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Abstract
We realize on an atom-chip, a practical, experimentally undemanding, tomographic reconstruction
algorithm relying on the time–resolvedmeasurements of the atomic population distribution among
atomic internal states.More specifically, we estimate both the state densitymatrix, as well as the
dephasing noise present in our system, by assuming complete knowledge of theHamiltonian
evolution. The proposed scheme is based on routinely performedmeasurements and established
experimental procedures, hence providing a simplifiedmethodology for quantum technological
applications.

1. Introduction

The use ofmeasured data for the estimation of quantum states is crucial for the verification of the quality of any
quantumdevice. To fully determine a quantum state, i.e. to perform a quantum state tomography, one needs to
accumulate enough data to compute the expectation values of an informationally complete set of observables
[1]. The availability of a complete set ofmeasurements to be implemented by the experimenter is not
straightforward and in general quantum state reconstruction is carried out by complicated set-ups that have to
be robust against noise and decoherence sources, in order not to limit the accuracy of the reconstruction [2, 3].

The standard technique used in quantumoptics for the full reconstruction of quantum states is coherent
homodyne detection [4], which has recently been extended to ultracold atoms in [5]. Homodyne detection
requires the use of a, not always available, local oscillator field that acts as a phase reference for the state under
reconstruction [6]. A ‘spin tomography’ procedure which uses spin precessionwithout the local oscillator is
proposed in [7]. Other approaches were developed based either on the linear inversion of a set of observables [8],
or on themaximum–likelihood estimation [9]. In both of thesemethods, to have a good estimation of the initial
state one has to carefully design themeasurements set in order to fulfil the informationally completeness that is
required by the operator basis. A different approach is a least squareminimization of a cost function, which
permits the relaxation of some of the constraints on the data necessary to reconstruct the dynamics, and on the
set of observables tomeasure [10]. For atomic internal states simpler interferometric techniques can be used to
map the relative phases of internal components onto the level populations [11].

Cold atomic systems and degenerate quantumgases are unique tools for quantum simulations [6] and
precisionmeasurements of atom characteristics beyond the classical limit [12]. However, their applications
outside of the laboratory depend critically on the simplification and downsizing of bulky cold-atom set-ups.
Indeed, an interesting technological development is given by the possibility of integrating cold atomswith
nanostructures [13]. An important invention in this direction is the realization of a Bose–Einstein Condensate
(BEC) inmicroscopicmagnetic traps based on themicro-electronics technology, yielding the so-called atom-
chip [14, 15]. For example, experiments based on atom-chips have demonstrated nonlinear interferometers
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with the sensitivity beyond the standard quantum limit [12], nonclassical interferometry withmotional states
[16], and quantumZeno dynamics [17].

This work presents a practical, experimentally undemanding, tomography protocol that relies only on the
time-resolvedmeasurements of the atomic population distribution among atomic internal states. This protocol
allows the reconstruction of a, not necessarily pure, state of a n-level quantum system,where the coherence
elements are unknown and usually challenging tomeasure. The idea is simple: the state to be reconstructed
evolves over time and the population distribution ismeasured at different times (see [8] for a similar data
acquisition protocol); the same dynamics are numerically simulated starting from a randomly chosen initial
state; we run an optimization protocol thatminimizes the difference between the simulated andmeasured data
in such away that the optimal solution provides the tomographic reconstruction of the initial state—see also the
reconstruction protocols in [9] and [10]. Our procedure is based on the complete knowledge of the system
evolution. Note that, by applying the proposed scheme to a complete set of known states, one is, in principle,
able to reconstruct the systemdynamics, leading to a procedure similar to the quantumprocess
tomography [18].

2. Experimental set-up

The experimental apparatus is based on amicroscopicmagnetic trap, or atom-chip [15, 19], wherewe bring an
atomic sample of 87Rb to quantumdegeneracy through forced evaporative cooling.Most of the structures and
wires necessary to themagnetic trapping, the forced evaporation and successivemanipulation of the atoms are
all embedded in the atom-chip,making this device versatile and experimentally easy to use [20]. Our BEChas
typically 8 104 atoms in the lowfield seeking hyperfine state F m2, 2F∣ = = ñ, at a critical temperature of 0.5μK
and is 300μmaway from the chip surface. The experiment described in this work is performed 0.7ms after the
BEC release from trap to guarantee a homogeneousmagnetic biasfield and strongly reduce the effects of atomic
collisions. In this way themost relevant source of noise on the evolution turns out to be the instability of the
environmentalmagnetic field.

We consider a n-level system represented by the five-fold F=2 hyperfine ground level of 87Rb. In the
presence of amagnetic biasfield the degeneracy between themagnetic sublevels is lifted according to the Breit—
Rabi formula. Using two externalHelmholtz coils, we arbitrarily set themagnetic field to 6.179G6. To drive the
atomic dynamics we apply a radio-frequency field (RF) oscillating at 2RFw p= 4.323 MHz7 using awire
structure embedded in the chip. Due to the relative proximity between the BEC and the emitting wirewith
∼10 mWofRF powerwe excitemagnetic dipole transitions between the atomic levels at Rabi frequencies up to
200 kHz.

To record the number of atoms in each of themF states of the F=2 hyperfine state we use a Stern–Gerlach
method. After the statemanipulation has been performed, in addition to the homogeneous bias field, we apply
an inhomogeneousmagnetic field along the quantization axis for 10 ms. This causes the differentmF states to
spatially separate. After an expansion time of 23 ms a standard absorption imaging sequence is performed. The
recorded atomic population in eachmF state is normalized to the total number of observed atoms.

It is important to stress that eachmeasurement sequence completely destroys the system. Thismeans that
each sampling is associated to a different experimental cycle of production andmanipulation of the BEC andwe
have to rest on the assumption that both the state preparation and the tomographic procedure always yield the
same result. This assumption is a posteriori confirmed by the agreement between the prepared and
reconstructed state.We sample every 5 oscillation of the RFfield, corresponding to having a data point every
∼1.16 μs.We repeat 5 times eachmeasurement to obtain themean values of the relative atomic populations
p p ti j i j, ( )º and standard deviations ti j i j, ( )s sº for each sublevel i. An example is represented infigure 1.

3. State reconstruction

The post-processing analysis is formulated in the followingway: suppose that wewant to estimate the initial
quantum (not necessarily pure) state of a n-level system, described by the density operator t 00 ( )r rº = . To do

that, we use the a priori knownHamiltonian operator Ĥ describing its dynamics and themeasurements of the
subsystempopulations at different evolution times p ti ( ). In otherwords, wemeasure the observables a ai iˆ ˆ† ,

hence obtaining the expectation values t a a p tTr i i i[ ( ) ˆ ˆ ] ( )†r = , where aiˆ and aiˆ † are, respectively, the

6
The value of the fieldB is chosen around 6G so that it ismuch larger than themagnetic noise fluctuations but, at the same time, the current

used to produce it is not high enough to cause significant heating of the coils.
7
TheRF frequency νRF is chosen to be 4.323 MHz in away that the detuningwith the energy differences between neighbouring levels

i i 1w w- + at 6.179 Gauss is symmetric respect to themf=0 level, for example 2 21 2 RF 4 5 RFw w pn w w pn- - » - - .
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annihilation and creation operators for each sublevel i, and ρ(t) is the time-evolution of the unknown state ρ0
that wewant to estimate. In the case of fully coherentHamiltonian evolution, one has t U t U t0( ) ˆ ( ) ˆ ( )†r r=
withU t Htexp iˆ ( ) [ ˆ ]= - being the unitary evolution operator. If the system is subjected to a noisy evolution
instead , as it is the case inmost experimental situation, one has t t 0( ) ( )r r= F withΦt being the so-called
quantummap or quantum channel or quantumoperationmapping ρ0 into ρ(t) [21].

In our case theHamiltonian, written in the rotatingwave approximation, is
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where the state basis is chosen to go from m 2F = + to m 2F = - , the RFfield Rabi frequency is
2 60 kHzpW = , the detunings δi are defined by δ1= 3 kHz and δ2= 11 kHz.

In order to include the unavoidable presence of dephasing noise, thatmainly originated in our experiment
from the presence ofmagnetic field fluctuations superimposed on the biasfield, we add in ourmodel a Lindblad
super–operator term , acting on the densitymatrix ρ as a a a a a a, 2j j j j j j j1

5( ) [ { ˆ ˆ } ˆ ˆ ˆ ˆ ]† † † r g r r= å - += , which
randomizes the phase of each sublevel jwith a homogenous rate γ.Wefinally obtain the densitymatrix evolution
as

t
t H t t

d

d

i
, . 2( ) [ ( )] ( ( )) ( )


r r r= - +

To summarize, in order to perform a tomographic reconstruction an initial unknown state evolves for a time
T (tomography time) under the effect of theHamiltonianH and thefive atomic populations (points) are
recorded every 1.16 μs. Note that thismeans that the number ofmeasurements increases linearly withT.

To reconstruct the state one has n2–1 unknown independent real parameters defining the n× n density
matrix, with the constraint of leading to a physical state, i.e. a semi–definite positive, hermitianmatrix ρ of
unitary trace. This problem can be also formulated in the language of semi–definite programming [22]. It
corresponds tofinding the initial state ρ0minimizing the difference (e.g.,mean squared error) between the
measured populations pi(tj) and the quantities a aTr t i i0[ ( ) ˆ ˆ ]†rF for each observed time step tj, hence

a a p tmin Tri j t i i i j, 0j0
∣∣ [ ( ) ˆ ˆ ] ( )∣∣†rå F -r with t 0( )rF mapping ρ0 into ρ(t) being the solution of themaster

equation in (2), and ∣∣ · ∣∣being anymathematical norm.Here, we have implemented theminimization
algorithmusing the Subplex variant of theNelder–Meadmethod [23]. In particular, to take into account also the
experimental uncertainties, weminimize, with respect to ρ0, the followingweightedmean squared deviation
function

p p
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Figure 1.Time evolution of an arbitrary atomic state. An initial unknown state evolves under the effect of theHamiltonianH and the
five atomic populations (points) are recorded every 1.16 μs, i.e. every fifth oscillation of the RFfield applied to the atomic sample. The
superimposed line is the theoretical evolutionwith the estimated initial condition ρ0minimizing the deviation 0( ) r between
experimental and theoretical data.
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where p a aTri j t i i, 0 0j
¯ ( ) [ ( ) ˆ ˆ ]†r r= F and 1i j i j, ,

2w sº . The constraints ofHermitianicity and positiveness of the
output densitymatrix are inserted in theminimization algorithm as a penalty functionwhich automatically
excludes the non–physical results.

4. Results

To test our scheme, we have prepared, by applying knownHamiltonian evolutions, a set of states to be
reconstructed. Since the preparation can be affected by experimental errors, the real states can be different from
the expected. Fromnumerical simulations based on the knowledge of the preparationHamiltonians, we
compute the expected theoretical densitymatrices ρin. For example, infigure 1we reconstruct a state that is
obtained by applying aπ/2 pulse8 to the F m2, 2F∣ = = ñ state.We report the experimentally recorded
population evolutions in a 16 μs-long timewindow.We then compare these results with the theoretical
evolutions of the diagonal elements (i.e. populations) of the reconstructed state ρ0. For this reconstruction,
based on 16 averaged observations of thefive-level populations, the computed deviation is 2 100

6( ) r ~ ´ - ,
corresponding to anUhlmann fidelity [24] of , 0.980 in( ) r r = between the reconstructed densitymatrix ρ0
and the expected theoretical one ρin, that are pictorially represented infigure 2. Let us point out that no a priori
knowledge of the initial state has been used for the tomographic reconstruction.However, this information has
been exploited to calculate theUhlmann fidelity.

Moreover, we have faithfully reconstructed, with deviations below 3× 10−6, other states prepared by using
theHamiltonian in equation (1) and randomly varying over time the detunings δ1 and δ2. These low deviations
correspond tofidelities higher than 0.95.

To check the reconstruction error convergence, with respect to the number of collected data, we applied the
optimization algorithm to the population distributions in different timewindowsT, and computed the quantity
1 ,0 in( ) r r- in each case. The results infigure 3 show that whenT is comparable with the systemnatural
evolution timescale (T 2p~ W), the reconstruction accuracy is already satisfactory, with the error quickly
saturating to itsminimumvalue.

Figure 2.Pictorial representation of the theoretically expected densitymatrix ρin (left) and the reconstructed one ρ0 (right), with the
real (upper) and the imaginary (lower) components. TheUhlmannfidelity ,0 in( ) r r between ρ0 and ρin is 0.98 = .

8
Aπ/2 pulse corresponds to the application of theHamiltonian in equation (1) for one fourth of a period, i.e.π/(2Ω), that is about 4 μs in

our case.
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Furthermore, this technique can be also exploited to get further information on the system evolution, e.g. to
estimate the amount of dephasing noise in the systemdynamics resulting from its coupling to the external
environment.More specifically, we have reconstructed the initial densitymatrix bymeasuring the population
evolutionwithin different timewindows [0, Ti], withTiä[10, 100] μs, but neglecting the presence of dephasing,
i.e. γ= 0. Then, for any reconstruction, we have found the value of dephasing rate γopt 0, 750[ ]Î Hz,
minimizing the deviation ò between the theoretical and experimental data–see figure 4.Note that, the same
optimal results have been obtainedwhen both the state and the dephasing ratewere optimized at the same time,
with the scheme above providing however a faster optimization procedure. It turns out that the optimal
dephasing rate increases with the tomography timeTi, hence selecting the noise spectrum components larger
than 1/Ti, as expected. In other terms, another possible application of our procedure is to quantify the rate of the
dephasing noise affecting the system evolution bymeans of the optimized reconstruction procedure, hence
indirectly extracting information on the strength of the coupling between the system and the external
environment.We expect this to allow one to the characterizate the type of external noise, with the additional
possibility of identifying the presence of temporal noise correlations.

Figure 3.Behaviour of 1 ,0 in( ) r r- versus the tomography time (used tominimize the deviation 0( ) r ), where ,0 in( ) r r is the
Uhlmann fidelity between ρ0 and ρin, ρ0 is the state reconstructed from the experimental data, and ρin the expected one.

Figure 4.Deviation 0( ) r as a function of the tomography timeTi (reconstructionwindow [0, Ti]) and the dephasing rate γ. For
clarity the value of the deviation ò is color coded according to the legend on the right. For any given value of the tomography timeTi it
is possible tominimize the deviation ò (dashed line) to obtain the value γopt of the dephasing rate.
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5. Conclusions

To summarize, we have experimentally demonstrated a tomographic reconstruction algorithm that relies on
data collected during the evolution of an unknown quantum state, assuming a complete knowledge of the
systemHamiltonian. The advantages of this protocol are the simplicity of the post-processing procedure and the
use of a quite conventional absorption imaging technique. Furthermore, we have shown the convergence of the
protocol evenwhen using a small amount of collected data, compared to standard tomographic technique.
Finally, we have also estimated the rate of the dephasing noise present in our systemdynamics by repeating this
procedure for longer tomography timewindows andminimizing the reconstruction deviation.

Moving another step further, a promising applicationmay be represented by the possibility of characterizing
the noise itself, for instance its spatial and temporal correlations, by investigating the behaviour of the state
reconstruction error in terms of different noisemodels. The proposed scheme therefore realizes quantum state
tomography, but could readily bemodified to performquantumprocess tomography by assuming complete
knowledge of the input states, hence providing a very feasible and useful tool for several quantum technological
applications.
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