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Abstract: A set of time-domain analytical forward solvers for Raman signals detected from ho-
mogeneous diffusive media is presented. The time-domain solvers have been developed for two
geometries: the parallelepiped and the finite cylinder. The potential presence of a background
fluorescence emission, contaminating the Raman signal, has also been taken into account. All
the solvers have been obtained as solutions of the time dependent diffusion equation. The val-
idation of the solvers has been performed by means of comparisons with the results of “gold
standard” Monte Carlo simulations. These forward solvers provide an accurate tool to explore
the information content encoded in the time-resolved Raman measurements.
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1. Introduction

Due to its excellent chemical specificity, Raman spectroscopy has been largely investigated in
biomedical diagnosis and industrial applications [1]. In most cases, a quasi-confocal approach
was adopted, which limits the investigated volume to a maximum depth < 200 μm [2, 3]. For
this reason, in the last decade, much interest was raised on the possibility to detect Raman
signals well beneath the surface [4]. The most popular approach was named Spacially Offset
Raman Spectroscopy (SORS). SORS exploits the detection of Raman signals at increasing dis-
tances from the laser injection point to discriminate structures at different depth [4–6]. Based on
SORS, many applications have been proposed with huge industrial impact. Applications range
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from medical diagnostics (e.g. detection of cancer [7] or bone pathologies [8]), to security and
forensic applications (e.g. identification of liquids or solids through plastic or glass contain-
ers [9]), and also to non-destructive food assessment [10] or analysis of paintings [11]. Another
approach was adopted for the analysis of pharmaceutical tablets, by exploiting a transmittance
geometry [12, 13]. Similar concepts have also permitted to obtain tomographic Raman images
through tissue simulating phantoms, biological specimens and, in vivo, on animals [14–16].

All approaches mentioned above are based on continuous wave (CW) illumination. A further
different option is the adoption of a time-resolved (TR) injection and detection scheme. The TR
scheme exploits the property that the more diffused photons are detected later on in time, the
more they have penetrated deeply into the medium [17]. A further advantage of this method is
that the use of a time-gated scheme permits to reject a significant fraction of the contaminating
fluorescence emission [18]. The experimental feasibility of deep Raman spectroscopy using the
TR approach was demonstrated using time-correlated single-photon counting [19], ultrafast (ps)
Kerr-Gate spectroscopy [20] and fast gated camera [21–23].

It is important to note that the TR research direction, although possibly more informative than
SORS, has to face with the complexity of the TR systems, which has hampered until nowadays
a more widespread use. However, even if the translation of these methods and devices to Raman
spectroscopy is not straightforward, a dramatic reduction of TR system complexity is expected
by the use of novel compact photonics devices like Silicon Photomultipliers (SIPMs) [24]. Thus,
TR systems could definitevely increase their impact in the near future because of the great
potentialities offered by this instrumentation to gain depth information [25, 26].

In this framework, the development of rigorous mathematical algorithms, constituting one of
the core elements of the TR systems, appears to be a fundamental issue. Moreover, theoretical
models may also serve as a support for simulation studies in the development of novel measure-
ment schemes, or in the understanding of the physics of Raman signal from its generation to its
propagation and detection. For this reason, in the present work we address the rigorous model-
ing of TR diffused Raman based on the diffusion approximation (DA) to the Radiative Transfer
Equation (RTE).

In summary, in the time domain exact analytical models describing propagation of Raman
signals in diffusive media are still lacking. With the present work, we want to provide a general
perspective of time domain diffuse Raman spectroscopy through its possible information con-
tent in terms of sensitiveness to the optical properties of the medium. We have developed a set of
forward analytical solvers describing the TR Raman reflectance for a parallelepiped and a finite
cylinder. The solvers have been obtained exploiting the DA to the RTE [27,28] and the Green’s
function theorem [28], and they have been systematically validated by “gold standard” Monte
Carlo (MC) simulations for a wide set of physical conditions. Finally, the range of validity of
an often used simplified heuristic model [6] for time-domain Raman signal is also discussed.

2. Theory and methods

In this section, we review the theory of Raman scattering within the framework of the diffusion
equation (DE) and we obtain analytical solutions for the Raman TR reflectance. The analytical
theory is also developed for a background medium hosting distributed fluorescent molecules.
The MC method used to generate “gold standard” data for the whole study is also presented.

2.1. Preamble

The origin of Raman scattering [1, 4, 29] is quite different from the classical Tyndall scattering.
Tyndall scattering depends on the micro-structures of materials and on their heterogeneities,
while Raman scattering depends on the intrinsic properties of molecules. Further, Tyndall scat-
tering is an elastic interaction, only affecting the direction of photon migration, while Raman
scattering is an inelastic phenomenon affecting direction and wavelength of the re-emitted pho-
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ton. This means that the two phenomena are characterized by independent scattering coeffi-
cients, but, more relevant, it also implies that a couple of independent RTEs need to be intro-
duced for dealing with two different wavelengths λ and λe . Raman scattering can be considered
“equivalent” to an absorption interaction since the scattered photon is no longer available at the
excitation wavelength, and thus can be accounted as a loss factor in the energy balance at this
wavelength. We follow this approach in developing the analytical theory here described.

Figure 1 shows the excitation light at λ (isotropic point source at rs), and the Raman light
at λe , which is emitted from a scatter at r′ and collected at point r. The global, absorption and
scattering coefficients of the medium originate from: 1) the background medium and; 2) the
Raman scattering molecules. The Raman signal is affected by Tyndall multiple scattering in the
background at both excitation, λ, and emission, λe , wavelengths. The global optical parameters:
absorption coefficient, scattering coefficient, reduced scattering coefficient, and the refractive
index of the investigated medium at λ are denoted, respectively, as μa , μs , μ′s , and ni , and at λe
as μae , μse , μ′se , and nie . For the background medium the absorption coefficient, the scattering
coefficient, and the reduced scattering coefficient at λ are denoted, respectively, as μab , μsb ,
μ′
sb

, and at λe as μabe , μsbe , μ′
sbe

. We assume that Raman scattering molecules are distributed
inside the whole volume of the medium with scattering coefficient μsR at λ, and μsRe at λe .
We also assume that μsRe = 0, excluding the possibility of a second Raman scattering event
on the same photon [4] (see next section). Being Raman interactions described by a scattering
coefficient, their effects at λ, at least within the DE, can only be modeled with an equivalent
effective “absorption” term. Thus, since Raman scattering at λ determines an instantaneous
re-emission of light at λe , for the purpose of the energy balance at λ, Raman interactions are
equivalent to absorption events, and therefore, we can then write μa = μab + μsR , μs = μsb
and μ′s = μ′sb . For a summary of the notation used see the column denoted Raman in Table
1. This approach may appear to be not orthodox from a physical point of view, but, what it
really matters is to perform a correct energy balance at λ and λe , without neglecting terms
influencing the photon migration. In the next sections the validity of the proposed modeling of
Raman scattering will be further discussed and demonstrated by means of MC simulations.

Fig. 1. Diagram of a photon path trajectory in a x , z plane projection from the source
(red circle) to the Raman scatter (dashed line) and from the Raman scatter to the detector
(continuous line). Green circles are Tyndall interactions. The yellow circle is a Raman
interaction.

2.2. General Raman model based on the time-dependent diffusion equation

Light propagation through biological tissues and other highly scattering media can be described
with the time-dependent DE [27, 28] due to the diffusive regime of propagation that is often es-
tablished in these media. Therefore, the Raman signal can be described by two coupled diffusion
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equations for the time-dependent photon fluence rate, Φ(r, t) and Φe (r, t), at λ and λe :
[
1
v
∂

∂t
+ μa − D∇2

]
Φ (r, t) = q(r, t), (1)

[
1
ve

∂

∂t
+ μae − De∇2

]
Φe (r, t) = qe (r, t), (2)

where D = 1/(3μ′s ) and De = 1/(3μ′se ) are the diffusion coefficients at λ and λe and v and
ve are the speed of light in the medium at λ and λe . The term q(r, t) is the real source term at
λ, while qe (r, t) represents the virtual source term, at λe , generated by Raman scatterers. To
facilitate the reading, the dependence of Φ(.) and Φe (.) on variables other than r and t will be
explicitly written along the manuscript only when necessary.

Equations (1) and (2) are coupled by the physical relationship existing between the excitation
fluence rate, Φ(r, t), and the source term qe (r, t). As we have highlighted above, at λ the effect
of Raman scattering is “equivalent” to an “absorption” interaction. Then, μsR can be accounted
in Eq. (1) as an absorption term so that μa = μab + μsR . The source term qe (r, t), at λe ,
accounts for the number of photons generated at this wavelength per unit volume and time due
to Raman scattering events at λ. Thus, using the fluence rate at λ,Φ(rs , r′ , μa , μ′s , ni , t′ , λ), the
source term can be written as

qe (r′ , t′ , λe ) = μsRΦ(rs , r′ , μa , μ′s , ni , t
′ , λ). (3)

Assuming an isotropic source term of unitary strength q(r, t) = δ3(r− rs)δ(t), then Φ in Eq. (3)
is the Green’s function, G, of the problem and qe can be written as

qe (r′ , t′ , λe ) = μsRG(rs , r′ , μa , μ′s , ni , t
′ , λ). (4)

By substituting Eq. (4) in Eq. (2), the following equation at λe is obtained:
[

1
ve

∂

∂t
+ μae − De∇2

]
Φe (r, t ) − μsRG(rs , r , t ) = 0. (5)

According to the Green’s function theorem [28], the fluence rate at λe , Φe (r, t), due to the
Raman scattering at λ is given by

Φe (r, t) =
∫ t

0

∫
V ′

qe (r′ , t′)Ge (r′ , r, μae , μ′se , nie , t − t′)dV ′dt′ , (6)

with Ge the Green’s function at λe . We stress that the Green’s functions G and Ge are related
to the same medium, so that the different notation is maintained only to keep the distinction
between λ and λe . Putting all explicitly,

Φe (r, t) = μsR

∫ t

0

∫
V ′

G(rs , r
′
, μa , μ

′
s , ni , t

′)Ge (r′ , r, μae , μ′se , nie , t − t′)dV ′dt′ . (7)

Equation (7) is the convolution in time of G with the same Green’s function calculated at the
site of the Raman scatterers.

We remind that Eq. (7) is obtained under the assumption that only single scattering Raman
events contribute to the solution. In principle, also multiple scattering Raman events can be
possible. But, given the low values for the probability of Raman scattering (usually less than
10−6) [30, 31], their contribution to the calculation can be considered negligible. Moreover, in
Eq. (7) it is implicitly assumed that the angular re-emission of Raman scattering is the same
of Tyndall scattering since no distinctions on this point are made in the theory. Starting from
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Eq. (7) it is possible to derive the solution of the Raman signal for any desired geometry. In
particular, Raman scatters can be homogeneously distributed inside the medium, but they can
also occupy a small portion of the whole medium resulting as an inclusion. In this work we focus
our analysis on geometries where the Raman scatters are homogeneously distributed inside the
medium.

2.3. Simplified heuristic model in case μ′
sb
= μ′

sbe
, μab = μabe and ni = ne

In the previous literature we have an example of a heuristic model describing the Raman sig-
nal [29,32] obtained under the hypothesis that the optical properties of the background medium
at excitation (λ) and emission (λe) wavelengths are the same. This model can be true or approxi-
mately true in some particular cases of photon migration. Here we want to provide an analytical
justification of the heuristic model obtained by Everall et al. [29, 32]. Let’s first re-write the
general solution Φ(r, t) by invoking the very well known scaling relationship for the absorption
coefficient [27, 28] (Beer-Lambert’s law) as

Φ(r, μa = μab + μsR , μ′s , t , λ) = Φ(r, μa = μab , μ′s , t , λ) exp(−μsRvt). (8)

The evaluation of the fluence rate at λe can be obtained under the hypothesis μ′
sb
= μ′

sbe
,

μab = μabe , v = c/ni = ve = c/ne and also assuming the same scattering function of the
medium at λ and λe and for Tyndall and Raman scattering. This means that the Raman photons
at λe follow the same identical trajectories, and with the same probability, as they were Tyndall
photons at λ and thus subjected to the optical properties of the medium at λ. Thus, the fluence
rate at λe due to Raman photons, Φe (r, μae , μ′se , t , λe ), can be synthetically written as

Φe (r, μae = μabe , μ′se = μ′sbe , t , λe ) = Φe (r, μab , μ′sb , t , λe ) . (9)

By using the property of Eq. (8) and the described constraints on the optical parameters, the
right term of Eq. (9) can be rigorously expressed as

Φe (r, μae , μ′se , t , λe ) = Φ(r, μab , μ′sb , t , λ) − Φ(r, μab , μ′sb , t , λ) exp(−μsRvt) , (10)

i.e. the fluence rate of the whole photons reaching the detector (photons at λ or λe are subjected
to the same optical parameters) minus the fluence rate of the photons that did not undergo a
Raman scattering.

Given the typical low values of μsR (of the order of 10−6 mm−1), Eq. (10) can be usually
further simplified as

Φe (r, μae , μ′se , t , λe ) ≈ Φ(r, μab , μ′sb , t , λ)μsRvt . (11)

The same relation can be obtained for the TR reflectance. On this ground the heuristic model
for the TR reflectance at λe , ReHeur , can be written as

ReHeur (ρ, μae , μ
′
se , t , λe ) = R(ρ, μab , μ

′
sb , t , λ)μsRvt , (12)

with ρ source detector distance and R the standard solution of the DE at λ. The solution of the
DE for the TR reflectance for the slab obtained with the extrapolated boundary condition and
Fick’s law can be used for R (see for instance Eq. (4.27) in [28]). Equations (11) and (12) are
both the desired Everall et al. model [29,32] obtained under the simplified conditions. Thus, it is
possible to directly derive the Green’s function of the Raman signal from the Green’s function
of the background medium and the Raman signals can be obtained by multiplying the diffuse
reflectance signal by μsRvt. The physical interpretation of this simplified model is that the
generated Raman photons at the emission wavelength continue their migration in the medium
as they were at the excitation wavelength. We can also state that the longer is the photon time-of-
flight, the higher is the probability of Raman emission. This heuristic model can only be applied
for homogeneous media.
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2.4. Solution for the Raman signal in a parallelepiped

2.4.1. Time-resolved fluence rate

The solution for the parallelepiped (Fig. 2) for the fluence rate is obtained using the Green’s
function calculated with the eigenfunction method. The TR Green function G(r, r′ , t , t′) for the
fluence rate, making use of the extrapolated boundary conditions (EBC) at the boundaries of
the parallelepiped, can be written as [28, 33]

G (r, r′ , t) = 23 v
L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Kl x′) cos(Km y) cos(Km y′)

sin[Kn (z + 2AD)] sin[Kn (z′ + 2AD)] exp[−(K2
l
+ K2

m + K2
n )D v(t − t′) − μav(t − t′)] ,

(13)
with

L′
x = Lx + 4AD, L′

y = Ly + 4AD, L′
z = Lz + 4AD , (14)

and
Kl =

(2l−1)π
L′
x
, Km =

(2m−1)π
L′
y
, Kn =

nπ
L′
z

; l ,m, n = 1, 2, 3, 4, 5, ... (15)

The coefficients of Eqs. (14) and (15) will be used in all the next series expansions implemented
for the parallelepiped. The coefficient A, that accounts for the effects of Fresnel reflections
at the parallelepiped boundaries, is a function of the refractive index of the internal (ni ) and
external (no) medium (A = 1 when ni = no see [28]). The notation Ae will be used when the

Fig. 2. Schematic of the parallelepiped.

coefficient A pertains to nie . Making use of Eq. (13) and of the ortho-normality property of the
eigenfunctions, the solution of Eq. (7) for the TR fluence rate, assuming an isotropic delta source
of unitary strength placed at (0, 0, zs = 1/μ′s) used to model an external pencil beam of unitary
strength impinging onto the parallelepiped at (0, 0, 0), i.e. q(r, t) = δ(x)δ(y)δ(z − zs )δ(t),
becomes

ΦeRaman (r, t) = 23 μsR v ve
L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y) sin[Kn (z + 2AeDe )]

× sin[Kn (zs + 2AD)][(Deve − Dv)(K2
l
+ K2

m + K2
n ) + (μaeve − μav)]−1

×
{
exp[−(K2

l
+ K2

m + K2
n )D vt − μavt] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
.

(16)

For obtaining this equation we have assumed, as it is usual, that the extrapolated lengths depend
only slightly on λ, and thus, L′

xe � L′
x , L′

ye � L′
y , and L′

ze � L′
z since Lx � 4AD, Ly � 4AD,

Lz � 4AD. The same approximation is used throughout this paper. Once more we remind that
μa = μab + μsR and μae = μabe . A similar solution to Eq. (16) for the fluence rate is obtained
in appendix A also for the finite cylinder.
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The TR Raman reflectance from the external surface of the parallelepiped at any point r of
the boundary can be obtained using Fick’s law or a hybrid approach denoted EBPC [28]. For
both the approaches the Raman fluence rate, ΦeRaman , (Eq. (16)) is first calculated using the
EBC, then Fick’s law or the partial current boundary condition (PCBC) is applied to Eq. (16)
for calculating the emerging reflectance from the medium [28].

2.4.2. Time-resolved reflectance obtained with the EBPC

According to the EBPC the TR Raman reflectance is [28]

ReRamanEBPC (x , y, t) = ΦeRaman (x ,y ,z=0,t )
2Ae

. (17)

By substituting Eq. (16) in Eq. (17) we obtain the TR Raman reflectance as

ReRamanEBPC (x , y, t) = 22 μsR v ve
AeL

′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y) sin[Kn (2AeDe )]

× sin[Kn (zs + 2AD)][(Deve − Dv)(K2
l
+ K2

m + K2
n ) + (μaeve − μav)]−1

×
{
exp[−(K2

l
+ K2

m + K2
n )D vt − μavt] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
.

(18)

2.4.3. Time-resolved reflectance with Fick’s law

The TR Raman reflectance from the medium can be also calculated by using the classical Fick’s
law as [28]

ReRamanFick (x , y, t) = De
∂ΦeRaman (x ,y ,z=0,t )

∂z . (19)

By inserting Eq. (16) in Eq. (19) the TR Raman reflectance becomes

ReRamanFick (x , y, t) = 23 De μsR v ve
L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y)Kn cos[Kn (2AeDe )]

× sin[Kn (zs + 2AD)][(Deve − Dv)(K2
l
+ K2

m + K2
n ) + (μaeve − μav)]−1

×
{
exp[−(K2

l
+ K2

m + K2
n )D vt − μavt] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
.

(20)
The two expressions of ReRamanEBPC and ReRamanFick show only slight differences related

to the way the flux is calculated [28]. In the Results section comparisons with the results of MC
simulations show that within the limits of the DA the two formulas are practically equivalent.

2.5. Solution for the Raman signal with a background fluorescence

2.5.1. Time-resolved fluence rate

It may happen that a fluorescence signal survives at the detector’s site when Raman spectro-
scopic measurements are carried out or, alternatively, fluorescence and Raman signals can be in-
deed used together for imaging and/or spectroscopic purposes [34]. For this reason, we general-
ize the previous solution in the event that, together with Raman scatterers, fluorescent molecules
are also uniformly distributed inside the medium generating a background fluorescence at λe
(observed wavelength). The fluorescence signal, as the Raman scattered light, is affected by mul-
tiple Tyndall scattering at both λ and λe . We assume that a fluorophore is uniformly distributed
inside the background medium with absorption coefficient μa f at λ, and μa fe = 0 at λe . As
in the previous section, we also assume that Raman scatterers are distributed inside the whole
volume of the medium with scattering coefficient μsR at λ, and μsRe = 0 at λe . The global op-
tical parameters: absorption coefficient, reduced scattering coefficient, and the refractive index
of the medium are denoted as μa , μ′s , and n at λ, and as μae , μ′se , and ne at λe , respectively.
Therefore, we implement the DE solution for a medium having the global optical properties,
μa = μab + μsR + μa f , μ′s = μ′sb at λ and, μa = μabe and μ′se = μ′sbe at λe , respectively. For
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this purpose we can still use Eqs. (1) and (2) provided the optical properties are those shown in
Table 1 for the case of Raman+Fluorescence.

Again, the DEs at λ and λe are coupled by the excitation fluence rate, Φ, which determines
the source term qe (r, t) of the DE at λe . However, the fluorescent component of the source
term qe (r, t) is more complicated than the Raman component. In fact, not all the fluorescence
interactions at λ produce a photon at λe . Moreover, fluorescent photons at λe , generated at time
t, may be derived from fluorescence interactions occurring at a time t′ different from t (t′ < t).
For these reasons, it is necessary to define: 1) a quantum efficiency ηe and; 2) a probability
density function pFluo (t | t′). The parameter ηe is the quantum efficiency of the fluorophore in
the wavelength range Δλe around λe , i.e. the ratio of the number of photons emitted in Δλe to
the number of absorbed photons. The function pFluo (t | t′) is expressed as

pFluo (t | t′) = 1
τ

exp

(
− t − t′

τ

)
Θ(t − t′) , (21)

(
∫

pFluo (t | t′)dt′ = 1) and describes the probability density that an interaction at t′ will
generate a photon at t. The function Θ(.) is the Heaviside function. The parameter τ is the
fluorescence lifetime of the fluorophore (i.e. the average time that the fluorophore spends in the
excited state prior to returning to the ground state). In practice, the production of fluorescent
photons must be suitably “weighted” by ηe and pFluo (t | t′). Therefore, in analogy with Sec.
2.2 the coupling of the DE at λ and λe is given by the following source term that combines
fluorescent and Raman emitted photons

qe (r′ , t) =
∫ t

0
pFluo (t | t′)ηe μa f G(rs , r′ , μa , μ′s , n, t′)dt′ + μsRG(rs , r′ , μa , μ′s , n, t),

(22)
where G is the Green’s function for the fluence rate at λ.

By substituting Eq. (22) in the DE at λe , and making use of the Green’s function theorem,
the fluence rate at the emission wavelength, Φe (r, t), due to the fluorescent photons generated
into the interval dλe , is

Φe (r, t) =
∫ t

0

∫
V ′

qe (r′ , t′)Ge (r′ , r, μae , μ′se , ne , t − t′)dr′dt′ =

= ΦeFluo (r, t) + ΦeRaman (r, t) ,
(23)

with Ge as the Green’s function of the medium for the fluence rate at λe . The solution
of Eq. (23) is given by two terms, one, ΦeFluo (r, t), given by fluorescent photons and the
other, ΦeRaman (r, t), given by Raman photons. The term ΦeRaman is the one calculated
in the previous section with Eq. (16). For the term ΦeFluo we need to perform the integral
of Eq. (23) for the fluorescence source term. For the parallelepiped the TR solution is ob-
tained by making use of the TR Green’s function given by Eq. (13) and applying the ortho-
normality property of the eigenfunctions. The solution given by Eq. (23) for the TR fluence rate,
ΦeFluo , assuming an isotropic delta source of unitary strength placed at (0, 0, zs = 1/μ′s), i.e.
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Table 1. Summary of the notations used for the optical properties of the medium at λ and
λe in the case of a pure Raman model (column Raman) or a hybrid Raman and fluores-
cence model (column Raman+Fluorescence). The subscript b denotes the background, the
subscript R denotes the Raman scattering and the subscript f denotes the fluorescence. In
this work, we have assumed μsRe = 0 and μa fe = 0. The optical parameters appearing
in column Raman have to be used with Eqs. (18), (20) and (39), while optical parameters
appearing in column Raman+Fluorescence have to be used with Eqs. (24), (28) and (32).

Raman Raman+Fluorescence
λ λe λ λe

μa μ′s μae μ′se μa μ′s μae μ′se
μab + μsR μ′

sb
μabe μ′

sbe
μab + μsR + μa f μ′

sb
μabe μ′

sbe

q(r, t) = δ(x)δ(y)δ(z − zs )δ(t), is

ΦeFluo (r, t) = 23 μa f ηe v ve

τ L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y) sin[Kn (z + 2AeDe )]

× sin[Kn (zs + 2AD)][(Deve − Dv)(K2
l
+ K2

m + K2
n ) + (μaeve − μav)]−1

×
{
exp[−(K2

l
+ K2

m + K2
n )D vt − μavt] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
×
[
− (K2

l
+ K2

m + K2
n )D v − μav + 1/τ

]−1

−23 μa f ηe v ve

τ L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y) sin[Kn (z + 2AeDe )]

× sin[Kn (zs + 2AD)]
[
(K2

l
+ K2

m + K2
n )Deve + μaeve − 1/τ

]−1

×
{
exp[−t/τ] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
×
[
− (K2

l
+ K2

m + K2
n )D v − μav + 1/τ

]−1
.

(24)

We note that, for the evaluation of the Eq. (23) we have previously calculated the first term
of qe (r′ , t′), qeFluo (r′ , t′), (Eq. (22)) as

qeFluo (r′ , t′) = μa f

τ ηe
∫ t ′

0
exp
[
− (t ′−t ′′)

τ

]
G(rs , r′ , μa , μ′s , n, t′′)dt′′ =

= 23 ηe μa f v

τ L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl xs ) cos(Kl x′) cos(Km ys ) cos(Km y′) sin[Kn (zs + 2AD)]

× sin[Kn (z′ + 2AD)]
[
− (K2

l
+ K2

m + K2
n )D v − μav + 1/τ

]−1

×{exp[−(K2
l
+ K2

m + K2
n )D vt′ − μavt′] − exp[−t′/τ]},

(25)
with G given by Eq. (13).

2.5.2. Time-resolved reflectance with EBPC

The TR reflectance can be calculated using the EBPC, similarly to Eq. (17), as

ReEBPC (x , y, λe , t) =
ΦeFluo (x ,y ,z=0,λe ,t )

2Ae
+
ΦeRaman (x ,y ,z=0,λe ,t )

2Ae
, (26)

where ΦeFluo is given by Eq. (24) and ΦeRaman by Eq. (16).

2.5.3. Time-resolved reflectance with Fick’s law

The time resolved reflectance can be also calculated by using Fick’s law as

ReFick (x , y, t) = De
∂ΦeFluo (x ,y ,z=0,λe ,t )

∂z + De
∂ΦeRaman (x ,y ,z=0,λe ,t )

∂z =

= ReFluoFick (x , y, t) + ReRamanFick (x , y, t),
(27)
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with ReRamanFick given by Eq. (20) and ReFluoFick given by

ReFluoFick (x , y, t) = 23 De μa f ηe v ve

τ L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y)Kn cos[Kn (2AeDe )]

× sin[Kn (zs + 2AD)][(Deve − Dv)(K2
l
+ K2

m + K2
n ) + (μaeve − μav)]−1

×
{
exp[−(K2

l
+ K2

m + K2
n )D vt − μavt] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
×
[
− (K2

l
+ K2

m + K2
n )D v − μav + 1/τ

]−1

−23 De μa f ηe v ve

τ L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y)Kn cos[Kn (2AeDe )]

× sin[Kn (zs + 2AD)]
[
(K2

l
+ K2

m + K2
n )Deve + μaeve − 1/τ

]−1

×
{
exp[−t/τ] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
×
[
− (K2

l
+ K2

m + K2
n )D v − μav + 1/τ

]−1
.

(28)

2.5.4. Improved numerical calculation

The formula obtained above for ΦeFluo suffers from slow computational convergence so that
usually many terms of the series are needed for a correct evaluation of the fluence rate. A simple
way to speed-up the calculation is achieved by dividing the calculation of ΦeFluo into two steps.
At first is calculated the fluence rate, Φe0Fluo , describing fluorescence photons promptly re-
emitted (i.e. Eq. (24) for τ → 0). The series of Φe0Fluo converges much faster than ΦeFluo .
The fluence rate Φe0Fluo is simply given by

Φe0Fluo (r, t) = μa f ηe
∫ t

0

∫
V

′ G(rs , r′ , μa , μs′, n, t′)Ge (r′ , r, μae , μse′, ne , t − t′)dr′dt′ =

= 23 μa f ηe v ve

L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y) sin[Kn (z + 2AeDe )] sin[Kn (zs + 2AD)]

×[(Deve − Dv)(K2
l
+ K2

m + K2
n ) + (μaeve − μav)]−1

×
{
exp[−(K2

l
+ K2

m + K2
n )D vt − μavt] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
.

(29)
Then, the calculation of the whole term ΦeFluo is obtained by taking into account that fluores-
cent photons are not promptly re-emitted. Therefore, ΦeFluo may be expressed as the convolu-
tion of Φe0Fluo with the exponential decay of the fluorophore, i.e.

ΦeFluo (r, t) = [Φe0Fluo (r, t)] ∗ [
1
τ

exp(−t/τ)]. (30)

This calculation in two steps is computationally mush faster (even ten times) than the direct
calculation of Eq. (24). Moreover, the implementation of Eq. (30) can be easily modified in
order to account for more complicated multi-exponential decays that sometimes are required to
describe the re-mission of some specific fluorophores.

Similarly, the improved numerical calculation can be obtained for the fluorescence reflectance
term as

ReFluo (r, t) = [Re0Fluo (r, t)] ∗ [
1
τ

exp(−t/τ)] . (31)

When the reflectance is calculated with the EBPC, Re0Fluo is obtained by dividing Φe0Fluo by
a factor 2Ae according to Eq. (26). When the reflectance is calculated with Fick’s law, Re0Fluo

is obtained as

Re0FluoFick (x , y, t) = 23 De μa f ηe v ve

L′
x L

′
y L

′
z

∞∑
l ,m ,n=1

cos(Kl x) cos(Km y)Kn cos[Kn (2AeDe )]

× sin[Kn (zs + 2AD)][(Deve − Dv)(K2
l
+ K2

m + K2
n ) + (μaeve − μav)]−1

×
{
exp[−(K2

l
+ K2

m + K2
n )D vt − μavt] − exp[−(K2

l
+ K2

m + K2
n )De vet − μaevet]

}
.

(32)
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2.6. Monte Carlo simulations

It is useful, for the comprehension and validation of the analytical approach proposed in the pre-
vious sections, to address and simulate Raman scattering, also in the presence of background
fluorescence, using a Monte Carlo method without introducing approximations in the modelling
of photon transport [28, 29]. Following the notations of Sec. 2.5 we define an interaction coeffi-
cient, μeλ , at the excitation wavelength as:

μeλ = μab + μsb + μsR + μa f , (33)

where the right hand side is the sum of the four coefficients of: absorption in the background,
Tyndall scattering in the background, Raman scattering and fluorescence excitation. A random
number w1 uniformly distributed in the interval [0, 1] is generated. This number is related to
the photon path, �, by the following relation [35]:

w1 =

∫ �

0
μeλ exp (−μeλ�) d� . (34)

Once Eq. (34) is inverted to obtain � we have to decide which interaction the photon will un-
dergo. To sample the probability of the four different events we extract a second random number
w2 uniformly distributed in [0, 1], so that:

if w2 <
μab

μeλ
the photon is absorbed, otherwise

if w2 <
μab+μsb

μeλ
the photon is Tyndall scattered, otherwise

if w2 <
μab+μsb+μsR

μeλ
the photon is Raman scattered, otherwise

if w2 ≤ 1 the photon possibly excites fluorescence.

When the photon is absorbed its propagation is stopped; when it is Tyndall scattered, the photon
is tagged as “λ” (the wavelength remains λ), the scattering angle is sampled [35] and it moves
of a step-length equal to �; when it is Raman scattered the photon is tagged as “λe” (from now
on the photon can only have Tyndall scattering events at λe), an isotropic scattering angle is
sampled and it moves of a step-length equal to �; when it possibly excites fluorescence a further
random number w3 ∈ [0, 1] is extracted and, if w3 < η, the photon is tagged again as “λe” and
it propagates with a step-length � (from now on the photon can only have Tyndall scattering
events at λe), otherwise the photon is killed. Furthermore, if the photon excites fluorescence, a
temporal delay is extracted using a new random number w4 ∈ [0, 1] sampling the exponential
decay time (Eq. (21)):

w4 =

∫ t

0
pFluo (t′ | 0)dt′ . (35)

The photons tagged as “λe” represent photons at the emission wavelength then, assuming that
no further Raman scattering events are undergone by photons, and they propagate as described
above using a new interaction coefficient μeλe

given by:

μeλe
= μabe + μsbe . (36)

At the beginning of the simulation it is possible to select the kind of interaction (Raman, fluo-
rescence, Raman+fluorescence or Tyndall) and the number of photons that, after surviving at
the detector site, need to be saved and stored by the simulation. In particular, the path-length of
the tagged photons arriving at the detector site is saved and then a time-of-flight histogram is
created so the TR reflectance can be re-constructed from the detected photons packets.
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3. Results

3.1. Validation of the DE solutions by comparisons with MC simulations

The analytical solutions derived in Sec. 2.5 have been compared with the results of MC simu-
lations based on the sampling rules described in Sec. 2.6. The code was accelerated by means
of a Graphical Processing Unit (GPU) and has been written adapting the CUDA-based code
published by Alerstam et al. [36] for a laterally infinite slab. A large number of comparisons
between analytical models and MC simulations have been performed to validate the formulae
of Sec. 2.5 and those shown in this section are only a representative sample of the whole work
done.

Simulated reflectance data have been generated with the optical parameters appearing in the
caption of Fig. 3. All the simulations have been run until 107 photons reached the detector. The
analytical models have been computed using the formulae presented in Sec. 2.5 applied to a
100x100x100 mm3 diffusive cube. The boundary effects due to photons escaping the lateral
faces of the cube are negligible for the values of the optical properties used in this section.

Although the probability of generating a Raman photon is low, with typical values of about
10−6, for the validation of the analytical models we have assumed unrealistic values of this
probability with values around 10−3. This was obtained by selecting μsR = 10−3 mm−1. This
choice, needed for reducing the computation time of the MC simulations, does not affect the
validation of the analytical models. In fact, the accuracy of the analytical models, provided that
μsR � μsb , is not affected by the value of μsR considered.

In Fig. 3 four examples of comparison of the analytical models (EBPC and Fick solutions)
with the results MC simulations for the TR Raman-Fluorescence reflectance are shown. Starting
from the first simulation (Fig. 3(a)-3(b)), the others have been obtained by varying one parame-
ter at a time: μa f (Fig. 3(c)-3(d)), another with a different ρ (Fig. 3(e)-3(f)) and the remaining
one with a different μab (Fig. 3(g)-3(h)). We note that the optical properties used for the back-
ground medium are typical of several biological tissues. It is also worth to observe the excellent
agreement between analytical models and MC results.

The slight differences between Fick and EBPC model are typical of the DA and, as for many
other solutions based on the DE, they are mainly affecting the early times of the TR reflectance.
The Fick and EBPC solutions slightly differ on the peak of the signal. In particular, EBPC
overestimates the photon fluence rate. At late times and in absence of fluorescence the two
formulae converge (Fig. 3(b)).

In the presence of a background fluorescence (Fig. 3(c)), the agreement between Fick’s law
formula and MC is still very good and slightly worse for the EBPC formula because the fluence
rate overestimation on the peak is spread out at late times. This is due to the convolution opera-
tion appearing in Eq. (31). This effect is clearly noticeable in Fig. 3(d) by plotting the ratio of
analytical solutions and MC. But we can note that this overestimation of the signal has a mild
effect on the shape of the TR reflectance generated with the EBPC.

3.2. Dependence of the Raman signal on the optical properties

The factor μsR appearing in Eqs. (18) and (20) clearly shows that the TR Raman reflectance
is proportional to the Raman scattering coefficient. In practice, μsR is just a simple amplitude
factor and does not influence the shape of the temporal profile. However, Eqs. (18) and (20) also
show that the TR Raman reflectance depends on absorption and reduced scattering coefficients
in a more complex manner. In Fig. 4 we have reported this feature by displaying the TR Raman
reflectance with: 1) varying μabe , fixed μab and fixed μ′

sb
= μ′

sbe
and; 2) varying μ′

sb
= μ′

sbe

and fixed μab = μabe . The values of the optical parameters appear in the caption of Fig. 4.
The ranges of the background optical properties in Fig 4 include those of biological media
in the wavelength range of [700, 900] nm. The general trend is similar to what observed in
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Fig. 3. Comparison for the TR Raman reflectance between analytical formulae and MC in
absence (a, e, g) and in presence (c) of background fluorescence. For all the figure panels
μ′
sb
= μ′

sbe
= 1, μabe = 7·10−3 mm−1, μsR = 10−3 mm−1, ni = nie = 1.4, no = noe =

1, g = 0. Specifically: (a) μab = 5 · 10−3 mm−1, μa f = 0, ρ = 20 mm; (c) μab = 5 · 10−3

mm−1, μa f = 7 · 10−3 mm−1, ηe=1 and τ = 2 ns, ρ = 20 mm; (e) μab = 5 · 10−3 mm−1,
μa f = 0, ρ = 10 mm; (g) μab = 10−2 mm−1, μa f = 0, ρ = 20 mm.
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standard TR diffuse optical spectroscopy, with a decrease of signal more prominent at late times
for increased absorption (Fig. 4(a)), and at early times for increased scattering (Fig. 4(b)). In
conclusion, Fig. 4 show that the TR Raman signal carries information not only of the Raman
phenomenon, but also on the background properties of the medium.
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Fig. 4. Dependence of the temporal profile of Raman photons for different values of μabe
and μ′

sb
. The common parameters were ρ = 10 mm, ni = nie = 1.4, no = noe = 1 and

μsR = 10−6 mm−1, μab = 0.01 mm−1. Specifically: (a) μabe ∈ [0, 0.035] mm−1 and
μ′
sb
= μ′

sbe
= 1 mm−1 and; (b) μ′

sb
= μ′

sbe
∈ [0.5, 2] mm−1 and μabe = 0.01 mm−1.

3.3. Validity range of the heuristic model

As already demonstrated in Sec. 2.3 the heuristic model proposed in [29, 32] by Everall et al.
is actually a simplified model derived under the constraints of μ′

sb
= μ′

sbe
, μab = μabe and

ni = ne . Here we want to study the range of validity of the heuristic model by means of the
forward solvers discussed and validated in the present work. More specifically, we study the
effect given by the release of the above constraints.

Figure 5 shows an example of the TR Raman signal (Eq. (20)) and of the heuristic model (Eq.
(12)) for a case with μ′

sb
� μ′

sbe
(see figure caption for the values of the optical parameters).

The figure shows that the heuristic model fails in describing the correct behavior.
In Fig. 6 the differences observed in Fig. 5 are studied in a larger number of cases in order to

provide a more complete view of the validity range of Eq. (20). To this aim we define a relative
error factor, ε (t), comparing the heuristic model (Eq. (12)) with the rigorous solution (Eq. (20)):

ε (t) = 1 − ReHeur (ρ,t )
ReRamanFick (ρ,t ) . (37)

The error ε (t) is depicted in Fig. 6 in per cent for different values of μabe (Fig. 6(a)) or of μ′
sbe

(Fig. 6(b)) while keeping both μab and μ′
sb

fixed. The relative error is null when μab and μabe
have the same values, while it rapidly deviates with huge errors whenever μabe is significantly
altered from μab . For example, in biological tissues, for Raman shifts in the range of [30, 50]
nm a change of μabe in the range of [0.005, 0.01] mm−1 can be expected for an excitation
wavelength in the range of [700, 800] nm. In case we have a change of scattering between λ and
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Fig. 5. Comparison of the temporal profile of the DE Raman signal (Eq. (20)), and of the
heuristic model (Eq. (12)). The common parameters were: ρ = 10 mm, ni = nie = 1.4,
no = noe = 1, μsR = 10−6 mm−1, μ′

sb
= μ′

sbe
= 1 mm−1, and μab = 0.01 mm−1.

λe , the heuristic model is substantially valid at late times, but yields quite inaccurate predictions
at early times. Thus, Eq. (12) can be used as a first-order approximation to understand the
physics of diffuse Raman photons, but a more rigorous approach is needed when the absorption
properties of the medium are not constant over the spectral range of interest.

4. Conclusions

We have presented, within the framework of the DE, a set of analytical forward solvers for the
calculation of the Raman TR reflectance from a homogeneous parallelepiped and a homoge-
neous cylinder, provided the Raman scatterers are uniformly distributed in the whole medium.
The obtained formulas have been validated by means of comparisons with the results of “gold
standard” MC simulations. In the proposed analytical solutions we have also included the op-
tion to account for the influence of a background fluorescence, on the Raman signal, generated
by a fluorophore uniformly distributed inside the medium. Further, we have provided an exact
theoretical justification of a well known heuristic model; widely used for the study of the Raman
signal when the optical properties of the medium show weak variations between the excitation
and the emission wavelength. Thanks to the present results, it has been possible to carefully
study the range of validity of the heuristic model.

The comparisons between analytical models and MC simulations of Sec. 3 have shown that
in the diffusive regime the analytical solutions (Eqs. (18) and (20)) of the DE for the TR Raman
reflectance show indistinguishable results compared to the MC simulations. The differences be-
tween Fick and EBPC model are compatible with the diffusion approximation and both can be
used to describe the Raman signal with an error of few per cent. Similar conclusions can be
extended to the effect of a background fluorescence that can be accurately calculated by the DE
analytical solutions (Eqs. (28) and (26)) with an error of few per cent. The computation time of
such models is of the order of seconds, while the computation time of the corresponding MC
simulation, although the simulation was accelerated by means of a GPU, was of the order of
hours. Moreover, when the MC simulations are carried for realistic values of the Raman scatte-
ring coefficient (of the order of 10−6 mm−1) the computation time can be even thousand time
larger, becoming prohibitively high. The comparisons with the results of MC simulations have
shown that the heuristic model (Eqs. (11) and (12)) has significant deficiencies when the absorp-
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Fig. 6. Relative per cent error of the heuristic model (Eq. (12)) as compared to the DE
solver (Eq. (20)). The common parameters were ρ = 10 mm, ni = nie = 1.4, no =
noe = 1, μsR = 10−6 mm−1, μab = 0.01 mm−1 and μ′

sb
= 1 mm−1. Specifically:

(a) μabe ∈ [0, 0.02] mm−1 and μ′
sbe
= 1 mm−1 and; (b) μ′

sbe
∈ [0.5, 1] mm−1 and

μabe = 0.01 mm−1.

tion coefficient varies between the excitation and the emission wavelength, while the changes of
scattering affect the accuracy of the model only at early times. In practice, the proposed forward
solvers based on the DE are suitable tools for studying the TR Raman signal in diffusion con-
ditions, while the heuristic model can only provide an approximate solution that is consistent
with the DE when the optical properties at excitation and emission wavelengths are coincident.

In conclusion, the proposed forward solvers can be a useful tool for exploring the informa-
tion content encoded in the TR Raman measurements. The use of these solvers will allow one
to depict, in a wide perspective, possible new applications derived from time-domain Raman
measurements.

A. Appendix: DE solution for a finite cylinder

We provide here the soluton of the DE for the Raman signal for the finite cylinder. This solution
for the fluence rate is obtained with the same procedure used for the parallelepiped in Sec. 2.4,
provided the radial eigenfunctions are taken equal to the Bessel functions of the first kind of
order zero J0. Given a finite cylinder (see Fig. 7) of thickness s, radius a, with the z axis along
the main axis of the cylinder, and with ρ the distance between the position r and the z axis,
the Green’s function with the EBC of the DE for the finite cylinder of Fig. 7 can be written
as [28, 33]

G (r, r’, t) = 2 v
πa′2s′

∞∑
l=1

∞∑
n=1

J0 (ρλl )J0 (ρ′λl )
J2

1 (a′λl )
sin[Kn (z + 2AD)] sin[Kn (z′ + 2AD)]

exp[−λ2
l
Dv(t − t′)] exp[−K2

nDv(t − t′)] exp[−μav(t − t′)] ,
(38)

with a′ = a + 2AD, s′ = s + 4AD, Kn = nπ/s′, λl roots of J0(λla′) = 0, J0 Bessel function
of the first kind of order zero and J1 Bessel function of the first kind of order one. Making
use of Eq. (38) and of the ortho-normality property of the eigenfunctions, the solution of Eq.
(7) for the TR fluence rate, assuming an isotropic delta source of unitary strength placed at (0,
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Fig. 7. Schematic of a diffusive cylinder.

0, zs = 1/μ′s) used to model an external pencil beam of unitary strength impinging onto the
cylinder at (0, 0, 0), i.e. q(r, t) = δ(x)δ(y)δ(z − zs )δ(t), becomes

ΦeRamanCyl (r, t) = 2 μsR vve
πa′2s′

∞∑
l=1

∞∑
n=1

J0 (ρλl )
J2

1 (a′λl )
sin[Kn (z + 2AeDe )] sin[Kn (zs + 2AD)]

×[(Deve − Dv)(λ2
l
+ K2

n ) + (μaeve − μav)]−1

×
{
exp[−(λ2

l
+ K2

n )D vt − μavt] − exp[−(λ2
l
+ K2

n )De vet − μaevet]
}
,

(39)
with a′ = a+2AD, s′ = s+4AD, Kn = nπ/s′, λl roots of J0(λla′) = 0. The above equation has
been obtained with the approximations a′ � a′

e and s′ � s′e . From Eq. (39) the TR reflectance
can be obtained with Eq. (17) or with Eq. (19).

We stress that the presented solution can be useful to speed-up the calculations since by using
Eq. (39) the computation time can be reduced of a factor ten compared to Eq. (16).
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