
1

Exploring Anomaly Detection in Systems of Systems
Author 1
Affiliation

Address

Address
mail

Author 2

Affiliation

Address

Address
mail

Author 3
Affiliation

Address

Address
mail

ABSTRACT

The loosely coupled integration of heterogeneous existing

systems, together with the ongoing replacement of monolithic

systems design with Off-The-Shelf (OTS) approaches, promotes a

new architectural paradigm that is called System of Systems

(SoS). In SoSs, independent and autonomous constituent systems

(CSs) cooperate to achieve higher-level goals. Some inherent

challenges are that boundaries of the SoS may be partially

unknown and the components may be governed by different

authorities, affecting the ability to observe the system as a whole.

Further, novel challenges related to dependability and security are

introduced, such as the detection of emerging and possibly

unexpected behaviors resulting from the interconnection of

previous disconnected CSs. In this paper we explore these

challenges questioning if a novel mindset to error, malware or

intrusion detection is needed when dealing with SoSs. With the

support of a state of the art review, we first identify the design

principles and the performance targets of a monitoring and

anomaly detection framework. Then we discuss these principles at

the light of SoS fundamentals. Ultimately, we propose an

approach to design a monitoring and anomaly detection

framework for SoSs aggregating i) monitoring approaches ii) SoS

properties, and iii) anomaly detection techniques.

CCS Concepts

• Security and privacy ➝ Intrusion/anomaly detection and

malware • Security and privacy ➝ Distributed systems

security • Computer systems organization ➝ Peer-to-peer

architectures • Computer systems organization ➝ Reliability

Keywords

Systems-of-Systems; Anomaly Detection; Monitoring;

1. INTRODUCTION
In recent years, the architectural paradigm of System of Systems

(SoS) [28], [24], [31] have been continuously growing in

popularity. Systems of Systems are built through the composition

of both new and already existing Constituent Systems (CSs),

which are independent and operable. The purpose of integrating

such CSs is to provide new and enhanced services, not achievable

by the single CS in isolation. This introduces a macro-level, at

which the SoS operates, and micro-levels which distinguish the

operation of the individual CS. Emerging phenomena, that are not

visible at the micro-level, can happen at the macro-level: such

phenomena may be unexpected and potentially detrimental for the

SoS [25]. To explain this concept, we consider the interaction

between two processes that ends in a deadlock i.e., a complete halt

of the system that holds forever. The risk of a deadlock should

not be considered at the micro-level (i.e., the level of the

individual processes). Nevertheless, a causal dependency between

the totality of the processes – the macro-level - and that lead to a

deadlock can be observed. Generalizing these concepts, the

combination of different and independent CSs may result in an

SoS with emergent phenomena, that the individual CSs may

ignore or may not be ready to manage [25]. Further, SoSs are

characterized by properties as dynamicity, interoperability,

evolvability.

To satisfy dependability and security requirements, it is thus

evident that SoSs require solutions to perform error or attack

detection despite the SoS properties discussed above. In other

words, it is required to infer the status of the SoS at the macro-

level through observing (part of) the CSs at the micro-level. Such

ability should also cope with governance aspects involving CSs,

which may be owned by third parties or may be OTS components.

To achieve such goals, anomaly-based detection techniques [1],

[17], [18] are a candidate solution. The main advantages of

adopting anomaly-based detection techniques lie in their

suitability for dynamic and complex systems. In fact, online

anomaly detection techniques are able to adapt their behaviour

depending on the current context of the system, without requiring

huge periods of training [4], [17], [3]. Further, alternative

solutions as fingerprint-based detection techniques are not suitable

to identify unexpected behaviours that were not described in

advance and that can result from the interoperation of CSs as

explained above. This means that anomaly detection is very

suitable for SoS, where dynamic sets of CSs collaborate to

achieve various targets through time.

Looking at available solutions, it is noticeable that enterprise

frameworks, which allow checking if the observed behaviour is

normal or anomalous, exist [20]. In particular, enterprise solutions

such as Nagios [21], Ganglia [22] or Zenoss [23] allow the user to

setup both monitoring and data analysis strategies. However, these

enterprise frameworks have common lacks that can impact their

suitability for SoS. In particular, they i) do not allow executing

sophisticated data analysis (e.g., anomaly detection techniques),

while they always allow to setup static thresholds, ii) report the

anomaly alerts as they happen without trying to correlate them,

and iii) use a monitoring strategy that is not always suitable for

the micro-macro level distinction we have in SoSs. Moreover,

changes or updates at the application level call for a manual

reconfiguration of such a monitoring system that is consequently

not suitable for dynamic contexts.

Summarizing, the findings of the paper are the followings: i)

identify the main design aspects behind a monitoring and anomaly

detection framework, ii) explore frameworks for anomaly

detection that tackle SoS-related challenges and iii) propose high-

level guidelines for performing anomaly detection in SoSs.

2

The paper is organized as follows. Section 2 lists the state-of-the-

art contributions regarding SoSs, while Section 3 motivates the

study and traces the research direction that is expanded in the rest

of the paper. Afterwards, we define the architectural (Section 4)

and performance targets (Section 5). Section 6 tackles together

SoSs and anomaly detection, ultimately defining design directions

for a monitoring and anomaly detection framework for SoSs.

Section 7 concludes the paper and explores future works.

2. BASICS ON SYSTEMS-OF-SYSTEMS

2.1 Definition and Classification
As remarked in [28], several definitions of SoS have been

proposed in the literature according to real-world applications in

different areas, including dependability [6] and security [10].

According to [31], we consider that “an SoS is an integration of a

finite number of Constituent Systems which are independent and

operable, and which are networked together for a period of time

to achieve a certain higher goal.” Constituent Systems (CSs) can

be existing legacy systems or newly developed components, and

they may include physical objects and humans: a CS is an

autonomous subsystem of an SoS, consisting of computer systems

and possibly of controlled objects and/or human role players that

interact to provide a given service [41].

An SoS may have different degrees of control and coordination

[32] identifying four categories, namely directed, acknowledged,

collaborative and virtual. A directed SoS is managed by a central

authority providing a clear objective to which each CS is

subordinate; the CSs that form the SoS may operate

independently, but they are subordinated to the central purpose.

An acknowledged SoS has a clear objective but the CSs might be

under their own control thus funding an authority in parallel with

the SoS. In a collaborative SoS, the central management

organization does not have coercive power and CSs act together to

address shared common interests. Finally, a virtual SoS has no

clear objective and its CSs do not even know one another.

The degree of control and coordinated management of the CSs

that form the SoS is relatively tight in a directed SoS, but it gets

looser as we move to the acknowledged, collaborative and finally

virtual category. This will affect the monitoring approaches that

we will discuss in Section 4.2.

2.2 Viewpoints for Dependable and Secure

SoSs
The challenges posed to design, develop and maintain dependable

and/or secure SoSs can be summarized as viewpoints [28], [29],

[30] i.e., dimensions of analysis for such SoS. In particular, we

will expand and focus on the viewpoints architecture, dynamicity

and evolution, emergence, governance, time, dependability and

security.

Architecture. The architecture of an SoS can be defined in terms

of heterogeneous CSs interacting each other through cyber or

physical channels. Relied Upon Message Interfaces (RUMIs) and

Relied Upon Physical Interfaces (RUPIs) [37] establish the

boundaries between interacting CSs and the roles for their

interactions. RUMIs establish the cyber data that are exchanged

and the timing of message exchange, while RUPIs enable the

physical exchange of things or energy among CSs.

Architectures of dependable and secure applications can be

characterized as mixed-criticality architectures, where different

parts of the system have different dependability and security

requirements. To cope with this issue, in [28] authors propose

architectural hybridization [24], where different subsets of

requirements are satisfied in different parts of the target system.

Evolution and Dynamicity. Dynamicity and evolution are two

important challenges of SoS and they have effects on security and

dependability requirements. Dynamicity refers to short-term

changes of the SoS e.g., in response to environmental variations

or components failures. Evolution, instead, refers to long-term

changes that are required to accomplish variation to the

requirements in face of an ever-changing environment [31], [28].

Emergence. An emergent phenomenon manifests when CSs act

together, and the emergent phenomenon is not observable by

looking at single CSs separately. For instance, if a crowd enters a

narrow alley then it alters its movements, individuals reduce their

pace in order to avoid hitting or getting to close to others in front.

This collaborative behavior does not emerge if we consider

individuals separately: this means that an SoS is not just the sum

of its CSs. Emergence can be expected or unexpected, detrimental

or non-detrimental [25]. Beneficial are for example self-

organization and evolution of biological systems, while

detrimental are for example traffic jams due to the interaction of

single cars. Moreover, emergence can be expected or unexpected.

In particular, detrimental unexpected emergent phenomena may

expose vulnerabilities or lead to novel faults that are consequently

difficult to tolerate [33].

Governance. Distributed ownership of individual components is a

challenge for any complex system [27], which is usually an

ensemble of existing systems, including third-party, OTS or more

in general non-proprietary components. SoS governance is

significantly more complicated and must change to accommodate

the business requirements of an SoS.

Time. In a recent report from the GAO to the US Congress [39] it

is noted that a global notion of time is required in nearly all

infrastructure SoSs, such as telecommunication, transportation,

energy, etc. In large cyber-physical SoSs the availability of a

global sparse time is fundamental to reduce the cognitive

complexity to understand, design and implement SoS [25].

However, CSs typically use unreliable clocks. With respect to

monitoring, this may result in inconsistent timestamps in observed

data, leading to misunderstandings or wrong interpretations. It is

thus relevant that CSs shares a global view of time.

Dependability and Security. SoSs are composable systems, with

a high degree of uncertainty on their boundaries. Since the

environment may unpredictably change, or it may be so various

becoming really hard to model, the whole monitoring and

assessment process can be negatively affected. Monitoring an SoS

means to devise adaptive monitors that are able to cope with

several environments and a variable number of interacting CSs.

3. MOTIVATIONS AND RELATED

WORKS
Summarizing, an SoS is not simply an ensemble of CSs: instead,

CSs individually operating at a micro-level cooperate to provide

new functionalities that emerge at a macro-level [25]. Critical SoS

should avoid or mitigate detrimental emerging phenomena which

can damage the whole system and the connected critical

components. However, if unexpected, emerging phenomena

3

cannot be easily avoided or mitigated through the rules that we set

using our knowledge of the SoS.

Considering the structure of the CSs, which includes physical

objects and humans, it appears that observing all the internals of

CSs to check their behavior may be not possible. Thus, the

monitoring effort should be directed to Relied Upon Message

Interfaces (RUMIs) and Relied Upon Physical Interfaces (RUPIs).

3.1 Novelty
All the issues above call for a monitoring solution that i)

continuously observes the SoS to avoid or mitigate detrimental

phenomena, ii) gathers data of RUMIs and RUPIs or internal data

of CSs where possible, and iii) is able to infer the status of the

properties of the macro-level looking only at data collected at

micro-level. It follows that detection algorithms based on

fingerprints e.g., antiviruses [38], intrusion detectors [36] or

failure predictors [2], may result not adequate for detecting

unexpected phenomena and in general for SoSs due to SoSs

dynamicity.

In such a context, anomaly detection seems one of the most

suitable approaches in detecting unexpected behaviors in dynamic

and complex SoSs. In the security domain, this technique was

proven effective [38] in detecting zero-day attacks, which exploit

unknown vulnerabilities to get into the targeted system. The same

approach is commonly used to detect threats to dependability in

complex systems, also when the system is composed by OTS

components [3]. To the authors’ knowledge, the topic of bringing

anomaly detection into the paradigm of SoS was not explored in

the recent years. Consequently, after expanding the topic of

anomaly detection, in the rest of the paper we will investigate and

explore the characteristics of a monitoring system for SoS, which

runs data analysis features based on anomaly detection. The aim is

to examine how to detect - among all threats and hazards -

unexpected detrimental emerging phenomena.

3.2 Anomaly Detection
As mentioned above, anomaly detectors gained popularity

especially when detection mechanisms such as fingerprint-based,

event logs, heartbeats are not effective [38] e.g., when the

complexity of the system is too high. Antiviruses and intrusion

detectors can detect hazards when they identify a behavior that is

compliant with a known fingerprint of an attacker or a malware,

but they need also rules to detect zero-day attacks or attacks from

unknown adversaries [9]. Moreover, unexpected or previously

unknown system failures can be predicted observing specific

indicators to characterize if the runtime system behavior is

compliant with generic performance expectations [2], [3].

Despite the topic of bringing anomaly detection into SoSs is still

not adequately explored, it is possible to find frameworks where

anomaly detection is applied in complex systems e.g., Service

Oriented Architectures or Cloud environments. In most of these

studies, authors challenged the complexity of their system

designing strategies that can be used as basis for a discussion that

specifically tackles SoSs. In Table 1 we reported a set of

frameworks that performs anomaly detection in complex systems.

Some of them deal with dynamicity and evolution properties of

complex systems [4], [6], [7], while others tackle systems

composed of OTS components [2], [3]. Moreover, a subset of

them [5], [10] is addressing emergent behaviors as side topic. All

the listed frameworks are realized either for dependability [2], [3],

[4], [5], [6], [7], [8] or security [9], [10] purposes.

4. DESIGNING A MONITORING AND

ANOMALY DETECTION FRAMEWORK
Here we explore the main design principles behind a monitoring

framework for anomaly detection, highlighting: i) the purpose of

the framework, ii) the monitoring approach, iii) the indicators to

be monitored, and iv) the anomaly detection technique. In Table 1

we report several frameworks in which authors adopted different

approaches to solve the design challenges discussed in this

Section.

4.1 Purpose of the Framework
As discussed in Section 3, anomaly detection was proven effective

to the purpose of security and dependability. Depending on the

specific needs of the administrator or the owner of the system, a

monitoring framework can be designed to improve security (i.e.,

intrusion detection) or dependability (i.e., error detection, failure

prediction), identifying anomalous behaviors. This choice

influences the whole planning of the framework, defining the

threats we want to detect and affecting the choices of i) the

monitoring and data analysis approach (see Section 4.2), ii) the

monitored indicators (see Section 4.3), and iii) the performance

targets to be achieved (Section 5).

Approaches in existing frameworks (Table 1). The frameworks

in Table 1 use anomaly detection for different scopes.

Frameworks for error detection [4], [5] investigate anomalies to

interrupt the fault-error-failure chain. Failure predictors [2], [3],

[6] assume that errors already manifested in the system, and try to

avoid their escalation in failures or the propagation to unsafe

states. In the security domain, we can classify i) intrusion

detectors [9], [10], which represent a security layer preventing or

blocking possible malicious attacks, and ii) malware detectors,

which analyse the system to identify anomalous behaviours due to

malicious modules that are already infecting the system.

4.2 Monitoring and Data Analysis

Approaches
Several approaches [14], [15], [20] can be adopted depending on

where we put the data analysis engine e.g., anomaly detector.

Moreover, databases containing historical or generic support data

that are used for analyses can be put on i) an external machine

coordinating the detection activities or ii) distributed on the nodes

of the complex system. This results in the following two

monitoring and data analysis approaches.

Centralized: a coordinator manages the monitoring and the data

analyses. The coordinator also keeps track of historical or support

data to assist the data analyses. Monitored data is sent from the

CSs to the coordinator, which analyses them and alerts the

administrator if anomalies are detected.

Distributed: The coordinator only provides to CSs policies or

rules for data analyses e.g., thresholds or parameters of the

anomaly detector, allowing the autonomous CSs to share a

common core of parameters for data analysis. With this approach,

the coordinator is not a bottleneck; instead, each CS must allow

running custom tasks that may drain system resources.

Approaches in existing frameworks (Table 1). Depending on

the context, frameworks for anomaly detection can be designed to

centralize or decentralize the heaviest computing operations.

Distributing operations [7], [8] reduces the bottleneck around the

coordinator, but requires well-developed distribution of loads and

4

tasks among the CSs. Nevertheless, anomaly detection

frameworks [9], [10] targeting security do not consider a

distributed data analysis approach. Instead, they prefer sending

collected data to a central elaboration unit. This allows not sharing

parameters of the anomaly detection strategy with all the CSs,

blocking adversaries that want to intercept such communications

in order to read, corrupt or modify such critical parameters.

4.3 Monitored Indicators
Nowadays software is becoming more complex and consequently

a large number of performance indicators e.g., memory usage,

cache hits, packets shared through the network, can be captured

by specific probes at defined time instants. Observing indicators

related to different layers of the system e.g., OS, network, can

provide a more accurate view of the system. The observed data

need to be transmitted and analyzed continuously, affecting the

monitored system and potentially slowdowning its tasks. Thus, it

becomes fundamental to select those indicators that are most

useful to detect anomalies.

In fact, previous research shows that even in a complex system the

set of relevant variables is typically quite small [11]. Moreover,

depending on the specific analyses that will be conducted using

the monitored data, indicators can be classified extracting a

minimum set that allows reaching defined performance scores.

For example, sets of indicators were extracted targeting failure

prediction [12], anomaly detection through invariants [5] and

errors due to software faults [13].

An important remark should be done to consider the requirement

of having all CSs synchronized to a global time. Otherwise, it is

not possible to build a reasonable global time base. This affects

our ability of fusing information coming from different CSs

ultimately providing polluted data to the data analysis modules.

For example, consider the final report about a major power

blackout occurred in parts of the US and Canada in 2003. Here the

authors declare that i) the Task Force’s investigators labored over

thousands of items to determine the sequence of events, and that

ii) the process would have been significantly faster and easier if

there had been wider use of synchronized data recording devices

[40].

Approaches in existing frameworks (Table 1). Most of anomaly

detectors observe performance indicators targeting OS [4], [3], [5]

and network [2], [3], [7], [9] layers. We explain this results as

follows: i) these layers are always present in a complex system,

Table 1: Existing Monitoring and Anomaly Detection Frameworks for Complex Systems

Framework Monitoring Anomaly Detection Performance

Name
Evaluation

Environment
Purpose Approach

Observed

Elements

Targeted

Anomalies
Strategy

Detection

Efficiency
Performance Overhead

ALERT

[7]

Cluster

Environment

Anomaly

Prediction
Distributed

On each host:
IBM System S

and PlanetLab

Processing Time and
Throughtput

anomalies

Decision Tree

Classifier

TPR > 90%,

FPR ~ 0%

Tens of

seconds or

several minutes
lead time

Probes: 1%

load

Detector: 1-2
ms for training

CASPER

[2]

Air Traffic

Control

Failure

Prediction
Centralized Network

Resource (Memory,

I/O) Stress

Hidden Markov
Models

(HMMs)

Precision: 88.5%,
Recall: 75.8%,

FPR: 11.2%

Stress

Prediction:
Memory [20.8,

27] s - I/O

[19.2, 24.9] s

Probes: -

Detector: -

[5]

Distributed

Web Banking

Application

Error
Detection

Distributed

CPU use, memory

use, in/out

network packets

Mis/Reconfiguration,

Denial of Service,

Development faults

Invariants F-Measure: 86%

Upper bound: 1

min. from fault

activation

Probes: -
Detector: -

SEAD [6]
Cloud

Environment
Failure

Detection
Centralized

Dom0 and Xen
Hypervisor

Faults from CPU,

Memory, Disk, and

Network.

Support Vector

Machines

(SVM)

TPR: 92.1%,
FPR: 83.8%

Not Provided
Probes: OTS
Detector: -

TIRESIAS

[3]

Distributed

Environment

Failure

Prediction
Distributed

CPU, Memory,

Context Switch

Performance -

Degrading Faults

Dispersion

Frame

Technique
(DFT)

FPR: 2.5%
Look-Ahead

times in

different setups

Probes: no
overhead

Detector: -

[4]

Service

Oriented

Architectures

Error

Detection
Centralized

OS, JVM and

Network

Software Errors

(Performance

Degradation)

Statistical
Predictor and

Safety Margin

(SPS)

Precision and

Recall: Memory

[33.5, 95.8]% -

Network [50.0,

86.7]%

Evaluation of

each

observation:

(32.10 ± 5.99)

ms

Probes:

150MB
memory,

negligible CPU

stress
Detector: -

[8]
Hadoop,

SILK

Workflow

Error
Detection

Distributed Log Files

Low performance

(i.e., limiting the
bandwidth)

Finite State

Automation
(FSA)

Hadoop FPR:

88%,
SILK FPR: 76%

Not Provided
Probes: -

Detector: -

SSC [10] Web Services
Intrusion

Detection
Centralized

UNIX Proc and

SysInfo, custom
JMX, FS Monitor

DoS attacks

(hPing tool)

Most

Appropriate

Collab. Comp.
Selection

(MACCS)

FPR: 0.11%,

FNR: 0%

Average

Processing
Time:150 ms

Probes: -
Detector:

“minimal CPU

and RAM”

McPAD

[9]
Datasets

Intrusion

Detection
Centralized HTTP Traffic

Generic, Shell-Code

and Polymorphical
CLET attacks

SVM
Detection Rate:

95%

< 0.04 ms per

Payload

Probes:
Synthetic

dataset

Detector: -

5

and ii) enterprise monitoring tools [21], [22] offer probes to

observe these two layers. Moreover, several indicators regarding

the memory and cache management can be retrieved only at OS-

level, because middleware e.g., JVM, application servers such as

Apache Tomcat, act at an higher stack level.

4.4 Anomaly Detection Technique
As highlighted in [1], a key aspect of any anomaly detection

technique is the nature of the input data. Each data instance might

consist of only one attribute (univariate) or multiple attributes

(multivariate). In the case of multivariate data instances, all

attributes might be of same type or might be a mixture of different

data types. The nature of attributes determines the applicability of

anomaly detection techniques. For example, for statistical

techniques [19] specific statistical models have to be used for

continuous and discrete data. Similarly, for nearest-neighbour-

based techniques [18], the nature of attributes would determine

the distance measure to be used. Moreover, when aggregated

measures instead of actual data are provided e.g., distance or

similarity matrix, techniques that require original data instances

such as classification-based techniques [17] are not applicable.

Most of the techniques mentioned above need training data to

learn the characteristics of both normal and anomalous instances,

becoming able to label the data that is monitored at runtime

through the probes. Focusing on SoSs, we observe that these

systems can be characterized by intrinsic dynamicity, often

changing their behaviour and, consequently, the characteristics of

both normal and anomalous behaviours. This calls for a new

training phase, requiring i) to collect train data and ii) to train the

parameters of the chosen techniques. When dynamicity is very

high, this task can overcome the normal activity of the system,

resulting in large periods of unavailability of the anomaly detector

and slowdowning the usual tasks that run on the targeted CS. This

means that anomaly detection techniques that do not need training

data are more suitable because they do not require periods of

unavailability for training [13], [34].

Approaches in existing frameworks (Table 1). Different studies

use different data analysis approaches: as explored in [1], specific

anomaly detection approaches call for a more suitable anomaly

detection algorithm or technique. This results in a wide utilization

of statistical (3 out of 10 in Table 1) and machine learning (5 out

of 10) algorithms, while [5] and [10] respectively scores

anomalies using invariants and component selection. As expanded

in Section 6.4, despite statistical and machine learning worked

very well in the studies reported in Table 1, from a SoS

perspective the usage of these algorithms raises important

concerns that cannot be ignored.

5. PERFORMANCE TARGETS
To guarantee the best support either for dependability or security

purposes, anomaly detectors need to analyze monitored data and

provide their results rapidly and with a low number of wrong

interpretations. Consequently, the notification time, or rather the

time between the observation of system data through probes and

the evaluation of its anomaly degree, should be minimized.

Moreover, an inaccurate evaluation can result in i) false positives,

which can cause the execution of non-required reaction strategies

by the administrator, or ii) missed detections (false negatives),

with possible severe consequences.

Taking into account the following performance targets is

mandatory and it has to be part of the development phase of

anomaly detection frameworks.

5.1 Detection Performance
The performance of the anomaly detection strategy is evaluated

according to the main metrics [16] used in pattern recognition and

information retrieval with binary classification. All of these

measures are based on indexes representing the correct predictions

- true positives (TP), true negatives (TN) – and the wrong ones,

due to missed detections (false negatives, FN) or wrong anomaly

recognitions (false positives, FP). More complex measures based

on the abovementioned ones are precision (also called positive

predictive value), the fraction of retrieved instances that are

relevant, and recall (also known as sensitivity), the fraction of

relevant instances that are retrieved (see Table 2).

Depending on the purposes of the targeted SoS, the reference

metric may change: for example, in systems where false negatives

(i.e., missed detection of an anomaly) can heavily damage the

system, recall is more relevant than precision. Instead, when

detection of anomalies (both TP and FP) calls for expensive

reaction strategies, FP must be minimized, thus emphasizing

precision more than recall.

5.2 Notification time
Another performance index that needs to be addressed is the

notification time, that is the time between the observation of a

snapshot and its evaluation. According to the block definition in

Section 4.2 this quantity is the sum of (see Figure 1):

 observation time (ot), the time slot spent from the
probing system to get system data by the probes;

 probe-monitor transmission time (pmtt), the time needed
to transmit all the observed data to the monitor

 data aggregation time (dat), the time used by the monitor
to aggregate and parse the received data

 storing time (st), time spent from the monitor to store the
aggregated data in the chosen data container;

 monitor-detector transmission time (mdtt), the time
needed to transmit the data aggregated from the monitor
to the anomaly detector tool;

 detection time (dt), the time used from the anomaly
detector to compute its calculations based also on
previously collected historical data;

Table 2: Detection Performance Measures

Measure Formula

True Positives (TP) # of correct anomaly detections

True Negatives (TN) # of correct non-anomaly detections

False Positives (FP) # of wrong anomaly detections

False Negatives (FN) # of missed anomaly detections

Precision (P)

Recall (R)

F-Score

6

 alert time (at), the time needed to deliver the anomaly
alert to the system administrator.

Depending on the chosen monitoring approach, these quantities

can be combined to obtain the notification time (nt) as follows.

Centralized. In this approach, the coordinator machine i) runs the

monitor and the anomaly detector and ii) hosts the database in

which historical and support data are stored. Considering the

anomaly alert as a simple notification e.g., text message or email

the quantities mdtt and at represent negligible instants of time.

Assuming nt as the notification time, in such a context its value is

expressed as the linear combination of the remaining time

quantities:

nt = ot + pmtt + dat + st + dt

Distributed. Monitoring and data analysis logic are placed on the

CSs, while the coordinator supports these activities providing

parameters or rules e.g., set of indicators to monitor, rules for

anomaly detection. Consequently, each CS runs dedicated

modules that can interfere with the tasks that are usually executed

on its CS resulting in a higher intrusiveness level that needs to be

taken into account. Considering that i) data can be stored in the

database simultaneously with the aggregations performed by the

monitor, and ii) the possible alert need to be forwarded to the

coordinator, the nt can be estimated as:

nt = ot + max{dat, st} + dt + at

6. BRINGING ANOMALY DETECTION

INTO SOS DESIGN
After describing the peculiarities of both anomaly detection

frameworks and SoSs, in this section we list potential design

approaches that can bring them together. Moreover, in Table 3,

for each SoS viewpoint, we summarize the approaches for

constructing an anomaly detection framework that can help

adhering with the guidelines of a given viewpoint.

6.1 Purpose of the Framework
Building a framework that effectively uses anomaly detection for

both dependability and security purposes can be a challenging

goal. In fact, frameworks designed for intrusion detection are

strongly dependent from the observation of network usage

indicators. Further, malware oriented detection strategies should

monitor OS attributes to understand if something is already

damaging the system and maybe trying to steal or corrupt critical

data from the hard drive. Regarding dependability monitoring,

performance indicators observed in middleware e.g., thread

number, cache usage and memory management, can reveal the

manifestation of errors at application level that may escalate into

failures in the near future. Regardless the chosen target,

governance aspects play a decisive role in defining i) which CSs

can be instrumented with probes, ii) the communication channels

among them and iii) other general rules that could limit or support

the effectiveness of the anomaly detection technique under

consideration.

6.2 Monitoring and Data Analysis

Approaches
Another key point is related to the architecture of the SoS, and

mainly the characteristics, the roles and the ownerships of each

CS and their interconnections. Monitored data must be labelled

consistently in the whole SoS, since data acquisition through

probes and monitors constitutes the basis for the anomaly

detection process. This should include handling time issues that

can lead to missed synchronizations or wrong timestamps

assigned to each observation. As example, if the targeted SoS is

Table 3: Tackling Viewpoints Targeting Anomaly Detection in SoS

SoS Viewpoint Description of the Technique

Frameworks Proposing or

Implementing the

Technique

Architecture
Consider Architectural Hybridization, i.e., link different CSs or blocks of CSs with a given level of

safety that needs to be accomplished
CASPER [2] (Black Box)

Evolution and

Dynamicity

Make Anomaly Detection able to tune its parameters when an evolution or a configuration change is

detected. Algorithms and strategies for the detection of anomalies should work with poor knowledge

of the history of the system e.g., online machine learning techniques, since this can change very often.
Monitoring support needs to be adaptive as well.

[4], SEAD [6], SSC [10]

Emergence
Adopt models and libraries of anomalies targeting emerging behaviours, e.g., deadlock, livelock,

unwanted synchronization
[5], ALERT [7], SSC [10]

Governance
Difficult to generalize. Communications must be fast enough to provide data observed by the probes to

the monitor and to the anomaly detector, either if the approach is distributed or centralized.
-

Handling Time
Synchronize the clocks with an NTP server. The resulting clock precision is enough to label

timestamps if real-time requirements are not intrinsic of the SoS.
CASPER [2] (Generic clock
synchronization), [4] (NTP)

Dependability and

Security
Build a Multi-Layer monitoring structure connected to adaptive Anomaly Detection modules [4], SEAD [6], SSC [10]

Figure 1: Time quantities through the workflow.

7

under a (Distributed) Denial of Service attack, having an

unsynchronized assignment of timestamps could lead to wrongly

interpret anomalies in each threatened CS, without understanding

the shared cause generating the anomalies.

More in general, CSs can perform tasks with heterogeneous levels

of criticality. It follows that depending on the criticality of each

CS the monitoring and data analysis approach must change,

adopting an architectural hybridization [24] that allows checking

more carefully the CSs that are responsible for the most critical

tasks. In particular, we can envision an hybrid monitoring

approach which i) runs a centralized coordinator that collects and

analyzes data coming from critical CSs, and ii) provides a set of

parameters or rules for the anomaly detection algorithms that will

be executed directly in the CSs that do not execute critical tasks.

This allows monitoring critical CSs without burdening the

centralized coordinator, since it does not need to analyze data

observed on less critical CSs. This choice also impacts

notification time (see Section 5.2).

We remark that this hybridization might be tailored depending on

the category of the SoS (see Section 3.1). In directed and

acknowledged SoSs, it is easier to identify common thresholds or

trends because the objective is mostly shared among CSs. Instead,

when CSs act together (collaborative SoS) and have limited

knowledge of the other components of the SoS (virtual SoS),

identifying shared rules for anomaly detection becomes very hard.

In this context, the monitoring strategy must be distributed and

customized as much as possible to suit the characteristics of each

CS.

6.3 Monitored Indicators
The adoption of a multi-layer monitoring approach [35] allows

obtaining information about the state of the services (the macro-

level from an SoS perspective) or the applications observing the

underlying layers (SoS micro-level), without instrumenting the

application or the service layer [4], [7]. The general idea is that

when an application encounters a problem e.g., a crash in one of

its functionalities, it generates an anomalous activity that can be

observed looking at specific indicators of the underlying layers

e.g., the number of active threads is abruptly decreasing. This

solution is suitable even when services changes frequently. The

result is a monitoring solution coping with evolution end

dynamicity of the targeted SoS, giving a widespread and adaptive

support to the modules responsible for the dependability and

security assessment.

6.4 Anomaly Detection Technique
While a plethora of techniques for performing anomaly detection

exist [1] in the literature, only a few of them can be considered

suitable for anomaly detection in SoS. This is mainly due to i)

evolution and dynamicity properties, which call for adaptive

algorithms that can quickly reconfigure its parameters without

needing of time-consuming testing phases, and ii) emergence,

which can be unexpected, making techniques based on rules or on

static pattern recognition less effective i.e., no rules or faulty

patterns for unexpected phenomena are known. Consequently, the

most suitable algorithms belong to the statistical and the online

machine learning groups. In particular, statistical algorithms such

as [35] work with a sliding window of past observations that are

used to build a prediction. If the monitored value is not compliant

with the predicted value, an anomaly is raised. Similarly, online

machine learning techniques e.g., gradient-descend based [36],

can build classifiers that change their behavior according to the

evolution of the observed system, automatically tuning their main

parameters. Emerging phenomena can be therefore detected

because we assume that they cause the generation of values for

specific parameters that are far from the nominal behavior.

7. CONCLUSIONS AND FUTURE WORKS
In this paper we discussed the main aspects and known issues

behind the design of a monitoring and anomaly detection

framework for systems of systems. Since this paradigm is arising

and gaining a lot of interest in the recent years, we combined its

main aspects and the characteristics of state-of-the-art monitoring

and anomaly detection frameworks for complex systems. The

result is a set of design guidelines that should be followed as “best

practices” when designing such a framework for SoSs.

Future works will be directed to understand which anomalies are

typically generated by emerging behaviors. In particular, we will

revise the literature looking at the known emerging behaviors,

conducting experimental campaign aiming at tracing the

anomalies they generate. This will allow us to characterize these

emerging behaviors in terms of their consequences on the trend of

monitored indicators, ultimately improving our anomaly detection

capabilities and, consequently, the connected dependability and

security properties. In particular, existing works on emergence in

complex systems [33] already list potentially detrimental

behaviors that we would test with an experimental support.

Moreover, it will be important to investigate how the monitoring

and anomaly detection system can adapt itself to work with newly

added CSs. The need of global time synchronization among CSs

will be further motivated also with an experimental support,

showing how the notification time is affected by delays and

misalignment regarding the clocks of CSs.

8. ACKNOWLEDGMENTS
This work has been partially supported by

removed row for double blind.

removed row for double blind.

removed row for double blind.

removed row for double blind.

9. REFERENCES
[1] Chandola Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly

detection: A survey." ACM computing surveys (CSUR) 41.3 (2009):
15.

[2] Baldoni, Roberto, Luca Montanari, and Marco Rizzuto. "On-line
failure prediction in safety-critical systems." Future Generation
Computer Systems 45 (2015): 123-132.

[3] Williams, Andrew W., Soila M. Pertet, and Priya Narasimhan.
"Tiresias: Black-box failure prediction in distributed systems."
Parallel and Distributed Processing Symposium, IEEE 2007 (pp. 1-
8). IPDPS 2007.

[4] Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli.
"Context-Awareness to Improve Anomaly Detection in Dynamic
Service Oriented Architectures." International Conference on
Computer Safety, Reliability, and Security (pp 145-158). Springer
International Publishing, 2016.

[5] Aniello, Leonardo, et al. "Automatic Invariant Selection for Online
Anomaly Detection." International Conference on Computer Safety,
Reliability, and Security (pp 172-183). Springer International
Publishing, 2016.

8

[6] Pannu, Husanbir S., Jianguo Liu, and Song Fu. "A self-evolving
anomaly detection framework for developing highly dependable
utility clouds." Global Communications Conference (GLOBECOM),
2012 IEEE. IEEE, 2012.

[7] Tan, Yongmin, Xiaohui Gu, and Haixun Wang. "Adaptive system
anomaly prediction for large-scale hosting infrastructures."
Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing (pp. 173-182). ACM, 2010.

[8] Fu, Qiang, et al. "Execution Anomaly Detection in Distributed
Systems through Unstructured Log Analysis." ICDM. Vol. 9 pp.
149-158. 2009.

[9] Perdisci, Roberto, et al. "McPAD: A multiple classifier system for
accurate payload-based anomaly detection." Computer Networks
53.6 (2009): 864-881.

[10] Shone, Nathan, et al. "Misbehaviour monitoring on system-of-
systems components." 2013 International Conference on Risks and
Security of Internet and Systems (CRiSIS) (pp. 1-6). IEEE, 2013.

[11] Hoffmann, G., Malek, M., “Call Availability Prediction in a
Telecommunication System: A Data Driven Empirical Approach”,
25th IEEE Symposium on Reliable Distributed Systems (SRDS
2006), Leeds, UK, October 2006.

[12] Irrera, Ivano, et al. "Towards identifying the best variables for failure
prediction using injection of realistic software faults." Dependable
Computing (PRDC), 2010 IEEE 16th Pacific Rim International
Symposium on. IEEE, 2010.

[13] Bovenzi, Antonio, et al. "An OS-level Framework for Anomaly
Detection in Complex Software Systems." IEEE Transactions on
Dependable and Secure Computing 12.3 (2015): 366-372.

[14] Joyce, Jeffrey, et al. "Monitoring distributed systems." ACM
Transactions on Computer Systems (TOCS) 5.2 (1987): 121-150.

[15] Massie, Matthew L., Brent N. Chun, and David E. Culler. "The
ganglia distributed monitoring system: design, implementation, and
experience." Parallel Computing 30.7 (2004): 817-840.

[16] Sokolova M., Japkowicz, Szpakowicz. "Beyond accuracy, F-score
and ROC: a family of discriminant measures for performance
evaluation." AI 2006: Springer Berlin Heidelberg, 2006. 1015-1021.

[17] Eskin, Eleazar, et al. "A geometric framework for unsupervised
anomaly detection." Applications of data mining in computer
security. Springer US, 2002. 77-101.

[18] Rajasegarar, Sutharshan, et al. "Distributed anomaly detection in
wireless sensor networks." 2006 10th IEEE Singapore International
Conference on Communication Systems (pp. 1-5). IEEE, 2006.

[19] Sotiris, Vasilis A., W. Tse Peter, and Michael G. Pecht. "Anomaly
detection through a bayesian support vector machine." IEEE
Transactions on Reliability 59.2 (2010): 277-286.

[20] Zanikolas, Serafeim, and Rizos Sakellariou. "A taxonomy of grid
monitoring systems." Future Generation Computer Systems 21.1
(2005): 163-188.

[21] “Nagios Project”, www.nagios.org [accessed on the 1st Sept. 2016]

[22] “Ganglia Monitoring”, ganglia.sourceforge.net [accessed on the 1st
Sept. 2016]

[23] “Zenoss | Own IT.”, www.zenoss.com [accessed on the 1st Sept.
2016]

[24] P. Verissimo, “Travelling through wormholes: a new look at
distributed systems models,” SIGACT News 37, 1 (March 2006), pp.
66-81, 2006.

[25] Kopetz, H., Höftberger, O., Frömel, B., Brancati, F., & Bondavalli,
A. (2015, May). Towards an understanding of emergence in
systems-of-systems. In System of Systems Engineering Conference
(SoSE), 2015 10th (pp. 214-219). IEEE.

[26] H. Kopetz, “Why a Global Time is Needed in a Dependable SoS?”,
Proc. of the Workshop on Engineering Dependable Systems-of-
Systems, Univ. of Newcastle upon Tyne, 2014.

[27] E.Morris, P. Place, D. Smith, “System-of-Systems Governance: New
Patterns of Thought”, Technical Note CMU/SEI-2006-TN-036,
Software Engineering Institute, Carnegie Mellon, October 2006.

[28] Bondavalli, Andrea, et al. "System-of-Systems to Support Mobile
Safety Critical Applications: Open Challenges and Viable
Solutions."

[29] M. W. Maier, "Architecting Principles for Systems-of-Systems,"
System Engineering, vol. 1, no. 4, pp. 267-284, 1998.

[30] D.A. DeLaurentis, "A taxonomy-based perspective for Systems-of-
Systems design methods", IEEE International Conference on
Systems, Man and Cybernetics, 2005.

[31] M. Jamshidi, Ed. (2009). System-of-Systems engineering -
innovations for the 21st century, J. Wiley & Sons.

[32] Dahmann, J.S.; Baldwin, K.J., "Understanding the Current State of
US Defense Systems of Systems and the Implications for Systems
Engineering," in 2nd Annual IEEE Systems Conference pp.1-7,
2008.

[33] Mogul, Jeffrey C. "Emergent (mis) behavior vs. complex software
systems." ACM SIGOPS Operating Systems Review. Vol. 40. No. 4.
ACM, 2006.

[34] Su, Hui, and J. David Neelin. "Teleconnection mechanisms for
tropical pacific descent anomalies during El Niño*." Journal of the
atmospheric sciences 59.18 (2002): 2694-2712.

[35] Ceccarelli, Andrea, et al. "A multi-layer anomaly detector for
dynamic service-based systems." International Conference on
Computer Safety, Reliability, and Security (pp. 166-180). Springer
International Publishing, 2015.

[36] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung.
"Intrusion detection using neural networks and support vector
machines." Neural Networks, 2002. IJCNN'02. Proceedings of the
2002 International Joint Conference on. Vol. 2. IEEE, 2002.

[37] H. Kopetz, B. Fromel, O. Hoftberger. "Direct versus stigmergic
information flow in systems-of-systems." System of Systems
Engineering Conference (SoSE), 2015 10th (pp. 36-41). IEEE, 2015.

[38] Comar, Prakash Mandayam, et al. "Combining supervised and
unsupervised learning for zero-day malware detection." INFOCOM,
2013 Proceedings IEEE (pp. 2022-2030). IEEE, 2013.

[39] US Government Accountability Office: “GPS Disruptions: Efforts
to Assess Risk to Critical Infrastructure and Coordinate Agency
Actions Should be Enhanced”. Washington, GAO -14-15. 2013.

[40] Kopetz, Hermann. Real-time systems: design principles for
distributed embedded applications. Springer Science & Business
Media, 2011.

[41] AMADEOS Consortium, D2.3 – AMADEOS Conceptual Model
Revised, 2016, http://amadeos-project.eu/documents/public-
deliverables/ .

