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ABSTRACT 

The loosely coupled integration of heterogeneous existing 

systems, together with the ongoing replacement of monolithic 

systems design with Off-The-Shelf (OTS) approaches, promotes a 

new architectural paradigm that is called System of Systems 

(SoS). In SoSs, independent and autonomous constituent systems 

(CSs) cooperate to achieve higher-level goals. Some inherent 

challenges are that boundaries of the SoS may be partially 

unknown and the components may be governed by different 

authorities, affecting the ability to observe the system as a whole. 

Further, novel challenges related to dependability and security are 

introduced, such as the detection of emerging and possibly 

unexpected behaviors resulting from the interconnection of 

previous disconnected CSs. In this paper we explore these 

challenges questioning if a novel mindset to error, malware or 

intrusion detection is needed when dealing with SoSs. With the 

support of a state of the art review, we first identify the design 

principles and the performance targets of a monitoring and 

anomaly detection framework. Then we discuss these principles at 

the light of SoS fundamentals. Ultimately, we propose an 

approach to design a monitoring and anomaly detection 

framework for SoSs aggregating i) monitoring approaches ii) SoS 

properties, and iii) anomaly detection techniques.   

CCS Concepts 

• Security and privacy ➝ Intrusion/anomaly detection and 

malware • Security and privacy ➝  Distributed systems 

security • Computer systems organization ➝  Peer-to-peer 

architectures • Computer systems organization ➝ Reliability 
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1. INTRODUCTION 
In recent years, the architectural paradigm of System of Systems 

(SoS) [28], [24], [31] have been continuously growing in 

popularity. Systems of Systems are built through the composition 

of both new and already existing Constituent Systems (CSs), 

which are independent and operable. The purpose of integrating 

such CSs is to provide new and enhanced services, not achievable 

by the single CS in isolation. This introduces a macro-level, at 

which the SoS operates, and micro-levels which distinguish the 

operation of the individual CS. Emerging phenomena, that are not 

visible at the micro-level, can happen at the macro-level: such 

phenomena may be unexpected and potentially detrimental for the 

SoS [25]. To explain this concept, we consider the interaction 

between two processes that ends in a deadlock i.e., a complete halt 

of the system that holds forever. The risk  of a deadlock should 

not be considered at the micro-level (i.e., the level of the 

individual processes). Nevertheless, a causal dependency between 

the totality of the processes – the macro-level - and that lead to a 

deadlock can be observed. Generalizing these concepts, the 

combination of different and independent CSs may result in an 

SoS with emergent phenomena, that the individual CSs may 

ignore or may not be ready to manage [25]. Further, SoSs are 

characterized by properties as dynamicity, interoperability, 

evolvability.  

To satisfy dependability and security requirements, it is thus 

evident that SoSs require solutions to perform error or attack 

detection despite the SoS properties discussed above. In other 

words, it is required to infer the status of the SoS at the macro-

level through observing (part of) the CSs at the micro-level. Such 

ability should also cope with governance aspects involving CSs, 

which may be owned by third parties or may be OTS components. 

To achieve such goals, anomaly-based detection techniques [1], 

[17], [18] are a candidate solution. The main advantages of 

adopting anomaly-based detection techniques lie in their 

suitability for dynamic and complex systems. In fact, online 

anomaly detection techniques are able to adapt their behaviour 

depending on the current context of the system, without requiring 

huge periods of training [4], [17], [3]. Further, alternative 

solutions as fingerprint-based detection techniques are not suitable 

to identify unexpected behaviours that were not described in 

advance and that can result from the interoperation of CSs as 

explained above. This means that anomaly detection is very 

suitable for SoS, where dynamic sets of CSs collaborate to 

achieve various targets through time. 

Looking at available solutions, it is noticeable that enterprise 

frameworks, which allow checking if the observed behaviour is 

normal or anomalous, exist [20]. In particular, enterprise solutions 

such as Nagios [21], Ganglia [22] or Zenoss [23] allow the user to 

setup both monitoring and data analysis strategies. However, these 

enterprise frameworks have common lacks that can impact their 

suitability for SoS. In particular, they i) do not allow executing 

sophisticated data analysis (e.g., anomaly detection techniques), 

while they always allow to setup static thresholds, ii) report the 

anomaly alerts as they happen without trying to correlate them, 

and iii) use a monitoring strategy that is not always suitable for 

the micro-macro level distinction we have in SoSs. Moreover, 

changes or updates at the application level call for a manual 

reconfiguration of such a monitoring system that is consequently 

not suitable for dynamic contexts. 

Summarizing, the findings of the paper are the followings: i) 

identify the main design aspects behind a monitoring and anomaly 

detection framework, ii) explore frameworks for anomaly 

detection that tackle SoS-related challenges and iii) propose high-

level guidelines for performing anomaly detection in SoSs. 
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The paper is organized as follows. Section 2 lists the state-of-the-

art contributions regarding SoSs, while Section 3 motivates the 

study and traces the research direction that is expanded in the rest 

of the paper. Afterwards, we define the architectural (Section 4) 

and performance targets (Section 5). Section 6 tackles together 

SoSs and anomaly detection, ultimately defining design directions 

for a monitoring and anomaly detection framework for SoSs. 

Section 7 concludes the paper and explores future works. 

2. BASICS ON SYSTEMS-OF-SYSTEMS 

2.1 Definition and Classification 
As remarked in [28], several definitions of SoS have been 

proposed in the literature according to real-world applications in 

different areas, including dependability [6] and  security [10]. 

According to [31], we consider that “an SoS is an integration of a 

finite number of Constituent Systems which are independent and 

operable, and which are networked together for a period of time 

to achieve a certain higher goal.”  Constituent Systems (CSs) can 

be existing legacy systems or newly developed components, and 

they may include physical objects and humans: a CS is an 

autonomous subsystem of an SoS, consisting of computer systems 

and possibly of controlled objects and/or human role players that 

interact to provide a given service [41]. 

An SoS may have different degrees of control and coordination 

[32] identifying four categories, namely directed, acknowledged, 

collaborative and virtual. A directed SoS is managed by a central 

authority providing a clear objective to which each CS is 

subordinate; the CSs that form the SoS may operate 

independently, but they are subordinated to the central purpose. 

An acknowledged SoS has a clear objective but the CSs might be 

under their own control thus funding an authority in parallel with 

the SoS. In a collaborative SoS, the central management 

organization does not have coercive power and CSs act together to 

address shared common interests. Finally, a virtual SoS has no 

clear objective and its CSs do not even know one another.  

The degree of control and coordinated management of the CSs 

that form the SoS is relatively tight in a directed SoS, but it gets 

looser as we move to the acknowledged, collaborative and finally 

virtual category. This will affect the monitoring approaches that 

we will discuss in Section 4.2. 

2.2 Viewpoints for Dependable and Secure 

SoSs 
The challenges posed to design, develop and maintain dependable 

and/or secure SoSs can be summarized as viewpoints [28], [29], 

[30] i.e., dimensions of analysis for such SoS. In particular, we 

will expand and focus on the viewpoints architecture, dynamicity 

and evolution, emergence, governance, time, dependability and 

security.  

Architecture. The architecture of an SoS can be defined in terms 

of heterogeneous CSs interacting each other through cyber or 

physical channels. Relied Upon Message Interfaces (RUMIs) and 

Relied Upon Physical Interfaces (RUPIs) [37] establish the 

boundaries between interacting CSs and the roles for their 

interactions. RUMIs establish the cyber data that are exchanged 

and the timing of message exchange, while RUPIs enable the 

physical exchange of things or energy among CSs. 

Architectures of dependable and secure applications can be 

characterized as mixed-criticality architectures, where different 

parts of the system have different dependability and security 

requirements. To cope with this issue, in [28] authors propose 

architectural hybridization [24], where different subsets of 

requirements are satisfied in different parts of the target system.  

Evolution and Dynamicity. Dynamicity and evolution are two 

important challenges of SoS and they have effects on security and 

dependability requirements. Dynamicity refers to short-term 

changes of the SoS e.g., in response to environmental variations 

or components failures. Evolution, instead, refers to long-term 

changes that are required to accomplish variation to the 

requirements in face of an ever-changing environment [31], [28]. 

Emergence. An emergent phenomenon manifests when CSs act 

together, and the emergent phenomenon is not observable by 

looking at single CSs separately. For instance, if a crowd enters a 

narrow alley then it alters its movements, individuals reduce their 

pace in order to avoid hitting or getting to close to others in front. 

This collaborative behavior does not emerge if we consider 

individuals separately: this means that an SoS is not just the sum 

of its CSs. Emergence can be expected or unexpected, detrimental 

or non-detrimental [25]. Beneficial are for example self-

organization and evolution of biological systems, while 

detrimental are for example traffic jams due to the interaction of 

single cars. Moreover, emergence can be expected or unexpected. 

In particular, detrimental unexpected emergent phenomena may 

expose vulnerabilities or lead to novel faults that are consequently 

difficult to tolerate [33].  

Governance. Distributed ownership of individual components is a 

challenge for any complex system [27], which is usually an 

ensemble of existing systems, including third-party, OTS or more 

in general non-proprietary components. SoS governance is 

significantly more complicated and must change to accommodate 

the business requirements of an SoS. 

Time. In a recent report from the GAO to the US Congress [39] it 

is noted that a global notion of time is required in nearly all 

infrastructure SoSs, such as telecommunication, transportation, 

energy, etc. In large cyber-physical SoSs the availability of a 

global sparse time is fundamental to reduce the cognitive 

complexity to understand, design and implement SoS [25]. 

However, CSs typically use unreliable clocks. With respect to 

monitoring, this may result in inconsistent timestamps in observed 

data, leading to misunderstandings or wrong interpretations. It is 

thus relevant that CSs shares a global view of time. 

Dependability and Security. SoSs are composable systems, with 

a high degree of uncertainty on their boundaries. Since the 

environment may unpredictably change, or it may be so various 

becoming really hard to model, the whole monitoring and 

assessment process can be negatively affected. Monitoring an SoS 

means to devise adaptive monitors that are able to cope with 

several environments and a variable number of interacting CSs. 

3. MOTIVATIONS AND RELATED 

WORKS 
Summarizing, an SoS is not simply an ensemble of CSs: instead, 

CSs individually operating at a micro-level cooperate to provide 

new functionalities that emerge at a macro-level [25]. Critical SoS 

should avoid or mitigate detrimental emerging phenomena which 

can damage the whole system and the connected critical 

components. However, if unexpected, emerging phenomena 
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cannot be easily avoided or mitigated through the rules that we set 

using our knowledge of the SoS.   

Considering the structure of the CSs, which includes physical 

objects and humans, it appears that observing all the internals of 

CSs to check their behavior may be not possible. Thus, the 

monitoring effort should be directed to Relied Upon Message 

Interfaces (RUMIs) and Relied Upon Physical Interfaces (RUPIs). 

3.1 Novelty 
All the issues above call for a monitoring solution that i) 

continuously observes the SoS to avoid or mitigate detrimental 

phenomena, ii) gathers data of RUMIs and RUPIs or internal data 

of CSs where possible, and iii) is able to infer the status of the 

properties of the macro-level looking only at data collected at 

micro-level. It follows that detection algorithms based on 

fingerprints e.g., antiviruses [38], intrusion detectors [36] or 

failure predictors [2], may result not adequate for detecting 

unexpected phenomena and in general for SoSs due to SoSs 

dynamicity. 

In such a context, anomaly detection seems one of the most 

suitable approaches in detecting unexpected behaviors in dynamic 

and complex SoSs. In the security domain, this technique was 

proven effective [38] in detecting zero-day attacks, which exploit 

unknown vulnerabilities to get into the targeted system. The same 

approach is commonly used to detect threats to dependability in 

complex systems, also when the system is composed by OTS 

components [3]. To the authors’ knowledge, the topic of bringing 

anomaly detection into the paradigm of SoS was not explored in 

the recent years. Consequently, after expanding the topic of 

anomaly detection, in the rest of the paper we will investigate and 

explore the characteristics of a monitoring system for SoS, which 

runs data analysis features based on anomaly detection. The aim is 

to examine how to detect - among all threats and hazards - 

unexpected detrimental emerging phenomena. 

3.2 Anomaly Detection 
As mentioned above, anomaly detectors gained popularity 

especially when detection mechanisms such as fingerprint-based, 

event logs, heartbeats are not effective [38] e.g., when the 

complexity of the system is too high. Antiviruses and intrusion 

detectors can detect hazards when they identify a behavior that is 

compliant with a known fingerprint of an attacker or a malware, 

but they need also rules to detect zero-day attacks or attacks from 

unknown adversaries [9]. Moreover, unexpected or previously 

unknown system failures can be predicted observing specific 

indicators to characterize if the runtime system behavior is 

compliant with generic performance expectations [2], [3].  

Despite the topic of bringing anomaly detection into SoSs is still 

not adequately explored, it is possible to find frameworks where 

anomaly detection is applied in complex systems e.g., Service 

Oriented Architectures or Cloud environments. In most of these 

studies, authors challenged the complexity of their system 

designing strategies that can be used as basis for a discussion that 

specifically tackles SoSs. In Table 1 we reported a set of 

frameworks that performs anomaly detection in complex systems. 

Some of them deal with dynamicity and evolution properties of 

complex systems [4], [6], [7], while others tackle systems 

composed of OTS components [2], [3]. Moreover, a subset of 

them [5], [10] is addressing emergent behaviors as side topic. All 

the listed frameworks are realized either for dependability [2], [3], 

[4], [5], [6], [7], [8] or security [9], [10] purposes. 

4. DESIGNING A MONITORING AND 

ANOMALY DETECTION FRAMEWORK 
Here we explore the main design principles behind a monitoring 

framework for anomaly detection, highlighting: i) the purpose of 

the framework, ii) the monitoring approach, iii) the indicators to 

be monitored, and iv) the anomaly detection technique. In Table 1 

we report several frameworks in which authors adopted different 

approaches to solve the design challenges discussed in this 

Section.  

4.1 Purpose of the Framework  
As discussed in Section 3, anomaly detection was proven effective 

to the purpose of security and dependability. Depending on the 

specific needs of the administrator or the owner of the system, a 

monitoring framework can be designed to improve security (i.e., 

intrusion detection) or dependability (i.e., error detection, failure 

prediction), identifying anomalous behaviors. This choice 

influences the whole planning of the framework, defining the 

threats we want to detect and affecting the choices of i) the 

monitoring and data analysis approach (see Section 4.2), ii) the 

monitored indicators (see Section 4.3), and iii) the performance 

targets to be achieved (Section 5).  

Approaches in existing frameworks (Table 1). The frameworks 

in Table 1 use anomaly detection for different scopes. 

Frameworks for error detection [4], [5] investigate anomalies to 

interrupt the fault-error-failure chain. Failure predictors [2], [3], 

[6] assume that errors already manifested in the system, and try to 

avoid their escalation in failures or the propagation to unsafe 

states. In the security domain, we can classify i) intrusion 

detectors [9], [10], which represent a security layer preventing or 

blocking possible malicious attacks, and ii) malware detectors, 

which analyse the system to identify anomalous behaviours due to 

malicious modules that are already infecting the system. 

4.2 Monitoring and Data Analysis 

Approaches 
Several approaches [14], [15], [20] can be adopted depending on 

where we put the data analysis engine e.g., anomaly detector. 

Moreover, databases containing historical or generic support data 

that are used for analyses can be put on i) an external machine 

coordinating the detection activities or ii) distributed on the nodes 

of the complex system. This results in the following two 

monitoring and data analysis approaches. 

Centralized: a coordinator manages the monitoring and the data 

analyses. The coordinator also keeps track of historical or support 

data to assist the data analyses. Monitored data is sent from the 

CSs to the coordinator, which analyses them and alerts the 

administrator if anomalies are detected. 

Distributed: The coordinator only provides to CSs policies or 

rules for data analyses e.g., thresholds or parameters of the 

anomaly detector, allowing the autonomous CSs to share a 

common core of parameters for data analysis. With this approach, 

the coordinator is not a bottleneck; instead, each CS must allow 

running custom tasks that may drain system resources. 

Approaches in existing frameworks (Table 1). Depending on 

the context, frameworks for anomaly detection can be designed to 

centralize or decentralize the heaviest computing operations. 

Distributing operations [7], [8] reduces the bottleneck around the 

coordinator, but requires well-developed distribution of loads and 
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tasks among the CSs. Nevertheless, anomaly detection 

frameworks [9], [10] targeting security do not consider a 

distributed data analysis approach. Instead, they prefer sending 

collected data to a central elaboration unit. This allows not sharing 

parameters of the anomaly detection strategy with all the CSs, 

blocking adversaries that want to intercept such communications 

in order to read, corrupt or modify such critical parameters.  

4.3 Monitored Indicators 
Nowadays software is becoming more complex and consequently 

a large number of performance indicators e.g., memory usage, 

cache hits, packets shared through the network, can be captured 

by specific probes at defined time instants. Observing indicators 

related to different layers of the system e.g., OS, network, can 

provide a more accurate view of the system. The observed data 

need to be transmitted and analyzed continuously, affecting the 

monitored system and potentially slowdowning its tasks. Thus, it 

becomes fundamental to select those indicators that are most 

useful to detect anomalies.  

In fact, previous research shows that even in a complex system the 

set of relevant variables is typically quite small [11]. Moreover, 

depending on the specific analyses that will be conducted using 

the monitored data, indicators can be classified extracting a 

minimum set that allows reaching defined performance scores. 

For example, sets of indicators were extracted targeting failure 

prediction [12], anomaly detection through invariants [5] and 

errors due to software faults [13]. 

An important remark should be done to consider the requirement 

of having all CSs synchronized to a global time. Otherwise, it is 

not possible to build a reasonable global time base. This affects 

our ability of fusing information coming from different CSs 

ultimately providing polluted data to the data analysis modules.  

For example, consider the final report about a major power 

blackout occurred in parts of the US and Canada in 2003. Here the 

authors declare that i) the Task Force’s investigators labored over 

thousands of items to determine the sequence of events, and that 

ii) the process would have been significantly faster and easier if 

there had been wider use of synchronized data recording devices 

[40]. 

Approaches in existing frameworks (Table 1). Most of anomaly 

detectors observe performance indicators targeting OS [4], [3], [5] 

and network [2], [3], [7], [9] layers. We explain this results as 

follows: i) these layers are always present in a complex system, 

Table 1: Existing Monitoring and Anomaly Detection Frameworks for Complex Systems 

Framework Monitoring Anomaly Detection Performance 

Name 
Evaluation 

Environment 
Purpose Approach 

Observed 

Elements 

Targeted 

Anomalies 
Strategy 

Detection 

Efficiency 
Performance Overhead 

ALERT 

[7] 

Cluster 

Environment 

Anomaly 

Prediction 
Distributed 

On each host: 
IBM System S 

and PlanetLab 

Processing Time and 
Throughtput 

anomalies 

Decision Tree 

Classifier 

TPR > 90%, 

FPR ~ 0% 

Tens of 

seconds or 

several minutes 
lead time 

Probes: 1% 

load 

Detector: 1-2 
ms for training 

CASPER 

[2] 

Air Traffic 

Control 

Failure 

Prediction 
Centralized Network 

Resource (Memory, 

I/O) Stress 

Hidden Markov 
Models 

(HMMs) 

Precision: 88.5%, 
Recall: 75.8%, 

FPR: 11.2% 

Stress 

Prediction: 
Memory [20.8, 

27] s - I/O 

[19.2, 24.9] s 

Probes: - 

Detector: - 

[5] 

Distributed 

Web Banking 

Application 

Error 
Detection 

Distributed 

CPU use, memory 

use, in/out 

network packets 

Mis/Reconfiguration, 

Denial of Service, 

Development faults 

Invariants F-Measure: 86% 

Upper bound: 1 

min. from fault 

activation 

Probes: - 
Detector: - 

SEAD [6] 
Cloud 

Environment 
Failure 

Detection 
Centralized 

Dom0 and Xen 
Hypervisor 

Faults from CPU, 

Memory, Disk, and 

Network. 

Support Vector 

Machines 

(SVM) 

TPR: 92.1%, 
FPR: 83.8% 

Not Provided 
Probes: OTS 
Detector: - 

TIRESIAS 

[3] 

Distributed 

Environment 

Failure 

Prediction 
Distributed 

CPU, Memory, 

Context Switch 

Performance - 

Degrading Faults 

Dispersion 

Frame 

Technique 
(DFT) 

FPR: 2.5% 
Look-Ahead 

times in 

different setups 

Probes: no 
overhead 

Detector: - 

[4] 

Service 

Oriented 

Architectures 

Error 

Detection 
Centralized 

OS, JVM and 

Network 

Software Errors 

(Performance 

Degradation) 

Statistical 
Predictor and 

Safety Margin 

(SPS) 

Precision and 

Recall: Memory 

[33.5, 95.8]% - 

Network [50.0, 

86.7]% 

Evaluation of 

each 

observation: 

(32.10 ± 5.99) 

ms 

Probes: 

150MB 
memory, 

negligible CPU 

stress 
Detector: - 

[8] 
Hadoop, 

SILK 

Workflow 

Error 
Detection 

Distributed Log Files 

Low performance 

(i.e., limiting the 
bandwidth) 

Finite State 

Automation 
(FSA) 

Hadoop FPR: 

88%, 
SILK FPR: 76% 

Not Provided 
Probes: - 

Detector: - 

SSC [10] Web Services 
Intrusion 

Detection 
Centralized 

UNIX Proc and 

SysInfo, custom 
JMX, FS Monitor 

DoS attacks  

(hPing tool) 

Most 

Appropriate 

Collab. Comp. 
Selection 

(MACCS) 

FPR: 0.11%, 

FNR: 0% 

Average 

Processing 
Time:150 ms 

Probes: - 
Detector: 

“minimal CPU 

and RAM” 

McPAD 

[9] 
Datasets 

Intrusion 

Detection 
Centralized HTTP Traffic 

Generic, Shell-Code 

and Polymorphical 
CLET attacks 

SVM 
Detection Rate: 

95% 

< 0.04 ms per 

Payload 

Probes: 
Synthetic 

dataset 

Detector: - 
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and ii) enterprise monitoring tools [21], [22] offer probes to 

observe these two layers. Moreover, several indicators regarding 

the memory and cache management can be retrieved only at OS-

level, because middleware e.g., JVM, application servers such as 

Apache Tomcat, act at an higher stack level. 

4.4 Anomaly Detection Technique 
As highlighted in [1], a key aspect of any anomaly detection 

technique is the nature of the input data. Each data instance might 

consist of only one attribute (univariate) or multiple attributes 

(multivariate). In the case of multivariate data instances, all 

attributes might be of same type or might be a mixture of different 

data types. The nature of attributes determines the applicability of 

anomaly detection techniques. For example, for statistical 

techniques [19] specific statistical models have to be used for 

continuous and discrete data. Similarly, for nearest-neighbour-

based techniques [18], the nature of attributes would determine 

the distance measure to be used. Moreover, when aggregated 

measures instead of actual data are provided e.g., distance or 

similarity matrix, techniques that require original data instances 

such as classification-based techniques [17] are not applicable. 

Most of the techniques mentioned above need training data to 

learn the characteristics of both normal and anomalous instances, 

becoming able to label the data that is monitored at runtime 

through the probes. Focusing on SoSs, we observe that these 

systems can be characterized by intrinsic dynamicity, often 

changing their behaviour and, consequently, the characteristics of 

both normal and anomalous behaviours. This calls for a new 

training phase, requiring i) to collect train data and ii) to train the 

parameters of the chosen techniques. When dynamicity is very 

high, this task can overcome the normal activity of the system, 

resulting in large periods of unavailability of the anomaly detector 

and slowdowning the usual tasks that run on the targeted CS. This 

means that anomaly detection techniques that do not need training 

data are more suitable because they do not require periods of 

unavailability for training [13], [34]. 

Approaches in existing frameworks (Table 1). Different studies 

use different data analysis approaches: as explored in [1], specific 

anomaly detection approaches call for a more suitable anomaly 

detection algorithm or technique. This results in a wide utilization 

of statistical (3 out of 10 in Table 1) and machine learning (5 out 

of 10) algorithms, while [5] and [10] respectively scores 

anomalies using invariants and component selection. As expanded 

in Section 6.4, despite statistical and machine learning worked 

very well in the studies reported in Table 1, from a SoS 

perspective the usage of these algorithms raises important 

concerns that cannot be ignored. 

5. PERFORMANCE TARGETS 
To guarantee the best support either for dependability or security 

purposes, anomaly detectors need to analyze monitored data and 

provide their results rapidly and with a low number of wrong 

interpretations. Consequently, the notification time, or rather the 

time between the observation of system data through probes and 

the evaluation of its anomaly degree, should be minimized. 

Moreover, an inaccurate evaluation can result in i) false positives, 

which can cause the execution of non-required reaction strategies 

by the administrator, or ii) missed detections (false negatives), 

with possible severe consequences. 

Taking into account the following performance targets is 

mandatory and it has to be part of the development phase of 

anomaly detection frameworks. 

5.1 Detection Performance 
The performance of the anomaly detection strategy is evaluated 

according to the main metrics [16] used in pattern recognition and 

information retrieval with binary classification. All of these 

measures are based on indexes representing the correct predictions 

- true positives (TP), true negatives (TN) – and the wrong ones, 

due to missed detections (false negatives, FN) or wrong anomaly 

recognitions (false positives, FP). More complex measures based 

on the abovementioned ones are precision (also called positive 

predictive value), the fraction of retrieved instances that are 

relevant, and recall (also known as sensitivity), the fraction of 

relevant instances that are retrieved (see Table 2). 

Depending on the purposes of the targeted SoS, the reference 

metric may change: for example, in systems where false negatives 

(i.e., missed detection of an anomaly) can heavily damage the 

system, recall is more relevant than precision. Instead, when 

detection of anomalies (both TP and FP) calls for expensive 

reaction strategies, FP must be minimized, thus emphasizing 

precision more than recall. 

5.2 Notification time 
Another performance index that needs to be addressed is the 

notification time, that is the time between the observation of a 

snapshot and its evaluation. According to the block definition in 

Section 4.2 this quantity is the sum of (see Figure 1):  

 observation time (ot), the time slot spent from the 
probing system to get system data by the probes; 

 probe-monitor transmission time (pmtt), the time needed 
to transmit all the observed data to the monitor 

 data aggregation time (dat), the time used by the monitor 
to aggregate and parse the received data 

 storing time (st), time spent from the monitor to store the 
aggregated data in the chosen data container; 

 monitor-detector transmission time (mdtt), the time 
needed to transmit the data aggregated from the monitor 
to the anomaly detector tool; 

 detection time (dt), the time used from the anomaly 
detector to compute its calculations based also on 
previously collected historical data;  

Table 2: Detection Performance Measures 

Measure Formula 

True Positives (TP) # of correct anomaly detections 

True Negatives (TN) # of correct non-anomaly detections 

False Positives (FP) # of wrong anomaly detections 

False Negatives (FN) # of missed anomaly detections 

Precision (P) 
 

Recall (R) 
 

F-Score 
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 alert time (at), the time needed to deliver the anomaly 
alert to the system administrator. 

Depending on the chosen monitoring approach, these quantities 

can be combined to obtain the notification time (nt) as follows. 

Centralized. In this approach, the coordinator machine i) runs the 

monitor and the anomaly detector and ii) hosts the database in 

which historical and support data are stored. Considering the 

anomaly alert as a simple notification e.g., text message or email 

the quantities mdtt and at represent negligible instants of time. 

Assuming nt as the notification time, in such a context its value is 

expressed as the linear combination of the remaining time 

quantities:  

nt = ot + pmtt + dat + st + dt 

Distributed. Monitoring and data analysis logic are placed on the 

CSs, while the coordinator supports these activities providing 

parameters or rules e.g., set of indicators to monitor, rules for 

anomaly detection. Consequently, each CS runs dedicated 

modules that can interfere with the tasks that are usually executed 

on its CS resulting in a higher intrusiveness level that needs to be 

taken into account. Considering that i) data can be stored in the 

database simultaneously with the aggregations performed by the 

monitor, and ii) the possible alert need to be forwarded to the 

coordinator, the nt can be estimated as: 

nt = ot + max{dat, st} + dt + at 

6. BRINGING ANOMALY DETECTION 

INTO SOS DESIGN 
After describing the peculiarities of both anomaly detection 

frameworks and SoSs, in this section we list potential design 

approaches that can bring them together. Moreover, in Table 3, 

for each SoS viewpoint, we summarize the approaches for 

constructing an anomaly detection framework that can help 

adhering with the guidelines of a given viewpoint.  

6.1 Purpose of the Framework 
Building a framework that effectively uses anomaly detection for 

both dependability and security purposes can be a challenging 

goal. In fact, frameworks designed for intrusion detection are 

strongly dependent from the observation of network usage 

indicators. Further, malware oriented detection strategies should 

monitor OS attributes to understand if something is already 

damaging the system and maybe trying to steal or corrupt critical 

data from the hard drive. Regarding dependability monitoring, 

performance indicators observed in middleware e.g., thread 

number, cache usage and memory management, can reveal the 

manifestation of errors at application level that may escalate into 

failures in the near future. Regardless the chosen target, 

governance aspects play a decisive role in defining i) which CSs 

can be instrumented with probes, ii) the communication channels 

among them and iii) other general rules that could limit or support 

the effectiveness of the anomaly detection technique under 

consideration.  

6.2 Monitoring and Data Analysis 

Approaches 
Another key point is related to the architecture of the SoS, and 

mainly the characteristics, the roles and the ownerships of each 

CS and their interconnections. Monitored data must be labelled 

consistently in the whole SoS, since data acquisition through 

probes and monitors constitutes the basis for the anomaly 

detection process. This should include handling time issues that 

can lead to missed synchronizations or wrong timestamps 

assigned to each observation. As example, if the targeted SoS is 

Table 3: Tackling Viewpoints Targeting Anomaly Detection in SoS 

SoS Viewpoint Description of the Technique 

Frameworks Proposing or 

Implementing the 

Technique 

Architecture 
Consider Architectural Hybridization, i.e., link different CSs or blocks of CSs with a given level of 

safety that needs to be accomplished 
CASPER [2] (Black Box) 

Evolution and 

Dynamicity 

Make Anomaly Detection able to tune its parameters when an evolution or a configuration change is 

detected. Algorithms and strategies for the detection of anomalies should work with poor knowledge 

of the history of the system e.g., online machine learning techniques, since this can change very often. 
Monitoring support needs to be adaptive as well. 

[4], SEAD [6], SSC [10] 

Emergence 
Adopt models and libraries of anomalies targeting emerging behaviours, e.g., deadlock, livelock, 

unwanted synchronization 
[5], ALERT [7], SSC [10] 

Governance 
Difficult to generalize. Communications must be fast enough to provide data observed by the probes to 

the monitor and to the anomaly detector, either if the approach is distributed or centralized. 
- 

Handling Time 
Synchronize the clocks with an NTP server. The resulting clock precision is enough to label 

timestamps if real-time requirements are not intrinsic of the SoS. 
CASPER [2] (Generic clock 
synchronization), [4] (NTP) 

Dependability and 

Security 
Build a Multi-Layer monitoring structure connected to adaptive Anomaly Detection modules [4], SEAD [6], SSC [10] 

 

 

Figure 1: Time quantities through the workflow. 
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under a (Distributed) Denial of Service attack, having an 

unsynchronized assignment of timestamps could lead to wrongly 

interpret anomalies in each threatened CS, without understanding 

the shared cause generating the anomalies. 

More in general, CSs can perform tasks with heterogeneous levels 

of criticality. It follows that depending on the criticality of each 

CS the monitoring and data analysis approach must change, 

adopting an architectural hybridization [24] that allows checking 

more carefully the CSs that are responsible for the most critical 

tasks. In particular, we can envision an hybrid monitoring 

approach which i) runs a centralized coordinator that collects and 

analyzes data coming from critical CSs, and ii) provides a set of 

parameters or rules for the anomaly detection algorithms that will 

be executed directly in the CSs that do not execute critical tasks. 

This allows monitoring critical CSs without burdening the 

centralized coordinator, since it does not need to analyze data 

observed on less critical CSs. This choice also impacts 

notification time (see Section 5.2).  

We remark that this hybridization might be tailored depending on 

the category of the SoS (see Section 3.1). In directed and 

acknowledged SoSs, it is easier to identify common thresholds or 

trends because the objective is mostly shared among CSs. Instead, 

when CSs act together (collaborative SoS) and have limited 

knowledge of the other components of the SoS (virtual SoS), 

identifying shared rules for anomaly detection becomes very hard. 

In this context, the monitoring strategy must be distributed and 

customized as much as possible to suit the characteristics of each 

CS. 

6.3 Monitored Indicators 
The adoption of a multi-layer monitoring approach [35] allows 

obtaining information about the state of the services (the macro-

level from an SoS perspective) or the applications observing the 

underlying layers (SoS micro-level), without instrumenting the 

application or the service layer [4], [7]. The general idea is that 

when an application encounters a problem e.g., a crash in one of 

its functionalities, it generates an anomalous activity that can be 

observed looking at specific indicators of the underlying layers 

e.g., the number of active threads is abruptly decreasing. This 

solution is suitable even when services changes frequently. The 

result is a monitoring solution coping with evolution end 

dynamicity of the targeted SoS, giving a widespread and adaptive 

support to the modules responsible for the dependability and 

security assessment. 

6.4 Anomaly Detection Technique 
While a plethora of techniques for performing anomaly detection 

exist [1] in the literature, only a few of them can be considered 

suitable for anomaly detection in SoS. This is mainly due to i) 

evolution and dynamicity properties, which call for adaptive 

algorithms that can quickly reconfigure its parameters without 

needing of time-consuming testing phases, and ii) emergence, 

which can be unexpected, making techniques based on rules or on 

static pattern recognition less effective i.e., no rules or faulty 

patterns for unexpected phenomena are known. Consequently, the 

most suitable algorithms belong to the statistical and the online 

machine learning groups. In particular, statistical algorithms such 

as [35] work with a sliding window of past observations that are 

used to build a prediction. If the monitored value is not compliant 

with the predicted value, an anomaly is raised. Similarly, online 

machine learning techniques e.g., gradient-descend based [36], 

can build classifiers that change their behavior according to the 

evolution of the observed system, automatically tuning their main 

parameters. Emerging phenomena can be therefore detected 

because we assume that they cause the generation of values for 

specific parameters that are far from the nominal behavior. 

7. CONCLUSIONS AND FUTURE WORKS 
In this paper we discussed the main aspects and known issues 

behind the design of a monitoring and anomaly detection 

framework for systems of systems. Since this paradigm is arising 

and gaining a lot of interest in the recent years, we combined its 

main aspects and the characteristics of state-of-the-art monitoring 

and anomaly detection frameworks for complex systems. The 

result is a set of design guidelines that should be followed as “best 

practices” when designing such a framework for SoSs.  

Future works will be directed to understand which anomalies are 

typically generated by emerging behaviors. In particular, we will 

revise the literature looking at the known emerging behaviors, 

conducting experimental campaign aiming at tracing the 

anomalies they generate. This will allow us to characterize these 

emerging behaviors in terms of their consequences on the trend of 

monitored indicators, ultimately improving our anomaly detection 

capabilities and, consequently, the connected dependability and 

security properties. In particular, existing works on emergence in 

complex systems [33] already list potentially detrimental 

behaviors that we would test with an experimental support. 

Moreover, it will be important to investigate how the monitoring 

and anomaly detection system can adapt itself to work with newly 

added CSs. The need of global time synchronization among CSs 

will be further motivated also with an experimental support, 

showing how the notification time is affected by delays and 

misalignment regarding the clocks of CSs.  

8. ACKNOWLEDGMENTS 
This work has been partially supported by  

removed row for double blind. 

removed row for double blind. 

removed row for double blind. 

removed row for double blind. 

9. REFERENCES 
[1] Chandola Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly 

detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 
15. 

[2] Baldoni, Roberto, Luca Montanari, and Marco Rizzuto. "On-line 
failure prediction in safety-critical systems." Future Generation 
Computer Systems 45 (2015): 123-132. 

[3] Williams, Andrew W., Soila M. Pertet, and Priya Narasimhan. 
"Tiresias: Black-box failure prediction in distributed systems." 
Parallel and Distributed Processing Symposium, IEEE 2007 (pp. 1-
8). IPDPS 2007. 

[4] Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli. 
"Context-Awareness to Improve Anomaly Detection in Dynamic 
Service Oriented Architectures." International Conference on 
Computer Safety, Reliability, and Security (pp 145-158). Springer 
International Publishing, 2016. 

[5] Aniello, Leonardo, et al. "Automatic Invariant Selection for Online 
Anomaly Detection." International Conference on Computer Safety, 
Reliability, and Security (pp 172-183). Springer International 
Publishing, 2016. 



8 

 

[6] Pannu, Husanbir S., Jianguo Liu, and Song Fu. "A self-evolving 
anomaly detection framework for developing highly dependable 
utility clouds." Global Communications Conference (GLOBECOM), 
2012 IEEE. IEEE, 2012. 

[7] Tan, Yongmin, Xiaohui Gu, and Haixun Wang. "Adaptive system 
anomaly prediction for large-scale hosting infrastructures." 
Proceedings of the 29th ACM SIGACT-SIGOPS symposium on 
Principles of distributed computing (pp. 173-182). ACM, 2010. 

[8] Fu, Qiang, et al. "Execution Anomaly Detection in Distributed 
Systems through Unstructured Log Analysis." ICDM. Vol. 9 pp. 
149-158. 2009. 

[9] Perdisci, Roberto, et al. "McPAD: A multiple classifier system for 
accurate payload-based anomaly detection." Computer Networks 
53.6 (2009): 864-881. 

[10] Shone, Nathan, et al. "Misbehaviour monitoring on system-of-
systems components." 2013 International Conference on Risks and 
Security of Internet and Systems (CRiSIS) (pp. 1-6). IEEE, 2013. 

[11] Hoffmann, G., Malek, M., “Call Availability Prediction in a 
Telecommunication System: A Data Driven Empirical Approach”, 
25th IEEE Symposium on Reliable Distributed Systems (SRDS 
2006), Leeds, UK, October 2006. 

[12] Irrera, Ivano, et al. "Towards identifying the best variables for failure 
prediction using injection of realistic software faults." Dependable 
Computing (PRDC), 2010 IEEE 16th Pacific Rim International 
Symposium on. IEEE, 2010. 

[13] Bovenzi, Antonio, et al. "An OS-level Framework for Anomaly 
Detection in Complex Software Systems." IEEE Transactions on 
Dependable and Secure Computing 12.3 (2015): 366-372. 

[14] Joyce, Jeffrey, et al. "Monitoring distributed systems." ACM 
Transactions on Computer Systems (TOCS) 5.2 (1987): 121-150. 

[15] Massie, Matthew L., Brent N. Chun, and David E. Culler. "The 
ganglia distributed monitoring system: design, implementation, and 
experience." Parallel Computing 30.7 (2004): 817-840. 

[16] Sokolova M., Japkowicz, Szpakowicz. "Beyond accuracy, F-score 
and ROC: a family of discriminant measures for performance 
evaluation." AI 2006: Springer Berlin Heidelberg, 2006. 1015-1021. 

[17] Eskin, Eleazar, et al. "A geometric framework for unsupervised 
anomaly detection." Applications of data mining in computer 
security. Springer US, 2002. 77-101.  

[18] Rajasegarar, Sutharshan, et al. "Distributed anomaly detection in 
wireless sensor networks." 2006 10th IEEE Singapore International 
Conference on Communication Systems (pp. 1-5). IEEE, 2006. 

[19] Sotiris, Vasilis A., W. Tse Peter, and Michael G. Pecht. "Anomaly 
detection through a bayesian support vector machine." IEEE 
Transactions on Reliability 59.2 (2010): 277-286. 

[20] Zanikolas, Serafeim, and Rizos Sakellariou. "A taxonomy of grid 
monitoring systems." Future Generation Computer Systems 21.1 
(2005): 163-188. 

[21]  “Nagios Project”, www.nagios.org [accessed on the 1st Sept. 2016] 

[22] “Ganglia Monitoring”, ganglia.sourceforge.net [accessed on the 1st 
Sept. 2016] 

[23] “Zenoss | Own IT.”, www.zenoss.com [accessed on the 1st Sept. 
2016] 

[24] P. Verissimo, “Travelling through wormholes: a new look at 
distributed systems models,” SIGACT News 37, 1 (March 2006), pp. 
66-81, 2006. 

[25] Kopetz, H., Höftberger, O., Frömel, B., Brancati, F., & Bondavalli, 
A. (2015, May). Towards an understanding of emergence in 
systems-of-systems. In System of Systems Engineering Conference 
(SoSE), 2015 10th (pp. 214-219). IEEE.  

[26] H. Kopetz, “Why a Global Time is Needed in a Dependable SoS?”, 
Proc. of the Workshop on Engineering Dependable Systems-of-
Systems, Univ. of Newcastle upon Tyne, 2014. 

[27] E.Morris, P. Place, D. Smith, “System-of-Systems Governance: New 
Patterns of Thought”, Technical Note CMU/SEI-2006-TN-036, 
Software Engineering Institute, Carnegie Mellon, October 2006. 

[28] Bondavalli, Andrea, et al. "System-of-Systems to Support Mobile 
Safety Critical Applications: Open Challenges and Viable 
Solutions." 

[29] M. W. Maier, "Architecting Principles for Systems-of-Systems," 
System Engineering, vol. 1, no. 4, pp. 267-284, 1998. 

[30] D.A. DeLaurentis, "A taxonomy-based perspective for Systems-of-
Systems design methods", IEEE International Conference on 
Systems, Man and Cybernetics, 2005. 

[31] M. Jamshidi, Ed. (2009). System-of-Systems engineering - 
innovations for the 21st century, J. Wiley & Sons.  

[32] Dahmann, J.S.; Baldwin, K.J., "Understanding the Current State of 
US Defense Systems of Systems and the Implications for Systems 
Engineering," in 2nd Annual IEEE Systems Conference   pp.1-7, 
2008. 

[33] Mogul, Jeffrey C. "Emergent (mis) behavior vs. complex software 
systems." ACM SIGOPS Operating Systems Review. Vol. 40. No. 4. 
ACM, 2006. 

[34] Su, Hui, and J. David Neelin. "Teleconnection mechanisms for 
tropical pacific descent anomalies during El Niño*." Journal of the 
atmospheric sciences 59.18 (2002): 2694-2712. 

[35] Ceccarelli, Andrea, et al. "A multi-layer anomaly detector for 
dynamic service-based systems." International Conference on 
Computer Safety, Reliability, and Security (pp. 166-180). Springer 
International Publishing, 2015. 

[36] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. 
"Intrusion detection using neural networks and support vector 
machines." Neural Networks, 2002. IJCNN'02. Proceedings of the 
2002 International Joint Conference on. Vol. 2. IEEE, 2002. 

[37] H. Kopetz, B. Fromel, O. Hoftberger. "Direct versus stigmergic 
information flow in systems-of-systems." System of Systems 
Engineering Conference (SoSE), 2015 10th (pp. 36-41). IEEE, 2015. 

[38] Comar, Prakash Mandayam, et al. "Combining supervised and 
unsupervised learning for zero-day malware detection." INFOCOM, 
2013 Proceedings IEEE (pp. 2022-2030). IEEE, 2013. 

[39] US Government Accountability Office: “GPS Disruptions:  Efforts 
to Assess Risk to Critical Infrastructure and Coordinate Agency 
Actions Should be Enhanced”.  Washington, GAO -14-15.  2013. 

[40] Kopetz, Hermann. Real-time systems: design principles for 
distributed embedded applications. Springer Science & Business 
Media, 2011. 

[41] AMADEOS Consortium, D2.3 – AMADEOS Conceptual Model 
Revised, 2016, http://amadeos-project.eu/documents/public-
deliverables/ . 

 

 


