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Abstract—Revealing anomalies in data usually suggests 

significant - also critical - actionable information in a wide variety 

of application domains. Anomaly detection can support 

dependability monitoring when traditional detection mechanisms 

e.g., based on event logs, probes and heartbeats, are considered 

inadequate or not applicable.  On the other hand, checking the 

behavior of complex and dynamic system it is not trivial, since the 

notion of “normal” – and, consequently, anomalous - behavior is 

changing frequently according to the characteristics of such system. 

In such a context, performing anomaly detection calls for dedicate 

strategies and techniques that are not consolidated in the state-of-

the-art. The paper expands the context, the challenges and the 

work done so far in association with our current research direction. 

The aim is to highlight the challenges and the future works that the 

PhD student tackled and will tackle in the next years.   
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I. INTRODUCTION 

Using anomaly detectors to assess the behavior of a target 
complex system at runtime is a promising approach that was 
explored in the last decade [1], [2]. Previous works showed that 
anomaly detection is a very flexible technique, analyzing 
different monitored behavioral data flows, finally allowing 
correlation between different events. This technique is 
commonly used to build error detectors [5], intrusion detectors 
[4] or failure predictors [3], assuming that a manifestation of an 
error or an adversarial attacker activity leads to an increasingly 
unstable performance-related behavior before escalating into a 
(catastrophic) failure. Anomaly detectors are in charge of i) 
detecting these fluctuations, and ii) alerting the administrator – 
who triggers proactive recovery or dumps critical data - with a 
sufficient look-ahead window. As stated in [1], anomaly 
detection strictly depends on the ability of distinguishing among 
normal and anomalous behavior. Unfortunately, complex and 
dynamic systems can often hide behavioral details (e.g., Off-
The-Shelf components) or call for frequent reconfigurations, 
negatively affecting our ability in performing anomaly detection.  

In particular, enterprise solutions such as Nagios, Ganglia or 
Zenoss allow the administrator to choose which indicators (e.g., 
CPU usage, accesses to hard disk) to observe, tracing their 
evolution through time. These enterprise tools also give the 
chance to setup static thresholds for each indicator, testing the 
availability of each single functionality or service exposed by 
the target system. Nevertheless, as expanded in Section III, they 
i) do not implement dynamic thresholds (e.g., statistical) for the 

monitored indicator, and ii) cannot easily adapt their behaviour 
when the configuration of the target system changes, calling for 
manual reconfigurations. This represents a strong limitation for 
the usage of such tools in dynamic systems. 

The paper is structured as follows: Section II reports on 
anomaly detection, while Section III points out the motivations 
of our work and the related challenges. Section IV describes the 
framework for anomaly detection that is currently under 
investigation, while Section V and Section VI conclude the 
paper focusing on the ongoing and planned future works.  

II. ANOMALY DETECTION IN COMPLEX DYNAMIC SYSTEMS 

Dynamicity is the property of an entity that constantly changes 
in term of offered services, built-in structure and interactions 
with other entities. From one side, this defines systems that can 
adapt their behavior according to the actual needs, but on the 
other side it makes all the behavioral checks harder to execute 
since the normal behavior is changing very often. Regarding 
dependability assessment, this means that failure predictors must 
be kept up-to-date as the system is running, calling for a new 
training phase aimed at reconfiguring all the involved 
parameters. This calls for a monitoring solution that i) 
continuously observes the system to avoid or mitigate failures of 
attack, ii) gathers data from modules or layers where possible, 
and iii) is able to infer the status of the whole system looking 
only at data collected at its constituent modules. It follows that 
detection algorithms based on fingerprints e.g., antiviruses [14], 
intrusion detectors [13] or failure predictors [9], may result not 
adequate for complex systems due to their intrinsic dynamicity. 

In such a context, anomaly detection seems one of the most 
suitable approaches in detecting unexpected behaviors in 
dynamic and complex systems. In the security domain, this 
technique was proven effective [14] in detecting zero-day 
attacks, which exploit unknown vulnerabilities to get into the 
targeted system. Antiviruses and intrusion detectors can detect 
hazards when they identify a behavior that is compliant with a 
known fingerprint of an attacker or a malware, but they need 
also rules to detect zero-day attacks or attacks from unknown 
adversaries [12]. The same approach is commonly used to detect 
threats to dependability in complex systems, also when the 
system is composed by OTS components [10], [7]. Moreover, 
unexpected or previously unknown system failures can be 
predicted observing specific indicators to characterize if the 
runtime system behavior is compliant with given performance 
expectations [9], [10]. Several frameworks targeting anomaly 



 

 

detection in a specific subset of complex systems, namely 
Systems-of-Systems (SoSs) are summarized in [20]. More in 
detail, some of them deal with dynamicity [11], while others 
tackle systems composed of OTS components [9], [10]. All the 
considered frameworks are realized either for dependability [9], 
[10], [11] or security [4], [12] purposes. 

III. MAIN CHALLENGES 

To the authors’ knowledge, the topic of bringing anomaly 
detection into the design of complex dynamic systems e.g., 
Service Oriented Architectures (SOAs) [8] or SoSs [20], was not 
explored in the recent years. Consequently, after expanding the 
topic of anomaly detection, in the rest of the paper we will report 
on both the motivations of the research and the challenges that 
the 3

rd
-year PhD student tackled in the first two years, with a 

closer look to the next planned research steps. 

Summarizing, the tackled research challenges are:  

CH1. Design a monitoring and anomaly detection framework 
that is suitable for dynamic and/or distributed systems and 
therefore is tailored to automatically adapt its parameters 
depending on the current configuration of the target system; 

CH2. Provide a flexible monitoring strategy that copes with 
dynamicity of complex systems. The strategy must allow 
the collection of data coming from different system layers 
and constituent machines that can be updated frequently; 

CH3. Understand the expected behavior of the system according 
to its current context. The context must be detected at 
runtime, calling for specific training phases that should not 
interfere with the normal usage of the platform (e.g., 
availability to the users) 

CH4. Analyze monitored data to extract the minimum set of 
features (i.e., anomaly checkers and, consequently, 
monitored indicators) which guarantees the best tradeoff 
between monitoring effort and efficiency of the anomaly 
detection process at runtime; 

IV. BUILDING A FRAMEWORK FOR MULTI-LAYER ANOMALY 

DETECTION IN COMPLEX DYNAMIC SYSTEMS 

A. Designing the framework 

In [7] the authors applied the Statistical Predictor and Safety 
Margin (SPS) algorithm to detect the activation of software 
faults in an Air Traffic Management (ATM) system, that has few 
defined functionalities with respect to a SOA. Observing only 
Operating System (OS) indicators, SPS allowed performing 
error detection with high precision. This is a promising approach 
since it i) relies on a multi-layer monitoring strategy that allows 
to infer the state of the applications looking only at the 
underlying system layers (see CH2), and ii) uses a sliding-
window-based machine learning algorithm that automatically 
tunes its parameters as the data flows (see CH1). Therefore we 
adapted this approach to work in a more dynamic context [5] 
where we instantiated the framework on one of the 4 virtual 
machines running the prototype of the Secure! [6] SOA.  

The results achieved showed that analysing such a dynamic 
system without adequate knowledge on its behavior reduces the 

efficiency of the whole solution. We explain these outcomes as 
follows. SPS detects changes in a stream of observations 
identifying variations with respect to a predicted trend: when an 
observation does not comply with the predicted trend, an alert is 
raised. If the system has high dynamicity due to frequent 
changes or updates of the system components, or due to 
variations of user behaviour or workload, such trend may be 
difficult to identify and thus predict. Consequently, our ability in 
identifying anomalies is affected because boundaries between 
normal and anomalous behaviour cannot be defined properly. 

Consequently, we investigated which information on SOA 
services we can obtain in absence of details on the services 
internals and without requiring user context (i.e., user profile, 
user location). In SOAs, the different services share common 
information through an Enterprise Service Bus (ESB, [8]) that is 
in charge of i) integrating and standardizing common 
functionalities, and ii) collecting data about the services. This 
means that static (e.g., services description available in Service 
Level Agreements - SLAs) or runtime (e.g., the time instant a 
service is requested or replies, or the expected resources usage) 
information about the context can be retrieved using knowledge 
given by ESB. In particular, having access to the ESB provides 
knowledge on the set of generic services running at any time t. 
We refer to this information as context-awareness of the 
considered SOA.  

We can exploit this information to define more precisely the 
boundaries between normal and anomalous behaviour of the 
system under observation. For example, consider a user that 
invokes a store file service at time t. We can combine context-
awareness with information on the usual behaviour of the 
service, which here regards data transfer. Therefore, if the store 
file service is invoked at time t, we expect the exchange of data 
during almost the entire execution of the service. Contrary, we 
can reveal that something anomalous is happening. This also 
highlights that the observation of lower levels make us able to 
identify the manifestation of errors at service level, ultimately 
providing both i) monitoring flexibility, and ii) maximum 
detection capability. 

B. High-Level Architecture 

In Figure 1 we depicted a high-level view of the framework. 
Starting from the upper left part of the figure, the framework can 
be described as follows. The user executes a workload, which is 
a sequence of invocations of SOA services hosted on the Target 
Machine. In this machine, probes are running, observing the 
indicators coming from 3 different system layers: i) OS, ii) 
middleware and iii) network. These probes collect data, 
providing a snapshot of the target system composed by the 
observation of indicators retrieved at a defined time instant. The 
probes forward the snapshot to the communication handler, 
which encapsulates and sends the snapshot to the other 
communication handler. Data is analyzed on a separate machine, 
the Detector Machine. This allows i) not being intrusive on the 
Target Machine, and ii) connecting more Target Machines to the 
same Detector Machine (note that the number of Target 
Machines is limited by the computational resources of the 
Detector Machine). The communication handler of the Detector 
Machine collects and sends these data to the monitor 
aggregator, which merges them with runtime information on the 



 

 

context (e.g., the sequence of service calls) obtained from the 
ESB. Looking at runtime information, the monitor aggregator 
can detect changes in the SOA and notify the administrator that 
up-to-date services information is needed to appropriately tune 
the anomaly detector. The administrator is in charge of running 
tests (test invocation) to gather novel information on such 
services.  

The snapshots collected when the SOA is opened to users are 
sent to the anomaly detection module, which can query the 
database for contextual services information. The anomaly 
detection module analyzes each observed snapshot to detect 
anomalies. If an anomaly is detected, an alert is raised to the 
system administrator that takes countermeasures and applies 
reaction strategies. These are outside from the scope of this work 
and will not be elaborated further. 

C. Exercising the framework 

The framework is instantiated specifying: i) a workload, ii) the 
approach to obtain contextual data (as mentioned in Section 
4.A), iii) the set of monitored indicators, and iv) the amount of 
data needed for training. The methodology is composed of two 
phases: Training Phase and Runtime Execution. 

Training Phase. First, the approach (static or runtime) to obtain 
contextual data characterizing the fingerprint of the investigated 
services is instantiated. Then, training data is collected during 
the execution of the chosen workload, storing in a database a 
time series for each monitored indicator representing the 
evolution of its value during the train experiment. These data are 
complemented with data collected conducting anomaly injection 
campaigns, where anomalies are injected in one of the SOA 
services, to witness the behavior of the target system in such 
situations. These data are lastly used by the anomaly detection 
module to tune its parameters depending on the current context. 
Injected anomalies simulate the effect of the manifestation of an 
error or of an upcoming failure, e.g., anomalous resource usage. 

Runtime Execution. Once the training phase is ended and the 
parameters of the anomaly detector are defined, the system is 
opened to users. Monitor aggregator merges each snapshot 
observed by the probing system with runtime information, and it 
sends them to the anomaly detection module. This module 
provides a numeric anomaly score: if the score reaches a 
specified threshold, an anomaly alert is risen and the 

administrator is notified. If during this phase a change in the 
system is detected, a new training phase is scheduled and it will 
be executed depending on the policies defined by the 
administrator (e.g., during lunchtime, instantly, at night). 

V. DEALING WITH ONLINE TRAINING 

According to the description in Section 4, we can observe how 
the availability of the anomaly detector is affected from the time 
it needs to train its algorithms and to detect the contextual data 
(see CH3). All the detection systems that depend on training 
data have to deal with this turnover between training phase – in 
which the system is tuning the detector – and runtime execution 
– where the system is opened to users and executing its tasks 
with anomaly detection support.  

A. Limitations of Training Phases 

The time requested by the training phase is considered not 
influent in systems that i) can be put offline in defined time 
periods (e.g., servers that are unused at night), or ii) have static 
behaviors (e.g., air traffic management systems), meaning that 
the training phase can be executed once keeping their results 
valid through time. Nevertheless, a big subset of systems do not 
adhere with these specifications since they have a dynamic 
behavior that calls for frequent training phases needed to adapt 
the parameters of the anomaly detector to the current context. In 
such a context, frequent training phases are needed to keep the 
anomaly detection logic compliant with the current notion of 
“normal” and “anomalous” behavior. Unfortunately, during 
these training phases the anomaly detector is working with 
outdated parameters negatively affecting the correct detection of 
anomalies. To limit these adverse effects, several authors [16], 
[17], [18], [19] dealing with detector or predictors in the context 
of complex systems proposed an “online training” approach.  

B. Online Training 

A strong support for the design of online training techniques 
comes from systems that study trajectories [15], [16]. In this 
field, abnormal trajectories tend to carry critical information of 
potential problems that require immediate attention and need to 
be resolved at an early stage [15]. The trajectories are 
continuously monitored as they evolve to understand if they are 
following normal or anomalous paths, ultimately breaking the 
classic training-validation turnover (see conformal anomaly 

 
Fig 1. High-level view of the multi-layer anomaly detection framework 

 



 

 

detection [16]). In [17], authors tackle online training for failure 
prediction purposes i) continuously increasing the training set 
during the system operation, and ii) dynamically modifying the 
rules of failure patterns by tracing prediction accuracy at 
runtime. A similar approach is adopted also to model up-to-date 
Finite State Automata tailored on sequences of system calls for 
anomaly-based intrusion detection purposes [18] or Hidden Semi 
Markov Models targeting online failure prediction [19]. 

C. Shaping Online Training for Dynamic Systems  

When the target system is dynamic, it can change its behavior in 
different ways, consequently affecting the notion of normal or 
expected behavior. These changes must trigger new training 
phases aimed at defining the “new” normal behavior, allowing 
the parameters of the anomaly detector to be tailored on the 
current version of the system. Moreover, according to [17], the 
training set is continuously enriched by the data collected during 
the executions of services, providing wide and updated datasets 
that can be used for training purposes. This training phase starts 
once one of the triggers will activate, calling for complex data 
analytics that are executed on a dedicated machine, to do not 
bother the target system with these heavy computations. 

Looking at the possible ways systems have to dynamically 
change their behavior, we are currently considering as triggers: 
i) update of the workload, ii) addition or update of a service in 
the platform, iii) hardware update, and iv) degradation of the 
detection scores. While the first three triggers can be detected 
easily either looking at the basic setup of the SOA or after a 
notification of the administrator, the degradation of detection 
scores needs more attention. Concisely, the dynamicity of the 
system is not only due to events that can alter its behavior (i.e., 
the first three triggers). The notion of normal behavior may be 
affected also by changes of the environment or of some internals 
of the systems than cannot be easily identified. Unfortunately, 
they might lead to a performance degradation of the anomaly 
detector (e.g., higher number of false positives) ultimately 
calling for an additional training phase. 

VI. CONCLUSIONS AND FUTURE WORKS 

This paper presents the topic the student is tackling during his 
PhD. More in detail, after describing the research area and the 
state of the art that was consolidated in the recent years, the 
paper addressed the motivations and the related challenges. 
Then, we described a framework for multi-layer anomaly 
detection in complex and dynamic systems that we developed 
during the PhD research period.  

Future works will be oriented to deal with the dynamicity of 
complex systems. While a strategy for the collection and the 
analysis of data is already implemented in the framework 
mentioned before, some improvements need to be considered in 
order to make this framework suitable for dynamic systems. In 
particular, we will go through the online training approach, 
looking for strategies that will allow having always a clear 
definition of normal behavior. As discussed in Section 5.C, this 
will require deeper investigations on all the possible ways 
systems have to dynamically change their behavior. Moreover, 
we are planning to tackle the feature selection problem (see 
CH4) after the dynamic characteristics will be clearly defined. 
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