
⎟
⎠

=:

(
 

F̃(t) F̃(t)

)

,

P�C(t)Q =

⎛

⎜
⎜
⎜
⎝

 + cos t   
   + sin t 
   
   

⎞

⎟
⎟
⎟
⎠

=:

(
C̃(t) C̃(t)

 

)

.

Then, setting x = Q
( x

y
)

with x, y ∈ R
 and multiplying (.) by P� on the left, we can

rewrite (.) as

P�EQ

(
ẋ
ẏ

)

= P�F(t)Q

(
x
y

)

+ λ
(
P�C(t)Q

)
Q�S

(

Q

(
x
y

))

,

that is,

(
Ẽ 
 

)(
ẋ
ẏ

)

=

(
 

F̃(t) F̃(t)

)(
x
y

)

+ λ

(
C̃(t) C̃(t)

 

)(
S̃(x, y)
S̃(x, y)

)

,
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where we have set Q�S(Qx) =
( S̃(x,y)

S̃(x,y)

)
. This equation can be rewritten as follows:

⎧
⎨

⎩

ẋ = λẼ–
 (C̃(t)̃S(x, y) + C̃(t)̃S(x, y)),

y + F̃(t)x = ,

or, in our case, as

⎧
⎨

⎩

( ẋ
ẋ

)
= λ

( (+cos t)x+x+y
x+(+sin t)y+y

)
,

( y
y

)
+

( cos t – sin t
sin t cos t

)( x
x

)
= ,

where we have put x =
( ẋ

ẋ

)
and y =

( y
y

)
. The above DAE is of the form (.) considered in

Theorem .. Observe that the map ω considered there is given by

ω(x, x; y, y) = (y, y + y, x + y, x + y).

The example considered above is a particular case of a more general procedure that we
now roughly sketch. Take E, F , C, and S be as in (.), and let rank E = r. Assume that
n = r, and that

ker C�(t) = ker E� ∀t ∈R, (.a)

im F(t) = ker E� ∀t ∈R. (.b)

Let P, Q be orthogonal matrices realizing a singular value decomposition for E. Multiply
(.) by P� on the left, and put x = Q

( x
y
)

with x, y ∈ R
r . We get, as in Example .,

P�EQ

(
ẋ
ẏ

)

= P�F(t)Q

(
x
y

)

+ λ
(
P�C(t)Q

)
Q�S

(

Q

(
x
y

))

. (.)

Since P and Q realize a singular value decomposition of E, and since E, F , and C satisfy
(.a) and (.b), an inspection of the proof of [, Lemma .] (see also []) shows us
that for all t,

P�EQ =

(
Ẽ 
 

)

, P�F(t)Q =

(
 

F̃(t) F̃(t)

)

and

P�C(t)Q =

(
C̃(t) C̃(t)

 

)

.

Set x = Q
( x

y
)

and Q�S(Qx) =
( S̃(x,y)

S̃(x,y)

)
. Then we can rewrite (.) as

(
Ẽ 
 

)(
ẋ
ẏ

)

=

(
 

F̃(t) F̃(t)

)(
x
y

)

+ λ

(
C̃(t) C̃(t)

 

)(
S̃(x, y)
S̃(x, y)

)
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or, equivalently
⎧
⎨

⎩

ẋ = λẼ–
 (C̃(t)̃S(x, y) + C̃(t)̃S(x, y)),

F̃(t)x + F̃(t)y = ,

and, if F̃(t) is invertible for all t,
⎧
⎨

⎩

ẋ = λẼ–
 (C̃(t)̃S(x, y) + C̃(t)̃S(x, y)),

x + [̃F(t)]–F̃(t)y = ,
(.)

which is of type (.) with m = s = r if also F̃(t) is invertible for all t.

3.2 Second-order DAEs
Let us now focus on parametrized second-order DAEs and proceed as in the first-order
case. Consider

⎧
⎨

⎩

ẍ = λf (t, x, y, ẋ, ẏ), λ ≥ ,

g(A(t)x, B(t)y) = ,
(.)

where f : R × R
m × R

s × R
m × R

s → R
m is continuous and T-periodic in the first vari-

able, g : Rm × R
s → R

s is C∞ and such that ∂g(ξ ,η) is invertible for all (ξ ,η), and the
T-periodic matrix-valued maps A : R → O(Rm) and B : R → GL(Rs) are of class C and
C, respectively.

As in the first-order case, we consider the set of T-pairs of (.), namely, of those
pairs (λ; (x, y)) ∈ [,∞) × C

T (Rm × R
s) with (x, y) a T-periodic solution of (.). A T-

pair (λ; (x, y)) of (.) is trivial if λ =  and (A(t)x(t), B(t)y(t)) is constant. In other words,
(; (x, y)) is trivial if (x, y) is constant with respect to the moving constraint. Again, if
(; (x, y)) is trivial, then A(t)x(t) must be constantly equal to A()x(). Also, ẍ(t) = , so that
the periodicity condition implies that x(t) ≡ x() =: x must be constant as well. Thus, for
all t, x is invariant for A()�A(t).

Let us consider the following change of coordinates for all t:

ξ (t) = A(t)x(t), η(t) = B(t)y(t).

We can rewrite the first of these equations as x(t) = A�(t)ξ (t) and, taking the derivative,
we get

ẋ = Ȧ(t)�ξ + A(t)�ξ̇ , ẍ = Ä(t)�ξ + Ȧ(t)�ξ̇ + A(t)�ξ̈ .

Let us multiply by A on the left the second of these equations. Reordering (and omitting
the explicit dependence on t) we get

ξ̈ = –AÄ�ξ – AȦ�ξ̇ + Aẍ.

Moreover, since y(t) = B–(t)η(t),

ẏ(t) =
d
dt

[
B(t)–]η(t) + B–(t)η̇(t).

http://www.boundaryvalueproblems.com/content/2014/1/179
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Thus we can rewrite our DAE, in the new coordinates, as follows:
⎧
⎨

⎩

ξ̈ = –A(t)Ä(t)�ξ – A(t)Ȧ(t)�ξ̇ + λF(t, ξ ,η, ξ̇ , η̇), λ ≥ ,

g(ξ ,η) = ,
(.)

where F : R×R
m ×R

s ×R
m ×R

s →R
m, defined by

F(t, ξ ,η, u, v)

= A(t)f
(

t, A(t)�ξ , B–(t)η, Ȧ(t)�ξ + A(t)�u,
d
dt

[
B(t)–]η + B–(t)v

)

is clearly continuous and T-periodic.
Now, by Proposition A. (see the Appendix), we find that if M := A(t)Ȧ(t)� is constant

(and nonsingular), then A(t)Ä(t)� is constant (and nonsingular) as well, as it is equal to M.
Thus, as for first-order equations, provided that A(t)Ȧ(t)� is constant, this DAE can be
treated with the methods of the previous section.

It is also worth noticing that d
dt [B(t)–], which appears in the expression of F , can also

be conveniently expressed as –B(t)–Ḃ(t)B(t)–. This trivial fact is readily established by
differentiating the relation B(t)B(t)– = I .

Proceeding as in the previous subsection, and using Theorems . and . in place of
Theorems . and ., we get the following results, remarkably similar to Theorems .
and ., and Corollary ..

Theorem . Let f , g , A, and B be as above. Assume that M := A(t)Ȧ(t)� is constant and
define F : Rm × R

s → R
m × R

s by F (ξ ,η) = (–Mξ , g(ξ ,η)). Let � ⊆ [,∞) × C
T (Rm ×

R
s) be open and assume that deg(F ,�#) is well defined and nonzero. Then there exists a

connected component � of nontrivial T-pairs for (.) whose closure in [,∞) × C
T (Rm ×

R
s) meets F–(, ) ∩ �# and cannot be both bounded and contained in �.

Corollary . Let f , g , A, and B be as above. Assume that M := A(t)Ȧ(t)� is con-
stant and nonsingular. Let � ⊆ [,∞) × C

T (Rm × R
s) be open. Assume that the set

�# ∩ ({} × [g(, ·)]–()) is nonempty and compact. Then there exists a connected com-
ponent � of nontrivial T-pairs for (.) whose closure in [,∞) × C

T (Rm × R
s) meets

�# ∩ ({} × [g(, ·)]–()) and cannot be both bounded and contained in �.

Theorem . Let f , g , A, and B be as above. Assume that A(t)Ȧ(t)� is identically zero
and define ω : Rm ×R

s →R
m ×R

s by

ω(ξ ,η) =
(


T

∫ T


A(t)f

(
t, A(t)�ξ , B–(t)η, , 

)
dt, g(ξ ,η)

)

.

Let � ⊆ [,∞) × C
T (Rm × R

s) be open and assume that deg(ω,�#) is well defined and
nonzero. Then there exists a connected component � of nontrivial T-pairs for (.) whose
closure in [,∞) × C

T (Rm × R
s) meets ω–(, ) ∩ �# and cannot be both bounded and

contained in �.

In the next example we consider the same time-dependent constraint as in Example .,
but in the case of second-order DAEs.
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Example . Let f : R × R
 × R → R

 be any continuous mapping π-periodic in the
first variable. Consider

⎧
⎨

⎩

ẍ = λf (t, x, y), λ ≥ ,

y + y – x
 – x

 – (x sin t + x cos t) = ,

where x = (x, x). Let A and g be as in Example .. Applying the coordinate transforma-
tion as described above we rewrite our DAE as follows:

⎧
⎨

⎩

ξ̈ = ξ – Mξ̇ + λA(t)f (t, A(t)�ξ ,η), λ ≥ ,

η + η – ξ 
 – ξ 

 = .

Here

M := AȦ� =

(
 

– 

)

so that AÄ� = M = –I . Let � = [,∞) × C
T (R × R). Since M is nonsingular and

[g(, ·)]–() = {}, Corollary . yields an unbounded connected component of π-
periodic pairs emanating from (; (, ; )) ∈ [,∞) ×R

 ×R (regarded as a π-pair).

Remark . As in the first-order case, our coordinate transformation applies also to a
slightly different situation. Consider the following DAE:

⎧
⎨

⎩

ẍ = Hẋ + Hx + λf (t, x, y), λ ≥ ,

g(A(t)x, B(t)y) = ,
(.)

where A, B, f , and g are as in (.) and Hi, i = , , are matrices that commute with A.
Suppose, as above, that M := A(t)Ȧ(t)� is constant (not necessarily invertible) and apply
the transformation as indicated above. Equation (.) becomes

⎧
⎨

⎩

ξ̈ = (HM + H – M)ξ + (H – M)ξ̇ + λF(t, ξ ,η), λ ≥ ,

g(ξ ,η) = 
(.)

with F as in (.), so that the results of Section . are applicable to (.).

Remark . Let us consider the following second-order DAE

⎧
⎨

⎩

d

dt (C(t)x) = λf (t, x, y, ẋ, ẏ), λ ≥ ,

g(A(t)x, B(t)y) = ,
(.)

where f , A, and B are as in (.) and t �→ C(t) ∈ O(Rm) is C and T-periodic. We also
assume that C has the same property as A, that is, C(t)Ċ(t)� is constant. Expanding the
derivative on the left-hand side of the first equation in (.) and using the fact that C(t) ∈
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O(Rm), for all t ∈R, we rewrite (.) as follows:

⎧
⎨

⎩

ẍ = –C�Ċẋ – C�C̈x + λC�f (t, x, y, ẋ, ẏ),

g(Ax, By) = ,
(.)

where, to keep the notation concise, the explicit dependence on t of A, B, and C is omit-
ted. Proposition A. shows that K := C(t)�Ċ(t) is constant and, by Remark A.(), it fol-
lows that K := C(t)�C̈(t) is constant as well being equal to –K

 . Hence, (.) is of the
form (.). Notice that if we assume that A commutes with K, then it commutes with
K as well. In conclusion, if K commutes with A(t) for all t ∈R, Remark . applies with
H = –K and H = –K.

Appendix: some lemmas of Matrix Analysis
This section gathers, for reference purposes, a few simple facts - possibly well known -
concerning time-dependent matrices.

Lemma A. Let t �→ A(t) be a C square-matrix-valued function. Suppose that the map
t �→ A(t)Ȧ�(t) is constant. Then

Ä(t)A(t)� = A(t)Ä(t)�, (A.)

Ä(t)A(t)� = –Ȧ(t)Ȧ(t)�. (A.)

Proof For the sake of simplicity, we drop the explicit indication of the dependence of A
on t.

Let us put M = AȦ�. Then ȦA� = (AȦ�)� = M� is also constant. Taking the derivative
with respect to t of both these relations, we get

ȦȦ� + AÄ� = , ÄA� + ȦȦ� = . (A.)

Hence,

 = ȦȦ� + AÄ� – ÄA� – ȦȦ� = AÄ� – ÄA�,

which implies (A.).
From (A.) and (A.) it follows that

 = ȦȦ� + AÄ� + ÄA� + ȦȦ� = ȦȦ� + ÄA�,

whence the assertion. �

Observe that under the hypothesis of Lemma A., since

[
Ä(t)A(t)�

]� = Ä(t)A(t)�,

(A.) implies the symmetry of AÄ�.
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Lemma A. Let t �→ A(t) be a C square-matrix-valued function. Assume that A(t) is
orthogonal for all t, then Ȧ(t)Ȧ(t)� = –(A(t)Ȧ(t)�).

Proof Differentiating the relation A�A = I we obtain Ȧ�A = –A�Ȧ. Multiplying this rela-
tion on the left by Ȧ and on the right by A�, we get

ȦȦ�AA� = –ȦA�ȦA�.

Since AA� = I and ȦȦ� = (ȦȦ�)�, transposing yields

ȦȦ� = –
[(

ȦA�)�] = –
(
AȦ�),

as desired. �

Equation (A.) and Lemma A. together yield the following fact.

Proposition A. Let t �→ A(t) be a C square-matrix-valued function. Assume that A(t)
is orthogonal for all t and that the map t �→ A(t)Ȧ�(t) =: M is constant. Then Ä(t)A(t)� =
(A(t)Ȧ(t)�) is constantly equal to M. In particular, if A(t)Ȧ�(t) is constant and nonsin-
gular then so is Ä(t)A(t)�.

Remark A. Replacing A with A�, it is easy to verify that results analogous to Lemma A.,
Lemma A. and Proposition A. hold if we assume the constancy of A(t)�Ȧ(t) instead of
that of A(t)Ȧ(t)�. Namely, if t �→ A(t) is a C square-matrix-valued function such that A(t)
is orthogonal for all t and the map t �→ A(t)�Ȧ(t) is a constant, then

() Ä(t)�A(t) = –Ȧ(t)�Ȧ(t) and Ä(t)�A(t) = –A(t)�Ä(t);
() Ȧ(t)�Ȧ(t) = –(A(t)�Ȧ(t));
() Ä(t)�A(t) = (A(t)�Ȧ(t)) = –A(t)�Ä(t).

These facts should not surprise us in view of Proposition A. below.

We conclude this technical section with a curious remark. As shown by the following
example:

A(t) =

⎛

⎜
⎜
⎜
⎝

  sin t – cos t
  cos t sin t

cos t sin t  
– sin t cos t  

⎞

⎟
⎟
⎟
⎠

,

even for matrix functions as in Proposition A., one may have

A(t)�Ȧ(t) = A(t)Ȧ(t)�.

Nevertheless, one can prove the following fact.

Proposition A. Let t �→ A(t) be a C square-matrix-valued function. Assume that A(t)
is orthogonal for all t. Then A(t)�Ȧ(t) is constant if and only if so is A(t)Ȧ(t)�.
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Proof Let us first prove that if M := A(t)Ȧ(t)� is constant then A(t)�Ȧ(t) is constant as well.
As above, for the sake of simplicity, we drop the explicit indication of the dependence of
A on t.

Clearly, we have ȦA� = M� and, since Proposition A. yields AÄ� = M, we also have
AÄ� = (M)�. Now, using these facts we get

[
d
dt

(
AT Ȧ

)
]�

= A�A
[

d
dt

(
A�Ȧ

)
]�

A�A = A�A
(
Ȧ�Ȧ + Ä�A

)
A�A

=
[
Ȧ�MȦ + A�(

M)�A
]
A�A =

[
A�MM� + A�(

M)�]
A

= A�(
MM� +

(
M)�)

A = A�(
MM� + M)�A.

Observe also that

MM� + M = AȦ�(
ȦA� + AȦ�)

= AȦ�
[

d
dt

(
AA�)

]

= ,

because AA� ≡ I . Thus, d
dt (AT Ȧ) = , which implies that A(t)�Ȧ(t) is a constant matrix.

Conversely, if A(t)�Ȧ(t) is constant, and a similar proof shows that A(t)Ȧ(t)� is constant
too. �
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