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1. Introduction

The main tool used in this paper to relate finite, infinite and bi-infinite Riordan 
matrices is the inverse limit concept. This concept has been and is still being widely 
used in practically all branches of mathematics, sometimes under the name of projective 
limit. Usually it is a way to approximate objects by better behaved or widely known ones. 
The concept of inverse system, from which the inverse limit is derived, can be defined in 
any category, where the related concept of pro-category appears. An introductory text 
for these topics is [8]. In [2] the authors developed, from the categorical point of view, 
the Algebraic Topology. There, it can be found a study on inverse limit in the categories 
of both groups with homomorphisms and topological spaces with continuous maps.

Because of our previous works, [4,5,11,3], we feel the necessity of a deeper under-
standing of different reflections in bi-infinite Riordan matrices. To do that, we introduce 
herein the natural concept of finite Riordan matrices. In these kind of matrices, we get 
an internal transformation reflecting across y = x. This transformation makes no sense 
in usual infinite Riordan matrices. Both previous concepts on finite framework have been 
independently used in [1] to obtain sloping constructions of Riordan arrays. Using inverse 
sequences of finite Riordan matrices and the inverse limit concept, see Chapter VIII of 
[2], we are able to define essentially two different reflections in bi-infinite Riordan ma-
trices. This allows us to reformulate some questions left open in [5]. Finally, we give 
answers to those problems.

The horizontal and vertical constructions that we explored in [4] have enabled us 
to understand these reflections. In fact, the fundamental point has been the symmetry 
between the sequence g found in [6] and used there for a vertical construction of a 
Riordan matrix and the A-sequence of Rogers [10] for horizontal construction of such 
object. Actually, the A-sequence is the parameter g in the inverse matrix, equivalently g
is the A-sequence of the inverse matrix, see Proposition 7 in [3, p. 3615]. Both sequences 
are the same in many important cases, for instance, in self-complementary, self-dual and 
involutory Riordan matrices. In some works in progress, we are treating these latest kind 
of matrices from this point of view. We are also developing the natural pro-Lie group 
structure of the Riordan group derived from the constructions made herein.

After the preliminary Section 2, in Section 3 we obtain the groups of finite Rior-
dan matrices Rn of order n + 1 for n = 0, 1, · · · by means of natural projections from 
the Riordan group R. Later, we recuperate the Riordan group as an inverse limit of 
these groups of finite matrices with appropriate bonding maps. We also give an internal 
characterization of such finite matrices.

In Section 4 we describe first the complementary and the dual, see [5], as elements 
in the inverse limit described in the previous section. To do that, we apply a natural 
reflection on finite Riordan matrices Rn of order n +1 for n = 0, 1, · · · . Later, employing 
again the inverse limit concept for a constant inverse sequence, we achieve the bi-infinite 
representation of Riordan matrices from the usual infinite one. We end this section 
reaching this bi-infinite representation as inverse limit of sequences of groups of finite 
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Riordan matrices by two different natural ways depending overall on the parity of the 
size of finite matrices in the inverse sequences.

Reflecting term by term the finite matrices involved in both sequences above, in Sec-
tion 5 we get two different, but related, reflections on bi-infinite Riordan matrices and the 
two corresponding concepts of symmetric matrices where the dual and the complemen-
tary appears. This allows us to translate symmetries in bi-infinite matrices in terms of 
the problems self-complementarity and self-duality in Riordan matrices left open in [5]. 
We end the paper solving these problems.

The notation of a Riordan matrix used in this paper is taken from [6] but to make 
understanding easier for people not familiar with this notation we will include, in Sec-
tion 2, the conversion formula to a more usual one. Along the paper some results will 
be written in both ways. The notation used for the complementary, the dual, etc., are 
taken from [4] and [5].

Always, in this paper, K is a field of characteristic 0. By N we denote the set 
{0, 1, 2, 3, · · ·} ⊂ K and by Z the set {0, ±1, ±2, ±3, · · ·} ⊂ K.

2. Basic concepts and notations

As we said in the introduction, the inverse limit concept is a general construction 
used in Category Theory. We only need few things about this general construction to 
understand the material herein. Consequently, we will restrict our definitions to the 
Group Category and to inverse sequences which are particular cases of the more general 
concept of inverse system.

Definition 1. An inverse sequence of groups is a pair S = {(Gn)n∈N, (ψn)n∈N} where Gn

is a group and ψn : Gn+1 → Gn is a group homomorphism for every n ∈ N.

The homomorphisms ψn are called the bonding morphisms or the bonding maps of 
the inverse sequence.

Proposition 2. Let S = {(Gn)n∈N, (ψn)n∈N} be an inverse sequence of groups. Consider

lim←−−S = {(zn)n∈N ∈
∏
n∈N

Gn | ψn(zn+1) = zn ∀ n ∈ N}.

Then, lim←−−S has a natural group structure given by the product (an)n∈N · (bn)n∈N =
(an · bn)n∈N for (an)n∈N, (bn)n∈N ∈ lim←−−S and where the products inside the parentheses 
are those in each group Gn. The sequence e = (en)n∈N formed by neutral elements in 
each group is always in lim←−−S. This is the neutral element in the inverse limit. In fact, 
the group lim←−−S is a subgroup of the direct product group 

∏
n∈N

Gn.

Other important devices to deal with inverse limits are projections to each group 
Gn in the inverse sequence. In the general definition of inverse limit in categories those 
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projections are, in fact, part of the definition. In our case the projections can be obtained 
from above in the following way.

Given the set-theoretic Cartesian product we have a natural projection Ψk :∏
n∈N

Gn → Gk defined by Ψk((zn)n∈N) = zk. In our context Ψk is a group homo-
morphism. The restrictions of Ψk to lim←−−S are called the projections in the inverse limit. 
The following result is satisfied. For every n ∈ N the diagram below is commutative, that 
is, Ψn = ψn ◦ Ψn+1:

lim←−−S

Ψn

Ψn+1

Gn Gn+1
ψn

Now, we are going to describe briefly the Riordan group and the two notations we 
will use for Riordan matrices.

The Riordan group is a subgroup of the group of invertible infinite lower triangular 
matrices with the usual product of matrices as the operation. The elements of the Rior-
dan group are those matrices whose columns are the coefficients of successive terms of a 
geometric progression in K[[x]] where the initial term is a formal power series of order 0
and the common ratio is a formal power series of order 1. For example, in [6,7], the Rior-
dan matrix D = (di,j)i,j∈N is represented as T (f | g) = D, with f(0) �= 0 and g(0) �= 0, 

so that di,j = [xi] x
jf(x)

gj+1(x) . Consequently, the first term is f(x)
g(x) and the common ratio is 

x

g(x) . Another way to denote this is D = R(d(x), h(x)) where d(x) and h(x) are formal 

power series with d(0) �= 0, h(0) = 0 and h′(0) �= 0, see [4,5]. For this representation 
di,j = [xi]d(x)hj(x). Then, clearly, the relationship between both notations is

d(x) = f(x)
g(x) , h(x) = x

g(x) or equivalently f(x) = xd(x)
h(x) , g(x) = x

h(x) .

The product and the inverse become (see [6] Proposition 20, pp. 2629–2630).

T (f | g)T (l | m) = T

(
fl

(
x

g

) ∣∣gm(
x

g

))

where fl
(
x

g

)
≡ f(x) · l

(
x

g(x)

)
, analogously for the second term.

For what concerns the inverse:

(T (f | g))−1 ≡ T−1(f | g) = T

(
1
x

∣∣∣A)

f(A )
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where 
( x

A

)
◦
(
x

g

)
=

(
x

g

)
◦
( x

A

)
= x. The previous formal power series denoted by 

A is the so-called A-sequence introduced by Rogers [10]. The previous formula for the 
product and the inverse in the another notation can be found in almost all papers on 
Riordan matrices and one can get it directly using the conversion formula above.

3. General properties of finite Riordan matrices

For every n ∈ N consider the general linear group GL(n + 1, K) formed by all (n +
1) × (n + 1) invertible matrices with coefficients in K. Let R be the Riordan group. 
Since every Riordan matrix is lower triangular, we can define a natural homomorphism 
Πn : R → GL(n + 1, K) given by

Πn((di,j)i,j∈N) = (di,j)i,j=0,···,n.

For obvious reasons, many times we will refer to this homomorphism as the projection of 
a certain infinite Riordan matrix. In fact, they are the projections defined in the previous 
section.

To describe the Riordan group as an inverse limit of an inverse sequence of groups of 
finite matrices, we consider first the subgroup of GL(n + 1, K) defined by Rn = Πn(R)
(recall that the image under a group homomorphism is a subgroup of the target group).
The other needed part is the sequence of bonding maps.

Definition 3. Let D = (di,j)i,j=0,···,n+1 ∈ Rn+1. We define Pn : Rn+1 → Rn by

Pn((di,j)i,j=0,1,···,n+1) = (di,j)i,j=0,···,n.

Pn(D) is obtained from D by deleting its last row and its last column. Pn is a group 
homomorphism for every n because the matrices are lower triangular. Moreover the 
diagram below is commutative

R

Πn

Πn+1

Rn Rn+1
Pn

Consequently we get

Proposition 4. The Riordan group R is isomorphic to lim←−−{(Rn)n∈N, (Pn)n∈N}.

The above proposition means that a Riordan matrix can be uniquely described by 
a sequence of finite matrices (Dn)n∈N with Dn ∈ Rn and such that Pn(Dn+1) = Dn
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for every n ∈ N. Furthermore, the product in the Riordan group corresponds to the 
component-wise products in the sequences.

Obviously if n = 0 then R0 = K
∗ with the usual product in K being K∗ = K \ {0}. 

Now, as consequences of known results about the horizontal and vertical constructions 
of Riordan matrices in the literature, see for example [10,6,4], we have the following 
internal characterization for finite dimensional Riordan matrices.

Theorem 5. Let D = (di,j)i,j=0,···,n with n ≥ 1 be a lower triangular matrix. Then

(i) D ∈ Rn if and only if d0,0 �= 0 and there are a0, a1, · · · , an−1 in K with a0 �= 0 such 
that

di,j =
i−j∑
k=0

akdi−1,j−1+k i, j = 1, · · · , n. (1)

(ii) D ∈ Rn if and only if d0,0 �= 0 and there are g0, g1, · · · , gn−1 in K with g0 �= 0 such 
that

di,j =
i−j∑
k=0

gkdi+1−k,j+1 i, j = 0, · · · , n− 1. (2)

Moreover if g(x) =
∑n−1

k=0 gkx
k and A(x) =

∑n−1
k=0 akx

k, then

[xk−1] 1
A(x) = 1

k
[xk−1]gk(x) for k = 1, · · · , n. (3)

Proof. (ii) Suppose that there are g0, g1, · · · , gn−1 in K with g0 �= 0 such that

di,j =
i−j∑
k=0

gkdi+1−k,j+1 i, j = 0, · · · , n− 1.

If we consider the Riordan matrix T (f | g) for

g(x) =
n−1∑
k=0

gkx
k, f(x) =

(
n−1∑
k=0

gkx
k

)(
n∑

k=0

dk,0x
k

)

and using Theorem 11 in [6] we have D = Πn(T (f | g)).
On the other hand if D ∈ Rn then there is a Riordan matrix T (f | g) such that 

Πn(T (f | g)) = D using again Theorem 11 in [6] we get that if gi = [xi]g(x) for 
i = 0, · · · , n − 1 then (2) is satisfied.

The proof of part (i) is similar using the A-sequence construction of Riordan matrices, 
see for example [10,9].
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Finally (3) is a consequence of Lagrange Inversion Formula and the fact given in 
Proposition 7(i) in [3]. �
Example 6.

P5 = Π5(T (1 | 1 − x)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

P5 ∈ R5 because d0,0 = 1, a0 = 1, a1 = 1, a2 = a3 = a4 = 0 satisfy (1). Equivalently 
g0 = 1, g1 = −1, g2 = g3 = g4 = 0 satisfy (2). Moreover, (3) holds since A(x) = 1 + x

and g(x) = 1 − x.

Observe that:
R1 is the group of 2 × 2 lower triangular invertible matrices.
R2 is the group of 3 × 3 lower triangular invertible matrices where the main diagonal 

is formed by three consecutive terms of a geometric progression.
R3 is the group of 4 × 4 lower triangular invertible matrices where the main diagonal 

is formed by four consecutive terms of a geometric progression and the first sub-diagonal 
is formed by three consecutive terms of an arithmetic–geometric progression with the 
same ratio as the geometric one in the main diagonal.

The elements of any group Rn are called finite Riordan matrices. Note that the size 
of any element in Rn is (n + 1) × (n + 1).

It is obvious that we can have a finite Riordan matrix as the projection of different infi-
nite Riordan matrices. In fact, there are infinite many different infinite Riordan matrices 
with the same n-projection. To clarify the general situation on equality of n-projection 
we have:

Proposition 7. Given a finite Riordan matrix D ∈ Rn with n ≥ 1, there are unique 
polynomials f̃ and g̃ with deg(f̃) ≤ n and deg(g̃) ≤ n − 1 such that

Πn(T (f̃ | g̃)) = D.

We call T (f̃ | g̃) the canonical Riordan representative of the finite Riordan matrix D.

Proof. As in the proof of Theorem 5 using part (2), choose

g̃ =
n−1∑
k=0

gkx
k, f̃ = Tn

((
n−1∑
k=0

gkx
k

)(
n∑

k=0

dk,0x
k

))

where Tn(h) represents the n-degree h’s Taylor polynomial. �
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Example 8. In this case f(x) = (1 − x)(1 + x + x2 + x3 + x4 + x5) = 1 − x6 then 
f̃ = Tn(f(x)) = 1, ˜g(x) = g(x) = 1 − x. So

P5 = Π5(T (1 | 1 − x)) = Π5(T (1 − x6 | 1 − x)),

in the other notation we get

P5 = Π5

(
R

(
1

1 − x
,

x

1 − x

))
= Π5

(
R

(
1 − x6

1 − x
,

x

1 − x

))
.

Proposition 9. Let D = (di,j)i,j=0,···,n, with n ≥ 1 be a finite Riordan matrix. If T (f | g)
is such that Πn(T (f | g)) = D, then

g = g̃ + xnm, f = f̃ + m0d00x
n + xn+1l

with l, m ∈ K[[x]], m(x) =
∑

k≥0 mkx
k and f̃ and g̃ the polynomials of the canonical 

representative of D.

Proof. It easy to see that if f(x) =
∑

k≥0 fkx
k and g(x) =

∑
k≥0 gkx

k and Πn(T (f | g)) =
D then

gk = g̃k, fk = f̃k, for k = 0, · · · , n− 1.

Then g = g̃ + xnm. Moreover

[xn]f =
n∑

k=0

gkdn−k,0 =
n−1∑
k=0

gkdn−k,0 + gnd0,0 = [xn]f̃ + m0d0,0

and the proof is finished. �
Example 10.

P5 = Π5(T (1 + m0x
5 + x6l(x) | 1 − x + x5m(x)))

with l, m and m0 as in the above proposition. In the other notation

P5 = Π5

(
R

(
1 + m0x

5 + x6l(x)
1 − x + x5m(x) ,

x

1 − x + x5m(x)

))
.

In particular, by taking m(x) = 3 + 15x3 and l(x) = 7, we have

P5 = Π5(T (1 + 3x5 + 7x6 | 1 − x + 3x5 + 15x8))

= Π5

(
R

(
1 + 3x5 + 7x6

1 − x + 3x5 + 15x8 ,
x

1 − x + 3x5 + 15x8

))
.
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Remark 11. For n = 0, we have

Π0(T (f | g)) = Π0(T (r | s)) = D = (d0,0) ⇔ f0

g0
= r0

s0
= d0,0

where the diagonal matrix T (d0,0 | 1) is the canonical representative of D ∈ R0.

As consequence of the above results we obtain:

Proposition 12 (The equality of banded submatrices). Given two Riordan matrices, 
T (f | g) = (di,j)i,j∈N and T (r | s) = (ci,j)i,j∈N with Πn(T (f | g)) = Πn(T (r | s)) and 
n ≥ 1, then

Πn−1(T (fgm | g)) = Πn−1(T (rsm | s)) ∀ m ∈ Z.

In particular,

di,j = ci,j for i− j = k, with k = 0, · · · , n− 1.

Proof. Since Πn(T (f | g)) = Πn(T (r | s)) then, in particular, gk = sk and fk = rk for 
k = 0, · · · , n −1. Note that [xl]gm depends only on the coefficients g0, · · · , gl. Consequently 
the coefficients [xl]fgm depend only on the coefficients f0, · · · , fl and g0, · · · , gl. So, we 
conclude that sl = gl and [xl]fgm = [xl]rsm for 0 ≤ l ≤ n −1. Hence Πn−1(T (fgm | g)) =
Πn−1(T (rsm | s)). In particular, for i − j = k with k = 0, · · · , n − 1

di,j = dj+k,j = [xj+k] x
jf

gj+1 = [xk] f

gj+1 = [xk] r

sj+1 = [xk+j ] x
jr

sj+1 = cj+k,j = ci,j . �
The reciprocal of the above proposition is not true, because if Πn−1(T (fgm | g)) =

Πn−1(T (rsm | s)) ∀ m ∈ Z then di,j = ci,j for i −j ≤ n −1 but no conditions or relations 
about dn,0 and cn,0 are implied. So, in general Πn(T (f | g)) �= Πn(T (r | s)).

Recall that Πn : R → Rn is a group homomorphism. Then, using Proposition 9 we 
have that the kernel

ker Πn =
{
T (f | g) | g = 1 + xnm, f = 1 + m0x

n + xn+1l with l,m ∈ K[[x]]
}

satisfies the following result:

Proposition 13. kerΠn is a normal subgroup of the Riordan group R. Moreover

(1)

ker Πn ⊃ ker Πn+1 ∀ n ≥ 0, and
⋂
n≥0

ker Πn = T (1 | 1).
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(2)

Πn(T (f | g)) = Πn(T (r | s)) ⇔ ∃ l,m ∈ K[[x]]

such that

T (r | s) = T (f | g)T (1 + m0x
n + xn+1l | 1 + xnm).

The proof is obvious and part (1) was first proved in [6, pp. 2633–2634] using an 
invariant complete ultrametic on the Riordan group R.

From now on, we denote by Tn(f | g) = Πn(T (f | g)), with n ∈ N. If the subindex n
does not appear, we are referring to the infinite Riordan matrix.

4. Reflections on matrices: from finite to bi-infinite Riordan matrices

4.1. The inverse limit description of the complementary and the dual

Note that matrix transposition can be viewed as a reflection on the matrix across 
y = −x. To stay inside the Riordan group transposition is not allowed. However, looking 
at the structure of finite Riordan matrices we realize that reflecting these matrices across 
y = x we obtain another lower triangular matrix. In fact, we have:

Proposition 14 (The reflected Riordan matrix). Let D = (di,j)i,j=0,···,n be a finite Riordan 
matrix and consider the matrix DR = (ci,j)i,j=0,···,n with ci,j = dn−j,n−i. Then DR is a 
finite Riordan matrix that we call the reflected matrix of D.

Proof. If D = (di,j)i,j=0,···,n, then DR = (ci,j)i,j=0,···,n with ci,j = dn−j,n−i. DR is a 
finite Riordan matrix because following Theorem 5

c0,0 = dn,n = a0dn−1,n−1 = dn−1,n−1

g0
�= 0

and

cn−j,n−i = di,j =
i−j∑
k=0

akdi−1,j−1+k =
i−j∑
k=0

akcn−(j−1+k),n−(i−1).

Renaming the subscripts: n − j = ĩ and n − i = j̃

cĩ,j̃ =
ĩ−j̃∑

g̃kcĩ+1−k,j̃+1 ⇒ g̃k = ak

k=0
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then DR is a finite Riordan matrix where the coefficients g̃k are equal to the coefficients 
ak of D. In a similar way we can prove that the coefficients ãk of DR are equal to the 
coefficients gk of D. �
Remark 15. Note that, in the proof above, we obtain that the finite sequence 
g0, g1, · · · , gn−1 used to construct the reflected matrix of D by columns in Theorem 5(ii)
is equal to the finite sequence a0, a1, · · · , an−1 used to construct D by rows in Theo-
rem 5(i). Analogously, the constants used to construct the reflected matrix of D by rows 
are the same as those used to construct D by columns. Moreover, the first column of 
DR can be calculated by the expression

ci,0 = dn,n−i = [xi] f

gn+1−i
. (4)

Example 16.

PR
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
5 1
10 4 1
10 6 3 1
5 4 3 2 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

PR
5 = Π5(T ((1 + x)6 | 1 + x)) = Π5

(
R

(
(1 + x)5, x

1 + x

))
.

Some properties that can be deduced from the above proposition are:

Corollary 17.

(i) If D ∈ Rn is a Toeplitz matrix, then its reflected matrix is the same Toeplitz matrix.
(ii) If D ∈ Rn, (DR)R = D.
(iii) If D, C ∈ Rn, then (DC)R = CRDR.
(iv) (DR)−1 = (D−1)R.
(v) If D ∈ Rn is such that its canonical representative is D = Tn(f | g), then the 

representative of DR is Tn(l | A) where

A =
n−1∑
k=0

akx
k, l =

n∑
k=0

⎛
⎝ k∑

j=0
dn,n−k−jaj

⎞
⎠xk.

(vi) If D ∈ Rn then DDR is a Toeplitz matrix, i.e., DDR = Tn(h | 1).
(vii) D−1 = DRTn

(
1
h

∣∣∣1).



250 A. Luzón et al. / Linear Algebra and its Applications 491 (2016) 239–262
Proof. (i) If D = (di,j)i,j=0,···,n is a Toeplitz matrix then there are f0, f1, · · · , fn ∈ K

with di,j = fi−j . So, if DR = (ci,j)i,j=0,···,n then ci,j = dn−j,n−i = fn−j−n+i = fi−j .
(ii) It is obvious.
(iii) and (iv) are straightforward.
(v) Following the previous proposition we have that the second parameter is the A

defined above. And, following as in the proof of Theorem 5 we obtain the first parameter l

l = Tn

((
n∑

k=0

dn,n−kx
k

)(
n−1∑
k=0

akx
k

))
.

(vi) Let D = Tn(f | g) and using (v) we get DR = Tn(l | A) where g(x)A
(

x

g(x)

)
= 1

by (3) in Theorem 5, then DDR = Tn(h | 1) which is a Toeplitz matrix.
(vii) Since DDR = Tn(h | 1) then DDRTn

( 1
h | 1

)
= Tn(1|1) which is the correspond-

ing identity. Consequently D−1 = DRTn

(
1
h

∣∣∣1). �
In Definition 3 we constructed Pn(D) by deleting its last row and its last column, 

analogously, we can consider Qn(D) by deleting its first row and its first column.

Definition 18. Let D = (di,j)i,j=0,···,n+1 ∈ Rn+1. We define Qn : Rn+1 → Rn by

Qn((di,j)i,j=0,···,n+1) = (di,j)i,j=1,···,n+1 = (d̃i,j)i,j=0,···,n with d̃i,j = di+1,j+1.

The fact that Qn(D) ∈ Rn, when D ∈ Rn+1, is an immediate consequence of Theo-
rem 5. Concretely, since the columns of any Riordan matrix T (f | g) form a geometric 
progression in K[[x]] with common ratio xg and first term fg , then

Qn(Tn+1(f | g)) = Tn

(
f

g

∣∣g) .

Moreover, Qn is a group homomorphism because all matrices are lower triangular. 
Therefore, we get the following result:

Proposition 19. (Dn)n∈N ∈ lim←−−{(Rn)n∈N, (Pn)n∈N} if and only if DR
n = Qn(DR

n+1) for 
all n ∈ N.

Theorem 20. Let T (f | g) be any Riordan matrix. Then

(i) The sequence (TR
n (fgn+1 | g))n∈N is a Riordan matrix. In fact, the above sequence, 

as an element in the inverse limit of {(Rn)n∈N, (Pn)n∈N}, is the complementary 
Riordan matrix of T (f | g) denoted in [5] by T⊥(f | g).
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(ii) The sequence (TR
n (fgn | g))n∈N is a Riordan matrix. In fact, the above sequence, as 

an element in the inverse limit of {(Rn)n∈N, (Pn)n∈N}, is the dual Riordan matrix 
of T (f | g) denoted in [5] by T♦(f | g).

Proof. (i) To see that (TR
n (fgn+1 | g))n∈N is a Riordan matrix, i.e. it is an element 

in the inverse limit lim←−−{(Rn)n∈N, (Pn)n∈N}, we call Dn = TR
n (fgn+1 | g). So, DR

n =
Tn(fgn+1 | g). By the description of Qn we obtain

Qn(Tn+1(fgn+2 | g)) = Tn

(
fgn+1∣∣g)

and by Proposition 19 we get the desired result. The proof of (ii) is analogous. �
Remark 21. In fact, any [m]-complementary in sense of [5] can be described as above.

The following corollary is now obvious

Corollary 22. For every Riordan matrix T (f | g) and for every n ∈ N we have

TR
n (f | g) = T♦

n

(
f

gn
∣∣g) ,

or equivalently

T♦
n (f | g) = TR

n

(
fgn

∣∣g) , T⊥
n (f | g) = TR

n

(
fgn+1∣∣g) ,

TR
n (f | g) = T⊥

n

(
f

gn+1

∣∣g) .

Example 23.

P5 = Π5(T (1 | 1 − x)),

PR
5 = Π5

(
T♦

(
1

(1 − x)5
∣∣∣1 − x

))
= Π5(T ((1 + x)6 | 1 + x).

4.2. A special constant inverse sequence: from infinite to bi-infinite

As we showed the Riordan group is, in some sense, the asymptotic behavior of the 
inverse sequence {(Rn)n∈N, (Pn)n∈N}. Similarly, we can study the asymptotic behavior 
of the sequence of homomorphisms (Qn)n∈N. In this sense, using the definition of Qn we 
easily have:

Proposition 24. There is a unique isomorphism Φ : R → R such that Πn◦Φ = Qn◦Πn+1

for every n ∈ N. In fact it is defined by Φ(T (f | g)) = T
(

f | g
)
.
g
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This isomorphism was first used in [5].
Obviously Φ−1(T (f | g)) = T

(
fg

∣∣g). We are now going to use this result to get the 
bi-infinite representation of the Riordan group found in [4] by a different approach and 
using again the concept of inverse limit of an inverse sequence.

Proposition 25. The Riordan group R is isomorphic to the lim←−− {(Gn)n∈N, (Ψn)n∈N}, 
where Gn = R and Ψn = Φ for every n ∈ N.

Proof. Let Γ = {(Gn)n∈N, (Ψn)n∈N} be the inverse sequence of groups where Gn = R
for every n ∈ N and Ψn : Gn+1 → Gn is such that Ψn = Φ for every n ∈ N.

Consider τm : lim←−− Γ → Gm be the projection. Let us prove that τ0 : lim←−− Γ → G0 is, 
in our case, a group isomorphism. Note first that α ∈ lim←−− Γ if and only if there is a 
T (f | g) ∈ R such that

α =
(
· · · , T (fgn | g

)
, · · · , T (fg2 | g), T (fg | g), T (f | g)

)
.

It is now obvious that τ0 is onto. To prove the injectivity, take α ∈ ker τ0 then τ0(α) =
T (1 | 1). Consequently, α =

(
· · · , T (1 | 1), · · · , T (1 | 1), T (1 | 1), T (1 | 1)

)
which is the 

neutral element in lim←−− Γ. �
The above construction allows us to get the following representation of the elements 

in the Riordan group.
Let α ∈ lim←−− Γ and T (f | g) ∈ R = G0 be such that T (f | g) = τ0(α) then

lim←−− Γ · · · → R Φ−−→ R · · · → R Φ−−→ R Φ−−→ R = G0

α =
(

· · · T (fgn+1 | g), T (fgn | g), · · · T (fg2 | g), T (fg | g), T (f | g)
)
.

The 0-approximation of α is 
(
T (f | g)

)
. The 1-approximation is 

(
T (fg | g), T (f | g)

)
with Φ(T (fg | g)) = T (f | g) is obtained from the 0-approximation adding adequately a 
column (to the left) and a row. The fact that Φ(T (fg | g)) = T (f | g) is also encoded in 
the above matrix. This means that deleting the first row and the first column we obtain 
the 0-approximation.

In a similar way we can associate a unique matrix, just the matrix T (fgn | g), to the 

n-approximation which is 
(
T (fgn | g), T (fgn−1 | g), · · · , T (f | g)

)
with Φ(T (fgk | g)) =

T (fgk−1 | g) for k = 1, · · · , n. Then now, it is very natural to identify α with the bi-infinite 
matrix B(f | g) = (dn,k)n,k∈Z where

dn,k = [xn−k]fg−k−1 n, k ∈ Z, n ≥ k.

Moreover the product of two elements of lim←−− Γ converts to the usual row-by-column 
product of the corresponding bi-infinite representations.
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The 0-column and the 0-row are fixed by the rule above and it only depends on the 
canonical embedding of T (f |g) into B(f |g). Note that the assignment B(f |g) → T (f |g)
is a group isomorphism because is just the action of the projection τ0.

B(f |g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
· · · d−3,−3
· · · d−2,−3 d−2,−2
· · · d−1,−3 d−1,−2 d−1,−1
· · · d0,−3 d0,−2 d0,−1 d0,0
· · · d1,−3 d1,−2 d1,−1 d1,0 d1,1
· · · d2,−3 d2,−2 d2,−1 d2,0 d2,1 d2,2

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where dn,k, n, k ∈ Z, are those described above.
Note that if we have a Toeplitz matrix T (f | 1) with f =

∑
n≥0 fnx

n then B(f | 1) =
(dn,k)n,k∈Z is such that dn,k = 0 if n < k and dn,k = fn−k if n ≥ k.

Related to the notation used in [4] we have the following relation:

B(f | g) = χ

(
f(x)
g(x) ,

x

g(x)

)
or χ(d(x), h(x)) = B

(
xd

h

∣∣∣x
h

)
.

Remark 26. It is clear that Φ induces an isomorphism, denoted again by Φ, in the 
bi-infinite Riordan group given by

Φ(B(f | g)) = B

(
f

g

∣∣g) ,

or equivalently Φ((dn,k)n,k∈Z) = (dn+1,k+1)n,k∈Z.

4.3. Approximating bi-infinite matrices by finite ones

At this time we are going to achieve the bi-infinite representation of the Riordan group 
in a new way, using only finite Riordan matrices.

Given B(f | g) above, we define the sequence of finite matrices γn(B(f | g)) =
T2n(fgn | g) for n ≥ 0. For example

· · · , γ1(B(f | g)) =

⎛
⎜⎝ d−1,−1

d0,−1 d0,0
d1,−1 d1,0 d1,1

⎞
⎟⎠ , γ0(B(f | g)) =

(
d0,0

)
. (5)

Note that if n ≥ 0

γn = Q2n ◦ P2n+1 ◦ γn+1 = P2n ◦Q2n+1 ◦ γn+1.
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Analogously, given B(f | g) we define the sequence of finite matrices δn(B(f | g)) =
T2n+1(fgn | g)) for n ≥ 0. For example

· · · , δ1(B(f | g)) =

⎛
⎜⎜⎜⎝

d−1,−1
d0,−1 d0,0
d1,−1 d1,0 d1,1
d2,−1 d2,0 d2,1 d2,2

⎞
⎟⎟⎟⎠ , δ0(B(f | g)) =

(
d0,0
d1,0 d1,1

)
.

Moreover for n ≥ 0

δn = Q2n+1 ◦ P2n+2 ◦ δn+1 = P2n+1 ◦Q2n+2 ◦ δn+1,

then we obtain

Proposition 27.

(i) The bi-infinite representation of the Riordan group R jointly with the projections 
(γn)n≥0 is the inverse limit of the inverse sequence {(R2n)n≥0, (sn)n≥0} where sn =
Q2n ◦ P2n+1 = P2n ◦Q2n+1.

(ii) The bi-infinite representation of the Riordan group R jointly with the projections 
(δn)n≥0 is the inverse limit of the inverse sequence {(R2n+1)n≥0, (rn)n≥0} where 
rn = Q2n+1 ◦ P2n+2 = P2n+1 ◦Q2n+2.

Proof. To prove (i) in Proposition 27, suppose (D2n)n≥0 ∈ lim←−− {(R2n)n≥0, (sn)n≥0}. 
This means that sn(D2n+2) = D2n. We have to find a Riordan matrix T (f | g) =
(Cn)n≥0 ∈ lim←−− {(Rn)n≥0, (Pn)n≥0} such that (D2n)n≥0 = B(f | g). Choose C0 = D0. 
Since s0(D2) = D0 and s0 = P0 ◦Q1 taking C1 = Q1(D2) we get that P0(C1) = C0. For 
the next step, let us consider the equalities s1(D4) = D2, s1 = P2 ◦Q3 and C1 = Q1(D2)
then Q1(P2 ◦ Q3)(D4) = C1. As Q1 ◦ P2 = P1 ◦ Q2 then P1(Q2(Q3(D4))) = C1 so we 
take C2 = Q2(Q3(D4)). Proceeding by induction, consider

Cn+1 = Qn+1 ◦Qn+2 ◦ · · · ◦Q2n+1(D2n+2).

Since sn(D2n+2) = D2n, sn = P2n ◦ Q2n+1, Qm ◦ Pm+1 = Pm ◦ Qm+1 for every m ∈ N

and

Cn = Qn ◦Qn+1 ◦ · · · ◦Q2n−1(D2n)

we get that Pn(Cn+1) = Cn. Now, (5) above, allows us to obtain any B(f | g) as 
an element in lim←−− {(R2n)n≥0, (sn)n≥0}. Finally, by the construction, the assignment 
B(f | g) → (D2n)n≥0 is an isomorphism. Moreover, D2n = T2n(fgn | g).

To prove (ii) we proceed analogously starting at C0 = P1(C1) where C1 = D1. �
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Remark 28. It is interesting to be aware of the action of sn and rn, which corresponds 
just to delete all the boundary coefficients in the corresponding finite matrices.

Note that (i) and (ii) above are each independent on the other, because the groups 
and the bonding maps in each one are different to the other.

5. Symmetries in bi-infinite Riordan matrices: some applications

In [5] we introduced, among other things, the concept of complementary and dual 
Riordan matrices. It is natural to look for some symmetries related to these concepts. 
In particular, we would like to clarify the following two problems

(P1) D = D⊥ D ∈ R.

(P2) D = D♦ D ∈ R,

that is, to characterize Riordan matrices which coincide with their complementary arrays 
(P1) and their dual arrays (P2). These problems will be solved in Theorem 33 and 
Theorem 37, respectively.

What we are going to do first is to reinterpret these problems in terms of two different 
reflections of bi-infinite Riordan matrices. To accomplish this task, we will use the odd 
reflection BRo(f | g) and the even reflection BRe(f | g) of a bi-infinite Riordan matrix 
B(f | g). The existence of these reflections is explained in the following result:

Theorem 29.

(i) Let B(f | g) = (D2n)n≥0 ∈ lim←−− {(R2n)n≥0, (sn)n≥0} then

(DR
2n)n≥0 ∈ lim←−− {(R2n)n≥0, (sn)n≥0}

and it represents a bi-infinite Riordan matrix,

(DR
2n)n≥0 = BRo(f | g).

Moreover

BRo(f | g) = B
(
A(A− xA′)f

( x

A

)
| A

)
,

where A is the A-sequence of B(f | g).
(ii) Let B(f | g) = (D2n+1)n≥0 ∈ lim←−− {(R2n+1)n≥0, (rn)n≥0} then

(DR
2n+1)n≥0 ∈ lim←−− {(R2n+1)n≥0, (rn)n≥0}

and it represents a bi-infinite Riordan matrix,

(DR
2n+1)n≥0 = BRe(f | g).
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Moreover

BRe(f | g) = B
(
A2(A− xA′)f

( x

A

)
| A

)
,

where A is the A-sequence of B(f | g).

Proof. (i) Let us denote by ρn : Rn → Rn given by ρn(D) = DR, then ρ2n ◦ sn =
sn ◦ ρ2n+2 so (DR

2n)n≥0 ∈ lim←−− {(R2n)n≥0, (sn)n≥0} and consequently it represents a new 
bi-infinite Riordan matrix B(l | m). Using the representation given in Proposition 27
and the formula given for the dual of a Riordan matrix in p. 81 in [5] we get the values 
of l and m.

(ii) It is completely analogous to (i) because in this case (DR
2n+1)n≥0 ∈

lim←−− {(R2n+1)n≥0, (rn)n≥0} also represents B(A2(A − xA′)f
(
x
A

)
| A). �

Note that the words odd and even in the above definitions of reflections are related 
to the parity of the finite matrices used in each of the inverse sequences. Moreover, 
Φ(BRe(f | g)) = BRo(f | g). We call a bi-infinite matrix even-symmetric if BRe(f | g) =
B(f | g). Analogously we define the odd-symmetric matrices.

Remark 30. Observe that, using the notations analogous to that in [5], we have

BRo(f | g) = B♦(f | g), BRe(f | g) = B⊥
(

f

g2

∣∣ g) .

Moreover BRo(f | g) = BRe(fg | g).

Proposition 31.

(i) T⊥(f | g) = T (f | g) if and only if B(fg | g) is an even-symmetric matrix.
(ii) T♦(f | g) = T (f | g) if and only if B(f | g) is an odd-symmetric matrix.

Proof. (i) Consider the matrix B(f | g). From this, we obtain B(fg | g) = (D2n+1)n∈N ∈
lim←−− {(R2n+1)n≥0, (rn)n≥0} starting at

D1 =
(
d−1,−1
d0,−1 d0,0

)
.

Obviously, if B(fg | g) is even-symmetric, then T⊥(f | g) = T (f | g). To prove the 
converse, suppose T⊥(f | g) = T (f | g). It is clear that D1 = DR

1 because T0(f | g) =
T⊥

0 (f | g). Consequently g0 = 1. In a similar way
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D3 =

⎛
⎜⎜⎜⎝

d−2,−2
d−1,−2 d−1,−1
d0,−2 d0,−1 d0,0
d1,−2 d1,−1 d1,0 d1,1

⎞
⎟⎟⎟⎠

if T1(f | g) = T⊥
1 (f | g), and r0(D3) = D1 therefore we only need to prove that 

d0,−2 = d1,−1 to conclude that D3 = DR
3 . Since

d0,−2 = g0d1,−1 + g1d0,−1 + g2d−1,−1

d1,−1 = a0d0,−2 + a1d0,−1 + a2d0,0

and g = A because T⊥(f | g) = T (f | g) we obtain the result. Proceeding analogously 
by induction we finally get that B(fg | g) is even-symmetric.

(ii) In this case B(f | g) = (D2n)n∈N ∈ lim←−− {(R2n)n≥0, (sn)n≥0} and we start at

D0 =
(
d0,0

)
.

Of course, if B(f | g) is odd-symmetric, then T♦(f | g) = T (f | g). We sketch the proof 
of the converse. Suppose T♦(f | g) = T (f | g), then T♦

n (f | g) = Tn(f | g) for all n. 
From this we have D0 = DR

0 and D2 = DR
2 . Using induction and similar arguments as 

in the previous case, we get the desired result. �
We also need the following result to solve (P1) and (P2).

Proposition 32. Let Dm = (di,j) ∈ Rm be such that Dm = DR
m with m ≥ 1.

(a) If m is odd then Dm is a Toeplitz matrix.
(b) If m is even and d0,0 = d1,1, then Dm is a Toeplitz matrix.

Proof. To prove (a) we proceed by induction. Let m = 2n + 1.
If n = 0 then

(
d0,0
d1,0 d1,1

)
=

(
d1,1
d1,0 d0,0

)
, ⇒ d0,0 = d1,1, ⇒ g0 = 1.

If n = 1, take

D =

⎛
⎜⎜⎜⎝

d0,0
d1,0 d1,1
d2,0 d2,1 d2,2
d d d d

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

d3,3
d3,2 d2,2
d3,1 d2,1 d1,1
d d d d

⎞
⎟⎟⎟⎠ = DR.
3,0 3,1 3,2 3,3 3,0 2,0 1,0 0,0
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So

r0(D) =
(
d1,1
d2,1 d2,2

)
= r0(D)R

and consequently g0 = 1. Since d1,0 = d3,2, d1,0 = d2,1 + g1d2,2, d2,1 = d3,2 + g1d2,2

and d1,1 = d2,2 we get d1,0 = d2,1 = d3,2 and g1 = 0. Proceeding by the same way from 
the equality d2,0 = d3,1 we get g2 = 0. Suppose now that this is true for n and consider 
D ∈ R2n+3 with D = DR, we know that rn(D) ∈ R2n+1 satisfies rn(D) = rn(D)R. Hence 
g0 = 1 and gi = 0 for all i = 1, · · · , 2n. Since D = DR, d2n+1,0 = d2n+3,2 and D ∈ R2n+3. 
Consequently d2n+1,0 = d2n+2,1 + g2n+1d0,0 and d2n+2,1 = d2n+3,2 + g2n+1d0,0. This 
implies that g2n+1 = 0. Moreover, since d2n+2,0 = d2n+3,1 and d2n+2,0 = d2n+3,1 +
g2n+2d0,0, we obtain g2n+2 = 0 and D is a Toeplitz matrix. Finally, putting all above 
together we have g0 = 1, gn = 0 for all n ≥ 1 and then T (f | g) is a Toeplitz matrix. To 
prove (b), we note that the condition d0,0 = d1,1, implies that g0 = 1 and we proceed in 
a similar way as in (a). �

Now, the solution of the (P1) problem is given by

Theorem 33. T⊥(f | g) = T (f | g) if and only if T (f | g) is a Toeplitz matrix.

Proof. We only need to prove that if T⊥(f | g) = T (f | g) then T (f | g) is a Toeplitz 
matrix. From Proposition 31 we get that B(fg | g) is even symmetric. According to 
Proposition 27, if δn(B(fg | g)) = D2n+1 then D2n+1 = DR

2n+1. Now using Propo-
sition 32(a) we obtain that D2n+1 is a Toeplitz matrix for all n. This means that 
B(fg | g) is a bi-infinite Toeplitz matrix. So, in particular, T (f | g) is a Toeplitz ma-
trix. �

The previous theorem allows us to prove the following result concerning the resolution 
of functional differential equations.

Corollary 34. Let f, ω ∈ K[[x]] with f(0) �= 0, ω(0) = 0 and ω′(0) �= 0 where ω′(x) is the 
usual derivative of ω in K[[x]]. The solutions of

{
x2f(ω(x))ω′(x) = f(x)ω2(x),
ω(ω(x)) = x

(6)

in K[[x]] are just ω(x) = x and f arbitrary with f(0) �= 0.

Proof. It is clear that ω(x) = x and f arbitrary with f(0) �= 0 is a solution of (6). 
Suppose now that the pair (ω, f) is any solution of (6), then there is a series g ∈ K[[x]]
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with g(0) �= 0 such that ω = x
g . Consider the Riordan matrix T (f | g). The first equation 

in (6) means that A = g, being A the corresponding A-sequence. The second equation 
converts to (A − xA′)f

(
x
A

)
= f(x). This implies T⊥(f | g) = T (f | g) and then it is 

a Toeplitz matrix. Consequently g ≡ 1, equivalently ω(x) = x, and f arbitrary with 
f(0) �= 0. �
Corollary 35. Let T (f | g) be a Riordan matrix. Then, T (f | g) is Toeplitz if and only if 
TR
n (f | g) = Tn(f | g) for all n ∈ N.

Proof. If T (f | g) is a Toeplitz then, obviously, TR
n (f | g) = Tn(f | g) for all n ∈ N. The 

reciprocal is also obvious from Proposition 32. �
Remark 36. Note that, in general, (TR

n (f | g))n∈N does not represent any Riordan matrix.

We will finish this paper treating (P2) whose answer is very different to that of (P1). 
Our result is

Theorem 37. For K = R, C, the solutions of (P2) are the Riordan matrices T (f | g) such 
that

A(x) = g(x), f(x) = λ
√

g(x)(g(x) − xg′(x))eφ
(
x, x

g(x)

)

with λ ∈ K
∗ and φ(x, z) is a symmetric bivariate power series with φ(0, 0) = 0. If in 

addition g(0) = 1, then T (f | g) is a Toeplitz matrix.
In other words, the Riordan array R(d(x), h(x)) is self-dual if and only if h is self 

inverse for the composition operation and

d(x) = λ

√
x
h′(x)
h(x) e

φ(x,h(x))

for λ, and φ as above. Moreover, if h′(0) = 1 then h(x) = x.

Proof. T♦(f | g) = T (f | g) if and only if

g(x) = A(x) and A(x)(A(x) − xA′(x))f
(

x

A(x)

)
= f(x)

if and only if

ω(ω(x)) = x, and f(x) =
(

x
)3

ω′(x)f(ω(x))

ω(x)
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where ω(x) = x

g(x) . This is equivalent to

f(x)
f(ω(x)) =

(
x

ω(x)

)3

ω′(x) ⇔ log(f(x)) − log(f(ω(x))) = log
((

x

ω(x)

)3

ω′(x)
)

where the last equality has full meaning for formal power series f with f(0) > 0 in real 
case and f(0) �= 0 in the complex case.

Consider the linear equation on y(x)

y(x) − y(ω(x)) = h(x), with h(x) = log
((

x

ω(x)

)3

ω′(x)
)
. (7)

Since h(x) = −h(ω(x)), then 
1
2h(x) is a particular solution. To get the general so-

lution, note that the corresponding homogeneous equation has as general solution 
yH(x) = φ(x, ω(x)) where φ(x, z) is a symmetric bivariate formal power series. It is 
clear that such a φ(x, ω(x)) is a solution. On the other hand if yH(x) is a solution, 
then

φ(x, z) = yH(x) + yH(z)
2

satisfies all needed conditions. So the general solution of (7) is

y(x) = 1
2h(x) + φ(x, ω(x)) with φ symmetric.

Note also that for preciseness reasons in the final formula, we can suppose φ(0, 0) = 0. 
Since log(f(x)) is a solution of (7) then

f(x) = λ
√

g(x)(g(x) − xg′(x))eφ
(
x, x

g(x)

)

with λ ∈ K
∗.

The remaining case to prove is K = R and f(0) < 0. We proceed analogously changing 
f by −f and we get the same result.

Note that for solution of (P2), (g(0))2 = 1. If g(0) = 1, using Proposition 31(ii) and 
Proposition 32(b) we obtain that T (f | g) is a Toeplitz matrix. �

A consequence of the above result is a way to construct odd-symmetric bi-infinite 
Riordan matrices

Example 38. Take g(x) = 2x − 1 and φ(x, z) = 0. B(
√

1 − 2x | 2x − 1) is then odd-
symmetric. Below we write
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γ3(B(
√

1 − 2x | 2x− 1)) = B3(
√

1 − 2x | 2x− 1) = T6(
√

1 − 2x(2x− 1)3 | 2x− 1)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−5 −1

15/2 3 1
−5/2 −3/2 −1 −1
−5/8 −1/2 −1/2 −1 1
−3/8 −3/8 −1/2 −3/2 3 −1
−5/16 −3/8 −5/8 −5/2 15/2 −5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 39. In general, if we take g(x) = αx − 1, see [7], φ(x, z) = 0 and we proceed as 
in the previous example we get that for any λ ∈ K

∗

B(λ
√

1 − αx | αx− 1) α ∈ K

is a family of odd-symmetric bi-infinite matrices and then

T (λ
√

1 − αx | αx− 1) α ∈ K

or equivalently, taking μ = −λ,

R
(

μ√
1 − αx

,
x

αx− 1

)

is a family of self-dual matrices. The case μ = 1 and α = 4 was first detected as self-dual 
in [5, p. 82].
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