
09 April 2024

Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region / Korostelev, F.,
Weemstra, C., Leroy, S., Boschi, L., Keir, D., Ren, Y., Molinari, I., Ahmed, A., Stuart, G. W., Rolandone, F.,
Khanbari, K., Hammond, J. O. S., Kendall, J-M., Doubre, C., Al Ganad, I., Goitom, B., Ayele, A.. - In:
GEOPHYSICAL RESEARCH LETTERS. - ISSN 0094-8276. - ELETTRONICO. - 42:(2015), pp. 2179-2188.
[10.1002/2015GL063259]

Original Citation:

Magmatism on rift flanks: Insights from ambient noise phase velocity
in Afar region

Published version:
10.1002/2015GL063259

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1077607 since: 2020-10-29T09:25:41Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



Geophysical Research Letters

RESEARCH LETTER
10.1002/2015GL063259

Key Points:
• Crustal and upper mantle structures

are characterized in Red Sea and Afar
• Magmatic processes are currently

modifying the crust of the Red
Sea flanks

• Rift-flank magmatism can persist after
breakup

Supporting Information:
• Text S1
• Figure S1
• Figure S2

Correspondence to:
F. Korostelev,
felicie.korostelev@gmail.com

Citation:
Korostelev, F., et al. (2015),
Magmatism on rift flanks: Insights
from ambient noise phase velocity
in Afar region, Geophys. Res. Lett.,
42, 2179–2188, doi:10.1002/
2015GL063259.

Received 26 JAN 2015

Accepted 2 MAR 2015

Accepted article online 7 MAR 2015

Published online 3 APR 2015

This is an open access article under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

Magmatism on rift flanks: Insights from ambient noise
phase velocity in Afar region
Félicie Korostelev1,2, Cornelis Weemstra3, Sylvie Leroy1,2, Lapo Boschi1,2, Derek Keir4, Yong Ren5,
Irene Molinari6, Abdulhakim Ahmed1,2,7, Graham W. Stuart5, Frédérique Rolandone1,2,
Khaled Khanbari8, James O. S. Hammond9, J. M. Kendall10, Cécile Doubre11, Ismail Al Ganad12,
Berhe Goitom13, and Atalay Ayele14

1Sorbonne Universités, UPMC Université Paris 06, UMR 7193, Institut des Sciences de la Terre Paris, Paris, France, 2CNRS,
UMR 7193, Institut des Sciences de la Terre Paris, Paris, France, 3Department of Geoscience and Engineering, Delft
University of Technology, Delft, Netherlands, 4National Oceanography Centre Southampton, University of Southampton,
Southampton, UK, 5School of Earth and Environment, University of Leeds, Leeds, UK, 6Istituto Nazionale di Geofisica e
Vulcanologia, Rome, Italy, 7Seismological and Volcanological Observatory Center, Dhamar, Yemen, 8Sana’a University,
Remote Sensing and GIS Center, Sana’a, Yemen, 9Imperial College London, London, UK, 10University of Bristol, Bristol, UK,
11Institut de Physique du Globe de Strasbourg; UMR 7516, Université de Strasbourg/EOST, CNRS, Strasbourg, France,
12Yemen Geological Survey and Mineral Resources Board, Sana’a, Yemen, 13School of Earth Sciences, University of Bristol,
Bristol, UK, 14Institute of Geophysics, Space Science and Astronomy, Addis Ababa University, Addis Ababa, Ethiopia

Abstract During the breakup of continents in magmatic settings, the extension of the rift valley is
commonly assumed to initially occur by border faulting and progressively migrate in space and time toward
the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase
velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar
and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images
show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems
but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal
activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a
protracted period of time during the breakup process and may persist through to early seafloor spreading.

1. Introduction

During the breakup of continents, stretching and thinning of the plate commonly causes decompression
melting and volcanism. In the resultant magmatically active rift valleys it is widely thought that extension
is initially accommodated mainly by border faulting and progressively localizes to relatively narrow
axial volcanic segments as the rift valley widens [e.g., Ebinger and Casey, 2001]. However, it is becoming
increasingly more recognized that magma intrusion and volcanism can occur on the rift flanks at an early
stage of rifting [e.g., Maccaferri et al., 2014]. These rift flank magmatic systems accommodate extension
through diking [Rooney et al., 2014], and thermally and compositionally modify the lithosphere [Daniels
et al., 2014]. Despite the importance of magmatic processes during continental extension, we have few
constraints on their spatial and temporal variability. In order to address this issue, we use ambient seismic
noise tomography to image the Rayleigh wave phase velocity structure of the crust in a region of late-stage
breakup at the conjugate margins of the southern Red Sea in Afar and Yemen.

Geochronological constraints in Ethiopia suggest rifting began 29–31 Ma on the western Afar margin
[e.g., Ayalew et al., 2006; Wolfenden et al., 2005] (Figure 1), approximately coeval with ∼35 Ma faulting along
large portions of the Gulf of Aden to the east [Leroy et al., 2010]. Rifting was associated with the develop-
ment of large offset border faults that currently define ∼2000–3000 m of relief between the submarine Red
Sea and subaerial Afar depression with the uplifted Ethiopian and Yemeni plateaus [Wolfenden et al., 2004].
Extension is thought to have occurred above warm mantle with a potential temperature of ∼1450◦ [Rooney
et al., 2012], associated with voluminous flood basalts on the Ethiopian and Yemeni plateaus synchronous
with the onset of extension [Wolfenden et al., 2004], and associated with ongoing magmatism [Ferguson
et al., 2013]. At ∼21–23 Ma, magmatism occurred through dike intrusions along most of the eastern
margin of the Red Sea [Bosworth et al., 2005]. Magmatism on the rift flanks is ongoing, with the Quaternary
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Figure 1. Structure of the Afar and southern Red Sea region. The crustal thicknesses are displayed by colored dots
and based on the Moho depths, which are obtained from Egloff et al. [1991], Tramontini and Davies [1969], Drake and
Girdler [1964], Prodehl and Mechie [1991], Laughton and Tramontini [1969], Ruegg [1975], Hammond et al. [2011], Ahmed
et al. [2013], and Reed et al. [2014]. Structures are modified from Ebinger et al. [2008] and Stab et al. [2014]. Bathymetry
is not represented. DMH: Dabbahu-Manda-Hararo volcano-tectonic segment; AEA: Afdera-Erta’Ale volcano-tectonic
segment; G. Tadj.: Gulf of Tadjura; DbV: Dabbahu Volcano; DrV: Durrie Volcano; KV: Kurub Volcano; TGD: Tendaho-
Goba’ad Discontinuity; SVF: Sana’a volcanic field; MVF: Marib volcanic field; and DVF: Dhamar volcanic field.

to Recent volcanic centers of Sana’a, Dhamar, and Marib located in Yemen [Manetti et al., 1991; Korostelev
et al., 2014]. In addition, thermal hot springs are present along the conjugate southern Afar margin [Keir
et al., 2009]. Magma intrusion and volcanism is also common within the rift valley. Since ∼10 Ma in Afar,
extension via diking progressively localized to the rift axis [e.g., Wolfenden et al., 2005; Rooney et al., 2011],
with the current locus of strain being ∼70 km long, ∼20 km wide axial volcanic segments such as the
Dabbahu-Manda-Hararo segment in central west Afar [e.g., Hayward and Ebinger, 1996]. Here episodic
intrusion of dikes fed from crustal magma chambers at both the segments centers and tips accommodates
the majority of extension [e.g., Keir et al., 2009; Grandin et al., 2010, 2011].

Current opening across the kinematically complex southern Red Sea rift is constrained with relatively
high-density GPS [e.g., ArRajehi et al., 2010; McClusky et al., 2010] and InSAR measurements [e.g., Pagli et al.,
2014]. These data show that south of ∼16◦N, the rift bifurcates into two branches: the main Red Sea and
the subaerial Red Sea rift in Afar (Danakil Depression). Partitioning of extension between rift branches varies
along strike. North of ∼ 16◦N, all the extension is accommodated in the main Red Sea rift, spreading at
∼15 mm/yr. Moving south of 16◦N, the extension is progressively accommodated in the Afar Depression
reaching ∼20 mm/yr at 13◦N [McClusky et al., 2010; Vigny et al., 2006]. The crust beneath Afar varies from
25 km thick beneath most of Afar to 15 km thick beneath the Danakil Depression (Afdera-Erta’Ale segment)
in the north [Makris and Ginzburg, 1987; Bastow and Keir, 2011] (Figure 1). The crustal thickness is ∼25 km
thick beneath the Danakil Block and increases to 40–45 km beneath the Ethiopian and Yemeni Plateaus
[Hammond et al., 2011; Ahmed et al., 2013] (Figure 1).

2. Data

Our data set is based on continuous recordings from 89 seismic stations. Only a limited number of high-
quality permanent seismic stations span the Afar-southern Red Sea margins, and so temporary experiments
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Figure 2. Map of the station pairs used for the tomographic inversion. The red lines show the station-to-station paths.
The solid gray line delimitates the best constrained area. The green triangles are the stations.

using portable broadband equipment are our major source of information on the structure of the
area. A seismic deployment was conducted between March 2009 and March 2010 as part of the YOCMAL
(Young Conjugate Margins Laboratory) project, with 23 stations covering western Yemen during 1 year
[Korostelev et al., 2014; Corbeau et al., 2014] (Figure 2). We also use data from 41 stations in the Afar
Consortium network (UK and U.S., from March 2007 to November 2009) [e.g., Keir et al., 2011], five stations
of the Horn of Africa network in Yemen and Ethiopia (from June 1999 to December 2002 [e.g., Sicilia et al.,
2008]), and six temporary stations recording from May 2011 to September 2012 in Eritrea [e.g., Hammond
et al., 2013] (Figure 2]. One station from the Djibouti temporary network was added to our data set, together
with permanent seismic stations in Djibouti, Yemen, and Ethiopia.

The ambient noise cross-correlation technique relies on having simultaneous recordings of the noise
field at two seismic stations so that the Green’s function between them can be estimated [Shapiro and
Campillo, 2004; Wapenaar and Fokkema, 2006; Halliday and Curtis, 2008]. Because the different deployments
of portable instruments occurred at different times, we are not able to estimate Green’s functions for all
receiver pairs. We partly compensate for this, however, by utilizing permanent stations from the IRIS and
GEOSCOPE networks, providing data over a period during which several of the mentioned portable arrays
were active.

3. Method
The ambient noise technique to study Earth structure is free of limitations imposed by the distribution of
natural earthquakes. Extracting travel times from a multitude of station-station correlations therefore allows
for relatively high-resolution tomographic inversions [e.g., Shapiro et al., 2005]. We follow the approach
of Ekström et al. [2009], discussed in further detail in section 3.2 of Boschi et al. [2013], to estimate phase
velocity from the ambient signal recorded at two stations.

The background seismic noise is to a large extent generated by the coupling of oceans with the solid Earth
[e.g., Longuet-Higgins, 1950; Hillers et al., 2012]. Because this area is almost surrounded by seas or oceans
(Red Sea, Gulf of Aden, and Indian Ocean), it is particularly suitable for ambient noise surface wave retrieval.

To maximize data quality, we (i) only used the pairs of stations that recorded simultaneously for at least
6 months and (ii) compared measured and predicted Green’s function for all station pairs, and discarded
pairs that clearly showed a bad fit (see figure in supporting information). The duration of cross-correlated
signal varies by 6–36 months depending on the station pair. These long durations guarantee that all seasons
and hence all possible azimuths of noise propagation are sampled [e.g., Stehly et al., 2006]. Data processing
was limited to whitening, as reasonable dispersion curves could be obtained without any filtering and/or
“one-bit” amplitude compression.

4. Resolution
4.1. Station-to-Station Paths
To assess the resolving power of our inversion, we first show in Figure 2 the station-to-station paths corre-
sponding to ambient Rayleigh wave observations at each period. The solid gray line delimitates the area
with good coverage, and therefore the zone of best resolution.
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Figure 3. Result of two reconstruction synthetic tests with randomly distributed velocity anomalies of various sizes as input. (a) Small-scale synthetic anomalies
and (b) large-scale synthetic anomalies. The left image displays the synthetic input, whereas the right image displays the output model.

4.2. Random Tests
We perform two random resolution tests [e.g., Verbeke et al., 2012] to assess the reliability of the tomo-
graphic inversion: one with structures smaller than 100 km (Figure 3a) and a second one with structures
larger than 100 km (Figure 3b). The input synthetic random velocity model consists of alternating
random structures of opposite sign with a maximum velocity variation of 1.5% relative to the reference
velocity.

Synthetic phase velocities were computed between the same station pairs as in the observed database.
Figures 3a and 3b show the input velocity models and the retrieved velocity models from these tests for
periods of 9, 15.5, and 20.5 s. These synthetic tests indicate that our inversion can resolve most of the
Afar-southern Red Sea margins region, with some degradation of the recovered solutions near the edges
of the illuminated area. The tomography algorithm is that utilized, e.g., by Verbeke et al. [2012]. Pixel size
is 0.1◦ × 0.1◦.

Our synthetic tests (Figure 3) serve both to validate pixel size and to select the values of regularization
parameters that allow us to represent heterogeneities of scale length such as in Figure 3a (left). The same
parameterization and regularization are applied to real data in the following. Notice that resolution changes
across the region of study, so that a unique resolution limit cannot be specified.
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Figure 4. Maps of phase velocity anomalies (percent with respect to average) resulting from tomographic inversion of ambient noise dispersion data. The average
velocity for each period is in the bottom right of each map (m/s). The solid gray line delimitates the best constrained area.

5. Results

We compute Rayleigh wave phase velocity maps for periods between 9 s and 25.5 s and present examples
at 9, 15.5, and 20.5 s (Figure 4; see supporting information for other periods). According to, e.g., Lebedev and
Van Der Hilst [2008] and Fry et al. [2010], 9 s Rayleigh waves are most sensitive to depths < 20 km (upper and
middle crust), while 15.5 s are most sensitive to 10–40 km depth (primarily the lower crust). Rayleigh waves
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Figure 5. Distribution of thermal wells, fumaroles, and thermal springs in the Afar triple junction region [Keir et al., 2009]. No data were available in Yemen.

of 20.5 s can sample down to 70 km, at the top of the upper mantle. The locus of major velocity anomalies
is fairly constant from 9 s to 15.5 s (Figure 4). We image positive velocity perturbations beneath the border
faults of the eastern flank of the Red Sea in Yemen, beneath the Danakil Horst, and in central western Afar
in the region between the rift margin and the axial volcanic segments (Sullu Adu area, Figure 1). We also see
positive velocity perturbations beneath the western Afar margin north of 12◦N. The main slow anomalies
are located beneath Dabbahu Manda-Hararo axial volcanic system, beneath Durrie off-axis volcano and
the southern axis extension to Kurub Volcano (Figure 1). We also find slow anomalies associated with the
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volcanic systems 150 to 200 km east of the rift margin in Yemen and beneath the western Afar margin south
of 12◦N (Figure 4).

The magnitude of several of the distinct velocity perturbations varies subtly with period. For example,
beneath the eastern rift margin (Tihama Plain, Yemen, Figure 1), the positive anomaly increases in
magnitude from 5% at 9 s to 7% at 20.5 s (Figure 4). The slow anomaly beneath the western Afar margin
flank south of 12◦N is mostly more than −3% at 9 s, whereas at 15.5 and 20.5 s a larger proportion of the
anomaly is −4 to −6% (Figure 4).

The slow anomalies beneath Yemen and beneath the axial volcanic segment of Dabbahu-Manda-Hararo
in Afar correlate well with the locus of surface volcanism (Figure 4). In addition, Figure 5 shows the surface
distribution of known thermal springs in the region [Keir et al., 2009]. The slow anomaly beneath the western
Afar margin is beneath the locus of thermal springs on the western Afar margin, whereas north of 12◦N,
thermal springs are absent and the crust is faster than average. The spatial extent of slow anomalies imaged
using ambient noise also correlates well with the spatial extent of high VP/VS ratios in the crust constrained
using P-S receiver functions [Hammond et al., 2011].

6. Discussion

Seismic wave velocity is known to be affected by the temperature and chemical composition of the medium
of propagation (crustal rocks), as well as by the concentration of fluids, such as partial melt that might
be present within crustal rocks [e.g., Christensen and Mooney, 1995; Karato et al., 2003]. We image slow
velocities beneath axial regions of localized magma intrusion, consistent with the hypothesis that major
surface wave slow anomalies are associated with magmatism (Figure 4). In addition, the lowest velocities in
our images are beneath zones of active volcanism and geothermal activity near the flanks of the southern
Red Sea conjugate margins (Figures 4 and 5). The magnitude of the anomalies and spatial association with
regions where either partial melt or fluids released from cooling magmatic systems are present suggests the
crust beneath the flanks of the rift is currently being modified by magmatic processes. Ongoing magmatism
occurs at the rift flanks in spite of the majority of strain having shifted to the rift axis since the onset of
rifting at 11 Ma [Wolfenden et al., 2004]. Beneath the western Afar margin, where slow anomalies are
associated with geothermal systems rather than known volcanoes, geological studies suggest early border
faulting at 30 Ma was associated with spatially localized volcanism in the marginal graben systems [Ayalew
et al., 2006]. Our velocity maps suggest that the magmatic systems beneath the rift flanks that were active
during the onset of rifting remain magmatically active throughout the breakup process either through
continued minor accumulation of partial melt in reservoirs, dike intrusion, and/or ongoing conductive
cooling leading to release of fluids such as water [Keir et al., 2009; Holtzman and Kendall, 2010].

The low-velocity anomalies in our phase velocity maps under the rift axis are observed with higher
amplitude in the upper crust (Figure 4, period = 9 s), whereas the low-velocity anomalies located beneath
the rift flanks are observed both in the upper and lower crust, but with higher amplitude in the lower crust
(Figure 4, period = 15.5 s). This is consistent with the proposed plumbing systems of axial and flank volcanic
systems of the nearby Main Ethiopian Rift, where petrological constraints on flank volcanism are good. The
volcanic products observed on the flanks and at the axis of the Main Ethiopian Rift are not identical: they
consist mainly of trachytes for the flanks and mainly of rhyolites and basalts for the axis [Peccerillo et al.,
2007]. Petrological models indicate that the origin of the off-axis trachytes is probably high-pressure
fractional crystallization of asthenosphere-derived basalts, with this fractionation occurring at the base
of the crust [Peccerillo et al., 2007]. Rooney et al. [2005, 2007] suggest that these off-axis volcanic products
result of moderate-degree partial melting at 50–90 km depth and undergo fractional crystallization in
complex plumbing systems spanning depths throughout the crust [Rooney et al., 2011]. The volcanic rocks
at the axis are asthenospheric basalts produced by rift-related decompressional melting rather than other
potential sources such as melting in the crust. The axial basalts undergo fractional crystallization mostly
in the upper crust [Peccerillo et al., 2007]. Thus, the axial magmatic chamber is shallow (in the upper crust),
and the melt ascension from the asthenosphere is probably rapid. At the flanks, however, there is a complex
plumbing system with stacked reservoirs both in the upper and lower crust [Rooney et al., 2011]. The
geothermal systems of the flanks are probably fed or heated by such a complex plumbing system (Figure 5).
Our surface wave velocity maps are consistent with this model and therefore suggest similar magmatic
plumbing systems for the southernmost Red Sea.
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According to Medynski et al. [2015], the magma supply has decreased in the Dabbahu-Manda-Hararo axis
reservoir since 15 kyr. An off-axis reservoir, located 15 km to the west of the Dabbahu-Manda-Hararo rift
beneath Durrie Volcano has been actively fed since 15 kyr and is currently imaged using magneto-telluric
techniques (Figure 1) [Desissa et al., 2013]. It is consistent with our phase velocity maps, where the maximum
amplitude for the northern Dabbahu-Manda-Hararo seems to be slightly to the west of the rift, beneath
Durrie Volcano (Figure 4).

In the past, geodynamic models of breakup ignored the presence and impact of maintained magmatism
at rift flanks on the thermal and subsidence history of the rift during late stage breakup and early seafloor
spreading. At the southern Red Sea, where seafloor spreading is young, our new crustal velocity maps
coupled with surface expression of volcanism (Figure 4) show clear evidence for ongoing magmatism
beneath the rift flanks in Afar and Yemen (Sana’a, Dhamar, and Marib volcanic fields, Figure 1) [Korostelev
et al., 2014; Corbeau et al., 2014]. Similarly, there is evidence for ongoing dike intrusion further north along
the eastern Red Sea flank from InSAR (interferometric synthetic aperture radar) and seismicity studies
at Harrat Lunayyir volcanic system in Saudi Arabia [e.g., Pallister et al., 2010; Ebinger et al., 2010]. There,
localized subsidence, horizontal opening, and earthquakes in April to May 2009 are best modeled by intru-
sion of a dike and induced normal faulting. These studies, combined with the evidence presented by our
new surface wave velocity maps, demonstrate that rift flank magmatism during late-stage breakup may be
more common than previously assumed.

7. Conclusions

Our study provides new high-resolution phase velocity maps of the crust and uppermost mantle of the
conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain
crustal evolution during breakup. Low-velocity anomalies are not only imaged in the crust beneath the
axial volcanic systems but also in the upper and lower crust beneath rift flanks where hydrothermal activity
and ongoing volcanism are observed at the surface. Our results show that the crust beneath the southern
Red Sea Rift flanks is currently being modified by magmatic processes and that this activity is continuous
from the onset of rifting. We therefore demonstrate that rift flank magmatism after breakup may be more
common than it was previously thought in context of margins with excess magmatism.
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