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ABSTRACT
Anesthesia and consciousness represent 2 mysteries not only for biology but also for physics and
philosophy. Although anesthesia was introduced to medicine more than 160 y ago, our
understanding of how it works still remains a mystery. The most prevalent view is that the human
brain and its neurons are necessary to impose the effects of anesthetics. However, the fact is that all
life can be anesthesized. Numerous theories have been generated trying to explain the major
impact of anesthetics on our human-specific consciousness; switching it off so rapidly, but no single
theory resolves this enduring mystery. The speed of anesthetic actions precludes any direct
involvement of genes. Lipid bilayers, cellular membranes, and critical proteins emerge as the most
probable primary targets of anesthetics. Recent findings suggest, rather surprisingly, that physical
forces underlie both the anesthetic actions on living organisms as well as on consciousness in
general.
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Introduction

The discovery of human anesthesia in 1846, by William
T. Morton, especially its fast and reversible induction by
ether; marks new era in our understanding of life.1-3 This
was a unique discovery which rapidly revolutionized
medicine, but turned out to be difficult to explain.1,2

Despite numerous theories proposed our understanding
of anesthesia remains obscure.2,3 Among the many theo-
ries trying to explain anesthesia, 3 stand-out as the most
influential. Firstly, Claude Bernard and his theory colloi-
dal-coagulation of protoplasm,2,4 followed by Hans
Horst Meyer and Charles Ernest Overton with their
“Meyer-Overton rule,” based on lipid solubility of anes-
thetics, have dominated the field since the late 1960s.2 In
the 1980s, the protein/receptor theory became dominant
in explaining anesthesia via proteins acting as specific
receptors for anesthetics.5 However, inconsistencies with
this theory called for a further updates.3,6-10

All life can be anesthesized

The father of experimental biology, Claude Bernard, per-
formed numerous experimental studies which allowed
him to conclude “that all life is defined by the

susceptibility to anesthesia.”2,11,12 Claude Bernard’s para-
digm is still valid today as all organisms, even prokary-
otic bacteria, are sensitive to anesthetics.8,9,12,13-15 Sub-
cellular organelles such as mitochondria and chloroplasts
are sensitive to anesthetics as well,16-21 which is in line
with the prokaryotic sensitivity of both membranes and
proteins recorded in bacteria.14,22-24 Finally, several sub-
cellular processes based on the cytoskeleton, such as
cytoplasmic streaming and phagocytosis, are inhibited
by exposure to diverse anesthetics.6,25-30

Early evolutionary origins of anesthesia:
Endogenous anesthetics help to cope with stress

As discussed by James Sonner, the variability in response to
anesthetics is extremely small in comparison to other
drugs.8,31 Moreover, the wide molecular diversity of com-
pounds acting as anesthetics is very large, and additionally,
the mystery of universal sensitivity of all living organisms to
these compounds remains. All this suggests, in line with the
Claude Bernard thesis, that the ability to respond to anes-
thetics is essential for life.8 One possibility proposed recently
by James Sonner and Robert Cantor is the existence of
endogenous anesthetics which modulate organismal con-
sciousness.9 In fact, there are several metabolites that induce
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loss of consciousness if available in sufficiently large
amounts. Sonner and Cantor discussed some, for example,
ammonia,32 acetone, b-hydroxybutyric acid,33 and pro-
pionic acid.34 Importantly, protective actions of endogenous
anesthetics are active at the lipid bilayer of membranes,8,9,35

which explains why even bacteria are sensitive to anes-
thetics. In addition, the protective actions of anesthetics
include also cardioprotection,36-38 protection from retinal
damages,39 and immunoprotection.40 Finally, due to their
actions also on bacteria, anesthetics also have antimicrobial
effects.23,41

Microbes, algae and plants release large
amounts of volatile anesthetics

It is not generally appreciated that algae and plants
release abundantly volatiles including well-known anes-
thetics such as chloroform, divinyl ether, ethylene, and
methyl halides,42-48 as well as n-alkanols which also have
anesthetic actions.49,50 Plant volatiles are released in such
large amounts that they have a strong impact on the
Earth’s biosphere and atmosphere.43,47 Importantly,
algae and plants release these substances especially if
under stress.44,46,48 In addition, the anesthetic nitrous
oxide is released into atmosphere in large amounts from
soils and oceans.1-53 Unfortunately, the authors of these
papers fail to mention and discuss the fact that many of
these stress-released algal, microbila and plant volatiles
are also anesthetics. For example, nitrous oxide is almost
exclusively regarded as a greenhouse gas, whereas divinyl
ether is discussed typically as oxylipin54,55 and ethylene
as plant stress hormone.56,57 However, the possibility
that stressed organisms produce anesthetics to cope bet-
ter with their stress should be considered. Besides classi-
cal anesthetics, stressed plant synthesize and produce
many pain-relieving compounds,58-62 including ethanol
which is produced in plants via the synthetic activity of
alcohol dehydrogenase, which acts in reverse in
plants.63,64 In stressed roots, for example, all 3 endoge-
nous anesthetics (ethylene, divinyl ether, ethanol) are co-
produced, which suggests delicate control of putative,
still hypothetical, plant anesthesia. Relevant in this
respect is the fact that all these 3 endogenous anesthetics
are co-produced also in plant fruits, which flowering
plants have evolved to be eaten alive by diverse animals.
Moreover, ethylene, ethanol and other anesthetics also
act to break the dormancy in plant seeds.65

Surprising status of ethylene: Ancient
endogenous anesthetic essential for life?

Ethylene, a hydrocarbon and the simplest alkene, is a col-
ourless flammable gas, which is widely used in the

chemical industry. In biology, it is most famously known
as a plant stress hormone. Less known is that ethylene is
a very potent general anesthetic, which was used in
human surgery as it has minimum side-effects and
recovery from anesthesia is very rapid.66-68 Ethylene has
similar physical and lipid solubility properties to
xenon,66 and both these anesthetics have the least side
effects. Importantly, not only plants, but also bacteria,
fungi, algae and lichens are known to produce ethylene
when under stress.69-80 This suggests that ethylene is a
molecule with fundamental relevance for life. On the
basis of the anesthetic properties of ethylene and ether,
Chauncey Leake synthesized divinyl ether, and showed
that it had excellent anesthetic properties.81,82 Divinyl
ether maintains all the positive properties of ethylene,
but is also more potent.83 Intriguingly, stressed plants
produce endogenously both ethylene and divinyl
ether.84-87 It is becoming obvious that plants, and their
endogenous anesthetics, will turn out to be highly rele-
vant for our understanding of the evolutionary origins of
anesthesia. Very relevant in this respect are local anes-
thetics most of which are derived from the plant alkaloid
cocaine.88,89 Interestingly, there are also other plant alka-
loids with properties of local anesthetics; such as atro-
pine,90 menthol,91,92 and several other alkaloids.93,94

The relevance of endogenous controls over
anesthesia for behavior and survival

A coherent and robust concept is emerging from the data
discussed in this paper, which suggests that endogenous
anesthetics are essential for the survival of plants, allow-
ing them to cope with stress, to enter and break dor-
mancy, as well as to generate tasteful fruits ‘designed’ to
be eaten alive by animals and humans (for the sake of
effective reproduction of flowering plants). Similarly, bac-
teria and fungi generate ethylene under stressful situa-
tions and there are several indications of endogenous
anesthetics in animals and humans. In metabolic human
diseases, several metabolites with anesthetic features
accumulate in such amounts that they can impose tempo-
rary or permanent loss of consciousness (reviewed in
ref. 9). Relevant in this respect is the well-known phe-
nomena of transient loss of consciousness (sometimes
referred as syncope, fainting, or blackout) which can be
induced by diverse stress situations, serious wounding, as
well as by powerful emotional stresses.95-99 Transient loss
of consciousness apparently has relevance to survival. It
was proposed that this phenomenon has evolved in
ancient times as an effective defense mechanism;97,99

providing, in addition, protection against sensory over-
load. Moreover, it might also be the case that some of
the numerous examples of so-called apparent death
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(thanatopsis) behavior in predator-threatened animals
are not the result of deceptive/ mimicry behavior by the
animal, (as typically interpreted) but rather due to the
syncope-like transient loss of consciousness. Even at the
cellular level, both stress and anesthetics can have similar
paralyzing outcomes.100-102

Since ancient times, humans have been using natural
anesthetics produced by plants and fungi to impose anes-
thesia, induce altered sensory states as well as psychedelic
experiences.60,61,63-106 In fact, human evolution is well
known to be shaped by the consumption of alcohol.107-109

This feature is shared not only with apes110 but also with
other animals such as wild treeshrews,111 and even insects,
which can also develop alcoholism under stress chal-
lenges.112-114

Furthermore, there are several similarities between the
deep phases of sleep (REM sleep) and the state of anes-
thesia.115-117 Although sleep and anesthesia are different
phenomena, the underlying neuronal processes are com-
mon for both forms of the loss of consciouseness.117-119

Although the precise roles of sleep and anesthesia are
not fully understood yet, it is clear that sleep is essential
for cognitive and survival reasons.120-122 For example,
REM sleep was proposed to generate a proto-conscious
states relevant for the formation of the full-blown waking
consciousness.123 Similarly sleep and anesthesia are
under endogenous control,124 suggesting that the state of
anesthesia has important, albeit still elusive, functions
for organisms. Importantly, the sleep/ waking cycle con-
trols sensitivity to anesthetics in Drosophila.125 Relevant
in this respect are also numerous examples where pain
perceptions have been shown to be affected by expecta-
tions, cognition and meditation.126-128 Moreover, pain
responses in humans are mediated not only via con-
scious but also via unconscious processes.129-131 Finally,
there are close similarities between anesthesia and
coma.132

Genes are not involved in switching off/on of
consciousness via anesthetics

Anesthetics provided in the appropriate concentrations
switch-off human-specific consciousness within a few
seconds, precluding any role whatsoever for DNA and
gene expression in those actions (Fig. 1). If anesthetics
are maintained at their active levels, loss of consciousness
is permanent as long as the anesthetics are present at
critical levels. After their removal, the recovery of con-
sciousness is often very rapid. Although some anesthetics
have side effects, and can even be toxic (e.g. chloroform),
the most effective ones – for example xenon, ethylene,
and vinyl ether allow fast and smooth recovery. Again,
the speed of regaining the consciousness precludes any

active role for gene expression also in this process
(Fig. 1). Of course, genes are relevant for the sensitivity
of organisms to anesthetics and several mutants have
been characterized which are less sensitive, or even not
sensitive at all, to some of the anesthetics. But this is just
due to the modifications or absence of critical proteins
and membranes (Fig. 1) which induce the anesthetic
action. The absence of gene involvement should not nec-
essarily be surprising. Human erythrocytes, which have
no nucleus and therefore no genes, still undergo the
complex cellular process of circadian rhythm.133 Genes
may act to adjust circadian rhythm for variation in the
regularity of the day/ night cycle, as, for example,
incurred by traveling to other time zones, but they are
not causal in circadian rhythm itself. This is clearly dem-
onstrated by incubating 3 enzymes extracted from cya-
nobacteria with ATP: a relatively temperature
independent 24 hour cycle of phosphorylation of one of
the enzymes is observed.134

Why are neurons exquisitely sensitive to
anesthetics: clues from plants and chloroplasts?

There are several mysteries associated with anesthetics
and anesthesia. One of them is the fact that neurons are
more sensitive to anesthetics compared to other cells.
Claude Bernard was the first to realize that depending
upon concentration of an anesthetic, there are several
stages of anesthesia. The first is loss of awareness and
pain perception, but all vital biochemical processes are
unaffected, the second is inhibition of respiration and
other biochemical processes, the third is the loss of abil-
ity of all cells to react to stimuli and the cessation cilia
movements and heart beating.11,12 In humans, minimal
alveolar concentrations (MAC) concept was introduced

Figure 1. Fast loss and gain of consciousness after exposure and
removal of anesthetics is based on primary processes linked to
the plasma membrane (ion fluxes, electric activities, endocytic
vesicle recycling), whereas changes in gene expression are play-
ing only secondary roles.
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to characterize the potency of inhalational anesthetics.135

At 0.1- 0.3 MAC, most humans show sensory distor-
tions, memory loss and sleepiness; at 0.3- 0.5 MAC,
responses to verbal commands cease and loss of con-
sciousness occurs; at about 1.0 MAC, insensitivity to
noxious stimuli occurs.68,135 This marked concentration
dependency of anesthetic potency suggests that some
cells, or cellular processes, are more sensitive than others
due to perhaps a higher number of the critical binding
sites for the anesthetics. In neuronal assemblies, there
are large numbers of excitable cells organized, via synap-
tic cell-cell adhesions, into higher order cellular assem-
blies. These communicate via action potentials and
accomplish synchronous and coherent oscillations
dependent on sensory stimuli. It is perhaps important
that the plasma membrane at synapses is actively
engaged in the endocytic vesicle recycling, amplifying
the critical area of membranes significantly and underly-
ing the high excitability of neuronal membranes.136-138

The high electrical activity of neurons is related to their
active maintenance of the physical properties of the lipid
bilayer and the internal physico-chemical properties in
the fluctuating cellular environments. Anesthetics and
action potentials are highly relevant in this
respect.8,136,139 Surprisingly, although plant cells are
sometimes considered not to be excitable,136,137 the
opposite is true.12,139-147 In plant cells, action potentials,
vesicle recycling, and sensitivity to anesthetics seem to be
related to the active protection of the plasma membrane
against ionic and structural disturbances.12,139,147-153

These issues are prominent especially in neurons and
specialized root apex cells both of which are very active
in both electrical activities and endocytic vesicle recy-
cling.143,147 For both neurons and specialized plant cells,
the endocytic (synaptic) recycling apparatus enhances
the sensitivity to anesthetics due to large area of plasma
membrane and the associated recycling vesicles, which is
supported by the dynamic cytoskeleton.147,154-156 It is
emerging that these unique properties of brain neurons
and plant root apex cells makes them exquisitely sensi-
tive to anesthetics (Fig. 2).

Claude Bernard was the first to note that chloroplasts
and their photosynthetic pathways are more sensitive to
anesthetics than mitochondria and their respiratory
pathways.12,25 One of the striking differences between
chloroplasts and mitochondria is stacking of internal
chloroplast membranes into synaptic-like assemblies
known as thylakoid grana which are essential for the
photosynthetic pathways.157 Intriguingly, in this respect,
synaptic-like MORN-domain proteins have been
reported for the thylakoid proteome.158 On the other
hand, internal membranes of mitochondria are much
simpler and never form such prominent membrane

stacks. Moreover, synaptic-like proteins including synap-
totagmin-like E-SYT, yeast tricalbins and plant SYTs
localize to membrane adhesions between intracellular
organelles including plasma membranes, nuclei, mito-
chondria, chloroplasts, peroxisomes, ER membranes,
and lipid bodies.159-161 We are proposing that synaptic-
like157 stacking of thylakoid membranes into prominent
chloroplast grana162,163 is behind the higher sensitivity of
the chloroplast photosynthesis to anesthetics25 in com-
parison to the mitochondrial respiration (Fig. 3).

Physical nature of anesthesia and consciousness

The unique aspect of anesthesia and consciousness is
that these deep mysteries challenge both biology and
physics. In fact, there are many aspects of the actions of
anesthetics on all life which implicate a profound physi-
cal basis for both anesthesia and consciousness. Action
potentials have not only electrical, but also mechanical
aspects, as they change significantly plasma membrane
thickness and even the length of electrically active neu-
rons.164,167 Moreover, protein activity is also highly
dependent on physical factors. For example, the tertiary
structures of proteins are easily deformed and this affects
their activity.

Interestingly, action potentials also generate heat in
excited membranes168-170 which then unfolds proteins
and fluidizes lipid bilayers.171 Also anesthetics unfold
proteins and induce fluidization of lipid bilayers.171-173

Figure 2. Both in animals and plants, organs with the highest
activities of endocytic vesicle recycling and electric activities are
implied in loss of consciousness (motility, sensitivity, and
behavior).
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Importantly, the potency of anesthetics in inducing the
loss of motility and consciousness decreases with the
temperature increasing.174-176

Recent advances with xenon anesthesia strongly sug-
gest that the currently favored proteins/ receptors model
of anesthetics actions will require a serious update
toward including the lipid bilayer as the primary target
of xenon. This unique simple noble gas is chemically
inert and acts on membranes only through its physical
properties.177,178 The physical nature of both anesthesia
and consciousness is implicated also with the reversal of
anesthetic induced loss of consciousness by high pres-
sure. This pressure reversal was discovered by Johnson
and Flagler who showed that anesthesized tadpoles
regain activities at pressures of about 50 bar.178 Since
then this observation has been confirmed with many
other organisms and also with diverse anesthetics. With
respect to xenon, high pressure was shown to prevent
free xenon diffusion within lipid bilayers and xenon was
pushed out to accumulate in the middle of the lipid
bilayer.177 Furthermore, xenon was found to modulate
the bilayer lateral pressure profile in a reversible fash-
ion.178 Xenon-induced changes to the critical proteins
may be only the secondary consequences of these physi-
cal effects of xenon on lipid bilayers.178,180 Alternatively,
there might also be a genuine direct effect of xenon on
proteins via their hydrophobic pockets. Intriguingly,
xenon rapidly reverses electron spins and these electron
spin effects were found to be different in Drosophila
mutants which did not respond to the anesthetics.10 The
next perplexing finding is that both local and general

anesthetics show similar physical effects on membranes
by lowering their melting temperatures and this anes-
thetic effect is reversed by high pressure.167,181,182 There
are further issues suggesting that physical phenomena
are related to both anesthesia and consciousness based
on quantum aspects of physical reality.7 In conclusion,
solving of theses mysteries will be based on both, biology
and physics, and relevant to both. This fundamental
advance in our knowledge will help to understand the
basic question of biology posed by the famous physicist
Erwin Schr€odinger: ‘what is life?’.183

The implications of a lack of a role for genes in
consciousness

As noted above, the rapidity of the switching on and off
of consciousness by anesthetics precludes a role for the
necessarily slower action of gene expression. It can be
argued that genes are in fact only necessary to 2 quite
small, but nevertheless important, aspects of the life pro-
cess, namely reproduction and the storage of necessary
data (base sequence) to transcribe the peptides essential
for the cell to function.184 On this model, organisms as
we know them today, were preceded by metabolizing
proto-cells based on proteins; which regulated them-
selves in order to realize a proto-phenotype with the abil-
ity to engage in purposeful behavior. Such cells could not
replicate themselves, but divided due to stresses on the
cell membrane. The crucial step to true life as we know it
was to recruit nucleobases to encode peptide sequences
in DNA, thus allowing true replication and evolution to
more complex organisms to commence. It has long been
known that even the most primitive of organisms are
capable of purposeful behavior185-187 and that this can
only be due to cellular proteins processing environmen-
tal information detected at the cell membrane.188 Enucle-
ated cells commutate with nucleated cells, obtaining
small molecules to correct the deficient cells,189 but are
also able to survive up to several months190,191 and orga-
nize their circadian clocks without any DNA and gene
expression.133 These considerations lend weight to the
proposal that anesthetics act by disrupting the activity of
proteins as enzymes,5 specifically the (mostly not under-
stood) processes in protein information processing, per-
haps with those associated with membranes.

Outlook

Although it is not clearly stated by most of the authors dis-
cussing consciousness, and some even claim that con-
sciousness is an epiphenomenon, it is very obvious that
consciousness is essential for survival and life in gen-
eral.192,193 Anyone of us losing consciousness would not

Figure 3. Claude Bernard discovered higher sensitivity of photo-
synthesis to anesthetics in comparison to respiration.12,25 Chloro-
plast accomplish photosynthesis on stacked membranes know as
thylakoid grana162,163 which can be considered for inter-organel-
lar synapses.157 We propose that these stacked membranes are
not only essential for photosynthesis but also makes this process
more sensitive to anesthetics.
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be able to survive a few days without the devoted assis-
tance and help from our fellows. Similarly, life is not possi-
ble without recognizing danger via pain194 and other kinds
of negative experiences safeguarding survival,195-197 all
based on consciousness. It is obvious that consciousness is
essential for any organism to have online access to their
sensory information about their environments.193,198

Importantly, consciousness gives all organisms ability to
act as agents of their own interest199,200 which is essential
for their survival. This is essential for organisms to navi-
gate successfully in complex environments that challenge
their survival.
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