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Abstract

Introduction: Skeletal dysplasias, also termed as osteochondrodysplasias, are a large
heterogeneous group of disorders characterized by abnormalities of bone or cartilage
growth or texture. They occur due to genetic mutations and their phenotype continues
to evolve throughout life. Reduced growth is a common feature.

Objective: To evaluate and discuss data about growth and growth hormone axis in
patients with the main common skeletal dysplasias, such as achondroplasia, hypochon‐
droplasia, 3M syndrome, and Leri‐Weill syndrome.

Design: Evaluate retrospectively the data on growth, final height (FH), height velocity
(HV), growth hormone deficiency, and growth hormone response after growth hormone
(GH) treatment in patients with these disorders. However, this chapter provides an
updated picture of growth hormone axis and endocrinological features in skeletal
dysplasia.
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1. Introduction

Skeletal dysplasias are a genetically and clinically heterogeneous group of disorders associated
with generalized abnormalities in the skeleton. Collectively the birth incidence is estimated to
be about 1:5000 live births [1], but it is probably underestimated due to the large amount of
undiagnosed cases. The most evident clinical aspects are the skeletal abnormalities, which can
anyway be associated to orthopaedic, neurologic, auditory, visual, pulmonary, cardiac, renal
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and psychological complications. The clinical expression of these pathologies can range from a
precocious arthropathy in otherwise healthy individuals to severe dwarfism with perinatal
mortality [2].

Many different types of dysplasias have been described and classified depending on the
clinical, radiological and genetic aspects. In the latest 2015 version of nosology, compared to
the one of 2011, the overall number has decreased to 436 disorders, but the number of groups
has increased to 42 and the number of genes to 364 [3] (Table 1).

Type Composition Distribution Pathology Gene Location

I α1[I]2α2[I] Dermis, bone,

tendon, ligament

Osteogenesis imperfecta (OI) I, II, III,

IV, VIIA. Ehler‐Danlos

syndrome (EDS) classic

COL1A1, OI1, OI2,

OI3, OI4, EDSC

17q21.33

OI II, OI III, OI IV, OI VIIB, EDS

(valvular form), osteoporosis

COL1A2 7q21.3

II α1[II]3 Cartilage,

vitreous

Otospondylomegaepiphyseal

dysplasia, spondyloperipheral

dysplasia, osteoarthritis with mild

chondrodysplasia, spondyloe‐

piphyseal dysplasia, Stanescu type,

achondrogenesis, type II or

hypochondrogenesis, SMED

Strudwick type, vitreoretinopathy

with phalangeal epiphyseal dysplasia,

Kniest dysplasia, SED congenita,

Stickler syndrome, type I, epiphyseal

dysplasia, multiple,

with myopia and deafness,

platyspondylic skeletal dysplasia,

Torrance

type, stickler syndrome, type I,

nonsyndromic ocular, Czech ??

dysplasia

COL2A1 12q13.11

III α1[III]3 Skin, blood

vessels, intestine

Ehler‐Danlos syndrome type IV COL3A1 2q32.2

IV α1[IV]2α2[IV]

α3[IV] α4[IV]

α5[IV]

α5[IV], α6[IV]

Basement

membranes

Susceptibility to intracerebral,

haemorrhage, porencephaly, brain

small vessel disease with or without

ocular anomalies, angiopathy,

hereditary, with nephropathy,

aneurysms, and muscle cramps

Susceptibility to intracerebral

haemorrhage, porencephaly

COL4A1,POREN1,

HANAC, ICH, BSVD

COL4A2, POREN2,

ICH

COL4A3

COL4A4

COL4A5, ATS, ASLN

13q34

13q34

2q36.3

2q36.3

Xq22.3
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Type Composition Distribution Pathology Gene Location

Alport syndrome (autosomal recessive

and autosomal dominant), familial

benign haematuria

Alport syndrome, familial benign

haematuria

Alport syndrome

V α1[V]3

α1[V]2 α2[V]

α1[V] α2[V]

α3[V]

Bone, dermis,

cornea, placenta

Ehler‐Danlos syndrome (classic type)

Ehler‐Danlos syndrome (classic type)

–

COL5A1, EDSC

COL5A2, EDSC

COL5A3

9q34.3

2q32.2

19p13.2

VI α1[VI] α2[VI]

α3[VI]

α1[VI] α2[VI]

α4[VI]

Bone, dermis,

cornea, cartilage

Bethlem myopathy, Ullrich congenital

muscular dystrophy 1

Bethlem myopathy, Ullrich congenital

muscular dystrophy 1

Bethlem myopathy, Ullrich congenital

muscular dystrophy 1, segmental

isolated dystonia

–

–

–

COL6A1, BTHLM1,

UCHMD1

COL6A2, BTHLM1,

UCMD1

COL6A3,, DYT27,

BTHLM1, UCMD1

COL6A4

COL6A5, COL29A1

COL6A6

21q22.3

21q22.3

2q37.3

3q22.1,

3p25.1

3q22.1

3q22.1

VII α1[VII]2

α2[VII] 

Dermis, bladder Epidermolysis bullosa,

Isolated toenail dystrophy

COL7A1, NDNC8 3p21.31

VIII α1[VIII]3

α2[VIII]3

α1[VIII]2

α2[VIII]

Dermis, brain,

heart, kidney

– Corneal dystrophy COL8A1

COL8A2, FECD1,

PPCD2

3q12.1

1p34.3

IX α1[IX] α2[IX]

α3[IX]

Cartilage, cornea,

vitreous

Stickler syndrome type IV, multiple

epiphyseal dysplasia

Stickler syndrome type V, multiple

epiphyseal dysplasia

Multiple epiphyseal dysplasia with

miopathy, multiple epiphyseal

dysplasia

COL9A1, EDM6,

STL4COL9A2, EDM2,

STL5COL9A3, EDM3,

IDD

6q13

1p34.2

20q13.33

X α1[X]3 Cartilage Metaphyseal chondrodysplasia type

Schmid

COL10A1 6q22.1

XI α1[XI] α2[XI]

α3[XI]

Cartilage,

intervertebral

disc

Marshall syndrome,

fibrochondrogenesis, Stickler

syndrome type II

Deafness, Weissenbacher‐Zweymuller

syndrome, Stickler syndrome type III,

COL11A1, STL2

COL11A2, STL3,

DFNA13, DFNB53,

FBCG2

1p21.1

6p21.32
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Type Composition Distribution Pathology Gene Location

otospondylomegaepiphyseal dysplasia,

fibrochondrogenesis

XII α1[XII]3 Dermis, tendon Bethlem myopathy 2, Ullrich

congenital muscular dystrophy 2

COL12A1, UCMD2,

BTHLM2

6q13‐q14

XIII – Endothelial cells,

dermis, eye, heart

Congenital myasthenic syndrome COL13A1 10q22.1

XIV α1[XIV]3 Bone, dermis,

cartilage

– COL14A1, UND 8q24.12

XV – Capillaris, testis,

kidney, heart

– COL15A1 9q22.33

XVI – Dermis, kidney – COL16A1 1p35.2

XVII – Hemidesmosomes

in epithelia

Generalized atrophic epidermolysis

bullosa

COL17A1, BPAG2,

ERED

10q25.1

XVIII – Basement

membrane, liver

Knobloch syndrome COL18A1, KNO1 21q22.3

XIX – basement membrane – COL19A1, D6S228E,

COL9A1L

6q13

XX – Cornea – – –

XXI – Stomach, kidney – COL21A1 6p12.1

XXII – Heart, retina – COL22A1 8q24.2–

q24.3

XXIII – Brain, cornea – COL23A1 5q35.3

XXIV – Bone, cornea – COL24A1 1p22.3

XXV – Brain, heart, testis Amyloid formation, Congenital

fibrosis of extraocular muscles

COL25A1, CLAC,

CFEOM5

4q25

XXVI – Testis, ovary – SH2B1, SH2B,

KIAA1299

7q22.1

XXVII – Cartilage Steel syndrome COL27A1,

KIAA1870, STLS

9q32

XXVIII – Dermis, sciatic nerve Neurodegenerative disease COL28A1 7p21.3

Table 1. Main common skeletal dysplasias.

2. Physiology

The human skeleton is a complex organ composed of 206 bones (126 appendicular, 74 axial
and 6 ossicles). It strictly collaborates with the muscle, tendons and cartilages in order allow
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movement, mechanical support, linear growth and to protect internal organs. The bone is also
involved in the calcium phosphorus metabolism and in the haematopoiesis.

The skeletal system develops from mesoderm. The mesodermal cells form the mesenchyme
(embryonic connective tissue), which can differentiate into fibroblasts, chondroblasts, and
osteoblasts. Initially, the mesenchyme appears uncondensed, then the cells come together to
the sites of future bones and joints. How does it occur? Two mechanisms are involved,
depending on the cell differentiation into osteoblasts or chondrocyte: there will be respectively
a membranous or an endochondral ossification. The first one occurs especially in the calvaria
of the skull, the maxilla, the mandible and in the subperiosteal bone, forming layer of long
bones. The osteoblasts produce an extracellular matrix, called osteoid. Those of them which
remain incorporated into the osteoid become osteocytes. Finally, the osteoid becomes miner‐
alized, thus forming the mature bone tissue.

Figure 1. Anatomical representation of the femoral growth plate.

The endochondral ossification represents the mayor mechanism of formation of most of the
mammalian appendicular skeleton. The first site of ossification is in the middle of the diaphy‐
sis, while the second one occurs in the epiphysis. They start from a differentiation of mesen‐
chymal cells into chondrocytes, forming the cartilage model, which in turn, undergoes a
process of proliferation, hypertrophy and degradation. Through the periosteal buds, osteo‐
clasts (that remove the cartilage extracellular matrix (ECM)), osteoblasts (that deposit bone on
cartilage remnants) and blood vessels invade the model and proceed to form the primary centre
of ossification. In long bones, a secondary centre of ossification formed at each end of the
cartilage model. The cartilaginous growth plate that remains between the two ossification
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centres allows the linear growth until the postpubertal age, when it will be completely replaced
by bone [4] (Figure 1). Finally, there is an appositional growth due to the periosteum’s
osteoblasts, leading to the formation of a bone collar that works as support for the new bone [5].

The growth plate, depending on the stage of cell’s maturation, can be divided in the following
zones (Figure 1) [6]

• The resting/germinative zone, in which the stem cells or progenitor cells continuously
replace the pool of proliferative chondrocytes.

• The proliferative zone, where highly proliferating chondrocytes are disposed into column
parallel to the direction of longitudinal growth and produces ECM.

• The pre‐hypertrophic zone, where chondrocytes initiate the hypertrophic differentiation,
characterized by IHH (Indian Hedgehog) expression (see below).

• The hypertrophic zone is constituted by enlarged chondrocytes that increase in length, thus
determining the bone’s lengthening; they also modify the surrounding ECM mineralizing
it.

• The degeneration zone, where chondrocytes undergo rapid death before ossification.

Chondrocytes are involved in the production of the ECM, which is majorly composed by
collagen. Collagens are single molecules composed by amino acid sequence of glycine‐proline‐
X and glycine‐X‐hydroxyproline, where X is any amino acid other than glycine, proline or
hydroxyproline. These amino acids associate into chains to form a triple helical structure. Once
in the extracellular matrix, the triple helical chain undergoes several biochemical and structural
modifications, becoming a fibril. The collagen family comprises 28 members that contain at
least one triple‐helical domain [7] and that are specifically distributed in different parts of the
body. Collagens are classified in fibrillar types (I, II, III, V and XI) and non-fibrillar, depending
on the structure they form in the extracellular matrix. Type I is the most expressed in the human
body and with the other collagens provide mechanical strength of cartilage, bone and skin [2,
7]. Other widely represented collagens are type II (hyaline cartilage) and IV (in the basal
membrane). if a mutation occurs in any of the genes encoding collagens molecules, a skeletal
dysplasia can be developed.

3. Growth plate and hormones

The growth plate maturation and regulation is influenced by growth factors, local regulators
and hormones (Figure 2). Perichondrial cells produce many different growth factors that are
used as a signal to chondrocytes, but they also receive signals back from epiphyseal cells
(Figure 2). An important role in bone formation is played by parathyroid hormone‐related
protein (PTHrP) and Ihh; they act directly on the differentiation and proliferation of chondro‐
cytes and in the differentiation of osteoblast. The paracrine hormone PTHrP is expressed at
high level in early proliferating chondrocytes at the end of long bones, while its receptor Pthr1
is produced at low levels by proliferating growth plate chondrocytes and at higher level in
prehypertrophic cells [8]. Prehypertrophic and hypertrophic chondrocytes secrete Ihh, a
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member of the hedegehog family, which acts through the binding to receptor Patched‐1 [9].
PTHrP and Ihh are connected in a feedback loop to maintain a pool of immature chondrocyte
progenitors. PTHrP acts on the receptor of chondrocyte to keep them proliferating and delays
the differentiation into pre‐hypertrophic and hypertrophic chondrocytes. Once the cells are
too far from the source of PTHrP production, in the transitional zone between proliferating
and hypertrophic chondrocytes, Ihh begins to be secreted. It increases the proliferation rate
and inhibits terminal differentiation of chondrocytes; moreover, it stimulates PTHrP synthe‐
sis [10]. Mutations in these two genes can cause the development of dysplasias, as for example
the acrocapitofemoral dysplasia is associated with a Ihh mutation [11]. Bone morphogenetic
proteins (BMPs) signal contribute to epiphyseal growth and maturation, thanks to a gradient
of proteins expressed in the growth plate: BMP agonists can be found in the hypertrophic zone,
while BMP antagonists in the resting zone, suggesting a role in the spatial regulation [12].
Fibroblast growth factor (FGF) signalling interact both with BMP and Ihh pathways, inhibiting
chondrocyte proliferation. In fact, FGF act as antagonists of BMP signalling and negatively
regulate Ihh expression, thus controlling the process of hypertrophic differentiation to the
proliferation rate [13]. The role of FGF signalling is clearly demonstrated in achondroplasia,
which is due to a mutation in FGF3 (fibroblast growth factor 3) receptor. Wnt signalling is then
involved in chondrocytes development, differentiation and in the osteoblasts formation. The
Runt family transcription factor Runx2 (runt‐related transcription factor 2) and Runx3
contribute to chondrocyte hypertrophy and co‐operate with TGF‐β in the regulation of their
maturation. TGF‐β actually acts at the beginning as a stimulator of chondrocyte’s differentia-
tion, stabilizing than the epiphyseal chondrocyte in a prehypertrophic stage (Figure 2) [14].

Figure 2. Main hormonal and non‐hormonal actions on the growth plate. Modified by Seminara et al. [16].
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Finally, the vascular endothelial growth factor seems to play a role in the epiphyseal fusion,
stimulating the chondrocyte differentiation, chondrocyte survival, and the final stages of
endochondral ossification. It seems to be active especially during puberty, under the stimulus
of oestrogens [15]; anyway, the role it plays in oestrogen‐mediated growth plate remains
elusive (Figure 2).

As previously reported, not only growth factors but also hormones can influence bone growth.
It is commonly known that sexual hormones are involved in the regulation of skeletal growth
and in its maintenance. Oestrogens, especially 17β‐estradiol (E2), act via the oestrogen
receptor‐a (ER‐a); low E2 levels during sexual maturation contribute to the lengthening of the
bone during the growth spurt, while high levels in the late puberty to the growth plate closure.
The mechanism by which oestrogen influence bones’ growth is not yet clearly understood. As
oestrogens can regulate also the growth hormone‐insulin growth factor‐1 (GH)/IGF‐1) axis,
the modulation of that pathway is able to condition bone maturation: low levels of E2 increase
serum GH and IGF1, enhancing the pubertal spurt [17]. Sexual hormones are mainly produced
by gonads, but they can be synthetized directly in the growth plate by the aromatase or other
enzymes (17β hydroxysteroid dehydrogenase, steroid sulphatase and type 1 5‐α reductase)
produced by the chondrocytes (Figure 2) [11].

Androgen stimulates bone formation linking to androgen receptor (AR) directly or as dihy‐
drotestosterone (DHT), as well as to ER following aromatization in estradiol [18]. AR is
expressed by chondrocytes and regulate their proliferation and differentiation. An increment
in growth plate width after injection of testosterone directly into the growth plate of rats,
support the idea that it could have a direct function. It is not well known the effect of testos‐
terone on osteoblast cell and controversial result have been shown, anyway most in vitro
studies indicate that androgens contribute to osteoblast progenitors proliferation, mature
osteoblast differentiation and osteoblasts apoptosis inhibition (Figure 2) [19].

Thyroid hormones play a role in bones’ growth through an action both on chondrocytes and
osteoblasts. Reserve and proliferating chondrocyte in fact express thyroid hormone receptor
a1 (TRa1) and TRb1, indicating that T3 contributes directly to the epiphyseals’ growth.
Experiments showed that T3 inhibits chondrocyte clonal expansion and proliferation, while
stimulating chondrocyte differentiation, suggesting a role in the regulation of bone formation
[20].

Studies about T3 action on osteoblast are contradictory; anyway, it is undoubted that it
contributes to stimulate osteoblast activity. In fact, T3 promotes type I collagen synthesis and
posttranscriptional modification, induces alkaline phosphatase (involved in matrix minerali‐
zation), regulates synthesis and secretion of the bone matrix proteins osteopontin and
osteocalcin; it is also involved in bone remodelling enhancing the production of matrix
metallopeptidase 9 (MMP‐9) and ‐13. Furthermore, T3 regulates IGF‐1 and FGF pathways.
Moreover, through the regulation of osteoprotegerine levels, T3 can influence bone resorption
(Figure 2) [21].

Glucocorticoids are strictly involved in growth plate regulation. Increased levels of glucocor‐
ticoids determine an inhibition of longitudinal bone’s growth. It has been demonstrated that
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glucocorticoids can inhibit chondrocyte proliferation, hypertrophy and cartilage matrix
secretion. Glucocorticoids can affect bone also through their negative effect on muscle,
influencing the normal modelling process [22]. Furthermore, glucocorticoids also slow growth
plate senescence inhibiting the proliferation of the resting zone. This explains the catch up
growth measured after a period of growth inhibition due to glucocorticoids excess. Once the
inhibiting stimulus has been removed, the growth plates behave as “younger” growth plates,
reaching the final height a bit later and more rapidly [23]. Last but not least is the role of GH
and somatomedinic hormones, which will be discussed further (Figure 2).

4. Clinical manifestations

The main characteristic of the skeletal dysplasia is a disharmonic short stature; anyway, many
other manifestations involving other organs have been described. How to recognize a dys‐
plastic child? At first, the most important step is to examine the body proportions. Sometimes
subtle degrees of the pathology could be difficult to appreciate, especially in obese or prema‐
ture child.

In every child, it is essential to evaluate growth parameters such as height, weight and head
circumference, but in skeletal dysplasias, these are not sufficient; it is in fact necessary to
evaluate also sitting height, upper/lower segment ratio and arm span [1].

The sitting height is the distance from the vertex of the head to the surface where the child
person is sitting erectly; it is used to measure the upper segment of the body. The lower segment
can be calculated by subtracting the upper segment from the total height. With these param‐
eters, it is possible to obtain the cormic index, which is the upper/lower ratio. The values of
cormic index modify with age. It is important to remember that a patient with a short trunk
has a decreased upper/lower segment ratio, while a short statured patient with normal trunk
and relatively short limbs may have an increased upper/lower segment ratio [1]. Short trunk
child could present short neck or small chest or protuberant abdomen. Depending on which
part of the limb is involved, short limb dysplasias can be differentiated into three groups:
rhizomelic shortening if proximal segments are involved (humerus and femur); mesomelic
shortening if middle segments (radius, ulna, tibia and fibula) are involved; acromelic short‐
ening involves distal segments as the hands and feet.

Finally, the spam arm measures the length from one fingertips to the other when arm raised 
parallel  to the ground at  shoulder  height at 180° angle. 

A general physical examination should always be made to detach others sign and dysmor‐
phisms, which are useful to differentiate between numerous dysplasias. For example, the
clavicular agenesis is typical of cleido‐cranial dysplasia, or the blue sclera of osteogenesis
imperfecta. Also facial dysmorphism can be pathognomonic: in the achondroplastic pheno‐
type are present macrocephaly, frontal bossing, midface hypoplasia and short upturned noses;
midface hypoplasia with flat nasal bridge and grey iris colour in the acrodysostosis; odonto‐
chodrodysplasia is characterized by dentinogenesis imperfecta.
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It’s also important to evaluate the child during the time and repeat the physical examination
to notice other manifestation involving or the skeleton, like abnormal joint mobility or angular
deformities (that usually are symmetric), or other organs, depending on the role of the gene
involved.

Finally, it is essential to pay serious attention to major problems associated with skeletal
dysplasia; for example, there is an increased risk to develop pneumonia due to a reduced
pulmonary volume secondary to the short ribs or spinal cord compression at the cervical
medullar junction due to an abnormal growth of the base of the skull and the vertebral pedicles.
In Larsen syndrome, a cervical spine dislocation is described and it is due to a subluxation or
fusion of the vertebral bodies, usually associated with posterior vertebral arch dysraphism;
the damage of the cord can cause a secondary paralysis.

5. Classification

The classification of skeletal dysplasias is based on clinical, radiographic and molecular
criteria (Figures 3 and 4). The first international classification was established in 1969 [24]. In

Figures 3 and 4. Cartoons that show the different portions of the appendicular skeleton that manifest radiographic ab‐
normalities aiding in the clinical classification of the skeletal dysplasias.
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1992, the diseases were grouped depending on radiological similarities [25], based on the
concept of families proposed by Spranger (1985). Since then, the integration of clinical and
radiological aspect of skeletal dysplasia was helpful in identification of disease‐related genes.
Gradually, phenotypically overlapping diseases were separated in different families depend‐
ing on the rearranged genes. As substantial advances have been made in molecular and genetic
field, classification and nomenclature must be constantly updated. The most recent classifica-
tion has been made by Bonafe et al. in Nosology and Classification of Genetic Skeletal
Disorders: 2015 Revision [3].

Based on the epidemiological and clinical aspects, skeletal dysplasias can be further subdi‐
vided in order to simplify the diagnostic approach [26, 27]:

• Depending on the neonatal lethality:

◦ Usually fatal

▪ Achondrogenesis

▪ Thanatophoric dysplasia

▪ Short rib polydactyly

▪ Homozygous achondroplasia

▪ Camptomelic dysplasia

▪ Dyssegmental dysplasia, Silverman‐Handmaker type

▪ Osteogenesis imperfecta, type II

▪ Hypophosphatasia (congenital form)

▪ Chondrodysplasia punctate (rhizomelic form)

◦ Often fatal

▪ Asphyxiating thoracic dystrophy (jeune syndrome)

◦ Occasionally fatal

▪ Ellis‐van Creveld syndrome

▪ Diastrophic dysplasia

▪ Metatropic dwarfism

▪ Kniest dysplasia

• Recognizable at birth or within first month of life:

◦ Most common

▪ Achondroplasia

▪ Osteogenesis imperfecta (types I, III, IV)

Growth Hormone Axis in Skeletal Dysplasias
http://dx.doi.org/10.5772/64802

13



▪ Spondyloepiphyseal dysplasia congenital

▪ Diastrophic dysplasia

▪ Ellis‐van Creveld syndrome

◦ Less common

▪ Chondrodysplasia punctate

▪ Kniest dysplasia

▪ Metatropic dysplasia

▪ Langer mesomelic dysplasia

5.1. Radiological features

To evaluate dysplastic patients, plain films of the entire skeleton should be evaluated (Figures
5–10).

Figure 5. Achondroplasia. Squared and short ilia.

Figure 6. Leri‐Weill dyschondrosteosis. Short forearms and bowing radius.

Restricted Growth - Clinical, Genetic and Molecular Aspects14



• As suggested by Amaka et al., a systematic approach to the skeletal survey has to be
maintained. At first, it is important to define the anatomical localization of the abnormalities.
Particularly, alteration of appendicular skeleton can involve the epiphysis, metaphysis or
diaphysis; depending on the part involved, shortening of appendix is called rhizomelic, if
proximal, mesomelic, if in the middle, acromelic, if distal or micromelic, if there is a
generalized shortening of the limb. Finding very small epiphysis (due to a delay in
ossification) or irregularly ossified epiphysis, radiologically suggest an epiphyseal dyspla‐
sia. Instead, the widening, the cortical thickening or the expansion/reduction of marrow
space are characteristics of a diaphyseal dysplasia. The diagnosis of metaphyseal dysplasia
is done if a widened, flared or irregular methapysis is found [28]. If even the spine is
involved, these pathologies can be further differentiated in spondyloepiphyseal, spondy‐
lometaphyseal dysplasias [SMDs], or spondyloepimetaphyseal dysplasias [SEMDs] [2].

Figure 7. Trichorhinophalangeal syndrome I. Short metacarpals, especially the fourth and fifth; cone‐shaped epiphyses.

Figure 8. Trichorhinophalangeal syndrome II. Metaphyseal hooking at the proximal ends of several of the middle pha‐
langes. Perthes‐like changes in capital femoral epiphysis.
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Figure 9. Type II osteogenesis imperfecta. Narrow chest. Short, broad, crumpled femora.

Figure 10. Pycnodysostosis. Lateral thickening of the vertebral bodies. Typical fracture of the long bone.
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While examining the bones, the five “S” rules should be remembered:

• Structure: general appearance of bones, as alterations in bone density and their distribution

• Shape: certain bone shape is representative of specific pathologies (e.g. hooked vertebral
bodies in mucopolysaccharidosis, horizontal trident acetabular roofs in achondroplasia).

• Size: size abnormalities can be absolute or relative to other bones. Bones can be described as
tall, short, large, broad or hypoplastic

• Sum: the total number of bones; sometimes they are too many, too few or fuse (absent patella
in nail‐patella syndrome or absent radius in TAR syndrome, multiple epiphyseal centres in
the patella I some form of diastrophic dysplasia)

• Soft tissue: wasting or excessive soft tissues, contractures and calcifications should be looked
for, as they are involved in patient’s prognosis.

The research of complications is important to have a complete picture of the patient. Fracture
due to osteoporosis or osteopetrosis, atlantoaxial subluxation in mucopolysaccharidosis,
progressive scoliosis are only few examples of the variety of the clinical scene [29].

The latest guideline about radiological classification of skeletal dysplasias points out four
groups, as follow:

• GROUP 1: Epiphyseal dysplasias with/without spine involvement (Platyspondyly +/‐);

• GROUP 2: Metaphyseal dysplasias with limb shortening/abnormal limb length;

• GROUP 3: Dysplasias with altered bone density;

• GROUP 4: Miscellaneous dysplasias, that is, those which do not typically have limb
shortening or be clearly bracketed anatomically into sponylo‐epi/metaphyseal dysplasias
[28].

6. Growth in skeletal dysplasias

Skeletal dysplasias, as previously explained, affect both the linear growth and the body
proportion; particularly, the growth of the legs and arms is often more compromised than the
trunk [30], as well as we can discover in the ACH. In one‐fourth of cases of skeletal dysplasias,
the short growth is detectable since the prenatal age, while in the three‐fourths remaining in
the first two‐three years of life. The final height is usually below 3 SD; here are presented the
ranges of adult height for the most common dysplasis (Table 2).

Actually, the growth pattern of these rare pathologies has not been completely understood yet,
because of the scarcity of data in the international literature. Therefore, it is difficult to establish
whether the child grows under the standard centiles in a linearly way or if there are peculiar
moment of important growth decrement. Furthermore, the same pathology can present with
different phenotypes, even in the same family, thus causing other obstacle in the standardiza‐
tion of these children’s growth.
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However, because of many data regarding auxological longitudinal growth in many condition
of bone dysplasia is lacking, knowledge on growth pattern is available only for a few skeletal
dysplasias. It is interesting to note that different skeletal dysplasias seem to show similar
growth pattern, as well as ACH, diastrophic dysplasia and cartilage‐hair dysplasia. For
example, in achondroplasia foetal growth is almost normal with a birth length ranging from
−1.4 to 1.8 SD (Figure 11).

Condition Adult height, cm
Achondroplasia 106–142 (mean: ♂ 132 cm and ♀ 125 cm)

Hypochondroplasia 132–147

Diastrophic dysplasia 86–122 (mean: ♂ 136 cm and ♀ 129 cm)

Metaphyseal dysplasia McKusick type 105–145 (mean: ♂ 131 cm and ♀ 123 cm)

Metaphyseal dysplasia Schmid type 130–160

Chondrodysplasia punctata Conradi‐Hünermann type 130–160

Chondroectodermal dysplasia 106–153

Multiple epiphyseal dysplasia 137–155

Pyknodysostosis 130–150

Spondyloepiphyseal dysplasia congenital 84–132

Kniest dysplasia 104–145

Modified by [24].

Table 2. Ranges of adult height in the main skeletal dysplasia (irrespective of gender). Modified by [24].

Figure 11. Mean height expressed in SDS for age in Caucasian boys and girls with achondroplasia (modified by [24]).

Restricted Growth - Clinical, Genetic and Molecular Aspects18



Hence, linear growth is fairly normal for the first postnatal months followed by a significative
reduction of growth velocity and length to about –5 SD at 2 years of age. Finally, this position
is maintained during the prepubertal years with a further loss during puberty (Figure 11).

7. Growth hormone (GH) and GH axis

The growth hormone (GH) is a polypeptide made by 191 amino acids, synthesized by
somatotrope cells and stored in the anterior pituitary gland. GH is encoded by GH1 gene
situated on the long arm of chromosome 17 at position 24.2 (OMIM *139250), even if this
function is regulated by a cluster of five genes strictly related. Mutations or deletions of one
of these genes lead to growth hormone deficiency, resulting in short stature.

GH secretion mechanism is regulated by some hormones, principally the growth hormone
releasing hormone (GHRH), the somatostatin (STT) and the Ghrelin. GHRH is a peptide
produced in the hypothalamus that activates the production in and release of GH from the
pituitary; GHRH binds to specific receptors, a seven transmembrane domain receptor member
of the family of G‐protein‐coupled receptors, and located on the somatotrope cells [31].
However, STT is peptidic hormone inhibiting the release but not the GH production; STT is
present in the hypothalamus but also in other part of central nervous system and in extra‐
nervous tissues as D‐pancreatic cells, gastrointestinal cells and parafollicular thyroid cells. SST
binds to a specific receptors located on the somatotrope cells, but this kind of receptors is tied
to inhibitor G protein; so that way when the SST binds its receptors, it will be an inhibition of
adenylate cyclase and so a decrease of c‐AMP. The final result is an arrest of GH secretion from
the cells.

Ghrelin, first identified in 1999 by Kojima et al. [32] is a 28 amino‐acid hormone mainly
synthesized in the stomach and also in the hypothalamus arcuate nucleus. Ghrelin regulation
and function are very complexed, in fact it is regulated by a lot of external stimuli, such as the
food intake, that decrease its secretion, instead food deprivation, hypoglycaemia and leptin
administration increased this hormone [33]. Ghrelin acts directly on somatotropes cell and
indirectly stimulate the release of GHRH.

GH secretion is also related to external mechanisms, such as stress, hypoglycaemia, sex
hormones secretion, starvation, sleep or exercise, all condition increasing its secretion. On the
contrary, other factors like hyperglycaemia, dopamine or glucocorticoid decrease it. However,
many data demonstrate a bipotential action of glucocorticoid on GH secretion. In fact, while
physiological level of cortisol is essential to maintain the GH axis, elevated amounts of
glucocorticoid seem to increase STT levels, and so reduce GH secretion [34].

The feedback represents the most important regulatory mechanism and involves the GH,
GHRH, SST and IGF‐1. GH makes an auto‐feedback that leads a decreased of GHRH secretion,
and so that way it reduces itself. Moreover, GH stimulates SST secretion from the hypothala‐
mus and so an ulteriore GHRH inhibition. Moreover, GHRH and SST may be able to regulate
themselves reciprocally, regulating GH secretion not only acting on adenohypophysis, but also
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on hypothalamus. Finally, IGF‐1 operates a double feedback mechanism; from one side, it
inhibits GH secretion directly, and from the other side, it acts indirectly stimulating SST
secretion and inhibiting GHRH secretion [34].

During the childhood GH and thyroxine are the most relevant molecules involved in linear
growth; so if there is an inadequate GH secretion linear growth slows down, and we can notice
a clinical short stature, usually harmonic one. However, at puberty, the activation of the
hypothalamic‐gonadal axis leads to a significant increase in 24‐h GH, probably because of an
interaction between more factors. In fact, the presence of sex hormones causes an increase of
GHRH, GH and IGF‐1 secretion, a decrease of SST secretion and a reduced IGF‐1 negative
feedback. The result is a physiological and self‐limiting hypersomatotropism that it leads to
the definitive stature. In this period of life, an important increase of plasma IGF‐1 concentra‐
tions was observed, leading to the growth velocity peak. Then, during puberty‐adult age
transition, there is a decrease of GH and IGF‐1 plasma concentrations [35].

8. GH-IGF-1 axis and GH treatment in skeletal dysplasias

Most patients with skeletal dysplasia show severe short stature. Surgical therapy has been
attempted to correct bone deformities, but therapy conducted to improve severe short stature
has been rarely attempted. However, the optimal management of physiologically and clinically
heterogeneous bone disorders requires an understanding of their medical and psychosocial
complications.

Syndrome Author Description Outcome and results

AAA (Triple A) Marín S. et al. (2012),
[39]

A patient with a primary
growth hormone (GH)
insensitivity and triple A
syndrome

The treatment could have had an
inhibitory effect on 11β‐
hydroxysteroid dehydrogenase type
1 activity

Aarskog syndrome Darendeliler F et al.
(2003), [40]

The use of GH to promote
growth in children with
Aarskog syndrome

No adverse events were noted

Achondroplasia (ACH) Tanaka H. (1998),
[41]
Liu J et al. (2015)*,
[42]

GH may be beneficial in the
treatment of short stature in
ACH patients with subnormal
GH secretion*

This may also be introduced into the
medical management of ACH

Bartter syndrome Buyukcelik M et al.
(2012), [43]

Three children with Bartter
syndrome and GH deficiency
(GHD)

An excellent adjunctive treatment

Cartilage‐hair
hypoplasia (CHH)

Harada D et al. [44] Seven years of GH treatment
suggested that GH treatment
significantly improved his

GH may be considered to be an
efficient treatment for CHH

Restricted Growth - Clinical, Genetic and Molecular Aspects20



Syndrome Author Description Outcome and results

disturbed bone growth and had
also positive efficacy to keep
growth rate

CHARGE syndrome Esposito A et al.
(2014), [45]

GHD diagnosis. GH treatment
was associated with a great
improvement in growth rate
and resulted in a final height
appropriate to his genetic target

Without any adverse event

Costello syndrome Blachowska E et al.
(2016), [46]

In cases of documented: GHD Only under close oncologic and
cardiologic supervision

Down syndrome Annerén G et al
(1999), [47]

To study the effects of GH on
linear growth and
psychomotor development

GH treatment ameliorates growth
velocity but not affects mental or
gross motor development

Annerén G et al.
(2000), [48]

15 young children with Down
syndrome treated with GH

Height SDS significantly ameliorates
in Down syndrome and growth
velocity declined after the stop of
the treatment

Meguri K et al.
(2013)*, [49]

Twenty subjects were
investigated in this study*

GH is not recommended in children
with Down syndrome who have not
been diagnosed with GHD. GH
therapy was effective for Down
syndrome short stature
accompanied by GHD*

Dubowitz syndrome Hirano T et al. (1996),
[50]

A child with Dubowitz
syndrome, who was found to
have complete GHD

He responded to GH therapy

Ellis‐van Creveld
syndrome (EvC)

Versteegh FG et al.
(2007), [51]

Four were GHD and four were
GH sufficient

In all patients treated with GH, first
year growth velocity increased. In
three of the four GHD and in one
GH-sufficient patient a gain in
height SDS was noted

Floating‐
Harbor syndrome (FHS)

García RJ (2012), [52] GH treatment led to an
increase in serum IGF‐1 in the
upper normal range,

The growth response was modest

Hypochondroplasia
(HCH)

Tanaka N et al.
(2003), [53]

Comparison with ACH Short‐term GH treatment in HCH is
effective to increase growth rate

IMAGe Pedreira CC et al.
(2004), [54]

A patient with isolated GHD

Kearns‐Sayre
syndrome

Berio A et al. (2013)
[55]

A case with partial GHD
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Syndrome Author Description Outcome and results

Mandibuloacral
dysplasia

Agarwal AK et al.
(2008), [56]

GH therapy from the ages of 3–
7 years

Did not improve the short stature

Meier‐Gorlin
syndrome

de Munnik SA et al.
(2012), [57]

GH therapy (n = 9) was generally
ineffective, though in two patients
with significantly reduced IGF1
levels, growth was substantially
improved by GH treatment, with
2SD and 3.8 SD improvement in
height

Monosomy 18p Schober E et al.(1995),
[58]

Excellent response to GH‐treatment

Netherton Aydın BK (2014), [59] Three patients with NS who
had growth retardation
associated with GHD

Responded well to GH therapy

Osteogenesis imperfecta Antoniazzi et al. [60] 30 prepubertal children with
OI (type I, IV, and III) being
treated with neridronate and
GH

The combined rGH‐Bp treatment
may give better results than Bp
treatment alone, in terms of BMD,
lumbar spine projected area and
growth velocity, particularly in
patients with quantitative defects

PHACE Merheb M et al.
(2010), [61]

Improved her growth rate Good clinical outcome

Prader‐Willi syndrome Bakker NEJ (2015),
[62]
Deal CL et al. (2013)*,
[63]

A randomized controlled trial
and longitudinal study
A systematic review*

Beneficial effect of GH treatment on
health‐related quality of life in
children with Prader‐Willi
syndrome
Exclusion criteria should include
severe obesity, uncontrolled
diabetes mellitus, untreated severe
obstructive sleep apnea, active
cancer, or psychosis*

Pycnodysostosis Karamizadeh Z et al.
(2014), [64]

8 children. All of the patients
had GHD

Positive impact on the linear growth

RASopathies Tamburrino F et al.
(2015), [65]

Starting early during
childhood, resulted in a
positive
height response compared
with untreated patients

No significant change in bone age
velocity, body proportions, or
cardiovascular function was
observed

Ring chromosome 15 Nuutinen M wt al.
(1995), [66]

severe growth retardation is a
major finding

The good growth response
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Syndrome Author Description Outcome and results

Ring chromosome 18 Thomas JV et al.
(2006), [67]

 GHD was made due to
low GH levels

The hGH therapy did not improve
growth velocity

SHOX deficiency
Leri‐Weill
dyschondrosteosis, and
Langer mesomelic
dysplasia

Blum WF, (2013), [68]
Lughetti L et al.
(2010), [69]

Similar long‐term efficacy as seen in
girls with TS

Silver‐Russell syndrome Binder G (2013), [70] GH improved adult height in SRS to
a comparable degree

Smith‐Magenis syndrome Itoh M et al. (2004),
[71]
Spadoni E et al.
(2004)*, [72]

GHD could be involved
in sleep disturbance in SMS.
GH deficiency*

After starting replacement therapy,
growth has significantly improved

Three‐M syndrome Meazza C (2013), [73] Early start of therapy Good compliance

Trichorhinophalangeal
syndrome

Marques JS et al.
(2015), [74]
Riedl S et al. (2004),
[75]

If the growth velocity
below the normal range
expected
for their age and sex

Increase of growth velocity*

Turner syndrome Tai S et al. (2013), [76]
Ranke MB (2015), [77]

GH treatment in Japanese
children with GHD or TS
resulted in increased growth
over a 4‐year treatment period
with a favourable safety profile.

The improvements in growth
declined with time

Wolf‐Hirschhorn 
syndrome

Titomanlio L et al.
(2004), [78]

A partial GHD GH therapy should be further
considered in WHS patients

Table 3. Effects of r‐hGH in some genetic syndromes and disorders.

While researchers make progress in understanding the molecular mechanisms behind these
disorders and identify possible therapeutic interventions in patients with skeletal dysplasia,
it remains to be identified which treatments may allow a better improvement in stature. For
example, for those with achondroplasia and related disorders, fibroblast growth factor
receptor 3 (FGFR3) has been identified as a critical regulator of endochondral bone growth,
and in these patients mutations in the coding sequence of the FGFR3 gene have been identified
[36, 37]. In these patients, several approaches to reduce FGFR3 signalling by blocking receptor
activation or inhibiting downstream signals have been proposed, some promising in preclin‐
ical animal models and other in humans [38]. In this regard, more data are available on the
GH‐IGF‐1 axis in patients with skeletal dysplasias and genetic syndrome and GH treatment
(Table 3). So, in this section of the chapter, we try to critically evaluate the data available on
the endocrine characteristics and response to GH treatment of these patients, considering the
great diversity of the studies performed as well as length of observation, the sample size and
GH dosage used (Table 3).
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8.1. Achondroplasia

ACH is characterized by short‐limbed dwarfism, macrocephaly with a prominent forehead
and midface hypoplasia. In ACH adult, height may be 118–145 cm for men and 112–136 cm
for women [79], causing considerable inconvenience in daily life and places considerable
psychological problems on patients and their families [41]. In these patients, pathogenesis
involves a defective endochondral ossification while periosteal and membranous ossification
are normal [80].

Many data are available about the endocrine features of ACH patients. For example, Yamate
et al. [81], studying 22 patients with ACH (7 males and 15 females: age range 3–12 years),
reported that at study entry, the z‐score of their height was −5.4 ± 1.2 SD, and that of their annual
height gain before admission was −3.1 ± 1.3 SD. In these patients, GH response to provocative
tests was normal in more than 75%: in the patients with blunted GH secretion, 80% showed
subnormal response to L‐Dopa stimuli, and 20% to GHRH stimuli. A 14% of patients showed
a low mean GH concentration during sleep, presenting also a markedly low IGF‐1 level and
marked delay of bone age [81]. However, these data were confirmed by a very large study
involving 42 patients with ACH, in which it was shown that some patients presented a blunted
response on different GH provocation tests, whereas other patients showed a combination of
a blunted response on one provocation test and low GH concentration during sleep [41]. These
authors confirmed also that some of patients showed significantly lower serum IGF‐1 levels,
confirming the hypothesis that a subnormal GH secretion may be discovered, even if very
rarely these patients exhibited severe blunted responses (with peak GH value <5 ng/ml) to
more than one type of provocation test [41].

On the contrary, data suggest that ACH children showed normal thyroid function, TSH
response to TRH stimulus, as well as cortisol response to insulin‐induced hypoglycaemia. In
these patients, the LH and FSH responses to LHRH stimulus were also commonly appropriate
to Tanner stage [41, 81].

In ACH patients, data are available about the treatment with r‐hGH, even if with controversial
results [41, 81–84]. Data about trials have shown a variable response to treatment, even if the
limited number of patients and the variability in the pubertal stage of the enrolled subjects
make it very difficult to draw any final conclusions on the role of GH therapy. Yamate et al. [81]
have reported a significant increase of growth velocity compared to that before GH therapy
(7.2 ± 1.4 cm/year vs. 4.1 ± 0.8 cm/year) in 18 prepubertal and pubertal ACH patients after 6
months or 1 year of GH therapy at 1 IU/kg/week. However, a 6‐month therapeutical trial carried
out in six patients with ACH have showed that the response may to be related on pretreatment
growth velocity [84], with a greater increment of growth velocity in the patients with a lower
growth rate before therapy. The authors hypothesized that the variation in response to GH
therapy could be related to the different ages and pubertal stages of the enrolled children
[84].

In a large study involving 42 ACH patients, Tanaka et al. showed that this significative increase
of height velocity during the first year of GH treatment was reduced during the second and
third years of GH therapy, although the velocity was still significant than before therapy.
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However, the responses to GH treatment after the second year were not uniform. In these
patients, the ratios of arm span to height and sitting height to overall height were not signifi-
cantly increased during GH therapy, as well as there was no significant difference in mean
height velocity at the end of each year between the patients with normal or subnormal GH
secretion, and between the patients treated with 0.5 IU/kg per week and those treated with 1.0
IU/kg per week GH [41]. During the treatment, the authors did not show significant changes
in thyroid function tests or routine laboratory data or in spinal cord compression or narrowing
of the foramen magnum [41]. However, Hertel et al. [85] confirmed that, during r‐hGH
treatment, the mean growth velocity increased significantly during the first year, reducing on
the contrary below the baseline values during the third year of treatment [85]. The authors
confirmed also that body proportion (sitting height/total height) or arm span did not show any
significant change [85]. Besides, Weber et al. showed that short‐term growth velocity increase
in some but not all ACH prepubertal children, confirming the individual variability in the
response to GH treatment [86]. In these patients, oral glucose tolerance test at the beginning
and at the end of the therapy were in the normal range [86].

Therefore, the available data suggested that r‐hGH may be useful in some patients with ACH
in increasing the height and growth velocity. Waiting for new, more effective and specific
treatments in patients with ACH, r‐hGH treatment may be beneficial in the treatment of short
stature in achondroplasia. About this, it will be helpful to the activation trials evaluating the
response to different doses or also evaluate the combination of different, both medical and
non‐medical treatments.

8.2. Hypochondroplasia

Hypochondroplasia (HCH), a heterogeneous and usually mild form of chondrodystrophy, is
a common cause of short stature. It often goes unrecognized in childhood and is diagnosed in
adult life when disproportionate short stature becomes obvious [87]. Children with severe
short stature and disproportion of the body segments usually have the mutation Asn540Lys
[87].

The available data seem to demonstrate that patients with HCH respond to r‐hGH treatment
with an increase in spinal length and, coupled with a surgical leg‐lengthening procedure, it is
possible for some patients to achieve adult heights within the normal range [87]. However, GH
therapy may restore the impairment of growth rate at puberty (Figure 12).

In fact, height SDS and height velocity SDS significantly improved during three‐year treatment
as compared with that before treatment and the improvement was much greater in HCH than
in ACH [53].

Pinto et al. [88] showed that the over three‐year treatment with r‐hGH of 19 HCH children (11
with confirmed FGFR3 mutations) showed an increase of height of 1.32 ± −1.05 SDS compared
to untreated HCH individuals. However, Rothenbuhler et al. [89], evaluated HCH young
children with confirmed FGFR3 mutation treated with r‐hGH over a six‐year period. Their
mean height SDS increased by 1.9 SDS, and trunk/leg disproportion was improved.
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These results were confirmed by a meta‐analysis involving 113 HCH children, administrated
with median 0.25 mg/kg/week of r‐hGH. In these patients, the therapy progressively improved
the height and growth velocity with 12 months catch‐up growth, and this improvement
resulted constant until 36 months, even if the stature remained subnormal. While bone age
chronologically progressed, no serious adverse events were reported [90].

Interestingly, using criteria based on the radiographic findings of decreased interpediculate
distance between L1 and L5, Mullis et al. [91] identified two restriction fragment length
polymorphisms (RFLP) within introns of IGF‐1 (12q23) with a positive LOD score of 3.31 in
some families with hypochondroplasia. The HCH children whose response to r‐hGH treatment
were characterized by a proportionate increase in both spinal and subischial leg length were
all heterozygous for two co‐inherited IGF-I gene RFLP alleles, indicating that IGF-I gene may
be a candidate for explaining the variability in the response to r‐hGH treatment [91].

In conclusion, patients with HCH seem to show a significative response to r‐hGH therapy with
an increase in spinal length and stature, and reduced the impaired growth spurt during
puberty. It is important, therefore, to monitor all patients during childhood and give r‐hGH
treatment to those patients who fail to develop a growth spurt at puberty or showing a severe
short stature.

Figure 12. Effect of r‐hGH therapy (the beginning is specified with the black arrow) in a female patient with a severe
form of hypochondroplasia. The patients showed reduced IGF‐1 and a blunted response after GH tests. You may no‐
tice the significant improvement of their stature in the short and medium term. Pubertal development onset was deter‐
mined at the time of the last survey reported. X axis corresponds to the age of the patients expressed in years.
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8.3. Type 1 trichorhinophalangeal syndrome

Type 1 trichorhinophalangeal syndrome (TRPS1), first described by Klingmuller in 1956 and
then named by Giedion in 1966, is a rare genetic condition characterized by typical craniofacial
and skeletal abnormalities with short stature [92]. The patients showed commonly sparse scalp
hair and lateral eyebrows, bulbous tip of the nose, long flat philtrum, thin upper vermilion
border and protruding ears. Skeletal abnormalities may include cone shaped epiphyses at the
phalanges, hip dysplasia and short stature [92].

In TRPS1, some patients with GH deficiency have been described. Marques et al. [74] reported
a 10‐year‐old girl with two heterozygous nonsense TRPS1 mutations with significantly
reduced growth velocity and delayed bone age. The patient shows no response to the GH
stimulation tests, thus disclosed a GH deficiency, nevertheless, after r‐hGH treatment catch‐
up growth occurred. However, Naselli et al. [93] and Sohn et al. [94] reported four unrelated
patients with TRPS1 with diagnosis of GH deficiency failuring response to r‐hGH treatment,
whereas Stagi et al. [95] and Sarafoglou et al. [96] reported that GH treatment was effective in
improving height velocity in 4 TRPS1 patients. Finally, Merjaneh et al. [97] report a TRPS1 a
family with a novel nonsense mutation in the TRPS1 gene. In this family, the eldest sibling had
a normal GH‐IGF‐1 axis, and bone mineral density (BMD), but he accelerated his linear growth
velocity over 2 years of r‐hGH (0.28 mg/kg/week) increasing the height SDS score from −2.4 to
−1.4. Bone age advanced by 2.5 years during 2 years of r‐hGH treatment. He remained
prepubertal during treatment.

The mechanism by which GH therapy could accelerate linear growth in TRPS1 is unknown.
It is interesting to note that in a cell culture model mimicking TRPS1 mutations, IGF‐1

Figure 13. Effect of r‐hGH therapy (the beginning is specified with the black arrow) in a female patients with type 1
Trichorhinophalangeal syndrome without GH deficiency. X axis corresponds to the age of the patients expressed in
years.
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expression was reduced by blockade of TRPS1 expression. This may suggest that the increase
of IGF‐1 concentrations, resulting from GH therapy, may have more effect in the growth plates
of TRPS1 patients (Figure 13).

On the contrary, only few cases of GHD were diagnosed: a 9‐year‐old boy and a 10‐year‐old
girl with TRPS2 [75, 98]. The male patient had also a TSH deficiency [99].Treatment with r‐
hGH was effective in both patients although their growth remained restricted. In conclusion,
these data suggest performing GH stimulation tests in patients with TRPS1 or TRPS2 exhibiting
a significantly reduced growth velocity and short stature. If the result is subnormal, then GH
therapy should be prescribed.

8.4. Cartilage-hair hypoplasia

Cartilage‐hair hypoplasia (CHH) is an autosomal recessive metaphyseal chondrodysplasia
characterized by severe short‐limb short stature and hypoplastic hair. The responsible gene
for CHH has been identified to be ribonuclease of mitochondrial RNA-processing (RMRP) gene
[99].

Bocca et al. [100] evaluated the effects of r‐hGH on growth parameters and immune system in
four children with CHH. The effects of treatment are more evident in patients with more severe
growth retardation. However, the effects are temporary without gain in final height. However,
serum immunoglobulins did not change during r‐hGH treatment. On the contrary, Harada et
al. [44] suggested that r‐hGH treatment significantly improved the bone growth and height in
CHH patients, suggesting that GH may be considered an efficient treatment for CHH.
However, Obara‐Moszynska et al. [101] describe another case of CHH, a girl, treated with r‐
hGH with a significant effect on the height gain, with an improvement from −4. to −2.98 SDS
after 4 years 7 months of treatment.

In conclusion, the poor data available suggest a possible role of r‐hGH in treating the severe
short stature in CHH patients. However, IGF‐1 and IGFBP‐3 concentrations should be closely
monitored during treatment, particularly because of the increased cancer risk in CHH.

8.5. Turner syndrome and short stature homeobox-containing (SHOX) gene deficiency

SHOX is the abbreviated designation for the Short stature Homeobox-containing gene and is
localized in the pseudoautosomal region of both X and Y chromosomes [102]. SHOX is one of
many genes that regulate longitudinal growth and SHOX deficiency, due to intragenic or
regulatory region defects, cause a phenotype ranging from normal stature to mesomelic
skeletal dysplasia [103].

In fact, many data showed that SHOX haploinsufficiency may be a cause of idiopathic short
stature (ISS; OMIM# 604271) and the short stature of Turner syndrome (TS) patients, or Léri‐
Weill dyschondrosteosis (LWD; OMIM #127300), while homozygous loss of the SHOX gene
has been related to Langer type mesomelic dysplasia (OMIM; 249700) [102].

Since discovery of SHOX gene in 1997, r‐hGH treatment was potentially reported for growth
promotion in these patients [104]. Because of SHOX deficiency represent the main cause of
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short stature in TS and the r‐hGH acts as an efficient and safe treatment, the same therapy in
short children with SHOX mutation at the same dosage of TS displayed an excellent growth
spurt, suggesting that growth‐promoting therapy with rhGH was effective with regard to
height gain in short stature due to SHOX deletions [104]. In another 2‐year prospective open‐
label randomized study involving two cohorts of SHOX-deficient patients and a cohort of TS
patients, the untreated cohort grew with a normal height velocity and unchanged height SDS,
whereas the r‐hGH‐treated cohort grew faster and as fast as the girls with TS [105]. However,
retrospective data showed also that final heights in patients with SHOX deficiency treated for
more than 2 years, even if with low r‐hGH dose, presented an overall gain in height of 7 cm,
not different from the mean gain in height in treated TS girls [106].

In conclusion, the growth‐promoting effect of GH therapy, which has been approved for
growth promotion in individuals with SHOX mutations by FDA and EMEA, seems to be
equal to the effect reached in TS. In many patients with SHOX deficiency, an impaired GH
secretion is not uncommon. r‐hGH therapy is effective in increasing height in most of these
patients independent of their GH secretory status, without causing any adverse events of
concern.

8.6. Osteogenesis imperfecta

Osteogenesis imperfecta (OI or brittle bone disease) is a clinically and genetically heteroge‐
neous group of heritable disorders of connective tissue [107]. The hallmark feature of OI is
represented by bone fragility with susceptibility to fracture from minimal trauma. As a
consequence, these patients showed bone deformity and growth deficiency [107]. However,
OI patients may show other phenotypic features, as macrocephaly, blue sclerae, dentino‐
genesis imperfecta, hearing loss, neurological defects and cardiopulmonary complications
[108].

In these patients, genetic counselling and study are essential components of complete care for
individuals with OI, as are nonsurgical (e.g. rehabilitation, bracing and splinting), surgical and
pharmacological (bisphosphonates or r‐hGH) management [108].

In general, many data suggest that r‐hGH may have a positive effect on bone growth and bone
turnover by stimulating osteoblasts, collagen synthesis and longitudinal bone growth [109];
however, in the first 6 months of r‐hGH therapy in GH deficiency (GHD) patients, bone
resorption is usually greater than bone formation, and there are more resorption markers [110].
Besides these actions on bone GH may show a positive action on collagen metabolism [111,
112], stimulating the IGF‐1 and IGFBP‐3 expression, which in turn regulates the synthesis of
type I collagen [113, 114].

Besides this aspect, there is scarce data about r‐hGH treatment in OI patients [115–118].
Nevertheless, in one of the first attempts to treat OI patients with r‐hGH, the treated patients
showed, using a bone histomorphometry study, an increase in periosteal new bone formation
and intracortical bone resorption, with enhanced osteoblastic activity [119]. However, the
study of GH‐somatomedin axis activity in OI showed that IGF‐1 serum levels are frequently
in the low normal range in the most part of these patients [120, 121]. In fact, Marini et al. [115]
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found a hypoactivity of this axis (without a true GH deficit) in near the half of OI patients,
treating them with r‐hGH or clonidine. However, some data suggest that the type IV OI
children would benefit from r‐hGH treatment in terms of linear growth, bone matrix synthesis
and bone histomorphometric parameters [122].

In a mouse model of OI, r‐hGH injections [117] increased spine and femur length, produced
significant changes in densitometry parameters and ameliorated the biomechanical structural
properties of bone. Accordingly, similar results are obtained in human, since r‐hGH treatment
seems to cause a positive effect on height growth and increase in skeletal volume and BMD,
with a possible subsequent reduction in fracture. However, the combined treatment with r‐
hGH and neridronate positively increases BMD at the lumbar spine and wrist and significantly
increases the rate of linear growth velocity, with no BA advancement; and no influence in the
peripheral fracture rate [60].

8.7. Ellis-van Creveld syndrome

Ellis‐van Creveld syndrome (EvC; OMIM # 225500) is a skeletal dysplasia first described in
1940 by Ellis and van Creveld [123]. EvC is characterized by ectodermal dysplasia affecting
mainly the teeth and nails, chondrodysplasia of the long bones, postaxial polydactyly and
congenital heart anomalies. In fact, 60% of affected individuals have a congenital cardiac
defect, most commonly an atrial septum defect [124]. The entity was mapped at chromosome
region 4p16 [125, 126] and subsequently the EVC gene was cloned [127]. A second gene
(EVC2) located in the same chromosomal region was found to harbour mutations in some
EvC patients [128].

In this syndrome, data on growth patterns are limited, but in general growth is markedly
impaired [51]. Growth in EvC is known to be impaired with an estimated deviation of −2.0 to
−4.5 from standard growth [51]. In most reports, only one measurement of the patient is
mentioned, and few follow‐up data are published. In this syndrome, the GHD and the results
of GH treatment were rarely reported [129].

For example, Versteegh et al. described two subjects with EvC syndrome and GHD. In the first,
a mutation in the EVC2 gene was reported. Target height was 0.28 SDS. At age 4, a decline in
growth velocity was observed, and GH provocation tests disclosed a GHD. r‐hGH treatment
started at 2 IU/m2 resulted in improved growth velocity. Skeletal age is approximately 1 year
behind at the start of r‐hGH treatment, at 11 years of age exceeded the chronological age by
approximately 2 years. During therapeutic GH regimens for 11 years, patient’s height
increased from SDS −3.3 to −1.8. In the second patients, no mutation was detected. Target height
was 0.71 SDS. GHD was ruled out by an arginine stimulation test, even if, because of a severe
decline in growth velocity, treatment with e‐hGH was started. During 7 months of therapy,
patient’s height increased from −6.0 to −5.6 SDS. Versteegh et al. [51] reported also that the
evaluation of the Pharmacia Growth DataBase KIGS permits to gather data on growth and GH
treatment in six other EvC patients. Four patients were diagnosed as GHD. All patients except
one were treated with GH according to standard protocols. A gain in height SDS was seen in
three of the four GHD patients. One GHD patient did not show an increased height SDS. Of
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the GH-sufficient, one showed a gain in height SDS. In conclusion, the available data suggest
that GHD can play a role in the retarded growth in at least some EvC patients.

9. General conclusions

Skeletal dysplasias are a wild and complex group of diseases due to several pathogenetic
mechanisms. Up to date, even because of their rarity, available knowledge is not so large and
most of this is about a very restricted number of dysplasias. Particularly, the specific aspect of
the linear growth in these patients has been analysed in a very small number of studies. No
specific therapy is available and supportive measures are the only helpful treatment. By the
way, data presented in literature allow us to evince that in some cases a pathological GH axis
can be associated to the dysplasia. So we suggest that in this patients could be useful to
investigate the function of GH axis and, if defective, to start a replacement therapy with r‐hGH.
Clearly, GH therapy is not a target treatment for any of these dysplasias and further studies
are necessary, but it could have a supportive role in the management of the auxoendocrino‐
logical growth in these disorders.
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