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Abstract 

Remote sensing techniques represent a powerful instrument to detect and characterise 

earth’s surface processes, especially using change detection approaches. In particular, TLS 

(Terrestrial Laser Scanner) and UAV (Unmanned Aerial Vehicles) photogrammetry technique 

allow to obtain high-resolution representations of the observed scenario as a three-

dimensional array of points defined by x, y and z coordinates, namely point cloud. During the 

last years, the use of 3D point clouds to investigate the morphological changes occurring over 

a range of spatial and temporal scales, is considerably increased. 

During the three-years PhD research programme, the effectiveness of point cloud exploitation 

for slope characterization and monitoring was tested and evaluated by developing and 

applying a semi-automatic MATLAB tool. The proposed tool allows to investigate the main 

morphological characteristics of unstable slopes by using point clouds and to point out any 

spatio-temporal morphological changes, by comparing point clouds acquired at different 

times. Once defined a change detection threshold, the routine permits to execute a cluster 

analysis and automatically separate zones characterized by significant distances and compute 

their area. 

The introduced tool was tested on two test sites characterized by different geological setting 

and instability phenomena: the San Leo rock cliff (Rimini province, Emilia Romagna region, 

northern Italy) and a clayey slope near Ricasoli village (Arezzo province, Tuscany region, 

central Italy). For both case of studies, the main displacement or accumulation zones and 

detachment zone were mapped and described. Furthermore, the factors influencing the 

change detection results are discussed in details. 
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Riassunto 

Le tecniche di rilevamento rappresentano un utile strumento per rilevare e caratterizzare i 

processi gravitativi di versante, in particolare attraverso l’uso di approcci volti ad individuare 

le aree in movimento. Nel dettaglio, tecniche come il laser scanner terrestre e la 

fotogrammetria digitale permettono di ottenere rappresentazioni ad alta risoluzione dello 

scenario osservato sotto forma di una nuvola di punti (point cloud) in tre dimensioni. Durante 

gli ultimi anni, l’uso delle nuvole di punti per investigare i cambiamenti morfologici a scala 

temporale e spaziale, è notevolmente aumentato. 

In questo contesto è maturato il presente progetto di ricerca, durante il quale, l’efficacia 

dell’utilizzo delle nuvole di punti per la caratterizzazione e il monitoraggio di versanti instabili 

è stata testata e valutata attraverso lo sviluppo di un tool semi-automatico in linguaggio di 

programmazione MATLAB. Lo strumento di analisi proposto consente di investigare le 

principali caratteristiche morfologiche dei versanti instabili indagati e di determinare le 

variazioni morfologiche e gli spostamenti dalla comparazione di nuvole di punti acquisite in 

tempi differenti. In seguito, attraverso una tecnica di clustering, il codice permette di 

estrapolare i gruppi le zone interessate da spostamenti significativi e calcolarne l’area. 

Il tool introdotto è stato testato su due casi di studio contraddistinti da differenti 

caratteristiche geologiche e da diversi fenomeni di instabilità: l’ammasso roccioso di San Leo 

(RN) e il versante presso l’abitato di Ricasoli (AR). Per entrambi i casi di studio, sono state 

individuate e descritte le aree caratterizzate da deformazione superficiale o accumulo di 

materiale e le aree caratterizzate da distacco di materiale. Inoltre, sono stati approfonditi i 

fattori che influenzano i risultati della change detection tra nuvole di punti. 
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1. Introduction 

The term “landslide” is defined as the movement of a mass of rock, debris or earth down a 

slope under the influence of gravity (Varnes, 1978; Cruden, 1991). This physical system 

includes a wide range of mass movements (flows, slides, topples, falls), a great range of type 

of geological materials and activities, and different velocity (Varnes, 1978; Cruden and Varnes, 

1996). It evolves in time as a result of three different stages: pre-failure deformations, failure 

and post-failure displacements (Terzaghi, 1950; Skempton and Hutchinson, 1969). 

Landslides are globally widespread phenomena and they represent one of the major type of 

geological hazards, occurring worldwide more frequently than any other natural disasters, 

such as earthquakes, floods and volcanic eruptions (IGOS, 2004). Although the action of 

gravity is the primary reason for a landslide, there are other predisposing factors that affect 

the slope stability such as soil and rock mechanical properties, slope geomorphic features 

(gradient and aspect) and land cover characteristics (Cruden and Varnes, 1996). This instability 

phenomena can be triggered from different factors, including intense or prolonged rainfall, 

rapid snowmelt, permafrost thawing, earthquakes, volcanic eruptions, toe slope undercutting 

by water courses or ocean waves and wildfires (Guzzetti et al., 2008). Moreover, according to 

Nadim et al. (2006), the uncontrolled human activities such as overexploited natural 

resources, intensive deforestation, poor land-use planning and growing urbanization are 

causing a documented increase of landslide occurrence. Furthermore, in the last years many 

authors (Jakob and Lambert, 2009; Borgatti and Soldati, 2010) have investigated the existence 

of potential correlation between landslide occurrences and climate changes. In detail, 

precipitations events, the most important triggering factor, are rising in terms of magnitude 

and frequency and this can increase the landslide occurrence. 

Landslides cause a significant number of human loss of life and injury and extensive economic 

damages to public and private properties. Italy is one of the most harshly affected country in 

the world by landslide hazard, the estimated landslide losses range from 1 to 2 billion of 

dollars annually, corresponding to about 0.15% of the national domestic product (Canuti et 

al., 2004). Considering the importance of landslide problem, experts in the field of 

geotechnical engineering and engineering geology have for a long time recognised the 

necessity to have a consistent strategy for the evaluation of landslide risk (Whitman, 1984). 
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The landslide risk is defined (UNISDR, 2009) as “the expected number of lives lost, person 

injured, damage to property or disruption of economic activity due to a landslide”, and can be 

expressed by following equation: 

R = H x E x V 

where: R (Risk) is defined as the expected degree of loss due to a particular landslide 

phenomenon; H (Hazard) is defined as a description of the magnitude (M) and probability (P) 

of occurrence of a landslide within a specified period of time and within a given area of a 

potentially damaging landslide phenomenon (Fell, 1994); E (Elements at risk) includes the 

population, properties, economic activities, and public services at risk in a given area (Fell, 

1994); V (Vulnerability) is the potential degree of loss (damage) to a given element or set of 

elements at risk resulting from the occurrence of a landslide of a given magnitude (Varnes, 

1984). 

Therefore, a thorough knowledge of the spatial distribution (location, extent and typology) 

and temporal evolution (style, state of activities and kinematics) of landslides is the first step 

towards its understanding and preventing disaster and to ensure an adequate level of safety 

to people living in affected areas. 

Nowadays, a variety of remote sensing techniques is available for unstable slopes 

investigation, which may include landslide recognition, monitoring or hazard analysis and 

prediction (Scaioni et al., 2014). Regarding to landslide characterization and monitoring or, in 

wider terms to the evaluation of its changes over time: the commonly used sensors are 

microwave-based (such as SAR sensors), and optical and laser scanning (or LiDAR – Light 

Detection and Ranging) implemented in airborne and ground-based platforms. These 

techniques, contrary to traditional and punctual instruments such as extensometers (e.g. 

Angeli et al., 2000; Corominas et al., 2000; Intrieri et al., 2012), GPS (e.g. Squarzoni et al., 2005; 

Yin et al., 2010) or total stations (e.g. Barla et al., 2010), provide spatially continuous data, 

allowing to cover large-scale areas. 

In particular the use of optical imagery, processed using digital photogrammetry (Chandler, 

1999; Lane et al., 2000; Baily et al., 2003), and laser scanning (Slob et al., 2002; Slob and Hack, 

2004; Lombardi et al., 2006; Rahman et al., 2006; Turner et al., 2006; Slob and Hack, 2007; 

Jaboyedoff et al., 2009; Oppikofer et al., 2009; Sturzenegger and Stead, 2009; Jaboyedoff, 

2012; Fanti et al., 2013; Gigli et al., 2013; Gigli et al. 2014) allow to obtain a highly detailed 
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three-dimensional representation of the observed scenario and, consequently, to perform a 

morphological and morphometrical characterization of the observed areas. Indeed, the main 

output of these surveying techniques is a fully three-dimensional array of points, namely point 

cloud, in which a unique x, y coordinate is associated with several elevations. This topographic 

surface representation is characterized by high resolution, from centimetric to millimetric for 

both techniques (Slob and Hack, 2004; Harwin and Lucieer, 2012). 

During the recent years, the use of these technologies to describe the morphological changes 

occurring over a range of spatial and temporal scales, by comparing point clouds gathered at 

different times, is considerably increased (Abellán et al., 2016). Compared to change detection 

with widely employed radar sensors (Lingua et al., 2008), laser scanning and digital 

photogrammetry techniques show some advantages including their capability to detect 

changes in directions different to the line of sight of the instrument and the availability of a 

complete 3D model of the scenario. 

Change detection is defined by Singh (1989) as the process of identifying differences in the 

state of an object or phenomenon by observing it at different times. Change detection 

answers the question: did the situation change? Yes or no? When the change detection is 

quantified, it can be defined as deformation analysis (Vosselman and Maas, 2010). Monitoring 

morphologic changes or deformations on unstable slopes is strictly related to the 

characteristics of the applied technique in terms of precision, accuracy and revisiting time, 

with respect to the displacement rates. Indeed, fast moving landslides (up to 1 m/day) can be 

effectively monitored using ground-based radar sensors or terrestrial laser scanning while, for 

very slow moving phenomena (millimetre per year scale deformations) satellite radar data, 

processed with advanced interferometric techniques, are more suitable. 

Considering change detection based on 3D point cloud, two types of approaches can be 

mentioned, mainly applied in literature to LiDAR data: (a) tracking of corresponding elements 

within successive point clouds, in order to compute a displacement field (Teza et al., 2007; 

Monserrat and Crosetto, 2008; Aryal et al., 2012); (b) distance calculation between two point 

clouds when homologous elements cannot be individuated (Girardeau-Montaut et al., 2005; 

Abellán et al., 2009; Lague et al., 2013; Kromer et al., 2015). 

The work carried out in this PhD thesis, representing the result of a three-years research 

activity at the Earth Sciences Department of the University of Firenze (Italy), mainly concerns 
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this latter approach.  Furthermore, within the PhD programme, a four months’ research 

period was carried out at the College of Surveying and Geo-Informatics of the Tongji University 

(Shanghai, China), to improve the knowledge about Laser Scanning technique and its 

applications. 

The main research purpose of this PhD was to develop a new tool for an expeditious semi-

automatic analysis to investigate the main morphometric characteristics of unstable slopes by 

using point clouds and to point out any spatio-temporal changes, by comparing point clouds 

acquired at different times. To do this, the MATLAB (MATrix LABoratory) programming 

language was used. Indeed, this software is a high-level technical computing language that 

operates on matrices and arrays, and allows to work with large datasets, as in the case of point 

cloud data.  

The proposed tool is composed of two separate routines. The former allows to perform a 

morphometric analysis of the point cloud chosen as reference and, therefore, to perform a 

point cloud comparison between the reference cloud and a compared one, obtaining the 

signed (positive and negative) distance values between the two point clouds. Once defined a 

change detection threshold, the second routine permits to execute a cluster analysis and 

automatically separate zones characterized by significant distances and compute their area. 

Therefore, this procedure provides a powerful tool to perform spatial (location and areal 

extent) and temporal evaluation of instability phenomena at the base of hazard assessment. 

The proposed approach was applied on two test sites characterized by different slope 

instability phenomena, respectively: a rock fall and a shallow landslide in a clayey slope. 

In addition to the Introduction (Chapter 1), this thesis includes a total of eight chapters, 

structured as follows: 

- Chapter 2. Contains the basic principles of the remote sensing techniques exploited in this 

work, that is laser scanning and digital photogrammetry, as technologies capable to 

provide a 3D representation of the investigated areas in point cloud format. 

- Chapter 3. Contains an overview of the existing point cloud comparison methods, along 

with a critical evaluation of their advantages and drawbacks. 

- Chapter 4. Contains the detailed description of the proposed Matlab tool in all its part and 

the theory it is based on; it also includes a brief discussion on the factors influencing the 

change detection between point clouds. 
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- Chapter 5. Describes the potential of terrestrial laser scanning and digital 

photogrammetry, exploited using the approach described in this thesis, in the two 

selected case studies. 

- Chapter 6. Contains a discussion on the advantages and drawbacks of the proposed semi-

automatic approach and its applicability to the selected test sites. 

- Chapter 7. Summarizes the main findings of the thesis and future developments. 

- Chapter 8. Contains the main references of this work, listed in alphabetical order. 

- Chapter 9. Consist in a list of the papers written during the three years PhD course. 

The already published papers are attached as Annexes. 
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2. Remote sensing techniques for point cloud comparison 

Laser scanning and digital photogrammetry provide 3D model of the observed landscape as 

an array of points, a so-called point cloud. The former is an active remote sensing technique 

employing a laser beam to acquire a three-dimensional information of the surface, the latest 

is a passive remote sensing method involving the visual analysis and optical image 

interpretation to measure the three-dimensional coordinates of an object. Therefore, in the 

case of laser scanning technique, the point cloud is measured, on the other hand, the 

photogrammetry point cloud is computed.  

In this thesis, Terrestrial Laser Scanning (TLS) technique and Unmanned Aerial Vehicles (UAV) 

digital photogrammetry were examined in depth and utilized with change detection purpose. 

2.1 Terrestrial Laser Scanning Technique 

Basic principle of laser technology is well-known within the surveying environment since the 

end of the 1990s. During the last decade, its application in Earth Sciences has been largely 

increased, both from ground-based (Terrestrial Laser Scanner – TLS) and airborne-based 

platforms (Aerial Laser Scanner- ALS). Concerning ALS, the applications range from landslide 

mapping (Corsini et al., 2009b; Borkowski et al., 2011; Van Den Eeckhaut et al., 2007; Đomlija 

et al., 2014) to monitoring of wide scale processes (Thoma et al., 2005; Corsini et al., 2009a). 

Rather, TLS has been widely applied to characterization of rockmasses (Slob and Hack, 2002; 

Rahman et al., 2006; Jaboyedoff et al., 2007; Slob, 2008; Lato et al., 2009; Sturzenegger and 

Stead, 2009; Gigli et al., 2013; 2014) and monitoring, especially rock falls (Rosser et al., 2005; 

Abellán et al., 2009; Abellán et al., 2011), rockslides (Oppikofer et al., 2009) and other 

landslide types (Teza et al., 2007; Monserrat and Crosetto, 2008; Jaboyedoff et al., 2009; 

Prokop and Panholzer, 2009). 

In the case of this thesis, laser scanning technique applied using ground-based platform was 

described in detail. 

2.1.1  Principle 

A LASER (Light Amplification by Stimulated Emission of Radiation) is a device that produces 

and releases a beam or pulse of collimated, directional, coherent and in-phase 
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monochromatic radiation. The electromagnetic radiation source can consist of different type 

of material and distinguishes the lasers as for example gas, solid-state or semiconductor 

lasers. In literature, a widespread term to indicate this technique is even LiDAR, that stands 

for Light Detection and Ranging. 

The laser scanner method is an active remote sensing technique that allows to obtain the 

range measurement of the objects located on the observed area. The raw result of the laser 

scanning survey is a dense, unorganised point cloud, where each point is represented by a 

three-dimensional coordinate space relative to the scanner’s position. In this context, 

unorganised means that “the points are spatially uncorrelated and they aren’t in a spatial 

structure, this because each point is stored sequentially in the order in which the 

measurements are made” (Slob, 2008). 

According to Shan and Toth (2008) and Wehr and Lohr (1999), the main techniques used in 

laser scanning surveying for distance determination are: the pulse-based and the phase-based 

lasers (Figure 1). 

The formers measure the time-of-flight (TOF) of a short and intense laser pulse to travel from 

the instrument to the object and to come back after reflection.  A time interval counter 

measures the time associated with a specific point on the pulse; the device waits for the return 

of the pulse, or for a time-breaking, before sending out the consecutive pulse. The measured 

distance is: 

DPULSE-BASED = c  t/2                                                                     [ 1 ] 

where c is the speed of light and t is the travelling time of the light pulse. The azimuth and the 

zenith angles of the beam and the amplitude (intensity) of the returned signal are recorded 

too. The range resolution depends on the resolution of the time interval measurement, but 

also on the length of the emitted pulse. 

The method allows to measure distances of few tens or thousands of meters, in the case of 

ground-based device, and in the order of hundreds of meters to several kilometres for 

airborne-based platform. 

In the phase method, the laser emits a continuous beam and the distance is measured by 

comparing the phase of the transmitted and the backscattered sinusoidal signal (Figure 1). In 
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this case, the distance is determined knowing the frequency of the signal (f) and the phase 

difference between two signals (): 

DPHASE-BASED = 
1

4𝜋

𝑐

𝑓
𝜙                                                                [ 2 ] 

Comparing with TOF method, the use of Continuous Wave (CW) laser is restricted to a 

maximum of seventy to one hundred meters (Slob, 2008) but it enables greater measurement 

rates. 

 

Figure 1. Distance measurement principle of time-of-flight laser scanners (top) and phase based laser 

scanners (bottom) (modified after Soudarissanane, 2016). 

An opto-mechanical scanning mechanism, a rotating mirror or prism and a motor drive, 

deflects the laser beam in a well-defined pattern. In addition to range measurement (ρ), a 

vertical ∆𝜑 and a horizontal ∆𝜃 angular steps are defined proving a spherical 3D point cloud 

of the surroundings (Figure 2). Different deflection apparatuses are currently in use, which 

produce different point cloud patterns and involve different detection systems. 
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Figure 2. Schematic representation of the point cloud acquisition. A point is measured at an angular 

position (θ, ϕ), with a certain range ρ. 

As regards TLS, the position of the platform is fixed while the scanner moves the beam in 

vertical and azimuth directions allowing the measurement of a series of profiles with respect 

to the device. 

2.1.2  Accuracy and precision 

The accuracy is among the main parameters which characterize the distinct laser scanner 

instruments, influencing the quality of results and it is defined as the degree of closeness of a 

range measurement to the real distance. The accuracy of an acquisition derives from the 

systematic errors, that is from the reproducible errors defined by the biases of the measures 

(Figure 3).  

On the other hand, the precision (also called reproducibility or repeatability) of the acquisition 

derives from the random errors described by the statistical dispersion of the measurements 

and it is the degree to which further measurements show the same results (Figure 3); this kind 

of errors are not reproducible and are determined through the redundancy of information 

and expressed as standard deviations. 
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Figure 3. Random errors and systematic errors, from which precision and accuracy respectively depend 

(from Soudarissanane, 2016). 

The range accuracy for both TOF and CW methods, depends on the inverse of square root of 

the signal-to-noise ratio which is dependent on several factors, such as background radiation, 

measurement rate and power of received signal. Furthermore, this parameter depends on the 

ranging signal (the pulse length or the rise time for pulse-based ranging, the wavelength of 

the ranging signal for the phase-based) (Wehr and Lohr, 1999). For these reasons, the accuracy 

decreases when increasing range, complexity of the observed surface (surface roughness) and 

angle of incidence (Abellán et al., 2009; Soudarissanane et al., 2009; Voegtle et al., 2008). 

The accuracy of range measurement can usually vary from millimetric to centimetric values 

and can reach values lower than 10 millimetres (Frohlich and Mattenleiter, 2004) depending 

on the distance of the target. In the case of phase measurement principle it can be possible 

to achieve accuracy up to a few millimetres, making this method more accurate than the 

other. 

2.1.3  Resolution 

Another important parameter is the resolution, defined as the level of detail that can be 

observed in a point cloud (Pesci et al., 2011; Jaboyedoff et al., 2012). Two kinds of resolution 

can be defined: the range and the angular (or spatial) resolution. The first one represents the 

ability to distinguish two objects on the same LOS (Line Of Sight) and it is governed by pulse 
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length (typically 3-4 mm for long range devices, Pesci et al., 2011). The second one is the ability 

to resolve two objects on adjacent LOSs and it depends on: the user-defined sampling interval, 

common interpreted as the spacing between points of a point cloud; and the laser beam width 

(spot dimension or laser beam diameter - Abellán et al., 2014), which is a function of the 

device-target distance and of the characteristics of the instrument.). 

Point density depends on: the range resolution, usually reported in thousand pulses per 

second or kHz; angular resolution; the distance sensor-object; the geometry of the scanned 

object; and the speed of the moving platform. The expressions point density or pulse density 

should be interchangeable, unless the target range is out of range and the signal is dropped 

(Pirotti et al., 2013). 

2.1.4  Laser beam and footprint 

Generally, the beam provided by the laser source is assumed to have an ideal Gaussian 

distribution (Figure 4) and the energy is normally scattered across the emitted beam. Owing 

to diffraction, the emitted beam diverges and the beam width increases as distances get 

longer resulting in a larger footprint on the surfaces to be measured (Shan and Toth, 2008), 

such that the footprint may be considerably greater than the point spacing at long distances. 

A smaller footprint is more advisable enabling a better measurement of the observed object. 

According to Weichel (1990), the beam width (w) diverges non-linearly from the minimum 

spot diameter (i.e. the beam waist, w0) as: 

𝑤(𝑟) = 𝑤0√1 + (
𝜆𝑟

𝜋𝑤0
2)

2

                                                         [ 3 ] 

where r is range relative to the beam waist location, λ is the wavelength of the laser light and 

𝜆

𝜋𝑤0
 is the beam divergence for 𝑟 → ∞ when the laser beam asymptotically nears a cone (𝛾0).  

Usually the laser scanner instruments use lenses and other optical elements to collimate the 

beam and reduce the divergence. For every device, the beam divergence is specified in the 

technical data sheet (e.g. for Riegl LMS-Z420i, the beam divergence is 0.25 mrad that 

correspond to 25 mm increase of beamwidth per 100 m of distance). The assumption of a 

Gaussian intensity profile is advantageous since the beam intensity remains Gaussian after 

refraction of optical devices. 
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Figure 4. A) Power distribution around the laser beam axis where z shows the direction of propagation; 

B) radial power profile (from Pesci et al., 2011). 

The definition of the footprint is the intersection area between a surface and the laser beam. 

Its shape depends on two factors which are the topography or shape of the surface (e.g. 

planar, spherical) and the scanning geometry, that is the angle at which the laser beam hits 

the surface. The diameter of a laser beam footprint orthogonally hitting a flat surface is 

defined as 

𝑑(𝑟) = 𝑑0 + 2𝑟 𝑡𝑎𝑛(𝛾)                                                                [ 4 ] 

where 𝛾  is the beam divergence and the footprint results in a circular shape. The area 

illuminated by the diverging beam when it reaches the target is 

𝐴 =
𝜋

4
(𝑑 + 𝑟𝛾)2.                                                                    [ 5 ] 

When the beam hits a surface that is slanted with respect to the laser source, the resulting 

footprint is elongated (Figure 5). If the hit surface is irregular in shape or elevation, the return 

signal will be the average of the mixture of reflections occurring within the circular or elliptical 

area illuminated by the incident laser radiation.  

A B 
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Figure 5. A laser beam hitting perpendicularly a surface (circular footprint) and a laser beam hitting a 

surface at an incidence angle α (ellipsoidal footprint) ((from Soudarissanane, 2016). 

2.1.5  Maximum range and reflectivity 

The maximum distance “which can be reached by a pulse which can effectively provide a 

return signal” (Pirotti et al., 2013) depends on the object reflectivity (i.e. on its composition) 

and the backscattering properties of the hit surface; which in its turn is influenced by the 

geometry of the surface, such as angle of incidence and surface roughness. 

This parameter depends also of survey conditions, laser wavelength and pulse repetition rate 

of the device. Effectively the emitted pulse energy is inversely proportional to the pulse 

repetition rate. 

The amount of energy reflected is measured and recorded as intensity. This value, provided 

for each point in addition to spatial information, is defined as the power of the backscattered 

radiation and it is usually normalized on a scale ranging from 0 to 255. This parameter depends 

on the reflectance properties of the object surface, along with instrumental and atmospheric 

effects and scanning geometry (such as the range and the incidence angle). 

Nowadays, most of the laser scanner devices provide at least first and last return pulse, and 

at most allow to record the entire full waveform of the backscattered signal. The full waveform 

technology is used in the airborne lidar since 2004 while only the last generation of TLS allows 

to acquire in principle an infinite number of echoes and to perform a complete waveform 

analysis (Mallet and Bretar, 2009). Respect to discrete return laser systems, this kind of 

sensors derive the physical properties of the hit objects and allow discriminating the 

vegetation from the ground (Mallet and Bretar, 2009; Guarnieri et al., 2012; Barbarella and 

Fiani, 2013). In fact, when the vegetation is not very dense, it is often assumed that the first 
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echo belongs to the canopy top and the last pulse to the ground. But it is also important to 

remember that the two first echoes contain about 90% of the total reflected signal power 

(Mallet and Bretar, 2009). 

In this regard, the survey of a landslide area in Sichuan province (south-western China) carried 

out from the College of Surveying and Geo-Informatics research group is reproduced here 

(Figure 6). The used device is a 3D VZ-Line Laser Scanner RIEGL VZ-4000 that allows time of 

flight measurements of scanner-object distance up to about 4000 m. The Riegl’s V-Line 

technology is based on echo digitization and online waveform processing. The associated 

operating and processing RiSCAN PRO software package (Riegl, 2013) allows displaying multi-

target classification (first, other, last and single targets). Thanks to full waveform technology, 

the discrimination between different returned pulse groups was possible (Figure 6). For 

ground monitoring purpose, the last back-scattered pulse is ordinarily the most relevant 

(Jaboyedoff et al., 2012); instead the points belonging to first and other target groups are 

generally attributed to vegetation features. 

 

Figure 6. Example of multi-target classification. 
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2.1.6  Survey workflow 

A survey using terrestrial laser scanner produce a huge amount of data in a very short time, 

therefore a thorough planning of the surveying campaign is recommended. The choice of the 

location and the viewpoint of the survey station should consider dimension and complexity of 

the scanned area to minimize occlusions (this error source is analysed in paragraph 3.1.1). In 

some cases, the occlusions can be reduced by performing scanner surveys from multiple 

locations (Lato et al., 2010). Furthermore, as a function of the level of detail of the 

investigation, the resolution and the resulting point density should be planned. 

Usually, during the survey, the positions of targets positioned on the scenario are measured 

using Real Time Kinematic GPS to georeference the scansions in a global coordinate system, 

e.g. World Geodetic System (WGS84) and its projections. Special targets are provided by the 

vendors. As an alternative, even a direct georeferencing could be possible if the position and 

the orientation of the device are known. 

It is important to remember that the laser scanner product features like as point density, 

positional accuracy, scan geometry and surface morphology, are not permanent in the space 

domain because they change during the survey. 

The raw point cloud resulting from the survey is successively submitted to filtering and 

registration stages (pre-processing phase) (Figure 7). Automatic algorithms can be used to 

filter outlier points and vegetation using the characteristics of the point cloud geometry (e.g. 

Brodu and Lague, 2012) or the intensity of the returned signal (e.g. Pesci et al., 2008). 

Unfortunately, most automatic algorithms cannot clean the low-lying plants, dense vegetation 

or bushes; in this case a manual editing is required. 

When the number of scan positions for the same scenery is more than one, or  two or more 

scans of the same area were acquired at different times; an overlying point cloud 

coregistration is mandatory and can be performed with two different approaches: using 

ground control points (GCPs), which are in common to different scans (target-based 

registration) otherwise using cloud matching techniques based on overlapping features within 

the clouds (feature-based registration, e.g. Bae and Lichti, 2008) or point-to-point (and point-

to-surface) methods (e.g. ICP algorithm, Besl and McKay, 1992; Olsen et al., 2011; Antova, 

2015), considering a cloud as the reference scan. 
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Figure 7. Schematic survey workflow. 
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2.2 Digital Photogrammetry Technique 

Photogrammetry is a technique that allows to obtain precise metrical information about 

three-dimensional objects (shape, dimensions and geographical position), by means of the 

interpretation, combination and measurement of photographic images. 

The recent developments of the technique, thanks to the availability of digital images, 

introduced new interesting fields of applications such as architectural design, topographical 

surveys, cartography, up to environmental geology. 

Although the first digital photogrammetric applications were aimed to the architectural 

modeling, photogrammetry developed mainly for topographical and terrain surveys and was, 

until the end of the 20th century, widely applied as “aerial photogrammetry” (Figure 8). 

 

Figure 8. General acquisition scheme of overlapping aerial images for the photogrammetrical 

reconstruction of a 3D surface model. 

Formerly, aerial photogrammetric surveys were performed using expensive and heavy optical 

devices, a thing that strongly limited the diffusion of the technique. In the last two decades, 

the diffusion of more powerful computers, allowing to handle huge amounts of data, along 

with the recent technological progresses in computer-graphics, allowed to perform the most 

part of the photogrammetric surveying in digital environment. 

Indeed, the acquisition of remotely sensed data and aerial imagery from a range of cheap, 

lightweight platforms on which to deploy imaging sensors, such as Unmanned Aerial Vehicles 

(UAVs) (e.g. Lejot et al., 2007; Niethammer et al., 2012) and tethered kites and blimps (e.g. 
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Marzolff et al., 2003; Boike and Yoshikawa, 2003; Smith et al., 2009; Vericat et al., 2009) is 

gradually becoming more commonplace. 

Photogrammetric surveying represents nowadays a valid alternative to conventional airborne 

surveys, including LiDAR and photography that often are of restricted use due to the high 

three-dimensionality of mountainous landscapes, which results in significant line of sight 

losses and image foreshortening (Westoby et al., 2012). 

The 3D point clouds, processed using digital optcal images is comparable to that produced 

using active sensors such as laser scanners (e.g. Eisenbeiss and Zhang, 2006) but, in this case, 

the point density of the cloud is a function of the images resolution, the image coverage of 

the area and camera-object distance. 

Digital photogrammetry is a well-established technique for acquiring dense 3D geometric 

information of terrain from stereoscopic overlaps of photo sequences. These captured by a 

calibrated digital camera set in a fixed position on the ground in front of scenario and without 

any physical contact (Zhang et al., 2004). During past few years, with the rapid development 

of digital photogrammetry techniques and the availability of ease-using, focusable and 

relatively cheap digital cameras, the method and device used in terrestrial photogrammetry 

changed greatly. Therefore, thanks to its increasing efficiency through time it gained wide 

applications in many fields such as 3D building reconstruction, heritage protection and 

landslides studies (Grussenmeyer et al., 2008; Travelletti et al., 2012; Scaioni et al., 2015; Fan 

et al., 2016). However, in spite of great development of traditional terrestrial photogrammetry 

over years, it is still necessary to set some control points on the slopes to be measured 

(Stavroulaki et al., 2016) if not supported by other technologies (Forlani et al., 2014). For the 

complex nature of the observed scenarios the setting control points around the objects is 

sometimes a very time-consuming and labour-intensive job. Principally, photogrammetry can 

be divided into two fields of activity depending on the lens-setting: long-range (with camera 

distance setting to indefinite) and close-range (with camera settings to finite values; i.e. up to 

about 300 m) (Gopi, 2007). In the landslide and disaster management studies, the first type is 

usually more exploited for landslide characterization and general mapping (Wolter et al., 

2014), while the second type finds a wide applicability in high precision metrological and 

deformation monitoring applications (Cardenal et al., 2008; Scaioni et al., 2015). 
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In the last decade, the combination of rapid development of low cost and small UAVs with 

improved battery technology, and the recent improvements of conventional sensors (Optical 

and LiDAR) in terms of cost and dimensions, led to new, interesting scenarios in environmental 

remote sensing and surface modelling and monitoring (Colomina and Molina, 2014; James 

and Robson, 2012; Remondino et al., 2011; Eisenbeiss and Sauerbier, 2011). In particular, the 

UAV remote sensing has the following advantages: real-time, flexibility, high-resolution, low 

costs, and collection capacity of information in dangerous environments without risk to the 

operator (Chang-chun et al., 2011). 

The exponential increase of UAV use for aerial video and photography, along with the 

development of numerous commercial and open-source software packages, opened new 

perspectives for landslide surveying. In particular, the recent development of new algorithms 

for digital photogrammetry, based on Structure from Motion (SfM) (Ulman, 1979; Turner et 

al., 2012; Westoby et al. 2012) and Multi-View Stereo (MVS) (James and Robson, 2012) 

techniques, allows to obtain high resolution 3-D models, point clouds and digital ortho-photos 

of landslides, even using compact and consumer-grade digital cameras (Lucieer et al., 2014; 

Niethammer et al., 2011; Niethammer et al., 2010; Rossi et al., 2016). 

The traditional methods of softcopy photogrammetric (or digital photogrammetric) require 

the cameras 3-D location, or georeferenced ground control points. For more precision, both 

must be added. In contrast, the SfM method solves the camera pose and scene geometry 

simultaneously and automatically, using a highly redundant bundle adjustment based on 

matching features in multiple overlapping, offset images (Westoby et al. 2012). The bundling 

adjustment process is based on a database of features, automatically extracted from a set of 

multiple overlapping images (Snavely, 2008). 

In the case of landslide characterization and monitoring (e.g. Eisenbeiss, 2008; Carvajal et al., 

2011; Niethammer et al., 2012; Oda et al., 2016), the aerial imagery acquisition through UAV 

use permits to overcome some limits of ground-based photogrammetric surveying such as 

shadowing effects in presence of areas not visible from the observing position, due to high 

vegetation or topographical features of the slope, that can drastically reduce the accuracy of 

the resulting digital models. 



“Semi-automatic analysis of landslide spatio-temporal evolution” | Giulia Dotta 

 
20 

2.2.1  Processing chain 

Numerous software packages are available, both commercial and open source, to perform 

photogrammetric processing of sets of digital images. Some of them are difficult to use, 

allowing to set parameters and routines only by command line and with no GUI, whether 

others are developed by specialized companies for commercial use, with intuitive user 

interfaces, user manuals and well driven processing workflow. 

Although every program has a different design, graphics, tools and computing requirements, 

they share the general workflow to reconstruct 3D data from overlapping digital images, along 

with the most commonly used routines. 

In this paragraph, the SfM technique, one of the most diffuse approach for image matching 

and point cloud generation, is briefly treated. The general processing steps are illustrated in 

Figure 9 and described according to Turner et al. (2012). 

The first step consists in selecting the photos to be used for the image matching and requires 

the manual elimination of any images outside the study region or of limited quality. The 

images could be optionally geotagged by adding a geographic coordinate of the shot point, 

obtained by onboard GPS, to the EXIF header of each photo. Subsequently the input images 

are aligned using Bundle Block Adjustment (BBA), a procedure necessary to reconstruct the 

exterior orientation of each photograph and, if required and provided the geometry of the 

block of photographs allows it, to compute additional parameters such as the interior 

orientation (Turner et al., 2012). 

Tie/pass points are required to complete a BBA and are typically automatically generated in 

the case of traditional aerial photography by an interest point extractor algorithm, generally 

called Scale-invariant Feature Transform (SIFT). The SIFT algorithm has the potential to 

generate a large number of features that can be used as tie/pass points, supplying more 

redundant observations for a BBA and thus improving the accuracy of the results (Zhang et al, 

2011). 

SIFT feature descriptors are invariant for the scale and orientation, but affine to the distortion 

and partial illumination changes and can be matched across multiple images. Using the 

conjugate (matched) image points as input, the bundle block adjustment is applied to 

compute the exterior orientation (position and orientation) of each camera exposure station. 
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In addition, the bundle adjustment computes the interior orientation parameters (focal length 

and two radial distortion parameters) of each image, although if required these parameters 

can be implicitly defined and fixed for all images. 

 

Figure 9. Flow diagram describing the main step of digital photogrammetric processing. 

The result of the Bundle Block Adjustment is a sparse point cloud (Figure 10A) composed by 

all the points extracted by SIFT in overlapping images, in the three-dimensional space. 

In case of using geotagged images the 3D coordinates of the exposure stations are extracted 

from the Bundler output and denoted px, py, pz. Image EXIF header information is then read 

to extract the matching GPS location. The GPS latitude, longitude and altitude (relative to the 



“Semi-automatic analysis of landslide spatio-temporal evolution” | Giulia Dotta 

 
22 

WGS84 datum) can be subsequently converted into the UTM projected coordinate system, 

resulting in easting, northing, and ellipsoidal height coordinates. Transformation to an 

orthometric height system is also possible using a local geoid model if required.  

Seven parameters of Helmert transformation (three translations, three rotations and one 

scale) could be used to describe the relationship between the point cloud coordinate system 

(model space) and a global (object space) coordinate system. The corresponding exposure 

station coordinates from the bundle adjustment and the GPS are then matched to provide a 

list of point pairs used to compute the parameters of the Helmert transformation. 

If some ground control points (GCPs) are established prior to photography, then the global 

coordinates of these GCPs can be used to derive the parameters of the Helmert 

transformation, rather than rely on GPS data from the UAV. Accurate GCP coordinates can 

potentially improve the solution of the Helmert transformation and therefore result in a 

higher accuracy of the final point cloud and image features (Camera alignment optimization 

in Figure 9) (Figure 10B). 

The point cloud generated by the BBA is relatively sparse and insufficient to reliably identify 

the GCPs. A novel multi-view stereopsis algorithm (Furukawa and Ponce, 2009) can be applied 

to the output from the Bundler software to densify the sparse point cloud (Figure 10C). This 

algorithm is implemented in the Patch-based Multiview Stereo (PMVS2) software. A detailed 

description of the algorithm can be found in Furukawa and Ponce (2009) and Lucieer et al. 

(2011). The resulting PMVS2 point cloud has extremely dense point spacing, typically around 

1–2 cm (Lucieer et al., 2011). 

In this thesis Agisoft Photoscan Software 1.2 .4 release (Agisoft LLC, 2016), one of the most 

known software packages for photogrammetric processing, was used to perform each step, 

obtaining digital point clouds of the selected test site in Ricasoli village. 
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Figure 10. Main products of the digital photogrammetry processing: 3D sparse point cloud resulting 

from Bundle Block Adjustment (A); georeferenced 3D sparse point cloud (B); dense point cloud (C). 
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3. Point cloud comparison methods 

Different techniques exist to analyse the space-time evolution of natural surfaces and to 

understand the geomorphological processes starting from point clouds data. Among a wide 

range of possible applications, the use of point cloud comparison to investigate the rock slope 

failure behaviour can be mentioned (Abellán et al., 2009; 2014; Oppikofer et al., 2009; Royan 

et al., 2014; Hutchinson et al., 2015) along with the evaluation of landslide displacements 

(Monserrat and Crosetto, 2008; Travelletti et al., 2008; Aryal et al., 2012), analysis of changes 

in permafrost environments (Barnhart et al., 2013) and changes in river topography (Lague et 

al., 2013). 

The comparison procedures starting from point cloud data can be divided in two main groups 

(Figure 11): 

i. tracking of homologous elements within consecutive point clouds to compute a 

displacement field; 

ii. distance calculation between two point clouds when homologous elements cannot be 

individuated. 

 

Figure 11. Main comparison methods involving point clouds. 
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Among the methods of the first category, Oppikofer et al. (2009) provides information on 3D 

displacements by analysing point pairs in successive clouds and computing the displacement 

vectors of selected objects. However this method present some significant drawbacks, since 

it is generally very difficult to track the same point in different point clouds and since the result 

precision depends on the point clouds resolution and on the deformation pattern of the 

selected objects (rigid, elastic or plastic) (Travelletti et al., 2014),. 

More efficient methods are Iterative Closest Point (ICP) (Besl and McKay, 1992) and Least 

Squares 3D Surface Matching (LSSM) (Gruen and Acka, 2005) analyses, that permit an 

automatic characterization of 3D displacement field. 

ICP algorithm was proposed by Besl and McKay (1992), Chen and Medioni (1992) and Zhang 

(1994), as surface matching in a 3D environment. The method was applied successfully to 

various objects (like point sets, curves and surfaces) with a common area and small differences 

due to noise, by minimizing iteratively the difference between them until convergence. The 

method is implemented for point clouds alignment purpose within the most common 

commercial processing software (e.g. RiSCAN PRO – RIEGL, 2010; CloudCompare - EDF R&D, 

2011). The algorithm was employed with landslide monitoring purposes by Teza et al. (2007; 

2008). In detail, Teza et al. (2007) presented an ICP-based Piecewise Alignment Method (PAM), 

in which the correspondence between two multi-temporal models of a landslide, acquired by 

TLS, is achieved by the piecewise application of the ICP algorithm with the aim to automatically 

compute the displacement field. This is done by computing the roto-translational matrix that 

describes the displacement and the rotation of an object. Unfortunately, the method can be 

relatively time consuming. With regard to digital photogrammetry point clouds, the method 

was applied in Oda et al., 2016. 

The LSSM method (proposed by Gruen and Acka, 2005) estimates, given two overlapping 3D 

point clouds, the transformation parameters of one search surface with respect to a 3D 

template surface by minimizing the sum of squares of the Euclidean distances between the 

surfaces. Monserrat and Crosetto (2008) applied it to measure land deformation using 

repeated TLS acquisitions taking full advantage of the high data redundancy contained in the 

multi-temporal point clouds. After the global co-registration of the first and the second point 

clouds based on the stable areas of the scene analysed, the authors estimate the deformation 

parameters using a series of local matchings over scene pieces. 
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Another kind of technique belonging to the first category, consists in the analysis of high 

resolution Digital Terrain Models (DTMs) using cross-correlation functions. Initially, this was 

commonly employed for the analysis of optical images (e.g. White et al., 2003); its application 

to DTMs with natural environment monitoring purpose, was proposed by Duffy et al. (2004) 

to quantify the migration of submarine sand dunes using the sun-illumination values. Duffy 

and Hughes-Clarke (2005) indeed preferred the employment of most robust slope values to 

compute the displacement field. Even Daehne and Corsini (2013) used slope gradient of multi-

temporal DEMs obtained from airborne LiDAR surveys, as a correlation parameter to quantify 

displacement and mass wasting process regarding an earthflow located in the northern 

Apennines in Italy, since this surface property remains often preserved during the earthflow 

motion.  

Another example of cross-correlation applied to landslide displacement was proposed by 

Aryal et al. (2012): the authors made use of Particle Imaging Velocimetry (PIV) to correlate a 

set of DTMs interpolated from the original point clouds in which the data were gridded in the 

xy-plane and each xy-grid contains the z-value assigned. The approach is limited to relatively 

low displacement rates, because they are capable to preserve a nearly similar aspect of the 

raster datasets at different epochs. 

Furthermore, regarding cross-correlation approaches, Travelletti et al. (2014) presented a 2D 

image-based correlation method to estimate the 3D displacement field with landslide 

monitoring purpose, taking advantage of the unique acquisition viewpoint of the multi-

temporal point clouds. As for other techniques belonging to the first category, the 

deformation rate and the conservation of the surface morphology are the more critical 

factors.  

When corresponding elements within successive surveys cannot be individuated, the point 

cloud comparison can be carried out by means of distance calculation between point data sets 

acquired at different times (second category, ii) (summarized in Figure 12). 
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Figure 12. Main point cloud comparison methods belonging to category ii: (a) example of DEM of 

difference (DoD); (b) Cloud-to-Cloud (C2C) method (from: http://www.cloudcompare.org/doc/wiki); (c) 

Cloud-to-Mesh (C2M) method (from: Lague et al., 2013); (d) Multiscale Model to Model Cloud 

Comparison (M3C2) method (from: Lague et al., 2013). 

The most commonly used is the conventional Digital Elevation Model (DEM) subtraction 

method (Figure 12a), in which the point clouds are gridded to generate two-dimensional DEMs 

and differentiated pixel-by-pixel, the result is a DEM of Difference (DoD). 

DEMs of a surface can be considered as 2.5D models because, in those, each x, y coordinate 

is associated with single elevation value. DoD method allows to quantify accumulation or loss 

of material (Bitelli et al., 2004; Corsini et al., 2009; Prokop and Panholzer, 2009; Schürch et al., 

2011) and it offers a good result when the large-scale geometry of the surface is planar (Lane 

et al., 2003; Milan et al., 2007; Abellán et al., 2010), but it shows some disadvantages: it 

provides information on changes only along the vertical direction (1D displacement) and it is 

not particularly suitable for overhanging parts (like rock cliffs or block faces). Furthermore, the 

gridding method implies a significant loss of 3D information and introduce a bias, especially in 

complex topography where point density and roughness may be extremely variable and 

occlusion can be commonplace (Schürch et al., 2011). 

(a) (b)

(c) (d)
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In this regard, the Geomorphic Change Detection (GCD) software was developed by Wheaton 

(Wheaton, 2008; Wheaton et al., 2010) as a plug-in for ArcGIS (www.esri.com). This tool was 

developed primarily for morphological sediment budget changing due to erosion and 

deposition on rivers (Wheaton et al., 2010; Picco et al., 2013) and it was sequentially also 

applied to debris flows (Scheidl et al., 2008; Theule et al., 2012; Blasone et al., 2014) and 

landslides (Burns et al., 2010; DeLong et al., 2012; Bossi et al., 2015). It allows an estimation 

of spatially variable DEM quality that is an indefinite function of survey data quality, influenced 

by sampling strategy, surface composition, topographic complexity and interpolation 

methods (Wise, 1998; Wechsler, 2003; Wechsler and Kroll, 2006). The surface representation 

uncertainty in the DEMs that are being compared, propagates into the DoD as (Brasington et 

al., 2003): 

𝛿𝑢𝐷𝑜𝐷 = √(𝛿𝑧𝑛𝑒𝑤)2 + (𝛿𝑧𝑜𝑙𝑑)2                                                      [ 6 ] 

where 𝛿𝑢𝐷𝑜𝐷  is the propagated error in the DoD, and 𝛿𝑧𝑛𝑒𝑤 and 𝛿𝑧𝑜𝑙𝑑  are the individual 

errors in DEMnew and DEMold, respectively. The combined error can be computed region-by-

region (Lane et al., 2003; Westaway et al., 2003) or cell-by-cell basis (Wheaton, 2008) 

considering a spatial variability in δz for both DEMs independently, or as a single value for the 

entire DoD if spatially-explicit estimates of 𝛿𝑧𝑛𝑒𝑤 and 𝛿𝑧𝑜𝑙𝑑 do not exist. The significance of 

DoD uncertainty can be expressed as a threshold elevation change or LoDmin or, as an 

alternative, define a probabilistic threshold by means of an user-defined confidence interval 

(e.g. Brasington et al., 2003; Lane et al., 2003). The work introduces a spatially variable model 

of elevation uncertainty based on a fuzzy inference system (FIS) and the application of a spatial 

contiguity index to account for the spatial coherence of deposition and erosion units. 

Because the DEM difference method remains limited to 2D surface, 3D point cloud 

comparison has become a widely investigated method in Earth Sciences environment. The 

simplest and high-speed method is the direct Cloud-to-Cloud (C2C) comparison (Figure 11b) 

with closest point technique (Girardeau-Montaut et al., 2005). The technique consists in 

computing for each point of the first cloud, the closest point in the second one and calculating 

the shortest distance (Hausdorff distance - Girardeau-Montaut et al., 2005). The method 

provides a rough comparison between two clouds and it often do not return signed distances, 

but, in the case of landslide investigation, it can be a rapid useful tool when the direction of 

movement is unknown (Travelletti et al., 2008). Improvements can be obtained by a local 
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model (e.g. Height function, Least squares plane, 2D ½ triangulation) of the reference cloud 

such as possible in the CloudCompare software (EDF R&D, 2011). 

Another approach to perform change detection of multi-temporal point clouds is to compute 

Cloud-to-Mesh (C2M) distances (Figure 12c) (Cignoni and Rocchini, 1998; Olsen et al., 2010). 

This method is the most common technique in point cloud processing software packages (e.g. 

RiSCAN PRO - RIEGL, 2010; PolyWorks; the open source software CloudCompare - EDF R&D, 

2011). In this case, the morphologic changes are highlighted and measured by computing the 

distance between a point cloud and a reference 3D mesh, obtained triangulating (e.g. using 

Delaunay triangulation) a cloud acquired in a different epoch. The approach is more suitable 

for nearly flat surfaces (such as rock cliff; e.g. Abellán et al., 2009; 2010) for which the 

processing of the data causes minor loss of information. However, generating a surface mesh 

is not simple for point clouds with significant roughness or missing data due to occlusion and 

shadow zones and can introduce uncertainties, as for the gridding methods in the DEM 

difference technique. For these reasons, in particular for complex topography, the C2M 

method commonly requires time-consuming manual examination. 

In recent years, Lague et al. (2013) developed Multiscale Model to Model Cloud Comparison 

(M3C2) method (Figure 12d). The algorithm uses a set of calculation “core” points to calculate 

signed distances between two point clouds along the normal direction. The core points will 

generally be a sub-sampled version of the reference cloud, but all calculations use the original 

raw data. 

A normal vector is defined for any given core point fitting a plane to the neighbours of the first 

cloud that are within a radius D/2 of that core point. The standard deviation of the distance 

of the neighbours to the best fitting plane is recorded and used as a measure of the cloud 

roughness σ(D) at scale D in the vicinity of core points. This normal is used to position a 

cylinder inside which equivalent points in the other cloud will be searched for; the diameter 

of this cylinder is called projection scale d. All elements in both point clouds located in the 

cylinder are spatially averaged to compute mean surface positions along the normal direction 

in each point clouds. The distance between these two average distributions is the local 

distance between the two clouds and the two standard deviations give a local estimate of the 

point cloud roughness σ(d) along the normal direction (‘apparent’ roughness) (Lague et al., 

2013). 
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A confidence interval, taking the cue from DoD method (Wheaton et al., 2010), allows to 

estimate the distance uncertainty accuracy, based on the registration error, the local point 

cloud roughness measured along the normal direction and point uncertainty. The user can 

input the error associated with the registration of two point clouds to common coordinate 

system and it will be take into account during the computation of the significant change map. 

It’s important remembering that the registration won’t be generally isotropic (Bae & Lichti, 

2008) and spatially uniform. 

The normal scale D and the projection scale d are specified by the user. D is based on point 

cloud density and local roughness: Lague et al. (2013) notes that to verify that the normal 

orientation is unaffected by smaller scale roughness at the chosen scale, D should be at least 

20 to 25 times larger than the roughness σ(D); even if it must be small enough to capture large 

scale modification. 

The local roughness σ(d) of each point cloud depends on the real surface roughness, the exact 

orientation of the normal with respect to the considered cloud and instrument related noise 

(Lague et al., 2013).  
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4. Matlab tool 

The proposed semi-automatic analysis tool is composed of two different routines (Figure 13), 

which can be run separately: 

i. Routine 1: given a point cloud chosen as reference data set and a point cloud chosen as a 

compared one (both in geographic coordinate system), firstly the tool performs an analysis 

on the reference cloud to investigate the morphometric characteristics of the acquired 3D 

surface; secondly, it permits to carry out a comparison between the two clouds computing 

the distance values along the local normal. 

ii. Routine 2: once defined the Level of Detection and identified the significant distances, a 

cluster analysis allows to automatically extract the sub-clouds characterized by significant 

distances and compute their area. 

 

Figure 13. Schematic flow chart of the proposed framework. 
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4.1 Routine 1 

4.1.1  Factors influencing the change detection 

4.1.1.1   Terrestrial Laser Scanning technique 

The factors controlling the laser scanning point cloud change detection results involve 

systematic and random errors, that influenced the accuracy and precision of the 

measurements, respectively (see paragraph 2.1.1). Frequently, the quality of involved point 

cloud data is already strongly variable within one point cloud (Soudarissanane et al., 2011). 

Among the main uncertainty sources there are: errors intrinsic to the instrument (Reshetyuk, 

2006; Pirotti et al., 2013); survey design and methodological errors such as object-scanner 

distance (that, in its turn, influences the resolution and the laser beam footprint, see 

paragraph 2.1.3), incidence angle (more details in aforementioned paragraphs), atmospheric 

conditions (Beckmann, 1965), alignment and registration uncertainty (Lichti et al., 2005; 

Oppikofer et al., 2009; Teza et al., 2007), point density variation; object factors such as 

vegetation, surface reflectance (Pesci et al., 2008) and roughness (Schurch et al., 2011; Lague 

et al., 2013). As a result, the noise level in a point cloud is different for each single point. 

An in-depth analysis of the error sources in the measurements with pulsed time-of-flight TLS 

is available in Reshetyuk (2006). 

Analysing these errors in detail, the terrain roughness due to the complex topography can 

cause local occlusion bias in the point cloud. Furthermore, an artificial roughness resulting 

from survey design errors, such as the difficulty to reoccupy the same scanning position 

between surveys and position uncertainty, can also occur (Hodge, 2010; Schürch et al., 2011; 

Barnhart & Crosby, 2013; Lague et al., 2013). This factor influences also the computation of 

the surface normal orientation (Mitra and Nguyen, 2003; Lalonde et al., 2005). 

Roughness along with instrumental errors contribute to random noise. Because this factor is 

normally distributed, it can be reduced by means of averaging. Until now, two possible 

averaging approaches were applied to raw point cloud data: those concerning the averaging 

of the point cloud position (such as M3C2, Lague et al., 2013) and those involving the 

averaging of distances between point clouds, in spatial domain (such as Abellán et al., 2009; 

Royán et al., 2014) or in spatial and temporal domain (Kromer et al., 2015). 
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Regarding occlusion (shadow), it happens when the laser beam is obstructed and not able to 

hit the object or when some surfaces are semi-parallel to laser beam (that is the incidence 

angles is highly oblique to the surface), therefore some portions of the observed area result 

hidden. The occlusion effect can induce artificially surface changes in points adjacent to 

occlusion itself (Girardeau-Montaut et al., 2005; Zeibak and Filin, 2007; Lague et al., 2013). 

The dense vegetation with large leaves can also hide parts of the investigated surface, the 

situation can be improved acquiring multiple scans or using a laser scanner that records 

numerous numbers of echo. Generally, the presence of vegetation creates a noisy point cloud 

but, if it is not much dense and discernible from ground data, it can be removed. 

The quality of the measurements even depends on atmospheric conditions (temperature, 

humidity, ambient light and so on) as a function of the laser wavelength in use.  Therefore, 

laser beam can be attenuated, distorted or deviated (Soudarissanane, 2016). 

The point density decreases with increasing distance to the scanner and local variations in 

point density affect the comparison results, in particular concerning C2C comparison. This 

error makes it difficult to distinguish real changes from differences induced by noise (Lague et 

al., 2013). 

Among the uncertainty source, the process of registration and/or georeferencing adds to the 

error budget. Moreover, system calibration and errors in the positioning of the sensor, 

contribute to systematic errors that could lead to false change detection. 

As opposed to random noise, that could be removed by the averaging, systematic errors 

cannot be eliminated with statistical techniques. This kind of error depends on the method to 

georeferenced the clouds, the number of the stations used in a survey and the instrumental 

characteristics (Lichti et al., 2005; Bae and Lichti, 2008; Olsen et al., 2011) and they can be 

removed by means of self calibration (Lichti and Skaloud, 2010); however, an effective survey 

design must be pledged. In the case of practical application, the definition of a suitable level 

of detection (see paragraph 4.2) based on the analysis of the comparison data where no 

changes have occurred (Abellán et al., 2009; Kromer et al., 2015), can help to neglect not 

reliable change results.  
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4.1.1.2   UAV Digital Photogrammetry technique 

The three-dimensional point cloud yielded by multi-view stereopsis technique and 

consequently, the comparison between point clouds, can suffer from variable vegetation 

cover and texture, strong topographic relief, occlusions, illumination changes and acquisition 

geometry (Remondino et al., 2006; Harwin and Lucieer, 2012), in particular in the case of 

complex natural environments. 

The point clouds generated by UAV images processing have the limitation that these do not 

represent the ground in the landscape where the vegetation is dense and complex (e.g. bushes 

with many overlapping branches) and when the surface has a homogeneous texture (e.g. 

water or a tin roof), as these results in gaps or sparse areas in the cloud (Harwin and Lucieer, 

2012). Compared to LiDAR clouds, this technique does not penetrate the dense vegetation. 

For this reason, the effects of the vegetation could be not reliably removed (Remondino et al., 

2006; Dandois and Ellis, 2010). Furthermore, automatic image matching methods for surface 

reconstruction or tracking points suffer from the presence of vegetation (Scaioni et al., 2014). 

Comparing with terrestrial laser scanner products, in the nadir UAV-acquired images 

shadowing effects due to the oblique view point of ground-based platform are minimised 

(Niethammer et al., 2012). 

The systematic errors convolving the generated point clouds depend on adjustments 

performed in triangulation phase (bundle adjustment process) (Oda et al., 2016) but even on 

georeferencing technique (Turner et al., 2012), as about laser scanner point cloud. 

The density, sharpness, and resolution of the photoset, combined with the range of natural 

scene textures will determine, in the first instance therefore, the quality of the output point 

cloud data (Westoby et al., 2012). 

4.1.2 Approach 

Taking the cue from the M3C2 method (Lague et al., 2013), the approach presented in this 

thesis is based on the computation of the distances, along the local surface normal, between 

pair of point clouds acquired in different epochs. Since the tool works directly on the point 

cloud, no data structuring (triangulation or approximation) is required. The point cloud 

comparison along a local normal has been employed in different geomorphological studies 

(Lague et al., 2013; Barnhart and Crosby, 2013; Kromer et al., 2015; Fey and Wichmann, 2016). 
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As highlighted by Lague et al. (2013), the geomorphic processes tend to depend on surface 

geometry. 

The local normal is defined for each point of the reference point cloud (it can be the first point 

cloud i.e. the first data acquisition, or the second one) by fitting a plane to the neighbouring 

points within an user-defined search neighbourhood cube half-side R centred on that point, 

thus for each group of choose points, a cluster is defined. The point cloud used for the 

comparison is called compared point cloud. 

The dimension of the cube half-side depends on the point density and the roughness and 

geometry of the scenario. In particular, the local normal should be unaffected by smaller scale 

roughness at the chosen scale, but small enough to capture large-scale modification. In the 

case of complex topography, the choice of the scale at which the normal should be evaluated 

is particularly important. 

4.1.2.1   Point cloud analysis 

The point cloud analysis allows to quantitatively characterize the reference point cloud from 

the morphological point view, extracting the main morphometric indices, which in this case 

are azimuth, inclination and roughness of the surface. Furthermore, also the density of the 

points in the point cloud is evaluated. These parameters are obtained from the calculation of 

the best fitting plane given a set of points included within the search neighbourhood cube, 

without significant loss of information. 

The best fitting plane, according to the least squares method, is found by applying the Singular 

Value Decomposition (SVD) (Golub and Reinsch, 1970; Golub and Van Loan, 1980; Golub and 

Van Loan, 1996; Demmel, 1997; Lay 2002) MATLAB function. The function allows transforming 

correlated variables into a set of uncorrelated ones that better express the relationships 

between the original data items reducing them to a lower dimensional space and permitting 

to identify the dimensions along which data points show the most variation. The function is 

usually applied for image processing (Muller et al., 2004), point cloud segmentation and 

geomechanical features extraction (Ferrero et al., 2009; Gigli and Casagli, 2011) purposes. 

Basing on a theorem from linear algebra, let A be a real rectangular m x n matrix, it can be 

broken down into the product of three matrices (matrix factorization) (Figure 14): 
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𝐴𝑚𝑛 =  𝑈𝑚𝑚 𝑆𝑚𝑛 𝑉𝑛𝑛
𝑇                                                            [ 7 ] 

where U  is an orthogonal matrix and its columns are orthonormal eigenvectors of 𝐴𝐴𝑇 (called 

left-singular vectors of A); S  is a diagonal matrix containing the square roots of the non-zero 

eigenvalues (also called singular values of A; they are always real and nonnegative even if A is 

complex) from U or V  in descending order; V  is the transpose of an orthogonal matrix and its 

columns are orthonormal eigenvectors of 𝐴𝑇𝐴 (called right-singular vectors of A); and 𝑈𝑇𝑈 =

 𝑉𝑇𝑉 =  𝑉𝑉𝑇 = 𝐼. 

If A has many more rows than columns (m > n), 𝑈 can be quite large, but most of its columns 

are multiplied by zeros in 𝑆 . In this circumstance, the economy-sized or reduced 

decomposition produces an 𝑈𝑚𝑛 , an 𝑆𝑛𝑛  and the same 𝑉 , saving both time and storage 

(www.matlab.com) (Figure 14). 
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Figure 14. Full (top) and economy (bottom) Singular Value Decomposition of an mxn matrix. 

Applications of the SVD include solving least squares problems. The linear least squares 

problem has the general form as 𝐴𝑥 ≈ 𝑏 where 𝐴 is a rectangular m x n matrix with m ≥ n the 

vector 𝑥 ̅ ∈  ℝ𝑛 is the least square solution such that 

∥ 𝑏 − 𝐴𝑥̅ ∥ ≤ ∥ 𝑏 − 𝐴𝑥 ∥                                                                [ 8 ] 
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for each 𝑥 ∈  ℝ𝑛. 

According to another theorem from linear algebra, 𝑥 ̅ is a least square solution of 𝐴𝑥 ≈ 𝑏 if 

and only if 𝑥 ̅ is a solution of normal equation system 

𝐴𝑇𝐴𝑥̅ = 𝐴𝑇𝑏                                                                          [ 9 ] 

and if 𝐴 has linearly independent columns (that is the rank of 𝐴 is maximum), the solution that 

minimizes the sum of the square differences between the left and the right sides is unique 

and it is 

𝑥̅ = (𝐴𝑇𝐴)−1𝐴𝑇𝑏                                                                 [ 10 ] 

the matrix 𝐴+ = (𝐴𝑇𝐴)−1𝐴𝑇 is defined the pseudoinverse of 𝐴. Therefore, the least square 

solution is 

𝑥̅ = 𝐴+𝑏.                                                                      [ 11 ] 

The solution of the least square problem can be resolved with the singular value 

decomposition in the following way: 

𝐴+ = 𝑉𝑆+𝑈𝑇.                                                                       [ 12 ] 

This means that the solution of the least squares problem is given by the matrix of eigenvalues 

(λ ∈ 𝑆) and the matrix of the eigenvectors (v ∈ 𝑉 ) of the 𝐴𝑇𝐴  matrix. In particular, the 

solution 𝑥̅ that minimizes the least squared error is given by the eigenvector vn of the 𝐴𝑇𝐴 

matrix corresponding to the smallest singular value λmin. Therefore, the eigenvector vn 

provides the planar parameters like direction cosines which define the direction of maximum 

slope of the plane (Figure 15a). 

The above is correct only if A is centred. Therefore, for each cluster, the centroid is calculated 

and the points within the cluster are shifted to the centroid. 

The plane is defined by its direction cosines (𝑚, 𝑙, 𝑛) and has a general equation of the type 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0                                                              [ 13 ] 

The associate plane orientation, such that the polar coordinates 𝛼 (azimuth – the clockwise 

angle with respect to North direction and it varies between 0 to 360°) and 𝛽 (inclination – that 
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is the angle between a horizontal plane and the considered plane and it varies between 0° to 

90°) (Figure 15b), are found by applying the following equations: 

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑚

𝑙
) + 𝑄                                                                                                                                [ 14 ] 

𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑛

√𝑙2+𝑚2
)                                                                                                                                   [ 15 ] 

where m, l and n are the direction cosines along x-axis, y-axis and z-axis, respectively; 𝑄 is a 

constant, which assumes the next values: 𝑄 = 0° if l > 0 and m > 0; 𝑄 = 360° if l > 0 and m < 

0; 𝑄 = 180° if l < 0 and m < 0 or if l < 0 and m > 0. In the global coordinate reference system, 

the y-axis represents the North direction. 

 

Figure 15. Schematic representation of the neighbourhood cube (a) and of the plane orientation (b). 

The residual distances of the neighbour points to the fitted plane are calculated multiplying 

the left-eigenvector (u ∈ 𝑈) corresponding to the smallest singular value by the smallest 

singular value λmin. Then the standard deviation (σ) of the selected points concerning the best 

fitting plane is calculated. The standard deviation is used as a measurement of the local 

roughness at scale R around the selected points (e.g. Rychkov et al., 2012, Lague et al., 2013) 

(Figure 17). Furthermore, for each cube-cluster the point density is calculated (Figure 17). 
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4.1.2.2   Point cloud comparison 

Once the normal vector is defined for each reference-cluster, a subset of points in the 

compared cloud (called selection-cluster) is selected for each point of the reference cloud; it 

is equivalent to intercepting a parallelepiped whit a quadratic base of size 2r (the user-defined 

selection base half-side r is equivalent to the projection scale of M3C2) and axis equal to 

normal vector defined for each cube-cluster (Figure 16). This is done by roto-translating the 

compared cloud about the selected point of the reference cloud in the local coordinate 

reference system of the defined cluster. The rotation is a combination of a rotation around a 

z-axis by 𝛽 angle [16] and a rotation about x-y plane by 𝛼 angle [17]. 

𝑅𝑜𝑡1 = [
𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼 0
𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0

0 0 1
]                                                   [ 16 ]                                    

𝑅𝑜𝑡2 = [
1 0 0
0 𝑐𝑜𝑠 𝛽 −𝑠𝑖𝑛 𝛽
0 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽

]                                                  [ 17 ]                                           

The result is a selection-cluster in the compared cloud, on which the position of the barycentre 

is computed. The maximum length of the parallelepiped is defined by the user to speed up 

the calculation (as in Lague et al., 2013). 

The distance between each point of the reference cloud and the barycentre of the 

corresponding selection-cluster is calculated through plane-point distance along the normal 

vector of the reference cluster. Distances in the same direction as the normal vector are 

positive; on the contrary, negative distances indicate differences in the opposite direction 

from the normal. 

With the aim to establish a sign convention for the local normal vectors, the semi-space 

including the sensor position is chosen. In this way, the distance value along the normal vector 

is oriented positively towards upward direction and negatively in downward direction. 

The sign (positive or negative) of the resulting distance depends on the chosen of the 

reference cloud: if the point cloud corresponding to the first survey is selected, negative 

distances show loss in the material, depletion or detachment zones and positive ones are 

related to material accumulation or precursory deformation (Kromer et al., 2015); otherwise, 

if the cloud corresponds to the second data acquisition, negative and positive distances 

indicate the contrary. 
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The distances projected along x-axis, y-axis and z-axis are also computed (Figure 17) to 

evaluate the different components of the change. 

 

Figure 16. Schematic representation of the point clouds comparison. 

As highlighted in several works (Abellán et al., 2009; Lague et al., 2013; Royán et al., 2014; 

Kromer et al., 2015), the averaging approach is useful to reduce random Gaussian noise or 

artificial roughness, usually resulting from a combination of instrumental error and surface 

roughness (see paragraph 3.1.1), and to take into account the information contained in 

neighbouring points. The highest is the point density in the neighbourhood of the selected 

point, the best is the result. 

In this work, a spatial averaging of the distances is chosen using an average cube half-side Ra 

defined by the user. The result is an average distance along the local normal (Figure 17). 

In conclusion, for each point of the reference point cloud, the computed features are reported 

as attributes and saved as a .txt file readable in commonly 3D point cloud processing software, 

such as the open source software CloudCompare (EDF R&D, 2011). 
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Figure 17. Flow chart of Routine 1. 
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4.2 Level of Detection 

The Level of Detection (usually indicated as LoD acronym) is the minimum threshold 

differentiating real changes from data noise, over this value the signal-to-noise ratio is 

supposed to be plus than one. As already treated in the paragraph 3.1.1, among the point 

cloud comparison uncertainties, position and registration errors and uncertainties related to 

the surface roughness are the main ones. 

The threshold can be selected according to errors in data collection and processing and to 

uncertainty sources connected to survey or characteristics of the scenario. For example, Lague 

et al. (2013) that constructed the LoD inspired by the DoD technique (see chapter 3) defining 

a spatially variable confidence interval related to each measurement. The approach take into 

account the spatially variable local point cloud roughness and the registration error as 

isotropic and uniform. Whereas Fey and Wichmann (2016) also considered the positional 

uncertainty in the error budget calculation. 

Either way, it is important to remember that the position and registration uncertainties cannot 

be easily modelled (Soudarissanane et al., 2011; Bae and Lichti, 2008). 

The threshold is even typically set using a confidence interval based on the differences 

deriving from the point cloud comparison in data collected on the areas considered stables 

during the monitoring period, such as in Abellán et al. (2009) and Kromer et al. (2015).  

In both threshold evaluation procedures, LoD is based on a confidence interval at 95%. 

In the context of this thesis, the choice of the LoD was evaluated on a case by case basis as a 

function of the considered instability phenomena and characteristics of the scenario. 
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4.3 Routine 2 

  Cluster analysis 

Once defined LoD value, the algorithm extracts the points characterized by significant 

distances (negative and positive) and successively a cluster analysis for both negative and 

positive subset can be performed to automatically segregate them. The cluster analysis allows 

grouping the statistical units of a population basing on similarities among the individual data.  

The cluster analysis technique used for this routine (Figure 18) is a kind of agglomerative 

hierarchical clustering, in which the minimum Euclidean distance (minDist) between the 

points (xyz location) respect to the mean of the smallest distances (mean(minDist)) are chosen 

as measure of dissimilarity. Therefore, first of all the proposed algorithm computes the 

Euclidean distance between an arbitrary point of the cloud (in this case the first one was 

chosen) and the other points. Later, the minimum distance (minDist) is calculated. If the 

minDist is lower than mean(minDist) multiplied by a user-defined factor F, the algorithm labels 

each point as belonging to cluster n, on the contrary the point is labelled as belonging to a 

new cluster (cluster n+1) (Figure 19). Therefore, each point of the point cloud characterized 

by distance values over the chosen level of detection, is labelled as belonging to a cluster (or 

sub-cloud). 

In the case of the point cloud corresponding to the first survey is selected as the reference 

one, the resulting positive sub-clouds represent deformation zones or areas characterized by 

accumulation of material; obviously in the case of steep rock face, positive sub-clouds cannot 

indicate material accumulation zones. On the other hand, the negative sub-clouds represent 

areas characterized by the depletion or detachment of material.   
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Figure 18. Flow chart of Routine 2. 
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Figure 19. Cluster analysis schematic process. 

  Area calculation 

Once sub-cloud generation is performed (Figure 18), for each of them, the polar coordinate α 

and β ([14] and [15]) through SVD function (see paragraph 4.1.2.1) is computed shifting the 

points within the cluster to its centroid. Therefore, for each sub-cloud, the routine applies a 

combination of rotation counter-clockwise around a z-axis by 𝛽  angle [16] and a rotation 

counter-clockwise about x-y plane by 𝛼 angle [17] changing the coordinate system of the sub-

cloud to local. Therefore, the points of the sub-cloud will result in the new coordinate system, 

where the new origin O’ coincides with the centroid of the sub-cloud and the new x’ and y’ 

axes coincide with the main plane parameter axes. 

Successively, the Convex Hull (Preparata and Hong, 1977) MATLAB function 

(www.matlab.com) is applied to points within the sub-cloud. The convex hull of a set of points 

X in n dimensions is the intersection of all convex sets containing X or the smallest convex set 

that contains X; it is given by the expression: 
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𝐶𝑜𝑛𝑣(𝑋) =  {∑ 𝛼𝑖𝑥𝑖
|𝑋|
𝑖=1 |(∀𝑖: 𝛼𝑖 ≥ 0) ∧ ∑ 𝛼𝑖 = 1

|𝑋|
𝑖=1 }                                     [ 18 ] 

the convex hull of a finite point set 𝑋 ⊂ ℝ𝑛 forms a convex polygon when n=2; each point xi 

in X that is not in the convex hull of the other points is called a vertex of Conv(X). 

In the case of this approach, the convex hull function is applied to the sub-clouds in 2D 

dimensions to obtain the “hull” in the x’-y’ plane. Consecutively, Delaunay Triangulation is 

automatically employed to triangulate the set of points of each sub-cloud in the two-

dimensional space. Therefore, the area for each constructed triangle is computed by Heron’s 

formula (Dunham, 1990), given the lengths of the sides a, b and c and the semiperimeter s by 

requiring no arbitrary choice of side as base or vertex as origin.  

𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)                                              [ 19 ] 

The lengths of the sides a, b and c are calculated by Euclidean distance. Once computed each 

triangle area, the tool adds together the several areas to calculate the area of the sub-cloud. 

In conclusion, the final output of the routine is a database including the number of recognized 

zones, the area of these sectors and, for every zone, it provides the features obtained from 

the point cloud analysis and comparison (that is azimuth, slope, local normal vector, 

roughness, point density, distance along the local normal, distance along the x-, y- and z-axis).  
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5. Test sites 

5.1 San Leo test site 

The San Leo rock mass is located in the northern Appennines, on the right side of the mid 

Marecchia River valley, in the SE sector of the Emilia Romagna region (Figure 20). The town 

lies at about 650 m a.s.l, at the top of a slab of about 0.3 km2 in extension, bordered by vertical 

and overhanging cliffs up to 100 m high. The site is delimited on the west, north and south 

sides respectively by creek valleys of small tributaries of the Marecchia River (Figure 20A). The 

geomorphology of the rock plate resembles a “cuesta”, with the highest elevation towards 

east, where the renowned medieval fortress is located, and sloping toward west, where the 

downtown developed (Borgatti et al., 2015). 

 

Figure 20. Location map of the San Leo rock massif. (A) Geographic and morphological framework. (B) 

Contour map projected on an orthophoto. 

5.1.1  Geological and structural setting 

From a geologic point of view, the rock slab is composed by Epiligurian and Ligurian Units, 

dating back to Oligocene and Pliocene; the latter abundantly outcrop in the hills and 

surrounding badlands. The Epiligurian Units consists of limestone-arenaceous formations, in 

particular, they are represented by the Mt. Fumaiolo Formation (glauconitic sandstone with 

thin siltstone interlayers and calcarenite), which mainly constitute the top of the rock mass, 

and the San Marino Formation (thick bedded calcirudite layers and calcarenite), at the base 

(Conti, 1989, 2002; De Feyter, 1991; Conti and Tosatti, 1996; Cornamusini et al., 2010). The 
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cliff lies on top of the Argille Varicolori formation (tectonized clay with marly and limy 

sanstone), belonging to the Ligurian Units bedrock (Figure 21). In the south-eastern sector of 

the site, these Units crop out as the Sillano (mudstone with thin layers of limestones and 

marls) and the Mt. Morello Formations (carbonate turbidites) (Ponzana, 1993; Cornamusini et 

al., 2010) (Figure 21). 

The structural setting of the San Leo plate is characterized by faults and fractures with 

orientation NW-SE and WSW-ENE that control the morphology of the area. Bedding layers 

mainly dip SW from low to middle angles (Conti and Tosatti, 1996). 

During the last four centuries, the San Leo site and the surrounding area was affected by 

several large landslides (rock falls, earth flows and complex landslides) (Benedetti et al., 2013; 

Spreafico et al., 2013; Giardino et al., 2015; Borgatti et al., 2015) due to its peculiar geological 

and geomorphological setting. 

The typical slope instability phenomena can be described as “a lateral spread involving the 

brittle rock slab overlying a more ductile terrain” (Spreafico et al., 2016). In greater detail, the 

soft clayey substratum is involved in earth flows and weathering-erosional processes leading 

to the progressive undermining of the overlying rock cliff. This phenomenon causes the 

opening of the vertical joints in the rock plate and the resulting rock fall and topple at the edge 

of the rock mass. 

Two quite recent examples are the landslides occurred on 11th May 2006 (Figure 22A) and the 

night between the 29th and the 30th November 2008. The former rock fall of approximately 

50,000 m3 affected the north face of the cliff, reactivating an earth flow in the underlying clay 

shales, which in turn, evolved in other landslides downstream (Benedetti et al., 2013). The 

latter was a small-scale rock fall and pertained to the northern cliff as well, involving a volume 

of about 6 m3 (Spreafico et al., 2015). 
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Figure 21. Geology of the San Leo site (from: Frodella et al., 2016). (A) Geological map. (B) Cross section 

(modified after Conti and Tosatti, 1996). (C) Picture of the NE rock slab sector bordering the slope wall 

prior to the landslide event. 

5.1.2  The landslide 

On 27th February 2014, a rock mass of about 0.33 Mm3 (Borgatti et al., 2015) detached from 

the north-eastern cliff of San Leo rock plate and collapsed onto the underlying valley (Figure 

22B). The rock fall event caused a retreat of the cliff of 30 m (Spreafico et al., 2015) and 

threated some buildings but fortunately, the collapse occurred in an unpopulated area. As a 

precautionary measure, the access to the medieval fortress and provincial SP 137 roadway 

(Figure 22A) were temporarily interdicted (Frodella et al., 2016), and ten private buildings 

(Figure 22A), a police station and the elementary school were evacuated (Borgatti et al., 2015). 

The reconstruction of the temporal evolution of the event was described by Borgatti et al. 

(2015) in four principal steps and simulated by Spreafico et al. (2016): 1) the progressive 
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detachment of the cliff along a vertical pre-existing fracture due to the undermining at the toe 

of the slope; 2) the block toppling; 3) the breakdown and 4) the following debris avalanche 

with boulders up to 10,000 m3 expanding in the Campone Creek valley below. After the event, 

the reactivation of the earth flow in the clayey substratum was hypothesize. 

The landslide can be considered as a composite of two movement types: rock slide and rock 

topple (Spreafico et al., 2016). 

 

Figure 22. (A) Map of the instability phenomena affecting the San Leo rock plate boundaries. Modified 

after the IFFI project to produce an inventory of landslides in Italy, carried out by ISPRA (Istituto 

Superiore per la Protezione e la Ricerca Ambientale) (Triglia et al., 2010). (B) Rock fall caused on 27th 

February 2014, mapped as red polygon in A. (from Frodella et al., 2016 modified) 
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After the landslide, the Earth Sciences Department of the Florence University (DST-UNIFI) 

implemented an integrated monitoring system based on remote sensing techniques in order 

to measure the possible ground deformations of the investigated area and to evaluate the 

residual risk (the monitoring results are described in detail in Frodella et al., 2016).  

The post-event displacement analysis was performed through a real-time Ground Based 

Interferometric Synthetic Aperture Radar (GB-InSAR) monitoring coupled with TLS surveys.  

The GB-InSAR system is composed of a coherent microwave transceiver unit, characterized by 

a transmitting and receiving antenna, operating in the ku-band (wavelength range of 2.5–1.67 

cm; central frequency of 17.2 GHz and 200 MHz bandwidth). Synthetic aperture is achieved 

by moving a motorized sled hosting the radar head along a mechanical linear rail (parallel to 

the azimuth direction). The working principle of the GB-InSAR technique involves radiating 

microwaves toward the investigated area and measuring the backscattered signal, obtaining 

a SAR image. The SAR image is created by combining the spatial resolution along the direction 

perpendicular to the rail (range resolution, ΔRr) and the one parallel to the synthetic aperture 

(azimuth, or cross-range resolution, ΔRaz) (Luzi, 2010) and contains amplitude and phase 

information of the backscattered echo from the examined scenario objects. The evaluation of 

the phase difference, pixel by pixel, between two pairs of sequential SAR images, allows to 

obtain a 2D displacement map of the investigated area, called interferogram (Bamler and 

Hartl, 1998). The measured movement is that component parallel to the instrument line of 

sight (L.O.S. – direction connecting the sensor and the object), while the displacements 

occurring in the direction perpendicular to the LOS are missed. Furthermore, cumulative 

displacement maps (Figure 23) of selected period can be obtained. 

Taking advantage of TLS survey (see following paragraph), three-dimensional model was 

merged with the GB-InSAR cumulative displacement data to obtain a 3D GB-InSAR cumulative 

displacement map, in which the detected LOS displacements can be directly visualized on the 

3D representation of the investigated area. In this work, the 3D GB-InSAR cumulative 

displacement map for the period between 7th March 2014 and 6th June 2015 is reported 

(Figure 24). 
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Figure 23. GB-InSAR cumulative displacement map of San Leo study area measured from 7th March 

2014 to 7th March 2015 (modified from Frodella et al., 2016). 

 

Figure 24. 3D GB-InSAR cumulative displacement map of the San Leo cliff. 
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5.1.3  TLS monitoring activity 

5.1.3.1   TLS survey 

The employed terrestrial laser scanner (property of DST-UNIFI) is a long-range and high-

accuracy 3D time-of-flight instrument (model Riegl LMS-Z420i; RIEGL 2010a) coupled with 

calibrated digital camera (Figure 25). This device is able to acquire the position of up to 12,000 

points/s by operating in the near-infrared wavelength, with a maximum angular resolution of 

0.008°, a single point accuracy of ± 10 mm (one σ at 50 m range under RIEGL test conditions) 

and from a maximum distance of 800 m. 

During the monitored period, five different laser scanner surveys (7th March 2014, 11st June 

2014, 18th December 2014, 3th June 2015, 9th September 2015) were performed from different 

viewpoints (Figure 26). With change detection purpose, four monitoring periods in which each 

scan was compared with the first one were selected (Figure 26). The specifications for each 

survey are listed in Table 1. 

The acquired point clouds were linked to a global reference system by performing a RTK-GPS 

survey (Table 2) of several laser reflectors placed in the surveyed area (Figure 26). The 

resulting georeferencing standard deviation is 0.03 m. 

 

Figure 25. Coloured point cloud of San Leo cliff. 

 



“Semi-automatic analysis of landslide spatio-temporal evolution” | Giulia Dotta 

 
54 

 

Figure 26. Schematic workflow of the survey dates and periods of study and location of the employed 

terrestrial monitoring devices and reflectors. The collapsed cliff sector is highlighted with a dashed red 

rectangular. 

Table 1. Specifications for each laser scanner survey. 

 

11th June 2014
• 7th March 2014

• 18th December 2014

• 3th June 2015

• 9th September 2015
1

2

3

4
5

6

78
9

Theta (°) Phi (°)
Points Range (m)

min max inc min max inc

7th March 2014 survey 64.999 124.843 0.031 62.031 239.925 0.031 10·785·924 about 320

11st June 2014 survey 65.000 127.384 0.028 80.706 239.466 0.028 12·640·659 about 420

18th December 2014 survey 65.119 125.029 0.030 108.484 199.366 0.030 6·068·964 about 320

3th June 2015 survey 50.000 129.870 0.070 0.000 359.870 0.070 5·872·164 about 320

9th September 2015 survey 65.000 128.990 0.030 60.010 241.940 0.030 10·497·982 about 320
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Table 2. Global coordinates for each reflector (UTM-WGS84) and corresponding precision. 

 

5.1.3.2   Data pre-processing 

Raw point clouds were processed using RiSCAN PRO software package (RIEGL, 2010b). This 

concerned, first of all, the manual removal of sporadic vegetation and outliers points. 

Furthermore, Multi Station Adjustment (MSA) tool was used to align each acquisition to the 

first one (7th March 2014). This tool modifies the orientation and position of each scan position 

in several iterations in order to calculate the best overall fit for them and it operates, as best 

it can, with well-defined surfaces. The MSA can use tiepoints, tieobjects and polydata objects 

to detect the closest point (ICP algorithm, see chapter 2) of the other point clouds for each 

point of a point cloud and to align the scan positions. 

To speed up the process it’s necessary to preprocess the data, to make this the filter “Plane 

patch filter” was used. This filter looks for planar areas in the selected point cloud dividing the 

space into equal sized cubes of certain size and for each one trying to estimate a best-fit plane 

from all points inside the cube. If the standard deviation of the normal distances between all 

points and the plane is less than “Maximum plane error” then the plane is added to the 

resulting list of plane patches. If this condition is not fulfilled, the cube’s points are divided 

into eight small cubes, each having the half edge length of the current cube; for each sub cube 

the plane estimation is repeated. The reiteration is stopped when either a valid plane was 

found, the user can choose the number of points inside the cube or the cube size. 

X (m) Y (m) Z (m) Coordinate quality (m)

Reflector 1 286757.928 4864414.178 493.822 0.0335

Reflector 2 286749.712 4864277.048 454.335 0.0252

Reflector 3 286806.451 4864294.014 466.838 0.0203

Reflector 4 286861.737 4864270.858 480.437 0.0223

Reflector 5 286938.254 4864224.778 503.555 0.0213

Reflector 6 286953.197 4864211.323 506.022 0.0159

Reflector 7 286934.400 4864193.797 498.780 0.0282

Reflector 8 286905.349 4864125.901 486.662 0.0237

Reflector 9 286962.583 4864108.027 510.059 0.0226
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5.1.4  Tool application and results 

Both routines were applied to San Leo cliff test site. The resulting 3D point cloud maps colored 

as a function of the computed features, were visualized within the open-source software 

CloudCompare v. 2.6.2 (EDF R&D, 2011). 

5.1.4.1   Point cloud analysis 

Since the first data scansion was considered as the reference cloud in the comparison, a 

preliminary point cloud analysis of the 7th March 2014 survey was performed. In order to 

choose which input parameters were more appropriate for this case study, a trial and error 

procedure was performed. A neighbourhood cube half-side R of 1 m, a selection 

parallelepiped base half-side r of 0.5 m, a minimum number of neighbouring points per cluster 

Nmin of 10 were selected as more suitable. 

The resulting morphometric characterization of the reference cloud is shown in Figures 27 to 

30. For each feature, the related frequency histogram is presented; the frequency was 

computed as the number of points belonging to a certain feature class. In detail, the Figure 27  

shows the distribution of the values of orientation with respect to the north (azimuth angle), 

associated to the corresponding frequency histogram. The map shows a general orientation 

of the rock faces towards NE and SW, well highlighted by a bi-modal distribution of the values 

in the histogram of frequency. The result of slope angle analysis (Figure 28) is globally 

characterized by nearly vertical values excepted some limited areas in the central and upper 

parts of the cliff and, in particular, on the northern side where the rock faces are less steep 

(≈45°).  
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Figure 27. Azimuth angle map and related frequency histogram about San Leo rock cliff (7th March 2014 

survey point cloud). 

 

Figure 28. Slope angle map and related frequency histogram about San Leo rock cliff (7th March 2014 

survey point cloud). 
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The map shown in Figure 29 represents the distribution of the roughness index in the observed 

scene. The frequency histogram show a unimodal distribution, centred on values between 

0.04 and 0.07 meters, reaching a maximum of 0.46 m although values of such entity are 

present in very limited areas, that will be further analysed in the chapter 6. 

The last output parameter of the point cloud analysis is the point density, a function of the 

distance between the sensor and the cliff, the slope orientation with respect to the laser beam 

direction and the backscattering properties of the surface. The spatial distribution of the point 

density is shown in Figure 30, with the respective histogram of frequency. Generally, the point 

cloud obtained in San Leo have a mean density of 60 points per cubic meter, reaching 

maximum values of more than 130 points per cubic meter in the part of the scene, closer to 

the device. 

 

Figure 29. Roughness index map and related frequency histogram about San Leo rock cliff (7th March 

2014 survey point cloud). 
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Figure 30. Point density map and related frequency histogram about San Leo rock cliff (7th March 2014 

survey point cloud). 

5.1.4.2   Point cloud comparison 

To perform the comparison, the same values of the input parameters chosen for the point 

cloud analysis were selected. The values are: a neighbourhood cube half-side R of 1 m, a 

selection parallelepiped base half-side r of 0.5 m and a minimum number of neighbouring 

points per cluster Nmin of 10. Furthermore, a maximum length of parallelepiped Za of 5 m and 

an average cube half-side Ra of 1 m were selected.  

The resulting temporal variations with respect to the reference cloud (7th March 2014), are 

represented as distances (calculated along the local normal and projected along x-, y-, z-axis) 

for each monitoring period and shown in Figure 31 (Period A), Figure 32 (Period B), Figure 33 

(Period C) and Figure 34 (Period D). The distance values on the maps are associated to a 

colorbar, in which values around zero are shown in green; positive distances increasing (in 

module) from yellow to red; negative distances increasing (in module) from light blue to dark 

blue. The grey colour indicates no-distance value. 
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The map of distances along the local normal considering the first monitoring period (Period A) 

(Figure 31a) shows a central zone of the rock mass (red dashed shape) characterized by 

positive distances around 0.2 m reached in 96 days. The decomposition of the normal vector 

along the three principal axes (Figure 31 b, c and d) highlights a predominant movement in 

north direction (y-direction) for this area. Similar values are also detected in the northern 

upper part of the cliff (indicated by an arrow) but they correspond to noise, due to presence 

of the vegetation. The highest values (around 2 m) of positive distances (red colour) are 

concentred in a small portion of the upper part of the cliff (indicated by a dashed arrow) and 

in the borders of the yellow central zone. The negative distances were computed in several 

areas, reaching the maximum value of around -1.3 m in correspondence of a well-defined zone 

indicated by a black dashed oval. Most of these distances are concentrated along the x-axis. 

 

Figure 31. Point cloud comparison for Period A (7th March - 11st June 2014): a) distance along the local 

normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the z-axis. 

a) b)

c) d)
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Considering Period B (Figure 32), the positive distances in the formerly recognized zone (red 

dashed shape) reach the value of approximately 0.4 m during 286 days of monitoring with an 

increased spatial extent. The areas coloured in blue (negative distances) are increased in 

number, involving a greater surface area. Four main areas can distinctly distinguished (black 

dashed ovals), in addition to the formerly recognized area (balck dashed oval in Figure 31), 

with distances of up to -2 meters, in some small portions. 

 

Figure 32. Point cloud comparison for Period B (7th March - 18th December 2014): a) distance along the 

local normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the z-axis. 

The comparison map about the positive distances computed along the local normal during the 

Period C (Figure 33a) shows a slightly increased extent of the formerly recognized zone 

indicated by a red dashed shape, with nearly constant distances of around 0.4 m.  

Also the areas characterized by negative distances are increased, reaching values of around -

2.4 m in the area located at the base of the rock mass (black dashed oval). The major distance 

a) b)

c) d)
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values, both positive and negative, are calculated along the x- and y- axes, with considerably 

smaller movements along the vertical axis (z-). 

In the northern upper part of the cliff, the noisy effect of the vegetation can be observed. 

 

Figure 33. Point cloud comparison for Period C (7th March 2014 – 3th June 2015): a) distance along the 

local normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the z-axis. 

The last monitoring period (Period D, Figure 34) does not show significant changes with 

respect to previous period. 

The small portion in the upper part of the cliff recognized in the first monitoring period 

(indicated by a black dashed arrow in Figure 31), is present in each period of study with values 

comparable to those detected in Period A. 

a) b)

c) d)



“Semi-automatic analysis of landslide spatio-temporal evolution” | Giulia Dotta 

 
63 

 

Figure 34. Point cloud comparison for Period D (7th March 2014 – 9th September 2015): a) distance 

along the local normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the 

z-axis. 

The influence of the rock surface roughness on comparison results is visible causing, in some 

cases, a noise affecting the results of the comparison. For this reason, an averaging process 

was performed to reduce the random Gaussian noise effect, due to instrumental error and 

roughness. Furthermore, the averaging allows to clearly distinct the previously recognized 

areas. 

The average distances calculated along the local normal are presented for each period (Figures 

35 to 38), in association with the corresponding frequency histograms that show a normally 

distribution of the resulting distances. The average distance values on the maps are associated 

to a colorbar, in which values around zero are shown in green; positive distances increasing 

a) b)

c) d)
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(in module) from yellow to red; negative distances increasing (in module) from light blue to 

dark blue. The grey colour indicates no-distance value. 

 

Figure 35. Average distance computed starting from distance along the local normal for Period A and 

related frequency histogram. 

 

Figure 36. Average distance computed starting from distance along the local normal for Period B and 

related frequency histogram. 

 

Figure 37. Average distance computed starting from distance along the local normal for Period C and 

related frequency histogram. 
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Figure 38. Average distance computed starting from distance along the local normal for Period D and 

related frequency histogram. 

5.1.4.3   LoD and significant distances 

The minimum threshold to distinguish changes from noise was defined based on the average 

distance results on the areas considered as stable during the different monitoring periods (the 

areas are indicated in Figure 39). The substantial stability of these areas was even confirmed 

by GB-InSAR monitoring (see Figure 24 in paragraph 5.1.2). 

For each monitoring period, the resulting standard deviation of the averaged distances was 

0.13 m (Figure 40) and this value was selected as Level of Detection. 

 

Figure 39. Areas considered to be stable during the different monitoring periods. 
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Figure 40. Histogram representing the frequency of the average distances on the areas considered to 

be stable during the different monitoring periods. The standard deviation is indicated by red dashed 

lines. 

Once provided LoD value to Routine 2, the positive and negative significant distances were 

extracted from the point cloud. Positive distances (in red in Figure 41) represent areas 

characterized by displacements, whereas negative distances (in blue in Figure 41) represent 

detachment zones. 

 

Figure 41. Detachment zones (in blue) and displacements (in red) for Period A (A), Period B (B), Period 

C (C), Period D (D). 

σ = 0.13

detachment zones

displacementsA B
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5.1.4.4   Cluster analysis 

In order to automatically segregate the significant distance zones outcoming from the cloud 

comparison, and to compute their area, a cluster analysis was performed within the Routine 

2. The multiplication factor which better fits to the investigated point cloud is selected by 

means of trial and error procedure.  

The result of the routine is the creation of a database including the number of recognized 

zones, the area of these sectors and for every zone provides the information obtained from 

the point cloud analysis and comparison (that is azimuth, slope, local normal vector, 

roughness, point density, distance along the local normal, distance along the x-, y- and z-axis). 

The cluster analysis for recognized deformations zones, considering the entire monitoring 

period (Period D), is shown in Figure 42. The identified zones and the corresponding areas are 

reported in the map with a colour scale ranging from 0 square meters (yellow colour) to 300 

square meter (dark red colour). The automatically computed areas for each recognized zone 

are reported in Table 3. The multiplication factor F that resulted as the more suitable for this 

analysis was equal to 12.8. 

 

Figure 42. Cluster analysis results for recognized deformations zones. 
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Table 3. Area for each recognized deformation zones. 

 
Area (m

2
) 

Zone 1 1.4 
Zone 2 3.7 
Zone 3 270.0 
Zone 4 33.6 
Zone 5 9.9 
Zone 6 27.3 
Zone 7 1.7 
Zone 8 1.6 

The resulting cluster analysis for recognized detachment zones about the entire monitoring 

period (Period D) is shown in Figure 43. The identified zones and the corresponding areas are 

reported in the map with a colour scale ranging from 0 square meters (light blue colour) to 

300 square meters (dark blue colour). The corresponding computed areas are reported in 

Table 4. The multiplication factor F that resulted as the more suitable for this analysis was 

equal to 13. 

 

Figure 43. Cluster analysis results for recognized detachment zones. 
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Table 4. Area for each recognized detachment zones. 

 Area (m
2
) 

Zone 1 0.8 
Zone 2 2.8 
Zone 3 70.5 
Zone 4 108.2 
Zone 5 0.5 
Zone 6 8.2 
Zone 7 69.0 
Zone 8 14.6 
Zone 9 45.0 

Zone 10 112.7 

Zone 11 8.2 

Zone 12 11.0 

Zone 13 19.0 

Zone 14 7.7 

Zone 15 15.3 
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5.2 Ricasoli test site 

Ricasoli is a village located in a morphological high in the Upper Arno river Valley (Tuscany) 

(Figure 44), an area historically subject to widespread slope instability phenomena. The village 

is located in a typical NW-SE oriented intramontane basin formed during the extensional 

phase of the Neogene-Quaternary evolution of the Tyrrhenian side of the Northern Apennines 

(Abbate, 1983). 

 

Figure 44. Location (A) and geological map (B) of Ricasoli village (modified from Rosi et al. 2013). The 

dashed red rectangular highlights the study area. 

5.2.1  Geological setting 

The substrate of the basin is composed of Cervarola-Falterona Unit (eastern side) and Macigno 

Formation (western side). The fluvial-lacustrine sediments were deposited in this area in three 

phases between Lower Pliocene and Upper Pleistocene and can reach a 500 m thickness 

(Fidolini et al., 2013). 

Ricasoli is located above sediments of the fluvial-lacustrine phase (second phase) overcome 

by the sediments of the fluvial phase (third phase). In particular, from the bottom to the top 

the second phase consists of (Figure 44): 

Terranova silt (TER): grey clayey silts in lower part followed upward by medium-fine clayey 

sands. These sediments have been deposited in a lacustrine environment and the maximum 

outcrop thickness is 25–30 m. 

Ascione Stream Clay (ASC): this unit consists of peaty silty clays deposited in lacustrine 

environment and they are characterized by the presence of decimetric layers of lignite. The 

thickness of the outcrops is 15 m. 
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Silt and Sand of Oreno Stream (LSO): grey silts, occasionally clayey silts or arenaceous silts, 

which superimpose yellowish fine and medium grained sands. In the inner part of these 

sediments residual paleosoils and some levels of conglomerates with pebbles of sandstones 

are present. The origin of this unit can be referred to a lacustrine environment subject to 

recurrent fluvial episodes and emersion stages. The thickness of the outcrops is 50 m. 

The third phase consists of (Figure 44): 

Casa La Loccaia Sands (LOC): Sands and gravels with arenaceous clasts with intercalations of 

reddish arenaceous silts that often present pedogenesis phenomena. 

Latereto silt (LAT): massive silts highly pedogenized, these sediments are deposited in a fluvial 

plain environment. 

This morphological high and the surrounding slopes result to be affected by numerous 

landslides, which cause the retreat of the escarpments surrounding the village, involving 

infrastructures and buildings. According to the Cruden and Varnes (1996) classification, in the 

area predominantly compound slides and falls can be recognized. In particular, compound 

slides causing the retreat of the escarpments affect the slope surrounding the village and are 

triggered by heavy and continuous rainfalls. 

In the area, many evidences of instability phenomena can be recognized (cracks, fissures on 

the wall of the buildings and on the streets, small escarpments, corrugation of the soil 

surface), in particular in the northern slope (Rosi et al., 2013), characterized by a deep 

movement affecting the clay formations and by the presence of several shallow phenomena. 

The slope is recently reprofiled and stabilized. 

5.2.2  TLS and Digital Photogrammetry survey 

In the last years, several shallow landslides (few meters) involved the northern slope of 

Ricasoli village. For this reason, with the aim to obtain the three-dimensional reconstruction 

of the topography of the area and to monitor the scenario, a TLS survey and an UAV 

photogrammetric survey, were carried out in correspondence of the northern slope of 

Ricasoli, on 30th March 2015 and 30th July 2015, respectively. 

The used terrestrial laser scanner (property of DST-UNIFI) is the time-of-flight Riegl LMS-Z420i 

(RIEGL, 2010a). The resulting point cloud consisted in 1,500,000 points with angular resolution 

of 0.034 °. 
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The comparison between these two survey by means of Surface Comparison tool (RiSCAN 

PRO; RIEGL, 2010) has been presented in Annex 1. 

Recently, the eastern part of the northern slope was characterized by two new shallow 

landslides occurred in 1st March and 9th March 2016 as a consequence of intense rainfall, 

involving a part of a superficial recent landfill (Figure 45). 

 

Figure 45. Northern slope of Ricasoli village with indicated the two landslides occurred in 1st March (on 

the right) and 9th March 2016 (on the left), respectively. 

Therefore, two aerial photogrammetric surveys were carried out in correspondence of the 

northern slope, respectively on 2nd March 2016 and 6th April 2016 (Figure 46). 

Photogrammetric survey was performed using a conventional digital RGB photocamera with 

8 MPix resolution mounted on the multicopter drone, named Saturn, designed and developed 

by the Department of Earth Sciences. This UAV has an innovative perimetric chassis that 

supports flight dynamics and it has onboard a complete and fully configurable acquisition 

system with frame grabber for scientific instruments. See Annex 1 for details about the main 

features of Saturn drone. 

The first stage of the survey consisted in the adoption of the flight plan, that have to be created 

ad-hoc to ensure the best coverage of the target area, with an optimal photo overlap in frontal 

(overlap) and lateral direction (sidelap), taking into account the camera footprint at a certain 

quote. To optimize flight time, spatial coverage and ground resolution the multicopter drone 

was programmed to fly at a constant altitude of around 70 m a.g.l. with sidelap and overlap 

respectively set to 50% and 60%, in order to guarantee a sufficiently redundant coverage of 

the area of interest. To optimise flight time, spatial coverage and ground resolution the 

multicopter UAV was programmed to fly at a constant altitude of around 70 m a.g.l. with 
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sidelap and overlap respectively set to 50% and 60%, in order to guarantee a sufficiently 

redundant coverage of the area of interest. 

In order to have a georeferenced and calibrated 3D model, a sufficient number of Ground 

Control Points (GCPs) were collected using a RTK-GPS in correspondence of objects on the 

ground that can be easily recognized in the aerial photos with a homogeneous spatial 

distribution on the scene (Figure 47). The images were processed using the software Agisoft 

Photoscan Professional (Agisoft LLC, 2016). The resulting accuracy assessment for each global 

coordinate and the total error (root mean square error) provided by the software are shown 

in Tables 5, 6 and 7. 

The whole monitoring period was subdivided in four periods of study (Figure 46), in which 

comparisons between the several surveys were performed. 

 

Figure 46. Schematic workflow of the survey dates and periods of study and orthophotos acquired 

during the three surveys. 

first landslide

second landslide
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Figure 47. Location of Ground Control Points (GCPs) on the orthophotos about first (30th July 2015) (A), 

second (2nd March 2016) (B) and third (6th April 2016) (C) surveys. 

Table 5. Ground Control Points error for each global coordinate and Ground Control Points total error 

for the first survey (30th July 2015). 

 

GCP 1
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GCP 1
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Ground Control Point (GCP)

GCP 1
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GCP 5

Ground Control Point (GCP)

A B

C

X error (cm) Y error (cm) Z error (cm) Total error (cm)

GCP 1 -0.718984 1.16923 0.316583 1.40864

GCP 2 0.620463 1.13402 0.787053 1.51341

GCP 3 -0.85015 -1.1875 -0.591576 1.57571

GCP 4 -1.13978 1.6382 0.980768 2.22367

GCP 5 0.583492 -2.6819 -0.600052 2.80947

GCP 6 1.76861 -0.0437532 -0.542086 1.85034

GCP 7 -0.237291 -1.20608 -1.9535 2.30805

GCP 8 -0.255 1.00829 2.25342 2.48185

Total 0.902327 1.43234 1.2031 2.07683
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Table 6. Ground Control Points error for each global coordinate and Ground Control Points total error 

for the second survey (2nd March 2016). 

 

X error (cm) Y error (cm) Z error (cm) Total error (cm)

GCP 1 -0.418813 1.48399 2.10324 2.60792

GCP 2 -1.88304 -1.03575 0.702414 2.26098

GCP 3 -1.57501 1.2246 -1.34038 2.40352

GCP 4 -2.21679 -1.6969 0.617138 2.85911

GCP 5 3.07706 -1.24848 0.0918945 3.32196

GCP 6 2.49995 -2.57911 0.563559 3.63581

GCP 7 1.18189 -1.26442 0.622033 1.83917

GCP 8 -0.059071 0.898904 0.996707 1.34348

GCP 9 -1.15392 -0.400153 -2.91473 3.16027

GCP 10 5.37694 -1.53628 0.539036 5.61802

GCP 11 -2.52805 1.80115 -1.84954 3.6133

GCP 12 0.479137 -8.16205 0.351232 8.18364

GCP 13 4.17298 5.68189 0.76657 7.09121

GCP 14 3.67769 -1.87969 0.465573 4.15637

GCP 15 -4.80768 1.08321 -0.97274 5.02328

GCP 16 5.66021 7.50653 -0.0335757 9.40144

GCP 17 -6.55026 -1.38705 0.570064 6.71973

GCP 18 -4.9614 1.50641 -0.813062 5.24841

Total 3.48577 3.23339 1.15154 4.89198
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Table 7. Ground Control Points error for each global coordinate and Ground Control Points total error 

for the second survey (6th April 2016). 

 

5.2.3  Tool application and results 

Both routines were applied to the northern slope of Ricasoli village. The resulting point cloud 

maps colored as a function of the computed features, were visualized within the open-source 

software CloudCompare v. 2.6.2 (EDF R&D, 2011). 

5.2.3.1   Point cloud analysis 

In order to investigate the morphological features about the first UAV survey surface, a point 

cloud analysis of the 30th July 2014 survey, chosen as reference cloud, was performed (Figures 

48, 49, 50 and 51). Analogously to the previous case study, the more appropriate input 

parameters were selected by means of a trial and error procedure. A neighbourhood cube 

half-side R of 0.5 m, a selection parallelepiped base half-side r of 0.5 m and a minimum 

number of neighbouring points per cluster Nmin of 10 were selected as more suitable. 

In detail Figure 48 shows the distribution of the values of orientation with respect to the north 

(azimuth angle), associated to the corresponding histogram of frequency. The map shows a 

general orientation of the slope towards NW, well highlighted by the distribution of the values 

in the frequency histogram. The result of slope angle analysis (Figure 49) is globally 

characterized by low values of inclination (<45°) except for some limited areas corresponding 

to the main stabilization walls and, some of them, to pre-existing landslide scarps. 

X error (cm) Y error (cm) Z error (cm) Total error (cm)

GCP 1 -2.00613 -8.03309 3.90436 9.15418

GCP 2 4.2379 5.05333 -0.217671 6.59874

GCP 3 3.99553 0.463557 -2.5857 4.78174

GCP 4 -5.54365 -3.52763 1.54063 6.74906

GCP 5 -1.80685 1.62567 -0.418152 2.46625

Total 3.79329 4.59061 2.21475 6.35357
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Figure 48. Azimuth angle map and related frequency histogram about the northern slope of Ricasoli 

(30th July 2015 survey point cloud). 

 

Figure 49. Slope angle map and related frequency histogram about the northern slope of Ricasoli (30th 

July 2015 survey point cloud). 
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The distribution of the roughness index in the investigated area is shown in Figure 50. The 

frequency histogram show a distribution centred on values between 0.01 and 0.02 meters, 

reaching a maximum of 0.22 m in correspondence of areas with high vegetation, that originate 

noise in the point cloud. 

The last output parameter of the point cloud analysis is the point density (Figure 51), that also 

in the case of UAV survey depends on the distance between the sensor and the investigated 

object and therefore on the resolution of the images. The frequency histogram of the point 

density highlight bimodal distribution of the values centered on 46 and 58 points per cubic 

meter. 

 

Figure 50. Roughness index map and related frequency histogram about the northern slope of Ricasoli 

(30th July 2015 survey point cloud). 
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Figure 51. Point density map and related frequency histogram about the northern slope of Ricasoli (30th 

July 2015 survey point cloud). 

5.2.3.2   Point cloud comparison 

To perform the comparison, a neighbourhood cube half-side R of 0.5 m, a selection 

parallelepiped base half-side r of 0.5 m, a minimum number of neighbouring points per cluster 

Nmin of 10, a maximum length of parallelepiped Za of 5 m, an average cube half-side Ra of 1 m 

were selected as more suitable.  

The resulting distances (distance along the local normal and distances along x-, y-, z-axis) for 

each monitoring period are shown in Figure 52 (Period A), Figure 53 (Period B), Figure 54 

(Period C) and Figure 55 (Period D). In the first comparison, the point cloud used as reference 

is the one acquired by TLS, while in the further cases the changes are analysed based on only 

photogrammetric clouds.  

The distance values on the maps are associated to a colorbar, in which values around zero are 

shown in green; positive distances (in module) increasing from yellow to red; negative 

distances (in module) increasing from light blue to dark blue. The grey colour indicates no-

distance value. 
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The map of distances considering the first monitoring period (Period A) (Figure 52a) reporting 

the comparison between the TLS survey and the first UAV survey, show values of distance 

mainly distributing around zero with some sparse areas characterized by positive and negative 

values due to anthropic works. 

The comparison map about the distances computed along the local normal during the Period 

B (Figure 53a) highlights a well-defined area (black dashed oval) characterized by negative 

distances (around -0.4 m) in the upper part of the slope. The decomposition of the normal 

vector along the three principal axes (Figure 53b, c and d) points out a predominant 

movement in vertical direction (z-direction) for this sector.  

With regard to positive distances, they are concentrated in a portion that extends along the 

slope (red dashed oval) reaching maximum values of 1.5 m. Furthermore, a positive stripe 

(characterized by value around 0.2-0.3 m) located on the left of the slope (indicated by an 

arrow) is observed and it probably due to the growth of the vegetation between the two 

surveys. Negative and positive values are also concentred at the bottom of the slope that 

corresponds to atrophic material removal and accumulation in the time interval between the 

two surveys. 
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Figure 52. Point cloud comparison for Period A (30th March - 30st July 2015): a) distance along the local 

normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the z-axis. 

a)

b)

c)

d)
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Figure 53. Point cloud comparison for Period B (30th July 2015 – 2nd March 2016): a) distance along the 

local normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the z-axis. 

Considering Period C (Figure 54), the positive values are only concentrated on small areas. 

Whereas negative distances are observed in different parts of the slope; in particular, two 

different areas can be distinguished (black dashed ovals) characterized by maximum values of 

about 0.5 m. Also in this case the movement is concentrated on vertical direction (see Figure 

54b). 

The last period of study (Period D, Figure 55) compares the first and the last UAV surveys and 

shows the areas characterized by negative distances and recognized within the Period A and 

Period B (black dashed ovals). In this case the upper central part reaches the maximum value 

of -0.68 m. About the positive values, the area recognized during the first survey is clearly 

visible (red dashed oval). 

The effect of the vegetation between the analysed surveys is still present and indicated on the 

figure by an arrow. 

a) b)

c) d)
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Figure 54. Point cloud comparison for Period C (2nd March – 6th April 2016): a) distance along the local 

normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the z-axis. 

 

Figure 55. Point cloud comparison for Period D (30th July 2015 – 6th April 2016): a) distance along the 

local normal, b) distance along the x-axis, c) distance along the y-axis, d) distance along the z-axis. 

a) b)

c) d)

a) b)

c) d)
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Furthermore, the average distances for each period are presented (Figures from 56 to 59). 

The average distance values on the maps are associated to a colorbar, in which values around 

zero are shown in green; positive distances increasing (in module) from yellow to red; negative 

distances increasing (in module) from light blue to dark blue. The grey colour indicates no-

distance value. 

 

Figure 56. Average distance computed starting from distance along the local normal for Period A and 

related frequency histogram. 

 

Figure 57. Average distance computed starting from distance along the local normal for Period B and 

related frequency histogram. 

 

Figure 58. Average distance computed starting from distance along the local normal for Period C and 

related frequency histogram. 

P
o

sitive
d

istan
ces

N
egative

d
istan

ces

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

-2.28 -1.92 -1.57 -1.21 -0.86 -0.51 -0.15 0.20 0.55 0.91 1.26

Fr
e

q
u

e
n

cy

Positive
distances

Negative
distances

P
o

sitive
d

istan
ces

N
egative

d
istan

ces

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

-2.84 -2.41 -1.98 -1.55 -1.13 -0.70 -0.27 0.16 0.59 1.02 1.45

Fr
eq

u
en

cy

Positive
distances

Negative
distances

P
o

sitive
d

istan
ces

N
egative

d
istan

ces

0

5000

10000

15000

20000

25000

30000

-3.20 -2.77 -2.33 -1.90 -1.46 -1.02 -0.59 -0.15 0.28 0.72 1.15

Fr
eq

u
en

cy

Positive
distances

Negative
distances



“Semi-automatic analysis of landslide spatio-temporal evolution” | Giulia Dotta 

 
85 

 

Figure 59. Average distance computed starting from distance along the local normal for Period D and 

related frequency histogram. 

5.2.3.3   LoD and significant distances 

Unlike San Leo test site, in the case of the clayey slope of Ricasoli village the choice of a 

minimum threshold as Level of Detection based on the analysis of the stable areas was not 

achievable. This is due to the presence of dense and uniform vegetation that cannot be easily 

removed and it does not permit to distinguish the changes from the vegetation. Indeed, 

because of the vegetation, the reconstruction of the ground below a dense coverage and the 

individuation of some stable areas is not simple and often impossible. Furthermore, this effect 

results in a diffuse increase of altitude in all the grassy areas (from 20 to 30 centimetres).  For 

this reason, a threshold of 0.2 m was chosen as Level of Detection. 

The resulting detachment and accumulation (blue zones) and deformation zones (red zones) 

are shown in Figure 60, in which can be distinguished the two instability phenomena 

interesting the slope. 
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Figure 60. Depletion or detachment zones (in blue) and material accumulation or deformations (in red) 

for Period B (A), Period C (B), Period D (C). 

5.2.3.4   Cluster analysis 

To automatically segregate the significant distance zones outcoming from the cloud 

comparison, and to compute their area, a cluster analysis was performed within the Routine 

2. Contrary to the movements affecting a rock mass that are characterized by distinct spatial 

distribution, the automatic isolation of detachment and accumulation zones on an earth slope 

is not simple as showed in Figure 61. 
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A B
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Figure 61. Cluster analysis results for recognized areas with positive distances in Ricasoli.  
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6. Discussion 

The tool proposed in this study consists of two different routines that can be run separately. 

The Routine 1 was planned with the aim to achieve a morphometric characterization of the 

investigated unstable slope and therefore, to perform a comparison between the point cloud 

carried out at the first time and that one at the second time. The comparison is carried out 

based on distance computation and it provides, for each point of the first cloud, the distance 

along the local normal and its projection along x-axis, y-axis and z-axis. The Routine 2 permits 

to automatically isolate the significant distances and to compute the area of these significant 

zones. This is possible thanks to a cluster analysis, in which the level of detection is chosen by 

the user along with a multiplication factor that amplify the mean of the smallest Euclidean 

distances. 

6.1 Applicability to test sites 

The tool was applied to two test sites characterized by different geological setting and 

instability phenomena, San Leo rock mass and a clayey slope of Ricasoli village. 

San Leo test site is a rock cliff historically affected by several types of landslides (rockfalls, 

earthflows and complex landslides). These are caused by its geological and geomorphological 

setting involving a rock slab overlying a soft clayey substratum. Among the most recent 

instability events, a large rock detachment (about 0.33 Mm3), involving the north-eastern part 

of the cliff, occurred in 27th February 2014. In this case, the tool allowed to investigate the 

spatio-temporal changes that involved the north-eastern rock cliffafter the catastrophic 

event. To do this, the full period of monitoring, carried out by means of a Terrestrial Laser 

Scanner, was subdivided in four periods of study (Figure 26), in which each scan acquisition is 

compared to the first one. 

The second test site is the morphological high of Ricasoli village historically interested by 

numerous instability phenomena. Subsequently to several shallow landslides that affected the 

northern slope of the village in the recent years, a TLS survey and three UAV surveys were 

performed to monitor the slope. The monitoring period is here subdivided in four periods of 

study (Figure 46) with the aim to compare, respectively TLS scan with the first UAV point cloud 

and the UAV surveys between them. 
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The azimuth and slope indices permit to rapidly characterise the investigated scenario, from 

a morphometric and geometrical point of view. Such parametrization is particularly useful to 

provide input data for stability analysis, based on these predisposing factors. Furthermore, 

local variations of these indices are useful to point out morphological elements of interest 

such as scarps, fractures and other possible feature can be related to ongoing processes on 

the slopes.  

Regarding San Leo rock wall, the corresponding maps (Figure 27 and 28) pointed out a general 

orientation of the rock faces towards NE and SW and a slope angle mostly characterized by 

nearly vertical values, along with other limited portions with anomalous values, better 

characterized with the further steps of analysis. 

In case of a subvertical cliff, like in San Leo site, it is important to underline that the 

investigated rock wall shows, in some portions, overhanging sectors that can barely be visible 

in the slope angle map since this latter represents only angle values with a range between 0 

to 90° with respect to the horizontal plane, in absolute value. 

The routine allows to extract another morphometric index that is the roughness (Figure 29). 

Since the roughness is characterized by a scale effect, as discussed in paragraph 4.1.2, it plays 

an important role, influencing the surface normal computation at the chosen R scale.  

Indeed, the search neighbourhood cube half-side R should be not affected by smaller scale 

roughness, as suggested by Lague et al. (2013). For these reasons, the value of the roughness 

should be considered in the choice of a suitable half-side R of the neighbourhood cube, that 

must be aimed at minimize the effect of the small or large scale roughness and at capture the 

changes. 

Furthermore, high roughness values on the surface can cause occlusions within the point 

cloud due to local shadowing effects, originating areas with lack of points or, however, 

inadequate point density. 

The last output parameter of the point cloud analysis is the point density which variations 

within the map are primarily related to the distance between the sensor and the observed 

scenario. In the case of San Leo (Figure 30), the point cloud acquired using TLS is characterised 

by areas closer to the sensor with high density values (130 points per cubic meter) remarkably 

higher than the areas more far from the instrument. An exception is represented by an area 

in the central part of the cliff characterized by high values of density (around 90 points per 
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cubic meter) with respect to the surrounding portions. This is due to the influence of surface 

orientation with respect to the laser beam that is, in such a case, particularly favourable. On 

the other hand, in case of using photogrammetric point clouds (Ricasoli test site, Figure 51), 

the density is mainly related to the camera resolution, image quality (blurry or into focus 

images), image overlap and shooting altitude.  

In both cases, a preliminary evaluation of the point density can be particularly useful to assess 

the expected quality of possible post processing elaborations such as DTMs or 3D polygonal 

models (e.g. mesh). In this case, the different point density can influence the further point 

cloud comparison, performed with the proposed tool. 

Successively, Routine 1 allowed to perform a three-dimensional point cloud comparison for 

each of period of study. The proposed comparison approach is based on the computation of 

the distances between two point clouds along the local normal, as proposed in Lague et al. 

(2013); contrary to the methods proposed for example in Teza et al. (2007) or Monserrat and 

Crosetto (2008), which are based on same element and feature tracking within point clouds 

acquired in successive times (see chapter 3). The choice was driven by the difficulty to 

individuate the corresponding elements in different point clouds in an automatic way. This is 

true especially in the case of rough complex topographies, but also in the case of different 

conditions during the surveys, that can originate substantial differences in some portions of 

the compared point clouds, in terms of point density, shadowing, illumination and 

backscattering properties. 

The surface normal-differences computation considers the dependence of the geomorphic 

processes (in particular landslide processes) on the surface geometry, especially in the case of 

rock movements. Indeed, for this category rigid body transformation can well express planar 

sliding as well as toppling movements. 

Furthermore, the tool allows to investigate the components of the local normal distance along 

the three principal axes in a global reference system, corresponding to the north-direction (y-

axis), east-direction (x-axis) and vertical direction (z-axis). 

Among the factors influencing the comparison quality, vegetation coverage can create noisy 

areas in the point clouds. This is the case of some portions of San Leo cliff where some sparse 

bushes led to detect unnatural surface changes. Generally, regarding the point clouds 

obtained from TLS surveys, it can be possible to remove vegetation by using specific filtering 
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algorithm (e.g. Brodu et al. 2012) that could be based on the relative position between the 

points within a certain distance at a certain scale, based on the RGB values or, at least, 

manually. The application of such techniques and automatic algorithms is often effective 

when using laser scanning data, thanks to the capability of the laser beams to penetrate the 

vegetation foliage, but less effective on photogrammetric point clouds, especially in presence 

of a dense and uniform coverage.  

The result of this effect is the impossibility of reconstruct precisely the terrain features, for 

example, below a dense grass coverage on the slope, grown between the surveys. This is the 

case of the northern slope of Ricasoli where a dense grass coverage is increased from the first 

to the second and the third surveys (this is well visible from optical images in Figure 46) 

preventing to triangulate points corresponding to the surface below. This effect resulted in a 

diffuse increase in altitude in all the grassy areas (from 20 to 30 centimetres), visible from the 

comparison process (Figures 53 and 55). Removing these points would lead to have 

widespread holes in the cloud while, isolated trees or sparser vegetation are generally easily 

removed by applying automatic filters and a manual refinement. 

In this case, as well as leading to uncertain comparison results, such vegetation effect did not 

allow to point out fissures and other features of the ground, useful for precise landslide 

delimitation and characterization. However, the contribute of the vegetation can be 

significantly reduced with the use of a high-quality camera with higher resolution, stabilized 

and low distortion lenses, avoiding fish-eye effects and blurry images.  

Considering these aspects, the output of the comparison process is point clouds coloured 

basing on the distance value associated to each point of the reference cloud. Depending on 

the type of monitored phenomena, positive and negative values can be interpreted as a result 

of different morphological processes in the investigated slopes. In particular, considering the 

San Leo cliff, positive values are due to displacements of isolated portions of the cliff and 

unstable blocks, moving towards the sensor. On the contrary, positive values in the case of 

Ricasoli can be related to both ongoing superficial deformations or accumulation of the 

already detached landslide deposits and, furthermore, to the previously described effect of 

the growing low vegetation. 

Negative distance values are, as well as the positive ones, related to different morphological 

processes with respect to the case study. In San Leo, negative values are associated to areas 
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in which detachment of rock masses occurred between the different surveys, while in Ricasoli, 

areas with negative values are found to be related respectively to material detachment from 

the surface, to secondary ground deformations and by lack of vegetation. 

Furthermore, from the point of view of the morphological characterization, the comparison 

map allows to identify the main landslide morphological elements such, as scarps (Figure 62), 

belonging to ongoing processes on the slopes. 

 

Figure 62. Point cloud comparison map for Period D (30th July 2015 – 6th April 2016) with the main 

landslide scarps and the recognized landslides (red dashed line). 

The proposed approach revealed to be an efficient tool also to compare point clouds resulting 

by different sources (TLS and UAV), as shown for Ricasoli test site, as long as the point clouds 

are referred to the same global coordinate system. The results of the comparison are only a 

function of the sign convention, established by the user for the local normal vectors.  

The change detection results can be affected also by random noise, due to roughness or 

instrumental errors as in the case of San Leo cliff where the influence of surface roughness is 

clearly visible on the highly irregular rock faces. Beyond the evident natural roughness of the 

test site, an artificial roughness resulting from survey design errors could occur. Thus, the 

averaging process is performed to reduce the effect of the random noise as formerly remarked 

by different authors (Abellán et al., 2009; Lague et al., 2013; Kromer et al., 2015). Indeed, the 

effect of roughness appears reduced in the resulting San Leo averaged distances (Figures from 

0 35 70 (m)

scarp
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35 to 38). Concerning the Ricasoli slope, the values of roughness are lower than those of San 

Leo cliff and the effect of this parameter on the comparison results is substantially null.  

To distinguish real movements from noise, a minimum threshold is provided to Routine 2 as 

input parameter. Regarding San Leo test site, this level of detection was statistically calculated 

as the standard deviation of the distances computed on the areas considered stable during 

the full monitoring period. Therefore, fifteen distinct detachment zones and eight moving 

zones are extracted from the point cloud (Figure 41). Instead, in the case of Ricasoli slope, the 

dense vegetation did not allow to individuate perfectly stable areas and to discriminate, in 

some cases, the morphological changes from the effect of the vegetation. Thus, a threshold 

of 0.2 m was chosen considering an increase in altitude in the grassy area of 20-30 

centimetres.  

The application of cluster analysis to San Leo test site provides a good distinction of the 

different zones. A field survey was performed to observe and validate the rock block 

detachments and the instability areas (Figure 63). 

 

Figure 63. Location on optical image of the detachment and deformation zones. 

As shown in Figure 63, some areas (indicate by an arrow) represent uncertain results, these 

can be due to sampling bias due to occlusion areas that can induce artificially surface changes 

in points adjacent to occlusion itself. In fact, in the case of the two areas highlighted in Figure 

64 the computed distances are close to shadow zones. 
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Figure 64. Possible uncertain results within San Leo cliff. 

This spatial clustering process is more suitable for well-defined areas being based on the 

computation of Euclidean distances, but can provide unsatisfied results when a clear 

distinction between the several clusters does not occur, as in the case of Ricasoli test site. This 

is an aspect that must be deepened and improved.  

Generally, laser scanning and digital photogrammetry can be effective tools for slope 

characterization and monitoring, especially thanks to their three-dimensionality aspect with 

respect to other remote sensing techniques. In the case of subvertical rock wall as in San Leo, 

GB-InSAR displacement data (see Figure 24) suffer from an ambiguity in locating deformations 

along the rock cliff due to system range resolution of scenario sectors locate at different 

heights along the investigated rock wall. The result is that the displacements are spread along 

the rock wall; the ambiguity increases in case of overhanging parts. Furthermore, TLS and 

photogrammetry data are not affected by decorrelation and they can be used to detect 

displacements also in directions oblique to the line of sight. On the other hand, GB-InSAR can 

reach submillimetre accuracy, while TLS and digital photogrammetry are generally less 

accurate (millimetre to centimetre), even if recent approaches (Kromer et al., 2015) taking 

advantage of point redundancy (in space and time domains), filtering and calibration 

processes, make it possible to achieve similar accuracy than radar systems. 

The integrated use of TLS and GB-InSAR techniques is more convenient in the case of less 

steep slope as reported in Annex 2. 
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6.2 Advantages and drawbacks 

The proposed tool represents an alternative for the morphometric characterization and 

surface change analysis from the comparison of point clouds obtaining from laser scanner and 

digital photogrammetry technologies. In closing, the tool returns a database including the 

number of recognized signed (positive and negative) zones and for each of these sectors: the 

features obtained by the point cloud analysis and comparison (that is azimuth, slope, local 

normal vector, roughness, point density, distance along the local normal, distance along the 

x-, y- and z-axis) and the area. Therefore, the procedure provides some information in terms 

of spatial and temporal evolution of unstable slope. 

Regarding the morphometric features (azimuth, slope and roughness) and density extraction, 

the most common commercial geographic information system software, e.g. ArcMap 

software (www.esri.com), require the gridding or triangulation of the point cloud, which can 

result in a loss of information (as discussed in chapter 3), and the morphometric 

characteristics are calculated for each cell of the obtained raster. On the contrary, the tool 

presented in this thesis allows to compute these features for each set of points defined within 

a neighbourhood cube in a three-dimensional domain. In this regard, the three-dimensional 

information contained in a point cloud is fully exploited. The software permits the comparison 

between two surveys using DEM of difference method (see chapter 3), that provides the 

changes only along an one direction. This tool is opportune when the user is not interested in 

3D knowledge and the vertical component represents the main component of the movement. 

With regard to point cloud comparison, several distance calculation tools (described 

beforehand in chapter 3) implemented in most common software packages exist. Among 

them, RiSCAN PRO, the companion software for RIEGL Terrestrial 3D Laser Scanner Systems, 

contains the surface comparison tool with which the user can compare a point cloud to a 

reference mesh (C2M method). Indeed, this tool involves the triangulation of the point cloud 

chosen as reference one resulting in a time-consuming processing, in particular in the case of 

a huge amount of data. 

Also, the open-source software CloudCompare includes different methods to compare two 

point clouds: C2C, C2M and M3C2. The advantages and the drawbacks of these tools were 

described in depth in chapter 3. Compared to Cloud-to-Cloud (C2C) method calculating the 

absolute distance, the proposed algorithm computes the signed (positive and negative) 
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distances allowing the distinction between detachment zones and accumulation or 

deformation zones. Both tools permit to obtain the distance values projected along the x-, y- 

and z- components. The Cloud-to-Mesh (C2M) method was discussed previously. Lastly, 

Multiscale Model to Model Cloud Comparison (M3C2) algorithm considers the average 

position of each core point within the reference cloud to compute the distance; on the 

contrary, the tool developed during this PhD course uses the original position of each point of 

the reference cloud to compute the signed distance. As highlighted by Kromer et al. (2015), 

the averaging process of the point cloud position can cause contrived results, for this reason 

the averaging of the distances was preferred. 

The advantages and drawbacks of the tool applicability to selected test sites are shown in the 

previous paragraph.  
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7. Conclusions 

The objective of this PhD research programme was to develop a semi-automatic analysis tool 

able to expeditiously investigate the significant spatio-temporal morphological changes in 

unstable slopes by comparing 3D point clouds, obtained by laser scanning and 

photogrammetry techniques, gathered at different epochs. This was possible through the 

MATLAB programming language. 

During the last years, the use of point clouds in Earth Science environment has considerably 

increased (as confirmed by Abellán et al., 2016) and with it, the computational performance 

of computers and the development of new algorithms capable to process a huge amount of 

data, automatically or semi-automatically. 

The point clouds allow to represent the topography of the observed scenario in three 

dimensions without gridding, meshing or triangulation process that can involve a loss of 

information and introduce a bias. The high resolution of these representations is due to their 

high measurement density that provides a huge redundancy of information about the 

investigated scene. The high detail of the represented surface permits to investigate the main 

morphometric characteristics of the investigated unstable slope, such as slope angle, azimuth 

angle and roughness, in three-dimensional space. 

Therefore, during this three-years PhD programme, the effectiveness of point cloud 

exploitation for slope characterization and monitoring was tested and evaluated by applying 

a developed MATLAB tool. The tool was specifically designed to perform an automatic 

morphometric characterization and change detection analysis that allows to evaluate the 

movement affecting an unstable slope. Furthermore, a spatial cluster analysis routine based 

on significant distances was tested. 

The tool was applied to two test sites characterized by different geological setting and 

instability phenomena: the San Leo rock cliff and the Ricasoli clayey slope. In the first case 

study, the terrestrial laser scanning acquisition of five scans of the investigated scenario 

allowed to analyse four monitoring period in the time span of almost one year and half. For 

these periods the significant detachment and deformations zones were individuated and for 

each one, the area was automatically computed. In the case of Ricasoli test site, a combined 

Terrestrial Laser Scanner and Unmanned Aerial Vehicles surveys allowed to recognise the 
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main detachment zones and the areas characterized by deformations or accumulation caused 

by two shallow landslides. 

The proposed methodology proved to be an effective tool for a rapid assessment of slope 

instability since it is based only on point clouds, that is the primary raw product of laser 

scanner and photogrammetry technique. It is important to remark that a field validation is 

always recommended to validate the results of this semi-automatic process. 

The future developments of the approach could involve the volume calculation of detached 

and accumulated zones and the related hazard zonation. 

To conclude, the proposed procedure represents a rapid and effective basic change detection 

approach that can be further integrated and improved with a wide range of new modules and, 

additionally, a graphical user interface, to provide a standard analysis tool for common use.  
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Integration of multicopter drone measurements and ground-based 
data for landslide monitoring

G. Rossi, M. Nocentini, L. Lombardi, P. Vannocci, L. Tanteri, G. Dotta, G. Bicocchi, 
G. Scaduto, T. Salvatici, V. Tofani, S. Moretti & N. Casagli
Department of Earth Sciences, University of Florence, Florence, Italy

ABSTRACT:  The multicopter drone has an increasing role in remote sensing and aerial photography. 
The piloting ease and the mechanical simplicity are the main reasons for drone diffusion as a hobby and 
for professional use. To improve the existing multicopters, the Department of Earth Sciences of Florence 
(DST) has developed a new type of chassis structure that overcomes some critical issues for scientific 
and heavy payload or long flight applications. Using the DST Drone, a long term monitoring campaign 
was performed to understand the possibility of this rising technology to characterize and to monitor 
landslides. High temporal frequency DEMs are performed by the DST drone in Ricasoli village, in the 
Upper Arno river Valley (Tuscany) and integrated with data collected by a wireless network of automated 
instruments: extensometers, biaxial tiltmeters and laser distometer. The integration of different monitor-
ing methods improve the understanding of the movement and the reliability of landslide monitoring. 
Moreover a validation of drone slope monitoring technique has started to extend the future use of mul-
ticopter over landslides areas.

However, remote sensing analysis performed 
using conventional platforms (aircrafts and satel-
lites) highlight some drawbacks such as the high 
costs and the difficult repeatability in a short time.

In the last decade, the combination between 
a rapid development of low cost and small 
Unmanned Aerial Vehicles (UAVs) with improved 
battery technology and the recent improvements 
of conventional sensors (Optical and LiDAR) in 
terms of cost and dimensions, lead to new inter-
esting scenarios in environmental remote sensing 
and surface modelling and monitoring (Colomina 
and Molina, 2014; Travelletti et al., 2012; James and 
Robson, 2012; Remondino et al., 2011; Eisenbeiss 
and Sauerbier, 2011; Fabris and Pesci, 2005).

In particular, as an important mean of obtaining 
spatial data, UAV remote sensing has the following 
advantage: real-time, flexibility, high-resolution, 
low cost, and it can collect information in danger-
ous environments without risk (Chang Chun et al., 
2011).

In this work a multicopter drone, equipped by 
an optical camera, is used to carry out photogram-
metric data acquisition in an area close to the vil-
lage of Ricasoli, in Tuscany (Italy) that is strongly 
affected by landslide activity. The aim is the crea-
tion of high-resolution 3D surface models which 
can be integrated with data acquired using an 
existing ground-based monitoring sensor network 

1 introduction

Displacement monitoring of unstable slopes is 
a crucial tool for the prevention of hazards. It is 
often the only solution for the survey and the ear-
ly-warning of large landslides that cannot be sta-
bilized or that may accelerate suddenly (Travelletti 
et al., 2012).

Displacement monitoring techniques can be 
broadly subdivided into two main groups: ground-
based and remote-sensing techniques.

The first group includes all the techniques that 
necessitate the installation of targets or sensors in 
and outside the landslide and in measuring their 
position at different times. Ground-based tech-
niques have proven to be very effective in ground 
movement monitoring due to their extreme preci-
sion (0.2–2 cm), however they have some drawbacks 
such as their punctual nature, the costs of installa-
tion and maintenance. Remote sensing techniques 
are interesting tools to obtain spatially-distributed 
information on kinematics (Delacourt et al., 2007), 
and can be operational from spaceborne, airborne 
and ground-based platforms. The main advantage 
of remote-sensing monitoring is capability to pro-
vide spatially continuous data, even with centimet-
ric precision, that can be very useful if  integrated 
with the punctual measurements of the ground 
techniques Tofani et al. 2012).
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in order to better characterize and to monitor the 
landslides affecting the village.

2 stud y area

Ricasoli is a village located in a morphological 
high in the Upper Arno river Valley (Tuscany), an 
area historically subject to widespread slope insta-
bility phenomena. The village is located in a typi-
cal NW-SE oriented intramontane basin formed 
during the extensional phase of the Neogene-Qua-
ternary evolution of the Tyrrhenian side of the 
Northern Apennines (Abbate, 1983).

The substrate of the basin is composed of Cer-
varola-Falterona Unit (eastern side) and Macigno 
Formation (western side). The fluvial-lacustrine 
sediments were deposited in this area in three phases 
between Lower Pliocene and Upper Pleistocene and 
can reach a 500 m thickness (Fidolini et al., 2013).

Ricasoli is located above sediments of the 
fluvial-lacustrine phase (second phase) overcome 
by the sediments of the fluvial phase (third phase) 
(Figure 1). In particular, from the bottom to the 
top the second phase consists of:

Terranova silt (TER): grey clayey silts in lower 
part followed upward by medium-fine clayey 
sands. These sediments have been deposited in a 
lacustrine environment and the maximum outcrop 
thickness is 25–30 m.

Ascione Stream Clay (ASC): this unit consists 
of peaty silty clays deposited in lacustrine environ-
ment and they are characterized by the presence of 
decimetric layers of lignite. The thickness of the 
outcrops is 15 m.

Silt and Sand of Oreno Stream (LSO): grey silts, 
occasionally clayey silts or arenaceous silts, which 
superimpose yellowish fine and medium grained 
sands. In the inner part of these sediments residual 
paleosoils and some levels of conglomerates with 
pebbles of sandstones are present. The origin of 
this unit can be referred to a lacustrine environment 
subject to recurrent fluvial episodes and emersion 
stages. The thickness of the outcrops is 50 m.

The third phase consists of:

Casa La Loccaia Sands (LOC): Sands and grav-
els with arenaceous clasts with intercalations of 
reddish arenaceous silts that often present pedo-
genesis phenomena.

Latereto silt (LAT): massive silts highly pedog-
enized, these sediments are deposited in a fluvial 
plain environment.

This morphological high and the surrounding 
slopes result to be affected by numerous landslides, 
which cause the retreat of the escarpments sur-
rounding the village, involving infrastructures and 
buildings.

According to the Cruden and Varnes (1996) clas-
sification, in the area predominantly compound 
slides and falls can be recognized. In particular, 
compound slides causing the retreat of the escarp-
ments affect the slope surrounding the village and 
are triggered by heavy and continuous rainfalls.

In the area many evidences of instability phe-
nomena can be recognized (cracks, fissures on 
the wall of the buildings and on the streets, small 
escarpments, corrugation of the soil surface), in 
particular in the northern slope, recently reprofiled 
and stabilized.

3 materials  and methods

3.1  Inclinometric monitoring network

To monitor the evolution of landslide activity, 
a network of 12  inclinometers was installed in 
Ricasoli village and in the surrounding slopes, in 
autumn 2004. Nowadays 4  inclinometers are no 
longer operating since they were irreparably dam-
aged by the subsoil movement (Figure 2).

The data have been collected through a dig-
ital biaxial probe every 0.5 meters, showing from 
autumn 2004 to spring 2005 and from 2009 to 

Figure 1.  Geological map and localization of Ricasoli 
(Rosi et al., 2013).

Figure 2.  Position of operative and not operative inclino
meters.
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2010 (I2, I4, I5, I7, I8, I9 and I10) the presence of 
numerous and diffuse instability phenomena (Rosi 
et al., 2013).

3.2  Wireless sensor network

Since February 2014 a Wireless Sensor Network 
(WSN) was installed and the obtained data inte-
grated with the traditional instruments. The auto-
mated instruments were located in correspondence 
to the main building cracks and infrastructures.

This sensor node network allows to survey the 
physical characteristics (e.g. temperature, humid-
ity, inclination, displacements) and to elaborate the 
surveyed data; each node forwards these data to a 
coordinating node (called sink node) that in turn 
send them to a server.

The WSN is composed by 15 sensor nodes, one 
of which assumes the role of a sink node and a 
gateway between the network and a server. The 
data are available online in real time (http://winet-
srl.serveftp.com). The sensors are 12 extensom-
eters, 3 biaxial tiltmeters and 2 laser distometers 
(Figure 3).

3.3  The multicopter drone

Usually multicopters have a “spider” structure with 
a central body and many radial arms that support 
the propulsion device.

To improve the structure of the existing multi-
copter, the Department of Earth Sciences of Flor-
ence (DST) has developed a new type of chassis 
structure that allows to overcome some critical 
issues for scientific and heavy payload or long 
flight applications (Figure 4).

The new chassis is patent pending in Italy and 
PCT (Patent Cooperation Treaty) applied in 117 
countries in the world and received its first positive 
report in Spring 2014.

The drone, named Saturn, has an innovative 
perimetric chassis that fully supports flight dynam-
ics. The improved structure has these main key 
features:

•	 Increased space without constraints to position-
ing electronics, flight system and instruments.

•	 The central payload area can be connected in a 
rigid manner or even with a flexible mount to 
dramatically cut down mechanical vibrations 
from the propulsion system.

•	 Maximized flexibility of propulsion configura-
tion with a single chassis: without any modifi-
cations to the chassis it is possible to vary the 
number of propulsion systems (three, four, six 
etc..) even during the flight.

•	 The flexible propulsion configuration allows us 
to fit the need of every single mission: less engine 
to increase autonomy, more engine to allow for 
heavy payload.

•	 Variable propulsion geometry to keep the per-
fect balance with all types of payloads and to 
manage an emergency landing in case of a pro-
pulsion unit failure.

The DST multicopter is a drone, and is capable 
of autonomous flight, from take-off  to landing, 
and emergency management.

Saturn drone has onboard a complete and fully 
configurable acquisition system with frame grab-
ber for scientific instruments.

3.4  Digital photogrammetry

In order to obtain a detailed reconstruction of the 
topography of the site, an aerial photogrammetric 
survey was performed on July 30th 2015.

Digital photogrammetry is an innovative tech-
nique that allows to reconstruct a 3D surface model 
by triangulating the position in the 3D space, of 
pixels that are visible in two or more images.

In principle, once images are oriented and, pos-
sibly, calibrated, is possible to derive DSM and Figure 3.  Position of the sensors.

Figure 4.  The DST multicopter Saturn.
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orth photos (Colomina & Molina, 2014), along 
with very high definition point clouds. This proc-
ess can be carried out using one of the several 
Structure-From-Motion (SfM) softwares that, 
exploiting specific algorithms for image triangula-
tion and bundle adjustment, allow to reconstruct 
very accurate 3D representation of any surface.

Furthermore, thanks to the time and cost-ef-
fectiveness of the technique, is possible to repeat 
measurement surveys at regular time intervals and 
monitoring the changes occurred between different 
acquisitions by and comparing the results.

In this work a point cloud obtained by the 30th 
multicopter survey is compared to a Terrestrial 
Laser Scanner (TLS) point cloud, acquired in late 
March 2015.

The photogrammetric survey is performed in 5 
different stages: (1) mission planning, (2) acquisi-
tion of ground control points with GPS, (3) flight 
and image acquisition, (4) image processing and 
(5) implementation in GIS environment.

The first stage consists in the adoption of the 
flight plan, that have to be created ad-hoc to ensure 
the best coverage of the target area, with an opti-
mal photo overlap in frontal (overlap) and lateral 
direction (sidelap), taking into account the camera 
footprint at a certain quote.

The sidelap and overlap were respectively 50% 
and 60% in order to guarantee a sufficiently redun-
dant coverage of the area of interest (Fig. 5(a)).

In order to have a georeferenced and calibrated 
3D model, a ground GPS survey was carried out by 
collecting 7 Ground Control Points (GCPs) in cor-
respondence with objects on the ground that can 
be easily recognized in the aerial photos (Fig. 5(b) 
and (c)). The images were processed using the 
software Agisoft Photoscan Professional and the 
resulting data were implemented in GIS environ-
ment (Fig. 5(d) and (e)).

Using the Surface Comparison tool (RiSCAN-
PRO; RIEGL, 2010), the drone point cloud 
was compared with Laser Scanner point cloud, 
acquired by a Terrestrial Laser Scanner (TLS) 
on 30th March 2015, collecting 1,500,000 points 
with angular resolution of 0,034°. This tool allows 
to compute the distance between a reference 
triangulated mesh and a compared data point. 
The comparison was performed assuming the 
TLS data mesh as reference one and calculating 
the differences through normal vectors mode. The 
result is the normal distance between each point of 
the drone cloud and the plane of the nearest data 
point of the reference mesh, obtained as an aver-
age of all close triangle normal vectors.

Figure 5.  Phases of the multicopter drone survey: (a) Flight plan with image coverage of the area (number of images); 
(b) acquisition of selected GCPs with GPS; (c) digital image orthomosaic with locations of the 7 GCPs; (d) resulting 
point cloud with camera positions; (e) georeferenced DTM visualized in a common GIS software, associated with 1 
meter contour lines.
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4  RESULTS AND DISCUSSION

During the last two years (2013–2015), the incli-
nometers did not register significant displacements 
neither in the village nor in the southern slope of 
the Ricasoli village of the area.

The analysis of the inclinometric data in corre-
spondence with the northern slope, highlighted a 
main slip-surface at a 13–18 m depth, along with 
others widespread more superficial surfaces.

In particular, the inclinometer I8 registered an 
acceleration during the last year of monitoring 
until rupture, occurred in early 2015 at 13.5  m 
depth. Also the nearby inclinometer I4 is broken 
at a depth of 17 m, since 2013, showing an ongo-
ing general deformation at the foot of the northern 
escarpment.

Since the installation (1st March 2014) the wire-
less sensor network substantially did not register 
evident displacements.

The ground image coverage obtained by aerial 
survey is shown in Figure 5(a); the maximum cov-
erage is in correspondence of the lower part of the 
escarpment, where every point of the scene is vis-
ible in more than 9 images.

Further details on the aerial survey are reported 
in Table 1.

The resulting digital orthomosaic has ground 
resolution of ∼2 cm-pixel and the 3D point cloud is 
composed by nearly 57 million points (Figure 5(d)). 
Furthermore, an high-resolution DTM (0.05  m/
pix) was obtained by using the point cloud, appro-
priately filtered in order to remove all the points 
processed on trees and high vegetation.

The point cloud acquired by the drone was resa-
mpled in order to have the same resolution as the 
TSL one, equal to 10 centimeter per point.

The result of the comparison do not highlight 
significant displacement measured along the TLS 
line of sight, occurred between March 30th 2015 
and July 30th 2015, as shown Figure 6.

5 conclusions

During the monitoring of the northern slope of 
Ricasoli different data measured from ground and 
aerial sensors were integrated. The integration 
between drone aerial survey and inclinometric and 
wireless network, permitted to overcome the limi-
tations of the punctual measures of the traditional 
monitoring systems (inclinometer, distometers, 
tiltmeters, etc.).

The images acquired during the aerial drone 
survey allowed to obtain a continue 3D surface 
model of the studied area using a photogrammet-
ric approach.

The results of the drone survey has proven to be 
reliable and perfectly integrated with other point 
clouds acquired with different methods such as, in 
this case, a high resolution Terrestrial Laser Scan-
ner technique.

The detection of possible displacements occurred 
in the covered area between the two acquisition 
was performed by comparing the different surface 
point clouds. As a result, no significant movements 
were highlighted by this comparison, in perfect 

Table 1.  Data related to the flight performed with the 
multicopter drone on July 30th 2015.

Multicopter drone survey

Number of images 58
Average flying altitude (m.a.g.l.) 68
Ground resolution (m/pix) 0.019
Coverage area (km2) 0.0185769
Number of tie-points 5952
Number of projections 46717
Error (pix) 0.932718

Figure 6.  Results of surface comparison between the point clouds acquired using the drone and using TLS.
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agree with the information provided by the ground 
monitoring. However, since no displacements have 
occurred yet, we do not have a full validation of 
the reliability of the drone survey technique on an 
area that is in movement. The correspondence with 
TLS data is a key and a starting point to introduce 
drone technique to monitor slope stability, since 
it has proven to be an easier and more cost—and 
time—effective approach with respect to laser 
scanning on a multi temporal survey.

Thanks to these potentials and to its repeatabil-
ity, drone surveys will become an integral part of 
the monitoring system in Ricasoli village and will 
collect more data to validate the technique.
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The Calatabiano landslide (southern Italy): preliminary
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Abstract On 24 October 2015, following a period of heavy rainfall,
a landslide occurred in the Calatabiano Municipality (Sicily Island,
Southern Italy), causing the rupture of a water pipeline supplying
water to the city of Messina. Following this event, approximately
250,000 inhabitants of the city suffered critical water shortages for
several days. Consequently, on 6 November 2015, a state of emer-
gency was declared (O.C.D.P. 295/2015) by the National Italian
Department of Civil Protection (DPC). During the emergency
management phase, a provisional by-pass, consisting of three
350-m long pipes passing through the landslide area, was con-
structed to restore water to the city. Furthermore, on 11
November 2015, a landslide remote-sensing monitoring system
was installed with the following purposes: (i) analyse the landslide
geomorphological and kinematic features in order to assess the
residual landslide risk and (ii) support the early warning proce-
dures needed to ensure the safety of the personnel involved in the
by-pass construction and the landslide stabilization works. The
monitoring system was based on the combined use of Ground-
Based Interferometric Synthetic Aperture Radar (GB-InSAR) and
terrestrial laser scanning (TLS). In this work, the preliminary
results of the monitoring activities and a remote 3D map of the
landslide area are presented.

Keywords GB-InSAR . Laser scanning . Landslides . Emergency
management . 3Dmapping

Introduction
Landslides represent one of the most frequent geo-hazards. They
represent serious threats to human life and can cause serious
socioeconomic losses on the order of billions of Euros, in terms
of damage to property, infrastructure and environmental degra-
dation (Kjekstad and Highland 2009; Petley 2012). Recent events
show a significant increase in the number of disasters with
natural and/or technological causes, and these disasters can have
potentially serious consequences for critical infrastructure (CI)
(Murray and Grubesic 2007). Where this infrastructure tends to
fail or to be destroyed, the resulting cascade effects (chain of
events) can lead to catastrophic damage and negative effects on
people, the environment and the economy (Geertsema et al.
2009; Kadri et al. 2014). In countries characterized by a geologically
young and tectonically active territory, the susceptibility to instability
phenomena is further increased. In Italy in particular, approximately
70 % of the country can be considered exposed to landslide risk
(http://www.protezionecivile.gov.it/) and the related estimated socio-
economic losses range from 1 to 2 billion dollars annually (Canuti
et al. 2004). Currently, these values are certainly underestimated.

In the field of landslide detection, mapping, monitoring and
management, the availability of advanced remote sensing tech-
nologies, which allow the systematic and easily updatable ac-
quisition of data, may enhance the implementation of near-real-

time monitoring activity and the production of landslide maps,
optimizing field work (Guzzetti et al. 2012; Frodella et al. 2014).
In recent years, the Ground-Based Interferometric Synthetic
Aperture Radar (GB-InSAR) technique has been widely used to
monitor ground displacements in research on landslides (Tarchi
et al., 2003; Herrera et al. 2009; Barla et al. 2010; Schulz et al.
2012; Corsini et al. 2013; Bardi et al. 2014), volcanoes (Bozzano
et al. 2011; Nolesini et al., 2013; Di Traglia et al. 2014) and
sinkholes (Intrieri et al. 2015). Terrestrial laser scanning (TLS)
has become a widely applied technique for the detection and
characterization of several types of mass movements as it allows
the rapid collection of detailed and highly accurate 3D ground
representations (Abellan et al. 2006; Oppikofer et al. 2008;
Jaboyedoff et al. 2009; Fanti et al. 2012; Gigli et al. 2014). The
intrinsic characteristics of the abovementioned techniques, such
as (i) producing near-real-time displacement maps without
physical access to the analysed area; (ii) observing the investi-
gated scenario 24 h per day and in all weather conditions; (iii)
generating high-resolution images, especially for analysis of
local-scale phenomena; and (iv) providing high versatility and
transportability, represent consistent advantages with respect to
traditional methods.

This work presents an example of the advantages provided by
the integrated use of GB-InSAR and TLS to monitor and manage
the post-emergency phase associated with a landslide located in
the Catania Province (Sicily Island, Southern Italy). The landslide
occurred on 24 October 2015 following intense rainfall that oc-
curred during the previous days (a total of approximately 195 mm
measured between 21 and 24 October 2015; data provided by
Osservatorio delle Acque—Regione Siciliana) and ruptured a wa-
ter pipeline that was part of the Messina city aqueduct.
Consequently, a considerable lack of water occurred for a large
number of the city inhabitants. A provisional by-pass, consisting
of three 350-m long pipes passing through the landslide area, was
implemented to restore water to the city during the emergency
management phase. An integrated monitoring network was also
implemented to assess the residual risk by analysing the geomor-
phological and kinematic features of the landslide and to support
the early warning procedures needed to ensure the safety of the
personnel involved in the by-pass construction and the long-term
landslide stabilization works. The workflow in Fig. 1 explains the
organization of the performed activities.

Geological and geomorphological setting
The study area is located in the Calatabiano municipality (Catania
Province, Sicily Island), approximately 50 km southwest of the city
of Messina and approximately 3 km inland from the Ionian coast-
line (Fig. 2). From a geomorphologic perspective, the study area is
located in the Alcantara River valley, which is delimited to the
north by the Peloritani Mountains, to the west by the Nebrodi
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Mountains and to the south by the north-eastern slopes of the
Etna Volcano (Fig. 2).

The study area is located on the right side of the lowermost
Alcantara river alluvial plain and is characterized by hilly terrain
ranging from approximately 60 to 250 m a.s.l. The landslide (lat.
37° 49′ 39″; long. 15° 13′ 26″), which featured a 100-m elevation
range and was approximately 110 m in maximum length and 65 m
in width, affected a large portion of the east-facing slope
overlooking the medieval Calatabiano Castle (Figs. 3 and 4). Its
topmost sector is characterized by a wide crown area, where a
rotational movement (Cruden and Varnes 1996) occurred,
displaying a retrogressive behaviour and almost reached the slope
ridge at approximately 200 m a.s.l. The landslide body and toe are
affected by minor scarps, while two erosional channels, formed by
mud flows that almost reached the creek valley at approximately
100 m a.s.l., border the right and left flanks of the landslide (Figs. 3
and 4). The creek valley is located just a few hundred metres from
the northern sector of the inhabited area of Calatabiano and
represents a high risk for the local population in case of possible
landslide reactivation. The landslide-affected slope is character-
ized by olive trees, shrubs and rocky scattered outcrops, and field
surveys have revealed that the mass movement involved detrital
slope deposits a few metres thick and consisting of heterogeneous
clasts in a coarse sandy matrix with a small percentage of loam
(Fig. 4).

These deposits were formed by the weathering and erosion of
the bedrock, represented by the arenaceous-conglomeratic facies
(PDTc) of the Piedimonte Formation (Upper Eocene-Lower
Oligocene) (Catalano et al. 2010). This lithofacies is composed of
irregular alternations of conglomerates and coarse sandstones.
The conglomerate layers present thicknesses of up to 10 m, while
the sandstone strata rarely exhibit thicknesses greater than 1 m
(Catalano et al. 2010). In the upper part of the slope (Fig. 4), a
tectonic thrust contact that erased the original heteropic

succession of the two lithofacies represents the transition to the
grey clays lithofacies (PDTa) of the Piedimonte Formation (Cassola
et al. 1991).

Employed remote sensing monitoring techniques

GB-InSAR monitoring
The employed radar system is composed of a coherent microwave
transceiver unit operating on the Ku band with a bandwidth of
200 MHz and a central frequency of 17.2 GHz. Synthetic aperture is
achieved by moving a motorized sled hosting the radar head along
a 3-m long straight rail (parallel to the azimuth direction; Fig. 5a).
The working principle of the GB-InSAR technique involves radi-
ating microwaves toward the investigated area and measuring the
backscattered signal, obtaining a SAR image. The SAR image is
created by combining the spatial resolution along the direction
perpendicular to the rail (range resolution; ΔRr) and the one
parallel to the synthetic aperture (azimuth, or cross-range resolu-
tion; ΔRaz) (Luzi 2010), containing amplitude and phase informa-
tion of the backscattered echo from the investigated scenario
objects.

By evaluating the phase difference, pixel by pixel, between two
pairs of averaged sequential SAR images of the same scenario, it is
possible to obtain a 2D displacement map of the investigated area,
which constitutes an interferogram (Luzi et al. 2004; Monserrat
et al. 2014). It is important to note that the system is able to
measure only the movement component parallel to the instrument
line of sight (L.O.S.—direction connecting the sensor and the
investigated object), thus displacements that occur in the direction
perpendicular to the sensor are missed. The cross-range resolution
depends on the target distance, and good acquisition geometries
thus depend on the observed scene. The principal limitations of
the GB-InSAR technique are due to temporal decorrelation and
atmospheric noise (Luzi et al. 2010).

Fig. 1 Logical scheme of the applied operative procedure
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TLS survey
A TLS device consists of a directional, coherent and in-phase
optical beam (or discrete pulses) transmitter, a back-scattered
signal receiver and a scanning mechanism (e.g., a rotating mirror).
The main product of a long-range laser scanning technique is a
high-resolution matrix of points (called a point cloud), defined in
polar coordinates (range, horizontal and vertical scanning angle),
obtained by measuring the scanner-object distance with great
accuracy (on the order of millimetres or centimetres). Given the
range distance and the scanning angle, the Cartesian coordinates
of each point can be obtained. The high acquisition rate (up to
hundreds of thousands of points per second) makes the detailed
3D shape of the object immediately available. Furthermore, for
each point, the intensity of the reflected signal is acquired. The
intensity data can provide some information about the type of
material and the soil moisture content of the targets (Pesci and
Teza 2008; Voegtle et al. 2008; Franceschi et al. 2009).

The monitoring system
In the post-landslide event phase, on 11 November 2015, a GB-
InSAR system was installed on the terrace roof of the

Calatabiano Castle (Fig. 5a, c). With the aim of optimizing
the monitoring system efficiency, the following installation
criteria were applied: (i) an adequate sensor-target distance
(approximately 500 m), aimed at guaranteeing an azimuth
resolution spanning from 40 cm (at 150 m range distance) to
106 cm (at 400 m range distance); (ii) minimum presence of
obstacles between the radar sensor and the investigated ob-
jects; and (iii) a stable radar location (Fig. 5a). The radar
system produces interferograms every 2 min, but cumulative
displacement maps can be generated using longer (monthly)
temporal baselines to detect both rapid and long-term move-
ments. To obtain a high-resolution 3D surface of the post-event
landslide area and to geo-rectify the acquired radar images for
a better interpretation of the radar displacement data, TLS
surveys were performed on 11 November from the radar system
position (Fig. 5a). The employed terrestrial laser scanner is a
long-range and high-accuracy 3D time-of-flight instrument
(model Riegl LMS-Z420i; RIEGL 2010). This device is able to
acquire the position of up to 12,000 points/s by calculating the
round-trip travel time of a pulsed laser beam (near-infrared
wavelength) from the instrument to the scanned object, with a

Fig. 2 Study area setting and landslide area location, including the rain gauge station
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maximum angular resolution of 0.008°, an accuracy of ±10 mm
(one σ at 50 m range under RIEGL test conditions) and from a
maximum distance of 800 m (Fig. 5d). The acquired TLS point
cloud (approximately 14.5 million points) was linked to a
global reference system by performing a GPS survey of 12 laser
reflectors placed on the investigated slope. The raw data were
subsequently cleared of vegetation, the data points were trian-
gulated, and a 3D mesh was created to produce a continuous
surface for the slope.

Results

Monitoring data
The analysed preliminary radar data spans from 11 November
to 31 December 2015, when the crucial landslide restoration
works and by-pass construction was performed. The logistics
of the GB-InSAR system installation provided a good spatial
coverage of the landslide-affected area, including its main
features (crown, minor scarps, erosional channels) and the
pipeline by-pass and bulldozer trails related to the earth-
works (Fig. 5). For the monitored site, the cumulative dis-
placement maps were less affected by atmospheric noise than
the single interferograms. Therefore, the cumulative displace-
ment maps were considered more suitable for the ground
deformation analysis of the slope and for the detection of
landslide critical sectors. The detailed cumulative displace-
ment maps are represented with a colour scale visualization:
(i) stable areas are shown in light green; (ii) areas character-
ized by displacement toward the sensor L.O.S. feature colours
from yellow to red and purple (maximum cumulative dis-
placement); and (iii) areas characterized by displacements
away from the sensor L.O.S. feature colours from dark green
to deep blue (Fig. 6).

With the aim of analysing the landslide kinematics, displace-
ment time series were extracted from 8 monitoring points in the
displacement maps. These points were selected on the basis of high
coherent values of the radar signal and high representativeness of
the landslide behaviour (P1–P8) (Figs. 7 and 8). Specifically, the
first six points (P1–P6) are located within the landslide body, and
their cumulative displacements range from 4.5 mm (P5) up to
83 mm (P1). These points are representative of the areas that
showed the highest displacement. The last two points (P7 and
P8) were selected in order to be representative of stable areas: they
are located outside the landslide body and correspond to a rocky
outcrop and a sector of artificial drainage, respectively.

By means of the radar data analysis, a first relevant displace-
ment phase and two further phases after two acceleration events
were detected and analysed (Table 1):

& The first 10 days of monitoring activity (11–21 November 2015)
show a widespread sector characterized by cumulative displace-
ment values of up to 24 mm (red oval in Fig. 6) corresponding to
the upper landslide crown area. Peak cumulative displacements
of up to 55 mm are located in small areas in the landslide top-
middle and lowermost sectors (white circles in Fig. 6).

& The first phase (after the first acceleration event; 25–26
November 2015) displays 15-mm peak cumulative displace-
ments localized in two restricted areas: the first corresponding
to the landslide upper portion (around control point P4) and
the second corresponding to the top-middle one (around con-
trol point P1) (Fig. 7a).

& The second phase (after the second acceleration event; 22–22
December 2015) exhibits a 15-mm peak cumulative displace-
ment distributed in a widespread area of the landslide top-
middle sector (around control points P1–P4) and along the
right flank of the slope (Fig. 7b).

Fig. 3 a Image of the Calatabiano landslide acquired on 10 November 2015, from the monitoring system installation point. The dashed white line represents the main
landslide crown, the dashed red line represents the interrupted pipeline (b), and the black line represents the new pipeline by-pass (c). P1–P8 represent the GB-InSAR
monitoring points
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To visualize the detected L.O.S. displacements directly on the
3D representation and therefore better localize the most critical
areas of the landslide with respect to the work activities (land-
slide sectors, pipeline by-pass and bulldozer trails), the GB-
InSAR data were merged with the TLS 3D model to obtain a
3D GB-InSAR cumulative displacement map (Fig. 9). Figure 9
displays the selected control points and shows that the maxi-
mum cumulative displacements recorded during the monitoring
period was approximately 100 mm and occurred near the con-
trol point P1.

An early warning procedure was also implemented through the
adoption of displacement and velocity thresholds calibrated dur-
ing the first days of monitoring, when the movements were
greatest. A simplified early warning system was developed, based

on three different warning levels: ordinary, pre-alarm and alarm
level. To ensure the safety of the workers involved in the restora-
tion works, hourly displacement thresholds were adopted. A
change in the level occurred if the following thresholds are
surpassed: between 0.5 and 1.0 mm/h for the pre-alarm and
>1.0 mm/h for the alarm level. To prevent possible damage to
the pipeline by-pass (here representing the CI) and because this
slow-moving landslide did not reach high deformation rates, daily
displacement thresholds were adopted (between 12 and 24 mm/day
for the pre-alarm and >24 mm/day for the alarm level).
Communication, which is a fundamental issue of every early
warning system (Intrieri et al., 2015), was achieved through the
dispatch of monitoring bulletins every 12 h and whenever the
warning thresholds were exceeded.

Fig. 4 Geological framework of the landslide area and schematic cross section (red oval highlights the landslide area)
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Fig. 5 a Ground-based radar and TLS positioned on the roof of Calatabiano Castle; b power image of the GB-InSAR surveyed slope; c point cloud coloured with intensity
values of the reflected laser beam.

Fig. 6 a Cumulative displacement map obtained by 1 h average interferograms acquired between 11 November 2015 17:59 h GMT + 1 and 21 November 2015 23:00 h
GMT + 1 (the red oval represents sectors characterized by cumulative displacement values of up to 24 mm, whereas the white circles indicate sectors characterized by
cumulative peak displacements of up to 55 mm); b corresponding optical image of the landslide scenario acquired on 17 November 2015
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Remote 3D mapping
The high-resolution point cloud and the variable laser return
intensity values also allowed us to add information regarding

the main geomorphologic features of the landslide. In fact, the
raw laser scanner product (Fig. 10) shows high intensity values
in association with bare soils and rock outcrops. In contrast, the

Fig. 7 Cumulative displacement maps obtained based on 1 h averages acquired between a 25 November 2015 05:30 h GMT + 1 and 27 November 2015 17:33 h GMT + 1
and b 20/12/2015 04:59 h GMT + 1 and 22 December 2015 20:12 h GMT + 1. P1-P8 represent the GB-InSAR monitoring points

Fig. 8 Time series of GB-InSAR monitoring points (dotted red rectangle highlights the detected displacement phase: 1 = first 10 days of monitoring; dotted black
rectangles denote the phases after the two acceleration events: 2 = first period, 3 = second period).
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erosional channel thalwegs of the landslide are characterized by
low intensity values, probably due to the moisture influencing
the backscattered signal through absorption of the near-infrared
wavelength beam (Franceschi et al. 2009). However, it is impor-
tant to highlight that the difference in intensity values depends
on several factors, such as the acquisition geometry (e.g.
scanner-object distance and angle of incidence; Kaasalainen
et al. 2011), the surface roughness and the presence of vegeta-
tion. The TLS point cloud was also used to validate the location
of the selected GB-InSAR control points with respect to the
landslide geomorphological features: right flank erosional chan-
nel topmost sector (P1), by-pass pipes trail (P2, P3), upper
crown sector (P4), left flank erosional channel source area
(P5), lowermost sector (P6), rock outcrop (P7) and upper sector
of the artificial drainage (P8).

Discussion
The main outcomes of this work suggest the effectiveness of
the integrated monitoring system adopted to manage the
Calatabiano landslide post-emergency phase. The peculiarity
of this landslide event was its severe damage to CI, here
represented by the disrupted local aqueduct, which produced
a water shortage crisis in the city of Messina that lasted for
several days and caused problems and discomfort for the local

population. The adopted approach gave priority to a rapid
system installation and near-real-time monitoring, in order to
rapidly detect landslide displacements, ensure the safety of the
workers involved in both the water pipeline by-pass construc-
tion and the landslide stabilization works and avoid further
possible damage to the CI. Thanks to the versatility and por-
tability of the devices, the GB-InSAR system was installed in a
few hours on 11 November 2015, and the first displacement
data became available while the TLS survey was performed.
Furthermore, the employed remote sensing technique integra-
tion proved to be effective in surveying and monitoring the
whole slope, overcoming the limitations of traditional single-
point measurements.

The first 10 days of monitoring (11–21 November 2015; Figs. 6
and 8, Table 1) recorded the highest deformation rates (phase 1),
which were related to the residual displacement of the landslide
following the initial failure. As shown in Fig. 11, the landslide
trigger was clearly related to the rainfall events that preceded on
24 October. In particular, more than 195 mm of cumulative pre-
cipitation fell during the period between 21 and 24 October (of
which 182 mm occurred solely on 22 October).

Another rainfall event occurred between 30 October and 3
November (a total of 130 mm of cumulative precipitation was
recorded, with a daily peak of 90 mm on 2 November; Fig. 11).

Table 1 Analysed cumulative displacement (in mm) and acceleration events (mean velocity in mm/day) of the GB-InSAR control points

Time period Elapsed hours Point 1 displacement
(velocity)

Point 5 displacement
(velocity)

Point 6 displacement
(velocity)

11 Nov. 2015 17:59–21 Nov. 2015 23:03 244 54.3 (0.22) 2.1 (0.01) 19.6 (0.08)

25 Nov. 2015 02:25–26 Nov. 2015 17:00 37 7.6 (0.19) 1.6 (0.04) 12.8 (0.35)

20 Dec. 2015 23:43–22 Dec. 2015 20:12 45 3.7 (0.08) 0.9 (0.02) 13.7 (0.31)

Fig. 9 Cumulative 3D displacement map for the entire monitoring period (from 11 November to 31 December 2015). GB-InSAR monitoring points (P1-P8) are highlighted
together with the pipeline by-pass trail (blue line) and the bulldozer trail (white line)
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This event may have contributed to the deformational trend.
Two additional, albeit less intense, displacement periods (phases
2 and 3) were recorded during 25–26 November 2015 and 20–22

December 2015 (Figs. 7 and 8, Table 1), coinciding with two less
intense rainfall events (approximately 25 and 30 mm of cumu-
lative recorded precipitation, respectively) (Fig. 11). While the

Fig. 10 TLS point cloud shaded by intensity values and GB-InSAR control points. Yellow dashed polygons indicate high intensity values related to bare soils and rock
outcrops, corresponding to the following slope sectors, from top to bottom: the landslide crown, the by-pass pipes trail, the left bank erosional channel source area and
the lowermost sector. The red lines mark the thalwegs of the erosion channels. P1–P8 represent the GB-InSAR monitoring points

Fig. 11 Rainfall data from the Alcantara rain gauge station (courtesy of Osservatorio delle Acque—Regione Siciliana). Dashed rectangles indicate the first 10 days of
monitoring (in red) and the phases after two further acceleration events (in black)
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first displacement phase (particularly evident in the P1 and P4
control points time series) shows the features of post-landslide
residual deformation, the second and third phases (particularly

evident in the P1, P5 and P6 control points series; Fig. 8) were
associated with impulsive acceleration events that were very
similar in terms of magnitude and elapsed time (Table 1).

Fig. 12 3D geomorphological map of the Calatabiano landslide, projected on a high-resolution DEM, obtained by means of the TLS survey, and on the GB-InSAR
cumulative displacement map. Control points, the pipeline by-pass trail (black line) and the ruptured pipeline (dashed red line) are highlighted. P1–P8 represent the
GB-InSAR monitoring points

Fig. 13 Evolution of the earthworks on the monitored slope: a, b by-pass trail construction (10–12 November); c, d beginning of the slope reprofiling and by-pass pipe
emplacement (14–17 November); e, f geogrid positioning and intense slope reprofiling (21 November–27 December)
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The interpretation of the remote sensing data collected from
11 November to 31 December 2015 was supported by means of the
remote 3D products (Figs. 9 and 10). Furthermore, these 3D
products were integrated to generate an accurate 3D geomorpho-
logical map of the landslide (Fig. 12), with the aims of accurately
locating the recorded displacements with respect to the landslide
geomorphological features and the excavation activities and de-
tecting critical sectors on the monitored slope. The following
areas were determined to be critical sectors:

& The uppermost area of the right flank erosional channel, which
during the monitored period was affected by high and constant
displacements (Figs. 6, 7a and 9), as confirmed by the control
point P1 time series (Fig. 8)

& The left flank erosional channel source (control point P5 area)
and lowermost sectors (control point P6 area) (minor scarp in
Fig. 12). The latter sector proved to be one of the most active in
the first 10 days of monitoring (Fig. 6), as displayed by the P6
cumulative displacement (approximately 62 mm, the second
highest value within the control points). Corresponding to the
erosional channels, the time series of control points P1, P5 and
P6 clearly show the presence of displacement, probably in-
duced by the high ground moisture content, as confirmed by
the rainfall data (Fig. 11) and field inspections

& The landslide upper crown area (control point P4 area), which
was largely involved in the residual deformation observed
during the first 10 days of monitoring (Fig. 6)

& The by-pass pipes (located in the area of control points P2 and
P3), displaying 32 and 39 mm of cumulative displacement,
respectively (Figs. 8 and 9)

& Monitored slope areas located outside the landslide body,
corresponding to both the earth movement associated with
the excavation of the by-pass and bulldozer trails and the
landslide slope re-profiling (Figs. 7 and 13).

The main limitations of the GB-InSAR displacement data in-
terpretation included noise effects and temporal decorrelation,
due to the widespread vegetation cover of the monitored slope
and the influence of man-made excavations and earth movement
related to the by-pass construction and landslide restoration
works. Therefore, the remotely sensed data were validated by
means of periodic field inspections (Fig. 13), which proved to be
crucial in detecting and interpreting the evolution phases of the
construction during the monitoring period, especially for the bull-
dozer trails and slope reprofiling area (Figs. 7b and 13d–f).

The 3D landslide geomorphological map was fundamental in
understanding the kinematic mechanisms associated with the
landslide mass and in assessing the areal distribution of the land-
slide (a total of approximately 4900 m2) and its volume (on the
order of approximately 25,000 m3, considering a 5-m average
thickness of the landslide body based on field surveys).
Therefore, accurate mapping provided important information for
the local authorities and technicians involved in the emergency
management and in the restoration works.

Conclusions
On 24 October 2015, intense rainfall triggered a landslide north of the
town of Calatabiano (Sicily Island, Southern Italy). Although the

portion of the slope affected by the failure was not exceptional in size
or volume and no human casualties occurred, the event had an
enormous social impact. The major pipeline providing water to the
city of Messina was disrupted, and approximately 80 % of the city had
limited access to this vital service for several days. The event demon-
strated how the risk associated with landslides should not be assessed
and managed only in terms of human safety but also in terms of the
vulnerability of critical infrastructure. The remediation works re-
quired the creation of a by-pass trail around the damaged pipeline
section and had to be performed directly on the unstable slope.
Therefore, to assess the safety of the workers, a fully operational
real-time monitoring network was deployed. The integrated use of
GB-InSAR and TLS techniques allowed for a complete landslide
characterization and a continuous assessment of the ongoing defor-
mation rates on the slope. Two displacement thresholds and two
velocity thresholds were defined in agreement with the emergency
plan, which was based on a scale with three different warning levels.
The triggering of the landslide was related to the rainfall events that
preceded 24 October 2015, and the two accelerations recorded during
the monitoring period (from 10 November to 31 December 2015) were
correlated with the amount of precipitation in the area.
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