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Disorder and dephasing as control 
knobs for light transport in optical 
fiber cavity networks
Silvia Viciani1,2, Stefano Gherardini2,3,4, Manuela Lima1,2, Marco Bellini1,2 & Filippo Caruso2,3

Transport phenomena represent a very interdisciplinary topic with applications in many fields of 
science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly 
controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging 
but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. 
Here, we experimentally build a scalable and controllable transport emulator based on optical fiber 
cavity networks where the system noise parameters can be finely tuned while maximizing the transfer 
efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs 
allowing one to play with constructive and destructive interference to optimize the transport paths 
towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural 
photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal 
nanoscale structures for novel, more efficient, clean energy technologies.

Very recently several theoretical and experimental studies have shown that the remarkably high efficiency (almost 
100%) of the excitation energy transfer through a network of chromophores in photosynthetic systems seems to 
be the result of an intricate interplay between quantum coherence and noise1–13. Indeed, the presence of coher-
ence leads to a very fast delocalization of the excitation that can hence exploit several paths to the target site 
(named also as sink or reaction center). However, since destructive interference among different pathways and 
the energy gaps between different sites are obstacles to the transmission of energy, this regime is not optimal 
by itself. In fact, the additional and unavoidable presence of disorder and noise, which is usually assumed to 
be deleterious for the transport properties, here instead positively affects the transmission efficiency. This can 
be explained in terms of the inhibition of destructive interference and the opening of additional pathways for 
excitation transfer5,14,15. This mechanism, known as Noise-Assisted Transport (NAT), has been recently observed 
in some physical platforms16–19, but a deep analysis of the underlying contributions, such as interference, disorder 
and dephasing, is still missing from the experimental point of view.

More in general, the possibility to experimentally realize simple test platforms being able to mimic transport 
on complex networks and to reproduce NAT effects, would be of high interest from several perspectives. First of 
all, it would clarify the role of the different disorder, interference and noise contributions in the transport behav-
ior of natural photosynthetic complexes. Secondly, it might represent a model of different complex networks 
where the role of topology can be further investigated. Finally, one could play with this platform in order to engi-
neer new artificial molecular structures where all these control knobs are optimized to achieve some desired tasks, 
such as the maximization of the transferred energy or its temporary storage in some part of the network. Such 
a simple setup would have a remarkable advantage with respect to real biological samples or expensive artificial 
systems, which are very difficult to manipulate both in their geometry and in the system parameters, since these 
aspects are often governed by specific bio-chemical laws.

For these reasons, we have recently realized an optical platform, entirely based on fiber-optic components, 
which has allowed us to provide the first experimental observation of the typical NAT peak in the dependence 
of the network transmission rate as a function of the amount of noise introduced into the system18. In such a 
simple and scalable kind of setup, which has variable and controllable parameters, the coherent propagation of 
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excitons in a N–site quantum network is simulated by the propagation of photons in a network of N coupled opti-
cal cavities. The optical cavities are based on Fiber Bragg Grating (FBG) resonators20,21, which have been mainly 
exploited for sensing applications so far22,23, also because they are characterized by a straightforward alignment 
and easy tunability by tiny deformations of the fiber section within the Bragg mirrors. Each j-site of the network 
(corresponding to each chromophore in a photosynthetic complex) is represented by a FBG resonator, while the 
local site excitation energy is associated to the resonance frequency of the cavity (ωj).

Here we provide a complete theoretical and experimental analysis of NAT effects for all the different configu-
rations of our optical model system, demonstrating that constructive and destructive interference, static disorder 
and dephasing noise can be successfully exploited as feasible control knobs to manipulate the transport behavior 
of coupled structures and, for example, to optimize the transmission rate.

Results
Network of fiber-optic resonators. We build up an experimental fiber-optic setup to reproduce energy 
transport phenomena, including the NAT effect, in the 4-site network shown in the inset (a) of Fig. 118. A detailed 
scheme of the experimental apparatus is shown in Fig. 1. It can be schematically described by the Mach-Zehnder 
setup of inset (b), which presents two main differences with respect to a standard Mach-Zehnder interferometer: 
(i) the insertion of a FBG resonator in each path of the interferometer, and (ii) the presence of two additional 
mirrors (M1 and M2) at the normally unused input and output port of the interferometer. The resonators FBG1 
and FBG2 represent the sites 1 and 2 with variable local excitation energy ω1 and ω2. The role of the other two sites 
0 and 3 is played by two fiber optic couplers (C), which represent two sites with fixed local excitation energy res-
onant with the energy of the propagating excitation ωS (ω0 =  ω3 =  ωS). The presence of the two additional mirrors 
M1 and M2 makes it possible to couple sites 1 and 2, since the light reflected by the resonators is partially re-in-
serted into the network by M1, while transmitted light is partially recycled by M2. The setup is entirely based on 
single-mode fiber-optic components at telecom wavelength (1550 nm). The choice of fiber components presents 
several advantages. First, it completely removes issues related to matching the transverse spatial mode of the fields 
and considerably simplifies the alignment of sources, cavities, and detectors, thus allowing one to easily adjust the 
network size and topology. Second, working at telecom wavelengths guarantees low optical losses and a low cost 
of the fiber components. These are two other important factors for the scalability of the apparatus.

The FBG resonators have a finesse of about 100 and a Free Spectral Range of 1 GHz (corresponding to a cavity 
length of about 10 cm), which result in a full-width at half-maximum linewidth FWHMcav of about 10 MHz. The 

Figure 1. Experimental design of the fiber-optic cavity network. Light is injected in the network by a 
continuous-wave diode laser, transmitted over coupled optical cavities, and then irreversibly absorbed by 
a detector measuring the transmission rate. O.I., Optical Isolator; M1 and M2, mirrors; P.C., polarization 
controller; C, 50 ×  50 fiber coupler; C1 and C2, 90 ×  10 fiber couplers; FBG1 and FBG2, Fiber Bragg Grating 
resonators; PZT piezoelectric transducer; D1, D2 and D3, detectors. The PZT can be driven to introduce a 
difference between the resonance frequencies of FBG1 and FBG2, which can be either constant in time (V0) or 
variable (V(t)), in order to insert disorder and/or dephasing into the network. Inset (a): scheme of the 4-site 
network mimicked by the optical setup. Inset (b): simplified scheme of our optical platform.
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reflectivity peak of the Bragg gratings is around 1550.13 nm, with a width of 0.7 nm. Each resonator is inserted 
in a home-made mounting to isolate it from environmental noise and allowing the piece of fiber containing the 
cavity to be stressed and relaxed in a controlled way by the contact with a piezoelectric transducer (PZT). In 
such a way the length of each cavity and, consequently, its resonance frequency, can be finely tuned. The input 
of each resonator is equipped with a fiber polarization controller to allow only one polarization mode to be con-
fined inside the cavity. The light source is a continuous-wave, single-frequency, external-cavity laser (Thorlabs 
SFL1550S), emitting at 1550 nm, with a linewidth of about 50 kHz, narrower than the 10 MHz cavity linewidth. 
The laser source injects light of frequency ωS into one input port of the first (50:50) fiber coupler C. Light exiting 
the two cavities passes through two more polarization controllers before being coupled by a second (50:50) fiber 
coupler C. Finally, one of the interferometer outputs is measured by detector D3.

All the parameters characterizing the network and that are described in the following section are expressed in 
terms of the cavity detuning parameter Δ x. This parameter is defined as the difference (ω2 −  ω1) between the res-
onance frequencies of the two cavities in units of their linewidth FWHMcav. Two additional fiber couplers (C1 and 
C2) are used to split a small portion (about 10%) of the light in each interferometer arm in order to measure the 
transmission peaks of each single cavity before interference. The transmission signals are measured by detectors 
D1 and D2 while scanning the laser frequency ωS over an interval including a single longitudinal mode of both 
cavities; from the difference between the frequency positions of the two peaks it is possible to infer Δ x. The three 
detectors D1, D2 and D3 are biased fiber optic InGaAs photodiodes.

Network parameters. The network configuration can be completely described by 3 parameters: the initial 
conditions related to global interference, the disorder (static disorder) and the dephasing (dynamical disorder). 
All these parameters are defined in terms of the previously described cavity detuning parameter Δ x. We theoret-
ically and experimentally characterize the network transmission as a function of these parameters.

Initial Conditions for Interference. Our interferometric apparatus involves no active stabilization. Consequently, 
the system is intrinsically unstable and the network response will be time dependent (on the time scale of the 
order of hundreds of ms). This intrinsic instability can be used to establish different initial conditions of global 
interference for our network. The system throughput when the two cavities are resonant (Δ x =  0) and without 
any kind of noise will vary between a minimum and a maximum value in correspondence of global destructive 
or constructive interference. The output signal measured by detector D3 in this case will thus set the initial con-
ditions of global interference of the network.

Disorder or Static Disorder. A network is said to be disordered if the local excitation energies of different sites are 
unequal (ωj ≠  ωk, with j ≠  k) but constant in time. In our setup, the disorder (or static disorder) of the network can 
be quantified with the cavity detuning parameter Δ x. The case of an ordered system is illustrated in Fig. 2a, where 
Δ x =  0 and constant. The case of a disordered system with a static disorder Δ x =  Δ 0 ≠  0 is shown in Fig. 2b. We 
assume that a system presents a medium level of disorder if Δ x ~ 1, i.e. (ω2 −  ω1) ∼  FWHMcav, and a high level of 
disorder if Δ x >  1, i.e. (ω2 −  ω1) >  FWHMcav.

Dephasing or Dynamical Disorder. Dephasing (or dynamical disorder) introduces a random phase perturbation 
in one or more sites of the network, thus resulting in temporal fluctuations of the corresponding resonance fre-
quencies ωj's around their stationary values. We can introduce it into our network by slightly changing the value 
of ω2 during measurement by means of the PZT. In such a way, Δ x is not time constant but can vary within an 
interval of ± δx/2 around Δ x. The amount of dephasing can be quantified by the amplitude δx of this interval. The 
case of a network with disorder Δ 0 and a dephasing δ0 is illustrated in Fig. 2c, where Δ x is variable in the interval 
Δ 0 −  δ0/2 and Δ 0 +  δ0/2. We assume that a system presents a medium level of dephasing if δx ~ 1, and a high level 
of dephasing if δx >  1.

Network Transmission. We define the transmission of the network as the output signal measured by detector 
D3 in correspondence of the transmission peak of cavity 1 (ω =  ω1) –see Methods for technical details on the 
acquisition procedure. The value of the transmission is normalized to the measured value of the output signal in 
conditions of constructive interference, without disorder and without dephasing (i.e., for Δ x =  δx =  0).

Theoretical model and numerical results. To describe the dynamics of our optical cavity network, we 
consider the following Hamiltonian24

∑ ∑ω= + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †a a g a a a a( ),
(1)i

i i i
i j

ij i j i j
( , )

H � �

where âi and ˆ†ai  are the usual bosonic field operators, that annihilate and create an excitation (a photon in our 
case) in the i-th site of the network, ωi the corresponding resonance frequency, and gij are the coupling constants 
between all the connected sites. The first term in (1) describes the energy structure of the system, while the second 
one is related to the hopping process among the network nodes. In the following we will refer to the (random) 
energy level spacings of the network’s sites as static disorder and it will be obtained by tuning the frequencies ωi of 
the network sites. In addition, the presence of dephasing noise, randomizing the photon phase during the dynam-
ics, will be introduced in terms of dynamical disorder, i.e. time-dependent random variation of the site energies. 
We denote with γi the dephasing rate for the site i. The latter will be mathematically described by a so-called 
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Lindblad super-operator ρ̂( )deph , where ρ̂ is the density matrix describing the system state that evolves according 
to the following differential Lindblad (Markovian) master equation:

ρ ρ ρ ρ ρ= − + + +
ˆ ˆ ˆ ˆ ˆ ˆd

dt
i [ , ] ( ) ( ) ( ), (2)deph inj det�
H L L L

where ⋅ ⋅[ , ] denotes the commutator. Moreover, the Lindbladian operators ρ̂( )inj  and ρ̂( )det  in Eq. (2) describe 
two distinct irreversible transfer processes, respectively, from the light source to the network (energy injection) 
and from the exit site to an external sink (energy detection) – see Methods for technical details. The transferred 
excitation energy, reaching the sink at time t, is defined as

∫ ρ τ τ= Γ ˆ ˆ†E t a a d( ) 2 Tr[ ( ) ] , (3)
t

k ktr det
0

where ⋅Tr[ ] is the trace operation, Γ det is the rate at which the photons reach irreversibly the output detector, and âk 
refers to the effective absorption of photons from the site k corresponding to the output site. To compare the theo-
retical results with the experimental data where the light is continuously injected into the network (with rate Γ 0) 
and absorbed from the detector, we need to define the network transmission as the steady-state rate for the photons 
in the detector, i.e. ρΓ→∞ ˆ ˆ†t a alim 2 Tr[ ( ) ]t k kdet . Let us point out that, if one repeats a single-photon experiment 
many times, one obtains the same statistics corresponding to an injected coherent state25, but this holds just because 
nonlinear processes are not present in our setup. Moreover, note that the model is able to take into account also the 
slight asymmetry that is present in the experimental setup by imposing different coupling rate in the two paths of 
the networks, i.e. g01 ≠  g02 and g13 ≠  g23. Such asymmetry is mainly caused by different loss rates in the two 
resonators.

Figure 2. Definition of Disorder and Dephasing. Transmission peaks of FBG1 (black line) and FBG2 (red 
line), measured respectively by detector D1 and detector D2 when the laser frequency ωS is scanned over an 
interval including a single longitudinal mode of both cavities. (a) Ordered system without dephasing: Δx =  0 
and constant. (b) System with static disorder Δ 0: Δ x =  Δ 0 and constant (no dephasing). (c) System with 
disorder Δ 0 and dephasing δ0: Δ x variable between Δ 0 −  δ 0/2 and Δ 0 +  δ 0/2.
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In Fig. 3 different time behaviours of the transferred energy are shown for different initial conditions of global 
constructive (3a) and destructive (3b) interference, and different values of dephasing and static disorder (see 
Methods for details). Since the photon injection is continuous in time, the energy in the steady-state condition 
increases monotonically in time with an asymptotic linear behavior whose slope is indeed the transmission rate. 
An exponential behaviour is instead observed for the initial temporal regime, as show in the inset of Fig. 3. Then 
we find that, for constructive interference both disorder and dephasing individually reduce the transferred energy 
(no NAT). However, in presence of some disorder inhibiting the path to constructive interference, dephasing 
slightly assists the transport by opening additional pathways. This can be also intuitively explained by the fact 
that the two cavities are not energetically on resonance (because of the disorder) but the line broadening effect, 
induced by dephasing, allows again the hopping between them. On the other side, destructive interference leads 
to very small transferred energies since the two transmission paths over the two cavities cancel each other (oppo-
site phase). In this case, dephasing and disorder can hinder such a perfect cancellation, thus partially restoring 
transport, i.e. NAT behaviour.

Experimental results. The network transmission has been investigated for different initial conditions of 
global constructive or destructive interference, as a function of both disorder and dephasing on the experimental 
4-site network of fiber-optic resonators in Fig. 1. In particular, the noise effects on the amount of transferred 
energy will be shown from two points of view: we analyze the network transmission as a function of dephasing 
for different values of the disorder, and then as a function of disorder for different values of the dephasing. Notice 
that our experimental fiber-optic setup has been designed as a simple, scalable and low-cost platform with not 
perfectly identical FBG resonators and small but significant losses within the network. Let us stress that, although 
it is challenging to estimate the model parameters to reproduce the experimental imperfections, as site energies, 
coupling rates, relative phases between the two arms, and asymmetric cavity losses, we have however achieved a 
sufficiently high level of control by tuning the global interference, static and dynamical disorder. Besides, in the 
model the static disorder is added by tuning the cavity frequency of site 2, ω2, while dephasing is given by γ2. For 
both the experimental data and numerical results, the network transmission is normalized to the value of the 
output signal in the condition of constructive interference without disorder nor dephasing.

Constructive Interference. We start by investigating the behavior of the network transmission for initial con-
ditions of global constructive interference. In Fig. 4 the experimental and theoretical network transmission 
are shown as a function of dephasing for three different configurations of disorder. Without disorder (Δ x =  0), 
the only effect of dephasing is to reduce the transferred energy, i.e. no NAT is observed because the different 
pathways do already constructively interfere. However, if the system’s energy landscape presents some disorder 
(Δx >  0.4), NAT effects can be detected and, in particular conditions of disorder, one finds the typical bell-shaped 
NAT behavior with an optimal value of dephasing that maximizes the network transmission. In other terms, 
dephasing enhances the transport efficiency if the additional presence of disorder inhibits the otherwise fast 
constructive-interference path. A similar behavior has been found for the theoretical model, although a discrep-
ancy with the experimental data for small values of dephasing is obtained. This difference is mainly due to the 
fact that the experimental realization of constructive interference is not perfect and the initial negative impact 

Figure 3. Time evolution of the excitation transferred energy. Etr vs time for constructive (a) and destructive  
(b) interference. In both figures, the curves refers to different values of γ2 and ω 2: (γ2, ω2) =  [0, 0] and (γ2, ω2) =  [0, 3]  
for solid and dash-dot lines, respectively, while (γ2, ω2) =  [2, 0] and (γ2, ω2) =  [2, 3] for dashed and dotted lines. 
Moreover, we set Γ det =  Γ 0 =  0.5. Notice that Etr is measured in terms of the number of transmitted photons, while the 
time is in the units of the inverse coupling rates. Inset: Exponential behaviour of the transferred energy in the transient 
time regime.
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of dephasing is reduced. A similar reasoning will explain in the following the discrepancy for the destructive 
interference case.

In Fig. 5 the transmission is shown as a function of disorder for two different dephasing configurations. Here, 
as expected, we find that disorder has a generally negative impact on the transport performance since it always 
leads to the suppression of the initial constructive interference. However, while a little bit of disorder quickly 
deteriorates transport in the case without dephasing, the presence of some dephasing noise that broadens the 

Figure 4. Role of dephasing for constructive interference. Experimental network transmission (black circles, 
and left vertical axis) vs. dephasing δx (black bottom horizontal axis), and numerical transmission (blue stars, 
and right vertical axis) vs. γ2 (blue top horizontal axis), for an initial condition of constructive interference and 
for different values of disorder: no disorder (Δ x =  0, and ω2 =  0, top figure), medium disorder (Δ x =  0.7, and 
ω2 =  1, middle figure), and large disorder (Δ x =  2, and ω 2 =  2, bottom figure).

Figure 5. Role of disorder for constructive interference. Experimental network transmission (black circles, 
and left vertical axis) vs. disorder Δ x (black bottom horizontal axis), and numerical transmission (blue stars, 
and right vertical axis) vs. ω2 (blue top horizontal axis), for an initial condition of constructive interference and 
for different values of dephasing: no dephasing (δx =  0, and γ2 =  0, top figure), and large dephasing (δx =  1.83, 
and γ2 =  1.8, bottom figure).
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resonances has the effect of making the system more robust against static disorder, with an evidently smoother 
decay in both the theoretical and experimental cases.

Destructive Interference. Repeating the analysis above for the case of initial destructive interference, it turns 
out that both dephasing and disorder independently assist transport, i.e. NAT behavior, since they reduce the 
amount of interference that prevents the transmission of energy – see Fig. 6. When the network is in a regime 
of high-disorder, again the typical bell-like NAT shape is recovered. However, if a lower amount of disorder 
is included, the additional contribution of dephasing does not further improve the network transmission that 
instead shows a minimum value for a dephasing value of δx ≈  2.2. Finally, in Fig. 7 we show the role of disorder in 
enhancing the transmission rate with its peak moving to higher value of disorder for increasing dephasing values.

Discussion
Noise-assisted transport phenomena occur in several physical systems where noise can open additional transport 
pathways and suppress the ineffective slow ones. In the last years, this scheme has been applied to better under-
stand energy transport in photosynthetic light-harvesting complexes where dephasing noise remarkably enhances 
the transmission of an electronic excitation from the antenna complex to the reaction center where such energy is 
further processed5. The basic underlying mechanisms of such behavior are mainly due to line-broadening effects 
and the suppression of destructive interference, hence the interplay of quantum coherence and noise is respon-
sible for the observed very high transport efficiency. While several theoretical studies have been performed, it is 
very challenging to actually test these ideas either in the real photosynthetic pigment-protein complex or in arti-
ficial ones, since their structure and dynamical properties cannot be controlled or even indirectly measured26,27 
with the required resolution. Moreover, these samples are usually quite expensive or difficult to synthesize. For 
these reasons, it is very convenient to reproduce such transport phenomena in a controlled system where one can 
tune the parameters and measure the corresponding dynamical behaviors, while also playing with the underlying 
network geometry. This will allow one to better understand the underlying problems and to start engineering new 
molecular/nano-structures for more efficient and feasible technological applications.

In this work, we have experimentally investigated how to design optimized accessible noise features for 
energy transport in a simple and scalable test optical platform, represented by a network of fiber-optic resona-
tors. Although the experiment could be fully described by classical optics, the role of the quantum coherence in 
energy transport processes, as observed for photosynthetic systems, can be mimicked by the propagation and 
interference of light in our experimental setup in correspondence of different global interference conditions. In 
the proposed interferometric apparatus, the effective controllability of parameters is reached by exploiting the 
intrinsic instability of the setup, where no phase locking is used for the stabilization of the system. Therefore, our 
setup not only allows one to observe the NAT peak in the network transmission as a function of the amount of 
noise in the system dynamics, but, more importantly, can be exploited to monitor and control the different noise 
sources to show their individual contribution to the transport dynamics in presence of different types of global 

Figure 6. Role of dephasing for destructive interference. Experimental network transmission (black circles, 
and left vertical axis) vs dephasing δx (black bottom horizontal axis), and numerical transmission (blue stars, 
and right vertical axis) vs γ2 (blue top horizontal axis), for an initial condition of destructive interference and 
for different values of disorder: no disorder (Δ x =  0, and ω2 =  0, top figure), medium disorder (Δ x =  0.7, and 
ω2 =  1, middle figure), and large disorder (Δ x =  2, and ω 2 =  2, bottom figure).
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interference. Then, we find that, when constructive interference already provides a very fast path to the exit site, 
dephasing has a detrimental effect and reduces the amount of transferred energy. However, if some disorder is 
present in the system energy levels, hence blocking the constructive interference path, then dephasing represents 
a recovery tool to achieve again higher transport efficiency, thanks to NAT effects. On the other side, in presence 
of destructive interference, both dephasing and disorder are able to speed up the energy transport, with dephasing 
often providing a faster NAT mechanism. Intuitively, the role of noise in increasing the transferred energy can be 
explained by considering how the pathways of energy transfer are modified, by destroying the inefficient ones (i.e. 
inhibition of destructive interferences in the network) or by giving access to more efficient network hubs.

Let us further stress the particular usefulness of the fine controllability of the system parameters and topology 
in such a simple experimental model compared to the control28,29 of the molecular geometries in natural and 
artificial light-harvesting molecules. This is very hard or even unfeasible in presence of just a few chromophores, 
with the problem becoming even harder when many chromophores are taken into account. Furthermore, by 
working with real molecules it is not possible to tune at will their parameters, such as the exciton energies, cou-
plings, noise strength, etc., since the corresponding structure has to be synthesized again each time and just a few 
molecular configurations are usually available. Our scalable and tunable optical model does instead provide a 
very useful benchmark platform where all system parameters and geometrical configurations can be very easily 
changed and individually controlled, even including tens or more of sites. The power of such optical models is also 
demonstrated by the fact that they have allowed us to observe, for the first time to the best of our knowledge, the 
only-theoretically predicted bell-like behavior of the network transmission as a function of the dephasing noise 
strength18. Then, increasing the network size, these results are promising in order to observe even more complex 
transport behaviors that can be very hardly simulated on a computer (see Methods). In particular, optimizing 
a network for energy transport will correspond to determine the optimal values of the parameters referring to 
accessible sources of static and dynamical disorder, given the topological features of the network. Notice that in 
this context the network topology or connectivity plays also a crucial role that can be further investigated by these 
scalable optical setups.

Therefore, this platform gives us the crucial possibility of testing new complex structures and transport 
regimes that would not be accessible by studying single molecular systems, but that can be triggered by the obser-
vations on these optical models and then synthesized later on artificial molecular devices30. Indeed, our theoret-
ical and experimental results show that disorder and dephasing can be exploited as control knobs to manipulate 
the transport performance of complex networks, e.g. optimizing the final transmission rate or the capability of 
temporarily storing energy/information in the system. In particular, noise-enabled information transfer phe-
nomena10,31,32 exhibit optimal features when both static and dynamical disorder are tuned to specific values, so 
that the information transfer within complex networks can be considerably enhanced. For these reasons, these 
achievements are expected to find promising bio-inspired applications for practical and much more efficient 
light-harvesting and energy/information33,34 transport nano-technologies.

Figure 7. Role of disorder for destructive interference. Experimental network transmission (black circles, 
and left vertical axis) vs disorder Δ x (black bottom horizontal axis), and numerical transmission (blue stars, and 
right vertical axis) vs ω2 (blue top horizontal axis), for an initial condition of destructive interference and for 
different values of dephasing: no dephasing (δx =  0, and γ2 =  0, top figure), and large dephasing (δx =  1.83, and 
γ2 =  1.8, bottom figure).
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Methods
Experimental data acquisition methods. The network transmission is measured by monitoring the out-
put signal acquired by detector D3 while the laser frequency ωS is scanned over an interval comprising a single 
mode of both cavities. The laser frequency is tuned by applying a voltage ramp, with a frequency of 30 kHz, to 
the driving current by means of a modulation input port (tuning coefficient about 90 MHz/mA). In order to 
scan over the cavity modes a variation of less than 1 mA is needed, which yields a residual amplitude modulation 
smaller than 1% of a typical transmission peak amplitude. We define the network transmission as the D3 signal 
for ωS =  ω1, where ω1 can be obtained by the peak of the signal measured by D1. A control software drives the data 
acquisition chain according to the following steps:

1. ω2 is initially adjusted by driving the corresponding FBG2 PZT voltage in order to bring the transmission 
peaks of the two cavities within a few linewidths from each other, thus reducing their detuning Δ x. We mon-
itor the D1 and D2 signals until Δ x <  0.1 (i.e., until the distance of their transmission peaks is smaller than 
one tenth of their linewidths) and use this condition to trigger the rest of the acquisition;

2. the value of the D3 signal at this time is recorded and it defines the initial conditions of global constructive or 
destructive interference for the network transmission;

3. from this condition, a 1 kHz sinusoidal modulation is applied to the FBG2 PZT so that ω2 is varied in a range 
of about ± 5 linewidths around its initial value. The three signals from D1, D2 and D3 are then acquired con-
tinuously for a time of 1 ms so that, for a 30 kHz laser-driving ramp, the signal from D3 allows us to retrieve 
30 different values of the network transmission. Since an acquisition time of 1 ms is so short that the entire 
setup is sufficiently stable to maintain the initial conditions of global interference unchanged, all these ac-
quisitions correspond to the same initial global conditions of interference but to different values of the static 
disorder parameter Δ x;

4. after a time acquisition of 1 ms, the acquisition is stopped and the procedure is repeated several times.

In such a way, for each initial condition of constructive or destructive interference, a statistically significant 
data-set of network transmissions (about 14000) has been obtained for different values of Δ x.

From this data-set, the transmission for a network with static disorder Δ 0 is simply obtained by averaging all 
the network responses with the same Δ x =  Δ 0. An amount δx of dephasing (dynamical disorder) is introduced by 
averaging the network responses corresponding to different values of Δ x included in an interval ± δx/2 around Δ x.  
In particular, the transmission of a network with static disorder Δ 0 and dephasing δ0, is calculated by averaging 
all the network transmissions with Δ x included in the interval Δ 0 ±  δ0/2. Statistical uncertainties resulting from 
this procedure are reported as error bars in all the data points for the experimental network transmissions of 
Figs 4, 5, 6, and 7.

Theoretical details for the laser source and the detector. In the model of Eq. (2), we mimic the 
experimental conditions by assuming that the network is initially empty, namely with no excitations inside, while 
a laser source continuously injects photons in the site 0 with a rate Γ 0. As in ref. 9, this injection process is modeled 
by a thermal bath of harmonic oscillators, whose temperature is expressed by the thermal average boson number 
nth (nth =  0.1 in Fig. 3). In the Markov approximation, this process is described by the following Lindbladian term:

ρ ρ ρ ρ ρ=
Γ
− + + +

Γ
− +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †n a a a a n a a a a( )

2
[ { , } 2 ] ( 1)

2
[ { , } 2 ], (4)inj th

0
0 0 0 0 th

0
0 0 0 0

where ˆ†a0 represents the bosonic creation operator for the cavity 0, ⋅ ⋅{ , } denotes the anticommutator, while ρ̂ is 
the physical quantum state of the system.

The photons leaving the network are detected by the sink, that is usually denoted as the output port of the net-
work, modeling the reaction center of a photosynthetic biological system. Each light-harvesting complex, indeed, 
is composed by several chromophores that turn photons into excitations and lead them to the reaction center, 
where the first steps of conversion into a more available form of chemical energy occurs. This part is described by 
another Lindbladian super-operator, that is

ρ ρ ρ= Γ −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †a a a a a a a a( ) [2 { , }], (5)k k k kdet det det det det det

where ˆ†adet refers to the effective photon creation in the detector with the subsequent absorption of excitations 
from the site k, according to operator âk, with Γ det being the rate at which the photons reach irreversibly the 
detector.

The theoretical results in Figs 4, 5, 6, and 7 are obtained by using the following set of parameters: 
Γ Γ = . . .n( , , ) [0 5, 0 75, 0 7]det 0 th  for constructive interference, and Γ Γ = . . .n( , , ) [0 5, 0 75, 0 3]det 0 th  for destructive 

interference. Moreover, the non-vanishing coupling constants g01 and g02 are equal, respectively, to 0.51 and 0.52, 
while g23 and g13 are set in the range [0.22, 0.33]. The destructive interference is simply obtained by introducing a 
π-phase shift in the hopping strength g01, i.e. changing its sign. The cavity resonance frequencies ωi are all vanishing 
in the absence of static disorder that instead leads to a variation of the frequency of site 2 within the range [0, 2]. 
Similarly, the only non-zero dephasing rate γ2 for the cavity 2 (when dephasing is on) is chosen in the range [0, 1], 
with the dephasing process being in general described by the following Lindbladian super-operator:

 ∑ρ γ ρ ρ= − + .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †a a a a a a( ) [ { , } 2 ]
(6)i

i i i i i i ideph
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Computational complexity. Here we evaluate the computational time for the single realization of the 
(numerical) dynamical evolution of networks of increasing size (i.e., number of sites/cavities N) with the model 
as in the Main. The computational complexity does increase exponentially with N, as shown in Fig. 8. In other 
words, already adding a few cavities to our model would take months to theoretically simulate the corresponding 
dynamics for a given set of parameters, and the computation becomes unfeasible if one wants to reconstruct the 
figures in our manuscript where thousands of simulations are needed to take into account dynamical disorder, 
dephasing, etc. In particular, the critical number of sites above which it becomes very hard to reproduce the 
theoretical data is around 8 (corresponding to around six months of simulations for one thousand realizations) 
– see Fig. 8. Let us notice that, while the experimental scheme has been realized with coherent states of light that 
in principle allow its classical simulation time to scale polynomially with the number of optical elements, if one 
instead considered a full quantum regime (for example, with several single-photon walkers), the computation 
complexity would have indeed scaled exponentially, as observed above. On the other side, the experimental com-
plexity is not so affected by the network size and, at most, linearly increases in terms of both the cost of the optical 
components (cavities, beam-splitters, etc.) and the practical realization and observation time of the stationary 
behavior of the optical system. The use of single-mode telecom optical fiber components is an essential ingredient 
in this context, as it dramatically reduces costs and losses, besides canceling all issues related to the alignment and 
spatial mode-matching procedures that should be faced when adding other cavities to the system or changing its 
topology. However, even if the increase of the network size is not a significant limit for the present setup employ-
ing a classical coherent source, the same would not be true when operating in a quantum regime, with one or 
multiple single-photon sources and coincidence detection. In such a case, the increased losses in a larger network 
(mainly due to the presence of several FBG resonators) could substantially reduce the efficiency of the setup and 
imply much longer acquisition times.
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