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Abstract

Background: Major alterations in linezolid pharmacokinetic/pharmacodynamic (PK/PD) parameters might be expected
in critically ill septic patients with acute kidney injury (AKI) who are undergoing continuous renal replacement therapy
(CRRT). The present review is aimed at describing extracorporeal removal of linezolid and the main PK-PD parameter
changes observed in critically ill septic patients with AKI, who are on CRRT.

Method: Citations published on PubMed up to January 2016 were systematically reviewed according to the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) statement. All authors assessed the methodological
quality of the studies and consensus was used to ensure studies met inclusion criteria. In-vivo studies in adult patients
with AKI treated with linezolid and on CRRT were considered eligible for the analysis only if operational settings of the
CRRT machine, membrane type, linezolid blood concentrations and main PK-PD parameters were all clearly reported.

Results: Among 68 potentially relevant articles, only 9 were considered eligible for the analysis. Across these, 53
treatments were identified among the 49 patients included (46 treated with high-flux and 3 with high cut-off
membranes). Continuous veno-venous hemofiltration (CVVH) was the most frequent treatment performed amongst
the studies. The extracorporeal clearance values of linezolid across the different modalities were 1.2–2.3 L/h for CVVH,
0.9–2.2 L/h for hemodiafiltration and 2.3 L/h for hemodialysis, and large variability in PK/PD parameters was reported.
The optimal area under the curve/minimum inhibitory concentration (AUC/MIC) ratio was reached for pathogens with
an MIC of 4 mg/L in one study only.

Conclusions: Wide variability in linezolid PK/PD parameters has been observed across critically ill septic patients with
AKI treated with CRRT. Particular attention should be paid to linezolid therapy in order to avoid antibiotic failure in
these patients. Strategies to improve the effectiveness of this antimicrobial therapy (such as routine use of target drug
monitoring, increased posology or extended infusion) should be carefully evaluated, both in clinical and research
settings.
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Background
Sepsis is frequently observed in the intensive care unit
(ICU), and it is one of the major causes of death among
critically ill patients [1–4]. Infections in the ICU are fre-
quently driven by multidrug-resistant strains [5], those
sustained by Gram-positive bacteria such as methicillin-
resistant Staphylococcus aureus or vancomycin-resistant
Enterococci being the most frequently observed [2, 6, 7].
Linezolid has been shown to be efficacious against these
micro-organisms and, therefore it is frequently used in
ICU patients [7, 8].
The volume of distribution (Vd) of this low molecular

weight (337 Da) oxazolidinone is 0.5–0.6 L/kg in adult
patients [9]; plasma elimination half-life (t1/2) ranges
from 3.1 to 4.9 h, and clearance is 6.4 to 14.8 L/h [10].
Linezolid is metabolized by the liver to inactive metabo-
lites excreted with the parent substance by the kidneys
[11, 12]. The parameters that best describe the antibiotic
activity of linezolid are the time during which the
plasma concentration exceeds the minimum inhibitory
concentration (MIC) for the specific pathogen (T >
MIC), and the area under the plasma concentration time
curve over MIC ratio (AUC0–24/MIC) [13]. A T >MIC
of ≥85 and an AUC0–24/MIC >100 are required to exert
maximal antimicrobial efficacy, and are associated with
better clinical outcome in severely ill patients [13].
It is generally assumed that the recommended linezo-

lid dose of 600 mg every 12 h provides adequate plasma
exposure to the antibiotic, and for this reason, along
with the safety profile of the molecule, therapeutic drug
monitoring (TDM) is deemed unnecessary [14, 15].
However, wide variability in serum antibiotic concentra-
tions has been reported among critically ill patients [2, 16],
the concentrations below the therapeutic range being asso-
ciated with development of antibiotic resistance and failure
of antimicrobial therapy [17], while concentrations above
this range may increase the risk of adverse reactions [18].
Possible drug-drug interactions may contribute to the
variability of linezolid serum concentrations. Organ dys-
function and changes in vascular permeability typically ob-
served among critically ill patients also explain the wide
variation in antibiotic serum concentrations reported in
the ICU [16, 19]. For example, patients with severe sepsis
or septic shock may frequently develop acute kidney injury
(AKI) [20], which may affect drug disposition through
changes in Vd, protein binding and total body clearance
[21, 22]. Nonetheless, it is generally assumed that minimal
pharmacokinetic/pharmacodynamic (PK/PD) alterations
might be expected for linezolid during septic AKI, as linez-
olid renal clearance normally accounts for <30% of total
clearance and its Vd is minimally affected during sepsis
due to the moderate lipophilic nature.
Continuous renal replacement therapy (CRRT), the

most widely used modality in patients with sepsis and

AKI [23] may further reduce antibiotic blood concentra-
tions by extracorporeal drug removal, increasing the risk
of antimicrobial therapy failure [24–26]. Thus, in order
to avoid suboptimal exposure, antibiotic therapy may
frequently require dose adjustment during CRRT [24].
In patients on antibiotic treatment and CRRT, both

specific antibiotic-related and CRRT-related characteris-
tics are involved in extracorporeal drug removal [27]. In
the specific case of linezolid, it seems likely that the mol-
ecule is efficiently removed by CRRT. As a matter of
fact, the molecular weight is 337 Da, 10-fold to 100-fold
lower than the cutoff of the “high-flux” or “high cut-off”
(HCO) membranes generally used in the ICU, the free
fraction of the drug is about 70%, and the Vd is relatively
low (0.5–0.6 L/Kg) [13]. Moreover, albumin-bound li-
nezolid can also be removed by HCO membranes (cut-
off 60 KDa) [28]. As far as the operational characteristics
of CRRT are considered, the elimination of linezolid
might be remarkable during both diffusion (due to the
low molecular weight) and convection (owing to the
characteristics of the most recent high-permeability
membranes). Although the non-hydrophilic nature, the
transmembrane removal of linezolid during CRRT is dir-
ectly related to the effluent dose. An effluent dose of
25 ml/Kg/h is nowadays recommended for critically ill
patients with AKI, although higher doses may be pre-
scribed for patients with sepsis and AKI (such as during
high-volume hemofiltration), potentially leading to an
increased removal of antibiotic. Furthermore, because
most of the membranes used in the ICU have selective
or unselective adsorption properties, small non-
hydrophilic molecules such as linezolid may be easily
bound and adsorbed from the circulation proportionally
to serum concentration.
Thus, both antibiotic-related and CRRT-related char-

acteristics may concomitantly and significantly affect the
extracorporeal clearance of linezolid. As a consequence,
relevant derangements of serum antibiotic levels are not
unexpected in critically ill patients with sepsis and AKI
who are undergoing CRRT, and failure to achieve ad-
equate PK-PD targets may lead to ineffective pathogen
eradication or increased risk of adverse effects [29].
Thus, this systematic review is aimed at (1) evaluating

the effects of CRRT on linezolid removal, with special
regard to the different modalities used in the ICU, and
(2) describing and discussing the possible CCRT-related
factors interfering with achievement of adequate PK-PD
targets in critically ill patients with sepsis and AKI.

Methods
A systematic review was conducted in Pubmed, Embase,
Scopus and Web of Science, according to the preferred
reporting items for systematic reviews and meta-analyses
(PRISMA) statement [30] to describe the main PK-PD
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parameters observed among critically ill patients with
sepsis and AKI who were treated with linezolid and were
on CRRT.
The search strategy for the literature selection used

was: Linezolid AND (dialysis OR hemofiltration OR
hemodiafiltration OR CVVH OR CVVHD OR CVVHDF
OR “high cut-off” OR HCO-CVVHD OR “high volume
hemofiltration” OR hemadsorption OR adsorption OR
AN69 OR AN69ST OR toraymyxin OR cytosorb OR
oxiris OR polyacrylonitrile OR polymethylmetacrylate
OR polysulfone) AND (PK OR PD OR pharmacokinetic
OR pharmacodynamic). The search included citations
published up to January 2016; no filter was set on publi-
cation dates and language. Studies were eligible for re-
view if they met the following inclusion criteria: (1)
included every in-vivo prospective or retrospective study
on adult patients with AKI treated with linezolid and
CRRT; (2) the flows set in the CRRT machine and the
membrane used were clearly indicated; (3) linezolid
blood concentrations and main PK-PD parameters were
clearly expressed. Studies were excluded if: (1) partici-
pants were aged ≤18 years; (2) in-vitro data only were
analyzed; (3) intermittent hemodialysis, sustained low-
efficiency dialysis or peritoneal dialysis was used.

Results
The study selection chart is shown in Fig. 1. The literature
search identified 193 potentially relevant articles, which
were collected and checked against the eligibility criteria.
Only 10 studies met the inclusion criteria and are summa-
rized in Table 1. All studies were based on prospective
data, and the papers comprised one congress presentation
[31], five small case-series/case reports [9, 24, 32–34],

three reports of observational studies [2, 26, 35] and only
one report of a randomized clinical trial [36].
Sixty-seven CRRT treatments were identified across

the 10 selected studies; amongst these, 60 were treated
with high-flux membranes and 3 with HCO membranes.
Continuous veno-venous hemofiltration (CVVH) was
the most frequent modality used (28 post-dilution, 4
pre-dilution over 67 treatments 47.8%), with prescribed
effluent doses of 30–35 ml/kg/h. On the other hand, 29
treatments over 67 (43.3%) were performed with the
continuous veno-venous hemodiafiltration (CVVHDF)
modality, and the remaining 6 with continuous veno-
venous hemodialysis (CVVHD) (6/67 patients, 8.9%),
with a prescribed effluent dose of 30 ml/kg/h for
CVVHD and 27.7–41.2 ml/kg/h for CVVHDF. Data
from Mauro et al. [34] were excluded because effluent
dose values were considered too low [11.2 ml/kg/h]. All
but two studies provided information on extracorporeal
linezolid removal achieved during CRRT (see Table 1).

Discussion
Linezolid is a moderately lipophilic drug with limited
renal clearance of around 30%. Accordingly, the influ-
ence of CRRT in its clearance might be expected to be
only moderate. However, wide variability in PK parame-
ters has been reported for linezolid in critically ill pa-
tients with sepsis [2, 37], especially when AKI coexists
and RRT is needed [36]. This systematic review de-
scribes the parameters of extracorporeal removal of li-
nezolid in the course of different modalities of CRRT,
and of derangements in PK parameters in critically ill
patients with sepsis and AKI, who are on CRRT.

Fig. 1 Study selection process. PK-PD pharmacokinetics/pharmacodynamics, SLED sustained low efficient dialysis
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Table 1 Data on extracorporeal removal and PK/PD parameters obtained from literature analysis
2016; Roger et al. 2005; Meyer et al. 2005; Meyer et al. 2004; Fiaccadori et al. 2004; Pea et al. 2016. Roger et al.

Prospective RCT Prospective
observational study

Prospective
observational study

Prospective
observational study

Prospective
observational
case report

Prospective RCT

Treatment parameters Number of procedures 8 7 13 2 2 9

Treatment CVVH-post CVVH-post CVVH-post CVVH-pre CVVH-pre CVVHDF-post

Membrane HF HF HF HF HF HF

PS PS PS PAN PS PS

1.2 m2 1.2 m2 0.9 m2 1.65 m2 1.25 m2 1.2 m2

Qb (ml/min) 200 (185–245) 189 ± 15 185 ± 15 150 125 (120–130) 200 (165–200)

Qd (L/h) 1.14a

Qf (L/h) 1.67a 2.5 ± 0.6 2.3 ± 0.4 2.25 (2–2.5) 2 (2–2) 1.22a

QfNET (ml/h) 0–200 115 (80–150) 0–200

UFNET (L) 3.6 (0.2–4.3) 1.1 (0.4–1.6)

BW 76 (55–92) 90 ± 22a 83 ± 15a 64 (57–72) 64.5 (54–75) 76 (55–92)

Prescribed dose (ml/kg/h) 30 35 (35–35) 33.6 (29–39) 30

Effective time of treatment (min) 715 (697–751) 675 (630–720) 745 (645–733)

APACHE II 30 ± 5 (24–40) 26 ± 8 (7–32) 27 (27–27)

SOFA at RRT initiation 12 (10–16) 13 (6–17)

Parameters of CRRT removal SA/SC (%) 77 ± 10 (62–86) 69 ± 10 (53–91) 59 (56–61) 84 (76–92)

Qef (L/h) 1.98a 2.5 ± 0.6 (1.5–3) 2.3 ± 0.4 (1.5–3) 2.1 (2.1–2.2) 2.4a

Qef (ml/kg/h) 26a 27.8a (16.3–40) 27.7a (15–37.5) 32.2a

XCRRT (mg) 89.9 (75–105) 237 (160–314)

CLCRRT (L/h) 2.3 ± 0.9 (1.3–4.3) 1.6 ± 0.5 (0.9–2.7) 1.2 (1.2–1.3) 1.4 (1-2–1.6)
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Table 1 Data on extracorporeal removal and PK/PD parameters obtained from literature analysis (Continued)

PK and PD parameters Cmax (mg/L) ~19b 12.4 ± 2.3 (7.6–10.5) 16.9 ± 3.8 (11.4–21.9) 19.93 (15.9–23.9) 28.67 (17.1–40.3) ~18b

Cmin (mg/L) ~6b 1.7 ± 1.2 (0.3–3.7) 2 ± 1.9 (0.3 − 8) 14.1 (6.5–21.7) ~4b

T1/2 (h) 4.6 ± 1.6 (2.4–7.1) 4.1 ± 1.8 (2.1 − 8.4) 4.6 (2.6–6.5) 15.5 (12.5–-18.5)

AUC0-∞ (mg•h/L) 227.9 ± 115 67.6 (34–118) 85.7 (40–244) 444.6 (219–669) 227.9 ± 115

Vd (L) 26.5 ± 10.3 60.5 ± 8.6 (42.9–70.8) 46.3 ± 11.1 (29.9–70.7) 31.4 (25.2–37.6) 67.9 (91.5–44.3) 26.5 ± 10.3

CLtot (L/h) 4.5 10.4 ± 3.9 (5.1–17.6) 8.7 ± 3.0 (2.5–14.7) 3.6 (1.8–5.5) 5.9

CLCRRT/CLtot (%) 22.6a 18.7a 48.89 (28.7–69.1)

AUC0-∞/MIC 4 mg/L 33.8a 42.8a 111.1 (54–167)

AUC0-∞/MIC 2 mg/L 67.6a 85.7a 222.3 (109–334)

AUCfree/MIC 4 mg/L

AUCfree/MIC 2 mg/L

% T >MIC 4 mg/L 51 ± 19 (26–88) 61 ± 36 (31–164)

% T >MIC 2 mg/L 89 ± 32 (46–137) 96 ± 50 (48–234)
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Table 1 Data on extracorporeal removal and PK/PD parameters obtained from literature analysis (Continued)

2012 Carcelero et al. 2006; Mauro et al. 2014; Zoller et al. 2012; Ide et al. 2003; Kraft et al. 2015; Villa et al. 2014; Zoller et al.

Prospective
observational
case report

Prospective
observational
case report

Prospective
observational study

Abstract Prospective
observational
case report

Prospective
observational
case report

Prospective
observational study

Treatment parameters Number of procedures 2 1 2 14 1 3 3

Treatment CVVHDF-pre CVVHDF-pre CVVHDF-? CVVHDF-? CVVHDF-? CVVHD CVVHD

Membrane HF HF HF HF HF HCO PAES HF

PAN PAN PS PS PS PS

0.9 m2 1 m2 1.4 m2 ? 1.6 m2 1.1 m2 1.8 m2

Qb (ml/min) 165 (150–180) 200 130 (100–150) 79.3 ± 2.7 200 150 120 (80–150)

Qd (L/h) 1 (1–1) 1.2a 1.4 (1.2–1.5) 0.52 ± 0.31 2 3a (2.9–3.2) 1.6 (1–2)

Qf (L/h) 1.5 (1–2) 0.2 1.5 (1–2) 0.33 ± 0.15 0.75 -

QfNET (ml/h) 100 (50–150) 125 (50–200) 774 100 100 (50–200)

UFNET (L)

BW 67.5 (55–80) 125 100 86 (83–90)

Prescribed dose (ml/kg/h) 41.2a (27–56) 11.2 27.7a 30

Effective time of treatment (min) 3990 5000

APACHE II 27 (26–28) 31.5 (28–35) 25 (23–28)

SOFA at RRT initiation 15 (15–15) 14.3 (13–15)

Parameters of CRRT removal SA/SC (%) 78 (74–82) 0.86 ± 0.03 79 74 (66–80)

Qef (L/h) 2.6a (2.2–3.1) 1.4a 2.8 3a (2.9–3.2)

Qef (ml/kg/h) 30

XCRRT (mg) 218.9 (154–283) 50.1 197.6 (154–266)

CLCRRT (L/h) 2.1 (1.8–2.3) 0.9 2.2 2.3 (2.1–2.5)
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Table 1 Data on extracorporeal removal and PK/PD parameters obtained from literature analysis (Continued)

PK and PD parameters Cmax (mg/L) 18.85 (16.5 − 21.2) 15.3 16.4 17.13 (10.4–23.5)

Cmin (mg/L) 5.4 (5.2–5.6) 3.8 9.4 (4.2–14.5) 7.2 6.2 (2.9–10.3) 8.5 (3.7–18.7)

T1/2 (h) 6.2 (4.9–7.4) 8.78 ± 3.74 7.5 7.7 (6.1–10.1)

AUC0-∞ (mg•h/L) 263.5 (214–312) 105.8a 303.9 (165–442) 247.9 ± 107.8 208.2 (95–352) 283.1 (144–453)

Vd (L) 44 (29.2–58.8) 31 ± 3.8 49 48.9 (39.9–57.9)

CLtot (L/h) 4.5 (3.6–5.3) 11.3 294 ± 1.38 5.1 3.8 (1.7–6.3)

CLCRRT/CLtot (%) 48.9a (33.9–63.9) 7.9a 43.1 67.1 (39.6–100)

AUC0-∞/MIC 4 mg/L 65.9a (53–78) 26.5a 52.0 (23–88)

AUC0-∞/MIC 2 mg/L 131.8a (107–156) 52.9a 104.1 (47–176)

AUCfree/MIC 4 mg/L 35.9 (16–61)

AUCfree/MIC 2 mg/L 71.8 (33–122)

% T >MIC 4 mg/L

% T >MIC 2 mg/L
aCalculated from data presented in the original paper. bDerived from figures presented in the original paper. Qb blood flow, Qd dialysate flow, Qf replacement flow, QfNET net ultrafiltration flow, UFNET net ultrafiltrate,
BW body weight, APACHE II Acute Physiology and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, SA/SC saturation coefficient or sieving coefficient, Qeff effluent flow, XCRRT total amount of
drug eliminated by the extracorporeal treatment, CLCRRT extracorporeal clearance, Cmax antibiotic maximum serum concentration, Cmin antibiotic trough, T1/2 elimination half-life, AUC area under the curve, Vd volume
of distribution, CLtot total clearance
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Effect of dose and modality
Although data considered for this review are only derived
from studies of continuous treatments, wide variability in
treatment modalities and operational parameters (such as
blood, dialysate, replacement flows, etc.) was evident (see
Table 1). Despite the wide variability observed, as well as
treatment heterogeneity, extracorporeal clearance values
for linezolid were similar across the different modalities:
1.2–2.3 L/h for CVVH, 0.9–2.2 L/h for CVVHDF and
2.3 L/h for CVVHD.
Although diffusive techniques should theoretically be

characterized by higher extracorporeal clearance for low
molecular-weight molecules (like linezolid) when com-
pared with convective techniques, this effect was not ob-
served across the studies assessed. Indeed, a number of
factors might have influenced this finding, such as the
variability in the flow set of the extracorporeal circuit
and/or the specific geometrical characteristics of the
various membranes, and the lack of a direct comparison
of linezolid removal between the different techniques
(diffusive vs convective). In fact, only one study [36] dir-
ectly compared the PK linezolid parameters in CVVH
and CVVHDF. Particularly, this study compared linezo-
lid PK parameters in critically ill patients with sepsis and
AKI treated with CVVH or CVVHDF at the same pre-
scribed effluent dose (30 ml/kg/h) [36]. Unfortunately,
the authors reported few data specifically for patients on
CVVH or CVVHDF. Indeed, excluding the total drug
clearance, no other PK parameters were reported or for-
mally compared between the two groups. Furthermore,
when comparing the total body clearance, extracorporeal
clearance was not detailed (i.e. CVVH or CVVHDF
clearance). A 20% reduction in total linezolid clearance
(5.9 vs 4.5 L/h, p = 0.39) was observed in the group of
patients treated with CVVH as compared to CVVHDF,
making this finding in line with the concept of higher
extracorporeal clearance achievable for small molecules
through diffusive techniques. However, although a total ef-
fluent dose of 30 ml/kg/h was reported in the method sec-
tion for both groups of patients, the CVVH group was in
fact treated with a 20% lower total effective effluent dose
(Qeff) compared to the CVVHDF group (26 ml/kg/h vs
32.17 ml/kg/h) (See Table 1). As the extracorporeal clear-
ance is defined as the sieving coefficient (SC) (or satur-
ation coefficient, SA, for CVVHDF) multiplied by Qeff, it
is not surprising that the total linezolid clearance was 20%
lower in the CVVH group as compared to CVVHDF (See
Table 1). Therefore, in these conditions, it is not possible
to infer that removal by diffusive techniques is more effi-
cient than by convective techniques.

Effect of membrane characteristics
The analysis of the extracorporeal drug removal and PK
derangements due to CRRT should also take into account

the characteristics of the membrane used, in terms of sur-
face area, composition and pore diameter [38].
Higher extracorporeal clearance of linezolid has

been documented in patients treated with larger filters
(1.2 vs 0.9 m2) [35]. Particularly, although these two
groups of patients were treated with the same modal-
ity and treatment setting (CVVH in post-dilution, with
a blood flow of 185–189 ml/minute and effluent dose
of 27.7 ml/kg/h), extracorporeal clearance was higher
when the larger filter was used (2.34 L/h vs 1.63 L/h)
(see Table 1). Furthermore, membrane composition may
also influence drug removal by adsorption. As the most
common membranes used in the ICU, such as poly-
methylmethacrylate or polyacrylonitrile, also have un-
selective adsorption properties, further studies should take
this issue into consideration. In fact, although membrane
drug adsorption is commonly underrated, it is usually
rapid and not reversible, leading to a reduction of anti-
biotic concentrations [39]. For example, Kraft et al. [32]
and Carcelero et al. [24], using the same treatment modal-
ity (CVVHDF) and the same operational setting (effluent
flow 2.6–2.7 L/h), observed the same extracorporeal clear-
ance of linezolid (2.05–2.19 L/h), despite the former hav-
ing used a polysulfone membrane with a twofold surface
area (1.6 m2) compared to the acrylonitrile membrane
used by the latter (0.9 m2) (see Table 1). In this case, the
reduced transmembrane clearance obtained by the smaller
acrylonitrile surface might have been compensated by its
higher adsorption properties; as a consequence, the total
extracorporeal clearance was similar to that observed with
polysulfone membrane with by a broader surface area but
lower adsorption capacity.
In the case of linezolid, a molecule with quite a low ra-

dius as compared to the large cut-off of the hemodiafilters
commonly used in the ICU (high flux and/or HCO mem-
branes), pore size is likely to be scarcely relevant. For ex-
ample, Villa et al. observed a mean SA equal to 0.80 with
HCO membranes used in CVVHD [9]; this value was
similar to SA or SC reported in other studies in which pa-
tients with AKI were treated with hemodiafiltration or
hemofiltration with standard high-flux membranes. In
particular, Kraft et al. calculated SA values ranging from
0.77 to 0.81 during CVVHDF [32] and similar results were
reported by several authors for the SC obtained during
CVVH [24, 33–35]. The removal of linezolid calculated by
Villa et al. during HCO-CVVHD was similar to that re-
ported in the literature for high-flux membranes [9], even
though an increase in transmembrane linezolid loss
should be expected with HCO if convective clearance is
applied during the treatment (see aforementioned).

Effect of patients’ clinical characteristics
Apart from the key role of CRRT in determining PK
antibiotic changes, even the critically ill status may be
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playing a major role [19]. Indeed, increased drug clear-
ance was reported in patients with low SOFA scores
[36]. Commonly, in patients with sepsis and AKI, who
are undergoing CRRT and are on vasopressor support
(as in the study by Roger et al.) [36], lower SOFA scores
are mainly correlated with improved neurologic, respira-
tory and/or liver function. As 40% of the drug is usually
metabolized and inactivated by the liver, it is not surpris-
ing that lower SOFA scores were associated with higher
linezolid clearance.
The results were similar in our previous study per-

formed in patients with sepsis and AKI treated with
standard doses of linezolid and hemodialysis with HCO
membranes [9], in which impaired liver function was as-
sociated with decreased corporeal drug clearance. As the
total clearance (CLtot) is the sum of the extracorporeal
(CLHCO) and non CRRT clearance, a subsequent in-
creased ratio between extracorporeal and total linezolid
clearance (CLHCO/CLtot) was observed in critically ill pa-
tients with AKI and severe liver dysfunction. In these
conditions, the CLHCO/CLtot value is likely to be higher
than 30%, only apparently identifying a treatment in
which the extracorporeal clearance is critical for the
total drug removal, potentially affecting its PK/PD pa-
rameters [9, 40]. In these conditions, in line with Roger’s
results, the severity of the condition may influence the
drug disposition.

Results for PK/PD parameters
Cmax and Cmin values are highly variable among pa-
tients considered in this review, as they ranged from
12.4 to 28.6 mg/L and from 1.7 to 14 mg/L, respectively
(Table 1). Although Cmax values are similar or higher
than those reported in the literature for healthy sub-
jects, patients with renal impairment and ICU patients
[13, 16], the Cmin values were lower than those re-
ported for the same populations. Similarly, total clear-
ance and volume of distribution values observed in the
overall population were also highly variable (from 3.64
to 11.3 L/h and from 26.5 to 67.89 L, respectively)
(Table 1). Patients’ comorbidities and organ dysfunction
may significantly affect these parameters. For instance,
the large Vd calculated by Roger et al. in the CVVH
group might be explained by the likely greater fluid
overload observed in these patients with respect to the
CVVHDF group. Indeed, the net ultrafiltration fluid re-
moval set in the CVVH group was about four times
that in the CVVHDF group (net ultrafiltration 1100 vs
3620 ml respectively, see Table 1).
All these observations suggest that the clinical features

of critically ill patients with sepsis and AKI treated with
CRRT may play a key role in the achievement of appro-
priate PK/PD parameters for linezolid [36]. When con-
sidering pathogens with an MIC value of 2.0 mg/L for

linezolid, two of the reviewed studies reported AUC/
MIC ratios constantly below 85, and therefore not ad-
equate for a clinical cure. What is more, when consider-
ing pathogens with an MIC value of 4.0 mg/L, only one
study reported the optimal AUC/MIC ratio [15]. There-
fore, the failure to achieve the optimal PK/PD targets for
linezolid might increase the likelihood of emergence of
microbial resistance and consequent clinical failure [36].
Furthermore, increased dosing of linezolid in critically ill
patients with sepsis and AKI undergoing CRRT could
expose patients to adverse effects. Thrombocytopenia
has been reported as a frequent side effect of linezolid,
especially in patients with renal dysfunction, in patients
who develop heparin-induced thrombocytopenia (HIT)
during anticoagulation treatment for CRRT, and in pa-
tients whose blood is exposed to low compatibility
membranes.
Another partial explanation for our results may be re-

lated to linezolid drug-drug interactions. Drug-drug
interaction with linezolid has been reported by several
authors [14, 41–47] Rifampin can markedly decrease the
linezolid serum concentration (thus affecting the probabil-
ity of target attainment for clinical success). On the con-
trary, the majority of drugs interacting with linezolid, such
as P-glycoprotein and CYP isoform inhibitors (i.e. protein
pump inhibitors, calcium channel blockers, macrolides
and so on), increase linezolid serum levels and therefore
do not contribute to increased risk of clinical failure.
Unfortunately, no information on pharmacological treat-
ments is available for patients in the studies analyzed for
this systematic review.
In this context, if optimal linezolid PK/PD targets are

not achieved in patients with sepsis and AKI treated with
CRRT, clinical failure of antibiotic treatment is more
likely, especially in the case of infections sustained by mi-
croorganisms with higher MIC values (e.g. Enterococci).
Therefore, although conflicting opinions are reported on
the use of TDM for linezolid therapy monitoring in critic-
ally ill patients with sepsis, it is however, to be recom-
mended for these patients, especially if they develop AKI
and eventually CRRT is to be started [2].

Conclusions
Wide variability in linezolid PK/PD parameters has been
observed across critically ill patients with sepsis, especially
those with AKI treated with CRRT. The effects of the
extracorporeal treatment on antibiotic PK/PD target
achievement should be carefully considered and adapted
to the individual patient’s physio-pathological characteris-
tics. Similar to other serious conditions, a TDM could be
an effective method to ensure adequate antibiotic expos-
ure, especially in critically ill patients with sepsis and AKI,
who are on CRRT. If TDM is not routinely available,
increased posology of linezolid might be alternatively
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considered for these patients during treatments performed
with high diffusive/convective and/or adsorption clear-
ance. Furthermore, different modalities of administration
might be considered, such as continuous infusion.
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