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According to official records (Commissario di Governo, 2015), in Italy, at the

end of 2014, the number of missing persons amounted to 29.234 people, which

we consider an impressive figure for a small Country as Italy.

To succeed in tracking them down depends on the causes of disappearance,

on the most recent time the missing persons were seen alive and on many other

circumstances. Often, the only possibility to recover them is through the joint

consideration of the DNA profile of the Unknown(U ), an individual or a corpse

with no identity paper, and the genetic evidence of relatives of missing persons.

In 2005, the Prüm Convention, sometimes cited as Schengen III Agreement,

signed by seven European countries, gave a considerable boot to the creation

of data bases (DB) of DNA profiles and to the exchange of information. Italy

accepted the Prüm Convention some years later, and Law n. 85, 2009 made it

legal to feed the National DNA data base with biological samples of the relatives

of missing persons and of those individuals or corpses whose identity was not

otherwise ascertained.
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At the time of writing, unfortunately, the Italian National DNA data-base has

not come into force although guidelines for law implementation should be issued

soon. This is the reason why, it seems timely to reconsider the probabilistic

assessment of identification propositions and to investigate alternative methods

to achieve a short list of missing persons, thus significantly limiting the number

of possible candidates to identification.

2. BASIC DEFINITIONS AND KINSHIP ANALYSIS

DNA traits are measurements on several specific locations of the DNA called

loci. For an individual, at each locus, we observe a genotype x = {at, au}, t ≤ u,

i.e. two alleles, a, inherited from the parents. Generic alleles at, au are the

determinations of a discrete random variable A = {a1, . . . , am} with sample space

varying among loci. To keep notation as simple as possible, we indicate with x

all the genetic information available, formed by the observation on several loci,

for the individual/s specified in the subscript.

For an individual, considered as a member of a population, i.e. not recognized

to belong to a specific family, the probability to observe the DNA profile is eval-

uated by a population model and its parameters, θ. We do not give details about

the choice of the model and the statistical procedure assessing its parameters.

We assume only that a reasonable choice can be done in specific circumstances.

The possibility to consider in isolation hypotheses whether the Unknown,

whose genetic traits are xU , is the missing member (M ) of a family, is called

kinship analysis and relies on the heritability of the DNA traits. Following the

first Mendelian law, and taking into account possible mutations, the probability

that U is the specific missing individual M claimed by a family can be evaluated

conditionally to the genetic information, xf , coming from members of the familial

pedigree. Let’s define the following hypothesis, H = {Hf ,Hg}.
• Hf : the Unknown is the missing person claimed by a family.

• Hg: the Unknown is a generic unidentified member of the population of

missing persons.

Results are typically provided by the likelihood ratio supporting Hf

LR =
p(xU |xf ,Hf )

p(xU |Hg)
, (1)

where p(xU |xf , Hf ) is the probability to observe xU according to the probability

of the genetic traits of M given xf and p(xU |Hg) is the probability to observe

the genetic traits of U in a reference population from which, alternatively to the

considered family, he/she could come from.
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Furthermore, owing to the Bayes theorem and also introducing prior probabil-

ities on H, we can directly derive their posterior probabilities. Unconventionally,

by using (1), we have

p(Hf |xU , xf ) = LR
p(Hf )

p(Hg)
/(1 + LR

p(Hf )

p(Hg)
).

Remark 1: p(xU |xf ,Hf ) can be evaluated by analytical probabilistic com-

putations or by representing the pedigree of the claiming family by a Bayesian

network (Dawid et al., 2002). After the instantiation of the relatives’ nodes

providing their DNA traits, the probability of xU can be read on the marginal

posterior of xM . Then, some specific software like Familias and DNAview directly

provide the solution allowing for some different population and segregation mod-

els and their parameters. See Dràbek (2009) for a comparative illustration.

Remark 2: The well-known Essen-Moller paternity index, is a LR, where the

alleged father is the Unknown, eventually identified as the true father of a baby

observed with his/her mother on their genetic traits. Afterwards kinship analysis

has evolved (Egeland et al., 2006) and studied many kinds of relationships,

also considering alternative well definite kinship relations within the same family,

contributing to solve questions like: “Are we full or half brothers?”

3 FROMKINSHIP ANALYSIS TO DATA BASE SEA

There are three perspectives to consider the identification of individuals by using

a data base of DNA profiles. We hereafter give a brief description of the topic

emphasizing the most important features.

• Criminal investigations. The trace of an Unknown is found in a place

of interest (often a crime scene) and is compared with the DNA profiles

contained in a data base of people somehow in touch with the judicial

system. At its simplest level, the comparison is limited to find if one of

the DB members matches the Unknown (more than one match is extremely

unlike). There was a fierce controversy on how to evaluate the LR in case

that a match is found. Hyper simplifying, the matter was if the LR would

be smaller (Stockmarr, 1999) or bigger (Dawid, 2001) compared with

3. FROM KINSHIP ANALYSIS TO DATA BASE SEARCH

the LR of type (1) obtained by not considering as evidence all the other

no-match results. Now is largely acknowledged the contribution of the no-

matching evidence and we find it correct. In some countries, and for some

specific investigative purposes, the data base search was enlarged through

the introduction of identification hypotheses involving the relatives of the

DB members, see Cavallini and Corradi (2005) and Slooten and Meester

(2014). Almost always, in this circumstance, it is not known if the members
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4.1 THE BAYESIAN NETWORK APPROACH

of the DB have actually the relative/s for whom the search is established,

so a further level of uncertainty must be introduced.

• Search of missing persons. The scheme is similar to the criminal identi-

fication DB search, but some simplifications arise. Since a biological sample

of the missing person is rarely available, usually uncertainty on the missing

person genetic profile is conditioned to familial donors’ DNA evidence. In

some cases, familial inference concentrates this probability in a spiky dis-

tribution, a limiting case is when two homozygous parents look for their

missing sibling, which is equivalent, excluding mutations, to the availabil-

ity of the sibling’s DNA profile. Also the relationships among the familial

donors and the missing person are faithfully elicited since relatives clearly

understand the importance of the reliability of this information. Often the

number of missing individuals in an area is uncertain, prone to be under

estimated and overwhelms the number of claimed individuals, i.e. we do

not have any familial information about several missing individuals.

• Mass fatality incidents (MFI). This is the most challenging exercise.

Several Unknowns, hundreds in air crash episodes, many more in case of

natural disasters, must be identified. The difficulty is to perform the simul-

taneous identification of all the unknowns (the victims) considering all the

possible ways in which they can be allocated among the claiming families

which often require the identification of more than a missing person, see

Corradi (2010) for more details.

4. INFERENCE FOR THE SEARCH OF MISSING PERSONS

assumptions to get efficient computations. Another one, (Slooten and Meester

, 2014), obtains the required inference analytically by combining the likelihood

ratios derived by separate kinship analyses illustrated in Section 2, to obtain some

posterior probabilities of interesting events and likelihood ratios. Since they both

were originally formulated for criminal investigations, in Sections 4.1 and 4.2 we

provide some adaptation to cope with the search of missing persons.

There are two main contributions to cope with the inference on identification

hypotheses concerning a DB search extended to relatives of the DB members.

One approach, (Cavallini and Corradi , 2005), solves the inference problem by

using a Bayesian network, exploiting some reasonable conditional independence

Let N the number of missing persons in the area we are concerned and n the

families, F = {f1, . . . , fn}, providing their genetic evidence xf = {xf1 , . . . , xfn}.
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M = {M1, . . . ,Mn} is the set of missing relatives whose unobserved genetic

traits are probabilistically described by the collection of random variables XM =

{XM1 , . . . , XMn}. The identification hypothesis H = {1, . . . , n, r}, alternatively
considers the Unknown as the missing relative of one of the n families or, if

H = r (rest) one of the N − n unclaimed missing individuals, i.e. U is regarded

as a generic member of the unclaimed missing population. Let’s introduce the

following assumptions.

Assumption 1. For all individuals, their genetic characteristics, considered at

different loci, are mutually independent given the population parameters.

Assumption 2. Xf ⊥⊥ H, i.e. familial relations and genetic traits of the

families’ members are independent of the identification hypothesis.

Assumption 3. xU = xmi |H = i, i ∈ {1, . . . , n}. If the Unknown is iden-

tified as the missing member of ith family, the probability to observe his/her

characteristics only depends on Xmi .

Assumption 4. p(xU |H = r) = f(θ). If the unknown is assumed to be a

generic member of the population, the probability to observe his/her character-

istics only depends on the population parameters.

These assumptions justify the first graphical representation of the DB search

missing persons problem in Figure 1 through its Directed Acyclic Graph (DAG) .

This representation is formally correct but largely inefficient since no conditional

independence among families is revealed and the dimension of the conditional

probability table of xU increases with the number of claiming families, making

the inference practically infeasible.

A more efficient but equivalent representation can be obtained by introducing

a set of mediating variables Z = {Z1, . . . , Zn} between xU and the XMi , i =

1, . . . , n, to induce these latter to divorce, that is the number of incident arcs

converging to xu are distributed to the zs.

p(xU = (ai, aj)|zi) =
{
1, if zi = (ai, aj),

0 otherwise.
(2)

The Zs are simply a copy of the xU so that this latter can be removed if

the Zi are instantiated with the genetic traits of the Unknown in each family.

Furthermore, by Assumption 2, this means that computation can be performed

separately in each family, conditionally on H.

Then, to immediately evaluate the probability the Unknown is the missing

person in each of the n family, versus he/she is someone else, we introduce a set

of n propositions, Hi = {i, ī}, deterministically related to H through

p(Hi = i|H) =

{
1, if H = i,

0 otherwise.
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Finally, to compare directly the overall probability that the Unknown is one of the

missing individuals searched by the families in the DB, versus he/she cannot be

identified at a certain state of knowledge, we introduce a new hypothesis random

variable H∗ = {DB, r}, summarizing the results obtained by H, according to the

following deterministic relation

p(H∗ = DB|H) =

{
1, if H = i, . . . , n,

0 if H = r.

Figure 1: DAG representation of a DB search problem according to Assumptions 1-4 for the
case detailed in Section 4.3. Family 1: two parents (d,m) are looking for their missing
son, M

1
. Family 2: a man (b) is looking for his missing brother M

2
. Family 3: a man

(C) is looking for his missing mother M
3
. Continuous and dotted lines respectively

indicate observed and unobserved genotypes.

The manipulations proposed by adding the Zs, removing xU and adding the

His and H∗ are illustrated in Figure 2.

Figure 2: DAG representation of a DB search problem augmented by variables Zs, having
removed x

U 
and after the introduction of the families’ detailed identification

variables (H
i
) and the identification variable H  summarizing both the hypotheses the

Unknown is identified by the families in the DB or not.
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Remark 3: The His and H∗ are not essential to solve the inferential problem
but, since dichotomous, they allow to simply derive meaningful likelihood ratios

by asking to the net the probability of the evidence after the instantiation of each

of their two states. By Hi we can derive the support provided by the data to the

hypothesis that the Unknown is the missing individual searched by the ith family,

versus he/she is some other claimed or unclaimed missing person. By H∗ we easily
derive the likelihood ratio supporting the hypothesis the Unknown is one of the

people searched by the families in F versus he/she is one of the unclaimed missing

persons. Figures 1 and 2 show genotype networks which are not very suitable

for computational purposes. Actually computations are performed through allele

networks, which are definitely more efficient as demonstrated by Lauritzen and

Sheehan (2003).

This approach, due to Slooten and Meester (2014), considers LRs defined in (1)

and evaluated for each of the families, as building blocks to analytically derive

some intriguing likelihood ratios and some relevant events’ posterior probability.

The possibility to use simple LRs to work with identification hypotheses related

to a DB search has been introduced in the literature by Chung et al. (2010), for

crime samples in form of mixtures, and by Corradi (2010) in case of MFI.

We now provide a summary of the main results about the evaluation of some

events of interest, obtained

a) analytically, according to Slooten and Meester (2014);

b) using the BN represented in Figure 2, due to Cavallini and Corradi (2005),

after instantiation with xf , zi = xU and evidence propagation.

Let r = {r0, r1, . . . , rn} be the likelihood ratios (1) evaluated for each of the

families in F , indicating with r0 = 1 the LR obtained if no familial evidence is

available.

1. Posterior identification probability for each of the claimed missing persons:

a)

p(Hj = j|xU , xf ) =
rjp(Hj = j)∑n
i=0 rip(Hi = i)

. (3)

b) Directly provided by the Hi nodes.

2. Likelihood ratio supporting the hypothesis U ∈ M versus U is in the rest

of the missing population.

4.2 LIKELIHOOD RATIOS APPROACH
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a)

LR(U ∈ M) =
p(xU , xf |U ∈ M)

p(xU , xf |U /∈ M)
=

∑n
i=1 rip(Hi = i)

p(H = r)
. (4)

b) First compute the ratio of the probability of the overall evidence after

having instantiated H∗ to DB and to r, respectively. The result must

be multiplied by p(H∗ = r)/P (H∗ = DB).

3. Likelihood ratio supporting the hypothesis U is Mj versus U is one of the

other claimed or unclaimed missing individuals.

a)

LR(U = Mj) =
p(xU , xf |U = Mj)

p(xU , xf |U �= Mj)
)

=
rj(1− p(Hj = j))∑n

i=1.i�=j rip(H = i) + p(H = r).
(5)

b) First compute the ratio of the probability of evidence after having in-

stantiated Hj to j and j̄, respectively. The result must be multiplied

by p(Hj = j̄)/P (Hj = j).

Remark 4: The coincidence of the results provided by the considered ap-

proaches is reassuring. Notwithstanding the following question arises: “ Is it bet-

ter to use the conventional analytic derivations or to obtain results by a Bayesian

Network?”. Since both the likelihood ratios r and the expressions (3)-(5) are

very easy to evaluate, the analytic approach seems to address the problem in a

very simple way. However, when mixed populations, silent alleles, mutations, or

the uncertainty on alleles probabilities are included in the evaluation, the BN

approach seems more suitable to cope with all these complicated features as tes-

tified by recent literature addressing these topics. Historically, in forensic science,

as noted by Taroni et al. (2014), analytical solutions have anticipated the rep-

resentation of the same problem through Bayesian Networks. For the data base

search problem, curiously, the BN solution was provided about 10 years before

the analytic answer.

4.3 EXAMPLE

Now we consider in details a toy example of the DB search as represented in

Figures 1 and 2.

In the area in which we are operating, N = 100 people were declared missing.

Three families, n = 3, are looking for their missing relatives.

4.3 EXAMPLE
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• Family 1: two parents, d and m, are looking for their missing son, M1.

• Family 2: a man, b, is looking for his missing brother, M2.

• Family 3: a child, c, is looking for his missing mother, M3.

We consider a single diallelic locus which exhibits allele A with probability 0.1

and B with probability 0.90. No other clue is available so that p(Hi) =
1

100 , ∀i,

Table 1: Data about familial donors, xf and some results of the data base search based on
the families described in Section (4.3) and illustrated in Figures 1 and 2.

F Missing xf  p(H = i|xU , xf ) LR(U = Mj)

f1 M1 = son xd = xm = AA 0.492  96.022

f2 M2 = brother xb = AB  0.017 1.663

f3 M3 = mother xc = AB 0.014 1.390

p(H = r) = 0.97. The body of an Unknown is recovered. We are extremely lucky

because xU = {A,A} i.e. U is homozygous for the less common allele A.

Data about familial donors, xf and the evaluation of the probabilities of some

relevant events and LR, as illustrated in Section 4.2, are in Table 1.

Remark 5: Apparently, results in Table 1 are not easy to interpret: the

likelihood ratio favouring the identification of U as the missing person M1 is high

(96.022) but the posterior probability of identifying U as M1 is less than 50%. At

the same time the value of the likelihood ratio favouring the presence of U among

the missing persons claimed by the families, computed using (4), amounts to 32,

i.e. is much smaller than LR(U = M1) = 96.022. A first answer is that, whereas

the genetic evidence is very favourable to identify U as M1 (M1 is completely

determined by the homozygous relatives resulting himself homozygous for the

rare allele A exactly as U) the large fraction of missing individuals for which we

do not have any familiar information (97%) makes the probability of identification

smaller than 50%. This figure is not so large and is due to the competing Families

2 and 3, each one exhibit the rare allele A so increasing the probability of U to

be M2 or M3. Of course the question is: “Do we have to believe in the strong

support provided by the likelihood ratios or do we have to follow indications

coming from the posterior probabilities of identification?”. In either way we need

to formalize a rule to achieve to a short list of candidates D, spanning from ∅ to

M, to be verified by means of other clues and further efforts.



278 Corradi F.

There are only few contributions on what to do after the inference based on a

data base search has been obtained.

5. SEARCH THE MISSING INDIVIDUALS: THE SHORT LIST

Gittelson et al. (2012) considered the problem for criminal investigations.

There, the most favourable evidence consists in a single match between the crime

sample and the profile of one of the database members. In such circumstance

the authors formally integrate a correct representation of the probabilistic part

of the DB with the decision of identifying the only DB member matching the

crime sample, taking into account the consequence of every action.

Also Slooten and Meester (2014) considered the problem of restricting the

list of candidates to identification for criminal investigation purposes and extend

the search, if no match were obtained, to some relatives of the DB members. They

proposed two methods. That one, named Profile-centred, cannot be reformulated

for the search of missing persons since it requires each missing person to be in the

same relation with the relative providing the DNA evidence. The other, called

Conditional method, can be extended to the search of missing individuals since

it is based on a vector r of LR as in (1), evaluated for each family according

to the specific pedigree. From this setting they define as optimal a short list

Dk formed by the smallest set of size k of missing individuals with the highest

product rjp(H = j), such that

k∑
j=1

rjp(H = j) ≥ α

n∑
i=1

rip(H = i).

The set Dk is considered optimal by the authors because, if U ⊂ M then,

obviously, Dk has probability to identify the Unknown equal to or greater than

α. The property obviously depends on the assumption that U is among the n

searched missing persons, and, in our opinion, the assumption is likely to be

overlooked.

Example (cont’d) Consider again the example of Section 4.3 and assume

α = 0.95. The optimal set is D2 = {1, 2} but the probability that the Unknown

is one of the indicated missing individuals is actually 0.509 and not greater than

0.95, as a superficial interpretation of the conditional method would suggest.

Boreale and Corradi (2016), stemming from the tradition of the Bayesian

decision theory, recently dealt with the problem of an optimal search in a general

setting implying a reward, if the search is successful, and a fixed cost to be

sustained for each item indicated as the possible secret. This approach seems

suitable to be applied to the identification issue. In the case at hand the secret

is the missing person providing the correct identification of the Unknown. Since

after inference, many of missing persons claimed by the families might increase the

probability to be the Unknown: if further verifications were cost-free, there should
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verifications are painful and expensive and this cost has to be taken into account.

This justifies the creation of a short list.

Consider the introduction of a reward a if the Unknown is identified as one

of the missing persons claimed by the families, and a fixed cost for each missing

person included in the short list, accounting for the efforts required to verify the

hint. If the short list is empty, no action is undertaken and both terms equal zero.

The reward measures the degree of interest in the Unknown identification and

can be conveniently expressed in cost units, i.e the identification is considered

affordable if it is achieved in at most a attempts.

Let D be a subset of H\r. The net gain to explore D, if the correct identifi-
cation of the Unknown is H = i, is

g(H = i,D) = a · 1[H=i∈D] − |D|.
For any set D, the expected gain, after learning on H is established by

G(H,D) =

n∑
i=1

p(H = i|xU , xf )a · 1[H=i∈D] − |D|

=
∑

H=i∈D

(
p(H = i|xU , xf )a− 1

)
. (6)

The Bayes action maximizing (6) is the set D∗

D∗ = {i : p(H = i|xU , xf ) ≥ 1/a}.

Proof See Lemma 2 of Boreale and Corradi (2016).

If no other clue but xU is available, it makes sense to pose

p(H = i) =

{
1
N , if i = 1, . . . , n,
N−n
N if H = r,

so that, by evaluating p(H = i|xU , xf ) via Bayes theorem, D∗ becomes

D∗{: p(xU |xf , H = i) ≥ 1

a
(

n∑
i=1

p(xU |xf , H = i) + (N − n)p(xU |H = r)}.

The expression makes clear that the inclusion of elements in D∗ is favoured

by high values of a. On the other hand, if p(xU |H = r) is high, i.e. the DNA

traits of the Unknown are fairly common in the population, and/or if n
N is pretty

be no reason to disregard some of them from a list of interesting candidates. But

small, those circumstances make it hard for a family to have the missing relative

included in D∗.
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Remark 6: The inclusion in D∗ of the extremely promising missing person

in Family 1 is not straightforward now: he/she is included only if the worth of

identification is, at least, as valuable as the cost of three verifications among

families. The results takes into account the high LR(U = M1) favouring the

possibility that U is M1 but also considers the very small fraction (3%) of families

asking for identification. M2 is not immediately included in the short list as it

happens if the Conditional method is applied. M2 will be scrutinized only if the

worth of identifying a missing person is considered at least 12 times the cost

required to refine the search in a family.

6 CONCLUSIONS

In this work we have reconsidered and compared some different contributions to

the identification problem using a data base of DNA profiles. Emphasis has been

put on the missing person problem, tailoring to this specific topic the solution

of the inference problem proposed by Cavallini and Corradi (2005) and Slooten

and Meester (2014). We also reflected on the issue of restricting in the most

promising missing persons worth further identification efforts. The solution stems

from the Bayesian decision theory and following a recent contribution of Boreale

and Corradi (2016). We suggested it as a solution for a simple structure of

reward and costs related to the possible actions and consequences.

Next step will be to implement the proposal into a belief network, integrating

the probabilistic and the decision sides of the approaches into a single coherent

framework. Further efforts are also required to specify a suitable model to define
prior probability of identification usually related to some case-specific observables

as are the distance between where the Unknown was found and the place of

the missing persons and other circumstances related to how the Unknown was

recovered.

Example (cont’d). Consider again the example of Section 4.3. What is the

optimal action after xU is observed? By observing the last column on the right

of Table 1, D∗ is evaluated according to some possible a’s values. Results are in

Table 2.

Table 2: Missing relatives included in DDDDD * to verify the results of the the DB search according
to the example described in Section 4.3 for some different values of a.

a 1 2 3 … 12 … 15

D* Ø Ø 1 … 1, 2 … 1, 2,  3

6. CONCLUSIONS
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