


Tensor rank and eigenvectors

Mauro Maccioni

13 January 2017



Contents

Introduction 1

1 Real rank of binary forms 4

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Quartic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Quintic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Real eigenvectors of real symmetric tensors 24

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Binary forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Ternary forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4 Examples, partial results and open problems . . . . . . . . . . . . . . . . . 67

Bibliography 71

i



List of Tables

2.1 d = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 d = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 d = 4, f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 d = 5, f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 d = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9 d = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10 d = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.11 d = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.12 d = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.13 d = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.14 d = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.15 d = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.16 d = 4 and f nonnegative. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.17 d = 4 and f = q1q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.18 d = 4 and f = det(xI + yM2 + zM3). . . . . . . . . . . . . . . . . . . . . . 68
2.19 d = 5 and f = lg1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.20 d = 5 and f = q1g2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.21 d = 5 and f = g1q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.22 d = 5 and f = det(xI + yM2 + zM3). . . . . . . . . . . . . . . . . . . . . . 69
2.23 d = 6 and f SOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.24 d = 6 and f1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.25 d = 6 and f2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.26 d = 6 and f3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.27 d = 6 and f = det(xI + yM2 + zM3). . . . . . . . . . . . . . . . . . . . . . 70
2.28 d = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ii



List of Figures

1.1 Discriminant of g =
(

1
2c1

− m
2

)

x4+x3y+mx2y2+
(
5−2c2

1

c2
1

− 4m
c1

)

xy3+ny4. 18

1.2 Minor d1 = 16(4c61m
4 + 8c61m

3n − 6c61m
2 + 6c61mn + 12c61 − 92c51m

3 −
16c51m

2n+68c51m−6c51n−144c41m
4+342c41m

2+8c41mn−66c41+648c31m
3−

434c31m− 1089c21m
2 + 180c21 + 810c1m− 225). . . . . . . . . . . . . . . . . 19

1.3 Discriminant of g =
(

− 1
2c1

− m
2

)

x4+x3y+mx2y2+
(
5−2c2

1

c2
1

+ 4m
c1

)

xy3+ny4. 19

1.4 Minor d1 = 16(4c61m
4 + 8c61m

3n − 6c61m
2 + 6c61mn + 12c61 + 92c51m

3 +
16c51m

2n−68c51m+6c51n−144c41m
4+342c41m

2+8c41mn−66c41−648c31m
3+

434c31m− 1089c21m
2 + 180c21 − 810c1m− 225). . . . . . . . . . . . . . . . . 19

1.5 Discriminant of g = −x4 + 10x2y2 +mxy3 + ny4. . . . . . . . . . . . . . . 21
1.6 Minor d1 = 4(−9m2 + 80n+ 2000). . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Roots of f = x(x2 − y2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Discriminant of f = x5+(5a+3b)x4y−10x3y2+2(−5a+ b)x2y3+5xy4+

(a− b)y5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Discriminant of g = (5a + 3b)x5 − 25x4y − 2(25a + 3b)x3y2 + 50x2y3 +

(25a− 9b)xy4 − 5y5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Discriminant of f = x5 +(5a+3b)x4y− 2x3y2 +2(−5a+ b)x2y3 − 3xy4 +

(a− b)y5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Discriminant of g = (5a + 3b)x5 − 9x4y + 2(−25a − 3b)x3y2 − 6x2y3 +

(25a− 9b)xy4 + 3y5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Discriminant of f = x5 +(5a+ b)x4y− 10x3y2 +2(−5a+ b)x2y3 +5xy4 +

(a+ b)y5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Discriminant of g = (5a + b)x5 − 25x4y + 2(−25a + b)x3y2 + 50x2y3 +

(25a+ b)xy4 − 5y5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Discriminant of f = x5+(5a+b)x4y+2x3y2+2(−5a+b)x2y3+xy4+(a+b)y5. 40
2.9 Discriminant of g = (5a+ b)x5 − x4y+2(−25a+ b)x3y2 − 2x2y3 + (25a+

b)xy4 − y5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.10 xy3 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.11 Discriminant of f = 2((h+ l)x3 − (m+3z)x2y+ (l− 3h)xy2 + (z−m)y3)
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Introduction

In algebraic tensor geometry, the problem of finding the minimal decomposition of a
symmetric tensor T with coefficients in a field K in a sum of rank-1 terms over K is a
classical problem. The minimal integer r such that T decomposes in a sum of r rank-1
terms is said to be the rank of T . If K = C, for complex or real tensors T , this problem
is known as the Waring problem ([10], [20]).

For binary forms f of degree d with coefficients in K (that is, for homogeneous
complex or real polynomials) the concept of rank of f over K turns into the research
of the minimal integer r such that f decomposes into a sum of r d-th powers of linear
binary forms l1, . . . , lr, multiplied by appropriate coefficients c1, . . . , cr.
If K = C, one can impose cj = 1 for all coefficients. In the complex field, the rank of a
general binary form f of odd degree d = 2n+ 1 is n+ 1. The Sylvester Theorem asserts
that the decomposition of such general form f as a sum of n+1 powers of linear forms is
unique and gives also a way to determine it. The rank of a general binary form f of even
degree d = 2n is n+ 1, but in this case such decompositions form an infinite set, which
can be identified with the projective line. Given SK

d,r =
{
f ∈ Symd(K2) | rankf = r

}
, we

know that if K = C, SC
d,r has not empty interior (i.e. is dense) if and only if r =

⌊
d
2

⌋
+1.

If K = R, the coefficients cj can be imposed to belong to {−1, 1} and, moreover, in the
real field the ranks r such that SR

d,r has not empty interior are those between
⌊
d
2

⌋
+1 and

d (see Theorem 2.4 in [3]).
By Sylvester (see [12]), being l⊥ = b∂x − a∂y the differential operator such that kills

the linear form l = a∂x + b∂y, we have that f =
∑r

j=1 l
d
j is killed by g =

∏r
j=1 l

⊥
j . Then,

assigned a form f of degree d and complex rank rkC(f) = k, we have to consider the
kernel K of the catalecticant matrix (or Henkel matrix) of size (d − k + 1) × (k + 1).
Then K is the kernel of the linear map Af : Dk −→ Rd−k, which is the set of differential
operators of degree k that kill f of degree d. Therefore, we search in K a differential
operator g with all real roots. If it does not exist, we search at degree k + 1 and so on.
When we find the above operator g with all real roots of a certain degree h, then we have
that the real rank of f is h.

In the first part of this P.H.D. thesis, we give a complete classification of real ranks
of real binary quartic and quintic forms, given their complex ranks. The main results are
in Section 1.4 of chapter 1, while in Sections 1.2 and 1.3 we effectively compute the real
ranks of quartic and quintic forms respectively, starting from their complex ranks.

In the second part of this work we consider eigenvectors of real symmetric tensors.
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Given a real homogeneous polynomial f of degree d in n variables, its eigenvectors are
x ∈ Cn such that ∇f(x) = λx.
In alternative way, the eigenvectors are the critical points of the euclidean distance func-
tion from f to the Veronese variety of polynomials of rank one (see [14]).
In the quadratic case (d = 2) the eigenvectors defined in this way coincide with the usual
eigenvectors of the symmetric matrix associated to f . By the Spectral Theorem, the
eigenvectors of a quadratic polynomial are all real. So a natural question is to investi-
gate the reality of the eigenvectors of a polynomial f of any degree d. The number of
complex eigenvectors of a polynomial f of degree d in n variables, when it is finite, is
given by

{
((d− 1)n − 1)/(d− 2), d ≥ 3

(d− 1)n−1 + (d− 1)n−2 + ...+ (d− 1)0 = n, d = 2
(1)

The value obtained in this formula has to be counted with multiplicities. The gen-
eral polynomial has all eigenvectors of multiplicity one. The formula (1) is a result by
Cartwright and Sturmfels in [7].

Our picture is quite complete in the case n = 2 of binary forms. We show that

Theorem 1: The number of real eigenvectors of a real homogeneous polynomial in 2
variables is greater or equal than the number of its real roots.

Moreover, we show that the inequality of Theorem 1 is sharp and it is the only essential
constraint about the reality of eigenvectors, in the sense that the set of polynomials in
SymdR2 with exactly k real roots contains subsets of positive volume consisting of poly-
nomials with exactly t real eigenvectors, for any t such that k ≤ t ≤ d, k ≡ t ≡ d mod 2,
t ≥ 1. The congruence mod 2 is an obvious necessary condition on the pair (k, t) which
comes from the complex conjugation. Note that all extremes cases are possible, so there
are polynomials with the maximum number d of real eigenvectors. On the other side
there are polynomials with one real eigenvectors for odd d (with only one real root by
Theorem 1) and there are polynomials with two real eigenvectors for even d (with zero or
two real roots by Theorem 1). There are no polynomials with zero real eigenvectors, this
is due to the interpretation of the eigenvectors as critical points of the euclidean distance
function, which attains always a real minimum.
We can summarise the inequality of Theorem 1 by saying that the topological type of f
prescribes the possible cases for the number of real eigenvectors.

The next case we investigate is the one of ternary forms n = 3. In this case the
topological type of f depends on the number of ovals in the real projective plane and on
their mutual position (nested or not nested). Again we prove an inequality which follows
the same philosophy of Theorem 1. Precisely we have

Theorem 2: Let t be the number of real eigenvectors of a real homogeneous polynomial
in 3 variables with c ovals. Then t ≥ 2c+1, if d is odd and t ≥ max(3, 2c+1), if d is even.

We give evidence that the inequality of Theorem 2 is the best possible, by showing that

2



in the cases d = 3 and d = 4 the set of polynomials in Symd(R3) with exactly c real ovals
contains subsets of positive volume that consist of polynomials with exactly t real eigen-
vectors, for any t such that t is odd and 2c+1 ≤ t ≤ 7 (d = 3) and max(3, 2c+1) ≤ t ≤ 13
(d = 4). Again the condition that t is odd is a necessary condition which follows from
the fact that the values in (1) are odd for n = 3 (as for any odd n).

In Section 2.1 we give some preliminaries and a general result (Lemma 34) on the
nature of real eigenvectors of a real symmetric tensor.
In Section 2.2 we investigate on binary forms. We give some examples in which it is
evident that there are some prohibited values for the number of real eigenvectors of a
form conditioned to the number of its real roots. Also we give the main Theorem 49,
that shows that the number of real eigenvectors of a real homogeneous polynomial in
two variables is greater or equal than the number of its real roots and this constraint is
sharp.
In Section 2.3 we investigate on ternary forms. In primis, we give some computational
examples of ternary cubics in which is evident that there are some prohibited values for
t conditioned to c. Moreover, all possible numbers of real eigenvectors are possible for
a cubic, according with the main Theorem 62. It shows that t is greater or equal than
2c+1, if d is odd and t is greater or equal than max(3, 2c+1), if d is even. Moreover, we
show how to find ternary forms of degree d with a certain number c of ovals and always
with the maximum number of real eigenvectors. Then, we give examples of cubics and
quartics with the minimum and the maximum number of real eigenvectors in all possible
topological cases, showing that for d = 3, 4 the constraint of Theorem 12 is again the
best possible (Propositions 68 and 69).
In Section 2.4, we give some computational examples of ternary quintics and sextics with
all possible values of t conditioned to the value c in some topological cases.
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Chapter 1

Real rank of binary forms

1.1 Preliminaries

Definition 1. Let X be an algebraic projective variety. The k-secant variety of X is
Seck(X) = J(X, ...,X

︸ ︷︷ ︸

k− times

), where J(X, ...,X) is the join of k copies of X. The join of s

algebraic projective varieties, X1, ..., Xs, is the Zariski closure of the set of the projective
subspaces generated by general points p1 ∈ X1, ..., ps ∈ Xs.

Definition 2. ([3]) Let f ∈ Symd(R2). The apolar ideal of f , f⊥, is the ideal of all
differential homogeneous operator h such that h kills f , that is

f⊥ = {h ∈ R[∂x, ∂y] |h(f) = 0} .

Definition 3. ([11]) Let f be a real binary form of degree d. The real (complex) rank of
f is the minimum integer r such that

f =
r∑

j=1

ldj

where lj are real (complex) linear binary forms.

Theorem 4. ([11]) For all k ∈ [1, ⌊d/2⌋+ 1] we have S̄d,k − S̄d,k−1 = Sd,k ∪ Sd,d−k+2,
with Sd,k =

{
f ∈ SymdC2 | rkCf = k

}
. In particular, f ∈ S̄d,k − S̄d,k−1 has rank k if

and only if [f ] lies in a k-secant plane of the Veronese curve X, otherwise f has rank
d− k + 2.

Assigned the complex rank of a real binary form of degree four or five, our goal is to
classify this forms to respect to their real rank.

Proposition 5. ([12]) Any binary real form of degree d has real rank less or equal than
d.
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Proof. The points of the projective space Pd = P(Symd(R2)) correspond to forms f =
∑d

i=0

(
d
i

)
aix

d−iyi, which have coordinates (a0, . . . , ad). The rational normal curve X,
corresponds to polynomials which are d-th powers of linear forms. From the expansion
(t0x + t1y)

d =
∑d

i=0

(
d
i

)
td−i
0 ti1x

d−iyi we get that the curve X can be parametrized by

ai = td−i
0 ti1. Pick d − 1 general points on X corresponding to ldi = (li,0x + li,1y)

d for
i = 1, . . . , d− 1. The linear span of f and these points is a hyperplane, whose equation
∑(

d
i

)
aici restricts to X to the binary form

∑(
d
i

)
cit

d−i
0 ti1 of degree d with the d− 1 real

roots (t0, t1) = (li,0, li,1) (because
∑(

d
i

)
cil

d−i
i,0 l

i
i,1 = 0) hence also the last root is real,

corresponding to a last linear form ldd, which can be chosen different from the other linear
form ldi , because the d − 1 points on X are general, then we have a general hyperplane
that meets the curve in d (real) distinct roots. This means that f is a projective linear
combination of the the powers ldi for i = 1, . . . , d, or equivalently, f has rank less or equal
than d.

Proposition 6. ([12]) SR
3,r has non empty interior only for r = 2, 3. Precisely, let f be

a polynomial of third degree without multiple roots. Then

1. f has rank two if and only if ∆(f) < 0, or equivalently, if and only if f has one
real root.

2. f has rank three if and only if ∆(f) > 0, or equivalently, if and only if f has three
real roots.

Moreover, if ∆(f) = 0 we have that f has complex and real rank one.

Proof. The differential operators of degree two which annihilate f consist of the kernel
of the matrix (

a0 a1 a2
a1 a2 a3

)

.

The discriminant of the quadratic generator of the kernel coincides with −∆(f); thus
the operators have two real roots if ∆(f) < 0 and this means that the rank-2 complex
decomposition is actually real. Note also that a cubic of real rank two can have only
one real root. Indeed the equation l31 + l32 = 0 reduces to the three linear equations l1 −
exp

nπi
3 l2 = 0 for n = 0, 1, 2. This proves the first statement. If ∆(f) > 0, the quadratic

generator has no real root and by Proposition 5 we have the second statement.

Proposition 7. ([12]) Let f ∈ Symd(R2) such that f has d real distinct roots. Then
rkRf = d.

Proof. The proof is by induction on d. If d = 1, it’s trivial. If d = 2, we have that a real
form f of degree two corresponds to a 2× 2 symmetric matrix and then we have that f
has two real distinct roots if and only if rkRf = 2. Then let d ≥ 3. Assume the rank is
less or equal than d− 1. Then we get f =

∑d−1
i=1 l

d
i . We may assume that ld−1 does not

divide f , because:
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1. if d = 3 we have two summands for f . If the second summand divides f , then it nec-
essarily divides the first summand and hence the two summands are proportional.
Then we may assume that ld−1 = l2 does not divide f ;

2. if d ≥ 4, the fibers from abstract secant variety to the secant variety of X have
positive dimension. Hence there are infinitely many decompositions of f . Then we
may assume that ld−1 does not divide f .

Consider the rational function

F =
f

ld−1

Under a linear (real) change of projective coordinates φ(x, y) = (x′, y′) with y′ = ld−1

we get G(x′, y′) = F (φ−1(x′, y′)) = f(φ−1(x′,y′))
y′d

. Then the polynomial G(x′, 1) =
∑d−2

i=1 ni(x
′)d+1 has d distinct real roots since f had (where deg ni = 1) and its derivative

d
dx′G(x′, 1) =

∑d−2
i=1 dni(x

′)d−1 d
dx′ (ni(x

′)) has d − 1 distinct real roots. Now d
dx′G(x′, 1)

has rank less or equal than d− 2, indeed d
dx′ (ni(x

′)) are constants. This contradicts the
inductive assumption. Hence the assumption was false and the rank of f must exceed
d− 1. The rank of f must eventually be equal to d by Proposition 5.

Lemma 8. ([12]) The following are canonical forms for general forms, under the action
of the Möbius transformation group

Aut(R) =
{

x 7→ ax+b
cx+d | ad− bc 6= 0

}

=

{

A =

(
a b
c d

)

| detA 6= 0

}

:

d = 4:

1. (x2 + y2)(x2 + ay2), with a > 0 (four complex roots) or with a < 0 (two complex
roots and two real roots);

2. (x2 − y2)(x2 + ay2), with a < 0 (four real roots).

d = 5:

1. x(x2+y2)(x2+2axy+ by2), with b−a2 > 0 (one real roots and four complex roots)
or with b− a2 < 0 (three real roots and two complex roots);

2. x(x2 − y2)(x2 + 2axy + by2), with b− a2 < 0 (five real roots).

Proof. We prove just the first case for d = 4, the other ones being analogous. When
there are two pairs of conjugate roots, they lie in the complex plane on a circle with
real center, then a convenient circle inversion makes the four roots on a vertical line. A
translation and a homothety centered at zero conclude the argument. When there is one
pair of conjugate roots, assume that they are ±

√
−1. Then consider the transformations

x 7→ x+c
−cx+1 , which preserve ±

√
−1 and it is easy to show that a convenient choice of c

makes the sum of the other two roots equal to zero.

Proposition 9. ([12]) Let f be a real binary form of degree d with distinct roots. Then:
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1. if f has d real roots then for every (a, b) 6= (0, 0) the binary form afx + bfy has
d− 1 real roots.

2. Conversely, if for every (a, b) 6= (0, 0) the binary form afx+ bfy has d−1 real roots
and 3 ≤ d ≤ 5, then f has d real roots.

Proof. 1. Consider that for any substitution x = at+c, y = bt+d with ad−bc 6= 0 we
have that F (t) = f(at+c, bt+d) has d real roots, then d

dtf(at+c, bt+d) = afx+bfy
has d− 1 real roots corresponding to the d− 1 extremal points of F .

2. Assume that f has a number of real roots less or equal than d− 1 (hence to d− 2)
and let us show that there exist (a, b) such that afx + bfy has a number of real
roots less or equal than d− 2 (hence to d− 3).
For d = 3, after a Möbius transformation, we may assume that f = x3 + 3xy2.
Then fx = 3(x2 + y2) has no real roots.
For d = 4 we may assume by the Lemma 8 that f = (x2 + y2)(x2 + ay2). For
a > −1, we consider fx = x(4x2 + 2(a + 1)y2) which has only one real root. For
a < −1 we consider fy = y(4ay2 + 2(a + 1)x2) which has only one real root. For
a = −1 then fx − fy has only one real root.
For d = 5 we may assume by the Lemma 8 that f = x(x2 + y2)(x2 + 2axy + by2).
The discriminant of fx is (up to a positive scalar multiple) D(a, b) = −540a2 −
1584a4 + 830b3 − 180b4 − 180b2 − 8192a6 + 405b5 + 405b − 7476a2b2 + 1548a2b +
14784a4b − 396a2b3 + 576a4b2 − 432b4a2. It can be shown that fx has zero real
roots if D(a, b) > 0 and two real roots if D(a, b) < 0. This concludes the proof.

Corollary 10. ([12]) Let d ∈ [3, 5] and f ∈ Symd(R2) with distinct roots. Then rkRf =
d =⇒ f has d real roots.

Proof. The proof is by induction on d. For d = 3 it follows from the Proposition 6. Let
4 ≤ d ≤ 5. If f has a number of real roots less or equal than d− 2 then by Proposition
9, there exists (a, b) 6= (0, 0) such that the binary form afx + bfy has a number of real
roots less or equal than d− 3. Then by the inductive assumption afx + bfy has rank less

or equal than d−2. So we get afx+ bfy =
∑d−2

i=1 l
d−1
i . Choose c, d such that ad− bc 6= 0.

Let F (t) = f(at + c, bt + d). We get that F ′(t) =
∑d−2

i=1 ni(t)
d−1 for some degree one

polynomials ni and by integration there is a constant K and degree one polynomials mi

such that F (t)
(bt+d)d

=
∑d−2

i=1
mi(t)

d

(bt+d)d
+ K

(bt+d)d
. With the substitution t = dx−yc

−bx+ay we get that

the rank of f is less or equal than d− 1, which is against the assumption.

Proposition 11. ([12]) Let f ∈ Symd(R2) such that rkCf = k, for k ∈ [2, ⌊d/2⌋ + 1].
Then we can have only the following two situations:

1. rkRf = k,

2. rkRf ≥ d− k + 2, where equality holds for k = 2.
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Proof. Assume that the first statement does not hold. This means that the contraction
from the space of the homogeneous differential operator of degree k to the space of the
homogeneous polynomial of degree d− k

Dk −→ Rd−k

has rank k and that the one dimensional kernel is generated by one operator with at
least two complex conjugate roots. It follows that also the transpose operator

Dd−k −→ Rk

has rank k and the operators in the kernel are given exactly by the previous operator
times every operator of degree d− 2k. In particular no operator in the kernel has all real
roots. This argument works also for the next contraction

Dd−k+1 −→ Rk−1

which has again rank k. At the next step it is possible to find an operator in the
kernel with all real roots. This concludes the proof. When k = 2 the equality holds by
Proposition 5.

Theorem 12. ([3]) Let f be a binary form of degree d. Then f⊥ is a complete inter-
section ideal over C, i.e. f⊥ is generated by two real binary forms, g1, g2, such that
deg g1 + deg g2 = d + 2 and {g1 = 0} ∩ {g2 = 0} = ∅. Moreover, for any pairs of forms
g1, g2 of this type, they generate an ideal f⊥, for some real binary form f of degree
d = deg g1 + deg g2 − 2.

Remark 13. Given a binary form f of degree d, evidently the Kernel of a its catalecticant
matrix of any dimension is contained in f⊥. Moreover, we say that the apolar ideal of
f is generated in generic degree when its two generators have degrees

(
d+2
2 , d+2

2

)
or

(
d+1
2 , d+3

2

)
for d respectively even or odd. This situation occurs exactly when the rank

of the catalecticant matrix of f is maximum.

Theorem 14. ([3]) All ranks between ⌊d/2⌋ + 1 and d are typical for binary forms of
degree d.

Proof. We use induction on the degree d. The base case d = 2 is just bivariate quadratic
forms and the real rank corresponds to the usual rank of the matrix. Therefore there is
only one typical rank, which is 2.
Inductive Step: d =⇒ d + 1. We first note that it was already shows in [12] that rank
d+1 is typical for forms in Symd+1(R2). Suppose that f ∈ Symd+1(R2) is a typical form
of rank

⌊
d+3
2

⌋
≤ m ≤ d. By perturbing f we may assume that the apolar ideal f⊥ is

generated in generic degrees.
Suppose d = 2k is even. Then f⊥ is generated by forms p1, p2 with deg p1 = deg p2 =
k + 1. First suppose that m = k + 1. We may choose a generator p1 ∈ (f⊥)m such
that p1 has all real distinct roots and let p2 be a form in (f⊥)m linearly independent
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from p1. Now let l a linear real binary form such that the zero of l is not one of the
zeroes of p1 and consider the ideal I = 〈p1, lp2〉. The forms p1 and lp2 form a complete
intersection over C. By Theorem 12, I is the apolar ideal of some form g ∈ Symd+1(R2).
Since we have g⊥ ⊂ f⊥, by Lemma 2.3 in [3] we know that g is a typical form of rank
m. Now suppose that m > k + 1. By Apolarity Lemma there exists s ∈ (f⊥)m such
that s has all real distinct roots and by Lemma 2.3 in [3] we know that all forms in
(f⊥)m−1 have at least 2 complex roots. Since s ∈ (f⊥)m we can write s = p1q1 + p2q2
for q1, q2 ∈ Symm−k−1(R2). We now claim that we may choose two generators p1 and p2
of f⊥ so that the multiplier q2 has a real root distinct from the roots of p1. If this does
not hold then we may pick a different set of generators of f⊥: let p′1 = p1 + αp2 with
some α ∈ R. Then s = p′1q1 + p2(q2 − αq1). We can easily adjust α so that q2 − αq1 has
a real root, and we need to argue that we can also make this root distinct from the roots
of p′1 = p1 + αp2. Suppose not, then for any (a, b) ∈ R2 that is not a root of q1 we may
set α = −q2(a, b)/q1(a, b) and make (a, b) a root of q2 − αq1. Therefore we must have
p1
p2

= − q2
q1

which implies that s = p1q1 + p2q2 = 0 and that is a contradiction. Thus we

have q2 − αq1 = lq, with q ∈ Symk−m−2(R2) and l does not divide p′1. Let I = 〈p′1, lp2〉.
As before, p′1 and lp2 form a complete intersection over C and by Theorem 12 I is the
apolar ideal of some form g ∈ Symd+1(R2). Since s ∈ I we know that the rank of g is at
most m and since I ⊂ f⊥ we know that the rank of g is at least m. Therefore the rank
of g is m. Further, g⊥ ⊂ f⊥ has no forms of degree m − 1 with all real roots and g⊥ is
generated in generic degrees. Therefore g is a typical form of rank m.
Now suppose that d = 2k + 1 is odd. Then f⊥ is generated by forms p1, p2 with
deg p1 = k + 1 and deg p2 = k + 2. We note that we only need to deal with the cases
m ≥ k+ 2. By Apolarity Lemma there exists s ∈ (f⊥)m such that s has all real distinct
roots and by Lemma 2.3 in [3] all forms in (f⊥)m−1 have at least 2 complex roots. Since
s ∈ (f⊥)m we can write s = p1q1+p2q2 for q1 ∈ Symm−k−1(R2) and q2 ∈ Symm−k−2(R2).
The generator p1 is uniquely determined, but p2 is unique only modulo the ideal generated
by p1. We now claim that we may choose generators of f⊥ so that the multiplier q1 has
a real root distinct from the roots of p2. If this does not hold then let p′2 = p2 + lp1 for
some linear form l. We have s = p1(q1 − lq2) + p′2q2. We can adjust l so that q1 − lq2
has a real root, and we need to argue that we may also make this root distinct from the
roots of p′2 = p2 + lp1. Arguing as before we must have p2

p1
= − q1

q2
which implies that

s = p1q1 + p2q2 = 0 and that is a contradiction. Let I = 〈lp1, p′2〉. Since lp1 and p′2
form a complete intersection over C by Theorem 12 I is the apolar ideal of some form
g ∈ Symd+1(R2). Since s ∈ I we know that the rank of g is at most m and since I ⊂ f⊥

we know that the rank of g is at least m. Therefore the rank of g is m. Further, g⊥ ⊂ f⊥

has no forms of degree m− 1 with all real roots and g⊥ is generated in generic degrees.
Therefore g is a typical form of rank m.

Remark 15. By Proposition 7 and Corollary 10, if f ∈ Symd(R2) has d distinct roots,
with d ∈ [3, 5], then are equivalent:

• f has real rank d,

• f has d real roots.
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Remark 16. Let f ∈ Symd(R2) such that f has τ real roots (counted with multiplicity).
Then τ ≤ rkRf (see Theorem 3.1 and 3.2 in [31]).

1.2 Quartic forms

In this Section we want to give a general classification of real ranks for real binary forms
of degree d = 4.

Proposition 17. Let f ∈ Sym4(R2) be such that rkCf = r, with r ∈ [1, 4]. Then we
have:

1. r = 1 =⇒ rkRf = 1.

2. r = 2 =⇒ rkRf = 2 or rkRf = 4.

3. r = 3 =⇒ rkRf = 3 or rkRf = 4.

4. r = 4 =⇒ rkRf = 4.

Proof. Let f ∈ Sym4(R2) be with complex rank r:

1. trivial.

2. By Proposition 11.

3. Being rkRf ≥ rkCf , by Proposition 5 and Theorem 14 we have the conclusion.

4. Trivial.

Let f ∈ Sym4(R2). Starting from Proposition 17 and fixing the complex rank of f ,
we see precisely how occur the real ranks of f . Moreover, we give a method to compute
the real rank without having to search a homogeneous differential operator of degree
r = rkCf with all real roots. In the case they do not exist, we will find them without
going into degree r + 1 and so on.

Remark 18. Let f ∈ Sym4(R2):

1. if rkCf = 1, trivially the real rank of f is 1 and conversely.

2. If rkCf = 2, we consider a quartic form with real coefficients

f = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4

Then, being rkCf = 2, the catalecticant matrix of dimension 3×3 (i.e. we consider
the linear map from the space of the homogeneous differential operator of degree
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2 = rkCf , D2, to the space of the homogeneous polynomial of degree 4 − 2 =
deg f − rkCf , R2) of f

J =





a0 a1 a2
a1 a2 a3
a2 a3 a4





has rank 2. Then ker J has dimension one and it is generated by a polynomial g of
degree two. Therefore if g has two real distinct roots we have rkRf = 2, otherwise
rkRf = 4.

3. If rkCf = 3, we consider a generic quartic with real coefficients

f = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4.

Depending on the type of roots of f , we have the following cases:

(a) f has four real distinct roots. In this case, we can rewrite f in the canonical
form (x2 − y2)(x2 + ay2) = x4 + (a− 1)x2y2 − ay4, with a < 0 (and a 6= −1)
and we have that rkRf = 4 by Remark 15.

(b) f has four distinct roots but not all real. In this case, we can rewrite f in the
canonical form (x2 + y2)(x2 + ay2) = x4 + (a+1)x2y2 + ay4, with a 6= 0 (and
a 6= −1) and we have that rkRf = 3 by Remark 15 and by the fact that there
are only two possibilities (3 or 4) for the real rank of f .

(c) f has three real roots, two distinct and one with multiplicity 2. In this case,
we can rewrite f in the canonical form x2(x2 − y2) = x4 − x2y2 and we have
that rkRf = 4. In fact, consider the catalecticant matrix of size 2× 4 of f

J =

(
1 0 −1

6 0
0 −1

6 0 0

)

.

Computing the two relative equations, we have that ker J is generated by the
following two cubics

f1 = x3 + 6xy2, f2 = y3

Then a generic element of ker J is of the type f1 +mf2 = x3 + 6xy2 +my3

with discriminant the following polynomial in m of degree two

4

∣
∣
∣
∣

1 0
0 2

∣
∣
∣
∣

∣
∣
∣
∣

0 2
2 m

∣
∣
∣
∣
−

∣
∣
∣
∣

1 2
0 m

∣
∣
∣
∣

2

= −32−m2

which is always negative.

(d) f has two complex roots and two real coincident roots. In this case, we can
rewrite f in the canonical form x2(x2 + y2) = x4 + x2y2 and we have that
rkRf = 3. In fact, consider the catalecticant matrix of size 2× 4 of f

J =

(
1 0 1

6 0
0 1

6 0 0

)

.
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Computing the two relative equations, we have that ker J is generated by the
following two cubics

f1 = x3 − 6xy2, f2 = y3.

Then a generic element of ker J is of the type f1 +mf2 = x3 − 6xy2 +my3

with discriminant the following polynomial in m of degree two

4

∣
∣
∣
∣

1 0
0 −2

∣
∣
∣
∣

∣
∣
∣
∣

0 −2
−2 m

∣
∣
∣
∣
−

∣
∣
∣
∣

1 −2
0 m

∣
∣
∣
∣

2

= 32−m2

that changes sign.

(e) f is the square of a quadratic form. In this case, we can rewrite f in the
following two forms:

• (x2 + y2)2 = x4 + 2x2y2 + y4 and rkRf = 3. In fact, consider the catalec-
ticant matrix of size 2× 4 of f

J =

(
1 0 1

3 0
0 1

3 0 0

)

.

Computing the two relative equations, we have that ker J is generated by
the following two cubics

f1 = x3 − 3xy2, f2 = −3x2y + y3.

Then a generic element of ker J is of the type f1 +mf2 = x3 − 3mx2y −
3xy2 + my3 with discriminant the following polynomial in m of degree
four

4

∣
∣
∣
∣

1 −m
−m −1

∣
∣
∣
∣

∣
∣
∣
∣

−m −1
−1 m

∣
∣
∣
∣
−

∣
∣
∣
∣

1 −1
−m m

∣
∣
∣
∣

2

= 4(−1−m2)2

which is always positive.

• (x2 − y2)2 = x4 − 2x2y2 + y4 and rkRf = 4. In fact, consider the catalec-
ticant matrix of size 2× 4 of f

J =

(
1 0 −1

3 0
0 −1

3 0 0

)

.

Computing the two relative equations, we have that ker J is generated by
the following two cubics

f1 = x3 + 3xy2, f2 = +3x2y + y3.

Then a generic element of ker J is of the type f1 +mf2 = x3 + 3mx2y +
3xy2 + my3 with discriminant the following polynomial in m of degree
four

4

∣
∣
∣
∣

1 m
m 1

∣
∣
∣
∣

∣
∣
∣
∣

m 1
1 m

∣
∣
∣
∣
−

∣
∣
∣
∣

1 1
m m

∣
∣
∣
∣

2

= −4(m2 − 1)2

that vanishes in m = ±1 and is negative otherwise.

4. If rkCf = 4, we have that f has three coincident real roots and another one. Then
we can write f as f = xy3 and we have rkRf = 4.
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1.3 Quintic forms

Proposition 19. Let f ∈ Sym5(R2) be such that rkCf = r, with r ∈ [1, 5]. Then we
have:

1. r = 1 =⇒ rkRf = 1.

2. r = 2 =⇒ rkRf = 2 or rkRf = 5.

3. r = 3 =⇒ rkRf = 3 or rkRf = 4 or rkRf = 5.

4. r = 4 =⇒ rkRf = 4 or rkRf = 5.

5. r = 5 =⇒ rkRf = 5.

Proof. Let f ∈ Sym5(R2) be with complex rank r:

1. trivial.

2. By Proposition 11.

3. Being rkRf ≥ rkCf , by Proposition 5 and Theorem 14 we have the conclusion.

4. Being rkRf ≥ rkCf , by Proposition 5 and Theorem 14 we have the conclusion.

5. Trivial.

Let f ∈ Sym5(R2). Starting from Proposition 19 and fixing the complex rank of f , we
see precisely how occur the real ranks of f . Moreover, we give a method for compute the
real rank without having to search homogeneous differential operator of degree r = rkCf
with all real roots. In the case they do not exist, we will find them without going into
degree r + 1 and so on.

Remark 20. Let f ∈ Sym5(R2):

1. if rkCf = 1, trivially the real rank of f is 1 and conversely.

2. If rkCf = 2, we consider a quintic form with real coefficients

f = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4.

Then, being rkCf = 2, the catalecticant matrix of size 4 × 3 (i.e. we consider
the linear application from the space of the homogeneous differential operator of
degree 2 = rkCf , D2, to the space of the homogeneous polynomial of degree 5−2 =
deg f − rkCf , R3) of f

J =







a0 a1 a2
a1 a2 a3
a2 a3 a4
a3 a4 a5
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has rank 2. Then ker J has dimension one and it is generated by a polynomial g of
degree two. Therefore if g has two real distinct roots we have rkRf = 2, otherwise
rkRf = 5.

3. If rkCf = 3, the method appears in [12] and we must compute the sign of ∆(β),
where β =

∑3
i=0 βix

3−iyi is the generator of the kernel of the (3× 4)-catalecticant
matrix J of f and βi the appropriate (3× 3)-determinants of J . In particular, let
f be any quintic of complex rank three. Then rkRf = 5 if and only if f has only
real roots not all coincident. On the other hand, in case f has some complex roots,
∆(β) > 0 if and only if rkRf = 3 and ∆(β) < 0 if and only if rkRf = 4.

4. If rkCf = 4, we consider a quintic f with real coefficients. Then f is not general
and we have some cases that depend on the type of the roots of f .

(a) f has five real roots. In this case, we can write f as f = x(x2 − y2)(x2 +
2axy + by2), with b− a2 ≤ 0 and, by Remark 16, we have that rkRf = 5.

(b) f has five roots not all real. In this case, we have the following situations:
f has two coincident real roots. Then, we can rewrite f as f = x2(x2 +

y2)(x− ay) = x2(−ax2y− ay3 + x3 + xy2), with a 6= 0. Consider the catalec-
ticant matrix of size 2 × 5 (i.e. we consider the linear application from the
space of the homogeneous differential operator of degree 4 = rkCf , D4, to the
space of the homogeneous polynomial of degree 5− 4 = deg f − rkCf , R1) of
f

J =

(
1 −a

5
1
10 − a

10 0
−a

5
1
10 − a

10 0 0

)

.

Computing the two related equations, we have that ker J is generated by
three quartics, with parameter a, f1, f2, f3. Then a generic element of ker J
is of the type f1 +mf2 + nf3. Therefore it is difficult to continue as in the
case of the quartic of complex rank 3, by computational problems. Then we
consider the apolar ideal of f , f⊥. Being the maximum rank (i.e. 3) of the
(3×4)-catalecticant matrix of f , we know that f⊥ is generated as in Theorem
12 and in Remark 13, that is precisely by a cubic g2 and a quartic g1. In
particular g2 has coefficients equal to the appropriate (3 × 3)-minors of the
(3× 4)-catalecticant matrix of f





1 −a
5

1
10 − a

10
−a

5
1
10 − a

10 0
1
10 − a

10 0 0





and two coincident roots, because rkCf = 4. Then, we have

g2 = a0x
3 + a1x

2y + a2xy
2 + a3y

3

where

a0 =

∣
∣
∣
∣
∣
∣

−a
5

1
10 − a

10
1
10 − a

10 0
− a

10 0 0

∣
∣
∣
∣
∣
∣

=
a3

1000
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a1 =

∣
∣
∣
∣
∣
∣

1 1
10 − a

10
−a

5 − a
10 0

− 1
10 0 0

∣
∣
∣
∣
∣
∣

= − a2

1000

a2 =

∣
∣
∣
∣
∣
∣

1 −a
5 − a

10
−a

5
1
10 0

1
10 − a

10 0

∣
∣
∣
∣
∣
∣

=
a(−2a2 + 1)

1000

a3 =

∣
∣
∣
∣
∣
∣

1 −a
5

1
10

−a
5

1
10 − a

10
1
10 − a

10 0

∣
∣
∣
∣
∣
∣

=
−6a2 − 1

1000

and with discriminant equal to zero. The discriminant of g2 (up to scalar
factors) is the following polynomial in a of degree twelve a6(2a6 − 77a4 −
16a2 − 1) that vanishes in a = 0 and a = ±c1, being its factors a6 and
2a6 − 77a4 − 16a2 − 1, where c1 is

√

(467675 + 1200
√
6)

1

3 ((467675 + 1200
√
6)

2

3 + 77(467675 + 1200
√
6)

1

3 + 6025)
√
6(467675 + 1200

√
6)

1

3

. Then we have necessarily a = ±c1 and therefore the following two cases:

• a = c1. Then we have f = x2(x2+ y2)(x− c1y). The (2×5)-catalecticant
matrix of f is

J =

(
1 − c1

5
1
10 − c1

10 0
− c1

5
1
10 − c1

10 0 0

)

.

Computing the two related equations, we have that ker J is generated by
the following three quartics:

f1 =
1

2c1
x4 + x3y +

5− 2c21
c21

xy3, f2 = −1

2
x4 + x2y2 − 4

c1
xy3, f3 = y4.

Then a generic element of ker J is of the type g = f1 + mf2 + nf3 =
(

1
2c1

− m
2

)

x4+x3y+mx2y2+
(
5−2c2

1

c2
1

− 4m
c1

)

xy3+ny4 with discriminant

equal to the following polynomial in m, n of degree six (−32c101 m
5n −

128c101 m
4n2+32c101 m

4−128c101 m
3n3+240c101 m

3n+96c101 m
2n2−128c101 m

2−
96c101 mn − 108c101 n

2 + 128c101 + 128c91m
5 + 1696c91m

4n + 1024c91m
3n2 −

1696c91m
3 + 384c91m

2n3 − 928c91m
2n − 480c91mn

2 + 1344c91m − 48c91n +

128c81m
6+2304c81m

5n−7136c81m
4−5856c81m

3n−2624c81m
2n2+8800c81m

2−
384c81mn

3 + 504c81mn + 384c81n
2 − 1392c81 − 11968c71m

5 − 10368c71m
4n +

3584c71m
3 + 6592c71m

2n + 2688c71mn
2 − 13776c71m + 128c71n

3 + 240c71n −
6912c61m

6+69064c61m
4+17424c61m

3n−68108c61m
2−2100c61mn−960c61n

2+

6720c61+48384c51m
5− 163064c51m

3− 12960c51m
2n+57720c51m− 300c51n−
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140832c41m
4 + 193140c41m

2 + 3600c41mn− 18200c41 + 218160c31m
3 −

114300c31m− 189675c21m
2 + 27000c21 + 87750c1m− 16875) 1

4c10
1

.

The companion matrix and the Bezoutiant of g are respectively

M =









0 0 0 − 2nc1
1−c1m

1 0 0 −2(5−2c2
1
−4mc1)

c1(1−c1m)

0 1 0 − 2mc1
1−c1m

0 0 1 − 2c1
1−c1m









, B =









s0 s1 s2 s3

s1 s2 s3 s4

s2 s3 s4 s5

s3 s4 s5 s6









where s0 = 4, s1 = Tr(M) = 2c1
c1m−1 , s2 = Tr(M2) = 4((c1m−1)m+c1)c1

(c1m−1)2
,

s3 = Tr(M3) =
2(4c4

1
−12∗c3

1
m3+6c3

1
m+39c2

1
m2−6c2

1
−42c1m+15)

(c1m−1)3c1
, s4 = Tr(M4) =

8(c4
1
m4+c4

1
m3n+2c4

1
−10c3

1
m3−3c3

1
m2n+4c3

1
m+27c2

1
m2+3c2

1
mn−4c2

1
−28c1m−c1n+10)

(c1m−1)4
,

s5 = Tr(M5) =
4(5c5

1
m3n+8c5

1
−20c4

1
m5−30c4

1
m3−15c4

1
m2n+20c4

1
m+85c3

1
m4+

(c1m−1)5

110c3
1
m2+15c3

1
mn−20c3

1
−135c2

1
m3−130c2

1
m−5c2

1
n+95c1m2+50c1−25m)

(c1m−1)5
and

s6 = Tr(M6) =
4(4c8

1
m6+6c8

1
m5n+12c8

1
m3n+16c8

1
−60c7

1
m5−24c7

1
m4n−72c7

1
m3−

(c1m−1)6c2
1

36c7
1
m2n+48c7

1
m+48c6

1
m6+168c6

1
m4+36c6

1
m3n+276c6

1
m2+36c6

1
mn−48c6

1
−312c5

1
m5−

(c1m−1)6c2
1

124c5
1
m3−24c5

1
m2n−336c5

1
m−12c5

1
n+843c4

1
m4−96c4

1
m2+6c4

1
mn+132c4

1
−1212c3

1
m3+

(c1m−1)6c2
1

168c3
1
m+978c2

1
m2−60c2

1
−420c1m+75)

(c1m−1)6c2
1

. Then the principal minors of B are the

discriminant of g and the following polynomials in m, n of degree 4 and 2

d1 = 16(4c61m
4 +8c61m

3n− 6c61m
2 +6c61mn+12c61 − 92c51m

3 − 16c51m
2n+

68c51m−6c51n−144c41m
4+342c41m

2+8c41mn−66c41+648c31m
3−434c31m−

1089c21m
2 + 180c21 + 810c1m− 225)

d2 = 4(4c1m
2 + 3c1 − 4m)c1

whose signs are both positive in some regions of the real plane (see Figures

1.1 and 1.2), whence rkRf = 4, because if the Bezoutiant of a polynomial is

positive definite, then the polynomial has all real roots (see Corollary 4.49

in [15]). For example, inm = 0 and n = 0 we have that the discriminant of

g is
128c10

1
−1392c8

1
+6720c6

1
−18200c4

1
+27000c2

1
−16875

4c10
1

, d1 is 8(2c41−6c21+15)(2c21−5)

and d2 is 12c21, all positive for the above fixed c1.

• a = −c1. Then we have f = x2(x2+y2)(x+c1y). The (2×5)-catalecticant
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matrix of f is

J =

(

1 c1
5

1
10

c1
10 0

c1
5

1
10

c1
10 0 0

)

.

Computing the two related equations, we have that ker J is generated by

the following three quartics:

f1 = − 1

2c1
x4 + x3y +

5− 2c21
c21

xy3, f2 = −1

2
x4 + x2y2 +

4

c1
xy3, f3 = y4.

Then a generic element of ker J is of the type g = f1 + mf2 + nf3 =
(

− 1
2c1

− m
2

)

x4 + x3y +mx2y2 +
(
5−2c2

1

c2
1

+ 4m
c1

)

xy3 + ny4 with discrimi-

nant equal to the following polynomial in m, n of degree six (−32c101 m
5n−

128c101 m
4n2+32c101 m

4−128c101 m
3n3+240c101 m

3n+96c101 m
2n2−128c101 m

2−
96c101 mn − 108c101 n

2 + 128c101 − 128c91m
5 − 1696c91m

4n − 1024c91m
3n2 +

1696c91m
3 − 384c91m

2n3 + 928c91m
2n + 480c91mn

2 − 1344c91m + 48c91n +

128c81m
6+2304c81m

5n−7136c81m
4−5856c81m

3n−2624c81m
2n2+8800c81m

2−
384c81mn

3 + 504c81mn + 384c81n
2 − 1392c81 + 11968c71m

5 + 10368c71m
4n −

35584c71m
3 − 6592c71m

2n− 2688c71mn
2 + 13776c71m− 128c71n

3 − 240c71n−
6912c61m

6+69064c61m
4+17424c61m

3n−68108c61m
2−2100c61mn−960c61n

2+

6720c61− 48384c51m
5+163064c51m

3+12960c51m
2n− 57720c51m+300c51n−

140832c41m
4 + 193140c41m

2 + 3600c41mn− 18200c41 − 218160c31m
3 +

114300c31m− 189675c21m
2 + 27000c21 − 87750c1m− 16875) 1

4c10
1

.

The companion matrix and the Bezoutiant of g are respectively

M =









0 0 0 2nc1
1+c1m

1 0 0
2(5−2c2

1
+4mc1)

c1(1+c1m)

0 1 0 2mc1
1+c1m

0 0 1 2c1
1+c1m









, B =









s0 s1 s2 s3

s1 s2 s3 s4

s2 s3 s4 s5

s3 s4 s5 s6









where s0 = 4, s1 = Tr(M) = 2c1
c1m+1 , s2 = Tr(M2) = 4((m2+1)c1+m)c1

(c1m+1)2
,

s3 = Tr(M3) =
2(4c4

1
+12c3

1
m3−6c3

1
m+39c2

1
m2−6c2

1
+42c1m+15)

(c1m+1)3c1
, s4 = Tr(M4) =

8(c4
1
m4+c4

1
m3n+2c4

1
+10c3

1
m3+3c3

1
m2n−4c3

1
m+27c2

1
m2+3c2

1
mn−4c2

1
+28c1m+c1n+10)

(c1m+1)4
,

s5 = Tr(M5) =
4(5c5

1
m3n+8c5

1
+20c4

1
m5+30c4

1
m3+15c4

1
m2n−20c4

1
m+85c3

1
m4+

(c1m+1)5

110c3
1
m2+15c3

1
mn−20c3

1
+135c2

1
m3+130c2

1
m+5c2

1
n+95c1m2+50c1+25m)

(c1m+1)5
and

s6 = Tr(M6) =
4(4c8

1
m6+6c8

1
m5n+12c8

1
m3n+16c8

1
+60c7

1
m5+24c7

1
m4n+72c7

1
m3+

(c1m+1)6c2
1
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36c7
1
m2n−48c7

1
m+48c6

1
m6+168c6

1
m4+36c6

1
m3n+276c6

1
m2+36c6

1
mn−48c6

1
+312c5

1
m5+

(c1m+1)6c2
1

124c5
1
m3+24c5

1
m2n+336c5

1
m+12c5

1
n+843c4

1
m4−96c4

1
m2+6c4

1
mn+132c4

1
+1212c3

1
m3−

(c1m+1)6c2
1

168c3
1
m+978c2

1
m2−60c2

1
+420c1m+75)

(c1m+1)6c2
1

. Then the principal minors of B are the

discriminant of g and the following polynomials in m, n of degree 4 and 2

d1 = 16(4c61m
4 +8c61m

3n− 6c61m
2 +6c61mn+12c61 +92c51m

3 +16c51m
2n−

68c51m+6c51n−144c41m
4+342c41m

2+8c41mn−66c41−648c31m
3+434c31m−

1089c21m
2 + 180c21 − 810c1m− 225)

d2 = 4(4c1m
2 + 3c1 + 4m)c1

whose signs are both positive in some regions of the real plane (see Figures

1.3 and 1.4), whence rkRf = 4. For example, in m = 0 and n = 0 we

have that the discriminant of g is (128c101 − 1392c81 + 6720c61 − 18200c41 +

27000c21 − 16875), d1 is 48(2c41 − 6c21 + 15)(2c21 − 5) and d2 is 12c21, all

positive for the above fixed c1.

Figure 1.1: Discriminant of g =
(

1
2c1

− m
2

)

x4 + x3y+mx2y2 +
(
5−2c2

1

c2
1

− 4m
c1

)

xy3 +ny4.
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Figure 1.2: Minor d1 = 16(4c61m
4+8c61m

3n−6c61m
2+6c61mn+12c61−92c51m

3−16c51m
2n+

68c51m− 6c51n− 144c41m
4 + 342c41m

2 + 8c41mn− 66c41 + 648c31m
3 − 434c31m− 1089c21m

2 +
180c21 + 810c1m− 225).

Figure 1.3: Discriminant of g =
(

− 1
2c1

− m
2

)

x4+x3y+mx2y2+
(
5−2c2

1

c2
1

+ 4m
c1

)

xy3+ny4.

Figure 1.4: Minor d1 = 16(4c61m
4+8c61m

3n−6c61m
2+6c61mn+12c61+92c51m

3+16c51m
2n−

68c51m+ 6c51n− 144c41m
4 + 342c41m

2 + 8c41mn− 66c41 − 648c31m
3 + 434c31m− 1089c21m

2 +
180c21 − 810c1m− 225).

f has five distinct roots. In this case, we can rewrite f as f = x(x2 +
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y2)(x2 + 2axy + by2), with b − a2 6= 0 (and (a, b) 6= (0, 1), b 6= 0) and we
have that rkRf = 4 by Remark 15 and by the fact that there are only two
possibilities (4 or 5) for the real rank of f .
f has three real coincident roots. Then we can rewrite f as x3(x2+a2y2) =

x5 + a2x3y2, with a 6= 0. In this case, by the change of variables x′ = x,
y′ = ay and rename, f becomes f = x3(x2 + y2)2. Consider the catalecticant
matrix of size 2× 5 (i.e. we consider the linear application from the space of
the homogeneous differential operator of degree 4 = rkCf , D4, to the space of
the homogeneous polynomial of degree 5− 4 = deg f − rkCf , R1) of f

J =

(
1 0 1

10 0 0
0 1

10 0 0 0

)

.

Computing the two related equations, we have that ker J is generated by the
following three quartics:

f1 = −x4 + 10x2y2, f2 = xy3, f3 = y4.

Then a generic element of ker J is of the type g = f1 +mf2 + nf3 = −x4 +
10x2y2 +mxy3 + ny4 with discriminant equal to the following polynomial in
m, n of degree four −27m4+1440m2n+4000m2−256n3−12800n2−160000n.
The companion matrix and the Bezoutiant of g are respectively

M =







0 0 0 n
1 0 0 m
0 1 0 10
0 0 1 0






, B =







s0 s1 s2 s3
s1 s2 s3 s4
s2 s3 s4 s5
s3 s4 s5 s6







where s0 = 4, s1 = Tr(M) = 0, s2 = Tr(M2) = 20, s3 = Tr(M3) = 3m,
s4 = Tr(M4) = 4(n + 50), s5 = Tr(M5) = 50m and s6 = Tr(M6) = 3m2 +
60n+2000. Then the principal minors of B are the discriminant of g and the
following polynomials in m, n of degree two and zero

d1 = 4(−9m2 + 80n+ 2000), d2 = 80

whose signs are both positive in some regions of the real plane (see Figures
1.5 and 1.6), whence rkRf = 4. For example, in m = −20 and n = −10 we
have that the discriminant of g is 576000, d1 is 4800 and d2 is 80.
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Figure 1.5: Discriminant of g = −x4 + 10x2y2 +mxy3 + ny4.

Figure 1.6: Minor d1 = 4(−9m2 + 80n+ 2000).

5. If rkCf = 5, we have that f has four coincident real roots and another one. Then
we can write f as f = xy4 and we have rkRf = 5.

1.4 Conclusions

Let f be a binary form of degree four or five. Then we have:

1. d = 4:

• f has real rank one if and only if f has complex rank one (thus if and only if
f has four coincident roots).

• f has real rank two if and only if f has complex rank two and the quadratic
generator of the kernel of its (3 × 3)-catalecticant matrix of rank 2 has two
real distinct roots.
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• f has real rank three if and only if f has complex rank three (i.e. f has generic
rank) and it has not only real roots.

• f has real rank four if and only if one of the following possibilities holds:
f has complex rank four,
f has complex rank three and only real roots (not all coincident),
f has complex rank two and the quadratic generator of the kernel of its (3×3)-
catalecticant matrix of rank 2 has two complex roots.

2. d = 5:

• f has real rank one if and only if f has complex rank one (thus if and only if
f has five coincident roots).

• f has real rank two if and only if f has complex rank two and the quadratic
generator of the kernel of its (4 × 3)-catalecticant matrix of rank 2 has two
real distinct roots.

• f has real rank three if and only if f has complex rank three (i.e. f has generic
rank) and the cubic generator of the kernel of its (3× 4)-catalecticant matrix
has three real distinct roots.

• f has real rank four if and only if one of the following possibilities holds:
f has complex rank four and not all real roots,
f has complex rank three and the cubic generator of the kernel of its (3× 4)-
catalecticant matrix has two complex roots.

• f has real rank five if and only if one of the following possibilities holds:
f has complex rank five,
f has complex rank three or four and only real roots (not all coincident),
f has complex rank two and the quadratic generator of the kernel of its (4×3)-
catalecticant matrix of rank 2 has two complex roots.

Remark 21. In Propositions 17, 19, we show a classification of the real rank of f ∈
Symd(R2) given the complex rank r of f , that is given a real form f ∈ Sd,r(R) such that
d ∈ [4, 5] and r ∈ [1, 5]. Now we want to give, bearing in mind Remarks 18 and 20,
another classification of the real ranks for quartic and quintic forms, using the secant
varieties. Then we have, by Theorem 4:

1. d = 4. The secant varieties that are of interest to us are:

Sec1(X) = {[φ] ∈ P(S∗
4) st rkCφ = 1} ∪ ∅

Sec2(X) = {[φ] ∈ P(S∗
4) st rkCφ ≤ 2} ∪ {[φ] ∈ P(S∗

4) st rkCφ = 4}
Sec3(X) = {[φ] ∈ P(S∗

4) st rkCφ ≤ 3} ∪ {[φ] ∈ P(S∗
4) st rkCφ ≥ 3} .

Then f ∈ S̄4,2 can have complex rank 1, 2 and 4, therefore real rank 1, 2 and 4.
Again, f ∈ S̄4,3 can have complex rank 1, 2, 3 and 4, therefore all real rank between
1 and 4.
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2. d = 5. The secant varieties that are of interest to us are:

Sec1(X) = {[φ] ∈ P(S∗
5) st rkCφ = 1} ∪ ∅

Sec2(X) = {[φ] ∈ P(S∗
5) st rkCφ ≤ 2} ∪ {[φ] ∈ P(S∗

5) st rkCφ = 5}
Sec3(X) = {[φ] ∈ P(S∗

5) st rkCφ ≤ 3} ∪ {[φ] ∈ P(S∗
5) st rkCφ ≥ 4} .

Then f ∈ S̄5,2 can have complex rank 1, 2 and 5, therefore real rank 1, 2 and 5.
Again, f ∈ S̄5,3 can have complex rank 1, 2, 3, 4 and 5, therefore all real rank
between 1 and 5.

Finally, we have written two software with Macaulay2 for the calculation of the real
and complex rank of a real binary quartic and quintic form.
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Chapter 2

Real eigenvectors of real symmetric

tensors

2.1 Preliminaries

Definition 22. ([7],[21],[28]) Let x ∈ Cn be and let A = (ai1,i2,...,id) be a tensor of order
d and format n×n×· · ·×n. We define Axd−1 to be the vector in Cn whose j-th coordinate
is the scalar

(Axd−1)j =
n∑

i2=1

· · ·
n∑

id=1

aj,i2,...,idxi2 · · ·xid

Then, if λ ∈ C and x̃ ∈ Cn \ {0} are elements such that Axd−1 = λx, we say that λ is
an eigenvalue of A, x̃ is an eigenvector of A and (x̃, λ) is an eigenpair. Two eigenpairs
(λ, x̃) and (λ′, x̃′) of the same tensor A are considered to be equivalent if there exists a
complex number t 6= 0 such that tm−2λ = λ′ and tx̃ = x̃′. Moreover, the fixed points of the
rational map ψA : Pn−1(C) −→ Pn−1(C), [x] 7−→ [Axd−1] are exactly the eigenvectors of
the tensor A with non-zero eigenvalue and the base locus of ψA is the set of eigenvectors
with eigenvalue zero. In particular, the map ψA is defined everywhere if and only if 0 is
not an eigenvalue of A. Finally, we say that A is nilpotent if and only if some iterate of
ψA is nowhere defined.

Remark 23. ([7],[33]) Consider f(x) ≡ f(x1, ..., xn) the homogeneous polynomial in
C[x1, ..., xn] of degree d associated to the symmetric tensor A by the relation

f(x1, ..., xn) = A · xd =
n∑

i1

· · ·
n∑

id

ai1,i2,...,idxi1 · · ·xid = x ·Axd−1

Then x̃ ∈ Cn is an eigenvector of A with eigenvalue λ ∈ C if and only if

∇f(x̃) = λx̃

Moreover, the eigenvectors of A are precisely the fixed points of the projective map

∇f : Pn−1(C) −→ Pn−1(C), [x] 7−→ [∇f(x)]

24



well-defined provided the hypersurface {f = 0} has no singular points. Then x̃ ∈ Cn is
a representative of a [x̃] ∈ Pn−1(C) eigenvector of A if and only if [x̃] = [∇f(x̃)], that is
x̃ ∈ Cn must satisfy the system







fx1
(x) = λx1

fx2
(x) = λx2

...
fxn(x) = λxn

Evidently, an eigenvectors of A is geometrically a line through the origin of Cn, because
it is a point of Pn−1(C) = P(Cn). Finally, all previous characterizations are equivalent
to say that x̃ ∈ Cn is an eigenvector of A if and only if all 2× 2-minors of 2× n-matrix

(
fx1

(x̃) fx2
(x̃) . . . fxn(x̃)

x1 x2 . . . xn

)

vanish on x̃, or obviously the vector ∇f(x̃) and x̃ are proportional.

Theorem 24. ([7]) If a tensor A has finitely many equivalence classes of eigenpairs over
C then their number, counted with multiplicity, is equal to ((d− 1)n − 1)/(d− 2). If the
entries of A are sufficiently generic, then all multiplicities are equal to 1, so there are
exactly ((d− 1)n − 1)/(d− 2) equivalence classes of eigenpairs.

Proof. For d = 2, the expression ((d−1)n−1)/(d−2) simplifies to n, which is the number
of eigenvalues of an ordinary n×n-matrix. Hence we shall now assume that d ≥ 3. For a
fixed tensor A, the n equations determined by Axd−1 = λx correspond to n homogeneous
polynomials of degree d− 1 in the graded polynomial ring R, where R = C[x1, ..., xn, λ],
with x1, ..., xn having degree 1 and λ having degree d− 2. Since R is generated in degree
d− 2, the line bundle ϑX(d− 2) is very ample, where X = P(1, 1, ..., d− 2) (see [18], pag.
35). The corresponding lattice polytope ∆ is an n-dimensional simplex with vertices at
(d− 2)ei for 1 ≤ i ≤ n and en+1, where ei are the basis vectors in Rn+1. The affine hull
of ∆ is the hyperplane x1 + ...+ xn + (d− 2)λ = d− 2. The normalized volume of this
simplex equals

V(∆) = (d− 2)n−1. (2.1)

The lattice polytope ∆, is smooth, except at the vertex en+1 where it is simplicial with
index d − 2. Therefore, the projective toric variety X is simplicial, with precisely one
isolated singular point corresponding to the vertex en+1. By [18], pag. 100, the variety X
has a rational Chow ring A∗(X)Q, which we can use to compute intersection numbers of
divisors on X. Our system of equations Axd−1 = λx consists of n polynomials of degree
d− 1 in R. Let D be the divisor class corresponding to ϑX(d− 1) and let H be the very
ample divisor class corresponding to ϑX(d− 2). The volume formula 2.1 is equivalent to
(d− 2)n−1 in A∗(X)Q and we compute the self-intersection number of D as the following
rational number:

Dn =

(
d− 1

d− 2
·H

)n

=

(
d− 1

d− 2

)n

· (d− 2)n−1 =
(d− 1)n

d− 2
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From this count we must remove the trivial solution {x = 0} of Axd−1 = λx. That
solution corresponds to the singular point en+1 on X. Since that point has index d− 2,
the trivial solution counts for 1/(d− 2) in the intersection computation, as shown in [18]
pag. 100. Therefore the number of non-trivial solutions in X is equal to

Dn − 1

d− 2
=

(d− 1)n − 1

d− 2
. (2.2)

Therefore, when the tensor A admits only finitely many equivalence classes of eigenpairs,
then their number, counted with multiplicities, coincides with the positive integer in
2.2.

Corollary 25. ([7]) If A has real entries and either d or n is odd, then A has a real
eigenpair.

Proof. When either d or n is odd, then one can check that the integer ((d−1)n−1)/(d−2)
in Theorem 24 is odd. This implies that A has a real eigenpair by Corollary 13.2 in
[17].

Definition 26. ([29]) The characteristic polynomial ΦA(λ) of a generic tensor A is
defined as follows: consider the univariate polynomial in λ that arises by eliminating the
unknowns x1, ..., xn from the system of equations Axd−1 = λx and x ·x = 1. If d is even,
then this polynomial equals ΦA(λ); if d is odd, then this polynomial has the form ΦA(λ

2).

Then Theorem 24 implies the following:

Proposition 27. ([7]) The set of normalized eigenvalues of a tensor is either finite or
it consists of all complex numbers in the complement of a finite set.

Proof. The set ǫ(A) of normalized eigenvalues λ of the tensor A is defined by the condition

∃x ∈ Cn s.t. Axd−1 = λx and x · x = 1

Hence ǫ(A) is the image of an algebraic variety in Cn+1 under the projection (x, λ) 7→ λ.
Chevalley’s Theorem states that the image of an algebraic variety under a polynomial map
is constructible, that is, defined by a Boolean combination of polynomial equations and
inequations. We conclude that the set ǫ(A) of normalized eigenvalues is a constructible
subset of C. This means that ǫ(A) is either a finite set or the complement of a finite
set.

Proposition 28. ([7]) For a tensor A, each of the following conditions implies the next:

1. the set ǫ(A) of all normalized eigenvalues consists of all complex numbers.

2. The set ǫ(A) is infinite.

3. The characteristic polynomial ΦA(λ) vanishes identically.
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Proof. Clearly, the first statement implies the second. By the projection argument in
the proof above, the zero set in C of the characteristic polynomial ΦA(λ) contains the
set ǫ(A). Hence the second statement implies the third.

Proposition 29. ([7]) If a tensor A is nilpotent then 0 is the only eigenvalue of A. The
converse is not true: there exist tensors with only eigenvalue 0 that are not nilpotent.

Proof. Suppose λ 6= 0 is an eigenvalue and x ∈ Cn − {0} a corresponding eigenvector.
Then x represents a point in Pn−1(C) that is fixed by ψA. Hence it is fixed by every iterate

ψ
(r)
A of ψA. In particular, ψ

(r)
A is defined at (an open neighborhood) of x ∈ Pn−1(C) and A

is not nilpotent. Let A be the 2× 2× 2-tensor with a111 = a211 = a212 = 1 and the other
five entries zero. The eigenpairs of A are the solutions to x21 = λx1 and x21+x1x2 = λx2.
Up to equivalence, the only eigenpair is x = (0, 1) and λ = 0. However, the self-map
ψA on P1 is dominant. To see this, note that ψA acts by translation on the affine line
A1 = {x1 6= 0} because [(x21, x

2
1 + x1x2)] = [(x1, x1 + x2)]. All iterates of ψA are defined

on A1, i.e. there are no base points with x1 6= 0, and hence A is not nilpotent.

Then, for a symmetric tensor follow that

Corollary 30. ([7]) The singular points of the projective hypersurface

{
x ∈ Pn−1|f(x) = 0

}

are precisely the eigenvectors of the corresponding symmetric tensor A which have eigen-
value 0.

Proposition 31. ([7]) Fix a non-zero λ ∈ C and suppose d ≥ 3. Then x̄ ∈ Cn is a
normalized eigenvector of A with eigenvalue λ if and only if x̄ is a singular point of the
affine hypersurface defined by the polynomial

f(x)− λ

2
x · x−

(
1

d
− 1

2

)

λ. (2.3)

Proof. The gradient of the hypersurface is ∇f−λx = Axd−1−λx, so every singular point
x is an eigenvector with eigenvalue λ. Furthermore, if we substitute f(x) = 1

dx · ∇f =
λ
dx · x into the hypersurface, then we obtain x · x = 1. This argument is reversible: if x̄
is a normalized eigenvector of A, then x · x = 1 and ∇f(x) = λx and this implies that
the hypersurface and its derivatives vanish.

Corollary 32. ([7]) The characteristic polynomial ΦA(λ) is a factor of the discriminant
of 2.3.

Theorem 33. Every symmetric tensor A has at most

{
((d− 1)n − 1)/(d− 2), d ≥ 3

(d− 1)n−1 + (d− 1)n−2 + ...+ (d− 1)0 = n, d = 2

distinct normalized eigenvalues. This bound is attained for general symmetric tensors A.
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Proof. It suffices to show that the number of normalized eigenvalues of every symmetric
tensor A is finite. Recall from the proof of Theorem 24 in [7] that the set of eigenpairs
is the intersection of n linearly equivalent divisors on a weighted projective space. Since
these divisors are ample, each connected component of the set of eigenpairs contributes
at least one to the intersection number. Therefore, the number of connected components
of eigenpairs can be no more than ((m−1)n−1)/(m−2). We conclude that the number
of normalized eigenvalues of A, if finite, must be bounded above by that quantity as well.
Finally, Example 2.2 in [7] shows that the bound is tight.
We now prove that the number of normalized eigenvalues of a symmetric tensor A is
finite. Let S be the affine hypersurface in Cn defined by the equation x21 + . . .+ x2n = 1.
We claim that a point x ∈ S is an eigenvector of A if and only if x is a critical point
of f restricted to S, in which case, the corresponding eigenvalue λ equals 1

mf(x). By
Definition, a point x ∈ S is a critical point of f |S if and only if the gradient ∇(f |S)
is zero at x. The latter condition is equivalent to the gradient ∇f being a multiple of
∇(x21+. . .+x

2
n−1) = 2x. This is exactly the definition of an eigenvector. Finally, if x ∈ S

is a critical point of f |S, then mf(x) = x · ∇f(x) = λx · x = λ, and hence λ = 1
mf(x).

Finally, to prove this Theorem, we note that, by generic smoothness (Corollary iI.10.7 in
[19]), a polynomial function on a smooth variety has only finitely many critical values.
Equivalently, Sard’s Theorem in differential geometry says that the set of critical values
of a differentiable function has measure zero, so, by Proposition 27, that set must be
finite.

The above Theorem is a result by D. Cartwright and B. Sturmfels in [7] (Theorem
5.5), although in [1] it has been remarked that it was already known by Sibony and
Fornaess ([16]) in the setting of dynamical systems.

Lemma 34. A vector v ∈ Rn is a real eigenvector of f ∈ Symd(Rn) if and only if v is a
critical point of f |Sn−1 , where Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

Proof. By Remark 23, finding (real) eigenvectors of f is equivalent to finding (real) fixed
points of the projective application ∇f , or also to solving the system

Sys1 =







fx1
(x1, x2, . . . , xn)− λx1 = 0

fx2
(x1, x2, . . . , xn)− λx2 = 0

...
fxn(x1, x2, . . . , xn)− λxn = 0

with λ ∈ C (λ ∈ R).
Consider the Lagrangian map

L(x1, x2, . . . , xn, λ) = f(x1, x2, . . . , xn)− λg(x1, x2, . . . , xn)
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where g(x1, x2, . . . , xn) = x21 + x22 + . . .+ x2n − 1. Then, the solutions of system

Sys2 =







Lx1
(x1, x2, . . . , xn, λ) ≡ fx1

(x1, x2, . . . , xn)− λx1 = 0
Lx2

(x1, x2, . . . , xn, λ) ≡ fx2
(x1, x2, . . . , xn)− λx2 = 0

...
Lxn(x1, x2, . . . , xn, λ) ≡ fxn(x1, x2, . . . , xn)− λxn = 0

Lλ(x1, x2, . . . , xn, λ) ≡ g(x1, x2, . . . , xn) = 0

are all solutions of Sys1. But solving Sys2 gives critical points v = (v1, v2, . . . , vn, λ0) of
L, that is critical points of f |Sn−1 (it is the method of Lagrange multipliers), that is the
solutions of the system
Sys3 = ∇(f |Sn−1)(x1, x2, . . . , xn) = (0, 0, . . . , 0).

Remark 35. The real eigenvectors of f have an important role, because they are the
critical points of the Euclidean distance function of [f ] from the Veronese variety (the ra-
tional normal curve in the case of dimension two) X. Among them there is the point such
that the function attains a minimum and then always exists at least a real eigenvector.

Our goal is study the number of real eigenvectors of f , supposing that {f = 0} has a
certain number of real connected components.

2.2 Binary forms

Let f ∈ Symd(R2) be a binary form, that is a homogeneous polynomial of degree d in
two variables x, y. In this case, the question of the number of real eigenvectors of f in
relation with the number of real connected components of {f = 0} simply means that
we must compare the real roots of f with the real roots of the discriminant yfx − xfy
(also known as critical real roots of f) of the matrix

(
fx(x, y) fy(x, y)

x y

)

.

Remark 36. Consider the linear operator

D : Symd(R2) −→ Symd(R2), D(f) = xfy − yfx

such that:

• D(fg) = D(f)g + fD(g), ∀ f, g ∈ Symd(R2) (Product rule or Leibniz’s rule),

• D(gf) = gD(f), ∀ g ∈ SO(2), ∀ f ∈ Symd(R2) (SO(2)-invariance), where

SO(2,R) ≡ SO(2) =

{(
cos θ − sin θ
sin θ cos θ

)

, | θ ∈ [0, 2π)

}

.
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Remark 37. Let f ∈ Symd(R2). Then f has d roots in P(C2) and, in particular, the
real ones are in P(R2). Therefore the real roots of f are lines through the origin of R2.
For example, the polynomial f = x(x2− y2) has three real roots in P(C2), then in P(R2)
and these roots correspond to the three lines through the origin in Figure 2.1.

Figure 2.1: Roots of f = x(x2 − y2).

Lemma 38. Let f =
(
x2 + y2

)n
, with n ∈ N. Then D(f) ≡ 0; conversely, if D(f) ≡ 0,

then f =
(
x2 + y2

)n
. Furthermore, we have that D

((
x2 + y2

)n
f
)
=

(
x2 + y2

)n
D(f),

∀n ∈ N and ∀ f ∈ SdR
2.

Proof. If f =
(
x2 + y2

)n
, then, by direct computation, D(f) = xfy − yfx ≡ 0. Con-

versely, consider D(f) ≡ 0. We have that ∇f is radial, hence x2 + y2 = k are level lines
orthogonal to the gradient, then the thesis.

Lemma 39. Let d ≥ 1. Consider Pd =
∑⌊d/2⌋

j=0 (−1)j
(
d
2j

)
xd−2jy2j and

Qd =
∑⌊(d−1)/2⌋

j=0 (−1)j
(

d
2j+1

)
xd−2j−1y2j+1. Then we have:

• D(Pd) = −dQd,

• D(Qd) = dPd,

• the subspace Sd = 〈Pd, Qd〉 of Symd(R2) is D-invariant and D2 + d2I, with I the
identity, vanish on Sd.

Proof. If d > 1, we get ∂Pd

∂x = dPd−1 and ∂Pd

∂y = −dQd−1. We have two cases:

d even. Then D(Pd) = x∂Pd

∂y − y ∂Pd

∂x = −d(xQd−1 + yPd−1) =

−d
(
∑⌊(d−2)/2⌋

j=0 (−1)j
(
d−1
2j+1

)
xd−2j−1y2j+1 +

∑⌊(d−1)/2⌋
j=0 (−1)j

(
d−1
2j

)
xd−2j−1y2j+1

)

=

−d∑⌊(d−1)/2⌋
j=0 (−1)j

((
d−1
2j+1

)
+

(
d−1
2j

))

xd−2j−1y2j+1 = −dQd.

d odd. Then D(Pd) = x∂Pd

∂y − y ∂Pd

∂x = −d(xQd−1 + yPd−1) =

−d
(
∑⌊(d−2)/2⌋

j=0 (−1)j
(
d−1
2j+1

)
xd−2j−1y2j+1 +

∑⌊(d−1)/2⌋
j=0 (−1)j

(
d−1
2j

)
xd−2j−1y2j+1

)

=
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−d
(
∑⌊(d−2)/2⌋

j=0 (−1)j
((

d−1
2j+1

)
+

(
d−1
2j

))

xd−2j−1y2j+1 +
(
d−1
d−1

)
yd

)

= −dQd.

Moreover, we get ∂Qd

∂x = dQd−1 and ∂Qd

∂y = dPd−1. Then we have also D(Qd) = dPd by
the abovementioned computation reasons.
If d = 1, we have Pd = x and Qd = y. Then D(Pd) = x∂Pd

∂y − y ∂Pd

∂x = −y = −Qd

and D(Qd) = x = Pd. Hence we have the D-invariance of Sd. Finally, we have
(D2 + d2I)(Sd) = D2(Sd) + d2I(Sd) = D(D(Sd)) + d2Sd = D(〈−dQd, dPd〉) + d2Sd =
−d2〈Pd, Qd〉+ d2Sd = 0.

Remark 40. We can extend the previous construction for d = 0. In fact we can say
that S0 is generated by the constant polynomial 1 and then S0 is R. Furthermore, in
P
(
Symd(C2)

)
the line Sd = 〈Pd, Qd〉 is secant to the rational normal curve at the two

points (x±
√
−1y)d and then we can write Sd = 〈(x+

√
−1y)d, (x−

√
−1y)d〉, ∀ d ≥ 0.

Proposition 41. Every nonzero polynomial in the subspace Sd has d real distinct roots.

Proof. We get ∂Pd

∂x = dPd−1,
∂Pd

∂y = −dQd−1 and in general d
dtPd(α + βt, γ + δt) =

d(βPd−1 − δQd−1). Moreover ∂Qd

∂x = dQd−1,
∂Qd

∂y = dPd−1 and in general d
dtQd(α +

βt, γ+ δt) = d(βQd−1+ δPd−1). The thesis follows now by induction on d from Theorem
1 in [8].

Proposition 42. Let f ∈ Symd(R2), with d ∈ N. Consider D the linear operator such
that D(f) = xfy − yfx. Then ker

(
D2 + (d− 2j)2i

)
= (x2 + y2)jSd−2j, ∀ j : 0, . . . ,

⌊
d
2

⌋

and each polynomial belonging to these kernels has exactly d − 2j real distinct roots.
Moreover, we have the following decomposition of Symd(R2):

Symd(R2) = ⊕⌊d/2⌋
j=0 ker

(
D2 + (d− 2j)2i

)
= ⊕⌊d/2⌋

j=0 (x2 + y2)jSd−2j .

Proof. By Lemma 38 and by Lemma 39, we have that (D2 + (d − 2j)2i)(Sd−2j) = 0
and D((x2 + y2)nf) = (x2 + y2)nD(f). Then (x2 + y2)jSd−2j ⊆ ker(D2 + (d − 2j)2i).

Moreover, for dimension reasons, we have that ⊕⌊d/2⌋
j=0 (x2+y2)jSd−2j = SymdR2 and then

(x2 + y2)jSd−2j ⊇ ker(D2 + (d− 2j)2i).

Corollary 43. The complex eigenvalues of D are λ = ±
√
−1j, for j : d, d− 2, .... All of

them are simple. Moreover, 0 is an eigenvalue of D if and only if d is even.

Corollary 44. Let D be the linear operator such that D(f) = xfy − yfx, with f ∈
Symd(R2). Then rk(D) = d + 1, if d is odd, while rk(D) = d, if d is even, with one
dimensional kernel. In particular D is invertible if and only if d is odd.

Remark 45. The decomposition in Proposition 42 is orthogonal with respect to the
scalar product





d∑

k=0

(
d

k

)

akx
d−kyk,

d∑

j=0

(
d

j

)

bjx
d−jyj



 =
d∑

k=0

(
d

k

)

akbk =
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(
d∑

k=0

(
d

k

)

ak∂
d−k
x ∂ky

)
d∑

j=0

(
d

j

)

bjx
d−jyj

and the scalar product is SO(2)-invariant. Finally, we have that D is antisymmetric with
respect to this scalar product.

In [1], Theorem 2.7 gives, in a language different from ours, some information that
we also found in this thesis, about the linear operator D(f) = xfy − yfx. In particular,
Theorem 2.7 says that D is an isomorphism if d is odd and D has a one-dimensional
kernel if d is even. The Theorem is the following:

Theorem 46. [1] A set of d points (ui : vi) ∈ P1 is the eigenconfiguration of a symmet-

ric tensor if and only if either d is odd, or d is even and the operator
(

∂2

∂x2 + ∂2

∂y2

)d/2

annihilates the corresponding binary form
∏d

i=1(vix− uiy).

Now we conjecture that the number of the real roots of a binary form is less than or
equal to the number of its real critical roots. In the following two Remarks 47 and 48, we
consider some different approaches to prove this conjecture, but the result is effectively
shown in Theorem 49.

Remark 47. Let f ∈ Symd(R2), with d ∈ [1, 4]. We wonder if the number of the real
roots of f is less than or equal to the number of the real critical roots of f . On the other
hand, we wonder if this statement is true for d ∈ N. The answer to the first question is
positive, because we have the following:

1. d = 1. In this case, it is trivial.

2. d = 2. In this case, let f = ax2 + 2bxy + cy2 be. Then we have D(f) ≡ g =
x(2bx + 2cy) − y(2ax + 2by) = 2(bx2 + (c − a)xy − by2. The discriminant of g is
∆(g) = 4(c−a)2+4b2, which is a sum of two squares. Therefore it is always grater
or equal than zero and the thesis trivially follows.

3. d = 3. In this case, let f = x3 + 3bx2y + 3cxy2 + dy3 be. By the action of SO(2),
we can rewrite f as f = x3 + 3cxy2 + dy3. Then we have the discriminant ∆(f) =
−4c3−d2 and g = x(6cxy+3dy2)−y(3x2+3cy2) = 3y((2c−1)x2+dxy−cy2) = 3yg1.
Evidently, the cubic g has at least a real root, because it is the product of a linear
factor, 3y, and a quadric, g1. Then if f has only a real root, i.e. ∆(f) < 0 ⇐⇒
d2 > −4c3, we have the thesis. Moreover, if ∆(f) ≥ 0 ⇐⇒ d2 ≤ −4c3, hence
necessarily c ≤ 0. The discriminant of g1 is d2 + 8c2 − 4c which is always grater or
equal than zero for c ≤ 0 and we have the thesis.

4. d = 4. In this case, let f = x4+bx3y+cx2y2+dxy3+ey4 be. By the action of SO(2),
we can rewrite f as f = x4 + cx2y2 + dxy3 + ey4. Then we have the discriminant
∆(f) = 16c4e− 4c3d2 − 128c2e2 + 144cd2e− 27d4 + 256e3. The companion matrix
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and the Bezoutiant of f are

M =







0 0 0 −e
1 0 0 −d
0 1 0 −c
0 0 1 0






, B =







s0 s1 s2 s3
s1 s2 s3 s4
s2 s3 s4 s5
s3 s4 s5 s6







where s0 = 4, s1 = 0, s2 = −2c, s3 = −3d, s4 = 2
(
c2 − 2e

)
, s5 = 5cd e s6 =

−
(
2c3 − 6ce− 3d2

)
. Then the principal minors of B are, up to scalar factor, the

discriminants of f and the following polynomial in b, c, d of degree three and one

d1 = 4
(
−2c3 + 8ce− 9d2

)
, d2 = −8c.

By Jacobi’s criterion, B is positive definite if and only if the principal minors of B
are all positive. Moreover, we know that f has four real (distinct) roots if and only
if B is semidefinite (definite) positive. Consider now g = xfy − yfx = x(2cx2y +
3dxy2+4ey3)−y(4x3+2cxy2+dy3) = y(2(c−2)x3+3dx2y+2(2e−c)xy2−dy3) =
yg1. Evidently, the quartic g has at least two real roots, because it is the product
of a linear factor, y, and a cubic, g1. Then if f has zero or two real roots, we have
the thesis. Now, being d2 = −8c, if c > 0 f has not four real roots and then we
must investigate only for c ≤ 0. Hence let c ≤ 0 be. The discriminant of g1 is, up
to scalar factor, ∆(g1) = 16c4−96c3e−32c3+36c2d2+192c2e2+192c2e−144cd2e
−128ce3 − 384ce2 + 27d4 + 36d2e2 + 216d2e− 108d2 + 256e3. The sets of solutions
of the inequality ∆(g1) < 0 there are

{

d = 0, c < 2, e <
c

2

}

,
{

d = 0, c > 2, e >
c

2

}

that is g has exactly two real roots in these two sets. Adding the condition c ≤ 0,
we have the following set of solutions

S =
{

d = 0, c ≤ 0, e <
c

2

}

where g has again two real roots. Computing the signs of ∆(f), d1 and d2, we have
trivially that ∆(f) is negative, then f has zero or two real roots in S. Finally, we
observe that g has four real roots in the complement of S under the condition c ≤ 0
and hence we have the thesis.

As it regards the answer to the second question, the point is more complicated. In fact,
already working for d = 5, it is not possible to follow the proof method used in the
previous cases, because there are too many parameters, four. Then we try to use the
decomposition of Symd(R2) as in Proposition 42, at least for the degree 5, trying to find
counterexamples or trying to look for polynomials verifying the thesis. First of all, we
observe that, by Proposition 42, if f of degree d > 4 belongs to a D-invariant addend of
the direct sum decomposition of Symd(R2), then we have the thesis. Moreover, by Lemma
38, if f of degree d > 4, with at least two complex roots, is of the form f = (x2 + y2)h,
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deg h = d− 2, then we have again the thesis, by induction. Now, for d = 5 we have:
Let f be a quintic. Then, we have

Sym5(R2) = S5 ⊕ (x2 + y2)S3 ⊕ (x2 + y2)2S1 =

〈P5, Q5〉 ⊕ (x2 + y2)〈P3, Q3〉 ⊕ (x2 + y2)2〈P1, Q1〉
where P5 = x5−10x3y2+5xy4, Q5 = 5x4y−10x2y3+y5, P3 = x3−3xy2, Q3 = 3x2y−y3,
P1 = x and Q1 = y. We want investigate in the case that f belongs to the sum of an
any pair of the three addends of the decomposition of Sym5(R2).

1. f ∈ (x2 + y2)S3 ⊕ (x2 + y2)2S1. Then we can write f as f = (x2 + y2)h, with
deg h = 3, hence the thesis.

2. f ∈ S5 ⊕ (x2 + y2)S3. Then we can rewrite f , by the action of SO(2), in one of the
following two forms

(P5 + aQ5) + (x2 + y2)bQ3, aQ5 + (x2 + y2) (P3 + bQ3)

with a, b ∈ R.
In the first case, we have f = x5+(5a+3b)x4y−10x3y2+2(−5a+b)x2y3+5xy4+(a−
b)y5, then g = (5a+3b)x5−25x4y−2(25a+3b)x3y2+50x2y3+(25a−9b)xy4−5y5.
The discriminants of f and g are respectively the following two polynomials in a,
b of degree 8 ∆(f) = 4096(3125a8 − 2500a6b2 + 12500a6 − 50a4b4 − 7500a4b2 +
18750a4 − 512a3b5 − 36a2b6 − 100a2b4 − 7500a2b2 + 12500a2 + 1536ab5 − 27b8 −
36b6 − 50b4 − 2500b2 + 3125) e ∆(g) = 4096(1220703125a8 − 351562500a6b2 +
4882812500a6 − 2531250a4b4 − 1054687500a4b2 +
7324218750a4 + 15552000a3b5 − 656100a2b6 − 5062500a2b4 −
1054687500a2b2+4882812500a2−46656000ab5−177147b8−656100b6−2531250b4−
351562500b2+1220703125). As in Figure 2.3, the graphic of ∆(g) divides the upper
half-plane (a,b) in two connected components, in each of which the polynomial g
has the same number of real roots. Then, we can take two pairs of values (a,b)
in the two connected components, for example a = 0, b = 2 and a = 0, b = 0.
Computing g in these two pairs of values, we have the quintics

6x5 − 25x4y − 12x3y2 + 50x2y3 − 18xy4 − 5y5

and
−25x4y + 50x2y3 − 5y5

which have respectively 3 and 5 real roots and then we have the thesis on the
connected component outside of the graphic of ∆(g). Moreover, as in Figure 2.2,
∆(f) again divides the upper half-plane (a,b) in two connected components. The
region in which ∆(g) is negative is strictly contained in the connected components
in which ∆(f) is negative. Hence, computing also f in the pair of values a = 0,
b = 2, we obtain the quintic

x5 + 6x4y − 10x3y2 + 4x2y3 + 5xy4 − 2y5
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with 3 real roots and then we have the thesis. Finally, for symmetric reasons we
have the same results in the lower half-plane (a,b).
In the second case, we have f = x5+(5a+3b)x4y−2x3y2+2(−5a+b)x2y3−3xy4+
(a−b)y5, then g = (5a+3b)x5−9x4y+2(−25a−3b)x3y2−6x2y3+(25a−9b)xy4+3y5.
The discriminants of f and g are respectively the following two polynomials in a, b
of degree 8 ∆(f) = 4096(3125a8 − 2500a6b2 − 2500a6 − 50a4b4 − 100a4b2 − 50a4 −
512a3b5+5120a3b3−2560a3b−36a2b6−108a2b4−108a2b2−36a2−27b8−108b6−
162b4−108b2−27) e ∆(g) = 4096(1220703125a8−351562500a6b2−351562500a6−
2531250a4b4−5062500a4b2−2531250a4+15552000a3b5−155520000a3b3+77760000a3b−
656100a2b6 − 1968300a2b4 −
1968300a2b2 − 656100a2 − 177147b8 − 708588b6 − 1062882b4 − 708588b2 − 177147).
As in Figures 2.4 and 2.5, we note that, for example in the right half-plane (a,b),
all the arguments of the previous case are valid and again for symmetric reasons we
have the same results in the left half-plane. Therefore, we can take the two pairs
of values a = 1, b = 0 and a = 0, b = 0. Then, computing g in the first pairs of
values, we have the quintic

5x5 − 9x4y − 50x3y2 − 6x2y3 + 25xy4 + 3y5

with 5 real roots and the thesis, while in the second pairs of values f and g are
respectively the quintics

x5 − 2x3y2 − 3xy4

−9x4y − 6x2y3 + 3y5

both with 3 real roots and we have again the thesis.

Figure 2.2: Discriminant of f = x5 + (5a+ 3b)x4y − 10x3y2 + 2(−5a+ b)x2y3 + 5xy4 +
(a− b)y5.
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Figure 2.3: Discriminant of g = (5a+3b)x5− 25x4y− 2(25a+3b)x3y2+50x2y3+(25a−
9b)xy4 − 5y5.

Figure 2.4: Discriminant of f = x5+(5a+3b)x4y−2x3y2+2(−5a+b)x2y3−3xy4+(a−b)y5.
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Figure 2.5: Discriminant of g = (5a+3b)x5− 9x4y+2(−25a− 3b)x3y2− 6x2y3+(25a−
9b)xy4 + 3y5.

3. f ∈ S5 ⊕ (x2 + y2)2S1. Then we can rewrite f , by the action of SO(2), in one of
the following two forms

(P5 + aQ5) + (x2 + y2)2bQ1, aQ5 + (x2 + y2)2 (P1 + bQ1)

with a, b ∈ R.
In the first case, we have f = x5+(5a+b)x4y−10x3y2+2(−5a+b)x2y3+5xy4+(a+
b)y5, then g = (5a+b)x5−25x4y+2(−25a+b)x3y2+50x2y3+(25a+b)xy4−5y5. The
discriminants of f and g are respectively the following two polynomials in a, b of de-
gree 8 ∆(f) = 4096(3125a8−3750a6b2+12500a6+825a4b4−11250a4b2+18750a4+
216a3b5+16a2b6+1650a2b4−11250a2b2+12500a2+216ab5+16b6+825b4−3750b2+
3125) e ∆(g) = 102400(48828125a8 − 2343750a6b2 + 195312500a6 + 20625a4b4 −
7031250a4b2 + 292968750a4 + 1080a3b5 + 16a2b6 + 41250a2b4 − 7031250a2b2 +
195312500a2 + 1080ab5 + 16b6 + 20625b4 − 2343750b2 + 48828125). As in Fig-
ure 2.7, the graphic of ∆(g) divides the upper half-plane (a,b) in three connected
components, in each of which the polynomial g has the same number of real roots.
Then, we can take three pairs of values (a,b) in the three connected components,
for example (0,10), (0,6) and (0,0). Computing g in these three pairs of values, we
have the quintics

10x5 − 25x4y + 20x3y2 + 50x2y3 + 10xy4 − 5y5

6x5 − 25x4y + 12x3y2 + 50x2y3 + 6xy4 − 5y5

−25x4y + 50x2y3 − 5y5

which have respectively 1, 3 and 5 real roots and then we have the thesis in par-
ticular on the connected component outside of the graphic of ∆(g). Moreover, as
in Figure 2.6, ∆(f) again divides the upper half-plane (a,b) in three connected
components. The innermost of these contains strictly the regions in which g has
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1 or 3 real roots. Hence computing f in a pair of values (a,b) in this region, for
example (0,3), we obtain the quintic

x5 + 3x4y − 10x3y2 + 6x2y3 + 5xy4 + 3y5

with one real root and the thesis. Finally, for symmetric reasons we have the same
results in the lower half-plane (a,b).
In the second case, we have f = x5+(5a+b)x4y+2x3y2+2(−5a+b)x2y3+xy4+(a+
b)y5, then g = (5a+ b)x5−x4y+2(−25a+ b)x3y2−2x2y3+(25a+ b)xy4−y5. The
discriminants of f and g are respectively the following two polynomials in a, b of
degree 8 ∆(f) = 4096a2(3125a6−3750a4b2−3750a4+825a2b4+1650a2b2+825a2+
216ab5−2160ab3+1080ab+16b6+48b4+48b2+16) e ∆(g) = 102400a2(48828125a6−
2343750a4b2−2343750a4+20625a2b4+41250a2b2+20625a2+1080ab5−10800ab3+
5400ab+16b6+48b4+48b2+16). As in Figure 2.9, the graphic of ∆(g) divides the
right half-plane (a,b) in five connected components, in each of which the polynomial
g has the same number of real roots. Then, we can take five pairs of values (a,b) in
the five connected components, for example (15 ,

3
5), ( 1

10 ,−1
5), ( 3

10 ,−17
10), (1,0) e (0,0).

Computing g in these five pairs of values, we have the quintics

8x5 − 5x4y − 44x3y2 − 10x2y3 + 28xy4 − 5y5

5

3x5 − 10x4y − 54x3y2 − 20x2y3 + 23xy4 − 10y5

10

−x5 − 5x4y − 92x3y2 − 10x2y3 + 29xy4 − 5y5

5

5x5 − x4y − 50x3y2 − 2x2y3 + 25xy4 − y5

−y(x4 + 2x2y2 + y4)

which have respectively 3, 3, 3, 5 and 1 real roots and then we have the thesis
in particular on the connected component outside at the right of the graphic of
∆(g). Moreover, as in Figure 2.8, ∆(f) again divides the right half-plane (a,b) in
five connected components. The left-most of these contains strictly the first three
regions of the graphic of ∆(g). Hence computing f in a pair of values (a,b) in this
region, for example in (0,0), we obtain the quintic

x(x4 + 2x2y2 + y4)

with one real root. Moreover, the remaining connected components of the graphic
of ∆(f) are strictly contained in the region in which g has five real roots and we
have the thesis. Finally, for symmetric reasons we have the same results in the left
half-plane (a,b).
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Figure 2.6: Discriminant of f = x5+(5a+b)x4y−10x3y2+2(−5a+b)x2y3+5xy4+(a+b)y5.

Figure 2.7: Discriminant of g = (5a+ b)x5− 25x4y+2(−25a+ b)x3y2+50x2y3+(25a+
b)xy4 − 5y5.
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Figure 2.8: Discriminant of f = x5+(5a+b)x4y+2x3y2+2(−5a+b)x2y3+xy4+(a+b)y5.

Figure 2.9: Discriminant of g = (5a + b)x5 − x4y + 2(−25a + b)x3y2 − 2x2y3 + (25a +
b)xy4 − y5.

In Remark 47 we show that our conjecture is true if f belongs to one of the subspaces
S5, (x2 + y2)S3, (x2 + y2)2S1 or if f belongs to the direct sum of any two of these
subspaces. But we have not the answer if f ∈ Sym5(R2) = S5⊕(x2+y2)S3⊕(x2+y2)2S1.
Moreover, already for d = 6, the same investigation is not possible because there are many
computing problems.

Remark 48. Let f be a cubic. By Remark 40 and by Proposition 42, we can rewrite f
as f = a(x+

√
−1y)3+ ā(x−

√
−1y)3+ b(x+

√
−1y)(x2+ y2)+ b̄(x−

√
−1y)(x2+ y2) =

2((h + l)x3 − (m + 3z)x2y + (l − 3h)xy2 + (z − m)y3), with a, b ∈ C, a = h +
√
−1z,

b = l+
√
−1m. The discriminant of f is ∆(f) = 64

27(27h
4 − 18h2l2 − 18h2m2 + 54h2z2 +

8hl3 − 24hlm2 − l4 − 2l2m2 + 24l2mz − 18l2z2 − m4 − 8m3z − 18m2z2 + 27z4) that
we can rewrite as 64(h2 + z2)2 − 64

27(l
2 +m2)2 − 128

3 ((l2 +m2)(h2 + z2)) + 512
27 (hl(l

2 −
3m2) + zm(3l2 − m2)) = 64 |a|4 − 64

27 |b|
4 − 128

3 |a|2 |b|2 + 512
27 Re(b3ā). Now consider
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D(f) ≡ g = 2(−(m+3z)x3 − (l+9h)x2y+ (9z−m)xy2 + (3h− l)y3). The discriminant
of g is ∆(g) = 64

27(2187h
4 − 162h2l2 − 162h2m2 + 4374h2z2 − 24hl3 + 72hlm2 − l4 −

2l2m2 − 72l2mz − 162l2z2 −m4 + 24m3z − 162m2z2 + 2187z4) that we can rewrite as
5184(h2+z2)2− 64

27(l
2+m2)2−384((l2+m2)(h2+z2))− 512

9 (hl(l2−3m2)+zm(3l2−m2)) =

5184 |a|4− 64
27 |b|

4− 384 |a|2 |b|2− 512
9 Re(b3ā). Then we can easily obtain ∆(g) from ∆(f)

by the real affinity

|a|2 7−→ 9 |a|2 , |b|2 7−→ |b|2 , Re(b3ā) 7−→ −3Re(b3ā).

In practice, we use Corollary 43 on the complex coefficients a, ā, b, b̄, obtaining g (∆(g))
from f (∆(f)) by the transformation

a 7−→ 3
√
−1a, ā 7−→ −3

√
−1ā, b 7−→

√
−1b, b̄ 7−→ −

√
−1b̄, b3ā 7−→ −3b3ā

where ±3
√
−1, ±

√
−1 are the complex (simple) eigenvalues of D. We hope that this

process is useful for prove the conjecture if d ≥ 5, in the sense that we can try to write
the discriminants of f and g as module functions of the real (imaginary) parts of the
complex coefficients of f ∈ Symd(R2). Then we can find the real affinity such that we
obtain g from f and this affinity give us the reciprocal behavior of the discriminants
∆(f) and ∆(g), that is of the number of the roots of f and g. Now, this method gives
certainly an alternative proof for the case d = 3, as follow: consider |a|2 = x, |b|2 = y
and Re(b3ā) = ±t2. Depending on the sign of Re(b3ā), we have two cases:

1. Re(b3ā) > 0 (i.e. Re(b3ā) = t2). The we have ∆(f) = 64x2 − 64
27y

2 − 128
3 xy +

512
27 t

2

and ∆(g) = 5184x2 − 64
27y

2 − 384xy − 512
9 t

2. Hence, by the change of variables
x′ = x

t , y
′ = y

t and renaming, we obtain the curves

64x2 − 64

27
y2 − 128

3
xy +

512

27

5184x2 − 64

27
y2 − 384xy − 512

9

which graphic are in Figures 2.11, 2.12. Then we have the thesis, remembering
to work under the condition xy3 − 1 ≥ 0 (Figure 2.10), because we have that

t2 = Re(b3ā) ≤
∣
∣b3ā

∣
∣ ⇒ t4 ≤

∣
∣b3ā

∣
∣2 = |b|6 |a|2 = y3x⇒ 1 ≤ y3

t3
x
t , that is, renaming,

1 ≤ xy3.
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Figure 2.10: xy3 = 0.

Figure 2.11: Discriminant of f = 2((h+ l)x3 − (m+ 3z)x2y + (l − 3h)xy2 + (z −m)y3)
if Re(b3ā) > 0, with a = h+

√
−1z and b = l +

√
−1m.
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Figure 2.12: Discriminant of g = 2(−(m+3z)x3− (l+9h)x2y+(9z−m)xy2+(3h− l)y3)
if Re(b3ā) > 0, with a = h+

√
−1z and b = l +

√
−1m.

2. Re(b3ā) < 0 (i.e. −Re(b3ā) = t2). Then we have ∆(f) = 64x2− 64
27y

2− 128
3 xy− 512

27 t
2

and ∆(g) = 5184x2− 64
27y

2−384xy+ 512
9 t

2. Hence, by the change of variables t′ = t
y ,

x′ = x
y and renaming, we obtain the curves

64x2 − 64

27
− 128

3
x− 512

27
t2

5184x2 − 64

27
− 384x+

512

9
t2

which graphic are in Figures 2.13, 2.14. Then we have the thesis.

Figure 2.13: Discriminant of f = 2((h+ l)x3 − (m+ 3z)x2y + (l − 3h)xy2 + (z −m)y3)
if Re(b3ā) < 0, with a = h+

√
−1z and b = l +

√
−1m.
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Figure 2.14: Discriminant of g = 2(−(m+3z)x3− (l+9h)x2y+(9z−m)xy2+(3h− l)y3)
if Re(b3ā) < 0, with a = h+

√
−1z and b = l +

√
−1m.

Unfortunately, if we go to the next degree d = 4, we can write explicitly the real
affinity such that it gives g (∆(g)) from f (∆(f)), but for computational reasons we can
not to repeat the proof of Remark 48. In fact, ∆(f) is too complicated in terms of the
number of parameters, like modules, real or imaginary parts of the complex numbers a,
b. Then we must to change approach. We have the following

Theorem 49. Let f ∈ Symd(R2), with d ∈ N. Then max(#real roots of f, 1) ≤
#real eigenvectors of f and this relation is the only constraint for the number q of
real roots of f , in the sense that for any pair (q, t) such that q ≡ t ≡ d mod 2 and
max (q, 1) ≤ t ≤ d the set

{

f ∈ Symd(R2) |#real roots of f = q, #real eigenvectors of f = t
}

has positive volume.

Proof. Let q be the number of real roots of f . If q = 0, the thesis follows immediately;
therefore, consider q ≥ 1.
There are q lines through the origin of R2 corresponding to the q roots of f and each of
these lines meets the circle x2 + y2 = 1 in two real points, that is in 2q total real points.
Consider the following parametrization of the circle

S1 :

{
x = cos θ
y = sin θ

, θ ∈ [0, 2π)

and the function F (θ) = f(cos θ, sin θ), that is F is the restriction of f on S1; evidently,
the number of real roots of F is twice the number of real roots of f , or for each real root
of f in P(R2), we have a uniquely determined pair of real roots of F . In particular, if for a
given θ̄ we have F (θ̄) = 0, then F (θ̄+π) = 0 and the line through the points (cos θ̄, sin θ̄),
(cos(θ̄ + π), sin(θ̄ + π)) = (− cos θ,− sin θ) corresponds to a real root of f in P(R2) and
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conversely. Now consider F ′(θ) = − sin θfx(cos θ, sin θ) + cos θfy(cos θ, sin θ). By Rolle’s
Theorem, between two real roots of F there exists at least one real root of F ′ and then
F ′ has at least 2q real roots. Consider G(θ) = g(cos θ, sin θ), where g = −yfx+xfy, that
is G is the restriction of the polynomial g on S1; then obviously G(θ) = F ′(θ), hence G
has at least 2q real roots and therefore g has at least q real roots. We get t ≥ q as we
wanted.
Finally, we must prove the following:

∀n ∈ N0, ∀h ∈ {h ∈ N0 |h = 2m} , ∃ f ∈ Symd(R2) s.t. q = n, t = n+ h

It is sufficient to consider binary forms of even degree t as Fourier polynomials

g(cos θ, sin θ) =

(

1 +
cos(2θ)

2

)

+ s(cos(tθ) + sin(tθ))

and binary forms of odd degree as Fourier polynomials

g(cos θ, sin θ) = cos(θ)

((

1 +
cos(2θ)

2

)

+ s(cos(tθ) + sin(tθ))

)

where s ∈ R. Then we can choose s such that the corresponding Fourier polynomial g of
degree t has q real roots in [0, π) and its derivative with respect to θ has exactly t real

roots in [0, π) (see Figures 2.15, 2.16, 2.17); hence, taking f = g(x2 + y2)
d
2
− t

2 , we have a
polynomial f of degree d with exactly q real roots and t real eigenvectors.

Figure 2.15: The two graphics of g respectively for s = 0 (the central one) and s = −1
2

(its perturbation). The second one has q = 2 real roots and its derivative has t = 4 real
roots.
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Figure 2.16: The two graphics of g respectively for s = 0 (the central one) and s = −1
3

(its perturbation). The second one has q = 0 real roots and its derivative has t = 4 real
roots.

Figure 2.17: The two graphics of g respectively for s = 0 (the central one) and s = 2
(its perturbation). The second one has q = 4 real roots and its derivative has t = 4 real
roots.

Corollary 50. If f of degree d has exactly d real roots, then f has exactly d real eigen-
vectors.

Corollary 50 is found also in [1] by H. Abo, A. Seigal and B. Sturmfels in Remark
6.7, as a consequence of Corollary 6.5.

Remark 51. Consider a sample of 100000 forms f of degree 4, 5, where

f =

d∑

i=0

√
(
d

i

)

aix
d−iyi, ai ≈ N(0, 1)
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and N(0, 1) is the normal distribution of mean 0 and variance 1. Then we have estimated
the probabilities of the aleatory variables Xf = (0, 2, 4) for d = 4, Yf = (1, 3, 5) for d = 5
and respectively Xyfx−xfy = (0, 2, 4), Yyfx−xfy = (1, 3, 5) with respect to f and yfx−xfy
and then relative expected values and we expect that E(Xf ) ≈

√
d and E(Xyfx−xfy) ≈√

3d− 2 and the same for E(Yf ) and E(Yyfx−xfy) (see Example 1.6 in [13] and Example
4.8 in [14]):

Xf 0 2 4

≈ probability 0.1350 0.7307 0.1342

Table 2.1: d = 4.

Yf 1 3 5

≈ probability 0.4167 0.5491 0.0343

Table 2.2: d = 5.

whence E(Xf ) = 1.9984 ≈
√
4 = 2 and E(Yf ) = 2.2352 ≈

√
5.

Xyfx−xfy 0 2 4

≈ probability 0 0.4190 0.5810

Table 2.3: d = 4.

Yyfx−xfy 1 3 5

≈ probability 0.0224 0.6569 0.3207

Table 2.4: d = 5.

whence E(Xyfx−xfy) = 3.1620 ≈
√
10 and E(Yyfx−xfy) = 3.5966 ≈

√
13. Consider

the following test: let p be expected probability such that we have quartics with two real
roots. Then if we take E(X) =

√
10 as expected value ofX, we have 2∗p+4∗(1−p) =

√
10,

whence p = 0.4188 ≈ 0.4190. This is very good, because there is a connection between
the values up to two decimal digits. Now let p be expected probability such that we
have quartics with four real roots. Then the same computation is satisfactory, because
we have p = 0.5811 ≈ 0.5810.
Again for a sample of 10000 forms f of degree 4, 5 we have estimated the probabilities
for the real rank of f , i.e. the probabilities of the aleatory variables X = (3, 4) for d = 4
and Y = (3, 4, 5) for d = 5 and them relative expected values:
if d = 4 we have only the real ranks 3 and 4, because the our forms are all general (i.e.
rkC(f) = 3) and holds Proposition 17. Then we have
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X 3 4

≈ probability 0.8660 0.1340

Table 2.5: d = 4, f .

whence E(X) = 3.1340.
If d = 5 we have only the real ranks 3, 4 and 5, because the our forms are all general
(i.e. rkC = 3) and holds Proposition 17. Then we have

Y 3 4 5

≈ probability 0.3844 0.5824 0.0332

Table 2.6: d = 5, f .

whence E(Y ) = 3.6488.
Again for a sample of 100000 forms f of degree 4, 5 we have estimated the probabilities
for the variable t conditioned to the values of q, where q is the number of real roots of f
and t is the number of real roots of yfx − xfy:

q t = 0 t = 2 t = 4

4 0 0 1

2 0 0.5160 0.4840

0 0 0.3038 0.6962

Table 2.7: d = 4.

q t = 1 t = 3 t = 5

5 0 0 1

3 0 0.7186 0.2814

1 0.0516 0.6234 0.3250

Table 2.8: d = 5.

Hence, we note that there are some prohibited values of t in relation to the value of
q, in according with Theorem 49.
Again for a sample of 100000 forms f of degree 4, 5 we have estimated the probabilities
for the variable q conditioned to the values of the rkR(f):

rkR(f) q = 0 q = 2 q = 4

4 0 0 1

3 0.1568 0.8432 0

Table 2.9: d = 4.
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rkR(f) q = 1 q = 3 q = 5

5 0 0 1

4 0.4903 0.5097 0

3 0.2882 0.7118 0

Table 2.10: d = 5.

2.3 Ternary forms

In Remark 51 we give the statistical estimates of the expected values of some assigned
aleatory variable. On the other hand, we give also a statistical confirmation of Theorem
49. For example, in Tables 2.7 and 2.8 we can see that there are some prohibited values
for the number of real roots of D(f) conditioned to the number of real roots of f . We
would like to do the same statistical survey for the ternary cubics, hoping to be able to
generalize Theorem 49 for the ternary forms.

Remark 52. Let f ∈ Symd(R3) be a ternary form, that is f is a homogeneous polynomial

of degree d in three variables x, y, z. Then {f = 0} has at most (d−1)(d−2)
2 + 1 real

connected components in P(R3) and, by Theorem 4, f has ((d − 1)3 − 1)/(d − 2) =
(d − 1)2 + (d − 1) + 1 distinct eigenvectors in the general case (note that the number
(d−1)2+(d−1)+1 is odd, ∀ d ∈ N). By Proposition 11.6.1 in [4], if d is odd, {f = 0} has a
finite number c+1 of connected components in P(R3), c ovals and one pseudo-line. Then
the complement S2 \ {f = 0} consists of 2c + 2 connected components (regions) which
are symmetric in pairs. f has constant sign on each region and the signs are opposite
for symmetric regions. Again by Proposition 11.6.1 in [4], if d is even, {f = 0} has only
a finite number c of connected components in P(R3), all ovals. Then the complement
S2 \{f = 0} consists of 2c+1 connected components (regions), 2c of them are symmetric
in pairs. Again f has constant sign on each region and the sign is the same for symmetric
regions.

Theorem 53 (Harnack’s curve). ([4]) For any algebraic curve of degree d in the real
projective plane, the number of connected components w is bounded by

1− (−1)d

2
≤ w ≤ (d− 1)(d− 2)

2
+ 1

The maximum number is one more than the maximum genus of a curve of degree d and
it is attained when the curve is nonsingular. Moreover, any number of components in
this range can be attained.

Definition 54. A curve which attains the maximum number of real connected components
is called an M -curve.

Theorem 55 (Stickelberger). ([15]) Let I = (f1, ..., fk) be an ideal of K[x1, ..., xn], with
K = C or K = R e let Mxi

: K[x1, ..., xn]/I −→ K[x1, ..., xn]/I linear applications
(companions) induced by xi multiplication. Then exists at least a common eigenvector v
for all Mxi

, with eigenvalues λi, that is Mxi
v = λiv, if and only if (λ1, ..., λn) ∈ V (I).
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Proof. Let v be an eigenvector such thatMxi
v = λiv, ∀ i : 1...n. If f ∈ I, Mf(x1,...,xn) = 0,

then 0 = Mf(x1,...,xn)v = f(Mx1
, ...,Mxn)v = f(λ1, ..., λn)v, where the last equals follow

from Lemma 4.2 in [15], hence f(λ1, ..., λn) = 0.
Conversely, we must prove that coordinates of all pi ∈ V (I) are eigenvalues of a common
eigenvector for matrices Mxj

. Decompose C[x1, ..., xn]/I = ⊕k
i=1Ai. Ai is Mxj

-invariant
for j = 1, ..., n and Mx1

, ...,Mxn commutate, by Proposition 1.17 in [15], exist a common
eigenvector for Mxj

with eigenvalues the pi’s j-th coordinate.

Lemma 56. ([15]) Let V (I) ⊂ Cn, h ∈ C[x1, ..., xn]. Then eigenvalues of Mh :
K[x1, ..., xn]/I −→ K[x1, ..., xn]/I coincide with values h(pi) ∈ C, pi ∈ V (I).

Proposition 57. ([15]) Consider a monomial order (e.g. lexicographical order) and
let xα(1), ..., xα(m) be monomials not in LT (I) that generate K[x1, ..., xn]/I. Then for
all points p ∈ V (I) and for all polynomial h ∈ K[x1, ..., xn], the vector pα(1), ..., pα(m)

(obtained computing monomials on p) is an eigenvector of M t
h with eigenvalues h(p).

Proof. Let mij coefficients of Mh. we have [xα(j)h] = Mh([x
α(j)]) =

∑m
i=1mij [x

α(i)].
Evaluating on p we obtain pα(j)h(p) =

∑m
i=1mijp

α(i), that is the thesis.

Remark 58. Given a sample of real ternary forms f , we can compute eigenvectors of
f with Macaulay2, since the eigenvectors of f are the solutions of the system associated
to the ideal I = (yfx − xfy, zfy − yfz, zfx − xfz), that is are elements of V (I) (Remark
23). Then we can compute them by the Eigenvectors Method, that is we can compute
the companions matrix Mx, My with respect to I and by Stickelberger’s Theorem we
can take their eigenvalues relative of their common eigenvectors as elements of V (I).
But by Proposition 57, we can compute the companion matrix Mx (or Mh, for any
polynomial h), the normalized eigenvectors vi of M t

x (or of M t
h) and hence, if entries of

vi corresponding to monomials x, y of the normalized base of R[x, y, 1]/I are real, we
have a real eigenvectors (x, y, 1) of f . Moreover, for a general real ternary cubic form f
the base of monomials not in LT (I) of R[x, y, 1]/I is composed from seven monomials,
then R[x, y, 1]/I has finite dimension seven, then V (I) has seven distinct elements (i.e.
eigenvectors of f), according with Theorem 33.
For a sample of 1000 real ternary cubic forms f , where

f =
∑

j0+j1+j2=3

√
(

3

j0 j1 j2

)

aj0j1j2x
j0
0 x

j1
1 x

j2
2 , ai ≈ N(0, 1)

with c ovals, we have estimated the probabilities for the variable t conditioned to variable
c in the following table:

t 1 3 5 7

c = 1 0 0, 026 0, 51 0, 464

c = 0 0, 038 0, 186 0, 422 0, 354

Table 2.11: d = 3.
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where t is the number of real eigenvectors of f ; given ∆(f) = −T 2 + 64S3 the
discriminant of degree 12 of f (see Proposition 4.4.7 pag. 167, Example 4.5.3 pag.
171 and Formula (4.5.8) pag. 173 in [34]), in particular, if ∆(f) > 0 then f has two
components (c = 1), while if ∆(f) < 0 one (c = 0).
Again for a sample of 1000 ternary cubic forms f , we have estimated the probabilities of
aleatory variables X = (0, 1), Y = (1, 3, 5, 7) and then their relative expected values and
we expect that E(Y ) ≈ 1 + 8

7

√
14 ≈ 5, 276 (see [13], the last Table in subsection 5.2):

X 0 1

≈ probability 0, 735 0, 265

Table 2.12: d = 3.

whence E(X) = 0, 265.

Y 1 3 5 7

≈ probability 0, 028 0, 144 0, 445 0, 383

Table 2.13: d = 3.

whence E(Y ) = 5.366 ≈ 5.276.
Now let f ∈ Sym3(R3) such that

f = y2z −
3∑

i=0

√
(
3

i

)

aix
3−izi = y2z − p(x, z), ai ≈ N(0, 1)

that is f is a cubic in the Weierstrass form. If we set z = 1, we have an univocal
classification of the ternary cubic form in conics with one connected component (c = 0)
or two connected components (c = 1), respectively if the discriminant of p, ∆(p), is less
than zero or it is greater than zero (see Figures 2.18, 2.19 and 2.20).

Figure 2.18: ∆(p) < 0.
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Figure 2.19: ∆(p) > 0.

Figure 2.20: ∆(p) = 0.

For a sample of 1000 ternary cubic forms f , we have estimated the probabilities
of aleatory variables X = (0, 1) and the probabilities for the variable t conditioned to
variable c in the following tables:

X 0 1

≈ probability 0, 625 0, 375

Table 2.14: d = 3.

whence E(X) = 0, 375
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t 1 3 5 7

c = 1 0 0, 048 0, 544 0, 408

c = 0 0, 184 0, 312 0, 2384 0, 2656

Table 2.15: d = 3.

We have the following

Theorem 59. Let f be a ternary cubic. If f is in the Weierstrass form, then f has at
least three real eigenvectors.

Proof. Let f be in the Weierstrass form, that is

f = y2z − p(x, z), p(x, z) = x3 + axz2 + bz3

If ∆(p) ≥ 0, we have that the inequality −4a3 − 27b2 ≥ 0 is satisfied inside and along
the graphic in Figure 2.21. Let V (I) =

{
(x, y, z) ∈ R3|h1 = h2 = h3 = 0

}
be, with h1 =

yfx − xfy, h2 = zfy − yfz, h3 = zfx − xfz. Then (1, 0, 0) ∈ V (I) (but (0, 1, 0) /∈ V (I)).
Setting z = 1, the system h1 = h2 = h3 = 0 has the following six solutions with
parameters a, b:

{

x1 =

√
−3a+ 1− 1

3
, y1 =

√

2
√
−3a+ 1a− 2a+ 9b+ 6√

3

}

{

x2 =

√
−3a+ 1− 1

3
, y2 =

−
√

2
√
−3a+ 1a− 2a+ 9b+ 6√

3

}

{

x3 =
−

(√
−3a+ 1 + 1

)

3
, y3 =

√

−2
√
−3a+ 1a− 2a+ 9b+ 6√

3

}

{

x4 =
−

(√
−3a+ 1 + 1

)

3
, y4 =

−
√

−2
√
−3a+ 1a− 2a+ 9b+ 6√

3

}

{

x5 =

√
8a2 − 12a+ 9b2 − 3b

2 (2a− 3)
, y5 = 0

}

{

x6 =
−
√
8a2 − 12a+ 9b2 − 3b

2 (2a− 3)
, y6 = 0

}

The last two are reals if and only if Φ = 8a2 − 12a+9b2 ≥ 0 and this is true outside and
along the ellipse in Figure 2.22. Then if ∆(p) ≥ 0, we have that (x5, y5), (x6, y6) are real
solutions and the thesis.
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Figure 2.21: ∆(p) = −4a3 − 27b2 = 0.

Figure 2.22: Φ = 8a2 − 12a+ 9b2 = 0.

Remark 60. In the proof of Theorem 59, we prove our conjecture only for the subset of
cubic forms in the Weierstrass form, because our problem is not invariant by the action of
SL(3) group. In fact, we have that already for binary forms the problem is not invariant
by the action of SL(2). On the other hand, we have a valid counterexample when we
write f in the Hesse form ([2]), that is f = x3 + y3 + z3 + 6λxyz. In this case, we have
that the points (1, 0, 0) and (0, 1, 0) belong to V (I). Then all cubic ternary forms have
at least three real eigenvectors and this is not possible.

Remark 61. Consider a ternary cubic

f = a0x
3 + a1x

2y + a2x
2z + a3xy

2 + a4xyz + a5xz
2 + a6y

3 + a7y
2z + a8yz

2 + a9z
3.

We can take f with a0 = 1. Setting a3 = 0, a4 = 0, a5 = 0, we obtain a subfamily F

of Sym3(R3). Let I = 〈p1, p2, p3〉 be the ideal with p1 = yfx − xfy, p2 = zfy − yfz,

54



p3 = zfx − xfz. Then the system p1 = p2 = p3 = 0 gives V (I). Setting z = 1, we have
that the system p1 = p2 = p3 = 0 becomes

S =







x(−a1x2 + 2a1y
2 + 2a2y − 3a6y

2 − 2a7y − a8 + 3xy) = 0
a1x

2 − a2x
2y + 3a6y

2 − a7y
3 + 2a7y − 2a8y

2 + a8 − 3a9y = 0
x(2a1y − a2x

2 + 2a2 − a7y
2 − 2a8y − 3a9 + 3x) = 0

By direct computation, we have p1 = yp3 − xp2, then to solve S means to solve the
system p2 = p3 = 0. Therefore we have the three aligned solution points (0, y1, 1),
(0, y2, 1), (0, y3, 1), where yi are the solutions of the cubic equation in y

−3a6y
2 − a7y

3 + 2a7y − 2a8y
2 + a8 − 3a9y = 0.

Theorem 62. Let f be a ternary form of degree d and suppose that f has c ovals.
Then, if d is odd, we have 2c + 1 ≤ #real eigenvectors of f and if d is even, we have
max (2c+ 1, 3) ≤ #real eigenvectors of f .

Proof. By Lemma 34, finding real eigenvectors of f means finding classes [(x0, y0, z0)] ∈
P(R3) such that (x0, y0, z0) ∈ S2 is a critical point of f on the sphere, that is a maximum,
minimum or saddle point of f on S2. By Remark 52, we have that the complement
S2\{f = 0} is divided at least into 2c pairs of symmetric regions, in which f has constant
sign and f attains a non zero maximum inside any region where f is positive, and a non
zero minimum inside any region where f is negative. Then, for any non zero maximum
v there is an antipodal −v which is a non zero minimum if f has odd degree, while
for any non zero maximum (minimum) v there is an antipodal −v which is a non zero
maximum (minimum) if f has even degree; in conclusion, we have at least 2c critical
points on the sphere corresponding to maxima or minima of f and then f has at least c
real eigenvectors. Consider now the following situations:

1. f ∈ Symd(R3), d odd. In this case, by Remark 52 there are 2c + 2 regions on the
sphere, then 2c + 2 total maxima and minima and hence f has at least c + 1 real
eigenvectors.

2. f ∈ Symd(R3), d even. In this case, by Remark 52 there are 2c + 1 regions on
the sphere, then 2c + 2 total maxima and minima and hence f has at least c real
eigenvectors and at least another one, given by a non zero maximum (minimum)
v and by its antipodal −v which is a non zero maximum (minimum) of f in the
internal of the complement on S2 of the union of all other 2c symmetric regions,
that is f has at least c+ 1 real eigenvectors.

We must consider also the saddle points of f on S2. By Morse’s equation (see Theorem
5.2 pag. 29 in [23])

∑

γ

(−1)γCγ = χ(S2) (2.4)

where γ ∈ {0, 1, 2} is the index of critical points of f on S2 (respectively, we have a
maximum, saddle or minimum point if γ is 0, 1 or 2), Cγ is the number of critical points
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with index γ of f |S2 and χ(S2) = 2 is the Euler’s characteristic of S2, we have the
following equation:

C0 − C1 + C2 = 2

We have seen that if f has c ovals we have at least 2c + 2 total maxima and minima of
f on S2 and then

C0 + C2 = C1 + 2 ≥ 2c+ 2 =⇒ C1 ≥ 2c.

Hence, the total number of critical points of f on the sphere is at least 2c+2+2c = 4c+2
and then f has at least 2c+ 1 real eigenvectors.
Finally, note that if d is even and if c = 0, by Weierstrass’s Theorem we have that f
attains at least a pair of absolute maxima and a pair of absolute minima on S2, then f
has at least 2 real eigenvectors, hence 3 because the total number of eigenvectors of f is
always odd and therefore, if d is even, f has at least max {2c+ 1, 3} real eigenvectors.

Remark 63. Equation (2.4) can be seen in an equivalent way as a consequence of
Poincaré-Hopf’s Theorem as in [24], pag. 35.

Corollary 64. Consider f ∈ Sym3(R3). Then, according to Remark 18, if f has two
components it has at least three real eigenvectors (see Figure 2.23, 2.24).

Figure 2.23: x3 + y3 + 1 + 6axy = 0, λ < −1
2 .
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Figure 2.24: x3 + y3 + z3 + 6axyz = 0, λ < −1
2 .

Remark 65. For an M -curve we have the following:

1. f ∈ Symd(R3), d odd. In this case, by Theorem 53 we have that an M -curve

has (d−1)(d−2)
2 + 1 components, (d−1)(d−2)

2 ovals and one pseudo-line and then by
Theorem 62 f has at least (d− 1)(d− 2) + 1 = d2 − 3d+ 3 real eigenvectors.

2. f ∈ Symd(R3), d even. In this case, by Theorem 53 we have that an M -curve

has (d−1)(d−2)
2 + 1 components, all ovals and then by Theorem 62 f has at least

(d− 1)(d− 2) + 3 = d2 − 3d+ 5 real distinct eigenvectors.

Remark 66. Having fixed the topological type of a form f ∈ Symd(R3), d = 3, 4, i.e.
having fixed the kind (nested or not) and the number c of ovals of f , the set of all forms
such that they have the same number c of f is connected (see Theorem 1.7 in [27]).

Remark 67. Consider a form f ∈ Symd(R3) such that f = l1l2 · · · ld, where li are
linear ternary forms, that is f is a singular form of degree d such that its real locus
of zeros consists of d lines in R2. If we choose all li such that ∀ i : 1, . . . , d the set
{li = 0} ∩ (∪i 6=j {lj = 0}) consists of d− 1 distinct points Pi,j in R2, i.e. each line meets
all the others in d − 1 distinct points, f has always the maximum number t of real
eigenvectors with multiplicity 1. Then, we can perturb f by ǫg, g ∈ SymdR3, ǫ ∈ R+

small enough and obtain a nonsingular quartic, smooth in Pi,j depending on the sign of
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g in Pi,j , with the maximum t. These results are in [1], precisely see Theorem 6.1 and
Corollary 6.2.

Now we show that the inequalities of Theorem 62 are sharp for ternary cubics and
quartics:

Proposition 68. Let f be a cubic with c ∈ {0, 1} ovals and let t be odd such that
2c+ 1 ≤ t ≤ 7. Then the set

{
f ∈ Sym3(R3) | f has c ovals, #real eigenvectors of f = t

}

has positive volume.

Proof. By Remark 66, we must show examples of ternary cubic forms such that c ∈ {0, 1}
and t attains the maximum and the minimum value. We have the following examples:

• t maximum. By Remark 67, we can take f = xy(x+y+1), ǫ = 1
1000 , g1 = x3+y3−2

and g2 = −x3 − y3 + 2 to obtain f1 = f + ǫg1 and f2 = f + ǫg2 with, respectively,
1 and 0 ovals and 7 real eigenvectors (see Figures 2.25, 2.26, 2.27).

• t minimum. Then we have:

– f has 0 ovals. In this case, we can find the Weierstrass form f = y2 − x3 −
1
9x

2 − x− 1 (see Figure 2.28) with 1 real eigenvectors.

– f has 1 oval. In this case, we can find the Weierstrass form f = y2 − 2
100x

3 +
45
100x

2 + 303
100x+ 29

100 (see Figure 2.29) with 3 real eigenvectors.

Figure 2.25: d = 3, f = xy(x+ y + 1).
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Figure 2.26: d = 3, f = xy(x + y + 1), g1 = x3 + y3 − 2 which is negative on the three
singular points of f , f1 = f + 1

1000g1 which has 1 oval.

Figure 2.27: d = 3, f = xy(x+ y + 1), g2 = −x3 − y3 + 2 which is positive on the three
singular points of f , f2 = f + 1

1000g2 which has 0 ovals.
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Figure 2.28: d = 3, f = y2 − x3 − 1
9x

2 − x − 1 which has c = 0 ovals and t = 1 real
eigenvector.

Figure 2.29: d = 3, f = y2 − 2
100x

3 + 45
100x

2 + 303
100x+ 29

100 which has c = 1 oval and t = 3
real eigenvectors.

Proposition 69. Let f be a quartic with c ∈ {0, 1, 2nested, 2nonnested, 3, 4} ovals and
let t be odd such that max(3, 2c+ 1) ≤ t ≤ 13. Then the set

{
f ∈ Sym4(R3) | f has c ovals, #real eigenvectors of f = t

}

has positive volume.

Proof. By Remark 66, we must show examples of ternary quartic forms such that c ∈
{0, 1, 2nested, 2nonnested, 3, 4} and t assumes the maximum and the minimum value.
We have the following examples:
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• t maximum. By Remark 67, we can take f = xy(x+ y+ 1
3)(−3x+ y+1), ǫ = 1

1000 ,

g1 = x4 + y4 − 1, g2 = −x4 − y4 + 5
2 , g3 = 7x4 +6y4 − 1− 5x and g4 = 7x4 +6y4 −

1 − 5x − 9y to obtain f1 = f + ǫg1, f2 = f + ǫg2, f3 = f + ǫg3 and f4 = f + ǫg4

with, respectively, 4, 3, 2 non nested and 1 ovals and 13 real eigenvectors (see

Figures 2.30, 2.31, 2.32, 2.33, 2.34). Moreover, we can take the hyperbolic quartic

f5 = det(I + xM1 + yM2), where

M1 =









2
9 5 10 7

4

5 1 1 3
8

10 1 1
2

1
2

7
4

3
8

1
2

5
3









, M2 =









1
2 1 1

2
4
5

1 8 1
3 8

1
2

1
3

1
3 8

4
5 8 8 7

8









are symmetric matrices, with 2 nested ovals and t = 13 (see Figure 2.35) and the

Fermat quartic f6 = x4 + y4 + 1 with 0 ovals and t = 13.

• t minimum. Then we have:

– f has 0 ovals. In this case, we can find the SOS form f = q21 + q22 + q23 =

(6x2+ 9
8xy+

4
9y

2+ 1
6x+

2
9y+

4
9)

2+(4x2+ 1
2xy+

7
9y

2+ 6
7x+

3
4y+2)2+(73x

2+
2
5xy +

1
10y

2 + x+ 1
2y +

1
5)

2 with 3 real eigenvectors.

– f has 1 oval. In this case, we can find the form f = 9
5x

4 + 4
5x

3y + 1
3x

2y2 +
4
9xy

3 + 5
4y

4 + x3 + 8
7x

2y + 8
5xy

2 + 1
5y

3 + x2 + 3
8xy + 2y2 + 5

2x+ 5
9y +

3
10 (see

Figure 2.36) with 3 real eigenvectors.

– f has 2 ovals non nested. In this case, we can find the form f = q1q2 =

(8x2+3y2− 1
10xy+3x−10y−9)(7x2+3y2+5xy−7x+12y+15) (see Figure

2.37) with 5 real eigenvectors.

– f has 2 nested ovals. In this case, we can find the determinantal form f =

det(I + xM1 + yM2) (see Figure 2.38), where

M1 =









5
2

5
3 2 9

10
5
3

7
2

1
4

2
5

2 1
4

10
7

1
3

9
10

2
5

1
3 1









, M2 =









4
5

5
3 1 5

8
5
3

1
2 1 1

1 1 2 8
7

5
8 1 8

7
10
7









are symmetric matrices, with 5 real eigenvectors.

– f has 3 ovals. In this case, we have the quartic f = (x2 + y2)2 + p(x2 + y2) +

q(x3 − 3xy2) + r, where p = 16
3 , q = 80

9 , r = 2624
9 in Figure 2.39 (see [9], pag.

116, 123), with 7 real eigenvectors.
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– f has 4 ovals. In this case, we have the singular form f = (y2 − 2
100x

3 +
45
100x

2+ 303
100x+

29
100)(x− 45), with 9 real eigenvectors and then we can perturb

f by ǫg, where g is a quartic such that f6 = f + ǫg has 4 ovals and ǫ is small

enough, to obtain a form with c = 4 and again t = 9; we can take ǫ = 1
1000

and g = −x4 − y4 − 1 (see Figure 2.40, 2.41).

Figure 2.30: d = 4, f = xy(x+ y + 1
3)(−3x+ y + 1).

Figure 2.31: d = 4, f = xy(x+ y + 1
3)(−3x+ y + 1), g1 = x4 + y4 − 1 which is negative

on the six singular points of f , f1 = f + 1
1000g1 which has 4 ovals.

62



Figure 2.32: d = 4, f = xy(x+ y+ 1
3)(−3x+ y+1), g2 = −x4 − y4 + 5

2 which is positive
on the six singular points of f , f2 = f + 1

1000g2 which has 3 ovals.

Figure 2.33: d = 4, f = xy(x + y + 1
3)(−3x + y + 1), g3 = 7x4 + 6y4 − 1 − 5x which

is negative on four of the six singular points of f and it is positive on the other two,
f3 = f + 1

1000g3 which has 2 non nested ovals.
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Figure 2.34: d = 4, f = xy(x+ y+ 1
3)(−3x+ y+1), g4 = 7x4 +6y4 − 1− 5x− 9y which

is positive on four of the six singular points of f and it is negative on the other two,
f4 = f + 1

1000g4 which has 1 oval.

Figure 2.35: d = 4, f5 = det(I + xM1 + yM2) which has 2 nested ovals and 13 real
eigenvectors.
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Figure 2.36: d = 4, f = 9
5x

4 + 4
5x

3y + 1
3x

2y2 + 4
9xy

3 + 5
4y

4 + x3 + 8
7x

2y + 8
5xy

2 + 1
5y

3 +
x2 + 3

8xy + 2y2 + 5
2x+ 5

9y +
3
10 which has c = 1 oval and t = 3 real eigenvectors.

Figure 2.37: d = 4, f = (8x2+3y2− 1
10xy+3x−10y−9)(7x2+3y2+5xy−7x+12y+15)

which has c = 2 non nested ovals and t = 5 real eigenvectors.
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Figure 2.38: d = 4, f = det(I + xN1 + yN2) which has c = 2 nested ovals and t = 5 real
eigenvectors.

Figure 2.39: d = 4, f = (x2 + y2)2 + 16
3 (x

2 + y2) + 80
9 (x

3 − 3xy2) + 2624
9 which has c = 3

ovals and t = 7 real eigenvectors.
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Figure 2.40: d = 4, f = (y2 − 2
100x

3 + 45
100x

2 + 303
100x+ 29

100)(x− 45) which has t = 9 real
eigenvectors.

Figure 2.41: d = 4, f = (y2 − 2
100x

3 + 45
100x

2 + 303
100x+ 29

100)(x− 45) which has t = 9 real
eigenvectors, g = −x4 − y4 − 1, f6 = f + 1

1000g which has c = 4 ovals and t = 9 real
eigenvectors.

2.4 Examples, partial results and open problems

Using Macaulay2, if d ≥ 4 we show some computational examples of the possible values
of t for some fixed c. We do this because we want to try to generalize Propositions 68,
69 for d > 4, but we can not use Remark 66 and then we can not repeat the proofs of
those same Propositions.

Remark 70. Having fixed the topological type of a ternary quartic f , for a sample of
1000 forms we give the occurrences of all possible values of t in some topological cases:

1. f nonnegative, i.e. c = 0. In this case, we can write f as a sum of squares of 3
ternary quadratic forms q1, q2, q3 (f is SOS) and we have the following table:

t 3 5 7 9 11 13

occurrences 458 240 215 79 6 2

Table 2.16: d = 4 and f nonnegative.
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Note that if c = 0 all possible number of real eigenvectors can occur, also 3,
according with Theorem 62.

2. f has one oval, i.e. c = 1. In this case, we can write f as a product of two quadratic
forms q1, q2, where q1 or q2 has empty real locus of zeros and we have the following
table:

t 3 5 7 9 11 13

occurrences 399 397 141 42 16 5

Table 2.17: d = 4 and f = q1q2.

Note that if c = 1 all possible number of real eigenvectors can occur, also 3,
according with Theorem 62.

3. f hyperbolic, i.e. c = 2 and the ovals are nested if {f = 0} is smooth in P2(C). In
this case, we can write f as det(xI + yM2 + zM3), where Mi are 4× 4 Hermitian
matrices and I is the identity matrix, that is symmetric matrices in this case,
because f has real coefficients and we have the following table:

t 3 5 7 9 11 13

occurrences 0 17 161 315 401 106

Table 2.18: d = 4 and f = det(xI + yM2 + zM3).

Note that if c = 2 (and the ovals are nested in this case) all possible number of real
eigenvectors can occur except 3, according with Theorem 62.

Remark 71. Having fixed the topological type of a ternary quintic f , for a sample of
1000 forms we give the occurrences of all possible values of t in some topological cases:

1. f has only the pseudoline, i.e. c = 0. In this case, we can write f as a product of
a line l and a nonnegative quartic g1 or as a product of a cubic g2, with c = 0 and
a nonnegative quadric q1. We have the following tables:

t 1 3 5 7 9 11 13 15 17 19 21

occurrences 346 282 207 100 48 13 4 0 0 0 0

Table 2.19: d = 5 and f = lg1.

t 1 3 5 7 9 11 13 15 17 19 21

occurrences 20 91 330 399 121 25 3 1 0 0 0

Table 2.20: d = 5 and f = q1g2.
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2. f has one oval, i.e. c = 1. In this case we can write f as a product of a cubic g1,
with c = 1 and a nonnegative quadric q1. We have the following table:

t 1 3 5 7 9 11 13 15 17 19 21

occurrences 0 22 96 380 348 120 33 1 0 0 0

Table 2.21: d = 5 and f = g1q1.

3. f hyperbolic, i.e. c = 2 and the ovals are nested if {f = 0} is smooth in P2(C). In
this case, we can write f as det(xI + yM2 + zM3), where Mi are 5× 5 Hermitian
matrices and I is the identity matrix, that is symmetric matrices in this case,
because f has real coefficients and we have the following table:

t 1 3 5 7 9 11 13 15 17 19 21

occurrences 0 0 1 2 41 119 259 306 198 71 3

Table 2.22: d = 5 and f = det(xI + yM2 + zM3).

Then we have the following

Lemma 72. Let f be a quintic with c = 2 nested ovals and let t be odd such that
2c+ 1 ≤ t ≤ 21. Then the set

{
f ∈ Sym5(R3) | f has c ovals, #real eigenvectors of f = t

}

has positive volume.

Remark 73. Having fixed the topological type of a ternary sextic f , for a sample of
1000 forms we give the occurrences of all possible values of t in some topological cases:

1. f nonnegative, i.e. c = 0. In this case, we have two possibilities for our form: f is
a sum of squares of 4 ternary cubic forms q1, q2, q3, q4 (f is SOS) or not.
In the first case, we have the following table:

t 3 5 7 9 11 13 15 17

occurrences 71 373 33 168 42 11 3 2

t 19 21 23 25 27 29 31

occurrences 0 0 0 0 0 0 0

Table 2.23: d = 6 and f SOS.

In the second case, f is nonnegative but is not a sum of squares and then, taking
known sextic with this property, for example f1 = x4y2 + x2y4 + z6 − 3x2y2z2 (the
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Motzkin’s sextic, [30]), f2 = x6 + y6 + z6 − x4y2 − x2y4 − x4z2 − y4z2 − x2z4 −
y2z4 + 3x2y2z2 (the Robinson’s sextic, [30]), f3 = x4y2 + y4z2 + z4x2 − 3x2y2z2

(the Choi-Liu’s sextic, [30]), we perturb them without changing their topological
type, adding ǫg, where g is a random SOS sextic. We have the following tables:

t 3 5 7 9 11 13 15 17

occurrences 0 0 1 11 36 61 200 525

t 19 21 23 25 27 29 31

occurrences 156 10 0 0 0 0 0

Table 2.24: d = 6 and f1.

t 3 5 7 9 11 13 15 17

occurrences 0 0 0 1 2 7 35 28

t 19 21 23 25 27 29 31

occurrences 47 84 186 610 0 0 0

Table 2.25: d = 6 and f2.

t 3 5 7 9 11 13 15 17

occurrences 0 0 0 0 0 0 2 5

t 19 21 23 25 27 29 31

occurrences 13 20 70 701 173 14 2

Table 2.26: d = 6 and f3.

2. f hyperbolic, i.e. c = 3 and the ovals are nested if {f = 0} is smooth in P2(C). In
this case, we can write f as det(xI + yM2 + zM3), where Mi are 6× 6 Hermitian
matrices and I is the identity matrix, that is symmetric matrices in this case,
because f has real coefficients and we have the following table:

t 3 5 7 9 11 13 15 17

occurrences 0 0 1 2 11 23 91 174

t 19 21 23 25 27 29 31

occurrences 261 207 163 49 16 1 1

Table 2.27: d = 6 and f = det(xI + yM2 + zM3).

70



3. f is obtained by slightly perturbing six lines, i.e. we perturb the product of six
linear forms l1, . . . , l6 by adding ǫg, where g is a random sextic and we have the
following table:

t 3 5 7 9 11 13 15 17

occurrences 0 0 0 2 7 9 17 35

t 19 21 23 25 27 29 31

occurrences 49 65 75 97 145 218 281

Table 2.28: d = 6.

Then we have the following

Lemma 74. Let f be a sextic with c ∈ {0, 3nested} ovals and let t be odd such that
max(3, 2c+ 1) ≤ t ≤ 31. Then the set

{
f ∈ Sym6(R3) | f has c ovals, #real eigenvectors of f = t

}

has positive volume.

By Remarks 71, 73, it is evident that already for d = 5, 6 the generalization of Propo-
sitions 68, 69 is very hard. In fact, we have trouble to writing the forms f of degree
five or six in all possible topological cases. When we can to do this, the choice to use a
reducible form or a specific form for f constrains the range of t. For example, to get all
the possible values of t in the case of a nonnegative sextic, it is not sufficient to consider
SOS forms and we must use also perturbations of some known irreducible nonnegative
forms (e.g. Motzkin’s sextic). Again, we have t = 15 as maximum value of t in the cases
of a quintic with c = 0, 1 and not t = 21. Moreover, there are many difficulties for obtain
the two forms with the minimum value of t in the nested cases of degree 5, 6. Then
we do not know if the inequality of Theorem 62 is sharp and if it is the only essential
constraint about the reality of eigenvectors for f ∈ Symd(R3), d > 4. Moreover, we do
not know how to extend Theorem 62 in higher dimension. These are open problems.
If you want to see the software with which we have done the Examples and Tables in
this thesis, you can use the following link:

https://drive.google.com/drive/folders/0B0Z3u5Ct9E6Vbl9HMHZnSG1Vdzg?usp=sharing
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