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Abstract. We study the existence of positive solutions on the half-line [0,∞)
for the nonlinear second order differential equation(

a(t)x′
)′

+ b(t)F (x) = 0, t ≥ 0,

satisfying Dirichlet type conditions, say x(0) = 0, limt→∞ x(t) = 0. The function

b is allowed to change sign and the nonlinearity F is assumed to be asymptotically

linear in a neighborhood of zero and infinity. Our results cover also the cases in

which b is a periodic function for large t or it is unbounded from below.

Keywords. Second order nonlinear differential equation, boundary value prob-

lem on the half line, Dirichlet conditions, globally positive solution, disconjugacy,

principal solution.

MSC 2010: Primary 34B40, Secondary 34B18.

1 Introduction

Consider the boundary value problem (BVP) on the half-line [0,∞)(
a(t)x′

)′
+ b(t)F (x) = 0, (1)

x(0) = 0, x(t) > 0 on (0,∞), lim
t→∞

x(t) = 0, (2)

where we assume the following:
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(i) The function a is continuous on [0,∞), a(t) > 0, and∫ ∞
0

1

a(t)
dt <∞. (3)

(ii) The function b is continuous on [0,∞), nonnegative and not identically
zero on [0, 1], and is allowed to change sign for t > 1. Moreover, b is bounded
from above, that is, there exists a positive constant B such that

b(t) ≤ B on [1,∞). (4)

(iii) The function F is continuous on R, F (u)u > 0 for u 6= 0, F is
differentiable on [0,∞) with bounded nonnegative derivative:

0 ≤ dF (u)

du
≤ 1 for u ≥ 0, (5)

and satisfies

lim
u→0+

F (u)

u
= k0, lim

u→∞

F (u)

u
= k∞, (6)

where
0 ≤ k0 6= k∞.

Observe that (5) implies that k0, k∞ ≤ 1.
The BVP (1)-(2) is a Dirichlet-type BVP on an unbounded domain. Re-

cently, there has been a growing interest in studying infinite interval prob-
lems associated to second order nonlinear differential equations, under vari-
ous points of view. For a wide bibliography, we refer the reader to [1, 2, 21]
and the references therein. When the weight b is of fixed sign or it is sign-
indefinite, we refer to [7, 14, 26] or [15, 16, 23, 24], respectively. The BVP
(1)-(2) arises in the investigation of positive radial solutions for elliptic equa-
tions, when the nonlinearity is asymptotically linear, see, e.g., [3].

Our main aim is to continue this study when the function b is allowed to
change its sign and the nonlinearity F can be, roughly speaking, close to a
linear function. The investigated problem can be viewed as an extension to
the half-line of recent results on nonlinear BVPs with a sign-indefinite weight
on a compact interval, see, e.g., [4, 5], and reference therein for a brief survey
on this topic.

Denote by | · |L the norm in L1[0, 1] and set

A(t) =

∫ t

0

1

a(s)
ds. (7)
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Our main result is the following, in which the disconjugacy of a suitable
auxiliary differential linear equation plays a key role, see Section 3 below.

Theorem 1. Assume that the linear differential equation

v′′ +
B

a(t)
v = 0 (8)

is disconjugate on [1,∞), where the constant B is defined in (4).
If there exist t1, t2 ∈ (0, 1), t1 < t2 such that

∫ t2
t1
b(t) dt > 0, and

0 ≤ min{k0, k∞}A(1) |b|L < 1, (9)

max{k0, k∞}
∫ t2

t1

b(t) dt >
A(1)

A(t1)(A(1)− A(t2))
, (10)

then the BVP (1)-(2) has a solution.
Moreover, the solution x has a local maximum in the interval (0, 1], is

decreasing in [1,∞) and satisfies∫ ∞
1

1

a(t)x2(t)
dt =∞. (11)

Theorem 1 covers also the cases in which the weight b is a periodic function
for large t or it is unbounded from below.

Our approach is based on a shooting method and a continuity result.
More precisely, Theorem 1 is proved by considering two auxiliary BVPs, the
first one on the compact interval [0, 1], where b is nonnegative, and the sec-
ond one on the half-line [1,∞), where b is allowed to change its sign. The
problem of the existence of solutions for (1), emanating from zero, positive
in the interval (0, 1), and satisfying additional assumptions at t = 1, is con-
sidered in Section 2 and is solved by using some results from [22], with minor
changes. The BVP on [1,∞) is examined in Section 4. It deals with pos-
itive decreasing solutions on [1,∞) for (1) which tend to zero as t → ∞.
This second problem is solved by using a fixed point theorem for operators
defined in a Fréchet space by a Schauder’s linearization device, see [11, The-
orem 1.3]. This method does not require the explicit form of the fixed point
operator, but only some a-priori bounds. These estimations are obtained us-
ing some properties of principal solutions of disconjugate second order linear
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equations, see [20, Chapter 11]. Finally, roughly speaking, the solvability of
(1)-(2) is obtained by using a shooting method on [0, 1] and, by means some
continuity arguments, pasting a solution of (1) on [0, 1] with a solution of
the BVP on [1,∞). This last argument can be viewed as a generalization to
non compact intervals of some ideas in [19].

Notice that our approach allows us to obtain also an estimation of the
decay to zero of solutions of (1)-(2). Some examples complete the paper.

2 Two auxiliary BVPs on [0, 1]

In this section, we recall some results about the existence of solutions of (1)
on [0, 1], which belong either to ∆1 or ∆2, where

∆1 = {u ∈ C[0, 1] : u(0) = u(1) = 0, u(t) > 0 on (0, 1)}
∆2 = {u ∈ C[0, 1] : u(0) = u′(1) = 0, u(t) > 0 on (0, 1]} .

These results can be obtained from [22], with minor changes.

BVPs on a compact interval, associated to equations of the form

z′′ + g(t)F (z) = 0, (12)

where g is a continuous nonnegative function on [0, 1], have been widely
investigated in the literature, under many different points of view. We refer
to [6, Introduction] and references therein for a brief survey.

In particular, the existence of solutions of (12), which satisfy either z ∈ ∆1

or z ∈ ∆2, has been considered in [18], where the key conditions on the
nonlinearity are either that F is superlinear, that is, k0 = 0, k∞ = ∞ or
F is sublinear, that is, k0 = ∞, k∞ = 0. When the nonlinearity F is not
necessarily superlinear nor sublinear, these results have been extended in
several ways in [22].

Using [22, Corollaries 3.1 and 3.5] and the continuity of g, we obtain the
following result.

Lemma 1. Assume that there exist t1, t2 ∈ (0, 1), t1 < t2, such that
∫ t2
t1
g(t) dt > 0

and

0 ≤ min{k0, k∞} |g|L < 1, max{k0, k∞}
∫ t2

t1

g(t) dt >
1

t1(1− t2)
. (13)

Then (12) has both solutions z1 ∈ ∆1 and z2 ∈ ∆2.
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Proof. In virtue of the continuity of g, every nonnegative solution z of
(12), z 6≡ 0, satisfies z(t) > 0 on (0, 1), since z′ is nonincreasing. Hence, the
assertion follows from [22, Corollaries 3.1 and 3.5]. 2

When g does not have zeros on [0, 1], from Lemma 1 we obtain the fol-
lowing.

Lemma 2. Let g be positive on [0, 1]. If

0 ≤ min{k0, k∞}|g|L < 1, max{k0, k∞} min
t∈[0,1]

g(t) > 27, (14)

then (12) has both solutions z1 ∈ ∆1 and z2 ∈ ∆2.

Proof. Fixed t1, t2 ∈ (0, 1), t1 < t2, we have∫ t2

t1

g(τ) dτ ≥ (t2 − t1) min
t∈[0,1]

g(t).

Thus, the second condition in (13) is satisfied if

max{k0, k∞} min
t∈[0,1]

g(t) ≥ 1

t1(1− t2)(t2 − t1)

for a suitable choice of t1, t2. Put ρ = %(t1, t2) = t1(1− t2)(t2− t1), it is easily
checked that % takes its maximum 1/27 on the region 0 ≤ t1 < t2 ≤ 1 when
t1 = 1/3, t2 = 2/3. Therefore, the second inequality in (14) follows. 2

Define for t ∈ [0, 1]

τ(t) =
A(t)

A(1)
, (15)

where A is given in (7). Thus, τ maps the interval [0, 1] into itself. Let x be
a solution of (1) on [0, 1] and put z(τ) = x(t(τ)), where t(τ) is the inverse
function of τ(t). Then, z is a solution on [0, 1] of

d2z

dτ 2
+ b̃(τ)F (z) = 0, (16)

where b̃(τ) = A2(1)a(t(τ))b(t(τ)). Vice versa, if z is a solution of (16) on
[0, 1], then x(t) = z(τ(t)) is a solution of (1) on the same interval. Moreover,
it is easy to show that x belongs to ∆i if and only if z ∈ ∆i, i = 1, 2. Hence,
Lemmas 1 and 2 read for (1) as follow.
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Proposition 1. Assume that one of the following conditions is satisfied.

(i) There exist t1, t2 ∈ (0, 1), t1 < t2 such that
∫ t2
t1
b(t) dt > 0, and

0 ≤ min{k0, k∞}A(1) |b|L < 1,

max{k0, k∞}
∫ t2

t1

b(t) dt >
A(1)

A(t1)(A(1)− A(t2))
.

(ii) b(t) > 0 on [0, 1] and

0 ≤ min{k0, k∞}A(1) |b|L < 1,

27 < max{k0, k∞}A(1) min
t∈[0,1]

b(t).

Then (1) has both solutions x1 ∈ ∆1 and x2 ∈ ∆2.

Proof. Since∫ 1

0

b̃(τ) dτ = A2(1)

∫ 1

0

b(t(τ))a(t(τ)) dτ = A(1)

∫ 1

0

b(t) dt = A(1) |b|L

and ∫ t2

t1

b(t) dt =
1

A(1)

∫ τ2

τ1

b̃(τ) dτ,

where τi = τ(ti) = A(ti)/A(1), i = 1, 2, the assertion follows from Lemmas 1
and 2.

2

Other sufficient conditions for the existence of solutions of (1) in the sets
∆1 and ∆2, can be obtained in a similar way from other results in [22].

3 Principal solutions and disconjugacy

Consider the linear equation(
a(t)y′

)′
+ β(t)y = 0, (17)

where β is a continuous function for t ≥ T ≥ 0. In our study, an impor-
tant role is played by the disconjugacy property and the notion of principal
solutions for (17).
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We recall that (17) is said to be disconjugate on an interval I ⊂ [T,∞) if
any nontrivial solution of (17) has at most one zero on I. We refer to [13, 20]
and references therein for basic properties of disconjugacy. In particular, the
following results will be useful in the sequel.

Lemma 3. Let T1 ≥ T. The following statements are equivalent.
(i1) Equation (17) is disconjugate on [T1,∞);
(i2) Equation (17) is disconjugate on (T1,∞);
(i3) Equation (17) has a solution without zeros on (T1,∞).

Proof. (i1)⇐⇒(i2). If (17) is disconjugate on [T1,∞), then it is disconjugate
on (T1,∞). The vice versa follows from [13, Theorem 2, Chapt.1], with minor
changes. Finally, (i2)⇐⇒(i3) follows from [20, Corollary 6.1]. 2

The concept of principal solution was introduced in 1936 by W. Leighton
and M. Morse and, later on, analyzed by P. Hartman and A. Wintner, see,
e.g., [20, Chapter 11]. If (17) is nonoscillatory, then there exists a solution
u0 of (17), which is uniquely determined up to a constant factor by one of
the following conditions (in which u denotes an arbitrary solution of (17),
linearly independent of u0):

lim
t→∞

u0(t)

u(t)
= 0, (18)

u′0(t)

u0(t)
<
u′(t)

u(t)
for large t,∫ ∞

tu

dt

a(t)u20(t)
=∞, (19)

where tu ≥ T is such that u0(t) 6= 0 on [tu,∞). The solution u0 is called
principal solution of (17) and any solution u of (17), which is linearly in-
dependent of u0, is called a nonprincipal solution of (17). Property (18) is
the simplest and most typical property characterizing principal solutions, be-
cause, roughly speaking, it means that the principal solution is the smallest
one in a neighborhood of infinity.

Remark 1. If (17) is disconjugate on [T1,∞), T1 ≥ T, then any principal
solution of (17) does not have zeros on (T1,∞), see [20, Chapter XI, Exercise
6.6]. Thus, a necessary condition for positiveness of the principal solution on
the open interval (T,∞), is the disconjugacy of the equation. Nevertheless,
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disconjugacy cannot be sufficient for the positiveness of principal solution on
the close half-line [T,∞), as the following example shows.

Example 1. Consider the equation

(a(t)y′)′ + y = 0, t ≥ 0, (20)

where a(1) = 1 and

a(t) =
1 + t− 2et−1

1− t
if t 6= 1.

Hence, a is a positive continuous function on [0,∞) and (3) holds for a. Using
(19), we get that y0(t) = te−t is the principal solution of (20). Moreover, in
view of Lemma 3, equation (20) is disconjugate on [0,∞).

Consider now the special case β(t) ≡M > 0 in (17), i.e. the equation(
a(t)y′

)′
+My = 0. (L)

In view of Example 1, the disconjugacy of (L) on [T,∞) does not guaran-
tee the positiveness of principal solution at the initial point t = T. To obtain
this additional property, consider the so-called dual equation to (L), that is
the equation

v′′ +
M

a(t)
v = 0, (D)

which is obtained from (L) by the change of variable v(t) = a(t)y′(t). The
dual equation has been often used in the literature for studying oscillatory
properties of second order self-adjoint linear equations, see, e.g., [8, 9, 25],
and, for the half-linear case, [10, 17].

The following necessary and sufficient condition for the disconjugacy of
(D) holds, see also [20, page 352].

Lemma 4. Equation (D) is disconjugate on [T,∞) if and only if (D) has a
solution v0 such that v0(t) > 0 on (T,∞) and v′0(t) > 0 on [T,∞).

Proof. Assume that (D) is disconjugate on [T,∞). From Lemma 3 there
exists a solution v0 of (D) such that v0(t) > 0 for t > T. Thus, v′0 is de-
creasing for t > T. We claim that v′0(t) > 0 on the whole interval [T,∞).
By contradiction, if v′0 has a zero on [T,∞), then there exists t1 > T
such that v′0(t) ≤ v′0(t1) < 0 for t ≥ t1. Integrating this inequality we get
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v0(t) ≤ v0(t1) + v′0(t1)(t− t1), which gives a contradiction with the positive-
ness of v0 when t tends to infinity. The opposite statement follows again in
virtue of Lemma 3. 2

From Lemma 4 we obtain the following.

Lemma 5. If (D) is disconjugate on [T,∞), then (L) has a principal solution
y0 such that y0(t) > 0 on [T,∞) and y′0(t) < 0 on (T,∞).

Proof. In view of Lemma 4 and the change of variable y(t) = v′(t), equation
(L) has a solution y0 which satisfies y0(t) > 0 on [T,∞) and y′0(t) < 0 on
(T,∞). Hence, the disconjugacy of (L) follows from Lemma 3. If y0 is not
principal solution, from [20, Corollary 6.3] the solution y given by

y(t) = y0(t)

∫ ∞
t

ds

a(s)y20(s)
,

is the desired principal solution of (L). 2

Remark 2. Example 1 shows that the assumption on disconjugacy of (D) in
Lemma 5 cannot by replaced by the disconjugacy of (L). Moreover, observe
that the dual equation of (20) is

v′′ + a−1(t)v = 0, (21)

where a is defined in Example 1. It is easy to verify that the function v0(t) =
2e−1− (1+ t)e−t is a principal solution of (21). Since v0(1) = 0, any principal
solution of (21) has a zero at t = 1. Consequently, (21) is not disconjugate
on [0,∞).

4 An auxiliary BVP on [1,∞)

For any c > 0, consider for t ≥ 1 the existence of solutions x of (1) which
satisfy the boundary conditions

x(1) = c, x′(1) ≤ 0, x(t) > 0 on [1,∞), lim
t→∞

x(t) = 0. (22)

The solvability of this BVP is based on a general fixed point theorem for
operators defined in a Fréchet space, see [11, Theorem 1.3]. In particular, this
result reduces the existence of solutions of a BVP for differential equations
on noncompact intervals to the existence of suitable a-priori bounds and it
is mainly useful when the associated fixed point operator is not known in an
explicit form. We recall this result in the form that will be used.
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Theorem 2. Consider the BVP on [T,∞), T ≥ 0,

(a(t)x′)′ + b(t)F (x) = 0, x ∈ S, (23)

where S is a nonempty subset of the Fréchet space C[T,∞). Let G be a
continuous function on R2, such that F (d) = G(d, d) for any d ∈ R and
assume that there exist a nonempty, closed, convex and bounded subset Ω ⊂
C[T,∞) such that for any u ∈ Ω the BVP on [T,∞)

(a(t)x′)′ + b(t)G(u(t), x(t)) = 0, x ∈ S

admits a unique solution xu. Let Ψ be the operator Ω → C[T,∞), such that
Ψ(u) = xu. Assume

(i1) Ψ(Ω) ⊂ Ω;
(i2) if {un} ⊂ Ω is a sequence converging in Ω and Ψ(un) → x, then

x ∈ S.
Then Ψ has a fixed point in Ω, which is a solution of the BVP (23).

Let F̃ be the function

F̃ (v) =
F (v)

v
if v > 0, F̃ (0) = k0, (24)

where k0 is defined in (6) and set b+(t) = max {b(t), 0} , b−(t) = −min {b(t), 0} .
Thus b(t) = b+(t)− b−(t). The following holds.

Theorem 3. Assume that equation (8) is disconjugate on [1,∞). Then, for
any c > 0, equation (1) has a unique globally positive decreasing solution x
on [1,∞) satisfying (22) and (11).

Proof. Fixed c > 0, consider the equations(
a(t)y′

)′
+By = 0, (25)(

a(t)w′
)′ − b−(t)w = 0. (26)

From Lemma 5, equation (25) is disconjugate on [1,∞) and has a principal
solution y0 such that y0(1) = c, y0(t) > 0 on [1,∞), y′0(t) < 0 on (1,∞).
Moreover, from [9, Theorem 1] we obtain limt→∞ y0(t) = 0.

Since −b−(t) ≤ 0, equation (25) is a Sturm majorant for (26). Thus (26)
has a positive principal solution w0 such that w0(1) = c, w′0(t) ≤ 0 for t ≥ 1,
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see, e.g., [20, Corollary 6.4]. Using the comparison result for the principal
solutions, see e.g. [20, Corollary 6.5], we get on (1,∞)

w′0(t)

w0(t)
≤ y′0(t)

y0(t)

and so 0 < w0(t) ≤ y0(t) for t ≥ 1.
Let Ω and S be the subsets of the Fréchet space C[1,∞) given by

Ω =

{
u ∈ C[1,∞),

1

2
w0(t) ≤ u(t) ≤ y0(t)

}
,

S =

{
x ∈ C[1,∞), x(1) = c, x(t) > 0,

∫ ∞
1

1

a(t)x2(t)
dt =∞

}
,

respectively.
For any u ∈ Ω consider the linear equation

(a(t)x′)′ + b(t)F̃ (u(t))x(t) = 0, (27)

where F̃ is given in (24). In view of (5), we have supv≥0 F̃ (v) ≤ 1. Hence,
(25) is a majorant for (27). Thus, using again the comparison result [20,
Corollary 6.5], equation (27) has a unique positive principal solution xu,
such that xu(1) = c, and for t > 1

x′u(t)

xu(t)
≤ y′0(t)

y0(t)
.

Hence, taking into account that y0 is decreasing to zero as t tends to infinity,
we get

0 < xu(t) ≤ y0(t) on [1,∞),
limt→∞ xu(t) = 0, x′u(t) < 0 on (1,∞)

. (28)

Thus, for any u ∈ Ω, equation (27) has a solution xu ∈ S, which is unique in
view of (19).

Denote by Ψ : Ω→ C[1,∞) the operator

Ψ(u) = xu.

Using again the comparison result [20, Corollary 6.5] for equations (27) and
(26), we obtain for any u ∈ Ω and t ≥ 1

w′0(t)

w0(t)
≤ x′u(t)

xu(t)
. (29)
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Then, in view of (28) we get for any u ∈ Ω and t ≥ 1

w0(t) ≤ xu(t) ≤ y0(t),

i.e., the operator Ψ maps Ω into itself.
Now, let {un} ⊂ Ω be a sequence converging in Ω and xun = Ψ(un)→ x.

Clearly x(1) = c. Since Ψ(Ω) ⊂ Ω, we get x(t) > 0. Moreover, since y0 is a
principal solution of (25), from (28) we obtain∫ ∞

1

1

a(t)x2(t)
dt ≥

∫ ∞
1

1

a(t)y20(t)
dt =∞.

Thus, x ∈ S and, by Theorem 2, there exists a fixed point x of Ψ in Ω.
Clearly, x is a solution of (1) on [1,∞) and x(1) = c. Since x is also a
principal solution of (27) with u = x, from (28) we get x(t) > 0, x′(t) < 0
for t > 1, x′(1) ≤ 0 and limt→∞ x(t) = 0. Thus x is positive decreasing on
(1,∞) and satisfies (22) and (11).

Finally, it remains to verify that (1) has a unique solution which satisfies
(22). Let x, v be two positive solutions of (1) defined on [1,∞) and satisfying
(22). In view of the first part of the proof, we can suppose also that∫ ∞

1

dt

a(t)x2(t)
=∞. (30)

Denote by Φ(u, v) the function (u ≥ 0, v ≥ 0)

Φ(u, v) =


(F (u)− F (v))/(u− v) if u 6= v

dF (u)/du if u = v

and set z(t) = x(t)− v(t). Thus, z is a solution of the equation(
a(t)z′

)′
+ b(t)Φ(t)z = 0, (31)

where Φ(t) = Φ(x(t), v(t)). In virtue of (5), we have

b(t)Φ(t) ≤ B.

Since, from Lemma 5, equation (25) is disconjugate on [1,∞), the equation
(31) is disconjugate on [1,∞) too. Since z(1) = 0, the solution z does not have
zeros for t > 1 and so, without loss of generality, we can suppose z(t) > 0
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for t > 1. Because limt→∞ z(t) = 0, there exists t1 > 1 such that z′(t1) = 0.
Moreover, taking into account that x satisfies (30) and z(t) < x(t), we get
that z is a principal solution of (31). Using again the comparison result [20,
Corollary 6.5] for equations (25) and (31), we obtain for t > 1

z′(t)

z(t)
≤ y′0(t)

y0(t)
, (32)

where y0 is the positive decreasing principal solution of (25) defined in the
first part of the proof. Thus, the inequality (32) gives a contradiction at
t = t1, because

y′0(t1)

y0(t1)
< 0.

2

We conclude this section with the following continuity result for starting
points of solutions of (1) which satisfy (22).

Theorem 4. Assume that equation (8) is disconjugate on [1,∞). Let {cn} be
a positive sequence converging to zero and denote by xn the unique solution
of (1) which satisfies (22) with cn = c. Then the sequence {x′n(1)} converges
to zero.

Proof. In virtue of Theorem 3, for any cn > 0, equation (1) has a unique
solution xn which satisfies (22) with cn = c. Denote by wn the principal
solution of (26) such that wn(1) = cn. From (29) and (22) we get

w′n(1) ≤ x′n(1) ≤ 0. (33)

Since principal solutions are determined up to a constant factor, we have

wn(t) =
cn
c1
w1(t).

Hence w′n(1) = cnw
′
1(1)/c1 and from (33) the assertion follows. 2

5 Proof of the main result

In this section we prove Theorem 1 and we show some its consequences. To
this aim, the following generalization of the well known Kneser’s theorem
(see for instance [12, Section 1.3]), plays a key role.
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Proposition 2. Consider the system

z′ = F (t, z), (t, z) ∈ [T1, T2]× Rn

where F is continuous and bounded, and let K0 be a continuum (i.e., a com-
pact and connected subset) of {(T1, w) : w ∈ Rn}. Let Z(K0) be the family of
all the solutions emanating from K0. If any solution z ∈ Z(K0) is defined on
the whole interval [T1, T2], then the cross-section Z(T2;K0) = {z(T2) : z ∈
Z(K0)} is a continuum in Rn.

Proof of Theorem 1. Let x1 ∈ ∆1 and x2 ∈ ∆2 be the solutions on [0, 1] of (1),
whose existence is guaranteed by Proposition 1, and let α = max{x′1(0), x′2(0)} >
0, β = min{x′1(0), x′2(0)} > 0. Put

L = α a(0)A(1) (34)

and let F̂ be a Lipschitz function on R such that

F̂ (u) =


0, u < 0

F (u), 0 ≤ u ≤ L

F (L), u > L

.

For ` ∈ (0, α], consider the Cauchy problem{
(a(t)x′)′ + b(t)F̂ (x) = 0, t ∈ [0, 1]

x(0) = 0, x′(0) = `,
(35)

and denote by x` the unique solution of (35). Let us show that x` is defined
on the whole interval [0, 1]. For any solution x of the equation in (35),
the function a(·)x′(·) is nonincreasing, so a(t)x′`(t) ≤ a(0)x′`(0) = a(0)`.
Integrating this inequality, in view of (34) we get for t ∈ [0, 1]

x`(t) ≤ a(0) `

∫ t

0

1

a(s)
ds ≤ a(0) ` A(1) ≤ L.

Assume now that x`(t) > 0 on (0, t1), 0 < t1 ≤ 1, and x`(t1) = 0. Then, in
virtue of the uniqueness of the Cauchy problem (35), we obtain x′`(t1) < 0. If
t1 < 1, then x`(t) < 0 in a right neighborhood of t1 and satisfies (a(t)x′`)

′ = 0,
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which gives x`(t) < 0 for every t ≥ t1 for which this solution exists. Since
x′`(t1) < 0, by integration we obtain for t > t1

x`(t) = a(t1)x
′
`(t1)

∫ t

t1

1

a(s)
ds > a(t1)x

′
`(t1)A(1),

that is, x` is bounded from below. Therefore the solution x` of (35) is defined
on the whole interval [0, 1].

Let x be any solution of (1), nonnegative on [0, 1] and satisfying x(0) = 0,
x′(0) = ` ∈ (0, α]. Then x is also a solution of (35) for 0 ≤ t ≤ 1, and vice
versa. Indeed, reasoning as above, we obtain x(t) ≤ L on [0, 1] and therefore

F (x(t)) = F̂ (x(t)) for all t ∈ [0, 1].

Put K0 = {(x(1), x′(1)) : x is solution of (35) with ` ∈ [β, α]}. Since any
solution of (35) is defined on the whole [0, 1], by Proposition 2 the set K0 is
a continuum in R2, containing the points (0, x′1(1)), (x2(1), 0), with x′1(1) <
0, x2(1) > 0. Further, K0 does not contain any point (0, c) with c ≥ 0.
Therefore a continuum K1 ⊆ K0 exists, K1 ⊆ π = {(u, v) : u ≥ 0, v ≤ 0},
(0, 0) /∈ K1, and there exist two points P,Q ∈ K1, P = (p, 0), Q = (0,−q),
p > 0, q > 0.

In order to complete the proof, we use a similar argument to the one
given in [23, Theorem 1.1], with minor changes. Consider equation (1) for
t ≥ 1. By Theorem 3, for every c > 0, (1) has a unique positive decreasing
solution x satisfying (22) and (11). Then, the set S1 of the initial data of the
solutions of (1) on [1,∞) satisfying (11) and (22) is connected, S1 ⊂ π̄, and
its projection on the first component is the half-line (0,∞). Further, from
Theorem 4, (0, 0) ∈ S̄1. Therefore we have

K1 ∩ S1 6= ∅.

Let us show that each point (c, d) ∈ K1 ∩S1 corresponds to a solution of the
BVP (1)-(2). Let (c, d) ∈ K1∩S1. Then c > 0, d ≤ 0. Since (c, d) ∈ K1, there
exists a solution u of (35), for a suitable ` ∈ [β, α], such that u(1) = c > 0
and u′(1) = d ≤ 0. Since u(1) > 0 we have u(t) > 0 on (0, 1]. Therefore
u is also a solution of (1) in [0, 1], with u(0) = 0, u(t) > 0 for t ∈ (0, 1].
As (c, d) ∈ S1, a positive decreasing solution v of (1) exists on [1,∞), which
satisfies (22) and v(1) = c = u(1), v′(1) = d = v′(1). Hence, the function

x(t) =

{
u(t), t ∈ [0, 1],

v(t), t > 1.
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is a solution of the BVP (1)-(2) and the proof is complete. 2

From Theorem 1 and Proposition 1, we get the following.

Corollary 1. Let assumptions of Proposition 1-(ii) be satisfied and equation
(8) be disconjugate on [1,∞). Then the BVP (1)-(2) has a solution.

We close this section with the solvability of our BVP for the perturbed
equation (

a(t)z′
)′

+ (b(t) + b1(t))F (z) = 0, (36)

where b1 is a continuous function for t ≥ 0 such that b1(t) ≡ 0 on [0, 1] and
b1(t) ≤ 0 for t > 1.

Corollary 2. If assumptions of Theorem 1 are satisfied, then equation (36)
has a solution z satisfying boundary conditions (2).

6 Examples and concluding remarks

Theorem 1 is illustrated by the following example.

Example 2. Consider the equation(
a(t)x′

)′
+ b(t) F (x) = 0, (37)

where

a(t) = (1 + t)2, b(t) =
1

5e
exp

(
16

1 + 16t4

)
cos

(
πt

2

)
for t ≥ 0. (38)

and F satisfies (5) and (6) with

k0 =
9

e15
, k∞ = 1.

Since b is decreasing on [0, 1], we get∫ 1/2

1/3

b(τ)dτ ≥ 1

6
b(1/2) =

√
2

60
e7.

For equation (37), the function A in (7) becomes

A(t) =
t

1 + t
,
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so assumptions (9), (10) are verified for t1 = 1/3 and t2 = 1/2, because

A(1)|b|L ≥
1

2
b(0) =

e15

10
,

A(1)

A(t1)(A(1)− A(t2))
= 12 <

√
2

60
e7.

Finally, for t ∈ [1,∞) we have

b(t) ≤ 1

5e
<

1

4

and the equation (8) becomes the Euler equation

v′′ +
1

4(1 + t)2
v = 0,

which is disconjugate on [1,∞), see, e.g., [25, Chapter 2.1]. Hence, in view
of Theorem 1, equation (37) has solutions x which satisfy the boundary
conditions (2) and ∫ ∞

1

1

(1 + t)2x2(t)
dt =∞.

Remark 3. Example 2 can be slightly modified for the nonlinearity

F (u) =
u2

1 + u

or the nonlinearity

F (u) =
u

1 +
√
u
.

Remark 4. Consider the equation(
a(t)x′

)′
+ (b(t) + b1(t))F (x) = 0, (39)

where the functions a, b are given in (38), b1 is the function

b1(t) = (e− et)(| cos t| − cos t) for t ≥ 1, b1(t) ≡ 0 for t ∈ [0, 1),

and F is as in Example 2. Since b1(t) ≤ 0, in view of Corollary 2, equation
(39) has solutions x which satisfy the boundary conditions (2).
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Remark 5. Theorem 1 and Corollaries 1, 2 continue to hold if the assump-
tion (5) is replaced by the more general condition

∃K > 0 : 0 ≤ dF (u)

du
≤ K for u ≥ 0

and the disconjugacy of (8) is substituted by the disconjugacy on [1,∞) of
the linear equation

v′′ +
BK

a(t)
v = 0.

Remark 6. The assumption k0 6= k∞ implies that F cannot be a linear
function on [0,∞). If the linear equation(

a(t)x′
)′

+ b(t)x = 0 (40)

has a solution x satisfying (2), then in virtue of Lemma 3, (40) is disconjugate
on [0,∞). However, x is not necessarily the principal solution of (40). The
following example illustrates this case.

Example 3. Consider the equation(
e2tx′

)′
+ e2tx = 0, t ≥ 0 (41)

A standard calculation shows that x0(t) = e−t , x1(t) = te−t are solutions of
(41). Obviously, x1 satisfies (2). Observe that x1 is a nonprincipal solution
and x0 is the principal solution.

In a forthcoming paper we will consider this kind of BVPs for nonlinear
equations for which k0 = k∞.
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