

 Executing Online Anomaly Detection in Complex

Dynamic Systems

Tommaso Zoppi

Department of Mathematics and Informatics, University of Florence

Viale Morgagni 65, Florence, Italy

tommaso.zoppiunifi.it

Abstract—Revealing anomalies in data usually suggests

significant - also critical - actionable information in a wide variety

of application domains. Anomaly detection can support

dependability monitoring when traditional detection mechanisms

e.g., based on event logs, probes and heartbeats, are considered

inadequate or not applicable. On the other hand, checking the

behavior of complex and dynamic system it is not trivial, since the

notion of “normal” – and, consequently, anomalous - behavior is

changing frequently according to the characteristics of such system.

In such a context, performing anomaly detection calls for dedicate

strategies and techniques that are not consolidated in the state-of-

the-art. The paper expands the context, the challenges and the

work done so far in association with our current research direction.

The aim is to highlight the challenges and the future works that the

PhD student tackled and will tackle in the next years.

Keywords—anomaly detection; monitoring; multi-layer;

dynamicity; complex system; online

I. INTRODUCTION

Using anomaly detectors to assess the behavior of a target
complex system at runtime is a promising approach that was
explored in the last decade [1], [2]. Previous works showed that
anomaly detection is a very flexible technique, analyzing
different monitored behavioral data flows, finally allowing
correlation between different events. This technique is
commonly used to build error detectors [5], intrusion detectors
[4] or failure predictors [3], assuming that a manifestation of an
error or an adversarial attacker activity leads to an increasingly
unstable performance-related behavior before escalating into a
(catastrophic) failure. Anomaly detectors are in charge of i)
detecting these fluctuations, and ii) alerting the administrator –
who triggers proactive recovery or dumps critical data - with a
sufficient look-ahead window. As stated in [1], anomaly
detection strictly depends on the ability of distinguishing among
normal and anomalous behavior. Unfortunately, complex and
dynamic systems can often hide behavioral details (e.g., Off-
The-Shelf components) or call for frequent reconfigurations,
negatively affecting our ability in performing anomaly detection.

In particular, enterprise solutions such as Nagios, Ganglia or
Zenoss allow the administrator to choose which indicators (e.g.,
CPU usage, accesses to hard disk) to observe, tracing their
evolution through time. These enterprise tools also give the
chance to setup static thresholds for each indicator, testing the
availability of each single functionality or service exposed by
the target system. Nevertheless, as expanded in Section III, they
i) do not implement dynamic thresholds (e.g., statistical) for the

monitored indicator, and ii) cannot easily adapt their behaviour
when the configuration of the target system changes, calling for
manual reconfigurations. This represents a strong limitation for
the usage of such tools in dynamic systems.

The paper is structured as follows: Section II reports on
anomaly detection, while Section III points out the motivations
of our work and the related challenges. Section IV describes the
framework for anomaly detection that is currently under
investigation, while Section V and Section VI conclude the
paper focusing on the ongoing and planned future works.

II. ANOMALY DETECTION IN COMPLEX DYNAMIC SYSTEMS

Dynamicity is the property of an entity that constantly changes
in term of offered services, built-in structure and interactions
with other entities. From one side, this defines systems that can
adapt their behavior according to the actual needs, but on the
other side it makes all the behavioral checks harder to execute
since the normal behavior is changing very often. Regarding
dependability assessment, this means that failure predictors must
be kept up-to-date as the system is running, calling for a new
training phase aimed at reconfiguring all the involved
parameters. This calls for a monitoring solution that i)
continuously observes the system to avoid or mitigate failures of
attack, ii) gathers data from modules or layers where possible,
and iii) is able to infer the status of the whole system looking
only at data collected at its constituent modules. It follows that
detection algorithms based on fingerprints e.g., antiviruses [14],
intrusion detectors [13] or failure predictors [9], may result not
adequate for complex systems due to their intrinsic dynamicity.

In such a context, anomaly detection seems one of the most
suitable approaches in detecting unexpected behaviors in
dynamic and complex systems. In the security domain, this
technique was proven effective [14] in detecting zero-day
attacks, which exploit unknown vulnerabilities to get into the
targeted system. Antiviruses and intrusion detectors can detect
hazards when they identify a behavior that is compliant with a
known fingerprint of an attacker or a malware, but they need
also rules to detect zero-day attacks or attacks from unknown
adversaries [12]. The same approach is commonly used to detect
threats to dependability in complex systems, also when the
system is composed by OTS components [10], [7]. Moreover,
unexpected or previously unknown system failures can be
predicted observing specific indicators to characterize if the
runtime system behavior is compliant with given performance
expectations [9], [10]. Several frameworks targeting anomaly

detection in a specific subset of complex systems, namely
Systems-of-Systems (SoSs) are summarized in [20]. More in
detail, some of them deal with dynamicity [11], while others
tackle systems composed of OTS components [9], [10]. All the
considered frameworks are realized either for dependability [9],
[10], [11] or security [4], [12] purposes.

III. MAIN CHALLENGES

To the authors’ knowledge, the topic of bringing anomaly
detection into the design of complex dynamic systems e.g.,
Service Oriented Architectures (SOAs) [8] or SoSs [20], was not
explored in the recent years. Consequently, after expanding the
topic of anomaly detection, in the rest of the paper we will report
on both the motivations of the research and the challenges that
the 3

rd
-year PhD student tackled in the first two years, with a

closer look to the next planned research steps.

Summarizing, the tackled research challenges are:

CH1. Design a monitoring and anomaly detection framework
that is suitable for dynamic and/or distributed systems and
therefore is tailored to automatically adapt its parameters
depending on the current configuration of the target system;

CH2. Provide a flexible monitoring strategy that copes with
dynamicity of complex systems. The strategy must allow
the collection of data coming from different system layers
and constituent machines that can be updated frequently;

CH3. Understand the expected behavior of the system according
to its current context. The context must be detected at
runtime, calling for specific training phases that should not
interfere with the normal usage of the platform (e.g.,
availability to the users)

CH4. Analyze monitored data to extract the minimum set of
features (i.e., anomaly checkers and, consequently,
monitored indicators) which guarantees the best tradeoff
between monitoring effort and efficiency of the anomaly
detection process at runtime;

IV. BUILDING A FRAMEWORK FOR MULTI-LAYER ANOMALY

DETECTION IN COMPLEX DYNAMIC SYSTEMS

A. Designing the framework

In [7] the authors applied the Statistical Predictor and Safety
Margin (SPS) algorithm to detect the activation of software
faults in an Air Traffic Management (ATM) system, that has few
defined functionalities with respect to a SOA. Observing only
Operating System (OS) indicators, SPS allowed performing
error detection with high precision. This is a promising approach
since it i) relies on a multi-layer monitoring strategy that allows
to infer the state of the applications looking only at the
underlying system layers (see CH2), and ii) uses a sliding-
window-based machine learning algorithm that automatically
tunes its parameters as the data flows (see CH1). Therefore we
adapted this approach to work in a more dynamic context [5]
where we instantiated the framework on one of the 4 virtual
machines running the prototype of the Secure! [6] SOA.

The results achieved showed that analysing such a dynamic
system without adequate knowledge on its behavior reduces the

efficiency of the whole solution. We explain these outcomes as
follows. SPS detects changes in a stream of observations
identifying variations with respect to a predicted trend: when an
observation does not comply with the predicted trend, an alert is
raised. If the system has high dynamicity due to frequent
changes or updates of the system components, or due to
variations of user behaviour or workload, such trend may be
difficult to identify and thus predict. Consequently, our ability in
identifying anomalies is affected because boundaries between
normal and anomalous behaviour cannot be defined properly.

Consequently, we investigated which information on SOA
services we can obtain in absence of details on the services
internals and without requiring user context (i.e., user profile,
user location). In SOAs, the different services share common
information through an Enterprise Service Bus (ESB, [8]) that is
in charge of i) integrating and standardizing common
functionalities, and ii) collecting data about the services. This
means that static (e.g., services description available in Service
Level Agreements - SLAs) or runtime (e.g., the time instant a
service is requested or replies, or the expected resources usage)
information about the context can be retrieved using knowledge
given by ESB. In particular, having access to the ESB provides
knowledge on the set of generic services running at any time t.
We refer to this information as context-awareness of the
considered SOA.

We can exploit this information to define more precisely the
boundaries between normal and anomalous behaviour of the
system under observation. For example, consider a user that
invokes a store file service at time t. We can combine context-
awareness with information on the usual behaviour of the
service, which here regards data transfer. Therefore, if the store
file service is invoked at time t, we expect the exchange of data
during almost the entire execution of the service. Contrary, we
can reveal that something anomalous is happening. This also
highlights that the observation of lower levels make us able to
identify the manifestation of errors at service level, ultimately
providing both i) monitoring flexibility, and ii) maximum
detection capability.

B. High-Level Architecture

In Figure 1 we depicted a high-level view of the framework.
Starting from the upper left part of the figure, the framework can
be described as follows. The user executes a workload, which is
a sequence of invocations of SOA services hosted on the Target
Machine. In this machine, probes are running, observing the
indicators coming from 3 different system layers: i) OS, ii)
middleware and iii) network. These probes collect data,
providing a snapshot of the target system composed by the
observation of indicators retrieved at a defined time instant. The
probes forward the snapshot to the communication handler,
which encapsulates and sends the snapshot to the other
communication handler. Data is analyzed on a separate machine,
the Detector Machine. This allows i) not being intrusive on the
Target Machine, and ii) connecting more Target Machines to the
same Detector Machine (note that the number of Target
Machines is limited by the computational resources of the
Detector Machine). The communication handler of the Detector
Machine collects and sends these data to the monitor
aggregator, which merges them with runtime information on the

context (e.g., the sequence of service calls) obtained from the
ESB. Looking at runtime information, the monitor aggregator
can detect changes in the SOA and notify the administrator that
up-to-date services information is needed to appropriately tune
the anomaly detector. The administrator is in charge of running
tests (test invocation) to gather novel information on such
services.

The snapshots collected when the SOA is opened to users are
sent to the anomaly detection module, which can query the
database for contextual services information. The anomaly
detection module analyzes each observed snapshot to detect
anomalies. If an anomaly is detected, an alert is raised to the
system administrator that takes countermeasures and applies
reaction strategies. These are outside from the scope of this work
and will not be elaborated further.

C. Exercising the framework

The framework is instantiated specifying: i) a workload, ii) the
approach to obtain contextual data (as mentioned in Section
4.A), iii) the set of monitored indicators, and iv) the amount of
data needed for training. The methodology is composed of two
phases: Training Phase and Runtime Execution.

Training Phase. First, the approach (static or runtime) to obtain
contextual data characterizing the fingerprint of the investigated
services is instantiated. Then, training data is collected during
the execution of the chosen workload, storing in a database a
time series for each monitored indicator representing the
evolution of its value during the train experiment. These data are
complemented with data collected conducting anomaly injection
campaigns, where anomalies are injected in one of the SOA
services, to witness the behavior of the target system in such
situations. These data are lastly used by the anomaly detection
module to tune its parameters depending on the current context.
Injected anomalies simulate the effect of the manifestation of an
error or of an upcoming failure, e.g., anomalous resource usage.

Runtime Execution. Once the training phase is ended and the
parameters of the anomaly detector are defined, the system is
opened to users. Monitor aggregator merges each snapshot
observed by the probing system with runtime information, and it
sends them to the anomaly detection module. This module
provides a numeric anomaly score: if the score reaches a
specified threshold, an anomaly alert is risen and the

administrator is notified. If during this phase a change in the
system is detected, a new training phase is scheduled and it will
be executed depending on the policies defined by the
administrator (e.g., during lunchtime, instantly, at night).

V. DEALING WITH ONLINE TRAINING

According to the description in Section 4, we can observe how
the availability of the anomaly detector is affected from the time
it needs to train its algorithms and to detect the contextual data
(see CH3). All the detection systems that depend on training
data have to deal with this turnover between training phase – in
which the system is tuning the detector – and runtime execution
– where the system is opened to users and executing its tasks
with anomaly detection support.

A. Limitations of Training Phases

The time requested by the training phase is considered not
influent in systems that i) can be put offline in defined time
periods (e.g., servers that are unused at night), or ii) have static
behaviors (e.g., air traffic management systems), meaning that
the training phase can be executed once keeping their results
valid through time. Nevertheless, a big subset of systems do not
adhere with these specifications since they have a dynamic
behavior that calls for frequent training phases needed to adapt
the parameters of the anomaly detector to the current context. In
such a context, frequent training phases are needed to keep the
anomaly detection logic compliant with the current notion of
“normal” and “anomalous” behavior. Unfortunately, during
these training phases the anomaly detector is working with
outdated parameters negatively affecting the correct detection of
anomalies. To limit these adverse effects, several authors [16],
[17], [18], [19] dealing with detector or predictors in the context
of complex systems proposed an “online training” approach.

B. Online Training

A strong support for the design of online training techniques
comes from systems that study trajectories [15], [16]. In this
field, abnormal trajectories tend to carry critical information of
potential problems that require immediate attention and need to
be resolved at an early stage [15]. The trajectories are
continuously monitored as they evolve to understand if they are
following normal or anomalous paths, ultimately breaking the
classic training-validation turnover (see conformal anomaly

Fig 1. High-level view of the multi-layer anomaly detection framework

detection [16]). In [17], authors tackle online training for failure
prediction purposes i) continuously increasing the training set
during the system operation, and ii) dynamically modifying the
rules of failure patterns by tracing prediction accuracy at
runtime. A similar approach is adopted also to model up-to-date
Finite State Automata tailored on sequences of system calls for
anomaly-based intrusion detection purposes [18] or Hidden Semi
Markov Models targeting online failure prediction [19].

C. Shaping Online Training for Dynamic Systems

When the target system is dynamic, it can change its behavior in
different ways, consequently affecting the notion of normal or
expected behavior. These changes must trigger new training
phases aimed at defining the “new” normal behavior, allowing
the parameters of the anomaly detector to be tailored on the
current version of the system. Moreover, according to [17], the
training set is continuously enriched by the data collected during
the executions of services, providing wide and updated datasets
that can be used for training purposes. This training phase starts
once one of the triggers will activate, calling for complex data
analytics that are executed on a dedicated machine, to do not
bother the target system with these heavy computations.

Looking at the possible ways systems have to dynamically
change their behavior, we are currently considering as triggers:
i) update of the workload, ii) addition or update of a service in
the platform, iii) hardware update, and iv) degradation of the
detection scores. While the first three triggers can be detected
easily either looking at the basic setup of the SOA or after a
notification of the administrator, the degradation of detection
scores needs more attention. Concisely, the dynamicity of the
system is not only due to events that can alter its behavior (i.e.,
the first three triggers). The notion of normal behavior may be
affected also by changes of the environment or of some internals
of the systems than cannot be easily identified. Unfortunately,
they might lead to a performance degradation of the anomaly
detector (e.g., higher number of false positives) ultimately
calling for an additional training phase.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents the topic the student is tackling during his
PhD. More in detail, after describing the research area and the
state of the art that was consolidated in the recent years, the
paper addressed the motivations and the related challenges.
Then, we described a framework for multi-layer anomaly
detection in complex and dynamic systems that we developed
during the PhD research period.

Future works will be oriented to deal with the dynamicity of
complex systems. While a strategy for the collection and the
analysis of data is already implemented in the framework
mentioned before, some improvements need to be considered in
order to make this framework suitable for dynamic systems. In
particular, we will go through the online training approach,
looking for strategies that will allow having always a clear
definition of normal behavior. As discussed in Section 5.C, this
will require deeper investigations on all the possible ways
systems have to dynamically change their behavior. Moreover,
we are planning to tackle the feature selection problem (see
CH4) after the dynamic characteristics will be clearly defined.

ACKNOWLEDGMENT

This work has been partially supported by the IRENE JPI Urban
Europe, the EU-FP7-ICT-2013-10-610535 AMADEOS and the
EU-FP7-IRSES DEVASSES projects.

REFERENCES

[1] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly
detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15.

[2] Rajasegarar, Sutharshan, Christopher Leckie, and Marimuthu Palaniswami.
"Anomaly detection in wireless sensor networks." IEEE Wireless
Communications 15.4 (2008): 34-40.

[3] Özçelik, Burcu, and Cemal Yılmaz. "Seer: a lightweight online failure
prediction approach." IEEE Transactions on Software Engineering (2013).

[4] Salama, Shaimaa Ezzat, et al. "Web anomaly misuse intrusion detection
framework for SQL injection detection." Editorial Preface 3.3 (2012).

[5] Ceccarelli, Andrea, et al. "A multi-layer anomaly detector for dynamic
service-based systems." Int. Conference on Computer Safety, Reliability
and Security (pp. 166-180). Springer Int. Publishing, SAFECOMP 2015.

[6] Secure! project, http://secure.eng.it/ (last accessed 1st December 2016)

[7] Bovenzi, Antonio, et al. "An OS-level Framework for Anomaly Detection
in Complex Software Systems." Dependable and Secure Computing, IEEE
Transactions on 12.3 (2015): 366-372.

[8] Erl, Thomas. Soa: principles of service design. Vol. 1. Upper Saddle River:
Prentice Hall, 2008.

[9] Baldoni, Roberto, Luca Montanari, and Marco Rizzuto. "On-line failure
prediction in safety-critical systems." Future Generation Computer Systems
45 (2015): 123-132.

[10] Williams, Andrew W., Soila M. Pertet, and Priya Narasimhan. "Tiresias:
Black-box failure prediction in distributed systems." Parallel and
Distributed Processing Symposium, IEEE 2007 (pp. 1-8). IPDPS 2007.

[11] Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli. "Context-
Awareness to Improve Anomaly Detection in Dynamic Service Oriented
Architectures." International Conference on Computer Safety, Reliability,
and Security (pp 145-158). Springer International Publishing, 2016.

[12] Perdisci, Roberto, et al. "McPAD: A multiple classifier system for accurate
payload-based anomaly detection." Computer Networks 53.6 (2009): 864-
881.

[13] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. "Intrusion
detection using neural networks and support vector machines." Neural
Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint
Conference on. Vol. 2. IEEE, 2002.

[14] Comar, Prakash Mandayam, et al. "Combining supervised and
unsupervised learning for zero-day malware detection." INFOCOM, 2013
Proceedings IEEE (pp. 2022-2030). IEEE, 2013.

[15] Bu, Y., Chen, L., Fu, A. W. C., & Liu, D. (2009, June). Efficient anomaly
monitoring over moving object trajectory streams. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and
data mining (pp. 159-168). ACM.

[16] Laxhammar, Rikard, and Göran Falkman. "Online learning and sequential
anomaly detection in trajectories." IEEE transactions on pattern analysis
and machine intelligence 36.6 (2014): 1158-1173.

[17] Gu, J., Zheng, Z., Lan, Z., White, J., Hocks, E., & Park, B. H. (2008,
September). Dynamic meta-learning for failure prediction in large-scale
systems: A case study. In 2008 37th International Conference on Parallel
Processing (pp. 157-164). IEEE.

[18] Sekar, R., Bendre, M., Dhurjati, D., & Bollineni, P. (2001). A fast
automaton-based method for detecting anomalous program behaviors. In
Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on (pp. 144-155). IEEE.

[19] Salfner, F., & Malek, M. (2007, October). Using hidden semi-Markov
models for effective online failure prediction. In Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE Int. Symp. on (pp. 161-174). IEEE.

[20] Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli. " Exploring
Anomaly Detection in Systems of Systems." To Appear at Symposium on
Applied Computing (SAC) 2017, Marrakesh, Morocco.

