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ABSTRACT 

Thanks to the large availability of portable devices and the growing interest in the Internet of 

Things, during crises, social networks or alerts sent through mobile devices or sensor net-

works are available and can be matched each other to perform situational analysis. However, 

the inclusion of multiple heterogeneous sources in situational analysis leads to two main is-

sues: i) a source could deliver (voluntarily or erroneously) wrong data damaging the integrity 

and the correctness of the analysis, and ii) a significant amount of heterogeneous data need to 

be processed. As a consequence, the crisis management operator faces a large amount of po-

tentially unreliable data. In this paper we present a relevance labelling strategy to process in-

formation gathered from heterogeneous data streams to select the most relevant events. These 

are presented to the crisis management operator with the highest priority. Our strategy is 

evaluated using events collected by the Secure! crisis management system, considering three 

real crisis scenarios happened in Italy in 2015. Results show that our strategy is able to cor-

rectly identify sets of relevant events, supporting the activities of the crisis management oper-

ator. 

KEYWORDS: Crisis Management System; Human Sensors; Heterogeneous Data; Data Fil-

tering; Relevance Labelling; Twitter  

1. INTRODUCTION 

One of the main tasks performed by public authorities is to take care and ensure safety and 

security of infrastructures, society and citizens. The management of crises as for example 

earthquakes or terroristic attacks consists in “encompass the immediate response to a disaster, 

recovery efforts, mitigation, and preparedness efforts to reduce the impact of possible future 

crises” [1]. A strong support is provided by Crisis Management Systems (CMSs) that imple-

ment functionalities to sustain and support the different parts of the management process e.g., 

collection, filtering and visualization of data [16].  

Recently, the interest in researching and developing CMSs is growing significantly, mainly 

due to an increasing number of available information [6], [27]. This includes information pro-

vided by physical sensors and humans, both citizens and trained personnel, which generate 

information (e.g., using their smartphones [2], [8]) accessible through social networks [15], 

[29]. On one side having multiple information sources is a benefit for the analysis of a crisis 

scenario, but on the other side the risk is that the crisis management operator is overloaded of 

potentially unreliable information, negatively affecting the response process. For this reason, 

the information needs to be processed and filtered to become readable and trusted for the hu-

man operator. 

Crisis data from the citizens generate Volunteered Geographic Information (VGI [8]) that 

is shared for example through SMS [40], Social Media [38] or dedicated applications [22]. 

This activity involves crowd-sourcing [20] and crowd-sensing [21] techniques: crowd-

sourcing is the process of obtaining needed services, ideas, or content by soliciting contribu-

tions from a crowd of people (e.g., online communities), while crowd-sensing refers to the 

involvement of a large group of participants in retrieving reliable data from a specific field. 
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Considering “human sensors” together with sensors dispatched in the infrastructures leads to 

an increased number of sources and consequently data, but introduces quality issues that can-

not be ignored [2], ultimately requiring the definition and the implementation of complex data 

filtering and aggregation techniques to ensure a satisfactory credibility confidence [22].  

Previous studies and frameworks (such as [12], [14], [32]) tackle the integration of crisis 

data collected from different heterogeneous sources, figuring out common features and merg-

ing them into a unique format. Still, examining all the individual events may not be feasible 

for authorities or operators that want to i) interpret these data at runtime, or ii) store them for 

a-posteriori analysis. Thus, software supports are needed to realize advanced filtering tech-

niques, discarding untrusted information and showing with highest priority the information 

labelled as most relevant. Such relevance labelling strategy plays a key role in supporting the 

crisis management operators to focus on the relevant events. 

In this paper we present a relevance labelling strategy for CMSs whose streams are from 

heterogeneous sources. After presenting the motivations, the structure and the details of this 

strategy, we show its application in the ‘Secure!’ [13] CMS. Secure! is able to collect and ag-

gregate heterogeneous data from sources like webcams, gyroscopic sensors, social media or 

linked applications providing data to the crisis coordination office supporting response man-

agement. The evaluation of our strategy is performed showing three real crisis scenarios hap-

pened in Italy, where data is collected and elaborated in Secure!. 

This paper is an extended version of [34], where a preliminary version of the relevance la-

belling strategy is presented. The main novel contributions of this paper are the following. 

The strategy was revised, and enriched with additional statistical indexes. Further, novel la-

bels as the severity score were considered. The assessment now includes a detailed sensitivity 

analysis of the parameters. Finally, guidelines for profiling the application in typical scenarios 

were included. The paper is structured as follows. Section II presents the motivations of our 

work and the state of the art on crisis management systems that manage data from heteroge-

neous sources including humans. Section III discusses the goal and the structure of the rele-

vance labelling strategy, while Section IV presents details of our instantiation. Section V de-

scribes the implementation of Secure! CMS, which is then used in Section VI to exercise our 

strategy on real crisis scenarios, together with a sensitivity analysis of the main parameters of 

our strategy. In Section VII possible improvements of the strategy and different usage profiles 

are discussed to tune the relevance labelling strategy depending on the target scenario. Final-

ly, Section VIII concludes the paper. 

2. BACKGROUND, RELATED WORKS AND MOTIVATIONS 

Gathering data from crowds. There are several works on crisis management based on les-

sons learned facing past emergencies and natural disasters. It is possible to find detailed re-

ports about Tahiti earthquake [5], Katrina hurricane [6], fire episodes happened in Russia [7] 

in the summer 2010 or tsunami raged in Japan in the last decade [39] (especially the Great 

Tohoku Tsunami in 2011). In most of these contexts, crisis management was significantly 

supported by the collection of data from sensors or citizens, which provided VGI through tel-

ephone alerts or posts on social media. For example, regarding the earthquake that struck 

Port-au-Prince in January 2010 [7], [40], a live crisis map of Haiti was launched using the 

Ushahidi [11] platform. Information on the impact of the disaster was initially collected from 

online sources, social media e.g., Facebook and Twitter, and SMS sent by citizens that wanted 

to signal their most urgent needs and locations. Information coming from all sources was geo-
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located to build a crisis map that ten days after the earthquake was recognized from the head 

of the US Federal Emergency Management Association as the most comprehensive and up to 

date map available to the humanitarian community. 

 

Analyzing VGI. Consequently to the massive usage of the social networks, several studies 

are conducted to fetch data from social network sources for crisis management purposes [1], 

[2]. The focus is especially on analyzing data coming from tweets [38], [42], a compact 

source of information that can be easily indexed using the hashtags. For example, Twitcident 

[29] started with the purpose of filtering, searching and analyzing information about real-

world incidents or crises using Twitter as a unique data source. In the last years this project 

conveyed into PublicSonar [30], providing near real-time intelligence from social media in 

general (not only Twitter) and supporting most of the critical activities conducted by public 

administrations.  

However, data obtained from social networks can contain noise, misinformation and bias, 

which can get amplified by the viral nature of social media. These data will require advanced 

forms of filtering and verification techniques that are generally not needed. A filtering algo-

rithm is reported in [9], where experiments are conducted to assess the capability to detect 

anomalies, allowing the system to discard untrusted data. Also, it is possible to find open 

source tools which enable the filtering and verification of real-time data from independent 

channels such as SMS, Email, Twitter and RSS feeds, such as SwiftRiver [10]. 

 

Heterogeneous data streams. In general, the availability of multiple heterogeneous data 

streams makes it possible to retrieve information about a specific event from different points 

of view. Thus, the data streams coming from the considered sensors should be integrated in a 

unique framework. For example, CodeBlue [31] provides a common software layer to inte-

grate known sensors and other wireless devices into a disaster response module managing i) 

ad hoc network formation, ii) resource naming and discovery, iii) security, and iv) aggrega-

tion of sensor-produced data.  

 

Reviewing CMSs. Several works describing solutions for crisis management exist integrating 

VGI obtained through crowd-sourcing and - where available - other heterogeneous data 

streams. To the best of the authors’ knowledge, the most relevant contributions to the topic 

addressed in our work are [3], [4], [15], [32], [33], which we survey with the aid of Table I at 

the end of the paper. The authors in [3] describe a QoS-aware Service Oriented Architecture 

for an environmental information management system that uses real-time geospatial datasets 

and complex presentation tools. The authors in [4] present a framework to deliver a reliable 

tsunami warning message in the Asiatic south-east. SIADEX [32], instead, defines a frame-

work that integrates several Artificial Intelligence techniques and is able to design fighting 

plans against forest fires. The authors in [15] define a framework that supports authorities 

using the social network feeds, trying to geolocate and categorize tweets following specific 

crisis trends. Tweets are input sources also in the work [33], where a system is presented that 

produces situation awareness reports on social media activity during large-scale events, such 

as natural disasters. 

In Table I we summarize the common characteristics of the CMS presented above to com-

pare how they face the key issues addressed in our work. We structure the crisis management 

process in three blocks:  
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 Data Collection and Integration. The operations to collect, organize and control the 

significance and the integrity of data acquired from sensors. 

 Information processing. Once the data is structured and collected, operations to trans-

form raw data into actionable information are conducted. 

 Human Interface. It includes the techniques to present the outcomes of the process to 

the crisis management operator. 

 

Only the works [3], [4], [32] tackle the problems generated by the simultaneous usage of 

heterogeneous sources. This improves the accuracy of the information but at the cost of the 

enhanced integration effort and the inclusion of advanced filtering techniques. Such filtering 

addresses the data collected from the whole set of sources, and should not be applied to indi-

vidual data flows.  

 

Motivation for Relevance Labelling. In the surveyed frameworks, the analysis of the input 

data, the integrity check, and the integration are carefully performed by dedicated software 

modules. However, it appears difficult for a human operator to examine these sets of correlat-

ed data in a reasonable time. For example, the authors in [4] deal with several available data 

streams, which can be read from sensors (e.g., water height control, meteorological feeds), but 

the data analysis needed to understand relations amongst events originated by the different 

streams is demanded to the human operator.  

Further, we observe that the works reported in Table I (see Event Relevance Labelling cat-

egory) do not select the most relevant information to be shown to the operator, and also as-

sume that data-level integrity and filtering mechanisms have already checked their quality and 

trustworthiness. Noteworthy, it is difficult to understand the relevance of a single value, be-

cause it depends on the scenario the operator is interested in. 

When different events happen in different places at the same time, the operator may be in-

terested in giving precedence to one or more sets of events (e.g., tackling the adverse effects 

of an earthquake which damaged the power grid before considering to recover food supply 

infrastructures). Thus, he must be able to rapidly choose sets saving key time to initiate the 

response. In this paper we present a relevance labelling strategy that achieves this goal; the 

solution we propose can be integrated in crisis management systems, closing the gaps we 

identified surveying the above works. We remark that our relevance labelling strategy we 

devise does not discard events, but it gives priority to certain events with respect to others for 

visualization to the operator.  

3. EVENT RELEVANCE LABELLING 

We consider a human operator that analyses the data collected by the crisis management sys-

tem in two ways: i) runtime analysis: the operator analyses events that happen at runtime to 

manage the occurring crisis [15], and ii) historical studies: the operator analyses past data to 

identify critical events for e.g., a-posteriori analysis of the crisis or to identify patterns and 

scenarios that may repeat in the future [39]. In both approaches, the operator retrieves events 

from a data collection system and is interested in detecting the main sets of related events that 

refer to a specific crisis situation. As shown in Figure 1, the operator searches for the availa-

ble events, from e.g., an Event Database. The event database provides a set of events match-

ing the search query. Due to possible inaccuracies of the query or noise in the events, only a 

part of the events returned to the operator may be relevant to the scope of his analysis. Conse-
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quently, these events are sent to the 

Relevance Labelling Strategy, which 

marks each event with a relevance 

score. Finally, the events are deliv-

ered to the operator, which analyses 

them following the order of the rele-

vance score.  

Noteworthy, the relevance label-

ling strategy is intended for integra-

tion in already existing CMSs. The 

only change it requires in the hosting 

CMS is an update of its interface to 

visualize the relevance scores pro-

vided by the relevance labelling 

strategy. In the rest of the section we 

will formulate the criterion and func-

tion used to decide whether an event 

is relevant or not.   

 

The Relevance Criterion. A relevance criterion establishes how to judge each event, label-

ling it with a relevance score. The criterion is also required to tune the relevance labelling 

algorithm, and it must be selected to penalize events that are less relevant for the crisis man-

agement operator.  

We consider a data collection system which uses heterogeneous sources. We assume that 

during a crisis the considered data sources generate a volume of data higher than usual and 

with common values for specific features (e.g., a similar latitude and longitude). For example, 

during an earthquake the number of alerts from gyroscopic sensors and tweets referred to that 

area may raise, especially being significantly higher than the alerts that come from surround-

ing regions. This assumption has been proven reasonable in several works that analysed 

tweets and alerts during past crises [39], [40]. The operator is interested to explore connected 

events, analysing them and eventually activating response strategies (alerting the authorities, 

dispatching and guiding intervention teams). However, response strategies are outside of the 

scope of this paper and will not be further elaborated here. 

In general, it is not always true that large groups of connected events are more relevant 

than others composed by few events. It follows, that, where possible, each event should in-

clude a severity score, which helps distinguishing between large groups of events with low 

severity (e.g., quiet crowd of football supporters that go to the stadium) and others composed 

by few severe events (e.g., people damaging infrastructures or threatening the citizens).  

 

The Relevance Labelling function. The operator is interested in understanding if in a large 

set of events it is possible to detect smaller subsets composed by events sharing common 

characteristics. Hence, we are looking for a relevance labelling function rlf (CE, sf, Ω) = S 

which takes as input i) a set CE of critical events, ii) a severity function sf: CE→ ℝ which 

matches each event in CE with the severity score mentioned above, and iii) a set of parame-

ters Ω related to the chosen implementation strategy. The function defines a set S of scores 

that indicates what is the relevance in the context of the user query for each event in the start-

 

Fig. 1. Overall interactions between the operator and the system 
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ing set CE. This is a general formulation of the problem that can be adapted depending on the 

characteristics of the context, as it is described in the following section.  

4. SPECIFICATION OF THE RELEVANCE LABELLING STRATEGY 

We explain our relevance labelling strategy that realizes the rlf function presented above. In 

our implementation the general purpose rlf function is adapted to a function lf such that: 

[𝑅, 𝑁𝑅, 𝑊] = 𝑙𝑓(𝐶𝐸, 𝐴, 𝛿)  

Function lf takes as inputs i) a set CE of critical events, ii) a set of acceptability thresholds A, 

and iii) a tolerance parameter set δ. The function lf outputs the triple [R, NR, W] where R, NR 

and W are three disjoint sets whose union is CE. In details, each event in CE is labelled as 

relevant (R), non-relevant (NR) or wrong (W). The events set W contains the events with er-

roneous or incomplete values for one or more features, e.g., missing timestamp, or wrong spa-

tial coordinates. R is composed of distinguished sets of events, where each individual set in-

cludes connected events with common characteristics. The remaining events are labelled as 

non-relevant (NR); these are intended to be shown to the operator only after the relevant (R) 

ones. Finally, we define CS as the set of valid CE events, obtained without considering the 

wrong events (CS = CE \ W).  

This implementation does not take into account the sf parameter of rlf, which assigns the 

severity scores to each event in CE. Our strategy is designed to be integrated in a wide range 

of CMSs without requiring specific data and massive changes in the implementation of the 

hosting framework. Therefore, we choose to not consider this parameter because the sf 

function may be difficult to obtain, as most of the CMSs do not provide sufficient inputs to 

compute it. In Section 7.2, a possible modification to the relevance labelling strategy for 

CMSs is discussed that makes the sf parameter available.  

4.1 Involved Techniques 

Here we report the main techniques used to realize our solution. It is important to highlight 

that we are considering events from heterogeneous sources which have common features: in 

particular, we assume that each event is at least geo-located and time-referenced, thus we de-

fine a feature set F = {time, latitude, longitude}. We chose this minimum set of features to 

correlate events because it is usually easy to collect; other common features, including seman-

tic descriptions, could be included with trivial updates of the techniques discussed below. 

 

Integrity Check. The target of this step is to detect events that have incomplete or wrong 

values and to place them in the W set. This allows avoiding pollution of data due to events 

that are not valid because of malfunctions of the sensors, the transmission channels, the data-

base or due to adversarial activities e.g., attacks corrupting the data streams. Events with these 

problems are stored in the W set and not considered for further analysis, which will take into 

account only the events in the CS set defined above. 

  

Statistical Check. This step runs a simple and fast statistical check to verify the statistical 

dispersion of the events. It calculates the deviation of values of the features from a specific 

statistical reference index. This check is applied to all the event features f ϵ F (time, latitude, 

longitude), obtaining the index(f) value. 
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For the statistical reference indexes, possible options we considered are the mean, median, 

and mode values, because they summarize different properties of the investigated event set. 

The operator can select the preferred statistical reference index. More formally, let CS be the 

set of valid events with common features set F, and let fe be the value of the feature f ϵ F for 

the event e ϵ CS. For each event, we will check the statement 

∀𝑓 ∈ 𝐹  |𝑖𝑛𝑑𝑒𝑥(𝑓) − 𝑓𝑒| < 𝛿𝑓 

where 𝛿 = {𝛿𝑓 ∈ ℝ|𝑓 ∈ F} contains the tolerance values for each feature f ϵ F. It follows that 

an event is relevant for the scenario if and only if the values of all its features are sufficiently 

close to the reference index considering the chosen δf value. 

 

Clustering. The CS events may be clustered in more sets, where the events of each set have 

similar features. In this case the statistical check is not able to identify such sets, because it is 

effective only in detecting a single group of related events. Thus, we introduce a clustering 

step to detect clusters of events with similar features values. Amongst the many existing clus-

tering algorithms, we selected the K-Medoids clustering algorithm [17]. The algorithm parti-

tions the CS set into k clusters by selecting k events as leaders (medoids) and assigning all the 

other events to the neighbourhood of the closest leader. The K-Medoids is an evolution of K-

Means [18] algo-

rithm: this choice of a 

leader event (medoid) 

instead of leader co-

ordinates (centroid) 

makes K-Medoids 

less sensitive than K-

Means to outliers, 

keeping a similar ef-

ficiency in terms of 

computational time 

[19]. Noteworthy, the 

choice of the medoids 

leader, which may 

have an impact on the results, is left to the K-Medoids algorithm which selects its reference 

medoids depending on the investigated dataset. The clustering algorithm is intuitive to im-

plement, execute and configure, and it presents an adequate tradeoff between performance, 

false positive and false negative, as it will be shown in Section 6 and Section 7. Thus, we fa-

vor it although most likely its performance is not optimal if compared with novel state-of-the-

art algorithms [44]. 

To increase the chance of success of this strategy, we select k out of a set K of possible 

number of clusters the algorithm must look for. Moreover, the selected clusters - which could 

compose the R set - are distinguished through indexes matched to the constituent events. 

4.2 Influence of A and δ Parameters 

For clarity, we discuss the influence of A and δ parameters of our implementation of the rele-

vance labelling strategy.    

As mentioned above, the δ parameter is used in the statistical check to define a circular 

(considering |F| dimensions) tolerance interval around the statistical index in which the value 

 

Fig. 2. Artificial sample scenario related to an area of Firenze (Italy)  
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of each event feature ef must fall. The wider this interval is, the more events are considered 

sufficiently close to the statistical reference index. In the sample scenario of Figure 2, we refer 

to an area of Firenze city (Italy), where the set CS includes 21 events located: i) 48% near 

Giardino di Boboli (flags in the left-bottom corner of the figure), ii) 29% near Piazzale Mi-

chelangelo (markers in the right-bottom corner), and iii) 23% near Ponte Vecchio (markers in 

the upper part of the figure). We assume as feature set F = {latitude, longitude}, and the mean 

as reference statistical index. In this case, high δ values (e.g., δ = {10.000m, 10.000m}, see 

the scale on the map) lead to label all the events as relevant, because they are within the range 

of the chosen statistical index. Low δ values shrink the range around the statistical index, de-

fining a subset of similar elements.  

The parameter α ϵ A defines an acceptability threshold that must be reached to build the 

relevant events set R. Consider the scenario in Figure 2 and δ = {200m, 200m}: with α = 50% 

we are not able to identify any relevant subset, because the biggest cluster - the one in the area 

Giardino di Boboli - is composed of only 48% of the events in CS. In this case, the relevance 

labelling fails and it is not possible to identify relevant subsets. Taking α = 40%, instead, al-

lows identifying a set of linked events (left-bottom corner of Figure 2) that contains more than 

40% of the events in CS. Thus, these constitute the R set for this specific analysis. We obtain 

the same result with α = 30%; instead, considering α = 20% we identify the 3 different rele-

vant subsets in Figure 2. Each of them contains at least 20% of the events of the starting CS 

set, and represents a relevant group of events that need to go to the attention of the crisis man-

agement operator. While this is an intuitive explanation on α and δ, a detailed sensitivity anal-

ysis and instructions on the tuning process are presented in Section 6.4 and Section 7. 

4.3 Building the Process  

We describe our relevance labelling strategy with the aid of Figure 3. The first step is the in-

tegrity check: events that have incomplete or wrong values (e.g., latitude of 1000 degrees), are 

removed. In addition, a low-priority notification is sent to the database administrator, which 

 

Fig. 3. Relevance labelling strategy: our lf function. 
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can check these events at his convenience and eventually fix the detected integrity errors. 

Then, the resulting CS becomes the input to the statistical check, which is executed using the 

selected statistical reference index. The statistical check identifies which events are sufficient-

ly close to the reference index. If this number is above the chosen acceptability threshold α, 

these events constitute the relevant set R, while the remaining events are placed in the NR set 

(Statistical Check Successful) and the algorithm stops.   

Otherwise, the clustering step is executed. It attempts to divide CS into k clusters. Depend-

ing on the chosen k value from K set, the k-medoids clustering is executed. If it succeeds, we 

check if any of the resulting clusters has at least α elements. Since the clustering does not take 

into account A and δ, some events may be included in the same cluster even if they do not 

respect these constraints. For this reason, the statistical check is run on each identified cluster. 

If it succeeds for one or more clusters (Clustering Successful), the strategy terminates and the 

elements in the clusters are labelled as R, while the others compose the NR set.  

If both the statistical check and the clustering step are not able to identify an R set, we can 

choose among two options: 

 Consider all the events in CS as non-relevant i.e., NR = CS; 

 Lower the value of α and execute lf again, to search smaller sets of relevant events. 

 

In Figure 3 we apply the second option. We first define the A set of possible α values for the 

current setup of the relevance labelling strategy. Then we attempt to label events taking as 

input the greater α value in the A set: if the strategy fails, we attempt to label the events con-

sidering a lower α value. If the algorithm is not able to find relevant subsets with any α value 

in A, the process terminates with Unsuccessful Labelling. 

5. INTEGRATION IN A CRISIS MANAGEMENT SYSTEM 

In this section we present Secure! [13], a Decision Support System (DSS, [14]) for crisis man-

agement in which we integrated the relevance labelling strategy described in Section 4. 

Secure! exploits information retrieved from a large quantity of heterogeneous data sources 

available in a target geographical area. It aims at detecting critical situations and commanding 

the corresponding reactions e.g., guiding rescue teams or delivering emergency information to 

the population. Sample sources are social media (e.g., Twitter), surveillance camera, proximity 

sensors for suspicious people movements detection and vibration sensors for detecting events 

such as explosions or earthquake. 

5.1 Micro and Macro-events 

Data are collected, homogenized and aggregated in order to produce a situation for the DSS 

system that is ultimately shown to operators in a control room. First, data are collected from 

the heterogeneous set of sources and processed to extract basic information called micro-

events (e.g., a gun recognized in a video from a surveillance camera). The information that 

constitutes a micro event is i) the textual description of the generic event, ii) the time when it 

happened, iii) its location, iv) a category assigned following an ontology [23], [44] and v) the 

source that generated it. In practice, micro-events are usually generated at the end of the fea-

tures and information extraction process, leveraging on the acquired data processing (e.g., 

image, video and audio analysis, text mining, social network analysis) from the considered 

sources.  
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Macro-events, also called Secure! events, are the aggregation results of the information 

contained in a set of micro events which are correlated by spatial, temporal and causal rela-

tions. A macro-event contains more detailed and complete information than the related micro-

events; it aims at describing a critical situation at a certain time and in a certain place. Macro-

events are intended to describe the situation to the operator: for example, they can describe 

the status of a demonstration in a part of the city. During a crisis, micro events are generated, 

and correlated producing a set of macro-events. Macro-events are structured accordingly to 

the ontology presented in [23], [44]. Each macro-event is characterized by a set of features 

extracted from the micro events that compose it. The main information contained in a macro-

event are i) spatial (i.e., latitude, longitude) and temporal (i.e., time) information, ii) details on 

the involved entities e.g., the individuals or groups involved, and iii) its category, assigned 

taking into account the main disaster/crisis risk typologies, natural and man-made, to be faced 

(e.g., natural disaster, damage, terrorist attack, violence [44]). As the macro-events describe a 

situation, the operator can visualize them and plan response accordingly. A complete discus-

sion on the structure of micro-events and macro-events is reported in [44]; further this paper 

details the process to build macro-events starting from the micro events acquired from the 

field.  

5.2 Data collection and Storage 

Secure! collects data from heterogeneous streams through an Integration Framework, which 

is composed of services managing the sources and the extraction of data and metadata. The 

integration framework is composed of four low-level modules that work on a multi-modal 

data source; for example, Crawler modules extract data to identify persons, companies, cities 

and other types of entities from HTML documents or Web contents in general.  

Moreover, for sensor network and mobile applications, Interface modules represent an im-

portant bridge between data sources and Secure! framework. The heterogeneous data sources 

are managed using a program that allows decoupling I/O modules and normalising output 

using predefined schemas e.g., RDF, XML. The data stream extracted from information 

sources is automatically analysed by another process whose goal is to manage analysis ser-

vices. 

5.3 Secure! Control Panel  

As mentioned in Section 5.1, when a critical situation happens, the generated macro-events 

are displayed on the operator dashboard. In Figure 4, a snapshot of the Secure! dashboard is 

reported where events in the area of Rome are shown. Here macro-events are represented in 

an intuitive view through circles: the dimension of the circle is set depending on the number 

of macro-events in the area. This gives to the operator an immediate view on the amount of 

macro-events in a specific area, and helps defining the level of risk for the area considered. 

Further, the control panel offers the possibility to set the colour of the circle depending on the 

severity of the event, although a feature to compute severity is not implemented in the current 

version of Secure! engine (see also Section 7.2). Here becomes evident that a relevance label-

ling strategy integrated in the framework can help to rate this relevance, supporting the opera-

tor in understanding which are the more relevant events. Thanks to the relevance labelling 

strategy, the NR events can be painted with different colours or ignored, while the R events 

can be grouped and visualized as clusters with different colours or markers. 
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Moreover, the Secure! framework allows defining profiles for Secure Operator and Human 

Sensor, that are shown on the map together with the macro-events differentiated by specific 

icons. Both profiles are tracked using GPS coordinates providing information on the presence 

of trained personnel in the investigated area. The map is interactive, allowing the operator to 

zoom on specific area of events and coordinate rescue operations communicating with the 

personnel on the field. 

5.4 Integration of our solution in Secure! 

The architecture of the integration framework is based on the SOA paradigm, with a RESTFul 

web service approach that allows defining a set of unambiguous identifiers supporting I/O 

Interface (XML, JSON) and the canonical HTTP operations. The most important web service 

is the getEventWithAndCondition, which allows advanced search for macro-events stored in 

the Secure! database, offering a JSON output of retrieved events. The operator can query the 

dataset adding filters on the features of the events: for example, it is possible to query for 

events generated in a restricted interval of time [t1, t2] adding the clauses fromDate=t1 and 

toDate=t2. All the communications are encrypted using a standard SSL certificate owned by 

the operator and checked before each invocation of the Secure! services. 

Our relevance labelling strategy, described in Section 4.3, is implemented in Java as a 

RESTful service: when the operator performs a query on the Secure! database using the getE-

ventWithAndCondition service, the extracted events are transmitted to the module implement-

ing the Relevance Labelling Strategy. It executes the strategy described in Section 4 and re-

turns to the operator the three sets R, NR, W. 

 

Fig. 4. Secure! GUI: events related to a crisis scenario in Rome. 
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6. EXERCISING OUR SOLUTION IN SECURE! 

We discuss the experimental evaluation of the relevance labelling strategy exercised within 

the Secure! system described in Section 5. As target scenarios, we rely on three crises hap-

pened in Italy in 2015 whose data are stored in the Secure! database [28]. All data and results 

concerning the experiments are publicly accessible from [35]. In particular, Section 6.1 pre-

sents the scenarios and the configuration of the relevance labelling strategy, while in Section 

6.2, the three scenarios are tested a-posteriori for the purpose of historical studies. Conse-

quently, the macro-events generated from information related to the crises are stored in a da-

tabase. Runtime analysis, i.e., the relevance labelling of a live stream of events, is addressed 

in Section 6.3. In Section 6.4 a sensitivity analysis for the different parameters of the rele-

vance labelling strategy is carried forward. Finally, the performance analysis presented in 

Section 6.5 lists both the computational complexity and the computation time required for the 

relevance labelling in the investigated scenarios considering the current setup of the Secure! 

framework. 

For the sake of simplicity, in the following of the discussion we will use the term event in-

stead of macro-event when there are no ambiguities. 

6.1 Scenarios and configuration 

The Secure! system has been subject of an experimentation process whose goal is to endorse 

the framework and its components in a real context. Macro-events resulting from the aggrega-

tion of micro events collected using i) Twitter trends, ii) authorities feeds, and iii) web site of 

online news, constitute the following scenarios:  

 Europa League Match: collisions between supporters and police and vandalism in 

Rome occurred [24], [25] before the Roma - Feyenoord European football match. 68 

macro-events were collected, starting from 845 micro events, and stored in the Secure! 

database regarding this scenario (18
th

 - 19
th

 February 2015). 

 Political Manifestation: clashes [36] between police and members of two Italian politi-

cal factions (Lega Nord, Casapound) occurred during a manifestation in Rome on the 

27
th

 and 28
th

 February 2015. The whole scenario is composed of 55 macro-events gen-

erated from 630 input micro events.  

 Weather Warnings: intense atmospheric events (strong winds, [41]) raged in Tuscany 

on the 4
th

 and 5
th

 of March 2015. The sensors and the micro event correlation tech-

niques in Secure! made 65 macro-events available in the abovementioned time window. 

These were generated from a significant number of micro events, that comprised tweets 

trends describing weather conditions in locations of Tuscany, events from the local civil 

protection agency (it periodically dispatches updates on weather status in case of bad 

weather) and web site of online news. 

 

In Table II details on the scenarios are reported. We highlight the temporal clauses that the 

operator can use to explore the Secure! database, in addition to a textual geographic descrip-

tion (i.e., Rome and Tuscany). We also report the user query that was used to retrieve the 

macro-events, the chosen tolerance δ = {δlat, δlon, Δt} (δlat refers to the tolerance of the latitude 

feature, δlon the longitude and Δt represents the tolerance regarding the time value for each 

event) and the selected statistical reference index. We select α out of a set A = {50%, 40%, 

30%, 20%} and the cluster number out of a set K = {2, 3, 4, 5}. We use the same setup for 

each scenario: in [34] the strategy was not able to provide a relevance labelling score for all 
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the scenarios, but with the current modifications, this setup of the parameters is suitable for all 

the listed scenarios. Lastly, we remark that due to the geographical dimension of the consid-

ered areas, localization uncertainty of the events (which may be up to several meters [37]) is 

not significant for our analysis and consequently not considered in this work. 

 

6.2 Relevance Labelling Strategy for Historical Data 

We applied our strategy to the three scenarios, aiming at understanding how our solution is 

able to help the human operator identifying blocks of related critical events. Results are sum-

marized with the graphical support of Google Maps in Figure 5, Figure 6 and Figure 7. The 

red pin markers locate the R events, while the yellow circles locate the NR ones. We also 

considered the temporal dimension of analysis, but it is not represented in the figures. With 

the support of Table III we discuss the results.  

 

Europa League Match in Rome. As depicted in Figure 5, the macro-events for this scenario 

refer to different areas of Rome: i) nearby the stadium (upper part of the figure), ii) in Campo 

de’ Fiori district and iii) around the Barcaccia fountain (bottom of Figure 5). Despite the 

highest aggregation of people was in the stadium, most of the macro-events generated by the 

Secure! framework refer to other areas of the city, where the Italian police and Feyenoord 

supporters had several collisions.  

The relevance labelling strategy considers all macro-events as valid, without detecting any 

integrity problem (CE = CS, and W = Ø). Then it executes the statistical check, which labels 

24% of the events in CS as relevant i.e., the candidate R contains 24% of the events. At the 

beginning we chose α = 50%, thus this first result is discarded because the R set is too small. 

According to our strategy, the clustering step becomes necessary. The clustering process iden-

tifies four distinct subsets of events, where the biggest contains 63% of the events in CS. 

These events refer to the area of Campo de’ Fiori, where the most significant collisions 

among policemen and Feyenoord supporters occurred [25]. The other three clusters contain 

 

Fig. 5. Geo-location detail for events in “Europa 

League” scenario. 

 

Fig. 6. Geo-location detail for events in “Political 

Manifestation” scenario. 
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events i) generated by alerts (both Tweets and authorities alerts) from the stadium while the 

match was being played (13% of events in CS), ii) related to the authorities alerts delivered in 

the morning of the 27
th

 of February concerning the most probably dangerous zones (6% of 

events in CS) and iii) Tweets and website news linked to the vandalisms to the Barcaccia 

fountain [24] (18% of events in CS). The Campo de’ Fiori cluster is the only cluster contain-

ing more than α events: only the events in this cluster (the red pins in Figure 5) are part of R 

and thus visualized to the human operator with the highest priority. 

Summarizing, in this scenario the relevance labelling can help the operator to focus the 

attention on the area of Campo de’ Fiori, e.g., restricting the query parameters to zoom on the 

specified area and to identify the areas that need intervention. 

 

Political Manifestation. In this scenario the relevance labelling strategy (Figure 6) follows a 

different flow with respect to the previous case study. Five macro-events generated from the 

aggregation of tweets are classified as not valid (W set). An in-depth view of the raw data 

shows us that their latitude and longitude values are set to null, meaning that the geo-

localization of those macro-events generated aggregating tweets failed. The statistical check 

applied to events in CS finds 59% of events in the range of the mean value index for all the 

three considered features (the red pins in Figure 6). While most of the red pins in Figure 6 are 

grouped together, one is located at a significant distance. This event is considered relevant 

even if it is located in a different position than the others, because its time value is very close 

to the one of the events created during clashes with the police. The values of the tolerance 

parameters δlat and δlon are both set to 0.06, identifying an area of 14 kilometres of diameter 

around the mean value. All the events are in the range of the mean value considering only 

spatial coordinates. It follows that the events labelled as non-relevant are not in the range of 

the mean only because of their time value. These events are related to the political demonstra-

tion and the successive political meeting, which did not create problems to the authorities and 

happened before the clashes between demonstrators and police officers. In this case, the 

relevance labelling strategy constitutes an R set of events that are temporally close, meaning 

that in the whole Political Manifestation scenario a smaller group of linked events is 

identified and needs further analysis. 

 

Weather Warnings in 

Tuscany. The last scenario 

regards a violent wind-

storm [41] which occurred 

in Tuscany: differently 

from the previous two sce-

narios, the investigated 

area is wider comprising 

an entire Italian region of 

23.000 km
2
, and macro-

events are spread on the 

whole territory. This sce-

nario allows exploring the 

case in which our strategy 

is not able to identify the R 

set considering the biggest 
 

Fig. 7. Geo-location detail for events in Weather Warnings scenario (α=20%) 
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α value in A. 21 macro-events are classified as wrong and put in the W set. 44 macro-events 

related to Weather Warnings constitute the CS set. These are geographically scattered and 

generated in different time slots of the two days. Therefore neither the statistical check nor the 

clustering are able to find a relevant group with the settings that worked with the other two 

scenarios. The dispersion of the events does not make possible to identify a candidate R set 

composed by at least 50% of the collected events considering the chosen δ setup. Consequent-

ly, the strategy is repeated with lower α values from the A set.  

With α = 20% (Figure 7), the clustering step finds 3 clusters c1, c2,  c3 containing more than 

20% of events of the starting set. Therefore, the strategy terminates identifying a relevant set 

R = {c1, c2,  c3} composed of the union of the events in the 3 identified clusters. Figure 7 

identifies with red pins the events belonging to the 3 clusters: one cluster is located in the area 

around Siena, while the other two refer to Forte dei Marmi and Pistoia – Prato areas. Some 

events in the range of the clusters (e.g., the Forte dei Marmi one, upper left area of the figure) 

are in the NR set. These events are geographically close but temporally far from the others, 

thus they are excluded from the relevant clusters. 

6.3 Relevance Labelling Strategy for Runtime Analysis  

To prove the applicability of the relevance labelling strategy to online streams of events, we 

consider the data collected for the scenarios listed in Section 6.1 as dynamic streams of 

events, which are progressively submitted for the relevance labelling strategy. This allows us 

to realize an incremental knowledge, as new macro-events are progressively introduced. We 

execute our solution to such expanding set of events. We maintain the same setup of α, δ we 

used previously, to show how the outputs of the relevance labelling strategy evolve while 

macro-events are produced by the Secure! framework and stored. This way, we can under-

stand how much data is needed to detect relevant subsets that adequately describe the crisis 

scenarios under investigation. As elaborated later in this section, depending on the scenario – 

and therefore on the stream of events we are considering – the relevance labelling strategy is 

converging quicker or slower to the final results that we discussed in Section 6.2. 

We start discussing the Political Manifestation scenario. On the left side of Figure 8, we 

can observe that once the first 8 macro-events are available, two different relevant clusters are 

 

a)        b) 

Fig. 8. Runtime Relevance Labelling for the “Political Manifestation” scenario. The figure a) is a zoomed 

version of the left-bottom corner of b). 
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identified. This is highlighted in Figure 8a, where (considering the first 8 macro-events) the 

two data series corresponding to the clusters are above the acceptability threshold identified 

by the continuous line, meaning that two relevant clusters are detected by our labelling strate-

gy. This is different from the final cluster which is instead identified as the flow of events 

progress and that is described in Section 6.2 and that can be observed at the extreme right of 

Figure 8b. In particular, a cluster in the area of Villa Borghese is identified rouping three 

alerts delivered by authorities. These three alerts were delivered some hours before the crisis, 

constituting a relevant set for the time being. As the crisis progresses, and other events are 

identified, this cluster becomes non relevant: other macro-events related to different time pe-

riods and different areas of the city are instead relevant. It can be noted that the data series of 

the clusters often stuck at zero as the macro-events are delivered to the Secure! database (e.g., 

when we consider more than 10 events in Figure 8b). In such cases, the statistical check iden-

tifies a relevant cluster, and consequently the clustering step is not executed at all, resulting in 

the values of the clusters’ data series we pointed out. 

A similar trend can be observed in Figure 9 where the Europa League Match scenario is 

elaborated. If only few events are available (the first 20 events), the statistical check identifies 

only one relevant group of events with more than 50% (i.e., α) of events. This is represented 

by the line mean range, which is above the acceptability threshold. When the number of 

available events grows, the statistical check is no longer able to identify such relevant 

subset.The output of the relevance labelling strategy slowly converges to the result presented 

in Section 6.2, that are also depicted at the extreme right of Figure 9. Progressively, different 

clusters are identified, but the only one which is above the acceptability threshold is the one in 

the area of Campo de’ Fiori. 

Finally, in Figure 10 we report  the results of the relevance labelling applied to the stream 

of macro-events of the Weather Warnings scenario. To simplify the visualization, considering 

that several sparse clusters are presented, we report a bar chart instead of a line graph. With 

the same reasoning for the discussion of Section 6.2, we can observe here that the statistical 

check is not able to find a relevant subset at any point of the stream. Moreover, we highlight 

that as the flow of macro-events progresses, the clustering step identifies up to five clusters. 

In particular, since most of the macro-events that were collected during the morning of the 4
th

 

 

Fig. 9. Runtime Relevance Labelling for the “Europa League Match” scenario. 
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of March regard a wide area around Pisa, at the beginning the cluster “Pisa” is the one 

cointaining the greater amount of macro-events. In the afternoon, the adverse weather events 

moved to the cities of Pistoia, Prato and Florence, and the cluster “Pistoia-Prato” becomes the 

biggest one. During the 5
th

 of March, other alerts regarded the area around Forte Dei Marmi, 

leading the clustering process to consider some of the events happened in the northen area of 

Pisa as belonging to the Forte de Marmi cluster. In addition, the cluster labelled as “Others” 

contains several sparse events in the area of Pisa – Viareggio. It is identified during the last 

execution of the relevance labelling strategy since it contains events that refer to a very 

specific time window of the morning of 4
th

 of March. Summarizing, in this case our strategy 

complies with the results discussed in section 6.2 only when the amount of information is 

almost the same. However, our approach was able to correctly describe how the situation 

evolved through the two days.   

6.4 Sensitivity Analysis 

We analyse the impact that the choice of the statistical index, the α parameter and the δ pa-

rameter have on the event labelling strategy. Since Secure! acquires most of the data from 

sensors in the city area of Rome, we select δlat and δlon such that  δlat , δlon ∈ L = {0.01, 0.02, 

0.03, 0.04, 0.05, 0.06}. The L set is selected considering that a difference of 0.01 points in 

latitude or longitude can be roughly approximated to 1 km, and that the area of Rome is ap-

proximately 1300 km
2
. It follows that δlat = δlon = 0.06 identifies an area of radius 7 km 

around the value of the chosen statistical index, that is sufficiently wide for a city. We also 

considered T = {20m, 40m, 1h, 2h, 3h, 4h, 6h, 8h} as possible Δt values, while the A set is 

maintained as before. This resulted in 288 possible δ combinations (|L| × |L| × |T|) that we will 

examine with our sensitivity analysis considering mean value as reference statistical index. 

 

Influence of the δ parameter. First, we analyse how changes in the δ influence the relevance 

labelling strategy. We trace the maximum α value in A that makes the strategy successful for 

different δ, identifying an R set that is not empty. We execute our relevance labelling strategy 

on each of the three scenarios considering all the 288 combinations of δ mentioned above. For 

a better understanding of the results, we split T in three subsets and L in two subsets (see Ta-

 

Fig. 10. Runtime Relevance Labelling for the “Weather Warnings” scenario. 
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ble IV). The tables only report the re-

sulting 12 combinations averaging the 

results of the single analyses in the cor-

responding set.  

Both for Europa League (Table V) 

and for Political Manifestation (Table 

VI) scenario we can observe that, as 

expected, high δlat, δlon or Δt values 

leads to higher average α to have a suc-

cessful relevance labelling. Intuitively, 

considering “normal” a wide set of 

events, we can identify larger relevant 

sets. In particular, in both cases consid-

ering δlat ∈ L2, δlon ∈ L2, ∆t ∈ T3 always 

allows finding R sets that contains at 

least 50% of the events of the CE set.  

The results for Weather Warnings 

scenario, instead, are very different. Changing the δ value does not affect the α needed to find 

a relevant subset of the starting set (Table VII). The reason is the dimension of the geograph-

ical area. It follows that using α = 50% the strategy fails considering the chosen δ: the strategy 

is only able to identify smaller subsets containing around 20% of the events in the scenario. 

To obtain a relevance labelling that finds a single relevant subset of more than 50% of events 

we need δlat = δlon = 0.5, that is far bigger (roughly 10 times) than the maximum value we 

considered in our sensitivity analysis.   

    

Insights on Political Manifestation. An insight of the sensitivity analysis regarding the Po-

litical Manifestation scenario is reported in Figure 11 and Figure 12. In Figure 11 we report α 

values obtained varying δlat, δlon and Δt: to represent α values varying the three tolerance 

parameters in a 3D plot, we consider δlat = δlon on the depth axis. This allowed to highlight the 

trend of the maximum α needed from our strategy to obtain a set R that is not empty. We can 

observe how raising the Δt parameter (i.e., moving from the right to the left part of the graph) 

leads to higher α values. Noticeably, we 

can observe in Figure 11 that for δlat= 

δlon ≥ 0.3 the resulting α value does not 

change: this means that raising the tol-

erance of geographical parameters over 

0.3 (i.e., 3.5 km in the investigated area) 

does not influence the minimum α 

needed from the strategy in this scenar-

io. In Figure 12 we show a detailed 

view of the outcomes of the sensitivity 

analysis for Δt = 2h. Raising the value 

of only one between δlat and δlon does 

not always lead to a successful label-

ling. Instead, considering larger values 

for both of them allow the relevance 

labelling strategy to identify an R set 

 

Fig. 11. Political Manifestation scenario: α values considering 

latitude, longitude (δlat = δlon) and time (Δt) parameters. 

 

Fig. 12. Political Manifestation Scenario: in-depth view of 

resulting α values varying δlat, δlon with fixed Δt = 2h 
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using high values of α.  

 

Selection of the Statistical index. The last remark is directed to the selection of the statistical 

reference index. In [34], we considered only the mean value as possible reference index. Un-

fortunately, the mean performs poorly when events are splitted in more clusters or when they 

are scattered on the map. Therefore as alternative our reference labelling strategy can consider 

also the median or the mode values. We repeated the relevance labelling on the targeted sce-

narios varying both the δ values and the statistical indexes, considering also the median and 

mode. The results are summarized below.  

In the Europa League scenario no differences were observed choosing different statistical 

reference indexes. In the Political Manifestation scenario, out of 288 cases, in 124 cases the 

median allowed to find R without requiring the clustering step, while this drops to 120 cases 

with mean and mode. In the Weather Warnings scenario, where the relevant sets are always 

identified through clustering, the median allowed to consider on average 32.3 events out 44 as 

part of R set while with the mean only 31.1 events were considered part of the R set. 

6.5 Algorithm Performance 

To evaluate the capabilities of the algorithm to rapidly process information, we ran tests in 

which we simulate a large group of queries that an operator can execute on the Secure! data-

base i) varying the values for the query clauses fromDate and ToDate (see Section 5.4), and 

ii) invoking the getEventWithAndCondition service in different dates and with different time 

window sizes. For each run of the tests, the output of the relevance labelling strategy was 

saved for statistical analysis. We conducted the experiments on a machine with an Intel(R) 

Core(TM) i7-4510U CPU @ 2.00GHz, 8GB RAM. Each test is repeated 10 times keeping the 

system unaltered to optimize repeatability [26] conditions of each run. These results refer to 

the application of the relevance labelling strategy with A = {50%}.  

In Table VIII we observe the average results of these tests, classified based on the out-

comes of the relevance labelling strategy. In each experiment, we measured the time spent for 

the labelling activity, assuming that the data are already available on the machine and provid-

ed as input to the service. This allows evaluating the performances of our strategy without 

considering communication delays due to the network. In Table VIII we can notice that our 

strategy is able to identify a relevant subset for approximately 2/3 of the possible user queries 

to the Secure! database. Half of the successful executions of the relevance labelling strategy 

find an R set without requiring clustering, giving responses at average in less than two milli-

seconds. Otherwise the clustering step becomes mandatory, increasing its computational time 

that is still below 30ms, making it plenty adequate for the mentioned case study. 

We also generalize the observations above studying the computational complexity of our 

strategy. For a generic A set, let us consider n = |A| and let c = |CE| be the number of critical 

events. Considering i as the number of iterations needed from the clustering algorithm to 

complete the partitioning, in [43] authors defined the computational complexity of K-Medoids 

as O(ic
2
). Since the relevance labelling can execute the statistical check (that is O(c)) and the 

K-Medoids clustering in a row, the computational complexity of a relevance labelling with a 

given α is O(ic
2
). Moreover, this can be repeated for n times, therefore the computational 

complexity of the worst case execution of the relevance labelling strategy  totalizes an O(nic
2
) 

quantity. 
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7. PROFILING THE STRATEGY FOR TYPICAL SCENARIOS 

We conclude the presentation of our novel strategy for relevance labelling in crisis manage-

ment system identifying general rules that support the human operator tailoring our relevance 

labelling strategy for his target scenario. A human operator that is observing a set of events 

(for both historical or runtime analysis) must be ready and able to change his focus. For ex-

ample, if several events are grouped in a small area, the operator might be interested in re-

stricting the windows (i.e., the tolerance) to observe the targeted area in detail. We examine i) 

in Section 7.1, how to select parameters of the lf function, in such a way that the operator can 

use the most adequate setup, and ii) in Section 7.2, how the availability of a severity feature 

related to crisis events can improve the significance of the whole relevance labelling.  

7.1 Tailoring Parameters on the Considered Scenarios 

In Table IX we report several setups of the parameters (statistical reference index, minimum α 

in A, δ) of the strategy that a user can adopt depending on the characteristics of the scenario. 

We consider relevant only events that happen in a time window of maximum 6 hours and we 

use the same A set as the one we used in Section 6. We choose two dimensions of analysis:  

 the spatial dimension of the investigated area: we can observe a restricted area of a city 

(e.g., a circular area of radius 3 km) or a wider area, as example a whole country; 

 the critical events relation: if the expected distribution of events on time and space is 

known, we can tune the strategy depending on this information.  

 

If the crisis management operator is interested in a single subset of connected events (e.g., 

he is monitoring a concert in a stadium), he can tune the relevance labelling strategy with low 

δ and high α values. This means that the operator is looking for a consistent amount of events 

linked together in such a restricted area, e.g., near the musicians. Instead, when the crises 

could be more than one (e.g., multiple disorders spread across a city, or repeated disorders 

during time) we need to lower α to identify different relevant subsets. These will be presented 

to the crisis management operator as distinct groups of relevant events. The δ value, instead, 

need to be tuned depending on the geographical dimension of the scenario. 

In case there are unknown relations between the events concerning the crises that may 

happen in the observed area (e.g., information on upcoming events is not available or too 

complex to analyse), the operator needs to select the greatest meaningful δ. The events could 

be scattered through space and time, making the mean reference index of limited use. In such 

conditions, we propose the use of the median or the mode as more suitable reference indexes. 

We also recommend using a low value of α, because secondary relations between subsets of 

events may exist and could be detected only with this particular setup. This may happen when 

a noticeable amount of tweets for a completely unexpected crisis are generated in a restricted 

time window about the same geographical area. 

The same reasoning can be obtained considering a wide area, still keeping in mind that in 

this case the tolerance values for the geographical coordinates must be suitable for the extent 

of the investigated area. 

For a crisis management operator, an approach to test and compare the results of labelling 

for different parameters’ values is particularly useful, for example for his own training in con-

figuring the relevance labelling for a specific scenarios and a specific crisis management sys-

tem. Such approach, and the related operator’s training, can be straightforwardly defined start-

ing from the use cases of Section 6.1, their analysis in Section 6.2 and Section 6.3, and the 
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sensitivity results reported in Section 6.4. The operator should first apply the relevant label-

ling strategy for different values of its configuration parameters, as we performed in Section 

6.4, and for different stages of the crisis, as we performed during the runtime analysis in Sec-

tion 6.3. This is intended as a test-retry approach, where the operator tries different configura-

tions and verifies its output on his control panel. For example, the Secure! control panel 

would show different circles, of different dimensions, depending on the cardinality of the rel-

evant sets, as discussed in Section 5.3. Since the macro-events for the scenarios considered in 

Section 6.1 are well-studied and the most relevant sets are known (they are identified in Sec-

tion 6.2 and Section 6.3), it is easy for the operator to compare results, and consequently learn 

how to configure the relevance labelling strategy. Summarizing, despite an optimal a-priori 

configuration does not exist, this process would support training the operator on tailoring the 

different parameters for various scenarios, complementing the analysis elaborated in the pre-

vious part of this Section.  

7.2 An Approach to Include Severity 

Here we discuss how the availability of severity scores for each event in CE can improve the 

strategy described in this work. 

 

The Role of Severity. In our study, the relevance labelling is executed considering only on 

the dispersion of the events in the space and time defined by the features in F. It follows that 

all sets composed by at least α events of CS with sufficiently similar feature values are con-

sidered relevant and contribute to the R set. A severity score associated to each event would 

allow to rate each detected subset of CS with a severity score instead of simply counting the 

cardinality of the set. In such a way, a small set of severe events can be rated as more relevant 

than a larger set composed by non-severe events. 

In other words, the sf parameter (defined in Section 3) can improve the significance of the 

relevance labelling results, although a CMS able to associate a severity score to the collected 

events is required. Most of the crisis management frameworks are not able to assign a severity 

score to the considered events. For instance, the Secure! CMS does include a “severity” field 

in the macro-events structure [23] but it does not yet implement mechanisms to compute its 

 

Fig. 13. Obtaining a severity score for an event in a generic crisis management framework. 
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value, making the usage of the sf parameter unfeasible.  

 

A possible approach to compute severity. Nevertheless, including severity may bring rele-

vant benefits to the analysis of events and the relevance labelling of clusters. A possible ap-

proach to include severity in a CMS is defined as follows. As described in Figure 13, if we 

consider a generic crisis management framework we need to assume that all the events re-

garding the crises match a defined vocabulary or ontology. For example, Secure! associates 

each macro-event to one or more terms from an ontology. A severity score can be assigned to 

the different terms defined in the ontology (e.g., terrorism, natural disaster): this way, each 

event could be matched to a severity score. This means that all the events in a cluster have an 

associated severity score, from which the severity of the clusters can be determined. For ex-

ample, the severity of a cluster could be the highest severity score of its constituent events, or 

it could result from a weighted sum of the severity scores of the events. Further studies to in-

clude a severity score in Secure!, and successively in our relevant labelling strategy, are part 

of our future work. This requires to i) re-consider the data collected and the micro and macro-

events generated, ii) define an approach to associate severity scores to the macro-events, and 

iii) modify the relevance labelling strategy to include such severity score. 

8. CONCLUSIONS 

This paper presented the design, development and assessment of a relevance labelling strategy 

for Crisis Management Systems that can retrieve and process significant amount of data from 

heterogeneous sources. It aims at supporting the human operator to decode and classify the 

crisis events delivered to the operative center of a crisis response team, assigning to each 

event a label that predicts its relevance for the operator. Events with higher relevance scores 

will be presented before the others, helping the operator to quickly clarify the context maxim-

izing the effectiveness of the response. 

Our instantiation of the relevance labelling strategy was implemented and integrated in the 

Secure! Crisis Management System in order to assign relevance scores to each of the events 

retrieved by the operator. Three real-world scenarios were investigated, showing the obtained 

relevance labelling results in association to a sensitivity analysis aimed to evaluate how 

changes in the parameters of our strategy can influence the final labelling result. Following 

this analysis, profiles defining values for typical situations were listed in order to help the cri-

sis management operator tailoring the strategy on the specific scenario under investigation. 

All the input data used for this and results are available at [28], [35]. 

As future work, we will investigate how the proposed strategy scales for large scenarios 

(using datasets as example from Ushaidi) where a high number of events scattered on large 

areas is generated.  
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TABLE I.  CHARACTERISTICS OF EXISTING CRISIS MANAGEMENT FRAMEWORKS 

 Related Crisis Management Frameworks 

 
QOS-aware SOA [3] ESA-AWTM [15] GITEWS [4] SIADEX [32] CrisisTracker [33] Secure! [13] 

D
a

ta
 C

o
ll

ec
ti

o
n

 

a
n

d
 I

n
te

g
ra

ti
o

n
 

Sensor Data Heterogeneous Homogeneous Heterogeneous Heterogeneous Homogeneous Heterogeneous 

Sensor Type 
Vehicle Position, 

Weather 
Tweets 

Tide Gauge, Seismolo-

gy, GPS Ocean Obser-

vation, Weather 

External GIS, 

Web Feeds 
Tweets 

Authority Alerts, 

Webcams, Tweets, Se-

cure! App 

Sensor Data 

Check 

Temporal and spatial 

down-sampling selec-

tively discard data in 

order to reduce the 

amount of data trans-

mitted over the network 

Only tweets with spe-

cific hashtags, with 

relevance weights 

A module acts as filter 

reducing the data com-

ing from the sensor 

streams to relevant data 

only 

Data must comply 

with ontologies 

stored in the inte-

grated BACAREX 

Ontology Server 

Data coherence checked using 

supporting metadata. Short (no 

more than 2 words after stop 

words removal) messages are 

discarded 

Micro-events are filtered 

by a dedicated Event 

Filtering module 

Data 

Integration 

Added-Value services 

layer 

Not needed (homoge-

neous sensors) 

Tsunami Service Bus 

(TSB) 

SIADEX Web 

Center 

Not needed (homogeneous 

sensors) 
Media Integration layer 

In
fo

rm
a

ti
o

n
 

P
ro

ce
ss

in
g

 Event 

Correlation 

Adding value to real 

time environmental 

data, predicting future 

states, providing opera-

tional guidance, … 

Finding Geospatial 

links for each consid-

ered tweet (if not exist-

ing in the message, got 

from user’s location) 

Sensor integration from 

Tsunami Service Bus 

(TSB), including post 

processing and quality 

checks 

Made through HTN 

planning, which 

involves all the 

available data 

Indexing is made using 

hashtags. Then, a bag-of-words 

approach is used to compare 

different tweets and group 

them. 

Micro-events are corre-

lated to obtain macro-

events. A macro event 

groups micro-events 

with similar characteris-

tics 

Event Relevance 

Labelling 
Missing Missing Missing Missing 

Not deepened. Stories deemed 

irrelevant can be hidden, pre-

venting them from showing up 

in search results. 

A relevance labeling 

strategy is the main con-

tribution of this paper. 

H
u

m
a

n
 

In
te

rf
a

ce
 

Presentation 

Techniques 

Web Interface allows 

for a universal access 

and greatly reduces 

learning time and thus 

attracts more non-GIS 

professionals 

Browser Presentation 

component: uses web 

services to retrieve and 

display information to 

a watch officer 

Not provided: need of 

external applications 

that fetch data from 

Tsunami Service Bus 

(TSB) 

Not described: 

however, the output 

is composed by one 

(or more) approxi-

mate temporal plans 

ready for execution 

Not described: however, it is 

mentioned that both expert and 

volunteer participants found 

the system to be intuitive and 

easy to use 

Secure! Control Panel, 

presented in this paper. 

It shows the macro-

events to the operator on 

a map with their detailed 

characteristics 

 



 

 

         
 

  

  

TABLE II.  SCENARIOS AND PARAMETERS DETAILS 

Scenario 
Query Clauses δ 

A 
Statistical 

Index fromDate toDate δlat δlon Δt 

Europa League Match 18th Feb 19th Feb 0.06 0.06 4h {50%, 40%, 30%, 20%} MEAN 

Query: getEventWithAndCondition?Area=Rome&fromDate=18022015&toDate=19022015 

Political Manifestation 27th Feb 28th Feb 0.06 0.06 4h {50%, 40%, 30%, 20%} MEAN 

Query: getEventWithAndCondition?Area=Rome&fromDate=27022015&toDate=28022015 

Weather Warnings 4th Mar 5th Mar 0.06 0.06 4h {50%, 40%, 30%, 20%} MEAN 

Query: getEventWithAndCondition?Area=Tuscany&fromDate=04032015&toDate=05032015 
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TABLE III.  RELEVANCE LABELLING FOR THE SCENARIOS WITH α = 50%. 

RELEVANT (R), NON-RELEVANT (NR) AND WRONG (W) EVENTS ARE REPORTED 

Scenario R NR W Label 

Europa League Match 43 25 0 Clustering Successful 

Political Manifestation 32 18 5 Statistical Check Successful 

Weather Warnings - - 21 Unsuccessful Labelling 
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TABLE IV.  SETS LEGEND 

Sets Legend 

L1 = {0.01, 0.02, 0.03} 

L2 = {0.04, 0.05, 0.06} 

T1 = {20m, 40m, 1h} 

T2 = {2h, 3h, 4h } 

T3 = {6h, 8h} 
 

TABLE V.  AVERAGE α VALUE AND STANDARD 

DEVIATION FOR EUROPA LEAGUE SCENARIO 

Europa 

League 

δlat , δlon 

δlat ∈ L1 δlat ∈ L1 δlat ∈ L2 δlat ∈ L2 

δlon ∈ L1 δlon ∈ L2 δlon ∈ L1 δlon ∈ L2 

Δt 

Δt ∈ T1 
28.06% 

(0.27) 

29.17% 

(0.41) 

29.17% 

(0.41) 

32.50% 

(0.69) 

Δt ∈ T2 
36.15% 

(0.81) 

38.33% 

(0.91) 

38.33% 

(0.91) 

45.00% 

(0.89) 

Δt ∈ T3 
45.58% 

(0.25) 

46.67% 

(0.23) 

46.67% 

(0.23) 

50.00% 

(0.00) 
 

TABLE VI.  AVERAGE α VALUE AND STANDARD 

DEVIATION FOR POLITICAL MANIFESTATION SCENARIO 

Political 

Manifestation 

δlat , δlon 

δlat ∈ L1 δlat ∈ L1 δlat ∈ L2 δlat ∈ L2 

δlon ∈ L1 δlon ∈ L2 δlon ∈ L1 δlon ∈ L2 

Δt 

Δt ∈ T1 
24.14% 

(0.38) 

27.27% 

(0.57) 

26.00% 

(0.44) 

30.00% 

(0.50) 

Δt ∈ T2 
35.00% 

(0.86) 

41.67% 

(0.75) 

36.67% 

(0.67) 

45.00% 

(0.19) 

Δt ∈ T3 
43.33% 

(0.22) 

50.00% 

(0.00) 

43.33% 

(0.22) 

50.00% 

(0.00) 
 

TABLE VII.  AVERAGE α VALUE AND STANDARD 

DEVIATION FOR WEATHER WARNINGS SCENARIO 

Weather 

Warnings 

δlat , δlon 

δlat ∈ L1 δlat ∈ L1 δlat ∈ L2 δlat ∈ L2 

δlon ∈ L1 δlon ∈ L2 δlon ∈ L1 δlon ∈ L2 

Δt 

Δt ∈ T1 
20.00% 

(0.00) 

20.00% 

(0.00) 

20.00% 

(0.00) 

20.00% 

(0.00) 

Δt ∈ T2 
20.00% 

(0.00) 

20.00% 

(0.00) 

20.00% 

(0.00) 

20.00% 

(0.00) 

Δt ∈ T3 
20.00% 

(0.00) 

20.00% 

(0.00) 

20.00% 

(0.00) 

20.00% 

(0.00) 
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TABLE VIII.  RELEVANCE LABELLING PERFORMANCE 

Outcome Label 
Outcome 

Result % 

Time (ms) 

Mean Clustering Total 

Mean Successful 50.0 1.87 Not Needed 1.87 

Clustering Successful 16.7 4.20 14.63 18.83 

Unsuccessful Labelling 33.3 3.50 22.85 26.35 

All 100.0 2.80 20.11 12.86 
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TABLE IX.  PROFILES FOR RELEVANCE LABELLING DEPENDING ON SCENARIOS 

 

Spatial Dimension of the Investigated Area 

Restricted (City Area) Wide (Country) 

Index α δlat δlat Δt Index α δlat δlat Δt 

C
ri

ti
ca

l 
E

v
en

ts
 

R
el

a
ti

o
n

s 

Single - Close in Time MEAN 50% 0.03 0.03 2h MEAN 50% 0.5 0.5 2h 

Single - Close in Space MEAN 50% 0.02 0.02 6h MEAN 50% 0.2 0.2 6h 

Multiple - Close in Time MODE 30% 0.03 0.03 2h MODE 30% 0.5 0.5 2h 

Multiple - Close in Space MODE 30% 0.02 0.02 6h MODE 30% 0.2 0.2 6h 

Not Existing MEDIAN 20% 0.05 0.05 6h MEDIAN 20% 0.8 0.8 6h 

Unknown MEDIAN 40% 0.05 0.05 6h MEDIAN 40% 0.8 0.8 6h 

 


