
Abstract

In this paper the focus is on environmental statistics, with the aim of
estimating the concentration surface and related uncertainty of an air
pollutant. We used air quality data recorded by a network of monitoring
stations within a Bayesian framework to overcome difficulties in
accounting for prediction uncertainty and to integrate information pro-
vided by deterministic models based on emissions meteorology and
chemico-physical characteristics of the atmosphere. Several authors
have proposed such integration, but all the proposed approaches rely on
representativeness and completeness of existing air pollution monitor-
ing networks. We considered the situation in which the spatial process
of interest and the sampling locations are not independent. This is
known in the literature as the preferential sampling problem, which if
ignored in the analysis, can bias geostatistical inferences. We developed

a Bayesian geostatistical model to account for preferential sampling
with the main interest in statistical integration and uncertainty. We
used PM10 data arising from the air quality network of the
Environmental Protection Agency of Lombardy Region (Italy) and
numerical outputs from the deterministic model. We specified an inho-
mogeneous Poisson process for the sampling locations intensities and a
shared spatial random component model for the dependence between
the spatial location of monitors and the pollution surface. We found
greater predicted standard deviation differences in areas not properly
covered by the air quality network. In conclusion, in this context infer-
ences on prediction uncertainty may be misleading when geostatistical
modelling does not take into account preferential sampling.

Introduction

Geostatistics refers to statistical methods used with data obtained
by sampling a spatially continuous phenomenon at a discrete set of
locations in the region of interest (Cressie, 1991). Generally speaking,
the interest is in predicting the mean surface for the phenomenon
under study. In this paper, we focused on environmental statistics with
the aim of estimating the concentration surface and related uncertain-
ty of an air pollutant from air quality data recorded by a network of
monitoring stations. We did so within a Bayesian framework to over-
come difficulties in measuring prediction uncertainty (Diggle et al.,
1998; Pilz and Spöck, 2008; Vicedo-Cabrera et al., 2013; Cecconi et al.,
2016), which are usual when land-use regression (Hoek et al., 2008)
or ordinary Kriging (Banerjee et al., 2004; Son et al., 2010) are used.
However, it is important to acknowledge that, alternatively to statisti-
cal approaches, deterministic models based on emissions meteorology
and chemico-physical characteristics of the atmosphere are of great
value [e.g. community multi-scale air quality (CMAQ)
(http://www.epa.gov/asmdnerl/CMAQ; Zanini, 2009] and might be
preferable to approaches based on observed monitor data. Indeed, the
number of monitoring stations in existing air quality networks can be
very small and the monitors may be sensible to local disturbances,
which affects the validity of the data for interpolation of the concentra-
tion levels. Integration of the two approaches – statistical modeling of
observed concentrations and deterministic emissions modelling – has
been proposed by several authors, e.g. Berrocal et al. (2010). However,
such approaches rely on representativeness and completeness of exist-
ing air pollution monitoring networks. Air quality networks may be
problematic in this respect, because the geographical location of the
monitors may have been deliberately chosen for a number of reasons,
including: i) background pollution levels outside urban areas, where
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the location is chosen on the basis of a prior expectation of low concen-
tration levels; ii) air quality in residential areas, where the location is
chosen on the basis of population density and land use; and iii) pollu-
tant concentrations near important emission sources, where the loca-
tion is chosen on a prior expectation of high concentration levels
(Guttorp and Sampson, 2010).
In these cases, the spatial process of interest and the sampling loca-

tions are no longer independent. Diggle et al. (2010) referred to this
problem as preferential sampling and showed that geostatistical infer-
ences can be biased if ignored in the analysis. Apart from this refer-
ence, several authors have addressed this issue methodologically and
provided examples in environmental epidemiology (Gelfand et al.,
2012; Diggle et al., 2013; Lee et al., 2015; Shaddick and Zidek, 2015). In
a Bayesian contest, Pati et al. (2011) proposed a joint modelling of the
point process for the sampling locations and the point referenced spa-
tial process for the spatial intensity.
Most of the literature references on preferential sampling focuses on

the potential bias in the prediction of pollutant surfaces of geostatisti-
cal inferences if preferential sampling is not accounted for. We address
here situations in which the accurate estimate of the prediction uncer-
tainty is the main goal. Baccini et al. (2015) give an example where sta-
tistical integration and uncertainty in pollutant concentration surface
is used in health impact assessment of air pollution. However, the geo-
statistical model used in that paper did not account for preferential
sampling, so we developed a Bayesian geostatistical model to account
for preferential sampling, when the main interest is in statistical inte-
gration and uncertainty. Taking PM10 data arising from the air quality
network of the Environmental Protection Agency of Lombardy Region
in Italy and numerical outputs from deterministic modelling, we
focused on the estimate of the prediction uncertainty surface. An inho-
mogeneous Poisson process for the sampling locations intensities and
a shared spatial random model for the dependence between the spatial
location of monitors and the pollution surface are specified.

Materials and Methods

Study area
The Lombardy Region has about 10 million inhabitants. The capital

city of Milan with its 1.3 million inhabitants is the largest metropolitan
area in the region. Part of this territory (40.5%) is mountainous and
stretches towards the Alps, 12.5% is located in the declining hills, the
Pre-Alps Region, and is occupied by highly industrialized areas. The
remainder of the territory (47%) is represented by the plains of the Po
River, a predominantly agricultural region (Figure 1). Climatic condi-
tions that are unfavourable to the dispersion of pollutants are present
and create a basin effect with longstanding thermal inversion periods
during winter. Indeed, Lombardy has one of Europe’s highest pollution
levels (van Donkelaar et al., 2010).

Motivating example
In the paper by Baccini et al. (2015), uncertainty arising from different

sources was propagated to the impact estimates of PM10 on mortality in
the Lombardy Region. Annual concentrations of PM10 for the calendar year
2007 were available from two sources: a Eulerian photochemical model
(Silibello et al., 2008), which was applied on a domain of 244 x 236 km2

with a resolution of 4 km; and the regional air quality monitoring network
of the Regional Environmental Protection Agency (ARPA) of Milan. After
controlling for consistency and completeness (Baccini et al., 2011), vali-

dated data on PM10 concentrations were available for 58 air quality moni-
toring stations (Figure 2). With the aim of obtaining predictions and
related standard deviations on the domain of the Eulerian photochemical
model to be used for health impact calculations, Baccini et al. (2015) used
a Bayesian geostatistical model. Here we evaluate the effect of preferen-
tial sampling on prediction uncertainty.

A general preferential sampling model
Following the notation by Pati et al. (2011), we are interested in esti-

mating the concentration surface m(s) � in the domain D � 

accounting for the location sampling process on s � D. 
The preferential sampling model is specified as m(s)=h(s)+ax(s)

where the first term is a spatially structured term and the second the
adjustment for preferential sampling. The term a is a tuning parameter. 
In the model proposed by Pati et al. (2011) the spatially structured

term x(s)  is the log-intensity of an inhomogeneous Poisson Point
process for the monitor locations. Notice that in this modelling specifi-
cation, the location sampling process is a point process with a contin-
uous spatial intensity on the space, the concentration surface is esti-
mated by a finite number of sampling points and the prediction surface
is continuous. 

Shared models for preferential sampling
We propose a shared spatial random component model (Held et al.,

2005) for preferential sampling adjustment. Monitoring stations loca-
tion and pollutant concentrations are not independent as their correla-
tion depends on an underlying latent spatial process. However, we can-
not exclude specific uncorrelated spatial patterns in the two processes,
so we specified a model with shared and specific spatial random com-
ponents.
Let Xs denote the presence of a monitoring station at location s, l(s)

the continuous monitoring station spatial intensity, Z(s) the spatial
covariates and n(s) the shared spatial process, with � a tuning parame-
ter; also let Y(s) denote the pollutant concentration measured by the
monitoring station at location s � D, and h(s) a specific spatial ran-
dom process. We assumed an inhomogeneous Poisson point process
for monitoring station locations and that the monitoring stations could
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Figure 1. Orthophoto of Lombardy region (Italy) in scale
1:2,000,000 (http://www.geoportale.regione.lombardia.it/)
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be virtually located at any point of the region of interest. If geographical
barriers or other restrictions were present then a different modelling
should be considered. The monitoring spatial intensity was modelled as
log-linear function of the covariates and spatial random components.
The pollutant concentrations can be modelled as a Gaussian process

with an exponential covariance function. More generally we can specify
a measurement process for Yi (with t2 the measurement error vari-
ance) and the underlying mean concentration surface as a function of
the covariates – the same included in the model for the monitor spatial
intensity – a specific spatial random component and a shared spatial
component (Diggle et al., 2010). The importance of the shared compo-
nent in the two joint processes is controlled by the parameter d. We
then arrived at the equation:

   

(eq. 1)

Simple algebra gives:

m(s) = h(s) + g z’(s)
z’(s) = d–1 n(s)                             (eq. 2)

g = d2

The model can be interpreted as a geostatistical model with an
unmeasured covariate for which a surrogate (the monitor location
intensity) is available. All known covariates Z(s), which may contribute
to explain the two joint spatial processes, must be included in both
equations. As Pati et al. (2011) said: accounting for informative sam-
pling is only necessary when there is an association between the spatial
surface of interest and the sampling density that cannot be explained by
the [common] spatial covariates.

Computational details 
In the motivating example described above, we used the output of

the Eulerian photochemical model evaluated at the centroids of a 4×4
km grid and matched the 58 PM10 monitors locations to the respective
4×4 km grid cell centroids. Then, we specified a Bayesian geostatistical
model accounting for preferential sampling and obtained the joint pos-
terior predictive distribution for the annual average concentration of
PM10 for each cell. 
The spatial point process for the monitors location was fitted using

the monitor counts on the 4×4 km grid over the region of interest. The
same grid was used to predict the continuous pollutant concentration
surface by the Bayesian geostatistical model. 
Let si be the centroid coordinates of the i-th cell over the grid and Xi

be the number of monitors in the i-th cell (i=1,…,1679). We assumed
that:

 

(eq. 3)

where the prior for a is improperly uniform, mi and mi are the hetero-
geneity and clustering random terms of the Besag, York and Mollié
model (1991). The CAR prior is the normal improper, conditional,
autoregressive distribution with a 0,1 adjacency matrix. The two ran-
dom terms are not identifiable and we considered their sum as the
latent shared spatial process. The covariates Z(si) are the numerical
outputs from Eulerian photochemical model. Note that the monitor
counts and the heterogeneity and clustering terms are defined at the
grid cell – area level –, while the intensity and the covariate are contin-
uous and identified at the cell centroid coordinates. Let Y(si(k)) be the
pollutant concentration observed by the kth monitoring station at loca-
tion si(k) k=1,…,58, belonging to ith cell, for some  i�{1,...,1679}. We
assumed Y(s) to follow a multivariate Gaussian distribution with a
mean vector that depends on covariates Z(s) and a covariance matrix
induced by the exponential covariance function. The spatial covariance
parameters were chosen in such a way that the rate of correlation by
distance produced zero correlation at the maximum distance of 250 km
and one at the minimum distance of 3 km (Banerjee et al., 2006). In
detail:

where the term d is log-normal distributed and allows the shared com-
ponent to vary by a constant factor. The prior for d is symmetric around
zero on the log-scale; any value is equally likely as the reciprocal values

                   Article

Figure 2. Spatial distribution of the fifty-eight PM10 monitoring
stations in Lombardy Region, 2007.

           
(eq. 4)
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a priori. Having the covariate Z(si), the numerical outputs from
Eulerian photochemical model and the preferential sampling adjust-
ment (m(si)+ u(si)) for all grid cells, predictions and prediction stan-
dard deviations were obtained on the set of locations si (i=1,…,1679),
i.e. the centroids of the 4x4 km grid, by the standard Bayesian geosta-
tistical formulation:

 
(eq. 5)

where Ω is the set of parameters in the mean and covariance function
(a’β’’d;fts). The two models (the point process for monitor locations
and the geostatistical model for the concentration surface) were run
jointly to assure uncertainty propagation in m, n and d. The model was
fitted using an MCMC algorithm in WinBUGS (Lunn et al., 2000). We
ran two independent chains and checks for achieved convergence of
the algorithm following Gelman and Rubin (1992). We decided to run
50,000 iterations and to store the last 20,000 iterations for estimation
(Gelman and Rubin, 1992).
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                                                                              [Geospatial Health 2016; 11:426]                                                             [page 59]

Figure 3. PM10 monitor spatial intensity (A) and predicted preferential sampling adjusted PM10 concentration by the shared component
geostatistical model (B) in Lombardy Region, 2007.

Figure 4. Shared spatially structured component of the PM10

preferential sampling adjusted geostatistical model in Lombardy
Region, 2007.

Figure 5. Differences in predictions standard deviations when
accounting and not accounting for preferential sampling in the
geostatistical model. Positive differences mean that uncertainty is
greater when we account for preferential sampling. Data refer to
Lombardy Region, 2007.
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Results

Monitors locations are shown in Figure 2. The distribution is clearly
not homogeneous or regularly spaced over the region. The monitor spa-
tial intensity and predicted PM10 concentrations are shown in Figure 3.
The two spatial distributions are very similar. Indeed, monitor locations
were determined by the Regional Environmental Protection Agency on
the basis of the emission inventory and other heterogeneous political
considerations, with a preference to monitor highly polluted areas.
The prediction surface was accurately estimated by the Eulerian

photochemical model: we did not expect any modification adding the
data from the 58 PM10 monitors. The Pearson correlation coefficient
between Kriging and deterministic model predictions was 0.999 and
the Lin correlation coefficient was 0.983. Different consideration would
apply with respect to other pollutants, like ozone. Particulate matter is
more dependent of local emissions, even in the Lombardy Region con-
text. The shared spatially structured component, which corresponds to
the residual spatial variability not explained by the covariates, is shown
in Figure 4. It is important to note that preferential sampling is relevant
when there is an association of the residual response with the shared
spatially structured (residual) component. 
The differences between standard deviations accounting vs not

accounting for preferential sampling are shown in Figure 5. There is an
estimated greater uncertainty in the areas not properly covered by the
air quality network when accounting for preferential sampling.

Discussion 

Deterministic models consider emission sources, photochemical reac-
tions in the atmosphere, meteorology and land use information, result-
ing in high accurate predictions. Air quality networks are based on too
few monitoring stations to produce accurate predictions by geostatistical
interpolation. However, monitor networks may provide information on
variability of the pollutant concentration measurements, which we used
to estimate uncertainty for the predicted concentration surface. Health
impact assessment integrates several sources of information, which typ-
ically includes baseline occurrence rates, pollutant effect estimates and
pollutant concentrations prediction. For all of them, appropriate esti-
mates of uncertainty are needed, unless the calculation is conditional to
some observed quantity. In the literature, pollutant spatial predictions
and related uncertainty taking advantage of deterministic model outputs
are obtained by geostatistical modelling – e.g. when misalignment is
present by a down-scaler (Berrocal et al., 2010). To the best of our knowl-
edge, preferential sampling has never been addressed in this context. We
propose a shared model to account for preferential sampling and discuss
the results in term of predicted standard deviation. Our approach com-
bines a Poisson model on spatial data with a Gaussian process on geo-
referenced data and simplifies calculation using the same fine grid.
Diggle et al. (2013) discuss the extension of geostatistics to log-Gaussian
Cox processes (LGCP). Instead of our modelling choice based on moni-
tors counts on a fine regular grid – through a hierarchical Poisson-
Gaussian Markov random field model (Besag et al., 1991) – a LGCP
model on the locations can be adopted. This approach leads to spatially
smooth maps, the interpretation of which is independent of the particu-
lar partition of the region of interest into sub-regions. Illian et al. (2012)
and Martins et al. (2013) discuss the prior choice for log-Gaussian Cox
processes and computational details within the integrated nested
Laplace approximation framework.

Conclusions

Comparison between predicted surfaces under different preferential
sampling processes has been discussed by Gelfand et al. (2012). In our
case, the interest was in comparing standard deviation surfaces, and
we simply report the differences between standard deviations with and
without accounting for preferential sampling. We estimated greater dif-
ferences in the areas not properly covered by the air quality network.
Inferences on uncertainty may be misleading when geostatistical mod-
elling does not take preferential sampling into account.
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