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study question: What are the associations between semen apoptotic M540 bodies and other parameters of semen quality and
sonographic alterations of the male genital tract in a cohort of infertile subjects?

summary answer: In infertile subjects, semen M450 bodies are highly correlated with ultrasound and clinical signs of testis abnor-
malities but not with alterations of other parts of the male genital tract, suggesting a testicular origin of M540 bodies.

what is known already: We have reported the presence in semen of round anucleate elements, named ‘M540 bodies’, resem-
bling apoptotic bodies as they contain several apoptotic markers.

study design and size: A consecutive series of 130 males with couple infertility were evaluated, during the same day session, for
clinical, scrotal and transrectal color-Doppler ultrasound characteristics, and hormonal and semen parameters, including interleukin 8 (sIL-8)
and M540 body levels.

participants/materials, setting methods: Semen parameters were analyzed by WHO recommended procedures.
CDU was performed using the ultrasonographic console Hitachi H21. sIL-8 and serum hormones were evaluated by ELISA methods.

main results and the role of chance: The average percentage value of M540 bodies was 24.6+18.3. After adjusting for
possible confounders (age, waist, calculated free testosterone and smoking habit), M450 body levels negatively correlated with sperm
number/ejaculate, progressive motility, normal morphology and sIL-8 levels (adj.r ¼ 20.455, P , 0.0001; adj.r ¼ 20.464, P , 0.0001;
adj.r ¼ 20.430, P , 0.001; adj.r ¼ 20.236, P , 0.05, respectively). In a subset of patients with a history of cryptorchidism (n ¼ 8),
M540 bodies were higher than in non-cryptorchid men (40.5+ 14.8 versus 23.6+ 18.2%; P , 0.02). A negative correlation was found
between M540 and ultrasound testis volume (adj.r ¼ 20.241, P , 0.05), whereas a positive association was found with testis inhomogeneity
[HR ¼ 1.06 (1.02–1.09); P ¼ 0.002], hypoechogenicity [HR ¼ 1.05 (1.01–1.08); P , 0.02] and FSH levels (adj.r ¼ 0.309, P , 0.01).
No relationships were found with CDU characteristic of the prostate, seminal vesicles, epididymis and vas deferens. In a multivariate
model, testis inhomogeneity and history of cryptorchidism were independently associated with M540 body levels (adj.r ¼ 0.355, P , 0.01
and adj.r ¼ 0.223, P , 0.05, respectively). Receiver operating characteristic analysis demonstrated that at the threshold of 27%, M540
bodies discriminate subjects with testis inhomogeneity with a sensitivity of 72% and specificity of 73%.

limitations, reasons for caution: The increased M540 body semen levels in men with a history of cryptorchidism should
be confirmed in a larger number of patients.

wider implications of the findings: M540 bodies may be considered a semen marker of altered testis function and thus
their evaluation may be helpful in the diagnosis of male infertility.

study funding/competing interest(s): This work was supported by grants from Ministry of University and Scientific
Research (Prin project to E.B. and FIRB project to S.M.) and Regione Toscana (to G.F.).
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Introduction
In most cases, male infertility is due to defects in spermatogenesis, the
complex, dynamic process that leads to the maturation of spermato-
gonia into mature spermatozoa. Spermatogenesis is regulated by
several hormonal and local factors which control all the steps of the
sperm maturation process. The number of cells in the seminiferous
tubules is finely regulated by a balance between cell proliferation
and apoptotic cell death. The apoptotic process, which occurs at a
high rate in the testis, is required not only to maintain an adequate
ratio between proliferating germ cells and Sertoli cells but also to guar-
antee the quality control of the mature gamete. Several studies in
animal models have documented the physiological relevance of apop-
tosis in the testis (Shaha et al., 2010). Apoptosis in the testis may
occur through both the intrinsic and the extrinsic pathway (Shaha
et al., 2010). The intrinsic pathway is triggered by Bcl-X and Bax
(Rucker et al., 2000; Shaha et al., 2010), whereas the extrinsic is
mediated by the Fas/FasL system (Francavilla et al., 2000; Shaha
et al., 2010). Evidence in human subjects suggests that Fas expression
in the testis is confined to Leydig cells and degenerating germ cells and
its expression in the latter is increased in subjects with late maturation
arrest or Sertoli cell only syndrome (Francavilla et al., 2000, 2002; Kim
et al., 2004). In addition, Fas/FasL expression appears to be regulated
by gonadotrophins (Francavilla et al., 2000). Moreover, exposure to
excess testosterone or deprivation causes apoptosis in the testis
(reviewed in Shaha, 2008). Overall, these data indicate that any alter-
ation of the apoptotic process in both the meiotic and post-meiotic
stages of male germ cell maturation may cause a derangement of
spermatogenesis. In this contest, evaluation of apoptotic markers in
semen may be of help in establishing the rate of apoptosis in the
testis. Apoptotic markers, such as caspase activity, Fas and Bcl-X,
may be evaluated by immunocytochemistry in ejaculated spermatozoa
but such determination is time-consuming and quite expensive.

Some years ago, our group described the occurrence in semen of
round anucleated elements of variable dimensions, named M540
bodies because of their stainability with merocyanine (Muratori
et al., 2004). Later on, our group has characterized M540 bodies as
apoptotic bodies by evaluating a series of apoptotic markers (Fas,
p53, Bcl-X and caspase activity; Marchiani et al., 2007). M540
bodies are present in larger amounts in semen from oligoasthenoter-
atozoospermic and asthenospermic men (Marchiani et al., 2007)
where the highest levels of semen apoptotic signs have been found
(Sakkas et al., 1999) and are strictly negatively associated with poor
seminal parameters (Muratori et al., 2005). M450 bodies may be
thus considered a semen marker of apoptosis. Although we have
clearly demonstrated the apoptotic nature of M540 bodies and that
they contain fragmented DNA (Marchiani et al., 2007), whether
they reflect testis apoptosis or derive from other parts of the male
genital tract is presently unknown.

Taking the advantage of the diagnostic protocol applied to newly re-
ferred subjects in the Andrology Outpatient Clinic at the University of
Florence (see below), the aim of this study was to evaluate the pos-
sible association between male genitalia tract ultrasound characteris-
tics and M540 body levels in the semen of male partners of infertile
couples. We report here consistent evidence that M540 bodies origin-
ate in the testis and may be considered a semen trait of testis
apoptosis.

Materials and Methods

Patients
We studied a consecutive series of 130 male patients (mean age 34.1+
8.4 years) attending our outpatient clinic for the first time from January
2008 to July 2011 and seeking medical care for couple infertility. The clin-
ical characteristics of the sample are summarized in the Supplementary
data, Table SI.

All patients were evaluated before beginning any treatment. All patients
underwent a complete andrological and physical examination, and their
previous and current genito-urinary diseases, including positive urine and
seminal cultures, were assessed. In addition, scrotal and transrectal ultra-
sounds were routinely performed. This procedure followed our Regional
Health Care System rules which do not allow us to perform any genetic
analysis on infertile patients unless the possible occurrence of an obstruc-
tion has been excluded. Hence, all patients enrolled underwent the usual
diagnostic protocol applied to newly referred subjects at the Andrology
Outpatient Clinic for infertility. All the data provided were collected as
part of a routine clinical procedure, and therefore, according to the
Italian law, approval from the local Ethical Committee was not required.
In addition, at the time of the first visit, all patients gave their written
informed consent to have their clinical records included in a dedicated
database and they were aware that their data, after having been made
anonymous, would be used for clinical research purposes.

Color-Doppler ultrasonography
All patients underwent scrotal and transrectal color-Doppler ultrasound,
performed before and after ejaculation during the same CDU session,
using the ultrasonographic console Hitachi H21 (Hitachi Medical System,
Tokyo, Japan). The CDU characteristics of the patients are summarized
in the Supplementary data, Table SI.

Prostate and seminal vesicles CDU features were studied by scanning
the organs at 5 mm intervals in various longitudinal, transverse and
oblique scans according to previous studies (Behre et al., 1995; Vicari,
1999; Lotti et al., 2011, 2012a,b), using a transrectal biplanar probe to
study the prostate (linear transducer U533L 7.5 MHz; convex transducer
U533C 6.5 MHz) and an ‘end-fire’ probe to study the seminal vesicles and
the deferential ampullae (V53W 6.5 MHz, field of view 50–2008). Prostate
echogenicity and hyperemia were defined according to previous studies
(Behre et al., 1995; Vicari, 1999; Lotti et al., 2011, 2012b). Prostate vas-
cularization and arterial prostatic peak systolic velocity were evaluated
before ejaculation, in order to avoid post-ejaculatory changes in the vascu-
lar flow pattern, as previously reported (Lotti et al., 2011, 2012b). Seminal
vesicles ultrasound features and abnormalities were defined according to
previous studies (Colpi et al., 1997; Vicari, 1999; Lotti et al., 2011,
2012a). Ejaculatory duct CDU characteristics were evaluated after ejacula-
tion, in order to better emphasize indirect CDU signs of subobstruction
(Colpi et al., 1997; Lotti et al., 2011, 2012a).

Scrotal CDU was performed in various longitudinal, transverse and
oblique scans (Behre et al., 1995; Vicari, 1999; Lotti et al., 2011, 2012a)
using a 7.5-MHz high-frequency linear probe (L54M 6–13 MHz). Testicu-
lar and epididymal CDU features were examined according to previous
studies (Behre et al., 1995; Vicari, 1999; Isidori and Lenzi, 2008; Lotti
et al., 2011, 2012a; Bertolotto and Trombetta, 2012). In particular,
testis inhomogeneity (striated pattern) and hypoechogenicity were
defined according to previous studies (Cohn et al., 1996; Christiensen
and Dogra, 2007; Isidori and Lenzi, 2008; Loberant et al., 2010; Bertolotto
and Trombetta, 2012). The Supplementary data, Fig. S1 shows the appear-
ance of a normal testis echopattern (A), testis inhomogeneity (B) and
hypoechogenicity (C).

3394 Lotti et al.
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Semen analysis and determination of seminal
plasma interleukin 8 levels
Semen parameters were assessed by optical microscopy, according to
World Health Organization criteria (World Health Organization, 1999,
2010). Sperm morphology was evaluated by determining the percentage
of normal and abnormal forms after Diff-Quik staining, by scoring at
least 100 spermatozoa/slide. Sperm motility was scored by determining
the percentage of progressive motile, non-progressive motile and immotile
spermatozoa by scoring at least 100 sperm/slide. Seminal plasma aliquots
were stored frozen to quantify seminal plasma interleukin 8 (sIL-8) levels.
sIL-8, a reliable surrogate marker of prostatitis (Penna et al., 2007), was
quantified by conventional two-site ELISA using a human IL-8 ELISA set
(BD Biosciences, San Diego, CA, USA) according to the manufacturer’s
instructions (Penna et al., 2007). Each seminal plasma sample was
diluted from 1:5 to 1:625. Assay sensitivity for sIL-8 was ,1 pg/ml.

Hormone evaluation
LH, FSH, total testosterone and sex hormone-binding globulin (SHBG)
were evaluated. Blood samples were drawn in the morning, after an over-
night fast, for the determination of LH, FSH and total testosterone by the
electrochemiluminescent method (Modular Roche, Milan, Italy) and deter-
mination of SHBG by modular E170 platform electrochemiluminescence
immunoassay (Roche Diagnostics, Mannheim, Germany). Calculated free
testosterone was derived according to the Vermeulen’ formula (available
at http://www.issam.ch/freetesto.htm; Vermeulen et al., 1999).

Chemicals
Diff-Quick kit was purchased from CGA, Diasint (Florence, Italy). Human
tubal fluid (HTF) medium was purchased from Celbio (Milan, Italy). Propi-
dium iodide (PI) was from Invitrogen Calbiochem (Nottingham, UK). Par-
aformaldehyde (PFA) was obtained from Merck Chemicals (Milan, Italy).
Testsimplets slides were from Waldeck GmbH & Co. (Muenster,
Germany).

Evaluation of M540 Bodies
The percentage of M540 bodies was determined in rough semen samples
according to a previously published protocol (Marchiani et al., 2007).
Semen was washed twice with HTF medium and fixed with PFA
[500 mL, 4% in phosphate-buffered saline (PBS), pH 7.4] for 30 min at
room temperature. Fixed spermatozoa (2 × 106) were washed (500 g
for 5 min), resuspended in 500 ml of PBS, stained with 10 ml of PI
(30 mg/ml in PBS) and incubated in the dark for 10 min at room tempera-
ture. Samples were acquired by a FACScan flow cytometer (Becton-
Dickinson, Mountain View, CA, USA) equipped with a 15-mW argon-ion
laser for excitation. Red fluorescence of PI was detected by an FL-2 (563–
607 nm wavelength band) detector. For each patient, two sperm suspen-
sions were prepared for instrumental setting and data analysis with
(sample test) and without (negative control) PI staining.

For each sample, 10 000 events were recorded within the enlarged
flame-shaped region in the forward scattering/side scattering dot plot
which excludes debris (R1 region, Marchiani et al., 2007). In order to
quantify M540 bodies, a marker was set in the histogram of distribution
of PI fluorescence of the sample in negative control, including 99% of
total events. This marker was translated in the histogram of the corre-
sponding test sample. All the events outside this marker were considered
PI positive events, and all the events inside the marker were considered PI
negative events. The percentage of M540 bodies was determined by
counting the PI negative events in the R1 region.

Statistical analysis
Data were expressed as the mean+ SD when normally distributed, and as
median (quartiles) for parameters with non-normal distribution. Correla-
tions were assessed using Spearman’s or Pearson’s method whenever ap-
propriate. Unpaired two-sided Student’s t-tests were used for
comparisons of means of normally distributed parameters. Stepwise mul-
tiple linear or logistic regressions were applied for multivariate analysis,
whenever appropriate. Since age (Brinkworth et al., 1997), waist
(Attaman et al., 2012), testosterone levels (Shaha, 2008) and smoking
habit (Rajpurkar et al., 2002) may influence testis apoptosis and affect
seminal quality, data have been also adjusted for these parameters. All
statistical analysis was performed on SPSS (Statistical Package for the
Social Sciences, Chicago, USA) for Windows 17.0. In univariate analyses
(unadjusted correlations of Table I), we considered the P-value of
,0.02 as statistically significant, whereas a P–value of ,0.05 was consid-
ered as significant in all the other regression analyses.

Results

Appearance of M540 bodies and relation
with semen parameters
The Supplementary data, Fig. S1 (panel D) shows the appearance of
M540 bodies in semen after staining with Testsimplets. As can be
observed, these round elements have variable dimensions and can
be easily distinguished from other non-sperm elements present in
semen due to the lack of a nucleus. In the latest version of the
WHO manual for processing of human semen (World Health Organ-
ization, 2010), such elements are indicated as cytoplasm.

In the present study, we confirm and extend previous findings of
our group (Muratori et al., 2004; Marchiani et al., 2007), reporting a
negative association between M540 bodies and sperm concentration,
number per ejaculate, progressive motility and normal morphology
(Table I), even after adjusting for age, waist, calculated free testoster-
one and smoking habit (Fig. 1A–D, respectively). After adjusting for
confounders, no correlation was found with ejaculate volume, dur-
ation of sexual abstinence, semen pH and the presence of semen vis-
cosity (Table I). Levels of M540 bodies were not associated with the
presence of current positive urine or semen cultures or with a positive
history of genito-urinary diseases (Table I). A negative association
between M540 bodies and sIL-8 levels was observed after adjustment
for age, waist, calculated free testosterone and smoking habit (Table I).

Relation between M540 bodies and medical
history-derived parameters
The average percentage value of semen M540 bodies in the study
population was 24.6+18.3. Among the 130 patients studied, 8
(6.2%) reported a history of cryptorchidism. In these patients, the
mean M540 body value was significantly higher respect to subjects
without cryptorchidism (40.5+14.8 versus 23.6+ 18.2%, respect-
ively; P , 0.02). After adjusting for age, waist, calculated free testos-
terone and smoking habit, a positive association between M540
bodies and the presence of a positive history of cryptorchidism
were still observed (Fig. 2A).

M540 bodies and testis apoptosis 3395
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Table I Associations between M540 body levels and main clinical and extra-testicular CDU features of the male genital
tract.

Unadjusted correlations Adjusted correlations

Clinical and laboratory parameters

Mean testis volume (Prader, ml) r 5 20.291, P 5 0.001 Adj.r 5 20.287, P < 0.02

History of cryptorchidism r 5 0.245, P 5 0.005 HR 5 1.16 (1.03–1.31), P < 0.02

History of genito-urinary diseases r ¼ 0.009, P ¼ 0.926 HR ¼ 1.01 (0.97–1.03), P ¼ 0.909

Current positive urine and/or semen culture r ¼ 0.007, P ¼ 0.938 HR ¼ 0.99 (0.94–1.05), P ¼ 0.784

LH r ¼ 0.097, P ¼ 0.324 Adj.r ¼ 20.005, P ¼ 0.967

FSH r 5 0.237, P 5 0.015 Adj.r 5 0.309, P < 0.01

Total testosterone (nmol/L)a r ¼ 0.088, P ¼ 0.369 Adj.r ¼ 0.102, P ¼ 0.708

Calculated free testosterone (nmol/L)a r ¼ 0.138, P ¼ 0.192 Adj.r ¼ 0.109, P ¼ 0.364

Log10(sIL-8) (ng/ml) r ¼ 20.161, P ¼ 0.05 Adj.r 5 20.236, P < 0.05

Sexual abstinence (days) r ¼ 20.030, P ¼ 0.736 Adj.r ¼ 20.111, P ¼ 0.345

pH r ¼ 0.010, P ¼ 0.909 Adj.r ¼ 0.115, P ¼ 0.331

Semen viscosity r ¼ 0.148, P ¼ 0.092 HR ¼ 1.00 (0.97–1.03), P ¼ 0.950

Semen volume (ml) r 5 0.243, P 5 0.005 Adj.r ¼ 0.175, P ¼ 0.127

Sperm concentration (×106/ml) r 5 20.657, P < 0.0001 r 5 20.591, P < 0.0001

Spermatozoa per ejaculate (×106/ml) r 5 20.572, P < 0.0001 r 5 20.455, P < 0.0001

Sperm progressive motility (%) r 5 20.378, P < 0.0001 r 5 20.464, P < 0.0001

Sperm morphology (% normal forms) r 5 20.336, P < 0.0001 r 5 20.430, P 5 0.001

Leukocitospermia r ¼ 20.011, P ¼ 0.899 HR ¼ 0.99 (0.95–1.03), P ¼ 0.691

CDU parameters

Prostate

Prostate volume (ml) r ¼ 0.037, P ¼ 0.676 Adj.r ¼ 0.029, P ¼ 0.832

Prostate macro-calcificationsb r ¼ 20.079, P ¼ 0.373 HR ¼ 0.98 (0.97–1.03), P ¼ 0.857

Inhomogeneous prostatic texture r ¼ 0.032, P ¼ 0.718 HR ¼ 1.01 (0.97–1.04), P ¼ 0.931

Hypoechoic prostatic texture r ¼ 20.101, P ¼ 0.365 HR ¼ 0.98 (0.92–1.04), P ¼ 0.460

Prostatic hyperemia (before ejaculation) r ¼ 20.013, P ¼ 0.883 HR ¼ 1.00 (0.96–1.03), P ¼ 0.765

Mean arterial peak systolic velocity (cm/s) r ¼ 0.003, P ¼ 0.976 Adj.r ¼ 20.003, P ¼ 0.977

Mean prostatic venous plexus (mm) r ¼ 20.036, P ¼ 0.685 Adj.r ¼ 20.088, P ¼ 0.477

Seminal vesicles

Total volume before ejaculation (ml)c r ¼ 0.060, P ¼ 0.500 Adj.r ¼ 0.070, P ¼ 0.541

Total volume after ejaculation (ml)c r ¼ 0.068, P ¼ 0.445 Adj.r ¼ 0.103, P ¼ 0.375

Ejection fraction (%)d r ¼ 20.099, P ¼ 0.262 Adj.r ¼ 20.109, P ¼ 0.334

Areas of endocapsulation before ejaculation r ¼ 0.016, P ¼ 0.871 HR ¼ 0.99 (0.95–1.02), P ¼ 0.413

Areas of endocapsulation after ejaculation r ¼ 20.014, P ¼ 0.887 HR ¼ 0.98 (0.93–1.03), P ¼ 0.324

Wall thickening and septa r ¼ 20.042, P ¼ 0.639 HR ¼ 1.01 (0.97–1.05), P ¼ 0.853

Testis

Mean testis volume (ml) r 5 20.251, P 5 0.004 Adj.r 5 20.241, P < 0.05

Testicular inhomogeneity r 5 0.375, P < 0.0001 HR 5 1.06 (1.02–1.09), P 5 0.002

Testicular hypoechogenicity r 5 0.282, P 5 0.001 HR 5 1.05 (1.01–1.08), P < 0.02

Testicular microcalcifications r ¼ 0.124, P ¼ 0.161 HR ¼ 1.04 (0.99–1.09), P ¼ 0.114

Varicocelee r ¼ 20.061, P ¼ 0.491 HR ¼ 0.99 (0.96–1.03), P ¼ 0.693

Epididymis and vas deferens

Mean size of the head (mm) r ¼ 0.037, P ¼ 0.676 Adj.r ¼ 20.014, P ¼ 0.898

Mean size of the tail (mm) r ¼ 20.012, P ¼ 0.893 Adj.r ¼ 20.106, P ¼ 0.344

Mean size of the deferential ampulla (mm) r ¼ 0.0112, P ¼ 0.203 Adj.r ¼ 20.192, P ¼ 0.083

Inhomogeneous tail r ¼ 0.066, P ¼ 0.453 HR ¼ 1.00 (0.98–1.03), P ¼ 0.760

Continued
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Table I Continued

Unadjusted correlations Adjusted correlations

Hypoechoic tail r ¼ 0.061, P ¼ 0.489 HR ¼ 1.01 (0.97–1.04), P ¼ 0.761

Hyperechoic tail r ¼ 0.144, P ¼ 0.102 HR ¼ 1.02 (0.98–1.05), P ¼ 0.386

Coarse tail calcifications r ¼ 0.089, P ¼ 0.311 HR ¼ 1.01 (0.96–1.06), P ¼ 0.761

Hyperemia r ¼ 20.029, P ¼ 0.741 HR ¼ 0.96 (0.87–1.04), P ¼ 0.346

Unadjusted data are expressed as r and P-value (in bold when significance is present). Age, waist, calculated free testosterone and smoking habit adjusted data are expressed
as adjusted r (adj.r) or as hazard ratio (HR) when appropriate.
aTestosterone and calculated free testosterone have been adjusted for age, waist and smoking habit.
bCalcifications with size .3 mm (according to Lotti et al., 2011).
cCalculated using the ‘ellipsoid/prolate (d1 . d2 ¼ d3) spheroid’ formula (d1 × d2 × d3 × 4/3p, considering d1 ¼ half of the maximum longitudinal diameter of the SV and both d2
and d3 ¼ half of the anterior-posterior maximum diameter) (according to Lotti et al., 2012a).
dCalculated as [(pre-ejaculatory total volume 2 post-ejaculatory total volume)/pre-ejaculatory volume)] × 100 (according to Lotti et al., 2012a).
eSevere echographic-defined varicocele with basal venous reflux increasing after Valsalva’s maneuver (according to Isidori and Lenzi, 2008).

Figure 1 Correlations between M540 body levels and sperm parameters. Correlations between M540 bodies and sperm concentration (A), total
sperm count (B), sperm progressive motility (C) and normal morphology (D). Results have been adjusted for age, waist, calculated free testosterone
and smoking habit. M540 body levels are reported in a log-scale. In (A) and (B), sperm number per milliliter or per ejaculate, respectively, is expressed
on the abscissa as a log-scale. In (C) and (D), sperm progressive motility and normal morphology, respectively, are expressed as continuous variables.
Adjusted regression coefficients for the different parameters are shown in Table I.
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Relation between M540 bodies and clinical
and hormonal parameters
M540 body levels were negatively correlated with mean testis volume,
as assessed by both Prader orchidometer and ultrasound (Table I and
Fig. 2B and C). When hormone parameters were considered, a signifi-
cant correlation between M540 bodies and FSH levels was found
(Fig. 2D). Conversely, no correlation with testosterone or calculated
free testosterone levels was observed, even after adjustment for
age, waist and smoking habit (Table I).

Relation between M540 bodies
and ultrasound parameters
When scrotal and transrectal CDU parameters were considered, a
significant association between M540 body levels and the detection
of testis inhomogeneity or hypoechogenicity (Fig. 3A and B) was
evident. Conversely, levels of M540 bodies in the seminal plasma
were not related to any CDU characteristic of the prostate, seminal

vesicles, epididymis and vas deferens, even after adjustment for con-
founders (Table I).

In a multivariate model, when testicular ultrasound parameters
(volume, inhomogeneity and hypoechogenicity) where introduced as
putative predictors for M540 body levels in semen along with age,
waist, calculated free testosterone and smoking habit, we found that
only inhomogeneity was independently associated with M540 bodies
(adj.r ¼ 0.397, P ¼ 0.02). When also the history of cryptorchidism
and FSH levels were introduced in the same multivariate model, we
found that testis inhomogeneity and history of cryptorchidism were
independently associated with M540 body levels (adj.r ¼ 0.355,
P , 0.01 and adj.r ¼ 0.223, P , 0.05 for testis inhomogeneity and
history of cryptorchidism, respectively). Receiver operating character-
istic, a graphical plot of the sensitivity and specificity or true positive
rate versus false positive rate, was used as a binary classifier system
to identify the accuracy of M540 bodies in predicting testis inhomo-
geneity. At the threshold of 27%, M540 bodies predict the occurrence
of testis inhomogeneity with an accuracy of 77.4+4.4% (P , 0.0001),

Figure 2 Relationship between M540 body levels, history of cryptorchidism, testicular volume and FSH serum levels. (A) M540 body levels in sub-
jects with and without history of cryptorchidism. M540 body levels and testicular volume assessed by Prader orchidometer (B) and ultrasound (C).
(D) M540 body levels and serum FSH levels. Results have been adjusted for age, waist, calculated free testosterone and smoking habit. M540 body
levels are expressed as a log-scale. In (B), (C) and (D), the testicular volume assessed by Prader or ultrasound and the FSH levels, respectively, are
expressed on the abscissa as quartiles. Adjusted regression coefficients for the testis volume (Prader and ultrasound) and FSH levels and hazard ratio
values for the history of cryptorchidism are shown in Table I.
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showing a sensitivity and specificity of 72 and 73%, respectively
(Fig. 3C). At the same threshold, M540 body levels were associated
with an elevated FSH level (.8 U/l; Andersson et al., 2004) and a
history of cryptorchidism with specificity of 68.5 and 66.9% and sen-
sitivity of 57.1 and 75% and HR of 3.9 (1.1–14), P , 0.05, and 12.6
(1.4–113), P , 0.05, respectively.

To evaluate whether the observed associations between levels of
M540 bodies and testis ultrasound characteristics or semen para-
meters were confirmed in subjects without cryptorchidism, patients
with a positive history (n ¼ 8) were excluded from the analysis. The
associations between levels of M540 bodies, FSH levels, testis volume
and inhomogeneity were confirmed even when subjects with a positive
history of cryptorchidism were excluded from the analysis (not shown).

Discussion
The results of this study strongly suggest that apoptotic M540 bodies
present in semen (Muratori et al., 2004; Marchiani et al., 2007) are

specifically associated with testis abnormalities and not with abnormal-
ities of other portions of the male genital tract (epididymis, vas defer-
ens, prostate and seminal vesicles). Hence, M540 bodies most
probably originate from the testis and may be considered a reliable
readout of testis apoptosis and disrupted spermatogenesis. Indeed,
we now show that semen M540 body levels are strictly correlated
with several clinical and CDU parameters suggestive of a testicular
damage, including high FSH levels, testıcular hypotrophy, inhomogen-
eity or hypoechogenicity, but are not related to abnormalities of other
parts (epididymis, seminal vesicles and prostate) of the male genital
tract. In addition, M540 body levels were 2-fold higher in patients
with a history of cryptorchidism.

We have previously shown that M540 body levels are negatively
correlated with total sperm number, being particularly elevated in oli-
goasthenoteratozoospermic subjects (Muratori et al., 2005; Marchiani
et al., 2007). In the present study, we extend such findings by showing
a negative relationship between M540 bodies and parameters of
sperm quality in a wider study population (130 subjects). However,

Figure 3 Correlations between M540 body levels and the testicular echo-pattern. M540 bodies and testicular inhomogeneity (A) or hypoechogeni-
city (B). Results have been adjusted for age, waist, calculated free testosterone and smoking habit. M540 body levels are expressed as a log-scale. (C)
Receiver operating characteristic curve for M540 body levels as a function of testis inhomogeneity. Hazard ratio values for testis inhomogeneity and
hypoecogeneity are shown in Table I.
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the occurrence of a negative relationship between M540 bodies and
sperm quality does not necessarily imply impairment of testis function,
as apoptotic bodies may also derive from other parts of male genital
tract, including epididymis, prostate or seminal vesicles. But the lack of
association between M540 bodies and extra-testicular CDU abnor-
malities or signs of infection (current positive urine or sperm cultures)
argues against this possibility. In addition, seminal levels of IL-8, a sur-
rogate marker of inflammation of the prostate (Penna et al., 2007) or
epididymis, but not of the testis (Lotti et al., 2011), were even nega-
tively associated with M540 bodies, further suggesting their testicular
origin.

We here report for the first time that semen M540 bodies are asso-
ciated with a reduced testicular volume and occur at higher levels
when testis inhomogeneity or hypoechogenicity are present. Testis in-
homogeneity and hypoechogenicity at ultrasonography are suggestive
of atrophy and fibrosis (Loberant et al., 2010) and considered import-
ant signs of a reduced testicular function and overall impairment of
spermatogenesis (Lenz et al., 1993; Behre et al., 1995). In addition,
testicular volume is generally accepted as a parameter positively
related to sperm count (Lenz et al., 1993; Behre et al., 1995, 2000).
Seminal levels of M540 bodies are also positively associated with
higher FSH serum levels, an index of primitive testicular damage (Berg-
mann and Guthoff, 1994; Forti and Krausz, 1998). Overall, these
results indicate that M540 bodies may be considered a sign of a de-
rangement of spermatogenesis due to testicular damage.

In our previous studies, we have clearly demonstrated that M540
bodies are apoptotic bodies, as they stain for merocyanine 540
(which reveals apoptosis-related membrane modifications) and
contain several apoptotic markers, including Fas and caspase activity
(Muratori et al., 2004; Marchiani et al., 2007). In the testis, the
process of apoptosis is considered a physiological event which regu-
lates the ratio between germ cells and Sertoli cells in the seminiferous
tubule and may occur both by intrinsic and extrinsic pathways (Shaha
et al., 2010; Shukla et al., 2012). In testis from patients with meiotic
and post-meiotic arrest of spermatogenesis, apoptotic cells are
mostly primary spermatocytes and, to a lesser extent, round or
early elongating spermatids (Francavilla et al., 2002). Interestingly,
degenerated germ cells demonstrate an increased expression of Fas
(Francavilla et al., 2000, 2002), suggesting a link between Fas expres-
sion, testis apoptosis and efficiency of spermatogenesis (Francavilla
et al., 2000). Thus, a derangement of testis apoptosis is associated
with a reduction in sperm quality and the occurrence of high levels
of M540 bodies may indicate such a derangement. Interestingly, we
show here that at the level of 27%, M540 body semen levels are
able to discriminate subjects with and without testis inhomogeneity,
suggesting that this CDU sign might be related to alterations of sperm-
atogenesis and of the apoptotic process in the testis.

The apoptotic process is usually followed by dead cell/residual
body removal by macrophages or other tissue resident cells involved
in phagocytosis. In the testis, apoptotic germ cells appear to be elimi-
nated either in the seminiferous lumen or may be phagocytated by
Sertoli cells (Francavilla et al., 2002). Recently, it has been shown
that the disruption of Sertoli cell-mediated removal of apoptotic
germ cells and apoptotic bodies in the testis in an animal model
leads to loss of normal testis tubule architecture due to an increase
in multinucleated giant cells and apoptotic germ cells, which ultimately
leads to loss of spermatogenesis (Elliott and Ravichandran, 2010).

The occurrence of apoptotic (M540) bodies in semen suggests that
they escape the Sertoli cell-mediated phagocytotic process. It is pos-
sible that if a great number of cells undergoes the apoptotic process,
as may be in the case of subjects with a derangement of testis apop-
tosis, the number of apoptotic bodies that are formed is greater than
those that can be removed, as occurs in the animal model of disrupted
Sertoli cell-mediated phagocytosis (Elliott and Ravichandran, 2010). In
our previous study (Muratori et al., 2004), we demonstrated that
M540 bodies do not express phosphatidylserine on their surface. Al-
though phosphatidylserine is not the only ‘eat-me’ signal in apoptotic
cells, it is the most universally seen alteration on the surface of apop-
totic cells, observed in several cell types and even after different path-
ways of apoptotic induction (Ravichandran, 2011). It is thus possible to
postulate that M540 bodies escape the Sertoli cell-mediated phagocyt-
osis process also because they lack such an ‘eat-me’ signal on their
surface. However, whether the occurrence of M540 bodies in semen
is to be ascribed to escape from Sertoli cell-mediated phagocytosis
or increased testis apoptosis remains to be determined. The occur-
rence of M540 (apoptotic) bodies in semen supports the abortive
apoptosis theory (Sakkas et al., 1999), according to which the occur-
rence of apoptosis-like signals in the ejaculate may be also explained
by an escape from the phagocytotic process.

Infertile males with a history of testicular maldescent are often char-
acterized by lower semen quality due to an irreversible damage of the
tubular compartment despite orchidopexy (Toppari and Kaleva,
1999). Our study demonstrates a positive association between
M540 bodies and a history of cryptorchidism. Moreover, at the previ-
ously established level of 27%, M540 bodies are associated with a con-
sistent increased risk of cryptorchidism and of elevated FSH. The
mechanism responsible for decreased semen quality in men with a
positive history of cryptorchidism are not entirely known; in particular,
it is not clear whether the degeneration of gonocytes is caused by a
higher temperature in the maldescent testis compared with scrotal
testis or by other mechanisms (Shaha et al., 2010; Agoulnik et al.,
2012). In experimental models of cryptorchidism, an increase in
testicular expression of apoptotic markers has been demonstrated
(Xu et al., 2000; Yin et al., 2002; Zhang et al., 2003). Moreover,
electron microscopy analysis of spermatozoa from a group of patients
with a history of cryptorchidism demonstrates the presence of signs of
apoptosis and necrosis (Moretti et al., 2007).

In the present study, we used a fluorescent technique coupled to
flow cytometry for the assessment of M540 body levels in semen.
This technique allows a precise measure of their levels which may
be particularly important when testicular damage is suspected.
Indeed, in cases where these levels are higher than 27%, testis ultra-
sound could show an inhomogeneous echopattern. However, as
shown in Supplementary Fig. S1 and in previous studies from our
group (Muratori et al., 2004, Marchiani et al., 2007), M540 bodies
can be easily distinguished and evaluated during semen analysis after
staining of the sample (World Health Organization, 2010) because
of their lack of nuclei.

We must recognize as a limitation of the present study the fact that
our conclusions are based only on associations and not on interven-
tions; hence, the described relationships should be considered more
as correlates than as proofs.

In conclusion, this study indicates that high levels of apoptotic M540
bodies in semen are suggestive of the disruption of spermatogenesis
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efficiency and are uniquely associated with testicular abnormalities,
suggesting a testicular origin for these apoptotic bodies.

Supplementary data
Supplementary data are available at http://humrep.oxfordjournals.
org/.
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