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Abstract
Aim of the study: To forecast the effects of climate change on the spatial distribution of Black pine of Villetta Barrea in its natu-

ral range and to define a possible conservation strategy for the species
Area of study: A rear-edge marginal population of Pinus nigra spp. nigra in Abruzzo region, central Italian Apennines
Matherials and Methods: For its adaptive and genetic traits this population is considered endemic of the Italian peninsula and 

represents a rear-edge marginal population of nigra subspecies. The spatial distribution of the tree in the administrative Region 
(Abruzzo) was used to define the ecological traits while three modelling techniques (GLM, GAM, Random Forest) were used to 
build a Species distribution model according to two climatic scenarios.

Main results: The marginal population’s range was predicted to shift at higher elevations as consequence of climatic adaptation. 
Many zones, represented by the higher part of the mountains surrounding the study area (currently bare and inhospitable for trees), 
were identified as suitable in future for the species. However, in the case of a rapid climate change, this marginal population may 
not be able to move as fast as necessary. An in-situ adaptive management integrated with an assisted migration protocol might be 
considered to favour natural regeneration and improve the richness and variability of the genetic pool.

Research highlights: Most of the genetic richness is held in small populations at the borders of natural distribution of forest spe-
cies. Monitoring this MAP could be useful to understand the adaptive processes of the species and could support the future manage-
ment of many other within-core populations.
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and expected changes in tree growth will influence the 
competitive relationships between species. The poten-
tial mixture and the choice of species available for 
plantation or natural regeneration (Cha, 1997; Lindner, 
2000) could be modified as well as the frequency of 
drought stresses or fires (Resco De Dios et al., 2007; 
Vázquez et al., 2015). Resilience of forest ecosystems 
and reaction to disturbances are strictly connected to 
genetic variability and phenotypic plasticity of popula-
tions (Ducci, 2015).

It is well known that the future events might influ-
ence biomass stocks (Benito-Garzón & Fernández-

Introduction

A valuable part of the genetic richness and diversity 
of forests is held by small populations living at the 
edges of the natural species range. Those populations, 
defined as  marginal and peripheral populations (MaP 
populations) will be the first facing the climate change 
effects and may contain original adaptive traits and 
genetic variability (Hampe & Petit, 2005). Those will 
play a key role to study and understand the effects of 
Global Change on forest ecosystems. Climate change 
may have different impacts on different populations 
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In the Mediterranean region, the Italian peninsula is 
a well-known hotspot of genetic diversity, consequence 
of the presence of many ancient glacial refugia (Petit 
et al., 2003). In this paper, through a SDM approach, 
the future impacts of climate change on a MAP of 
Pinus nigra in central Italy (Abruzzo region) were 
investigated. The aim was to guide the future manage-
ment processes and to consider and possibly to imple-
ment assisted migration actions of this marginal popo-
lation as well as to add knowledge about the more 
likely events of forest species at the borders of the 
natural distributions. The current distribution of the 
species across the region was considered to cover the 
ecological niche (ecological niche) while just the spa-
tial distribution and shape of the MaP population was 
investigated. Three modelling techniques were com-
pared and used to create an ensemble model with two 
future climatic scenarios for central Italy according to 
two future trajectories from the IPCC AR5, the rcp4.5 
and rpc8.5 (IPCC, 2014).

Methods

Target species and study area

The target species of this study is the Black pine 
of Villetta Barrea (Pinus nigra Arnold ssp. nigra var. 
italica Hochst) in its native area, the Abruzzo region 
in central Italy (Fig. 1). This tree belongs to the nigra 
subspecies (Quézel & Médail, 2003) and is naturally 
distributed only in this region on approximately 400 
hectares around the small town of Villetta Barrea (Lat. 
41.7768 N, Long. 13.9374 E). Geneticists had classi-
fied the Black pine of Villetta Barrea as intermediate 
between the two Italian subspecies (nigra and laricio). 
It is smaller for size and growth rate than Austrian 
and Calabrian pine (Gellini & Grossoni, 2003) but 
highly drought-tolerant. The phenotype of trees and 
the needle’s anathomy are diagnostic to asses differ-
ences among subspecies and varieties (Bruschi et al., 
2005).

A small part of this population (about 100 ha) is 
registered as a seed stand (Regional Code ABR04) 
while the other stands are included into the in the Na-
tional Park of Abruzzo Lazio and Molise. In the last 
decades, many seeds were harvested from this area for 
nursery activities and reforestation programmes on 
calcareous soils, similar to Austrian pine (Pinus nigra 
Arnold ssp. Nigra). As a consequence, the gene pool 
of these trees has been spread across the whole Italian 
country (Gellini & Grossoni, 2003).

The average annual temperature of the zone where 
the MAP is located is 15.1 °C according to the 1971-

Manjarrés, 2015), carbon storage and water balance 
(Vitale et al., 2012) and could force species to migrate 
from their present geographical range (Parmesan, 
2006). Under climate change effects, forest species may 
have to adapt to new environmental conditions to avoid 
local extinction or severe genetic erosion (Provan & 
Maggs, 2012; Hamann & Aitken, 2013). A good predic-
tion of the most likely effects of movement of cli-
matic belts is fundamental to balance future forest 
management and seed transfers among different eco-
logical regions (Benito-Garzón & Fernández-Manjarrés 
2015). Small and isolated populations with low gene 
flow and low genetic variability could disappear, with 
a loss of adaptive richness (Schueler et al., 2014) 
threatened by the speed in the changing environment 
(Mátýas et al., 2009).

To apply climate change prediction on ecological 
systems different disciplines are involved. On one side, 
climatology is fundamental to outline future scenarios. 
On the other side, ecology and biology are basic to 
weight and balance species’ response, taking also into 
account the interaction of biotic versus abiotic factors, 
especially at the margins of the natural range (Guisan 
& Zimmermann, 2000) or for planted/introduced spe-
cies (Isaac-Renton et al., 2014). In such a background, 
prediction of future impacts on forest ecosystems is an 
ensemble of climatic scenarios and adaptability of the 
species that must be considered in a holistic view and 
tackled under many different aspects (Trivedi et al., 
2008) and mainly driven by uncertainties (Araújo et 
al., 2005; Wang et al., 2012).

To predict such events on forest species many mod-
els have been proposed and named as Ecological Niche 
Models (ENM) and/or Species Distribution Models 
(SDM) (Guisan & Zimmermann, 2000; Elith & Leath-
wick, 2009; Warren, 2012; Flower et al., 2013; Mcin-
erny & Etienne, 2013; Warren, 2013). In those model-
ling procedures the spatial distribution of forest species 
is connected to a set of environmental variables that 
can be used as predictors modelling procedure (Guisan 
& Thuiller, 2005; Elith & Leathwick, 2009). A vast 
number of different SDMs (and ENMs) algorithms have 
been proposed in the literature, often compared with 
each other in order to assess their power and suitabil-
ity according to the different nature of data or species 
distributions (Zaniewski et al., 2002; Liu et al., 2011; 
Merow et al., 2014). When a SDM (or an ENM) incor-
porates future climate predictions, future distribution 
of species can be forecast becoming a very powerful 
way to study climate change effects on populations 
(Forester et al., 2013; Brunetti et al., 2014; Isaac-
Renton et al., 2014) small parts of species range (Ha-
mann & Aitken, 2013) or provenances (Isaac-Renton 
et al., 2014).
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Following the previous knowledge, the modelling 
of the MAP of Villetta Barrea was performed consider-
ing more than the current spatial distribution of the 
MAP which represents just a small part of the potential 
ecological niche of the species (Fig. 2). The presence 
and absence data were extracted from the Regional 
forest categories map of Abruzzo (Marchetti et al., 
2006) with a spatial resolution of 100 metres. All 
polygons of the “Natural stand of Villetta Barrea pine” 
and “Afforestation in mountainous areas” category 
were used to calculate the presence dataset while all 
the others polygons were considered as (pseudo) ab-
sence. More than 10,000 presence points (10,047) in 
WGS84 UTM 33N reference system were obtained 
while 444,143 locations were detected as absences. 
Aware that when the proportions of presences and ab-
sences in a model are not equal (or not equally weight-
ed) the prediction can be asymmetric (Barbet-Massin 
et al., 2012) more runs were computed. An equal 
number of presence and pseudo-absence points have 
been extracted from the database, weighting them 
equally during the computation. Five different datasets 
were created (PArepI, PArepII, ParepIII, ParepIV, 
ParepV) with 20,094 locations each (10,047 presences 
+ 10,047 pseudo-absences) merging the final predic-
tions to obtain a single ensemble model. In addition, 
before any modelling activity the presence and absence 
points were carefully checked with geostatistical meth-
ods to remove the spatial autocorrelation.

2000 normal climate. Average annual normal of 
precipitation amount is 1,491 mm with 112 wet days 
but low summer precipitation (251 mm). The vegeta-
tion period is around 150 days and soil types belong 
to the Calcaric cambisols (European-Soil-Bureau, 
1999).

Definition of the ecological niche of the 
Villetta Barrea Black pine (Presence/absence 
dataset)

Forest management, reforestation activities on poor 
and vulnerable soils or on abandoned lands, natural 
Parks regulations and many other events have strong-
ly modified the distribution (and the gene pool) of 
forest species, especially in mountainous areas. Con-
sequently, many aspects must be carefully considered 
before modelling species distributions and especially 
in the case of conifers used for reforestation pro-
grammes (Cantiani & Chiavetta, 2015). Indeed, due 
to human influence on forest ecosystems, a quantity 
of the current geographical distribution of Black pine 
has been modified (Bernetti, 1995; Gellini & Gros-
soni, 2003; Bruschi et al., 2005). As a result, in some 
cases such as Pinus nigra spp, the present distribution 
of the species had to be carefully checked to avoid 
artificial reduction or expansion of the ecological 
niche.

Figure 1. Natural range of Pinus nigra spp. from EUFORGEN official portal and geographic position 
of the MaP population of Villetta Barrea (red circle).
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computed for 2050s following the projections rcp4.5 
(ABR4.5) and rcp8.5 (ABR8.5). The interpolated data-
set for the current period (1980-2010) was modified 
adding the predicted variation as anomalies to the 
raster maps using the “delta method” (Ramirez-Villegas 
& Jarvis, 2010). To consider soil variability, the soil 
map of Italy (European Soil Bureau, 1999) was con-
verted in raster map with the same spatial resolution 
of the climatic predictors and included as predictor in 
the model.

Tested models

To model the spatial distribution of the target spe-
cies, three algorithms were selected and compared. 
Those algorithms were: i) Generalized Linear Model 
(GLM); ii) Multivariate Adaptive Regression Splines 
(MARS) and iii) Random Forest (RF). All methods 
were implemented in biomod2 package (Thuiller et al., 
2014) for R (R CoreTeam, 2015) which was adopted 
to perform the spatial analysis.

GLM is generally known as “Logit Model”, it is used 
for binomial regression (1, 0) and is widely available 

Climate data and future scenarios

Many climatic data are freely available in web 
repositories. WorldClim database (Hijmans et al., 
2005) is one of the most famous and used for eco-
logical modelling. It is free of charge and provides 
raster maps with a maximum spatial resolution of 30 
arc-second including temperatures, precipitations and 
19 bioclimatic variables (www.worldclim.org). Any-
way, is some cases as MaP populations' analysis, 
WorldClim’s maps can be not adequate to consider all 
climatic variability due to the spatial resolution (ap-
proximately 1 km at the equator) and compared to the 
physiographic characteristics of the study environment 
(Hijmans et al., 2005; Bedia et al., 2013). For these 
reasons and due to the topographic layout of our study 
region (Abruzzo) the 19 bioclimatic maps of world-
clim portal were re-calcultaed. Climatic data from the 
regional meteorological network were interpolated at 
100 metres of spatial resolution using a comparative 
approach between geostatistical methods as sug-
gested by Attorre et al. (2007).

According to IPCC predictions for the Mediterra-
nean area (IPCC, 2014) two future scenarios were 

Figure 2. A partial representation of the ecological niche covered by the Villetta Barrea Black pine in 
Abruzzo. Black circles represents all the pixels covered by the species in the region while yellow, blue 
and red dots refer to the study area. The ecological optimum (Gellini & Grossoni, 2003) is coloured in 
green.
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to avoid lack of information and biases during the 
random extraction, predictions of models with TSS 
higher than 0.7 (Araújo et al., 2005) were used to 
calculate an ensemble model. An averaged mean of 
the four algorithms was calculated (Marmion et al., 
2009; Zhang et al., 2015). Weights were given accord-
ing to the accuracy of each model, assessed using a 
bootstrapping procedure with 30 runs for each dataset 
(Guisan & Zimmermann, 2000). Three different suit-
ability maps were obtained, one for each scenario 
(ABR0, ABR4.5, ABR8.5) and the whole procedure 
is graphically-reported in Fig. 3.

Finally, to calculate the potential suitable area for 
Black pine in Abruzzo, a binary transformation of the 
prediction of the ensemble model was carried out using 
the threshold which maximize TSS, a method known 
to improve the accuracy of prediction (Jiménez-Val-
verde & Lobo, 2007). Maps were transformed rescaling 
pixel values (1 pixel = 1 ha) between 1 (potentially 
suitable) and 0 (not suitable for the species). The same 
procedure was performed for elevation values comput-
ing minimum, median, mean, mode and maximum 
values to check a possible rising at higher elevation of 
the suitable envelope. All the calculations and statistics 
were made considering the whole spatial distribution 
of the species in Abruzzo, while the conservation strat-
egy was studied just for the MAP.

in statistical packages (Bedia et al., 2011); the optimal 
regression formula is generally calculated through a 
stepwise procedure, using AIC criteria. 

MARS model (Friedman, 1991) is a powerful non-
parametric tool, mainly used for data mining. It is an 
adaptive procedure and similar to GLM it is based on 
regressive methods and well suited for high-dimen-
sional problems (i.e, a large number of inputs). It can 
be considered as a generalization of stepwise linear 
regression or a modification of the CART method 
(Hastie et al., 2008). The main feature of MARS is that 
the algorithm works sub-setting the dataset in different 
subsections which are modelled separately and con-
nected at the end of computation.

RF regression-model algorithm (Breiman, 2001) 
belongs to the machine-learning techniques and derives 
from Classification and Regression Trees. In this case, 
the regression is built using predictors to classify ob-
jects which are sampled randomly through a bootstrap 
procedure. The number of randomly-sampled predictors 
is, in general, the square root of the total number for 
classification and one-third for regression. Tree nodes 
are created using the randomly-sampled predictors 
(generally climatic variables or bioclimatic indices as 
our case) that had the smallest classification error. For 
each step, RF created a different regression tree, split-
ting data into groups, the “bagged sample” and the 
“out-of-bag sample”. The first is used to create the tree 
and the second is used to calculate the classification 
error (the Out Of Bag error). After a specific number 
of trees (500, 1000, 2000... N) is created, the computa-
tion ends.

Ensemble model calculation and 
environmental analysis

To assess differences among datasets and models 
the Kruskal-Wallis Rank Sum test (Kruskal & Wallis, 
1952) was used to perform an non parametric 
ANOVA. The Area Under Receiver Operating Char-
acteristic Curve (AUC) and True Skill Statistics (TSS) 
(Allouche et al., 2006) were used as indicators. AUC 
and TSS were calculated with a split-sample approach 
(Van Houwelingen & Le Cressie, 1990), dividing each 
dataset in “training sites” and “test sites” with a 70% 
- 30% proportion. AUC and TSS are both indicators 
of goodness of prediction and while the first varies 
between 1 and 0 the second ranges between -1 and 1. 
However, only TSS, which corresponds to the sum of 
sensitivity and specificity-minus-one, has the addi-
tional advantage of being fully independent from the 
species prevalence and the size of the validation data-
set (Allouche et al., 2006). After model comparison, 

Figure 3. Structure of the modelling procedure for the construc-
tion of the Species distribution model.

Full dataset
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biomod2 computation
(GLM + SRE + MARS + RF)

Models evaluation
(AUC & TSS)

Ensemble Model

Training data

Testing data

Random  
extraction of 5 

presence/absence 
datasets



Maurizio Marchi, Susanna Nocentini and Fulvio Ducci

Forest Systems� December 2016 • Volume 25 • Issue 3 • e072

6

elevation of Black pine’s populations in Abruzzo was 
increased from 342 metres a.s.l. of the present potential 
distribution to 1,530 metres of the rcp8.5 scenario 
(+347.4%). Mean elevation shifted of approximately 
+700 metres and maximum elevation reached 2,431 
metres (+18.4%). In Tables 5 and 6 the values related 
to potential suitable area and elevation limits for the 
three modelled scenarios are reported. A cartographic 
representation of the projections is shown in Fig. 4. 
The model correctly predicted the current natural dis-
tribution in ABR0, which was drawn as black polygons. 
With ABR8.5 the situation was completely changed 
and current distribution was not predicted to be suitable 
any more. Three different zones were selected by the 

Results

Predictors were initially tested for collinearity 
(Montgomery et al., 2012) and the 5 biovariables 
with no collinearity problems (Table 1) were added 
to the soil map and used for building the SDM. The 
importance of each predictive variable is reported in 
Table 2. The modelling procedure detected the bio5 
(Max Temperature of Warmest Month) as the most 
important predictor for all models. Climatic data 
were detected as much more relevant than soil data, 
especially in MARS model where they were not use-
ful at all.

Mean AUC and TSS values of 30 bootstrap runs and 
of full models for each dataset are reported in Table 3, 
whereas global means and standard deviations are re-
ported in Table 4. ANOVA performed on TSS values 
demonstrated the absence of statistical differences 
between the algorithms. Consequently, the ensemble 
model was created with all the algorithms. In the cur-
rent scenario (ABR0) the ensemble model calculated 
229,991 hectares of potentially-suitable area, much 
higher than the present distribution which is 19,185 
hectares. In ABR4.5 and ABR8.5 this estimated area 
decreased very strongly and respectively of -72.1% and 
-96.5%. According to this prediction, also elevation of 
suitable envelope was predicted to change. Minimum 

Table 1. Collinearity test results of the 19 input parameters

VIFs of the remained variables 

Variables Variance Inflation Factor
bio4 3.20
bio5 3.54
bio7 1.82
bio14 1.49
bio19 2.26

Linear correlation coefficients ranges after excluding the 
collinear variables

min correlation ( bio4 ~ bio7 ):  -0.026
max correlation ( bio4 ~ bio5): 0.771

Table 2. Predictors’ importance for each algorithm and mean values (range from 0 to 1)

Predictor GLM MARS RF MEAN

bio4 0.040 0.091 0.115 0.082
bio5 0.829 0.943 0.495 0.756
bio7 0.004 0.121 0.191 0.105
bio14 0.055 0.109 0.134 0.099
bio19 0.040 0.052 0.174 0.088
Soil 0.155 0.000 0.108 0.088

Table 3. Mean AUC and TSS of 30 bootstrap reperirions

MODEL PA_rep AUC TSS AUC_full TSS_full

GLM I 0.953 0.782 0.953 0.782
MARS I 0.978 0.863 0.978 0.865

RF I 0.999 0.983 1.000 1.000
GLM II 0.954 0.784 0.955 0.784

MARS II 0.975 0.849 0.979 0.865
RF II 1.000 0.983 1.000 1.000

GLM III 0.955 0.787 0.955 0.787
MARS III 0.978 0.865 0.977 0.864

RF III 0.999 0.985 1.000 1.000
GLM IV 0.955 0.786 0.955 0.786

MARS IV 0.979 0.865 0.979 0.862
RF IV 0.999 0.984 1.000 1.000

GLM V 0.954 0.782 0.954 0.782
MARS V 0.977 0.857 0.980 0.865

RF V 0.999 0.984 1.000 1.000
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Table 4. Global mean and standard deviation of AUC and TSS values

MODEL ROC TSS ROC_full TSS_full

GLM 0.954 0.784 0.954 0.784
0.0009 0.0023 0.0009 0.0023

MARS 0.977 0.860 0.979 0.864
0.0014 0.0068 0.0011 0.0013

RF 0.999 0.984 1.000 1.000
0.0001 0.0008 0.0000 0.0000

random extraction of trees and variables, the possible 
overfitting of some models such as GLM and MARS 
can be reduced.

The current distribution of the Black pine population 
was predicted to be modified by the considered sce-
narios. Strong changes were predicted to happen espe-
cially with the warmest projection (ABR8.5). The 
predicted loss of suitable area for the whole Abruzzo 
region was very high (-95%) and just few mountainous 
zones were detected as suitable (Fig. 5). However, as 
the model suggested, Abruzzo’s topographic morphol-
ogy may play a key role in the conservation of this 
marginal gene pool. In such case, trees at higher eleva-
tions on rocks, growing at around 2,000 metres a.s.l., 
might increase their reproductive role in a warming 
climate allowing the species to migrate. In this context, 
this “new” source of seeds could be a relevant advan-
tage versus competitors such as Beech and/or Oaks 
which are frequently mixed with Black pine. These 
hardwood species are not able to migrate at higher 
elevation without the help of animals. In addition fu-
ture-suitable lands are actually bare and inhospitable 
for trees species and, Black pine would probably be 
more able to colonize these new environments. A 
similar effect of the elevation ranges was detected in 
other Italian regions (Attorre et al., 2011; Vacchiano 
& Motta, 2014).

Our model reported a very high variation of suit-
able area in Abruzzo predicting higher values for 
ABR0 than the real situation (+2,000%). Reasons rely 
on the fact that SDMs works with the occupied eco-
logical niche, compared to the environmental variabil-
ity. In this view, the spatial distribution of a species 
cannot match all the locations that have similar condi-

model on top of the mountains surrounding the Sangro 
river. The first one was on the higher parts of the Ca-
mosciara area (Monte Capraro, Monte Petroso and 
Monte Tartaro) whereas other two were on the opposite 
side of the valley (Monte Greco, Monte Marsicano and 
Monte della Corte).

Discussion and Conclusion

Despite many recent works used RF as unique (or 
unique-based) algorithm to predict present and future 
distribution of forest species (Wang et al., 2012; 
Melini, 2013; Isaac-Renton et al., 2014), also regres-
sion-based models (GLM and MARS) performed well 
in this study. As expected, RF showed higher TSS 
and AUC and smaller standard deviations. The use 
of a group of models for a consensus map, with more 
runs and multiple datasets with biomod2 ensemble 
weighting method, can consistently improve the pre-
diction of a single model (Marmion et al., 2009; 
Forester et al., 2013). An ensemble modelling ap-
proach can correct biases in calculations, making the 
prediction more stable than the classical packages of 
the various algorithms (Liaw & Wiener, 2002). For 
instance, while RF prediction is often affected by 

Table 5. Potential distribution area (ha) in the whole Abruzzo 
region in the three considered scenarios (number of cells > 
0.7)

EM_ABR0 EM_ABR4.5 EM_ABR8.5

229,991 64,107
(-72.1%)

2,244
(-96.5%)

Table 6. Elevation variance in metres (and percentage referring to ABR0) for each scenario (cell value > 0.7)

MODEL Minimum Median Mean Mode Maximum

EM_ABR0 342 1,265 1,259 1,272 2,054
EM_ABR4.5 392

(+14.6%)
1,638

(+29.5%)
1,634

(+29.8%)
1,657

(+30.3%)
2,488

(+21.1%)
EM_ABR8.5 1,530

(+347.4%)
2,010

(+58.9%)
1,979

(+57.2%)
2,096

(+64.8%)
2,431

(+18.4%)
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tions. Forest ecosystems are dynamic and complex 
systems with a mixture of species which interact and 
compete for natural resources (Ciancio & Nocentini, 
2011) and those dynamics can hardly be included in 
a model. In addition, we must also consider that Black 
pine is a very plastic species which can grow in a very 
wide spectrum of areas (Vidakovic, 1974; Isajev et 
al., 2004; Corona & Nocentini, 2009). Different bi-
otic and a-biotic factors are involved (Pearson & 
Dawson, 2003). In this view, a specific conservation 
strategy, based on silvicultural management and 
monitoring system for the species should be consid-
ered in order to observe future development and man-
age the forest genetic resource properly. If on one side 
the adaptation strategies are partially considered in 
this modelling approach, future climate developments 
are likely to be faster than the migration and adapta-
tion ability of the species (Mátýas et al., 2009). An 
assisted migration protocol could be taken into ac-
count and combined with in-situ adaptive manage-
ment. A silvicultural approach aimed at increasing the 
genetic exchange among trees and based on natural 
regeneration could favour the development of adaptive 
traits (Brang et al., 2014). This could be achieved with 
silvicultural interventions which differentiate stand 
structure and open up the canopy, e.g. small group 
selection felling (Ciancio et al., 2006). At the same 
time the establishment of seed orchards and dynamic 
ex-situ conservation could allow the conservation of 
the available gene pool.

In the end, predicting the impact of Climate Change 
on forest species is full of uncertainties. Biological, 
genetic and ecological skills are fundamental to con-
tribute to these studies, to enforce and validate statis-
tical models and to combine different approaches. 
Species-specific analysis like genetic diversity, den-
drochronology and water-stress resistance could be 
added to study the phenotypic plasticity of the species 
(Grivet et al., 2013). In addition, the genetic informa-
tion about species and their local adaptation must be 
carefully considered and all the efforts made on local 
studies, such as those on MaP populations, could have 
a global impact on the development of a common 
scientific knowledge base about adaptive processes 
of forest species.

Acknowledgements

Special thanks are due to Dr. Bruno Di Lena and Dr. 
Fabio Antenucci from Agricultural politics and rural 
development Management of Abruzzo Regional Gov-
ernment for climatic data and scientific support in the 
elaboration.

Figure 4. Cartographic representation of the Ensemble models 
for the MAP and the surrounding area of Villetta Barrea. Green 
colours (dark green and clear green) correspond to “potentially-
suitable area” whereas red colours (yellow, orange and red) were 
used for the not suitable lands.
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Figure 5. Altitudinal movement for the suitable area for the MAP in the study area. Boxplots were calculated dividing pixels for 
elevation ranges from 500 to 2700 metres and every 100 metres. The red line represents the lower border of suitability value (0.7) 
corresponding to the green area of Fig. 4.
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