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1. SUMMARY 

 

The severest form of male factor infertility is non-obstructive azoospermia (NOA), which 

occurs in approximately 1% of all men in reproductive age. It is common knowledge that 

Klinefelter Syndrome (47, XXY) and Y-chromosome microdeletions are direct causes of NOA, 

but in the majority of patients the etiology of this spermatogenic alteration is still unknown. 

The global aim of the present thesis was to enhance our understanding on genetic factors 

involved in non-obstructive azoospermia. 

The first part of the thesis focuses on the search of X-linked “AZF-like” regions. The Y-linked 

AZF deletions, which arise through Non-Allelic Homologous Recombination (NAHR), are the 

first example in andrology of functionally relevant Copy Number Variations (CNVs) causing 

spermatogenic failure. In analogy to the Y chromosome, the X chromosome is enriched in 

genes involved in spermatogenesis and its hemizygous state in males implies a direct effect of 

a damaging deletion making it a promising target for the discovery of new genetic factors 

leading to male infertility. To this purpose, we performed a multi-step bioinformatic analysis 

starting from all X-linked CNVs reported in UCSC Genome Browser in order to select X-linked 

recurrent CNVs: i) flanked by segmental duplications (SDs) and thus possibly generated by the 

NAHR ii) containing genes that are probably under negative selection i.e. with an inverted ratio 

of deletions/duplications.  

Following the above analysis we identified 12 X-linked CNVs (candidate “AZF-like” regions) of 

which 10 CNVs contained genes with a predicted role during spermatogenesis. Screening for 

deletions was performed in 82 idiopathic NOA patients with different testis phenotypes from 

pure Sertoli Cell Only Syndrome (SCOS) to partial spermatid arrest. The analysis revealed a 

single deletion in a patient affected by pure spermatocytic arrest removing part of the 

members of the Opsin gene family and possibly affecting the expression of a testis specific 

gene, TEX28. qPCR analysis revealed that the Opsin gene family is not expressed in germ cells 

and the analysis of the carrier’ testis biopsy did not reveal any impairment of TEX28 

expression. Therefore, no cause-effect relationship between deletion and the testis phenotype 

can be established. We hypothesize that the lack of deletions in our NOA cohort may be 

partially due to the strictly selected testicular phenotype. Hence, we cannot exclude deletions 

in these regions may cause a less severe impairment of spermatogenesis. On the other hand, 

for the regions containing ubiquitously expressed genes, the removal of one or more of these 

genes may cause a more complex phenotype. Our is the first study that, through a multi-step 
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bioinformatic analysis, provides information about potential X-linked “AZF-like” regions and 

represents a starting point for future large scale investigations involving patients with crypto-

or oligozoospermia. 

The second part of the thesis focuses on the sequencing of >160.000 coding exons in NOA 

patients and proven normozoospermic fertile controls. We performed a Whole Exome 

Sequencig (WES) in a set of 18 men affected by SCOS, Spermatogenic Arrest (SGA) and 

normozoospermic fertile controls. We studied patients with consanguineous parents and 

sporadic azoospermic cases. We have identified more than 22,000 variants/subject in the 

exons and splice sites. Concerning patients with consanguineous parents we adopted the 

recessive model by selecting rare (MAF≤0.01), predicted as pathogenic, homozygous variants in 

genes with a putative role during early spermatogenic stages. This analytic approach allowed 

the identification of 3 candidate genes for male infertility: FANCA, ADAD2 and MRO. The most 

relevant finding concerns the patient who carried the mutation p.Arg880Gln in the FANCA 

gene (a functionally damaging mutation) since it is the first time that Fanconi Anemia (FA) is 

diagnosed following an exome analysis for idiopathic NOA. Interestingly enough, the patient’s 

brother, also affected by NOA, was homozygous carrier of the same mutation. Although the 

two brothers were not aware about having Fanconi anemia, the discovery of this genetic 

anomaly prompted us to perform the chromosome breakage test, through which a mosaic FA 

was diagnosed in both subjects. Therefore, besides diagnosing the cause of NOA, we made an 

important incidental finding of Fanconi Anemia (chromosome instability/cancer-prone 

condition), providing benefit to the siblings’ future health by allowing preventive measures. 

For patients with unrelated parents we applied four models: i) search for hemyzigous rare X-

linked pathogenic mutations (MAF≤0.01); ii) oligogenic inheritance of low-frequency/rare 

mutations in genes with a putative role during early spermatogenic stages; iii) synergistic effect 

of genes containing low-frequency/rare mutations belonging to the same biological pathway; 

iv) combined effect of validated genetic risk factors for NOA (common SNPs). Finally, we also 

performed a high resolution X-chromosome array-CGH in sporadic patients in order to 

complete WES data. The first model allowed us to indentify RBBP7 as a novel X-linked 

candidate gene for early spermatogenic stages. So far RBBP7 has been only proposed as a key 

regulator during oocyte meiosis, but the expression analysis performed in our laboratory in 

different testis biopsies showed that the encoded protein is also overexpressed in the 

spermatogonial cells. Concerning the X-chromosome specific array-CGH we could not identify 

any relevant X-linked CNV. The second model (oligogenic inheritance) allowed the 

identification of three patients with single heterozygous variants and three controls with 

multiple heterozygous mutations. Since no patients presented more than one mutation we 
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exclude the possibility that the azoospermic phenotype is due to digenic/oligogenic 

inheritance. The fact that more than one mutation in these genes has been found in three 

normozoospermic men suggests that it is an unlikely model for NOA. Regarding the third 

model (Synergistic effect of multiple low frequency mutations), the enrichment analysis in 

NOA patients allowed the identification of an overrepresentation of genes belonging to 19 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. After filtering out the pathways 

enriched in the control group, we could define enrichment in the “regulation of actin 

cytoskeleton” pathway as a candidate for impaired spermatogenesis. One patient presented 

multiple mutations in genes forming part of this pathway suggesting a potential pathogenic 

mechanism for the NOA phenotype. Concerning the disease enrichment analysis we identified 

an overrepresentation of genes associated with neoplasms, urogenital neoplasms and Fanconi 

anemia/syndrome in the patient group and not in the control group. Finally, regarding the 

combined effect of validated genetic risk factors (common SNPs) reported in previous GWAS 

we did not observe differences between patients and controls.  

The work presented in this thesis provides further advancement in the understanding of the 

genomic basis of idiopathic NOA. On one hand, our bioinformatic analysis identified 12 AZF-

like regions  along the X-chromosome that are candidates for further large scale screening in 

less severe forms of male infertility. Our WES experiments proved that this approach is able to 

identify novel candidate genes and to provide a genetic diagnosis in patients with 

consanguineous parents (FANCA mutation). We provided a clear example on how WES might 

lead to important incidental findings and thus to diagnose a chromosome instability/cancer-

prone condition with implication on general health and disease prevention. Concerning the 

sporadic cases, WES allowed the identification of a novel X-linked candidate gene for impaired 

spermatogenesis indicating that the X-chromosome remains a highly interesting target. 

Moreover, the enrichment analysis together with the consanguineous case of Fanconi anemia 

is in line with the previously reported epidemiological data showing that infertile men have a 

higher risk of co-morbidity (including cancer) and a lower life expectancy. 
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2. INTRODUCTION 

2.1 MALE INFERTILITY 

2.1.1 Definition and prevalence 

 

WHO has defined Infertility as the inability of a couple to achieve pregnancy after 12-24 

months of unprotected intercourse. Infertility has been deemed to be a global health issue 

because the inability to have children has far-reaching social, relational, and even medical 

consequences in developed and developing countries. 

Although estimating the exact prevalence is difficult around 48.5 million couples worldwide 

were estimated to have primary infertility although WHO surmises that the real number is 

probably 2.5 times higher (Rutstein 2004; WHO 2010). Male infertility is wholly or partly the 

cause of infertility in about 50% of couples (Agarwal et al. 2015; Tournaye et al. 2016). 

Excellent fertility status in a female partner might compensate for reduced fertility of a male 

partner. Alternatively, poor fertility in a male partner could hamper or eliminate conception 

altogether, irrespective of the female partner’s fecundity. Overall, according to the WHO 

(2010) it is estimated that the incidence of this condition is of about 15% in Western countries: 

about one out of seven couples willing to conceive is not able to do so. Since a male factor is 

found in half of involuntarily childless couples, it must be assumed that approximately 7% of all 

men are confronted with fertility problems. 

 

2.1.2 Classification and etiology 

 

Sperm parameters are widely used as a proxy to estimate the potential fertility of men 

reduced sperm number, motility and morphology- or as alterations of the physical-chemical 

characteristics of the seminal fluid. WHO has published a standardized method for assessment 

of human semen that includes the following reference values corresponding to the fifth 

percentile for normal fertility: 

 

- Semen volume 1.5 mL 

- Sperm concentration 15 × 10⁶/mL 

- Total sperm concentration 39 × 10⁶ spermatozoa per ejaculate 
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- Total motility 40% 

- Progressive motility (A+B) 32% 

- Vitality 58% 

- Normal morphology 4% 

 

Concerning sperm count, three possible scenarios are possible:  I) azoospermia that consist in 

the total absence of spermatozoa in the ejaculate; II)  spermatozoa detected only after 

centrifugation (cryptozoospermia); iii)  oligozoospermia which is defined as a reduction of 

sperm concentration below 15 million spermatozoa/ml. Regarding oligozoospermia three 

forms can be distinguished: moderate (sperm concentration is between 15-10 million 

spermatozoa/ml); severe, (sperm concentration <5 million spermatozoa/ml); 

cryptozoospermia, when spermatozoa are detectable only after cytocentrifugation (in these 

cases a concentration of <0.01 million spermatozoa/ml is conventionally indicated). 

When it comes to motility, the reduction <32% of progressively motile spermatozoa in the 

ejaculate defines a disorder called asthenozoospermia. As for morphology, we define the 

condition of teratozoospermia in those cases where the ejaculate presents less than 4% of 

morphologically normal sperm forms. The majority of infertile patients display anomalies in all 

three sperm parameters simultaneously and suffer a condition conventionally defined as oligo-

astheno-teratozoospermia. 

Although the reference values might indicate fertility, they cannot be used to diagnose 

infertility except in extreme cases such as azoospermia, complete asteno or teratozoospermia. 

Up to now, male infertility has traditionally been divided into three wide ranges of congenital 

and acquired factors acting at a pre-testicular, testicular and post-testicular level (Krausz 2011) 

Pre-testicular causes represent 10% of infertile forms and are mainly represented by two 

types of pathological conditions: hypogonadotrophic hypogonadism and coital disorders 

(erectile dysfunction and ejaculatory disorders, such as eiaculatio precox and retrograde 

ejaculation). 

Primary testicular dysfunction is the most common cause of spermatogenic impairment (75% 

of cases) and is related to a number of acquired and congenital etiological factors (testicular 

causes). Anorchia, cryptorchidism (especially bilateral forms) and genetic abnormalities such as 

karyotype anomalies and Y chromosome microdeletions are well-defined congenital testicular 

factors of male infertility. A large number of pathologies may lead to an acquired primary 

testicular failure. Among them are orchitis, testis trauma, torsions, iatrogenic forms 
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(gonadotoxic medications, chemo/radiotherapy, previous inguinal surgery) and some systemic 

diseases. 

Post-testicular causes represent 15% of cases and include both congenital forms of 

obstruction/sub-obstruction of the seminal tract- such as congenital absence of the vas 

deferens (CBAVD) - and acquired forms, which develop from infections/inflammatory diseases 

of accessory glands or to immunological causes. 

Recently, a new clinically based aetiological construct to describe the underlying causes of 

male fertility (genetic, non genetic or presumed genetic) in terms of hypothalamic–pituitary 

axis function, quantitative and qualitative spermatogenesis, and ductal obstruction or 

dysfunction has been published (Tournaye et al. 2016). The important role of genetic factors in 

each etiologic categories is evident:   

 

Hypothalamic–pituitary-testis axis 

- Genetic: congenital hypogonadotropic hypogonadism with anosmia (eg. 

Kallmann’ssyndrome) or normosmia. 

- Non-genetic: CNS malignancy or transphenoidal resection or radiation (ablative); 

haemochromatosis, sarcoidosis, tuberculosis or fungal (infiltrative); secreting and non-

secreting pituitary adenoma (compressive); and exogenous androgen ortestosterone 

use (suppressive). 

Quantitative impairment of spermatogenesis 

- Genetic: Y-chromosomal microdeletions in the AZFa, AZFb, AZFc subregions of the long 

arm AZF region, Klinefelter’s syndrome (47 XXY), 46 XX male syndrome or isodicentric 

Y chromosomes, partial androgen insensitivity syndrome (mild form), chromosomal 

structural anomalies (translocation, inversions), TEX11 mutation. 

- Non-genetic: varicocele (grade 3), previous cytotoxic chemotherapy or radiotherapy, 

previous testicular torsion leading to loss of testis, bilateral mumps orchitis, bilateral 

testis malignancy and orchiectomy, and systemic illness (liver or renal insufficiency). 

- Presumed genetic: idiopathic oligozoospermia or azoospermia and cryptorchidism or 

testicular dysgenesis syndrome. 

Qualitative impairment of spermatogenesis  

- Genetic: globozoospermia, immotile cilia syndrome, stump-tail syndrome, 

macrocephalic sperm head, and advanced paternal age. 

- Non-genetic: Oxidative stress or DNA damage. 
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- Presumed genetic: Phospholipase C ζ deficiency, idiopathic asthenozoospermia, 

idiopathic teratozoospermia, autoimmune. 

Ductal obstruction or dysfunction 

- Genetic: congenital absence of the vas deferens with normal renal anatomy. 

- Non-genetic: previous vasectomy, idiopathic epididymal occlusion, bilateral inguinal 

hernia repair, ejaculatory duct obstruction, diabetes mellitus with vasal peristaltic 

deficiency, spinal cord injury, multiple sclerosis, neural tube defects, retroperitoneal 

lymph node dissection, pelvic surgery, and ejaculatory or erectile dysfunction. 

- Presumed genetic: congenital bilateral absence of the vas with unilateral renal 

agenesis, Young’s syndrome.  

 

 

2.2 GENETICS OF MALE INFERTILITY 

 

Male infertility is a multifactorial complex disease with highly heterogeneous phenotypic 

representation and in about 20% of cases this condition is related to known genetic disorders, 

including both chromosomal and single gene alterations. The etiology remains unknown in 

about 40% of primary testicular failure and a portion of them is likely to be caused by not yet 

identified genetic anomalies. The discovery of new genetic associations with male infertility 

has been hampered by two main factors. First, most studies are underpowered because of 

insufficient sample size and ethnic/phenotypic heterogeneity. Second, most studies evaluated 

single candidate genes, a very inefficient approach in the context of male infertility, 

considering that many hundreds of thousands genes are involved in the process of testicular 

development and spermatogenesis.  

2.2.1 Genetic Diagnosis  

 

With the introduction and worldwide diffusion of assisted reproductive techniques (ART) many 

infertile or subfertile men can now father their own biological children. In this regard, there is 

a potential risk of transmitting genetic defects to the offspring and deserves thoughtful 

consideration. It is therefore of great importance to detect any genetic anomaly before 

proceeding to the application of ART. 
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During the last 30 years, the field of molecular genetics experienced an undeniably progress 

with the delivery of new diagnostic tools that allowed the identification of genetic anomalies 

responsible for spermatogenic impairment. However, known genetic factors collectively 

explain only 20% of all cases of male infertility and despite the advances achieved in the 

diagnostic workup of the infertile male, the etiopathogenesis of testicular failure remains 

undefined in about 40%. 

To date, only a limited set of genetic tests is currently considered as essential in the evaluation 

of the infertile male and include:  

 

- CFTR gene mutation screening is performed in men affected by congenital absence of vas 

deferens (CBAVD). Congenital bilateral absence of the vas deferens is the most common of the 

genetically based conditions that disrupt sperm transport.  If two mutations associated with 

severe disease are inherited, the individual will have pulmonary and pancreatic disease as well 

as clinical cystic fibrosis, but when at least one of the mutations is associated with mild 

disease, pulmonary and pancreatic function might be adequate, with CBAVD being the only 

recognizable phenotypic expression (Tournaye et al. 2016 and references therein) 

 

- Mutation analysis of candidate genes in case of congenital hypogonadotrophic 

hypogonadism:  in the case of central hypogonadism a growing number of candidate genes 

involved in gonadotrophin-releasing hormone receptor migration, development, secretion and 

response can be analyzed (see table 1). 

 

 

 

 

 

 

 

 

 

 

 

Table1: Genes involved in congenital hypogonadotrophic hypogonadism and 
predicted functions (Adatpted from Tournaye et al. 2016) 
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- Androgen Receptor (AR) mutation screening: mutations in the androgen-receptor gene can 

lead to a wide range of phenotypic presentations, including under virilisation in men with 

partial androgen insensitivity syndrome and normal male genitals but impaired sperm 

production in men with mild androgen 

 

The above-mentioned genetic analyses are performed only in selected cases when clear 

evidence of the associated phenotype exists. When it comes to the diagnostic workup of 

oligo/azoospermic men, only two genetic tests are currently performed: the karyotype analysis 

for the identification of chromosomal anomalies and the Y-chromosome microdeletion 

screening (described in paragraph 2.2.3.4).  

There are other promising genes candidate to be tested in the evaluation of the infertile male 

due to they have been demonstrated to be causative of the infertile phenotype and the 

frequency of these mutations is high in a specific group of patients. However due to their 

recently discovery, these genes are not already implemented in the majority of clinics. Two 

examples would be: 

 

- TEX11 screening: single nucleotide, frameshift mutations and partial deletion of the Testis 

Expressed 11 gene have been detected in 15% of infertile patients who received a diagnosis of 

azoospermia with meiotic arrest and in 1-2.4% of azoospermic men with mixed testicular 

atrophy (Yatsenko et al. 2015; Yang et al. 2015). 

  

- DPY19L2 screening: it has been largely demonstrated that DPY19L2 gene deletions and point 

mutations are the major cause of pure globozoospermia which consist in 100% of spermatozoa 

in the ejaculate with round head and no acrosome (Koscinski et al. 2011; Elinati et al. 2012; 

Coutton et al. 2012; Chianese et al. 2015).  

 

2.2.2 Karyotype anomalies 

 

Chromosomal anomalies can affect both number and structure of chromosomes and arise 

mainly during meiosis. Chromosomal aberrations, either numerical or structural in nature, 

have and approximately 0.4% incidence in the general population and may have profund 

effects on male infertility (Harton & Tempest 2012). For instance, patients with <10 million 

spermatozoa/ml in the ejaculate show 10-fold increased incidence (4%) of carrying autosomal 

structural abnormalities compared to the general population. Among severe oligozoospermic 
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men (<5 million spermatozoa/ml), the frequency is doubled to 8%, whereas men with non-

obstructive azoospermia apparently reach the highest values (15–16%) and abnormalities are 

mainly related to the sex chromosomes. 

Chromosomal anomalies can be classified in two main groups: numerical anomalies and 

structural anomalies. 

2.2.2.1 Numerical anomalies 

Klinefelter Syndrome (or 46,XXY) 

Klinefelter Syndrome is a chromosomal condition that affects male physical and cognitive 

development. It represents the most common karyotype anomaly in azoospermia. In fact, it is 

the direct cause of male reproductive failure in 15% of azoospermic men and the frequency is 

one per 600 men (Ghorbel et al. 2012). About 80% of patients bear a 47,XXY karyotype 

whereas the other 20% represented either by 47,XXY/46,XY mosaics or higher grade sex 

chromosomal aneuploidy or structurally abnormal X chromosome (Krausz 2011). 

Regardless the high prevalence in the general population, Klinefelter syndrome is a profoundly 

underdiagnosed condition. In contrast to Down’s syndrome, for example, Klinefelter’s 

syndrome is rarely identified on prenatal ultrasound scans, at birth, or in childhood and most 

affected men even remain undiagnosed in later life. Epidemiological studies have shown that 

only 25% of adult males with Klinefelter syndrome are ever diagnosed, and diagnosis is rarely 

made before the onset of puberty (Bojesen et al. 2003). 

The extra X chromosome induces Spermatogonia Stem Cells (SSC) loss by slowing of self-

renewal and prevention of the onset of the meiotic cascade after puberty, leading to apoptosis 

of SSCs. As a result, in the testes of adults, tubules predominantly consist of Sertoli cells with 

massive fibrosis. Testes mean volume is 3.0 ml ranged from1.0-7.0 ml. In fact, Klinefelter 

syndrome is characterized by hypergonadotropic hypogonadism with highly elevated serum 

concentrations of follicle-stimulating hormone (FSH) and LH and a low Testosterone serum 

concentration affecting male sexual development before birth and during puberty. A shortage 

of testosterone can lead to delayed or incomplete puberty (although normally pubertal 

development is normal), breast enlargement (gynecomastia), reduced facial and body hair, and 

infertility. 

Despite its strong negative impact on male infertility, Klinefelter syndrome might be associated 

with spermatogenically competent tubules that can be surgically harvested to provide sperm 

for in-vitro fertilization (Davis et al. 2015). 
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46,XX male syndrome 

The prevalence of 46,XX male syndrome, also called de la Chapelle syndrome, is one per 

20.000 male neonates. Usually, it is caused by unequal crossing over between X and Y 

chromosomes during meiosis in the father, which results in the X chromosome containing the 

normally-male SRY gene. When this X combines with a normal X from the mother during 

fertilization, the result is an XX male. The embryo will be genetically female but the functional 

SRY will cause testicular differentiation and male phenotype. However, the long arm of the Y 

chromosome, which contains all the AZF subregions, will not be present and, therefore, 

spermatogenesis will not occur. Rarely, SRY is not involved, and gonadal morphogenesis is 

determined by one of the many other genes involved in the cascade (Wu et al. 2014). 

The somatic and spermatogenic phenotypes are notably different from those in Klinefelter’s 

syndrome; however both syndromes share common features such as gynecomastia or 

hypogonadism. 

 

2.2.2.2 Structural anomalies 

Structural aberrations of the autosomes, such as reciprocal translocation, Robertsonian 

translocations and inversions, might hinder spermatogenesis. These aberrations are more 

often seen in oligozoospermic men than in normospermic men, with a frequency of 4–8%, 

which is ten times more frequent than in the general population (Tournaye et al. 2016). The 

diagnosis of structural chromosomal anomalies before assisted reproduction is important 

because they increase the risk of aneuploidy or unbalanced chromosomal complements in the 

fetus and they can be identified by preimplantation genetic diagnosis. 

Carriers of balanced chromosomal translocations, although fenotipically normal in the vast 

majority of the cases, may in fact experiment spontaneous abortions and birth defects in the 

offspring because the normal meiotic segregation in the gametes leads to duplication or 

deletion of the chromosomal  regions involved in the translocation. In the case of 

Robertsonian translocations, there is a consistent risk of uniparental disomies, which generate 

through a mechanism called “trisomy rescue” (repairing the trisomic status) during the first 

division of the zygote. 

 

Reciprocal translocations 

Reciprocal translocations are the most common type of translocation and can involve any of 

the chromosomes. These structural anomalies occur as consequence of the formation of 
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breaks in two non-homologous chromosomes followed by the abnormal repair of the 

chromosomal fragments. The result is the transposition of genetic material from one 

chromosome to the other that can occur with or without loss/gain of genetic material and are 

hence defined as unbalanced and balanced translocations, respectively. Phenotypic effects of 

reciprocal translocation may be related to the deregulation of gene expression both because 

one of the translocation breakpoint can interrupt gene sequence, or via position effects 

(translocation of the gene into a region in which expression is either up or down-regulated). 

Furthermore, in order to pair during meiosis, the translocated chromosome and its non 

translocated homologous are forced to align themselves in a cross shape, forming a structure 

known as a quadrivalent. This phenomenon can affect meiosis in several ways. First, the 

mechanics and time constraints imposed on the formation of such a structure can trouble the 

normal progress of meiosis. Secondly, asynaptic regions are common within the pairing cross 

and can lead to meiosis failure. Moreover, there is evidence that translocated segments of 

chromosomes attempt non-homologous pairing with X and Y chromosomes during meiosis I, 

which interferes with X inactivation, resulting in a lethal gene dosage effect on the germ cells. 

Finally, the interaction of the translocated chromosomes with other parts of the nucleus may 

produce errors in meiosis and cell death. 

 

Robertsonian translocations 

Robertsonian translocations are structural chromosomal aberrations involving the acrocentric 

chromosomes, specifically chromosomes 13, 14, 15, 21 and 22. In this instance, the 

translocation arises as the result of a centromeric fusion of two acrocentric chromosomes. This 

type of translocation can occur between homologous as well as between non-homologous 

chromosomes. Their frequency is 0.1% in the general population, 1.1% in couples with 

recurrent fetal loss and 2-3% in infertile men. The most frequent Robertsonian translocation is 

the one involving chromosomes 13 and 14 [der (13;14) (q10;q10)] which accounts for about 

75% of all Robertsonian translocations (Keymolen et al. 2009). Also in this case, the 

translocated chromosomes are forced to synapse through a pairing cross (trivalent structure) 

with all the above mentioned deleterious effect on meiosis. 

 

Chromosomal inversions 

A chromosomal inversion occurs when a segment of a chromosome is excised, inverted of 

180°, and reintegrated into the same chromosome. These structural anomalies are classified 

into pericentric and paracentric depending on whether the centromeric region is involved or 

not in the inverted segment Chromosomal inversions are found in 0.02% of newborns, with 



15 
 

the exception of Inversions affecting the heterochromatic region of chromosome 1, 9 and 16, 

which are considered as common polymorphisms (frequency >1%). Chromosomal inversions 

may be related to the downregulation of gene expression when the excision site is within the 

regulatory or structural region of a gene. Similarly to chromosomal translocations, inverted 

chromosomes need to form specialized structures called “inversion loops” to enable 

homologous pairing. However the formation of these loops may prevent the normal 

progression of meiosis and induce germ cell apoptosis (Brown et al. 1998). 

 

Y chromosome terminal deletions (Yq-) 

The second most frequent genetic cause of azoospermia is attributed to terminal large 

deletions of the long arm of the Y chromosome including the terminal heterochromatic band 

Yq12 (Yq-), also visible at the karyotype analysis. Such large deletions of the Yq can also result 

from the formation of complex structural abnormalities of the Y chromosome, such as the 

isodicentric (idicYp) and the isochromosome (isoYp) Y chromosome. The idicYp is characterized 

by the duplication of the short arm (Yp) and of the most proximal region of the Yq, including 

the centromere, and shows the deletion of the terminal part of the Yq. The isoYp is a 

monocentric Y chromosome (only one centromere is present) showing two Yp and lacking all 

the Yq content.  

IdicYp and isoYp chromosomes are among the more common genetic causes of severe 

spermatogenic failure in otherwise healthy men. IdicYp or isoYp formation likely interferes 

with sperm production via several distinct mechanisms. First, many idicYp and all isoYp 

chromosomes lack distal Yq genes that play critical roles in spermatogenesis (Skaletsky et al. 

2003). Further, idicYp or isoYp formation leads to the duplication of the Yp pseudoautosomal 

region and deletion of the Yq pseudoautosomal region, which results in the disruption of X-Y 

meiotic pairing and potentially precludes progression through meiosis (Mohandas et al. 1992).  

The presence of two centromeric regions makes idicYp chromosomes mitotically instable. As 

observed in many human dicentric chromosomes, the mitotic stability of idicYp, especially 

those with greater intercentromeric distances, is likely to rely upon the functional inactivation 

of one of the two centromeric regions. However, these chromosomes tend to be lost during 

mitosis leading to the generation of 45,X cell lines (45,X mosaicism). 
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2.2.3 Copy Number Variations (CNVs) 

 

2.2.3.1 Definition of CNVs 

A Copy Number Variations (CNV) is defined as a DNA segment of at least 1Kb in length that is 

present in a variable number of copies in the genome (Fanciulli et al. 2010). They are a class of 

structural variation, which includes also balanced alterations regarding position and 

orientation of genomic segments defined as translocations and inversions, respectively. The 

term CNV is not generally used to indicate variations caused by insertion/deletion of 

transposable elements.  

These unbalanced quantitative variants can be classified into: 

 

• Gains when an increase of genetic material is observed compared to the reference 

genome as a consequence of duplication/amplification or insertion events. The 

amplified DNA fragments can be found adjacent to (tandem duplication) or distant 

from each other and even on different chromosomes.  

• Losses when a reduction or the complete loss of genetic material is observed 

compared to the reference genome as a consequence of deletion events. In the 

present thesis the terms “loss” and “deletion” will be used to indicate the reduction 

and the complete loss (null genotype) of a given DNA sequence compared to the 

reference genome, respectively. 

A CNV can be simple in structure or may involve complex gains or losses of homologous 

sequences at multiple sites in the genome (Figure 1). 
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Figure 1.Different types of CNV. CNVs (in the sample genome) are defined by comparison with 
a reference genome. DNA blocks displaying sequence identity are represented with the same 
color. a) Deletion of two contiguous fragments (deletion); b) Tandem duplication (gain); c) 
Duplication (gain) with insertion of the duplicated sequence far from the origin; d) Multiallelic 
gain produced by multiple duplication event; e) Complex CNVs resulting from inversion, 
duplication and deletion events. Figure adapted from Lee & Scherer (2010). 
 
 
 
Moreover depending on the frequency of the CNV in the general population and depending on 

the type of breakpoints when multiple CNVs overlapped, copy number variations may be 

classified into: 

 

 Copy Number Polymorphism (CNP): CNVs that reached a population frequency 

greater than 1% 

 Recurrent Copy Number Variations (rCNV): when multiple overlapping CNVs present 

identical boundaries (See Figure 2A). 

 Randomly distributed CNVs: when multiple overlapping CNVs present randomly 

distributed boundaries (See Figure 2B) 
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Figure 2. Example of recurrent CNVs and non-recurrent CNVs in a given genomic region. Each 
bar represents a CNV (A) shows recurrent CNVs and (B) shows non-recurrent CNVs with 
identical boundaries flanked by LCR. Figure adapted from Gu et al. (2008). 
 

 

In 2006, a collaboration of international research laboratories built the first comprehensive 

CNV map of the human genome and pointed out some interesting aspects concerning these 

structural variants An examination of 270 DNA samples from the multiethnic population 

employed by the HapMap Project  revealed a total of 1447 discrete CNVs. Taken together, 

these CNVs cover approximately 360 Mb, i.e. 12% of the human genome, with a prevalence of 

small rearrangements (<20 Kb). The HapMap Project notes that CNVs encompass more 

nucleotide content per genome than SNPs, underscoring CNVs' significance to genetic 

diversity. The map of CNVs shows that no region of the genome is exempt, and that the 

percentage of an individual's chromosomes that exhibit CNVs varies anywhere from 6% to 19% 

(Redon et al. 2006). The genomic regions encompassed by these CNVs contain hundreds of 

genes and functional elements and many CNVs reached a population frequency greater than 

1% (Copy Number Polymorphisms). 

These observations, together with the inter-individual variability in gene copy number (Redon 

et al. 2006; Jakobsson et al. 2008), lead to hypothesize the importance of CNVs in the 

evolutionary process and in the adaptation to diverse environmental conditions. Indeed, CNVs 

are an important genetic component of phenotypic diversity (Wong et al. 2007), and represent 

http://www.hapmap.org/
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the primary source of inter-individual variability between genomes (Iafrate et al. 2004; Sebat 

et al. 2004; Redon et al. 2006). 

With the growth of information on CNVs in the human genome, the accurate annotation of 

these structural variations has become progressively important. Several databases are 

currently available for genome-wide investigation of genomic variants, the most important of 

which is the “Database of Genomic Variants” (DGV) (http://dgv.tcag.ca/dgv/app), which 

provides a comprehensive continuously up-dated catalog of the structural variations identified 

the human genome. For each CNV several information are annotated: whether it is a gain or a 

loss, the exact genomic position, the frequency and bibliographic references to trace back to 

the study that produced those data and the technology used to detect the CNV. To date 

(November 2016) a total of 552.586 CNVs deposited by a total of 72 studies have been 

deposited in DGV. 

 

2.2.3.2 Mechanisms of CNV Generation 

The rate of CNV formation is estimated to be several orders of magnitude higher than any 

other type of mutation and the molecular mechanisms by which they generate seems to be 

similar in bacteria, yeast and humans. De novo formation of CNVs can occur in both the 

germline and somatic cells. Bruder et al. (2008) provided evidence for the possible generation 

of CNVs during mitosis (in somatic cells) by reporting that monozygotic twins show different 

CNVs at different loci. These CNVs presumably arose during early stages of embryogenesis. It is 

therefore plausible that some CNVs might originate during embryogenesis even in the case of 

a single pregnancy, generating a “chimerism” for such CNVs within the same individual; this 

phenomenon has been also demonstrated by Piotrowski et al. (2008), who observed the 

presence of CNVs, affecting a single organ or one or more tissues of the same subject. Other 

evidences for the onset of CNVs at the somatic level are the presence of CNV mosaicism in 

tumor tissues (Fridlyand et al. 2006; Darai-Ramqvist et al. 2008) as well as in blood cells of 

healthy subjects (Lam & Jeffreys 2006; Lam & Jeffreys 2007). 

CNVs often occur in regions reported to contain, or be flanked by, large homologous repeats or 

segmental duplications (SDs)(Fredman et al. 2004; Iafrate et al. 2004; Sharp et al. 2005; Tuzun 

et al. 2005). SDs (also referred by some as low copy repeats - LCRs; (Lupski 1998) are DNA 

duplicated fragments with  >1 kb and map either to the same chromosome or to different, 

non-homologous chromosomes with >95-97% sequence identity (Bailey et al. 2002; Lupski & 

Stankiewicz 2005). Segmental duplications could arise by tandem repetition of a DNA segment 

followed by subsequent rearrangements that place the duplicated copies at different 
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chromosomal loci. Alternatively, segmental duplications could arise via a duplicative 

transposition-like process: copying a genomic fragment while transposing it from one location 

to another (Eichler 2001). 

Three major mechanisms, all involved in DNA Double Strand Break (DSB) repair process, are 

thought to account for the majority of genomic rearrengements in humans and represent the 

main molecular mechanisms for the formation of CNVs: Non-Allelic Homologous 

Recombination (NHAR), Non-Homologous End-Joining (NHEJ) and the Fork Stalling and 

Template Switching (FoSTeS). These three mechanisms can be diveided in two major classes: 

 

• Homologous recombination-based pathways including the non-allelic homologous 

recombination mechanism (NAHR); 

• Non-homologous recombination-based pathways including non-homologous end-

joining (NHEJ) and the Fork Stalling and Template Switching (FoSTeS) models. 

 

A relationship between the size of a given CNV and its associated mutational mechanism(s) has 

been hypothesized. It has been shown that larger  CNVs are more frequently associated with 

segmental duplications and thus related to NAHR events,  whereas among the smaller known 

CNVs non-homology- driven mutational mechanisms may be prevalent (Tuzun et al. 2005; 

Conrad et al. 2006) (Figure 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Graph showing the positive correlation between the size of CNVs and the likelihood of 
association with SDs. This correlation is noted by both the Tuzun et al. (2005) and Conrad et al. 
(2006) studies. Figure adapted from Freeman et al. (2006). 
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Non-Allelic Homologous Recombination (NAHR) 

NAHR is driven by the extended sequence homology between two region of the genome 

oriented in the same direction- such as the above mentioned SDs (Shaw & Lupski 2004; 

Stankiewicz & Lupski 2010) where incorrect pairing during meiosis/mitosis or DNA repair 

across homologous regions can result in a gain or loss of intervening sequence.  

Homologous recombination is the basis of several mechanisms of accurate DNA repair, where 

another identical sequence is used to repair a damaged sequence. If a damaged sequence is 

repaired using homologous sequence in the same chromosomal position within the sister 

chromatid or in the homologous chromosome (allelic homologous recombination) no 

structural variation will occur. However, if a crossover forms when the interacting homologies 

are in non-allelic positions on the same chromosome or even on different chromosomes this 

will result in an unequal crossing-over causing the duplication and subsequent deletion of the 

intervening sequence. More specifically, inter-chromosomal and inter-chromatid NAHR 

between LCRs with the same orientation results in reciprocal duplication and deletion, 

whereas intra-chromatid NAHR creates only deletions (Figure 4). 

 

 

Figure 4. NAHR mechanisms. Recombination occurs between two directly oriented SDs 
represented by yellow and blue arrows. Two scenarios are possible: A. Interchromatid or 
interchromosomal NAHR: two non-allelic homologous sequence on sister chromatids or 
chromosomes are involved in recombination leading to a deletion and the reciprocal 
duplication. B. Intrachromatid or intrachromosomal NAHR: recombination between two 
homologous sequences on the same chromatid results in the deletion of the interposed DNA 
segment. Figure adapted from McDonald-McGinn et al. (2015). 
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Theoretically, the frequency of deletions should be always higher than that of duplications. 

However, if deleterious deletions underwent negative selection, duplications would then occur 

at a higher frequency (Turner et al. 2008). Therefore, duplication frequency should not exceed 

deletion frequency, unless negative selection in both germ cells and somatic cells makes 

deleterious deletions very rare or not represented. 

 

Non Homologous End-Joining (NHEJ) 

NHEJ is the major mechanisms used by eukaryotic cells to repair DNA double strand breaks 

(DBS) without involving a template DNA sequence. This non-homologous DNA repair pathway 

has been described in organisms from bacteria to mammals and is routinely used by human 

cells to repair both “physiological” and “pathological” DSBs, such as those caused by ionizing 

radiation or reactive oxygen species. NHEJ proceeds in four steps (Figure 5): detection of DSB; 

molecular bridging of both broken DNA ends; modification of the ends to make them 

compatible and ligatable; and the final ligation step (Weterings & van Gent 2004). Being a non-

homology based mechanism, NHEJ does not require DNA pairing for successful ligation and, 

consequently, unlike NAHR does not depend on the presence of SDs. Evidence exists that NHEJ 

is more prevalent in unstable (or fragile) regions of the genome such as the sub-telomeric 

regions (Nguyen et al. 2006; Kim et al. 2008). Furthermore, many NHEJ events, classified as 

microhomology-mediated end joining, require end resection and join the ends by base pairing 

at microhomology sequences (5–25 nucleotides)(McVey & Lee 2008; Pawelczak & Turchi 

2008). NHEJ leaves a “molecular scar” since the product of repair often contains additional 

nucleotides at the DNA end junction (Lieber 2008). 
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Figure 5 NHEJ brings the ends of the broken DNA molecule together by the formation of a 
synaptic complex, consisting of two DNA ends, two Ku70/80 and two DNA-PKCS molecules. 
Non-compatible DNA ends are processed to form ligatable termini, followed by repair of the 
break by the ligase IV/XRCC4 complex. Figure adapted from Gu et al. (2008).  
 

Fork Stalling and Template Switching (FoSTeS)  

To explain the complexity of non recurrent rearrangement, such as those associated with 

Pelizaeus-Merzbacher pathology and MECP2 gene duplications and triplications associated to 

mental retardation and disturbance of development in male, Lee et al. (2007) proposed the 

replication  Fork Stalling and Template Switching (FoSTeS).  

Study of stress-induced amplification of the lac genes, using the E. coli Lac system by (Cairns & 

Foster 1991; Slack et al. 2006) to propose that template switching was not confined to a single 

replication fork, but could also occur between different replication forks. This model, now 

called fork stalling and template switching (FoSTeS), illustrated in Figure 6, proposes that when 

replication forks stall in cells under stress, the 3’ end of a DNA strand can change templates to 

single-stranded DNA templates in other nearby replication forks. This hypothesis was 

necessary because the mean length of amplicons in that study was about 20kb (Slack et al. 

2006), which is too long to have occurred within a replication fork. According to this model, 

during DNA replication, the DNA replication fork stalls at one position, the lagging strand 

disengages from the original template, transfers and then anneals, by virtue of microhomology 

at the 3' end, to another replication fork in physical proximity (not necessarily adjacent in 
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primary sequence), 'primes', and restarts the DNA synthesis (Lee et al. 2007). The invasion and 

annealing depends on the microhomology between the invaded site and the original site. 

Upon annealing, the transferred strand primes its own template driven extension at the 

transferred fork. This priming results in a 'join point' rather than a breakpoint, signified by a 

transition from one segment of the genome to another – the template-driven juxtaposition of 

genomic sequences. Switching to another fork located downstream (forward invasion) would 

result in a deletion, whereas switching to a fork located upstream (backward invasion) results 

in a duplication.  

 

 

 
 
 
Figure 6 Fork Stalling and Template Switching (FoSTeS) 
× 2 event causing a complex deletion involving two 
fragments. The replication forks from the two 
surrounding sequences are shown in the same color as 
the rectangles. The leading nascent strand at the left 
side (blue or red) fork invades the right side (red or 
green) fork via the demonstrated microhomology, and 
primes its own further synthesis using the right side 
fork as template. This event may happen twice, causing 
deletion of the two fragments flanked by each pair of 
microhomology sites. Dotted lines represent newly 
synthesized DNA. Serial replication fork disengaging 
and lagging strand invasion could occur several times 
(e.g.FoSTeS x 3, etc.). Figure adapted from Gu et al. 
(2008). 
 
 
 
 
 
 
 

2.2.3.3 Functional Consequences of CNVs 

CNVs are widespread feature of the genomes of all healthy human, thus, being mostly neutral 

or having only subtle influence on phenotype. Moreover they play an important role in 

evolution and adaptation to different environments, as major source of genetic inter-individual 

variability (Iafrate et al. 2004; Sebat et al. 2004). Notwithstanding, the gain or loss of DNA 

sequence can also produce a spectrum of functional effects and human disease phenotypes. 

One obvious way by which CNVs might exert their effect is by altering the copy number of 

dosage-sensitive genes and consequently might exert their effect by altering transcriptional 



25 
 

levels (and presumably subsequent translational levels) of the genes that are in variable copy 

number. Another way in which CNVs may have functional effects is by disrupting the gene-

coding sequence: partial gain or loss of coding sequences can produce different alleles, 

including both loss and gain of function. For example, deleted internal exons could result in a 

frameshift and subsequent loss of function through truncation or non-sense mediated decay. 

Chimeric proteins can also be produces when CNV breakpoints lie within two different genes, 

leading to the fusion of two partial coding regions. CNVs in non-coding regions can also lead 

phenotypic effects since they can disrupt the function of genes located even far via the 

deletion or transposition of critical regulatory elements, such as promoters, enhancers and 

silencers or disrupting the function of these, leading to changes in sequence or location with 

respect to a target gene (Hurles et al. 2008). Apparently, the functional effect of a CNV is 

strictly dependent on the exact position of the CNV breakpoint, i.e. the region where a 

fragment was inserted (gain) or lost (loss/deletion). The main consequences through which 

CNVs may act are represented in Figure 7. 

CNV size is scarcely predictive of the phenotypic effect, since a number of apparently benign 

CNVs are of an order of magnitude of 2 Mb, and in some cases can also reach a 10 Mb length 

(Redon et al. 2006; Hansson et al. 2007). Although the functional consequences of a CNV might 

be difficult to predict, many CNVs do generate alleles with a clear-cut impact on health. For 

instance, the development of new high-resolution tools- such as genome-scanning array 

technologies and comparative DNA-sequence analyses- CNVs have been associated with a 

growing number of common complex diseases (Riggs et al. 2014), including human 

immunodeficiency virus (HIV), autoimmune diseases such as Chron disease, psoriasis, systemic 

lupus erythematosus (Aitman et al. 2006; Fanciulli et al. 2007; Willcocks et al. 2008; 

Bassaganyas et al. 2013), a spectrum of neuropsychiatric disorders as autism, schizophrenia 

(Cook & Scherer 2008; Rodriguez-Santiago et al. 2010; Saus et al. 2010) and some type of 

cancer (neuroblastoma, breast and prostate cancer). 
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Figure 7. Impact of CNVs on gene expression. A. Single copy dosage-sensitive gene (reference 
genome): promoter, upstream enhancer element and coding sequence are represented; 
partial and complete deletion affecting coding sequence (B and C); Deletion and duplication 
affecting enhancer (D and E); Complete and partial (not involving enhancer) tandem 
duplication (F and G); Complete tandem inter-chromosome duplication involving a regulatory 
element inhibiting gene expression (H); Partial tandem duplication disrupting coding sequence 
(I); multicopy gene loss (J). 
 
 

Male infertility and CNVs  

As infertility is indeed a complex disease, it has been hypothesized that certain CNVs may 

cause defective recombination (especially those mapping to PAR), leading to meiotic failure 

and the loss of germ cells, or might affect the activity of individual genes important for 

spermatogenesis. To date, the only CNVs proved to be in a clear-cut cause-effect relationship 

with spermatogenic impairment are the AZF microdeletions on the Y chromosome (Vogt et al. 

1996; Krausz et al. 2014). Furthermore, the relationship between CNVs and male infertility was 

also investigated on a larger scale by performing array-CGH (Tuttelmann et al. 2011; Stouffs et 

al. 2012; Krausz et al. 2012; Lopes et al. 2013; Yatsenko et al. 2015) and converge on the 

hypothesis that infertile patients have a significantly higher burden of CNVs in their genome 

compared to normozoospermic controls. 
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2.2.3.4 Y-linked CNVs 

The Y chromosome is a submetacentric chromosome and with its 60 Mb of length is one of the 

smallest chromosomes of the human genome and it is the sole chromosome in our genome 

that it is not essential for survival. The Y chromosome is peculiar in its structure, which can be 

conceptually divided in two genomic regions: i) the male-specific region of the Y (MSY); ii) the 

pseudoautosomal regions (PARs), which correspond to the domain of X–Y homology involved 

in meiotic pairing (Figure 8).  

 

  

Figure 8. Schematic representation of the whole Y chromosome, including the 
pseudoautosomal MSY regions. Heterocromatic segments and the three classes of 
euchromatic sequences (X-transposed, X-degenerate and Ampliconic) are shown. Figure 
adapted from Bachtrog (2013). 
 

 

The MSY region comprises approximately 95% of the chromosome length, lacks a homologous 

region on the other sex chromosome, thus it is genetically isolated from meiotic 

recombination. Within the MSY region both heterochromatic and euchromatic DNA sequences 

can be identified: apart from the 1Mb block of centromeric heterochromatin, the 

heterochromatic block (40 Mb) encompasses the distal part of the Yq; on the other hand 

euchromatic portion covers approximately 23 Mb of the chromosome, including 8 Mb on the 

short arm (Yp) and 14.5 Mb on the long arm (Yq) 

MSY’s euchromatic portion can be divided into three classes, firstly defined by Skaletsky et al. 

(2003): X-transposed sequences, X-degenerate sequences and ampliconic segments. 

Ampliconic segments are large DNA blocks that exhibit marked similarity - as much as 99.9% 

identity over tens or hundreds of kilobases - to other sequences in the MSY. These sequences 

are located in seven segments scattered across the euchromatic long arm and proximal short 

arm of the Y chromosome with a combined extension of 10.2 Mb. Amplicons, which exhibit by 

far the highest density of genes, can be regarded to as SDs, are in turn organized in 

symmetrical arrays of contiguous units named “palindromes” (Figure 9) and act as substrate 

MS
Y 
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for gene conversion and non-allelic homologous recombination (NAHR). The first is a non-

reciprocal transfer of sequence information from one DNA duplex to another (Szostak et al. 

1983), which can occur between duplicated sequences on a single chromosome and in mitosis 

(Jackson & Fink 1981). Gene conversion (non-reciprocal recombination) in the MSY is as 

frequent as crossing over (reciprocal recombination) is in ordinary chromosomes, and occurs 

routinely in 30% of the MSY (Skaletsky et al. 2003). This conversion-based system of gene copy 

“correction” permits the preservation of Y-linked genes from the gradual accumulation of 

deleterious mutations ensuring their continuity over time. As stated above, NAHR is a 

homology-based mechanism of accurate DNA repair, which can also lead to the generation of 

large-scale AZF structural rearrangements such as inversions and CNVs affecting the dosage of 

a number of Y-linked genes. 

 

 

 
Figure 9. Example of organization of the amplicons (coloured arrows) in a symmetrical array of 
continuous repeat units (palindrome P1) 
 

Given the clonal inheritance of MSY, a phylogenetic approach can be used to provide insights 

into the dynamic of Y-linked CNVs formation. (Jobling 2008). This study showed that 

determining the frequency of a given CNV in different Y lineages allows deducing the minimum 

number of independent mutation events accounting for the CNV distribution. As illustrated in 

Figure 10, the dynamics of the Y-linked CNVs can be ascribed to: 

 

 Unique CNVs: these are present in all the members of a given Y haplogroup but absent 

in other lineages (CNV1 in the Fig.10. In this case, the mutation is a unique event that 

has occurred in the ancestral Y chromosome of that specific haplogroup. 

 Recurrent CNVs: distributed among different branches, may arise through several 

independent mutation events reflecting the highly mutagenic nature of the involved 

region (CNV2 and CNV3 in the Figure 10). In the case of recurrent CNVs showing high 

prevalence in Y haplogroups (CNV2), belonging to more than one lineage indicates that 

the mutation has likely occurred in the ancestral Y chromosome of more than one 

b b P1 P1 g g r r 
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lineage; though, in some members of the same haplogroup “reversion” of the 

mutation has occurred. This mainly occurs in cases of CNVs with a high mutation rate. 

Finally, CNVs that occur with very high recurrence can also form as independent 

events in different Y lineages (CNV3). 

 

 

 

 
Figure 10. Phylogenic approach used for the study of the dynamics of Y-linked 
CNV formation. Figure adapted from Jobling (2008). 

 

 

Furthermore, making an estimate of the number of generations encompassed by a sampled 

chromosome during evolution allows inferring the mutation rate of a certain CNV (Hammer & 

Zegura 2002; Repping et al. 2006; Karafet et al. 2008). 

The discovery of Y-CNVs has arisen from several research fields such as forensic and 

population genetic studies and molecular male reproductive genetics. However, a more 

comprehensive picture of Y-CNVs derives from systematic genome-wide CNV surveys (Redon 

et al. 2006; Perry et al. 2008). In addition, whole Y chromosome resequencing data (Levy et al. 

2007) has provided a more objective picture of Y-CNVs. The largest scale study (Redon et al. 

2006) (Redon et aL 2006) performed so far explored 104 distinct Y chromosomes from the 

HapMap sample (n=270), revealing that the AZFc region corresponds to the most variable 

euchromatic portion in terms of CNVs (Figure 11). 
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Figure 11. Representation of the log2 ratio from comparative genomic hybridization to 

BAC clones spanning the Y euchromatin. The most dynamic region corresponds to the AZFc 

region. Figure adapted from Jobling (2008).  

 

 

Y chromosome microdeletions: the AZF deletions 

The first association between azoospermia and microscopically detectable deletions in the 

long arm of the Y chromosome (Yq), was reported by Tiepolo and Zuffardi in 1976 (Tiepolo & 

Zuffardi 1976). The authors proposed the existence of an AZoospermia Factor (AZF) on Yq, 

representing a key genetic determinant for spermatogenesis, since its deletion was associated 

with the lack of spermatozoa in the ejaculate. Due to the structural complexity of the Y 

chromosome, the molecular characterization of the AZF took about 30 years to be achieved. 

With the development of molecular genetic tools and the identification of specific markers on 

the Y chromosome (Sequence Tagged Sites, STSs), it was possible to circumscribe the AZF 

region. Three AZF sub-regions were identified in proximal, middle and distal Yq11 and 

designated AZFa, AZFb and AZFc, respectively. It was later demonstrated that AZFb and AZFc 

overlap, being 1.5 Mb of the distal portion of AZFb interval part of the AZFc region (Figure 12). 

Y microdeletions arise through NAHR and, according to their recombination hot-spot, they can 

be classified as AZFa, P5-proximal P1 (AZFb), P5-distal P1 (AZFbc), P4-distal P1 (AZFbc) and 

b2/b4 (AZFc) deletions. Several candidate genes have been identified in all AZF subregions, but 

these are removed en bloc and, therefore, the roles of the individual genes in spermatogenesis 

remain unclear. 

The AZFa region spans 792 Kb and unlike either AZFb or AZFc, is exclusively constituted by 

single-copy DNA. The complete deletion of AZFa interval results from non-allelic homologous 

recombination between two flanking HERV elements (human endogenous retroviral 

elements), spanning 10 Kb each and displaying an overall 94% of sequence identity. Two 

ubiquitously expressed genes map inside the AZFa region and are thus involved in the deletion: 

USP9Y and DDX3Y. The AZFa deletion is a rather rare event- less than 5% of the reported Y 

microdeletions (Kamp et al. 2001; Krausz & Degl’Innocenti 2006) - and it is invariably 
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associated with azoospermia due to the complete absence of germinal cells in seminiferous 

tubules, a condition known as pure Sertoli Cells Only Syndrome (SCOS) (Kleiman et al. 2012). 

The low prevalence most likely depends on both limitations of the deletion mechanism (it is 

characterized by a relatively short recombination target), and the potential negative selection 

of the deletion due to its deleterious effect on fertility. The corresponding NAHR product, the 

AZFa duplication, is detected at a fourfold higher frequency when compared to that of the 

deletion indicating that increased AZFa gene dosage does not affect fertility (Bosch & Jobling 

2003).  

The AZFb region spans a total of 6.23 Mb and contains three single-copy regions, a DYZ19 

satellite repeat array and 14 ampliconic elements organized in palindromes (from P2 to P5 and 

the proximal part of P1) of which P5/P4 and P1 are the NAHR targets giving rise to the 

complete and partial AZFb deletion, respectively. AZFb deletion carriers are azoospermic with 

testicular histology of maturation arrest at the spermatocyte/spermatid stage. Unlike the AZFa 

deletion, no evidence for reciprocal duplications have been reported for the AZFb deletion, so 

far. 

The AZFc deletion spans 3.5 Mb and results from the NAHR between the flanking b2 and b4 

amplicons. The deletion removes 21 genes and transcriptional units belonging to 8 multicopy 

gene families. These include 3 protein coding gene families (BPY2, CDY and DAZ) specifically 

expressed in the testis. The AZFc deletion, accounting for approximately 60% of all recorded 

AZF deletions (Navarro-Costa et al. 2010), is associated with severe spermatogenic impairment 

phenotype (azoospermia or severe oligozoospermia) related to variable testicular pictures 

ranging from pure and mixed SCOS to hypospermatogenesis and maturation arrest. A 

deterioration of semen quality over time has been suggested for AZFc deleted oligozoospermic 

men based on indirect observations such as the difference in age between carriers with 

azoospermia and oligozoospermia or the increase of FSH concentrations over time in some 

subjects. However, this issue is nowadays still debated. 

Within the AZFc region three different patterns of partial deletions have been identified, the 

gr/gr, b2/b3 and b1/b3 deletions (Repping et al. 2006) but only the gr/gr deletion is of 

potential clinical interest (Rozen et al. 2012). Four meta-analyses are published on this topic 

and all report that the gr/gr deletion confers on average a 2- to 2.5-fold increased risk of 

reduced sperm output/infertility (Tuttelmann et al. 2007; Visser et al. 2009; Navarro-Costa et 

al. 2010; Stouffs et al. 2011), making this deletion a unique example in andrology of a 

confirmed significant genetic risk factor for impaired sperm production. The gr/gr deletion 

removes half of the genetic content (1.6 Mb) of the AZFc region. Eight testis-specific gene and 

transcription unit families are affected by this deletion pattern. In particular, it removes two 
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copies of the DAZ gene and 1 copy of CDY1 gene, which are the two most important AZFc 

candidate infertility genes. 

 

 

 

 

 

Figure 12. AZF deletion patterns. Recombining 
amplicons /palindromes responsible for each AZF 
deletions and genes involved are shown. AZFa is flanked 
by two human endogenous retrovirus (HERV) elements 
that mediate the occurrence of AZFa deletions via non-
allelic homologous recombination. AZFb and AZFb+c 
deletions are caused by P5/proximal P1 yel3/yel1) and 
P5-distal P1 (yel3/yel2) recombination, respectively. 
NAHR between b2 and b4 amplicons lead to AZFc 
deletion. Figure adapted from Krausz et al. (2015).  
 

 

 

 

 

 

The identification of Yq microdeletions, which explain the etiology of the impaired 

spermatogenesis, is not only relevant from a diagnostic standpoint, but it also has a prognostic 

value prior testicular biopsy (TESE) (Brandell et al. 1998; Krausz et al. 2000b). In this regard, in 

case of complete AZFa and AZFb deletions of the Y chromosome testicular biopsy is not 

advised because the chance of finding spermatozoa is virtually zero. The AZFc deletion is 

compatible with the presence of spermatozoa in the testis or in the ejaculate, and is 

obligatorily transmitted to the male offspring. Therefore, genetic counseling for infertile 

couples willing to undertake ART treatment is mandatory. The severity of spermatogenic 

failure in the son may vary considerably, although given the strict cause–effect relationship 

between AZF deletions and impaired spermatogenesis, normal spermatogenesis cannot be 

warranted. When it comes to the exact testicular phenotype, predictions cannot be made 

because of the different genetic background and environmental factors that will have 

impacted on the reproductive functions and fertility potential of the father and his son. 
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2.2.3.5 X-linked CNVs 

Two major characteristics of the X chromosome make it an interesting object of study in male 

infertility: it is enriched in genes potentially involved in spermatogenesis and the lack of 

compensatory allele in case of mutations (further explained in paragraph 2.3.3). 

The search for SNPs or gene mutations of individual/few genes in small cohorts of infertile 

men and fertile or normozoospermic controls did not lead to major advances in the search of X 

chromosome linked causes of male infertility. However, since last decade, thanks to the 

improvements in high throughput approaches such as array-CGH, researchers were 

encouraged to apply such technologies to investigate X chromosome-linked CNVs and their 

role in spermatogenic failure. To date, five groups have employed comparative genomic 

hybridization (CGH) arrays (Tuttelmann et al. 2011; Krausz et al. 2012; Stouffs et al. 2012; 

Lopes et al. 2013; Yatsenko et al. 2015) and four provide information about X-linked CNVs with 

potential clinical relevance in the etiology of male infertility (Tuttelmann et al. 2011; Krausz et 

al. 2012; Lopes et al. 2013; Yatsenko et al. 2015). The analysis performed by array-CGH 

employing a high-resolution (probe distance of 2–4 Kb) X chromosome- specific platform 

(Krausz et al. 2012) allowed the identification of a consistent number of CNVs on the X 

chromosome, the majority of which (75.3%) were novel. From a clinical standpoint, of 

particular interest are patient-enriched (significantly more frequent in patients) and patient-

specific (not found in controls) CNVs, since genes and regulatory elements within or nearby 

these regions presumably have a higher probability of being implicated in spermatogenic 

failure. Although there are some partially overlapping findings regarding the X chromosome-

linked CNVs between the three studies (Tuttelmann et al. 2011; Krausz et al. 2012; Lopes et al. 

2013), differences in the resolution of the arrays may explain the lack of complete overlaps. By 

performing a comparison between the raw data of the three studies we can observe a few 

interesting overlapping CNVs (Krausz et al. 2015). Three patient-specific CNVs – DUP1a, DUP55 

and DUP60 - detected in the study by Krausz et al. (2012) were also found by Tuttelmann et al. 

(2011) in men affected by SCOS. The comparison with data by Lopes et al. (2013) also shows an 

overlap of a recurrent deletion detected in their study at a significantly higher frequency in 

patients compared to controls and two patient-specific CNVs, CNV30 (gain) and CNV31 (loss), 

identified in the Krausz study. When comparing patient-specific CNVs detected in the study by 

Tüttelmann et al. (2011), the loss nssv1496532 overlaps with CNV69, which was found 

significantly more frequent in patients than controls in the Krausz’ study. One gain on Xq22.2 

(Lopes et al. 2013) overlapps with the private duplication nssv1499049 found in an 

oligozoospermic man in Tüttelmann’s study. It is worth noting that this duplication intersects a 

number of genes with specific or exclusive expression in the testis (H2BFWT, H2BFXP and 
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H2BFM). No CNVs were found to be common to all three studies. In the light of these 

comparisons, DUP1a, CNV69 and the nssv1499049 are promising variants, since their potential 

involvement in spermatogenic impairment was reported by more than one study. In fact, the 

two variants DUP1a and CNV69 were objects of  large follow-up studies, together with other 

recurrent deletions, CNV67 and CNV64 ( Lo Giacco et al. 2014; Chianese et al. 2014). The first 

study analyzed three recurrent deletions (frequency >1%) in a large case–control setting 

(n=1255) for their exclusive (CNV67) and prevalent (CNV64 and CNV69) presence in patients. 

For instance, deletion carriers displayed a higher probability of having impaired 

spermatogenesis (OR=1.9 and 2.2 for CNV64 and CNV69 respectively) as well as sperm 

concentration and total motile sperm number was lower in carriers compared to non-carriers 

The most interesting deletion is CNV67 because it is exclusively found in patients with a 

frequency of 1.1% (P<0.01) and is likely to involve the MAGE9A gene – a CTA family member – 

and/or its regulatory elements (Lo Giacco et al. 2014). Similarly, a follow-up study has been 

performed on five selected gains (DUP1A, DUP5, DUP20, DUP26 and DUP40), which include, or 

are in close proximity to, genes with testis-specific expression and potential implication in 

spermatogenesis (Chianese et al. 2014). While four of the five CNVs (DUP5, DUP20, DUP26 and 

DUP40) did not individually reach statistical significance, they remained patient-specific. 

DUP1A, instead, was found exclusively and at a significantly higher frequency in patients. This 

gain fully duplicates a long non-coding RNA (LINC00685) that may potentially acts as a negative 

regulator of a gene with potential role in spermatogenesis. DUP1A could lead to 

spermatogenic failure is a misbalanced ratio of the PPP2R3B and its antisense, causing a 

decrease in PPP2R3B transcription in the developing germ cells (Chianese et al. 2014). This 

data together with the identification of two SCOS patients with a duplication disrupting the 

PPP2R3B gene (Tuttelmann et al. 2011) indicate that CNVs mapping into this region and 

affecting either PPP2R3B or the long non-coding RNA (LINC00685) are good mutational targets 

for future case-control studies.  

However the only proved CNV that has a direct cause-effect in azoospermia due to meiotic 

arrest implies TEX11 gene (Yatsenko et al. 2015). The study population included a total of 289 

patients with different testis histology (63 with SCOS, 33 with meiotic arrest and 193 with 

mixed testicular atrophy) and 384 normozoospermic controls. With the use of an X-

chromosome high-resolution GCH microarray, they firstly analyzed 15 azoospermic men and 

found that a patient with mixed atrophy carried a 91-KB deletion (c.652del237bp) 

encompassing exons 10, 11 and 12 of TEX11. Further Sanger sequencing in the rest of the 

patients allowed detecting that another man with meiotic arrest carried the same deletion 

c.652del237bp, which was confirmed by array-CGH validation; moreover, they found five 
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patients with either meiotic arrest or mixed testicular atrophy carrying missense mutations in 

TEX11. None of the controls carried any of these variants. Finally, the finding of TEX11 

mutations in 2.4% (n=7/289) of patients, of which 15% (n=5/33) suffered from meiotic arrest 

and 1% (n=2/193) had a mixed testicular atrophy, supports the importance of this gene for 

normal spermatogenesis. 

 

 

2.3 THE X CHROMOSOME 

2.3.1 General features and strucuture 

 

The X chromosome is a sub-metacentric chromosome representing many features that are 

unique in the human genome. Accordig to the novel assembly of the human genome reference 

consortium (GRCh38/hg38-December 2013) the total X-chromosome size has been estimated 

to be about 156 Mb. It displays a low (G+C) content (39%) compared with the genome average 

(41%) and it is highly enriched in repetitive sequences. These regions account for 56% of the 

euchromatic X-chromosome sequence and are represented by: 

 

 Short Interspersed Nuclear Elements (SINEs) belonging to the Alu family, the content 

of which in the X chromosome is below the genome average. 

 Long Terminal Repeats (LTRs) the coverage of which is above average. 

 Long Interspersed Nuclear Elements (LINEs) of the L1 family, which are the most 

represented class of repetitive elements of the X chromosome, accounting for 29% of 

the chromosome sequence compared to a genome average of only 17% (Ross et al. 

2005). 

 Ampliconic sequences (segmental duplications of >10 Kb sharing > 99% nucleotide 

identity) represent approximately 2% (3.15 Mb) of the chromosome length (Mueller et 

al. 2013).  

 

The cross-species alignment of orthologous X-linked genes allowed defining two evolutionary 

domains that are characteristic of the X chromosome: 
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 The X-conserved region (XCR), an ancestral region including all the long arm and PAR1, 

which would descend from the proto-X chromosome, one of two ‘proto’ sex 

chromosomes evolved from the ancestral autosome pair according to the Ohno’s 

theory (Ohno 1967). All mammals share this evolutionary domain (placental and not). 

 X-added region (XAR) including the short arm and the PAR2, which established on X 

chromosome by translocation from a second autosome. This region is exclusively 

present in placental mammals.  

 

The X chromosome has a low gene density, with half as many genes per Mb on the X 

chromosome (7.1 genes per Mb) as on the average human autosomes (Ross et al. 2005). The 

unusually low  gene density is probably due to of the massive expansion of non-coding 

intergenic sequences that during evolution have been interposing between genes (Bellott et al. 

2010). 

 

2.3.2 X-linked genes 

 

A total of 841 X-linked protein conding genes have been hitherto annotated in the genomic 

databases (www.ensembl.org/biomart). Among them about 17% (144/841) violates the so-

called Ohno’s law stating that the gene content of X chromosomes is conserved among 

placental mammals,  since they do not show orthologs in mouse and other species. The 

majority of them (76/144; 52.7%) were acquired independently on the X chromosome since 

the two lineages began to diverge from a common ancestor 80 million years ago; such 

independent acquisition apparently occurred through transposition or retroposition from 

autosomes, or having arisen de novo. Among the independently acquired X-linked genes, 

approximately two-thirds (48/76) are ampliconic (i.e. embedded in duplicated segments of >10 

kb in length and exhibiting >99% nucleotide identity), whereas the remaining are multicopy 

(only the gene structure is duplicated) or single copy genes. Interestingly, ampliconic genes are 

predicted to have a function in male fitness. Overall, only 31% of the human X-ampliconic 

genes had orthologs in the other species (Mueller et al. 2013). 

It has also been reported that most independently acquired human and mouse X-linked genes 

exhibit high expression in the testis and little or no expression in other tissues. In mice, this 

prevalent testis expression is related to the male germ cell-restricted expression of these 

genes regardless of whether they are single, multi-copy or ampliconic (Mueller et al. 2013). 

These novel findings are in line with previous genomic studies reporting an enrichment on the 

http://www.ensembl.org/biomart


37 
 

mammalian X chromosomes, compared to the autosomes, for male-specific single and multi-

copy genes showing testis-restricted or predominant expression (Wang et al. 2001; Lercher et 

al. 2003; Mueller et al. 2009; Zheng et al. 2010). Given that the independently acquired genes 

are expressed predominantly in spermatogenic cells, one might anticipate that loss-of-function 

mutations affecting these genes or gene families would perturb male gametogenesis. 

Based on the reported X chromosome enrichment for single copy genes expressed during the 

early stages of murine spermatogenesis, it was originally suggested that mainly pre-meiotic 

genes were located on the X chromosome (Wang et al. 2001). Accordingly, X chromosome is 

transcriptionally active only in mitotically dividing spermatogonia and in the early meiotic (pre-

pachytene) spermatocytes. During meiosis X-linked genes undergo the so-called meiotic sex 

chromosome inactivation (MSCI) and thus are transcriptionally silenced (Zheng et al. 2010). 

However, evidence shows that many microRNAs are expressed also at the pachytene stage, 

when MSCI occurs, suggesting that a transcriptional activity co-exists also during and after 

meiosis (Song et al. 2009). The escape from MSCI silencing by X-linked mRNA suggests that 

they may contribute to MSCI or be involved in post-transcriptional regulation of autosomal 

mRNA during meiotic and post-meiotic stages of spermatogenesis. In addition, a post-meiotic 

transcription reactivation has been reported for several multi-copy mouse X-linked gene 

families (Wang et al. 2005; Mueller et al. 2008) showing higher expression levels compared to 

single copy genes (Figure 13). It was therefore hypothesized that increasing copy number may 

be a mechanism to counteract transcriptional repression of the X chromosome in post-meiotic 

germ cells. 
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Figure 13. Multi-copy genes evade the effects of X chromosome post-meiotic repression in the 
mouse. Single-copy and multi-copy X-linked genes exhibit similar average levels of expression 
during pre-meiotic spermatogenesis. All X-linked genes are subsequently silenced during MSCI. 
Following MSCI, single-copy X-linked genes exhibit low reactivation levels whereas multi-copy 
X-linked genes exhibit expression levels similar to autosomal genes, thus evading the effects of 
post-meiotic repression. Figure adapted from Mueller et al. (2008)  
 

 

The most represented X-linked testis specific gene families are the Cancer Testis Antigens 

(CTA) genes which have been suggested to account for 10% of human X-chromosome gene 

content (Ross et al. 2005). CTA genes are defined by a unique expression pattern: amongst 

normal tissues, they are expressed exclusively or predominantly in male germ cells and in 

embryonic trophoblasts, but their gene products are also found in a significant number of 

human tumors of different histological origin. At least 70 families of CT genes with over 140 

members have been identified so far and recently listed in a database established by the 

Ludwing Institute for Cancer Research (http:// www.cta.Incc.br/) (Almeida et al. 2009). The X-

linked CTA genes (X-CTA) represent more than half of all CTA genes and often constitute multi-

copy gene families organized in well-defined clusters along the X chromosome, where the 

different members are arranged into complex direct and inverted repeats (segmental 

duplications) (Fratta et al. 2011). This feature account for the susceptibility of CTA genes to 

CNVs even though their multi-copy gene status may be a strategy to increase the chance to 

escape MSCI during meiosis, as observed for mouse X-linked multi-copy genes.  

The MAGE (Melanoma antingen) and GAGE (G antigen) are the largest and best-known X-CTA 

gene families containing at least 24 and 16 members, respectively (Stouffs et al. 2009). The 

biological function of most X-CTA genes is still largely unknown. However, evidence is 
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emerging that the best studied of these, the MAGE genes, can act as signal transducing 

transcriptional modulators. Moreover, MAGE genes appear to be able to mediate proliferative 

signals (Park & Lee 2002; Duan et al. 2003; Glynn et al. 2004). In normal testis, X-CTA genes are 

expressed primarily in the spermatogonia. According to the so-called Rice’s theory, such 

enrichment of male-specific genes on the X chromosome would be related to the 

accumulation of recessive alleles/genes with beneficial effect for men (“masculinization” of the 

X chromosome). Indeed, recessive alleles that are beneficial to males will expectedly become 

fixed more rapidly on the X chromosome than on an autosome (Hurst 2001) and if these alleles 

were detrimental to females, their expression could become restricted to male tissues.  

 

2.3.3 The importance of the X chromosome in male infertility 

 

Being the “male“ chromosome, the Y chromosome has been for decades the main focus of 

most of the research related to the genetics of male infertility. However, the constant 

discoveries that throughout time allowed the fine characterization of the sequence and gene 

content of the X chromosome encouraged researchers to expand their investigation to this 

chromosome as well. 

As state above two major characteristics of the X chromosome make it an attractive object of 

study in male infertility. First, this chromosome is enriched in genes specifically expressed in 

the testis, thus potentially involved in spermatogenesis. Second, with the exception of PAR-

linked genes, men are hemizygous for most of the genes located on this chromosome and any 

de novo mutation might have an immediate impact, since no compensation is exerted by 

another normal allele. Considering that deleterious mutations in crucial spermatogenesis 

genes cannot be transmitted to future generations, it is highly probable that they arise de novo 

and at a low frequency. For this reason, also private mutations - found only in one infertile 

patient- might be associated to infertility. Furthermore, considering the low prevalence of 

single gene mutations in candidate spermatogenesis genes, it is currently postulated that 

infertility should be regarded as a polygenic disease (Cram et al. 2004). In this view, the 

classical candidate gene approach, focusing on single genes of interest, is a definitely 

inefficient strategy as shown by the paucity of mutations hitherto identified in the eight X-

linked candidate genes studied so far (AR, SOX3, USP26, NXF2, TAF7L, FATE, AKAP and TEX11); 

and potentially causative mutations have been reported only in the AR and TEX11 genes. 

Conversely, high-throughput technologies such as microarrays, including SNP arrays and a-

CGH, and next-generation sequencing (NGS) provide the coverage necessary to identify new 
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genetic associations and allows the simultaneous screening of a large number of carefully 

phenotyped samples, which is a very important requirement for the successful identification of 

novel genetic associations with male infertility. 

 

 

2.4 DISCOVERY OF NOVEL CANDIDATE GENES IN THE ERA 

OF GENOMICS 

2.4.1 Tools for genomic studies 

 

Improvements in technology and the progressive lowering of the costs to perform large-scale 

omic studies has lead to important advancements in biological knowledge, including an 

improved understanding of numerous complex diseases (Carrell et al. 2016). The challenge to 

characterize the genetic basis for male infertility is largely a function of the complexity of the 

process of spermatogenesis, which requires the concerted action of many hundreds to several 

thousand genes. (Aston 2014). The available genomic tools have allowed the identification of 

several candidate genes involved in spermatogenesis. These tools can be classified into two 

main categories: i) microarray-based approaches ii) sequencing-based approach. 

 

2.4.1.1 Microarray-based approaches 

Microarray-based approaches are designed to evaluate a subset of variants in the genome 

with resolution and coverage depending on the array design and the number of probes on the 

array (from several thousand to more than one million sets of probes) designed to be 

complementary to the DNA of interest. The probe sets are arranged in a matrix configuration 

so that each point on a microarray slide corresponds to one small region of the genome. There 

are two principal types of DNA microarrays: i) SNP arrays ii) comparative genomic hybridization 

(CGH) arrays.  

 

SNP arrays. 

SNP arrays are based on a single labeled test sample which is applied to the microarray. Two 

sets of probes for each locus hybridize preferentially with one SNP allele or the other, so based 

on hybridization patterns genotype can be assessed for each sample. In addition to the 

nucleotide sequence, with proper data normalization the intensity of hybridization can be used 
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to determine relative copy number of each locus across the genome. Likewise, the 

identification of long homozygous stretches coupled with intensity data can be useful in 

inferring single allele deletions or regions with Loss of heterozygosis (LOH) (Aston & Conrad 

2013) (Figure 14). Nowadays, the majority of SNP arrays contain a mixture of two probe types: 

traditional SNP probe sets and “copy number” probes, non redundant probes tiled in regions 

of known CNVs and in areas of low SNP coverage to give better sensitivity to copy number 

changes. 

A classic application of SNP arrays are Genome Wide Association Studies (GWAS) that are 

based on the examination of a set of genetic variants (SNPs) in different individuals to see if 

any variant is associated with a trait.  These studies represent a promising way to study 

complex, common diseases in which many genetic variations contribute to a person’s risk and 

have been successful in order to unravel pathways important for a certain biological process 

(Visscher et al. 2012). 

Their primary limitations are that they typically interrogate only a small fraction of the 

genome, and they are usually designed to identify variants that occur at relatively high 

frequencies (>1%) in the population. Due to the importance of rare variants in complex 

diseases, microarray manufacturers have started to include rare, non-synonymous coding 

variant in some of their SNP arrays (Aston & Conrad 2013). 

 

Figure 14. General scheme of SNP arrays. Figure adatped from Karampetsou et al. (2014). 
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Comparative genomic hybridization (CGH) arrays.  

As the name implies, CGH arrays are used to compare two genomes (Oostlander et al. 2004). 

This is accomplished by competitively hybridizing to an array, a reference genome labeled with 

one fluorophore along with a test genome labeled with another fluorophore (Figure 15). Array-

CGHs are useful for determining differences in copy number based on the intensity of 

hybridization of the test sample compared with the control at a given locus. While CGH arrays 

are well suited for the assessment of CNVs, they do not provide SNP genotype information. 

 

Figure 15. General scheme of Comparative Genomic Hybridisation (CGH) arrays. Figure 
adapted from Karampetsou et al. (2014). 
 
 

2.4.1.2 Sequencing-based approach 

Next-generation-sequencing-based approaches 

Next-generation sequencing (NGS), also known as high-throughput sequencing, is a recent 

technology that allow us to sequence larger amounts of DNA and RNA with shorter sequencing 

times and reduced costs in respect to the classical Sanger sequencing. NGS has revolutionized 

the study of genomics and molecular biology. However, data generated results in increased 

analysis complexity and the value of whole genome data is limited since a significant portion of 

the genome has unknown function.  

There are a number of different NGS platforms using different sequencing technologies like 

Illumina, Roche, Ion Torrent and SOLiD sequencing. Illumina (Solexa) sequencing is the most 

widely used platform. In this sequencing platform, 100-150bp reads are employed. Fragments 
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are ligated to generic adaptors and annealed to a slide using the adaptors. Then PCR is carried 

out to amplify each read, creating a spot with many copies of the same read. Finally, they are 

separated into single strands to be sequenced. 

Strategies to enrich DNA for specific regions of interest, for instance the application of whole-

exome sequencing (WES), which provides information on less than 2% of the human genome, 

but contains the majority of  known disease causing variants, allowed identifying an 

exponentially growing number of complex diseases-associated genes in several fields of 

medicine (de Ligt et al. 2012; Haack et al. 2012; Chen et al. 2011; Soong et al. 2013). Another 

strategy is based on targeted gene sequencing panels which provides information on the DNA 

sequence of a limited number of candidate genes or gene regions that have known or 

suspected associations with the disease or phenotype under study. This strategy delivers 

accurate and easy-to-interpret results and is useful to identify (novel) genetic causes in 

complex diseases (Li et al. 2015; Quaynor et al. 2016). 

 

2.4.2 Application of genomic tools in the study of male infertility 

 

2.4.2.1 SNP based microarray and Genome Wide Association Studies (GWAS) 

In 2007, SNP array analysis in three globozoospermic brothers from a consanguineous family 

allowed the identification of a loss of heterozygosity corresponding to a 17-Mb region 

common to all three men (Dam et al. 2007). The causal mutation was identified in the gene 

SPATA16 within this homozygous region. More recently, two other groups utilized SNP arrays 

to evaluate cohorts of globozoospermic men, and both studies identified a 200-kb 

homozygous deletion that included the DPY19L2 gene in many men with complete 

globozoospermia (Harbuz et al. 2011; Koscinski et al. 2011). Further studies by conventional 

PCR, MLPA and qPCR corroborated that deletion of DPY19L2 are the major cause of 

globozoospermia ((Elinati et al. 2012; Coutton et al. 2012; Chianese et al. 2015). 

Concerning to Genome Wide Association Studies, five GWAS based on SNP-arrays are available 

in the literature and are summarized in Table 2  (Aston & Carrell 2009; Hu et al. 2011; Kosova 

et al. 2012; Zhao et al. 2012; Ni et al. 2015). The first study by Aston & Carrell (2009) analyzed 

370 000 SNPs in 92 oligozoospermic and nonobstructive azoospermic (NOA) patients and 80 

healthy controls and found 21 SNPs associated with azoospermia or oligozoospermia. Due to 

the prohibitively high cost of the array studies in 2009, the study population size was clearly 

underpowered and the associations reported did not reach genome-wide significance. This 

pioneer work was followed by two large, properly powered Chinese GWAS, which reported a 
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number of SNPs with stringent P-value <1x108. Hu et al. (2011) analyzed 2927 individuals with 

NOA and 5734 controls from Han Chinese population and found a few SNPs predisposing to 

NOA in PRMT6, PEX10 and SOX5genes. The second study analyzed 2226 NOA patients and 

4576 controls in the same population and reported significant associations with SNPs mapping 

to two regions: HLA-DRA and C6orf10/BTNL2 (Zhao et al. 2012). Despite meeting requirements 

for genome-wide significant results, no overlapping SNPs were observed between these two 

large studies. Finally, in the same year (Kosova et al. 2012) analyzed 269 Hutterite men and 

123 men from Chicago with diverse ethnic background, and described nine SNPs associated 

with reduced fertility or impaired sperm parameters, but in this case also no SNPs overlapping 

with the previous GWAS reported.  

 

 

 Table 2. Summary of GWAS results. SNPs and related genes described as significantly 
associated in GWA Stu dies. Table adapted from Krausz et al. 2015 
 

Subsequently, SNPs reported as significantly associated or with borderline P-values in the 

above GWAS were analyzed in independent study populations with poor success. The majority 

of candidate SNPs were not confirmed by the replication studies, and the few SNPs that show 

association either confer a moderate risk for impaired sperm production or loose significance 

after Bonferroni correction. Only HLA-DRA gene-related SNPs turned out to be the most 

promising, since highly significant association with NOA was found in the GWAS of Zhao et al. 

(2012) and in four independent case-control studies in Chinese and Japanese populations 

(Tsujimura et al. 2002; Jinam et al. 2013; Hu et al. 2014; Tu et al. 2015). However there is no 

data about HLA-DRA SNP association in NOA Caucasian patients. 
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Finally due to the importance of rare variants in complex disease, Ni et al. (2015)  performed a 

three stage exome SNP-array, which also included rare variants, in 962 NOA Chinese cases and 

1348 controls. They identified three low-frequency NOA susceptibility loci in HIST1H1E, 

FKBPL and MSH5 genes all of them located in chromosome 6p22.2–6p21.33. 

Although a great expectation was given to genome-wide SNP arrays, based on the analysis of 

common variants no overlapping SNPs have been identified between different studies. 

Cumulatively, these studies indicate that common genomic variants do not contribute 

appreciably to male infertility and that future studies should evaluate rare variants on a 

genome-wide scale. Common SNPs with significant but low effect size may eventually lead to 

impaired spermatogenic efficiency if they are present contemporarily in the same individual 

(Aston et al. 2010; Kosova et al. 2012).  

 

2.4.2.2 Comparative Genomic Hybridization (CGH) arrays. 

As infertility is indeed a complex disease, it has been hypothesized that certain CNVs may 

cause defective recombination (especially those mapping to PAR), leading to meiotic failure 

and the loss of germ cells, or might affect the activity of individual genes important for 

spermatogenesis. To date, the only CNVs proved to be in a clear-cut cause-effect relationship 

with spermatogenic impairment are the AZF microdeletions on the Y chromosome (Vogt et al. 

1996; Krausz et al. 2014). 

The relationship between CNVs and male infertility has been investigated on a larger scale by 

performing array-CGH on the whole genome (Tuttelmann et al. 2011; Stouffs et al. 2012; Lopes 

et al. 2013). The three studies that compared the CNV load between patients and controls all 

converged on a significantly higher burden of CNVs in men with spermatogenic disturbances 

(Tuttelmann et al. 2011; Krausz et al. 2012; Lopes et al. 2013). These conclusions are supported 

at the whole genome level, but the CNV burden is especially pronounced on the sex 

chromosomes (Tuttelmann et al. 2011; Lopes et al. 2013).  

Stouffs et al. (2012) performing an array-CGH in infertile patients reported eight autosomal 

rearrangements (involving chromosomes 1, 2, 3, 5, 12, 15, 16, 17) potentially linked to fertility 

problems, as they were not detected in normozoospermic controls. Tuttelmann et al. (2011) 

reported recurrent and patient-specific autosomal CNVs potentially associated with 

oligozoospermia (n=11) and with SCOS (n=4), also reporting a list of genes intersecting the 

CNVs and with potential involvement in the spermatogenic phenotype. Finally, after assaying 

genome-wide SNPs and CNVs, (Lopes et al. 2013) estimated that rare autosomal deletions 

multiplicatively change a man’s risk of disease by 10% (OR 1.10 (1.04–1.16), P<2x10-3). The 
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same authors observed five deletions (ranging in size from 54 kb to over 2 Mb) of the 

autosomal DMRT1gene in four cases of azoospermia and one in normozoospermia. Despite 

the normozoospermic deletion carrier, statistical analysis based on the comparison of all 

patients versus 7000 controls lead to a significant association with impaired sperm production. 

Given the low frequency of this mutation and the wide range of associated phenotype, it 

remains difficult to include the testing for DMRT1-linked CNVs in the routine diagnostic 

workup. The comparison between the three studies shows some overlapping findings. When 

comparing the CNVs detected by Stouffs et al. (2012) with the raw data deposited in dbVar by 

Tuttelmann et al. (2011), five overlapping loci can be observed on chromosomes 1, 5, 15, 16 

and 17, but only those related to chromosome 1 and 16 results are patient-specific in both 

studies. The first locus on chromosome 1 shares a 46 kb-span overlap with the gain 

nssv1495850 reported in an oligozoospermic man in Tüttelmann’s study. The other locus on 

chromosome 16 overlaps with both gains and losses from Tüttelmann’s study; interestingly, 

gains are found in both patients and controls, whereas the reciprocal losses were exclusively 

detected in OAT patients. When comparing the Lopes’ and the Tüttelmann’s study, one 

overlap is reported on chromosome 8: at this locus, Tüttelmann et al. identified a deletion in 

an azoospermic man and another with a duplication, intersecting the PLEC1 and MIR661 

genes, whereas Lopes et al. identified a duplication in an oligozoospermic man affecting the 

same genes. No CNVs were observed to be common to all three studies. Further detailed data 

of X-linked CNVs related to male infertility are described in the previous section entitled X-

linked CNVs. 

 

2.4.2.3 Next Generation Sequencing- Whole Exome Sequencing: 

It has been predicted that more than 2000 genes (housekeeping and specific germ cell genes) 

are involved in spermatogenesis (Hochstenbach & Hackstein 2000) and mutation in these 

genes may act directly or through gene-environmental interaction. 

The next generation sequencing (NGS) approach, also known as High throughput sequencing, 

has proved to be a powerful tool for the detection of novel disease-causing genetic factors and 

will help to elucidate the genetic causes of male infertility. Especially exome sequencing which 

has proved to be successful in cases of spermatogenic failure primarily for descendants of 

consanguineous families and familial cases of infertility (Ayhan et al. 2014; Ramasamy et al. 

2015; Okutman et al. 2015), for which causative recessive mutations were identified.  

The first study from Ayhan et al. (2014) investigated two unrelated consanguineous families 

with idiopathic azoospermia. In the first family, there were three azoospermic brothers and 
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one oligozoospermic brother; and in the second family, there were three azoospermic 

brothers. The study allowed the identification of two homozygous truncating mutations 

p.R611* in TAF4B in the first family and p.K507Sfs*3 in ZMYND15 in the second family. These 

genes are known to have a role during mice spermatogenesis however this was the first study 

reporting data about them in human male infertility. 

The second study performed by Okutman et al. (2015) identified a nonsense mutation leading 

to a premature stop in the TEX15 locus (c.2130T>G, p.Y710*) in a consanguineous Turkish 

family comprising eight siblings in which three brothers were identified as infertile. The 

truncating mutation co-segregated with the infertility phenotype, and this data strongly 

suggested that it was the cause of spermatogenic defects in this family. 

Finally, Ramasamy et al. (2015) identified a novel non-synonymous homozygous mutation 

(chr2: 101592000 C>G) in NPAS2 gene in two siblings from consanguineous parents. Family 

segregation of the variants showed the presence of homozygous mutation in the three 

brothers with NOA and heterozygous mutation in mother, one brother and one sister who 

were both fertile suggesting a role in male infertility. 

Concerning sporadic oligo/azoospermia, the situation is more complex. On one hand, there is a 

possibility that rare or de novo large-effect mutations are involved in these pathological 

conditions; in this regard, the X chromosome represents one of the most interesting targets for 

both its enrichment in genes involved in spermatogenesis and its hemizygous state in males, 

which implies a direct effect of a damaging mutation. On the other hand, an alternative 

pathogenic mechanism can be related to a synergistic effect of multiple heterozygous 

mutations in genes involved in the same biological pathway. On this subject, in 2015 Li et al. 

performed the first NGS-based, candidate gene panel study in a Chinese case-control setting 

including 757 NOA unrelated patients and 709 fertile males. Using the HiSDefault 2000 

platform, they sequenced a total of 650 infertility-related genes and described a significant 

excess of rare, non-silent variants in genes that are key epigenetic regulators during 

spermatogenesis such as BRWD1, DNMT1, DNMT3B, RNf17, UBR2, USP1 and USP26 (Li et al. 

2015). The authors do not provide detailed information about the exact genotype of the 

variants, but apparently most of the non-silent variants in these genes in the sporadic NOA 

patients were heterozygous for this reason functional analyses are still needed in order to 

support this hypothesis.  

Overall, major advancements in the identification of genetic factors involved in sporadic cases 

of idiopathic NOA is expected thanks to High throughput sequencing combined with a 

multidisciplinary approach based on systems biology.   
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3. AIMS OF THE THESIS 

 

 

The global aim of the present thesis was to enhance our understanding on genetic factors 

involved in idiopathic non-obstructive azoospermia (NOA)  

The first part of the thesis focuses on the search of X-linked “AZF-like” regions by performing: 

 

1. A multi-step bioinformatic search in order to identify X-linked regions with the following 

characteristics: recurrent Copy Number Variations (rCNVs) flanked by Segmental 

Duplications (SDs), containing protein coding genes and presenting an inverted ratio of 

deletions/duplications. 

 

2. A screening for the selected deletions in sporadic Idiopathic NOA patients in order to 

define their potential diagnostic value in male infertility. 

 

The second part of the thesis focuses on the analysis of all protein coding genes combined with 

the analysis of X-linked CNVs in idiopathic NOA patients (with consanguineous parents and 

sporadic cases) and normozoospermic fertile controls. The specific aims of this part are: 

 

1. To define the diagnostic value of the Whole Exome Sequencing (WES) combined with 

the high-resolution X-chromosome specific array-CGH through different models: 

- Recessive inheritance (consanguineous cases) 

- Hemyzigous X-linked transmission  

- Oligogenic inheritance 

- Synergistic heterozygosity 

- Combined effect of multiple genetic risk factor (common SNPs) 

 

2. To indentify novel candidate genes for idiopathic NOA. 

 

3. To elucidate to what extent normal spermatogenesis can tolerate potentially 

damaging variants in genes involved in early phases of spermatogenesis. 
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4. RESULTS 

 

The results of this thesis were divided according to the aforementioned objectives:  

 

First objective: in order to identify X-linked “AZF-like” regions a multi-step bioinformatic 

analysis was performed.  We used Table Browser tool from the University of California Santa 

Carolina Genome Browser (UCSC) (https://genome.ucsc.edu/cgi-bin/hgTables) and Galaxy 

(https://usegalaxy.org/) in order to obtain all X-linked CNVs. According to these tools, there 

are a total of 93.171 X-linked CNVs; among them 74.567 corresponding to deletions and 

18.604 to duplications. 54.116 out of 93.171 CNVs belongs to single sample variants (“nssv-” 

and “essv-”) with more than 1 Kb length. Grouping the 54.116 CNVs presenting the same 

breakpoints we obtained a total of 8.800 regions and among them, 2.227 regions contain 

recurrent CNVs (more than one CNV with the same boundaries). Finally, in order to obtain 

those regions that might be under negative selection, we filtered  for the ratio of  three times 

more duplications than deletions in a given region, similar to that observed for another CNV 

observed in male infertility (involving DPY19L2 gene) . After the above filtering we obtained a 

total of 429 CNVs which were crossed with the. 1.051 X-linked Segmental Duplications (SDs) 

obtaining a total of 168 CNVs that were probably generated by SD-NAHR. Further analysis 

using UCSC Genome Browser allowed us to group these 168 regions in 30 clusters according to 

their location on the X chromosome. After the exclusion of deletions reported in previous 

studies in normozoospermic controls and selecting for CNVs containing protein coding genes 

we identified 11 clusters with 12 CNVs. The second part of this study consisted in the screening 

of these CNVs in 82 idiopathic NOA patients. The analysis revealed a single deletion in a patient 

affected by pure spermatocytic arrest removing part of the members of the Opsin gene family 

and possibly affecting the expression of the testis specific gene (TEX28). qPCR analysis revealed 

that Opsin gene family is not expressed in germ cells and analysis of the carrier’s testis biopsy 

did not reveal any impairment of TEX28 expression. Therefore, no cause effect between 

deletions and the testis phenotype can be established. 

 

Second objective: this part of the thesis has focused on elucidating the genetic causes of 

idiopathic NOA through Whole Exome Sequencing (WES) combined with High-resolution X-

chromosome specific array-CGH.  A total of 9 idiopathic NOA patients (4 from consanguineous 

parents and 5 sporadic NOA cases) and 9 proven fertile normozoospermic controls were 

https://genome.ucsc.edu/cgi-bin/hgTables
https://usegalaxy.org/
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studied. Overall we have identified more than 22,000 variants/patient in the exons and splice 

sites.  

Concerning patients with consanguineous parents we adopted the recessive model by selecting 

genes with rare (MAF≤0.01), predicted as pathogenic, homozygous variants, with a putative 

role during early spermatogenic stages. This analytic approach allowed the identification of 3 

candidate genes for male infertility: FANCA, ADAD2 and MRO. The most relevant finding 

concerns the patient who carried the mutation p.Arg880Gln in the FANCA gene (a functionally 

damaging mutation) since it is the first time that Fanconi Anemia (a cancer-prone disease) is 

diagnosed  following an exome analysis for idiopathic NOA (incidental finding). Interestingly 

enough, the patient’s brother, also affected by NOA, was a homozygous carrier of the same 

mutation. Although the two brothers did not show typical symptoms of Fanconi anemia, the 

discovery of this genetic anomaly promoted us to perform the chromosomal breakage test 

which enabled us to diagnose mosaic FA in both subjects.  

For patients with unrelated parents we applied four models. Concerning the X chromosome 

we analyzed all X-linked genes containing pathogenic mutations with a MAF≤0.01 combined 

with a high-resolution X-chromosome specific array and we identified a mutation in RBBP7 

gene in a patient affected by spermatogonial arrest. So far RBBP7 has been only proposed as a 

key regulator during oocyte meiosis, but the expression analysis performed in our laboratory in 

different testis biopsies showed that the encoded protein is also overexpressed in the 

spermatogonia. Therefore, we propose RBBP7 as a novel candidate gene for early 

spermatogenic stages. Regarding the autosomal genes we applied three other models, first in 

order to investigate the oligogenic inheritance we compiled a list of 582 candidate genes with 

a putative role during early spermatogenic stages by performing an extensive bioinformatic 

and PubMed analysis. Than we crossed this list with low-frequency (MAF≤0.05), pathogenic 

mutations encountered in patients and controls. Performing this analysis, we identified three 

patients with single heterozygous variants. On the contrary, we found three controls with 

more than one mutation in candidate genes. Therefore, our data does not support 

dysgenic/oligogenic cause of NOA in our patients and shows that the presence of a normal 

allele of these genes is compatible with normal spermatogenesis. In order to investigate the 

possible synergistic effect of multiple low-frequency mutations in genes belonging to the same 

pathway/disease we performed an enrichment analysis for the 582 spermatogenesis candidate 

genes. This analysis allowed us to obtain those pathways, which are relevant for the early 

stages of spermatogenesis and were compared with the enrichment analysis obtained based 

on genes with low-frequency/rare pathogenic mutations in patients and controls. Three of 

these pathways resulted patients’ specific, among them the “regulation of actin cytoskeleton” 
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pathway was of major interest due to its putative role during spermatogenesis. One patient 

affected by spermatocytic arrest carried multiple mutations in members of the integrin gene 

family belonging to this pathway. These integrins have a medium protein expression level in 

the testis suggesting their involvement in spermatogenesis. The disease enrichment analyzes 

showed an overrepresentation of mutations in genes associated to neoplasms, urogenital 

neoplasms and Fanconi anemia/syndrome in the patients’ group but not in the controls’. These 

results are in line with previous studies reporting higher morbidity (including cancers) and 

lower life expectancy in infertile men. The last model consisted in the analysis of a putative 

combined effect of proven genetic risk factors (common SNPs) for impaired spermatogenesis. 

However, this model could not lead to a plausible explanation of NOA since the number of 

variants (homozygous and heterozygous) in patients and controls was similar. Finally, data 

from fertile normozoospermic controls allowed us to define to what extent normal 

spermatogenesis can tolerate potentially damaging variants in genes with known role in early 

spermatogenic stages and was also essential for the correct interpretation of deleterious 

mutations found in affected individuals. 

 

The results briefly resumed above will be presented in detail in the following submitted 

articles: 

 

Objective 1. 

 

 Pursuit of an X-linked “AZF like” region. Antoni Riera-Escamilla, Daniel Moreno-

Mendoza, Josvany Sánchez-Curbelo, Eduard Ruiz-Castañé  and Csilla Krausz. Submitted to 

Reproductive BioMedicine Online  

Objective 2 

 

 Whole–exome sequencing in inbred azoospermic patients: potential gene targets and 

an incidental finding of mosaic Fanconi Anemia (FA) allowing important preventive 

measures. Chiara Chianese and Antoni Riera-Escamilla, Daniel Moreno-Mendoza, 

Osvaldo Rajmil, Jordi Surrallés and Csilla Krausz. Submitted to Clinical Genetics. 

 

 Whole Exome sequencing in extreme testicular phenotypes: what can we learn from the 

sequencing of all protein-coding genes? Antoni Riera-Escamilla and Chiara Chianese, 

Daniel Moreno-Mendoza, Josvany Sánchez-Curbelo, Eduard Ruiz-Castañé  and Csilla 

Krausz. Submitted to PLoS One 
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Pursuit of an X-linked “AZF like” region. 

Antoni Riera-Escamilla,  Daniel Moreno-Mendoza, Josvany Sánchez-Curbelo, Eduard Ruiz-

Castañé  and Csilla Krausz. Submitted to Reproductive BioMedicine Online  
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ABSTRACT 14 

Male infertility is a multifactorial complex disease affecting approximately 7% of men. 15 

The etiology of the impaired spermatogenesis remains unknown in 40% of cases 16 

(idiopathic). The most frequent molecular genetic cause is related to Y-chromosome 17 

microdeletions (AZF deletions) that arise through Non-Allelic Homologous 18 

Recombination (NAHR) and its analysis is part of the diagnostic workup of azoospermic 19 

and severe oligozoospermic men. In analogy to the Y chromosome, the X chromosome is 20 

enriched in genes involved in spermatogenesis and its hemizygous state in males implies a 21 

direct effect of a damaging deletion making it a promising target for the discovery of new 22 

genetic factors leading to male infertility. The objective of this study was to identify X-23 

linked “AZF-like” regions. Through a multi-step bioinformatic analyzis we selected X-24 

linked regions with recurrent Copy Number Variations (rCNVs) flanked by Segmental 25 

Duplications (SDs) and thus likely to be generated by NAHR. Moreover in order to 26 

select regions with a putative role in male infertility, we selected those regions which 27 

are probably under negative selection due to the presence of an inverted ratio of 28 

deletions/duplications. We indentified a total of 12 CNVs with characteristics similar to 29 

the Y chromosome linked microdeletions. The screening of in 82 highly selected Non-30 

Obstructive Azoospermia (NOA) allowed the identification of a single deletion 31 

removing part of the opsins gene family in a patient affected by pure spermatocytic 32 

arrest. We hypothesize that the lack of deletions in our cohort may be partially due to the 33 

strictly selected testis phenotype. Hence, we cannot exclude deletions in these regions may 34 

cause a less severe impairment of spermatogenesis.This is the first study that explores 35 

through bioinformatic tools whether the X chromosome contains “AZF-like” regions 36 

and may represent a starting point for future studies involving patients with less 37 

severe spermatogenic impairment. 38 
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 INTRODUCTION: 39 

Infertility is a multi-factorial disorder affecting approximately 15% of couples – half of 40 

these can be attributed to the male factor. The etiology of altered spermatogenesis 41 

remains unknown in about 40% of cases of which a large proportion are probably 42 

related to still unknown genetic factors (Krausz 2011) The most frequent molecular 43 

genetic cause is related to the Y chromosome and concerns the AZF deletions that 44 

arise through Non-Allelic Homologous Recombination (NAHR). These deletions are the 45 

first example in andrology of functionally-relevant Copy Number Variations (CNVs) and 46 

are the cause of male infertility in about 2-10% NOA patients (Krausz et al. 2014) 47 

A Copy Number Variation (CNV) is defined as a DNA segment of at least 1Kb in length 48 

that is present in a variable number of copies in the genome (Fanciulli et al. 2010) 49 

CNVs can be classified as: i) “Gains”, when an increase of genetic material is observed 50 

compared to the reference genome as a consequence of duplication/amplification or 51 

insertion event; i) “losses”, when a reduction or the complete loss of genetic material 52 

is observed compared to the reference genome as a consequence of deletion events; 53 

iii) recurrent CNVs (rCNVs), when multiple overlapping CNVs present identical 54 

boundaries; iv) Randomly distributed CNVs, when multiple overlapping CNVs present 55 

randomly distributed boundaries. Copy number variations often occur in regions 56 

reported to contain, or be flanked by, large homologous repeats also called segmental 57 

duplications (SDs)(Fredman et al. 2004; Iafrate et al. 2004; Sharp et al. 2005; Tuzun et 58 

al. 2005). SDs are duplicated DNA fragments with >1 kb and map either to the same 59 

chromosome or to different, non-homologous chromosomes with >95-97% sequence 60 

identity (Bailey et al. 2002; Lupski & Stankiewicz 2005). SDs may drive Non-allelic 61 

Homologous Recombination (NAHR) (Shaw & Lupski 2004; Stankiewicz & Lupski 2010) 62 

where incorrect pairing during meiosis/mitosis or DNA repair across homologous 63 

regions can result in a gain or loss of intervening sequence. Theoretically, the 64 

frequency of deletions should be always higher than that of duplications. More 65 

specifically, inter-chromosomal and inter-chromatid NAHR between SDs with the same 66 

orientation results in reciprocal duplication and deletion, whereas intra-chromatid 67 

NAHR creates only deletions. However, if deleterious deletions underwent negative 68 

selection, duplications would then occur at a higher frequency (Turner et al. 2008).  69 
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Therefore, duplication frequency should not exceed deletion frequency, unless 70 

negative selection in both germ cells and somatic cells makes deleterious deletions 71 

very rare or not represented. However, in some genomic regions, the ratio of 72 

deletions/duplications is inverted and a major number of duplications are observed in 73 

respect to deletions. Is the case of DPY19L2 gene in which three times more 74 

duplications than deletions have been observed in the general population. DPY19L2 is 75 

located in chromosome 12, it is enriched in rCNVs, is flanked by segmental duplications 76 

and its deletion is the major cause of a male infertility condition called 77 

globozoospermia (Elinati et al. 2012; Coutton et al. 2012; Chianese et al. 2015). It has 78 

been suggested that DPY19L2 deletions are evolutionary lost, whereas duplications, 79 

not subjected to selection, increase gradually (Coutton et al. 2013). 80 

Concerning the X chromosome four main studies provide information about X-linked 81 

CNVs with potential clinical relevance in the etiology of male infertility (Tüttelmann et 82 

al. 2011; Krausz et al. 2012; Lopes et al. 2013; Yatsenko et al. 2015). The analysis 83 

performed by array-CGH employing a high-resolution (probe distance of 2–4 Kb) X 84 

chromosome- specific platform (Krausz et al. 2012) allowed the identification of a 85 

consistent number of CNVs on the X chromosome, the majority of which (75.3%) were 86 

novel. The three first studies converge on the hypothesis that infertile patients have a 87 

significantly higher burden of CNVs in their genome compared to normozoospermic 88 

controls. However, to date, the only X-linked CNV with clear cause-effect relationship 89 

regards TEX11 gene in which a small deletion removing three exons has been 90 

associated  to pure spermatocytic arrest (Yatsenko et al. 2015).  91 

The aim of this study was double: i) to perfrom a bioinformatic search in order to 92 

identify X-linked AZF like regions. To this purpose we selected X-linked regions with 93 

recurrent CNVs predicted to be formed by SD-NAHR, with an inverted ratio of 94 

deletions/duplications and containing protein coding genes; ii) to screen the identified 95 

CNVs in a cohort of highly selected azoospermic patients in order to elucidate their 96 

potential role in this condition.  97 

 98 

 99 
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MATERIAL AND METHODS 100 

Study population 101 

Genomic DNA was extracted from peripheral blood from 82 patients using the salting-102 

out method. Patients referred to the Fundació Puigvert for infertility problems and 103 

were selected according to the following inclusion criteria: i) azoospermia due to 104 

either spermatogenic arrest or Sertoli Cell Only Syndrome (SCOS) (see table 1); ii) 105 

normal karyotype; iii) absence of Y-chromosome microdeletions and iv) absence of all 106 

known causes of azoospermia. 150 controls from the same geographic area were 107 

normozoospermic and fertile men referring to the same clinic to undergo vasectomy. 108 

All recruited subjects signed an informed consent, upon approval by the local ethical 109 

committee. 110 

Bioinformatic analyses: CNV Selection  111 

We used the human GRCh38/hg38 assembly provided by the University of California 112 

Santa Carolina (UCSC) Genome Browse (http://genome.ucsc.edu/) and the Galaxy 113 

website (https://usegalaxy.org/) in order to perform the bioinformatic analyses. 114 

 First, we used Table Browser tool from UCSC in order to call all supporting structural 115 

“single sample” variants (“essv” and “nssv”) larger than 1 Kb located on the X 116 

chromosome. Then, we grouped the CNVs according to their boundaries in order to 117 

identify recurrent CNVs (more than one CNV with the same breakpoint). Next, in order 118 

to select those regions that may be under negative selection, we filtered for the 119 

deletion/duplication pattern of the DPY19L2 gene i.e three times more duplications 120 

than deletions.  Second, we used the same Table Browser tool to obtain all SDs that 121 

match on the X chromosome with a maximum distance of 8 Mb, the distance which 122 

corresponds approximately to the maximum length of AZFbc deletions. Then we 123 

crossed the two datasets in order to get those rCNVs regions with a three times more 124 

duplications than deletions pattern that are flanked by segmental duplications. In 125 

order to select those CNVs that are probably generated by SD-NAHR we filtered in 126 

regions in which the distance between CNV and SD boundaries were ≤200Kb. Then, the 127 

gene content and position of the selected regions were furthered screened through 128 

http://genome.ucsc.edu/
https://usegalaxy.org/


58 
 

Ensembl-Biomart (www.ensembl.org/biomart) and UCSC genome Browser. Finally, we 129 

screened whether Tüttelman et al. (2011) Krausz et al. (2012) or Lopes et al. (2013) 130 

reported deletions in these regions in their normozoospermic controls. 131 

Molecular analysis of deletions. 132 

Selected CNVs were screened with a conventional +/- PCR protocol in order to identify 133 

deletions in the patients’ and controls’ group. 150 geographically matched fertile men 134 

were screened as a control group. Information on primers is reported in 135 

supplementary table 1. 136 

The deletion breakpoints of CNV12 were furthered characterized by +/- PCR and 137 

Sanger sequencing. First, two pair of primers mapping to exons 4 and 5 of OPN1LW 138 

gene were used to confirm the deletion. Second, two pairs of primers matching 770 bp 139 

upstream and 81 Kb downstream the OPN1LW gene were used to determine the 140 

deletion’s maximum size. Finally, two primers that matched at three different loci 141 

inside CNV12 were used to define the deletion’s minimum size. These primers amplify 142 

three regions with the same size; however the closest sequence to OPN1LW gene 143 

differs for one nucleotide in respect to the other two sequences. In order to distinguish 144 

these differences Sanger sequencing was used in patient presenting the deletion and 145 

in a normozoospermic control (See supplementary table 2 and supplementary Figures 146 

1 and 2). 147 

Expression analysis 148 

We performed a quantitative RT-PCR (qRT-PCR) analysis to evaluate the expression of 149 

two genes, OPN1LW and TEX28 (see below). In order to obtain a catalog of samples 150 

with different testis histologies we performed a molecular characterization of testes 151 

biopsies collected at the Fundacio Puigvert. The molecular characterization consisted 152 

in the expression analysis of four genes known to be expressed in different stages of 153 

spermatogenesis: DAZ (spermatogonia/early spermatocytes), CDY1 (Spermatids), BRDT 154 

(pachytene spermatocytes/round and elongating spermatids) and PRM2 155 

(spermatids/mature spermatozoa). The housekeeping reference gene was GAPDH. 156 

Based on the obtained expression profiles we have selected one SCOS sample, two 157 

http://www.ensembl.org/biomart
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with spermatogenic arrest predominantly at spermatogonial stage (SGA), one sample 158 

with spermatocytic arrest (SCA) and two samples with obstructive azoospermia (OA) 159 

i.e. conserved spermatogenesis including mature spermatozoa. For patient 11-272 160 

carrying a deletion of OPN1LW gene, testis biopsy was available and expression 161 

analysis of OPN1LW and TEX28 was also performed (for further details see 162 

supplementary table 2).  163 

 164 

RESULTS 165 

Identification of X-linked CNVs through bioinformatics analyzes. 166 

We used Table Browser tool from the University of California Santa Carolina Genome 167 

Browser (UCSC) in order to obtain candidate “AZF-like” X-linked CNVs. According to 168 

this tool, there are a total of 93.171 X-linked CNVs; among them 74.567 correspond to 169 

deletions and 18.604 to duplications. 54.116 out of 93.171 CNVs belongs to single 170 

sample variants (“nssv-” and “essv-”) with more than 1 Kb length. Grouping these 171 

54.116 CNVs by joining those with the same breakpoint we obtained a total of 8.800 172 

regions and among them, 2.227 regions contain recurrent CNVs (more than one CNV 173 

with the same boundaries). Finally, in order to obtain those regions that might be 174 

under negative pressure, we filtered in for those regions which contains three times 175 

more duplications than deletions and we obtained a total of 429 regions (see figure 1).  176 

Identification of X-linked Segmental Duplications (SDs). 177 

We used the same Genome Browser tool in order to obtain Segmental Duplications 178 

(SDs) located in the X chromosome with a maximum distance of 8Mb between the SDs. 179 

According to UCSC (assembly CGRh38) there are a total of 1.089 SDs matching to the X 180 

chromosome, among them 1.051 SDs are separated by ≤8Mb (see figure 1). 181 

Identification of X-linked CNVs flanked by SDs. 182 

In order to select those CNVs that are probably generated by SD-NAHR we crossed the 183 

429 X-linked CNVs with the 1.051 SDs regions and filtered in those in which the 184 

maximum distance between their boundaries were ≤200Kb. We obtained a total of 168 185 
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SDs regions with one or more rCNVs inside them. When we analyzed their position on 186 

the X chromosome we observed that the 168 regions presented overlapping positions 187 

or were located right next to each other therefore, we could group these 168 SDs 188 

regions into 30 main clusters. Each of these clusters was manually revised for gene 189 

content and for deletion/duplication breakpoints. We discarded 12 clusters because 190 

they did not contain protein coding genes; 5 clusters were excluded since the inverted 191 

ratio of three times more duplications than deletions was not accomplished. In order 192 

to obtain the inverted ratio of duplications/deletions we applied filters based on the 193 

genomic position of the CNV’s breakpoints. However, in 5 clusters several deletions 194 

with different size, although still overlapping with the duplications were found and due 195 

to this phenomena the del/dup ratio was in favor of the deletions (“false” ratio); 1 196 

cluster containing CT47 gene family was discarded due to its low DNA complexity and 197 

the inability to perform a conventional +/- PCR; 1 cluster containing SPANX gene family 198 

was also discarded because deletions in this region have been also identified in proven 199 

fertile controls in Krausz et al. (2012); For 1 cluster only one possible rearrangement 200 

containing ZNF182 and SPAC5/B genes was candidate for +/- PCR because the 201 

remaining rearrangements either were not suitable for +/- PCR due to their low DNA 202 

complexity or were identified in normozoospermic men in Lopes et al. (2013). The 203 

remaining 10 clusters included 11 different CNVs suitable for +/- PCR analysis. These 204 

clusters presented three times more duplications than deletions, were probably 205 

generated by SD-NAHR, contained protein coding genes inside and deletions were not 206 

previously described in normozoospermic controls (see figure 1). Overall, the 12 207 

candidate CNVs for +/- PCRs are summarized in table 2. 208 

Deletion screening of selected CNVs in NOA patients and characterization of the 209 

CNV12-linked deletion 210 

In order to investigate the role of these deletions in male infertility, we screened by +/- 211 

PCR the above described 12 CNVs in a cohort of 82 NOA patients with different testis 212 

histology from SCOS to spermatid arrest. We identified a single deletion (CNV12) in 213 

patient 11-272 affected by pure spermatocytic arrest which involves the OPN1LW gene 214 

and at least one of the three copies of OPN1MW, OPN1MW2 and OPN1MW3. The 215 

deletion was furthered characterized with a set of additional PCRs as it is described in 216 
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“Material & Methods”. The deletion’s minimum size is 45.6 Kb (chrX:154,147,902-217 

154,193,569) and removes OPN1LW, and one of the three copies of OPN1MW, 218 

OPN1MW2 and OPN1MW3 genes. The maximum size is 96.6 Kb (chrX:154,143,454-219 

154,240,040) which implies that the deletion may remove additional one copy of 220 

OPN1MW, OPN1MW2 and OPN1MW3 genes (See supplementary figures 2 and 3). 77 221 

Kb downstream the minimum size of the deletion maps the TEX28 gene, which is gene 222 

specifically expressed in the. No CNV12-linked deletion was found in 150 223 

normozoospermic Spanish fertile controls 224 

Testis Expression analysis of the OPN1LW and TEX28 genes 225 

We performed a qRT-PCR analysis in a series of testis biopsy samples previously 226 

characterized by a molecular genetic approach (See M&M). Concerning OPN1LW 227 

expression, it was very weak in all types of testis biopsies tested. Since next to the 228 

deletion maps the testis specific expressed gene (TEX28) we hypothesized that the 229 

transcription of this gene may be altered due to the deletion. Therefore, we decided to analyze 230 

its expression in testis biopsies with different histology and in the carrier’s biopsy. We 231 

observed high expression levels of TEX28 in germ cells, especially in the latter stages of 232 

spermatogenesis. Comparing the TEX28 expression levels between the deletion 233 

carrier’s biopsy and another SCA biopsy originated from a wild type patients we did 234 

not observe significant differences (See figure 2). 235 

 236 

DISCUSSION 237 

The first association between azoospermia and microscopically detectable deletions on 238 

the long arm of the Y chromosome (Yq), was reported by Tiepolo and Zuffardi in 1976 239 

(Tiepolo & Zuffardi 1976). The authors proposed the existence of an AZoospermia 240 

Factor (AZF) on the Yq, representing a key genetic determinant for spermatogenesis, 241 

since its deletion was associated with the lack of spermatozoa in the ejaculate. Due to 242 

the structural complexity of the Y chromosome, the molecular characterization of the 243 

AZF took about 30 years to be achieved. With the development of molecular genetic 244 

tools and the identification of specific markers on the Y chromosome (Sequence 245 
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Tagged Sites, STSs), it was possible to circumscribe the AZF region (Vogt et al. 1996; 246 

Skaletsky et al. 2003). These Y microdeletions arise through NAHR and, according to 247 

their recombination hot-spot, they can be classified as AZFa, AZFb, AZFbc and AZFc 248 

deletions. The AZFa region spans 792 Kb, the AZFb 6.23 Mb, the AZFbc spans between 249 

7 and 7.7 Mb and the AZFc spans 3.5 Mb. Although several candidate genes have been 250 

identified in all AZF subregions, these are removed en bloc and, therefore, the role of 251 

individual genes in spermatogenesis remains unclear. Similarly to the Y chromosome, 252 

the X chromosome is enriched in genes involved in spermatogenesis (Mueller et al. 253 

2008) and its hemizygous state in males implies a direct effect of a damaging deletion. 254 

To date, different groups provided information about X-linked CNVs but with very few 255 

recurrent deletions/duplications (Tüttelmann et al. 2011; Krausz et al. 2012; Lopes et 256 

al. 2013; Lo Giacco et al. 2014; Chianese et al. 2014; Yatsenko et al. 2015). The majority 257 

of CNVs were “private” and a part from two intragenic deletions in the TEX11 gene no 258 

other clinically relevant deletions were found (Yatsenko et al. 2015). 259 

The aim of this study was to search for “AZF like” regions (i.e. recurrent, SDS-NAHR 260 

generated gene containing deletions causing azoospermia) located on the X 261 

chromosome. In order to identify such regions we performed a comprehensive 262 

bioinformatics search by using UCSC Browser and Galaxy. All SDs flanked gene 263 

containing CNVs were further filtered for those likely to be under negative selection 264 

i.e. presenting an inverted ratio of deletions/duplications. In particular, we filtered for 265 

the inverted ratio of three times more duplications than deletions as occurs in the 266 

DPY19L2 gene. Through these bioinformatic analyses we could discern among the 267 

8.800 X-linked CNV regions a total of 12 candidates “AZF-like” regions for further 268 

analysis in a cohort of 82 NOA patients with known testis histology ranging from pure 269 

SCOS to partial spermatid arrest.  270 

According to the protein atlas database, with the exception of two CNVs (CNV5 and 271 

CNV12), all the remaining ones contain at least one gene with overexpressed/testis 272 

specific expression. A total of five CNVs (CNV4-8-9-10 and 11) include 1 or more genes 273 

belonging to Cancer Testis (CT) gene family. CT genes are defined by a unique 274 

expression pattern, physiologically they are expressed exclusively or predominantly in 275 

male germ cells and in embryonic trophoblasts, but their gene products are also found 276 
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in a significant number of human tumors of different histological origin. At least 70 277 

families of CT genes with over 140 members have been identified so far and recently 278 

listed in a database established by the Ludwing Institute for Cancer Research (http:// 279 

www.cta.Incc.br/) (Almeida et al. 2009). The X-linked CT genes (X-CT) represent more 280 

than half of all CT genes and often constitute multi-copy gene families organized in 281 

well-defined clusters along the X chromosome, where the different members are 282 

arranged into complex direct and inverted repeats (segmental duplications) (Fratta et 283 

al. 2011). This feature account for the susceptibility of CT genes to CNVs even though 284 

their multi-copy gene status may be a strategy to increase the chance to escape 285 

meiotic sex chromosome inactivation (MSCI) during meiosis, as observed for mouse X-286 

linked multi-copy genes (Mueller et al. 2013). Nevertheless, in normal testis, X-CT 287 

genes are expressed primarily in spermatogonia. Members of the MAGE (Melanoma 288 

antigen) family (at least 24 genes) are partially included in CNV10 and CNV11, whereas 289 

all the 16 members of the GAGE (G antigen) family are harbored in CNV4. Evidence is 290 

emerging that the best studied family, the MAGE genes, can act as signal transducing 291 

transcriptional modulators and appear to be able to mediate proliferative signals (Park 292 

& Lee 2002; Duan et al. 2003; Glynn et al. 2004). Interestingly, a small deletion 293 

(CNV67) reported as patients’ specific in Krausz et al. (2012) is located inside the 294 

CNV10 region. However this small deletion is not generated by SD-NAHR. CNV6 295 

contains DMRTC1 and its paralog DMRTC1B that are overexpressed in testis and 296 

pituitary and belong to the DMRT gene family. Although no data about DMRTC1 and 297 

DMRTC1B and male infertility has been reported, it is known that DMRT family play a 298 

key role during sex determination and differentiation (Zhang et al. 2016). CNV7 include 299 

TMSB15B, H2BFWT, H2BFM, SLC25A53 and ZCCHC18 genes. Among them the most 300 

interesting genes are H2BFWT and H2BFM that encodes testis specific histones that 301 

plays a crucial role in the reorganization and remodeling of chromatin and in the 302 

epigenetic regulation of spermatogenesis. Moreover H2BFWT is essential for specific 303 

functions in meiosis during chromatin reorganization and the regulation of 304 

spermatogenesis. In addition duplications overlapping with some of these genes have 305 

been identified as patient’s specific in two papers (Tuttelmann et al. 2011; Lopes et al. 306 

2013). CNV1 and CNV2 are two contiguous regions belonging to the same cluster, 307 

flanked by different SDs able to lead to the removal either VCX-PNPLA4-VCX2 or VCX2-308 

http://www.cta.incc.br/
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VCX3B genes respectively. VCX gene family belongs to the VCX/Y gene family, which 309 

has multiple members on both the X and Y chromosomes, and all are expressed 310 

exclusively in male germ cells. Functional analysis demonstrated that VCX regulates cell 311 

apoptosis and inhibited cell growth during spermatogenesis impairment. Moreover, 312 

overexpression of VCX delayed cell-progression in G1 to S transition, resulting in cell 313 

division disorder and spermatogenic failure. Although, recently it has been reported 314 

that an increased copy number of VCX is associated with a risk for non obstructive 315 

azoospermia (Ji et al. 2016) this data remains to be confirmed also in view of the 316 

observed distortion of the deletion/duplications rate which would predict a neutral 317 

effect of duplications. CNV3 contains ZNF182, SPACA5 and SPACA5B. Lopes et al. 318 

(2013) reported a deletion involving a copy of SPACA5 and SPACA5B as a risk factor for 319 

male infertility but they were also identified in the control group, excluding a causative 320 

relationship with NOA. However, the region analyzed in the present study is adjacent 321 

to this previously reported deletion and it may also remove the ZNF182 gene, not 322 

deleted in Lopes et al. (2013). ZNF182 is a Zinc-finger protein that binds nucleic acids 323 

and plays important roles in various cellular functions, including cell proliferation, 324 

differentiation, and apoptosis however there is no data about its involvement in male 325 

infertility.  CNV5 contain three ubiquitously expressed genes ZXDA, ZXDB and NLRP2B. 326 

ZXDA and B are X-linked Zing fingers that cooperate with CIITA to promote 327 

transcription of MHC class I and MHC class II genes. NLRP2B is involved in the 328 

activation of caspase-1 and may be able to inhibit IL-1β and/or NF-κB (Porter et al. 329 

2014). Since only the duplication event of the CNV5 region has been reported in the 330 

general population it may indicate that deletion is not compatible with normal 331 

development. Finally, the unique deletion identified in our cohort concerns the CNV12 332 

region which may present two possible deletion hotspots. The largest one contains 333 

one copy of OPN1LW, and three copies of OPN1MW, OPN1MW2 and OPN1MW3 334 

genes. The deletion identified in the patient occurred between the two internal SDs 335 

removing OPN1LW gene and at least one of the three copies of OPN1MW, OPN1MW2 336 

and OPN1MW. OPN1- genes encode for opsin pigments that are essential for normal 337 

color vision and no data about these genes and male infertility are reported. The 338 

deletion carrier is affected by pure spermatocytic arrest and no information was given 339 

about colorblindness in the medical history. Our analysis of the X-linked opsin gene 340 
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family expression in different testes biopsies showed a very weak expression of its 341 

mRNA in these male tissues suggesting that the lack of OPN1LW gene is unlikely to 342 

compromise perse male fertility. Interestingly, next to the above described deletion 343 

there is a gene with testis specific expression, TEX28 (Testis Expressed 28) but no data 344 

about its involvement in spermatogenesis is available.  We hypothesized that deletion 345 

may alter its transcription, for this reason we decided to analyze its expression in 346 

different testis biopsies i.e from SCOS to obstructive azoospermia (with conserved 347 

spermatogenesis) including the carrier’s testis biopsy. Our results indicate that TEX28 348 

is principally expressed in the latest stages of spermatogenesis. However, no 349 

differences between the deletion carrier biopsy and another wild type SCA biopsy 350 

were observed indicating that the deletion did not affect TEX28 transcription. 351 

We hypothesize that the lack of deletions in our cohort may be partially due to the 352 

strictly selected testicular phenotype. Since the AZFc deletions may lead also to severe 353 

oligozoospermia, we cannot exclude that these X-linked CNVs may cause a less severe 354 

impairment of spermatogenesis. On the other hand, for the regions containing ubiquitously 355 

expressed genes, the removal of one or more of these genes may cause a more complex 356 

phenotype 357 

In conclusion, this is the first study that explores through bioinformatic tools whether 358 

the X chromosome contains “AZF-like” regions. We indentified a total of 12 CNVs with 359 

characteristics similar to the Y chromosome linked microdeletions. According to our 360 

working hypothesis, deletions removing genes affecting spermatogenesis should be 361 

under negative selection, in fact 10/12 CNVs contain at least one gene with high or 362 

exclusive expression in the testis. The lack of deletions in our cohort may also be 363 

related to the inappropriateness of the phenotype of our patients. Therefore, our 364 

study may represent a starting point for future studies involving patients with less 365 

severe spermatogenic impairment i.e hypospermatogensis or oligozoospermia.  366 
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Table 1. Classification of the 82 analyzed patients according to their testicular phenotype and 

histology subtype. 

 

SCOS: Sertoli Cell Only Syndrome ; SGA: SpermatoGonial Arrest; SCA: SpermatoCytic Arrest; STA: 
SpermaTid Arrest; TESE: Testicular Sperm Extraction: Pure: no spermatozoa were found by TESE; Partial: 
few spermatozoa retrieved by TESE. 

 

 

 

 

 

Testicular Phenotype (N samples)  Testis histology subtypes (N samples) 

SCOS (41) 
Pure SCOS (33) 

Partial SCOS (8) 

SGA (16) 
Pure SGA (5) 

Partial SGA (11) 

SCA (23) 
Pure SCA (11) 

Partial SCA (12) 

STA(2) 
Pure STA (1) 

Partial STA (1) 
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Table 2. List of the 12 Copy Number Variations (CNVs) analyzed in this study with their 

genomic position and gene content. 

CNV code 
CNV chromosome coordinates 

(Hg38)* 

Chromosomal 

band (Hg38) 

List of the coding genes  

within the CNV 

CNV1 ChrX:7840853-8172518 Xp22.31 VCX, PNPLA4, VCX2, 

CNV2 ChrX:8166734-8470663 Xp22.31 VCX2, VCX3B 

CNV3 ChrX:47953754-48032991 Xp11.23 ZNF182, SPACA5, SPACA5B 

CNV4 ChrX:49533157-49606161 Xp11.23 GAGE gene family 

CNV5 ChrX:57573863-57929660 Xp11.21 ZXDB, NLRP2B, ZXDA 

CNV6 ChrX:72735187-72990952 Xq13.1 DMRTC1, DMRTC1B 

CNV7 ChrX:103918061-104113598 Xq22.2 
TMSB15B,  H2BFWT, 

H2BFM, SLC25A53, ZCCHC18 

CNV8 ChrX:135092867-135427556 Xq26.3 CT55, ZNF5D  

CNV9 ChrX:135716326-135949905 Xq26.3 CT45 gene family and SAGE1 

CNV10 ChrX:149532423-149947803 Xq28 

CXorf40A, MAGEA9, 

MAGEA9B, HSFX2, HSFX1, 

TMEM185A,  MAGEA11, 

MAGEA8, CXorf40B 

CNV11 ChrX:153105760-153294975 Xq28 MAGEA1 

CNV12 ChrX:154144052-154294510 Xq28 
OPN1LW, OPN1MW, 

OPN1MW2, OPN1MW3 

In bold are shown genes with overexpression/testis specific expression 
*CNV Chromosome coordinates correspond to the outer Segmental Duplication (SD) 
boundaries position. 
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Figure1. Schematic representation of the filters employed in order to obtain X-linked “AZF-

like” regions. 

*Exclusion of clusters containing more deletions with different duplications’ breakpoint: “fasle ratio” 
** CNVs in cluster 9 have been identified in normozoosmeric men in Krausz et al. (2012) 
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Figure 2. Expression analysis of the TEX28 gene. Quantitative RT-PCR (qRT-PCR) analysis was 

performed to evaluate TEX28  expression in testis biopsies with different histologies: i) SCOS 

(Sertoli Cell-Only Syndrome); ii) SGA: maturation arrest at the spermatogonial level; iii) SCA: 

maturation arrest at the spermatocytic level. Two samples with obstructive azoospermia (OA) 

were used as internal controls. Results of the expression analysis are shown in the bar-

diagram. The CNV20 deletion carrier, (patient 11-272) presenting spermatocytic arrest, 

displayed similar TEX28 expression levels compared to a SCA patient whithout deletion. 
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Supplementary table 1.  Sequence of primers and size of amplified PCR products for the CNVs identified in the study.  

CNV code Forward primer Reverse primer Length (bp) 

CNV1 GGATTTGCCACAGCTCAAGAAA ACTGTGAGAGCTGGATTCCG 499 

CNV2 CAACCTAGGCAGAGAACTCC   CCACATCTACTCCGGCATCAA   673 

CNV3 TTTGTCACCAGGCTGTGGTT ATGGGGTCTCCTCATCTGCT 490 

CNV4 GCTTCTTAAATCTTTCCCCACGG   CGCTAAGGTGATCCTCTGTCG   493 

CNV5 CTGGGACAGCCAAAGGGATA   ATGTGACGCAAACGGACAAG   202 

CNV6 AGGGGCAGCCATACTCCTTA   ATCACTGCCCAAATCAGGGG   264 

CNV7 CCGACCATGCATTTGTTCCC   TGTAGTGGCCGGTACAATGG   111 

CNV8 TTGTCAACTGGGTGTCACCTACA   TGCTTTGGCCTTCTACGGG   1391 

CNV9 CCCAGGCAACTGGGATACAA   CTTTTTGGTGGTGGAGTGCG   113 

CNV10 GATGCCATCTTTGGGAGCCTA   GAACTTTCATCTTGCTGGTCTCAG   643 

CNV11 CACCCAGGATGTGGCTTCTT   TCATGTTCCTCACCCGAACG   156 

CNV12 GGTCCTTCCAACACAAAAGGTG CATTCATCCTCACAGAGTGTCCA 944 

 

Supplementary table 2. Sequence of primers and size of amplified PCR products used for the fine mapping of the CNV12 deletion size 

*Primers amplify the three OPN1MW/2/3  gene clusters. The closest OPN1MW/2/3 cluster differs from to the OPN1MW/2/3 remaining clusters in one nucleotide and 

Sanger sequencing confirmed its deletion and Sanger sequencing confirmed its deletion See further explanation in supplementary figure 1 and 2. 

Sequence 
Code 

Region amplified Forward primer Reverse primer Length (bp) 
Disntance from 

OPN1LW gene (Kb) 
Presence (+) absence   

(-) not known (?) 

1 Upstream GCAGGCAGCGACAGATGTTA CTGTTAGTGCCCAACTCCGT 401 -770 + 

2 OPN1LW GGTCCTTCCAACACAAAAGGTG CATTCATCCTCACAGAGTGTCCA 944 0 - 

3 OPN1LW TGCATCATCCCACTCGCTA AGACGCAGTACGCAAAGATCA 1.711 0 - 

4a/4b/4c OPN1MW* GTCCTGGCATTCTGCTTCTG CAAAGGGTGGAAGGGGTAGCC 87 +34.4/+71.6/+109.4 -/+/+ 

5 Downstream 2 AGATGGACAAGACCATCAGGTATG CTCCTCTCCACAGCATTACAGT 109 +81 + 
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Supplementary table 3. TaqMan probes and amplicon size employed for gene expression 

analysis in testis biopsies. 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 1. Nucleotide sequence (sequence 4 a-b-c) from normozoospermic 

control (A) and the deletion carrier (B). The normozoospermic control without the deletion 

is heterozygous for the locus (red arrow) presenting both nucleotides:  Thymine (red pick) 

corresponding to the nearest sequence to the OPN1LW gene and Guanine (black pick) 

corresponding to the two other sequences distal from the gene. In contrast, the deletion 

carrier (patient 11-272) is homozygous for the Guanine indicating the absence of at least 

the nearest DNA sequence from OPN1LW. 

Gene Probe Amplicon length 

DAZ Hs00414014_m1 81 

BRDT Hs00976114_m1 68 

CDY1 Hs00371514_m1 86 

PRM2 Hs04187294_g1 73 

GAPDH Hs03929097_g1 58 

OPN1LW and OPN1MW gene family Hs01912094_s1 95 

TEX28 Hs01561622_m1 65 
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Supplementary figure 2. Schematic representation of the minimum and maximum size of 

the deletion (CNV12) identified in patient 11-272 with the indication of the genes 

mapping to this CNV.  Codes (1,2,3,4a/b/c and 5) corresponds to the sequence amplified 

through the primers described in in supplementary table 2. Red vertical lines represent 

sequences not amplified (2-3-4a); green vertical lines represent amplified sequences (1-

4b/c-5). Sequences 2 and 3 are located inside OPN1LW gene; sequences 1 and 5 are located 

at 0.7 kb upstream and at 81 kb downstream of OPN1LW gene respectively and delimit the 

maximum size of the deletions. Sequence 4 a/b/c map to the three OPN1MW- gene 

clusters. The closest OPN1MW/2/3 cluster differs from to the remaining clusters in one 

nucleotide and Sanger sequencing confirmed its deletion (4a) (see figure 1). Concerning the 

remaining two clusters Sanger sequencing confirmed their presence.  
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ABSTRACT 23 

Non-obstructive azoospermia (NOA) is the severest form of male infertility and its etiology 24 

remains unknown in 50% of cases. Inbred patients represent ideal targets for whole-exome 25 

sequencing (WES)-based analysis. Four idiopathic azoospermic men were screened for 26 

selected rare and potentially pathogenic variants. We identified three homozygous variants in 27 

genes potentially implicated in early spermatogenesis: i) FANCA; ii) MRO; iii) ADAD2. 28 

Among them, the most relevant finding is the diagnosis of the FANCA mutation. 29 

Chromosomal breakage test allowed diagnosing mosaic FA in the carrier and a full picture of 30 

FA in his azoospermic brother. 31 

Our study represents an additional step toward elucidating the genetic basis of early 32 

spermatogenic failure. We show the diagnostic potential of WES for inbred patients, while 33 

the important incidental finding of FA provides benefit to the patients’ future health and 34 

allows preventive measures also in his family.  35 

 36 

  37 
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INTRODUCTION 38 

The severest form of male factor infertility is non-obstructive azoospermia (NOA), which 39 

occurs in approximately 1% of all men in reproductive age. It is common knowledge that 40 

Klinefelter Syndrome (47, XXY) and Y-chromosome microdeletions are direct causes of 41 

NOA, but in the majority of patients the etiology of this spermatogenic alteration is still 42 

unknown. Since spermatogenesis is a complex process regulated by the concerted action of 43 

>2000 genes, a large proportion of cases of idiopathic NOA might be attributable to a not yet 44 

identified genetic defect (Krausz et al., 2015). Within the last years, the high-throughput 45 

sequencing (previously called next generation sequencing) approach has proved to be a 46 

powerful tool for the detection of novel disease-causing genetic factors. In particular, the 47 

application of whole-exome sequencing (WES), which provides information on circa 1% of 48 

the human genome, allowed identifying an exponentially growing number of complex 49 

diseases-associated genes in several fields of medicine (Choi et al., 2009; Ng et al., 2010; 50 

Wu et al., 2010; Chen et al., 2011; de Ligt et al., 2012; Haack et al., 2012; Soong et al., 51 

2013). When it comes to male infertility, the application of exome sequencing has proved to 52 

be successful mainly in familiar cases of spermatogenic failure (Ayhan et al., 2014; 53 

Okutman et al., 2015; Ramasamy et al., 2015), for which causative recessive mutations were 54 

identified. Besides defining the genetic etiology of impaired spermatogenesis, the analysis of 55 

familial cases led also to the identification of novel candidate genes. With this double 56 

purpose (diagnostic and translational research) we performed WES in four unrelated NOA 57 

patients with consanguineous parents, who were selected according to whether they 58 

displayed either Sertoli Cell-Only Syndrome (SCOS) or maturation arrest (MA) at the 59 

spermatogonial/spermatocytic level. Our investigation led to the discovery of three variants 60 

likely associated with NOA, both in previously defined candidate gene (FANCA) and in two 61 

other genes that can be considered as novel candidate spermatogenesis genes. Furthermore, 62 

by revealing a pathogenic variant in FANCA we provide the first example of an incidental 63 

diagnosis of Fanconi Anemia (FA) in the presence of previously unsuspected FA traits, 64 

which confer higher risk for serious consequences on the patient’s general health.  65 

MATERIALS AND METHODS 66 

Study population 67 

Four idiopathic azoospermic men with consanguineous parents (first-cousin marriage) were 68 

selected from a large cohort of infertile men undergoing full andrological investigation for 69 

male infertility at the Fundació Puigvert. Patient 04-170 had an azoospermic brother who 70 

also underwent genetic analysis (see below). The three other subjects did not have brothers 71 

affected by infertility and were not aware of other family members suffering from this 72 
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condition. All known causes of azoospermia were excluded (cryptorchidism, testicular 73 

torsion, acquired or congenital obstruction of urogenital tract, iatrogenic causes, 74 

hypogonadotrophic hypogonadism, abnormal karyotype and Y-chromosome 75 

microdeletions). Testis histology revealed SCOS in two patients; of the other two subjects, 76 

one displayed maturation arrest at the spermatogonial level (SGA), whereas the other had 77 

maturation arrest at the spermatocytic level (SCA). Controls (n=150) were normozoospermic 78 

and fertile men referring to the same clinic to undergo vasectomy. Clinical characteristics of 79 

the patients and controls are reported in Supplementary Table 1a and 1b, respectively. All 80 

recruited subjects signed an informed consent, upon approval by the local ethical committee. 81 

Whole-exome Sequencing 82 

Genomic DNA was extracted from peripheral blood samples using the salting-out method. 83 

Library preparation and whole-exome analysis were performed with a >100x mean coverage 84 

on Illumina HiSeq2000 as service at BGI TECH SOLUTIONS (Hong Kong) co., LIMITED 85 

t, as described in Supplementary Material. Average sequencing depth on target region 86 

(exome and flanking regions) was 167.95x ranged from 139.84x to 199.18x. Exome 87 

coverage with at least 40x ranged from 85-88%; with at least 20x ranged from 92.2% to 88 

95.56% in the four samples. 89 

 Sanger sequencing: selected candidate variants were validated by Sanger sequencing 90 

(Supplementary Table 2), and upon validation were tested in the group of 150 91 

normozoospermic controls. 92 

Bioinformatic analysis and variants filtering 93 

Bioinformatic analysis on the generated sequencing data was performed as described in 94 

Supplementary Material. Rare variants were filtered through the recessive model approach 95 

(Figure S1) and prioritized according to an index of pathogenicity (IP), which was calculated 96 

on the basis of seven different prediction tools (Supplementary Table 3). Mutations with an 97 

IP > 0.7 were further evaluated for their potential involvement in spermatogenesis through 98 

the consultation of: i) a number of online databases on gene expression in human tissues: 99 

UniGene (http://www.ncbi.nlm.nih.gov/unigene); GermOnline 100 

(http://www.germonline.org/); Reprogenomics Viewer, RGV (http://rgv.genouest.org/); 101 

Human Protein Atlas (http://www.proteinatlas.org/); Human Proteome Map 102 

(http://www.humanproteomemap.org/); Gtex Portal (http://www.gtexportal.org); ii) data 103 

published in the literature concerning gene function (with potential involvement in the early 104 

phases of spermatogenesis).  105 

 106 

 107 

http://www.proteinatlas.org/
http://www.humanproteomemap.org/
http://www.gtexportal.org/
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Gene Expression Evaluation 108 

Quantitative RT-PCR (qRT-PCR) analysis was performed to evaluate the expression of two 109 

genes, ADAD2 and FANCA (see below). In order to obtain a catalog of samples with 110 

different testis histologies we performed a molecular characterization of adult testes biopsies 111 

collected at the Fundacio Puigvert. The molecular characterization consisted in the 112 

expression analysis of four genes known to be expressed in different stages of 113 

spermatogenesis: DAZ (spermatogonia/early spermatocytes), CDY1 (Spermatids), BRDT 114 

(pachytene spermatocytes/round and elongating spermatids) and PRM2 (spermatids/mature 115 

spermatozoa). The housekeeping reference gene was GAPDH Based on the obtained 116 

expression profiles we have selected three SCOS samples, one with spermatogenic arrest 117 

predominantly at spermatogonial stage (SGA), one sample with spermatocytic arrest (SCA) 118 

and two samples with obstructive azoospermia (OA) i.e. conserved spermatogenesis 119 

including mature spermatozoa. For patient 11-151 carrying a mutation in ADAD2, testis 120 

biopsy was available and expression analysis of this gene was also performed (for further 121 

details see Supplementary material, and Supplementary Table 4). 122 

 123 

FANCA analysis 124 

A part from the FANCA gene expression analysis more detailed analysis was performed for 125 

the FANCA gene. In order to investigate why patient 04-170 carrying the c.2639C>T 126 

(p.Arg880Gln) variant in FANCA (NM_000135.2) did not display FA hematological 127 

symptoms (Table 2), we performed a mutational analysis both in leucocytes and buccal 128 

samples. DNA extraction from buccal swabs was performed using the QIAamp DNA Mini 129 

Kit (QIAGEN, Hilden, Germany). Conventional Sanger sequencing was performed using 130 

buccal DNA for all FANCA variants detected in leucocytes by WES in exons 9, 19 and 26 131 

(Supplementary Table 2B). Buccal swabs from the patient’s brother, also affected by 132 

azoospermia, were obtained and the extracted DNA was used to test the presence of all 133 

FANCA variants. Exon 1 and 24 of the FANCA gene displayed a mean coverage depth lower 134 

than 20x and were, thus, resequenced by conventional Sanger (Supplementary Table 5). 135 

Diepoxibutane (DEB)-induced chromosomal breakage test 136 

Diepoxibutane (DEB)-induced chromosomal breakage test was performed on the patient’s 137 

and his brother’s peripheral blood lymphocyte as described elsewhere (Castella et al 2011a). 138 

Briefly, fresh peripheral blood lymphocytes were stimulated with phytohaemagglutinin for 139 

24 h and further incubated with or without diepoxybutane (DEB) for 48h. Aberrant 140 

metaphases were defined by the presence of chromosomal breakages, gaps or radial 141 

chromosomes. Affected individuals exhibit very high levels of chromosome breakage with 142 
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this treatment while unaffected individuals have little or no increase over background 143 

breakage. Hypersensitivity of FA cells to the clastogenic effect of diepoxybutane (DEB) 144 

provides a unique marker for the diagnosis before the beginning of hematological 145 

manifestations (for further details see Supplementary material). 146 

RESULTS 147 

Exome analysis  148 

The recessive model strategy led us to the identification of three variants in three distinct 149 

autosomal genes (ADAD2, FANCA, MRO) that likely contribute to the altered spermatogenic 150 

phenotype (Table 1). The patients carried on average a total of 20.739±886 exonic variants 151 

(ranged from 20.057 to 22.042). Following standard filtering, which implied the exclusion of 152 

synonymous variants with a MAF≥0.05, we filtered for all homo/hemizygous variants that 153 

presented a high probability of pathogenicity (with a IP>0.7, for definition see materials and 154 

methods). As for the frameshift and nonsense variants, the index of pathogenicity could not 155 

be calculated because only one prediction tool (Mutation Taster) was available and predicted 156 

the variants as potentially pathogenic. 157 

-Patient 12-056, presenting with SCOS, carried the c.382_383delCT (p.Leu128fs) frameshift 158 

deletion in exon 4 of the MRO gene (NM_001127176.1). The detected variant had been 159 

previously described in the 1000G database as rs553835874, though being rather rare with a 160 

MAF of 0.003 according to the 1000G and of 0.009 according to the ExAC Database. The 161 

MRO (Male-Specific Transcription In The Developing Reproductive Organ) gene maps to 162 

chromosome 18 and it is specifically transcribed in males before and after testis 163 

differentiation. Studies on mice showed that Mro transcripts were exclusively detected in the 164 

developing testis and were apparently found in both the somatic (Sertoli) cells and germ cells 165 

(Smith et al., 2008); expression data on human testis biopsies with different histology also 166 

show that MRO expression pattern is consistent with expression in Sertoli cells (Chalmel et 167 

al., 2012). 168 

-In patient 11-151, suffering from a spermatogonial maturation arrest, we identified a novel 169 

nonsense variant c.1186C>T (p.Gln396*) that produces a stop codon in exon 7 of the 170 

ADAD2 gene (NM_139174.3), leading to the production of a protein truncated at the 171 

adenosine-deaminase domain level. The mutation truncates all protein-coding transcripts. 172 

ADAD2 maps to chromosome 16 and encodes a class of double-stranded RNA binding 173 

proteins (dsRBP). No mutations in human have been described in this gene. Data on animal 174 

models are missing, whereas human testis expression data is consistent with expression in 175 

germ cells (Chalmel et al., 2012). As expected, ADAD2 expression analysis performed in our 176 

laboratory on testis biopsy samples displaying MA, SCOS and obstructive azoospermia 177 

(OA) phenotypes revealed no signals in SCOS samples, indicating that ADAD2 expression is 178 
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restricted to germ cells. Between the two samples with maturation arrest, the highest 179 

expression was detected in the sample with spermatogonial arrest. Interestingly, patient 11-180 

151, also presenting the same testis phenotype, displayed much lower ADAD2 expression 181 

levels. (Figure 1). 182 

-In patient 12-611, affected by hypospermatogenesis with a predominant presence of tubules 183 

with spermatocytic arrest, no variants were found as potential causes of the man’s semen 184 

phenotype, since all filtered variants either were predicted as non-pathogenic or occurred in 185 

genes with no potential implication in the spermatogenic process. 186 

-In patient 04-170, affected by pure SCOS eight rare variants (Supplementary Table 6) 187 

presented a PI>0,7 but only one, c.2639C>T, mapped to a gene with proved implication in 188 

spermatogenesis (FANCA) and presented the highest pathogenic score (IP=0.9). 189 

 190 

Detailed analysis of the FANCA mutation carrier(s) 191 

The c.2639C>T variant maps to exon 28 of the FANCA gene (NM_000135.2)(Table 1, 192 

Figure 2A). The FANCA (Fanconi Anemia, Complementation Group A) gene maps to 193 

chromosome 16 and encodes the protein for Fanconi anemia complementation group A. This 194 

variant is reported in the 1000G database as rs372254398 with a MAF<0.01 and in the 195 

EXAC database with an allelic frequency of 3.3e-05. Importantly, this variant was already 196 

shown to cause FA in a Spanish patient (Castella et al. 2011b), as well as the Fanconi anemia 197 

Mutation Database at Rockefeller University reports the variant in both homozygosis and 198 

heterozygosis in 9 FA patients. Consistently with its pathogenic role, protein multiple 199 

alignment shows that the substituted aminoacid is highly conserved among species 200 

(Supplementary Figure 2). Additionally, variants rs7190823 [NM_000135.2:c.796A>G, 201 

(p.Thr266Ala)] in exon 9 and rs7195066 [NM_000135.2:c.796A>G,(p.Gly809Asp)] in exon 202 

26 were also present in homozygosis, though both were common and non-pathogenic 203 

polymorphisms.  204 

In order to search for potential “natural gene conversion” in blood cells DNA from buccal 205 

swab was also analyzed. All the above variants were detected in both blood and buccal DNA 206 

samples. 207 

Search in the literature for functional analysis: since Mankad et al (2006) already 208 

performed a functional analysis for the rs372254398 (R880Q) mutation, we report herewith a 209 

brief summary of their experiments: GM6914 cell lines infected with site-directed 210 

mutagenesis pMMP puro FANCA-derived constructs were assayed for protein localization 211 

by immunofluorescence. The authors observed that the mutation negatively affected 212 

subcellular localization and the mutated protein was localized mostly to the cytoplasm 213 

instead of the nucleus (wild type protein). 214 



84 
 

Analysis of the patient’s brother: following the discovery of the mutation, the patient, 215 

during genetic counseling, informed the doctor that also his brother suffered an infertility 216 

problem due to azoospermia. The man could not undergo physical examination due to 217 

geographic distances, but according to his brother (patient 04-170) he does not have any 218 

evident skeletal abnormalities or other FANCA-related symptoms. Screening of FANCA by 219 

Sanger sequencing revealed that also the brother was homozygous for the c.2639C>T 220 

variant, as well as for the other two SNPs in exon 9 and 26.  221 

 222 

FANCA testis expression profiling: 223 

FANCA expression: qRT-PCR analysis was performed in testis biopsy samples previously 224 

characterized by a molecular genetic approach (see materials and methods). FANCA 225 

expression pattern was compatible with a prevalent expression in spermatogonial and early 226 

spermatocytic stage. For instance, FANCA was undetectable in SCOS, but showed the 227 

highest expression in biopsies with a prevalent spermatogonial arrest (SGA) and obstructive 228 

azoospermia (i.e. presence of all spermatogenesis stages) (Figure 3). These analyses were not 229 

performed directly on the patients’ testis biopsies due to the lack of material recollection. 230 

Diepoxibutane (DEB)-induced chromosomal breakage test (FA diagnostic test): DEB-231 

induced chromosomal breakage test performed both in patient 04-170 and his brother was 232 

performed. In the proband a positive result was observed only in a fraction of cells indicating 233 

a diagnostic of Fanconi anemia with somatic mosaicism (Figure 2B); whereas in the brother 234 

the majority of cells resulted positive, revealing a typical FA positive diagnostic without 235 

mosaicism. 236 

Hematological findings: FA was not suspected previously due to the absence of 237 

hematological anomalies in the patient and mild anomalies in the brother. Although the 238 

patient’s brother presented a mild decrease of platelets in 2011 and, as for 2013 he also 239 

displayed a mild decrease of red blood cells and leucocytes (neutrophils counts), this 240 

condition was not further explored by the family doctor until 2016 when the patient has been 241 

informed about FA. Results from 2016 show a pronounced decrease of all three cell types 242 

(Table 2).  243 

 244 

Mutation screening in controls: None of the 150 controls carried the variants detected in 245 

FANCA and ADAD2 genes, whereas one control was heterozygous for the variant in the 246 

MRO gene. 247 

 248 

DISCUSSION 249 
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The introduction of high-throughput sequencing has exponentially improved diagnostic and 250 

research yields in relation to both rare and common but complex diseases. We performed 251 

WES in the attempt of providing further insights into the genetic background of NOA. Since 252 

inbreeding increases the power of detecting susceptibility factors of recessive or recessive-253 

like diseases, we analyzed four azoospermic patients with consanguineous parents and 254 

applied the recessive model approach for variants selection. Therefore, we filtered for rare 255 

and potentially pathogenic variants found in homozygosis, which may have a direct impact 256 

on the carrier’s phenotype. We could identify the potential cause of the altered 257 

spermatogenic phenotype in three of four patients. 258 

In patient 12-056, also affected by SCOS, the c.382_383delCT (p.Leu128fs) frameshift 259 

deletion was detected in the MRO gene. In mice, the expression pattern of Mro during 260 

embryonic gonadogenesis suggests a possible function in testis development ((Smith et al., 261 

2008) and reference therein). Notwithstanding, Mro
-/-

 mice do not display fertility problems 262 

and have normal testis development (Smith et al., 2008). Although the same phenotype has 263 

been observed also in different mouse strains in the absence of this gene, MRO exclusive 264 

expression in the sexual cords (Sertoli cells and germ cells) remains puzzling and a role in 265 

human SCOS phenotype cannot be excluded. Therefore, we propose MRO as a novel genetic 266 

target for impaired spermatogenesis in human. 267 

In patient 11-151 affected by spermatogonial arrest (SGA) the novel nonsense variant 268 

c.1186C>T (p.Gln396*) was detected in the ADAD2 gene. The encoded protein belongs to 269 

the class of double-stranded RNA binding proteins (dsRBP); in particular, the ADAD2 270 

protein binds with higher affinity to highly structured RNA substrates, such as sncRNAs 271 

(Wang et al., 2015). Double-stranded proteins bind and repress sncRNAs in order to keep 272 

them under strict translational control (de Mateo and Sassone-Corsi, 2014). The role of 273 

failure in silencing sncRNA has been investigated in Drosophila Melanogaster (especially in 274 

relationship with the PIWI protein) and proposed to cause a loss of germline stem cells (Cox 275 

DN, et al. (2000); Kalmykova AI et al. 2005;). No data on Adad2 KO mice is available 276 

whereas male mice homozygous for a mutated Adad1 (the paralog of Adad2) allele have 277 

reduced sperm counts and motility, and increased sperm malformation (Connolly et al., 278 

2005). While Adad1 expression is restricted to pachytene spermatocytes until spermatids 279 

(Schumacher et al., 1995), our qPCR analysis suggests that ADAD2 is prevalently expressed 280 

in spermatogonia. These data indicate that the two genes might be involved in different 281 

biological pathways (earlier phase for ADAD2 and later phases for ADAD1). Although our 282 

patient presented a spermatogonial arrest, ADAD2 expression levels were low, indicating a 283 

potential effect of the mutation on RNA stability. In light of this data, the c.1186C>T 284 
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(p.Gln396*) variant might contribute to the altered spermatogenic phenotype in patient 11-285 

151, suggesting ADAD2 as a novel candidate gene for the early stages of spermatogenesis 286 

The FANCA c.2639C>T mutation was detected as the most likely explanation of the 287 

patient’s SCOS phenotype. Mutations in FANCA are the most common cause of FA, a 288 

hereditary chromosomal instability cancer-prone syndrome associated with, among other 289 

phenotypes, hypogonadism and fertility defects (Bargman et al., 1977; Cheng et al., 2000). 290 

For instance, studies on animal models suggest that FANCA might play a double role in 291 

spermatogenesis: i) primordial germ cells maintenance during migration into the gonadal 292 

ridges; ii) meiosis. In particular, it was reported that Fanca
-/-

 homozygous male mice 293 

exhibited fertility defects due to a diminished population of primordial germ cells (PGCs) 294 

during migration into the gonadal ridges, as well as an elevated frequency of mispaired 295 

meiotic chromosomes and increased apoptosis in germ cells (Cheng et al., 2000; Wong et 296 

al., 2003). FANCA is required for activation by monoubiquitination of FANCD2, another 297 

protein with a role in male meiosis (Garcia-Higuera et al., 2001). Accordingly, the analysis 298 

of publically available data on RNA profiling in human testis shows high FANCA expression 299 

in meiotic cells (Chalmel et al 2012). However, since data on testis tissue enriched in 300 

spermatogonial cells (spermatogonial arrest) is not available, we performed expression 301 

profiling in our collection of testis biopsies. These samples were characterized at the 302 

molecular level by using specific gene markers for the different spermatogenic cells. Four 303 

different types of samples (SCOS, SGA, SCA and OA) were selected to perform a molecular 304 

characterization of FANCA expression profile and the results indicate its role in the early 305 

phases of spermatogenesis with the strongest expression in spermatogonia. The testis 306 

phenotype of men carrying FANCA mutations has not been reported so far in the literature 307 

and our study represents the first detailed description of testis function in this disease. The 308 

same variant (c.2639C>T) was firstly reported in compound heterozygosis with the 309 

c.2524delT frameshift deletion in two monozygotic twin sisters suffering from non-310 

hematologic symptoms of FA(Mankad et al., 2006). The authors proved that the c.2639C>T 311 

variant caused the mislocalization of the FANCA protein to the cytoplasm and that this 312 

mislocalization was corrected by a third mutation, the 313 

NM_000135.2:c.2927G>A,(p.Glu966Lys), which was detectable only in the girls’ 314 

hematopoietic cells but not in their fibroblasts, nor in their parents. The authors thus 315 

speculated that this acquired compensatory mutation reverted the phenotype explaining why 316 

the twins had FA-associated skeletal malformations but normal hematopoiesis. Similarly, our 317 

patient displayed normal hematological parameters and, though he presented several FA 318 

symptoms e.g. dysmorphic facies, microcephaly, retromicrognathia, scoliosis, FA had never 319 

been suspected before due to normal hematology. Therefore, we performed the chromosomal 320 
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breakage test, which indicated a picture of FA with reverse somatic mosaicisms, compatible 321 

with the absence of hematological symptoms. In order to assess whether the patient carried 322 

leucocytes-specific variants that might act as compensatory events on hematopoiesis, we also 323 

performed a comparative mutation analysis in DNA deriving from the patient’s buccal 324 

swabs. However, no such mutations were found to resemble the case of natural gene therapy 325 

observed in the twins. We therefore propose that the genetic reversion most probably 326 

occurred in a blood progenitor already committed to the myeloid lineage. In the light of the 327 

chromosomal breakage test results and the ascertained manifestation of fertility defects in 328 

FA patients (D’Andrea and Grompe, 1997), we consider the c.2639C>T variant the most 329 

likely cause of the SCOS phenotype.  330 

In addition to the originally interrogated pathology, we were able to diagnose a chromosome 331 

instability/cancer-prone condition, FA not only in our patient but also in his brother. Our 332 

study is a clear example of how whole-exome sequencing can lead to important secondary 333 

findings, which might represent a valid tool for both diagnosis and prevention of serious 334 

pathological conditions. The ability of high-throughput sequencing to provide such a broad 335 

spectrum of genomic data inevitably generates complex consequential implications when it 336 

comes to interpret and return results; controversies arose concerning the disclosure of 337 

incidental findings deriving from genomic sequencing and the implications relating genetic 338 

counseling. Though diverse consent models have been recommended (Ayuso et al., 2013), 339 

there is no consensus yet. In our study, the patient and his brother expressed voluntary 340 

interest in being informed on the potential consequences conferred by the FANCA mutation 341 

and are thankful for having been provided with an explanation for their infertile status.  342 

Since the patient and his brother originally presented no hematological alterations, clinicians 343 

had not suspected FA until our investigation. Interestingly, even that heterozygous FANCA 344 

mutations carriers are not known to have increased cancer risk (Berwick et al., 2007), several 345 

family members suffered various types of cancer, including solid tumors such as lung, 346 

stomach, colon and breast cancer (Figure 2C). The patient’s father died from lung cancer, 347 

whereas the mother was treated for colon cancer. Hypothetically, based on this family tree, a 348 

subset of FANCA mutations might increase cancer risk in monoallelic mutation carriers. Our 349 

finding added important information on the present and future general health status of the 350 

two brothers: as FA patients, the two men are exposed at a higher risk to develop cancer, and 351 

thanks to our investigation they are now receiving specific medical attention. In particular, 352 

the more recent hematocrits allowed detecting the first hematological alterations in the 353 

brother, whereas the proband, besides dysmorphic alterations, only manifests azoospermia. 354 

However, thanks to this incidental diagnosis, they are now under strict follow-up by onco-355 

hematologists since along with intrinsic chromosomal instability, there is a higher risk of 356 

myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). To early identify and 357 
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further predict bone marrow (BM) clonal progression and enable timely treatment, the 358 

follow-up of FA patients includes regular BM morphological and cytogenetic examinations 359 

(Peffault de Latour and Soulier, 2016). Besides hematological neoplasias, these patients are 360 

also at higher risk for squamous cell carcinomas, which are usually treated with mitomicyn 361 

c. This chemotherapeutic agent is contraindicated in FA patients; therefore the diagnosis of 362 

FANCA mutation in these two men has also relevance for any potential future cancer 363 

treatment. 364 

Conclusively, the diagnosis of the genetic basis of NOA in these patients by using high-365 

throughput sequencing together with previous successful exome studies (Ayhan et al., 2014; 366 

Okutman et al., 2015; Ramasamy et al., 2015) proves that WES is a promising tool to define 367 

the cause of infertility in patients with consanguineous parents. Two of the genes (MRO and 368 

ADAD2) had not been previously considered as spermatogenesis candidate genes, but 369 

henceforth can be of interest for future studies. The finding of mosaic FA in patient 04-170 370 

and his brother is in line with previously reported epidemiological observations that infertile 371 

men (oligo/azoospermic) also have a higher risk of morbidity (including cancer) and a lower 372 

life expectancy (Jensen et al., 2009; Salonia et al., 2009; Eisenberg et al., 2015), and 373 

supports the hypothesis that spermatogenic efficiency might be linked to chromosomal 374 

instability (Krausz et al., 2012). Our observation implies that FANCA should be included in 375 

any diagnostic panel of NOA and stimulates further research on the role of FANCA 376 

mutations in men with impaired spermatogenesis in the light of its potential link to higher 377 

morbidity and impaired fertility. In addition, a broader study, involving a large cohort of FA 378 

patients, is envisaged in order to investigate the exact genotype/ testis phenotype correlation 379 

in this disease.  380 

 381 
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Table 1. Variants detected in patients with consanguineous parents (recessive approach). 

Sample Phenotype Gene Chr Variant dbSNP 
MAF 

TOTAL 
IP 

Controls 

carriers 

04-170 SCOS FANCA 16 NM_000135.2:c.2639G>A (p.Arg880Gln)  rs372254398 <0.001  0.92 0/150 

11-151 SGA ADAD2 16 NM_139174.3:c.1186C>T (p.Gln396*) n.r n.r. n.a.§ 0/150 

12-056  SCOS MRO 18 NM_001127176.1:c.382_383delCT (p.Leu128fs) rs553835874 0.003 n.a. § 1/150† 

 

Chr= chromosome. IP= Index of pathogenicity. N.a.= not applicable. 

SCOS= Sertoli-cell only syndrome. SGA= Spermatogonial arrest. 

§ Only one prediction tool was available for nonsense variants and frameshift deletions. 

*No variants were detected in patient 12-611, who is thus not reported.  

†Variant in heterozygosis. 
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Table 2. Clinical characteristics of the FANCA mutation carrier and his brother 

A. Reproductive parameters* 

 
BMI (kg/m2) 

Endocrine Profile 

Testis Histology 
Testis volume 

(cc)(left; right) 

Metabolic Profile 

FSH LH 
Testosteron

e (nmol/L) 

Glycaemia 

mmol/L 

Cholesterol 

mmol/L 

04-170 25.1 (normal weight) 25.6 5.9 15.3 SCOS 12; 7 5.7 3.47 

04-170’s brother 26.5 (slightly overweight) 23.3 10.2 17.3 n.p. n.a. 4.61 5.19 

B. Hematology regarding blood cell count  (analyses performed in 2016) 

 04-170 04-170’s  brother Reference Values 

Erythrocytes 4.95 x1012/L 4.27 x1012/L 4.3-6.0 

Leucocytes 4.38 x109/L 3.02 x109/L 4.0-10.5 

Platelets 163 x109/L 116x109/L 150-400 
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Figure Legend 

Figure 1. Expression analysis of the ADAD2 gene. Quantitative RT-PCR (qRT-PCR) analysis was performed to evaluate ADAD2 expression in biopsy 

samples of different types of adult testis histologies: i) SCOS (Sertoli Cell-Only Syndrome); ii) SGA: maturation arrest at the spermatogonial level; iii) SCA: 

maturation arrest at the spermatocytic level. One sample with obstructive azoospermia (OA) was used as internal control. Results of the expression analysis 

are shown in the graph: SCOS and MA samples had respectively null and lower expression of ADAD2 compared to sample with conserved spermatogenesis. 

Our patient 11-151, also presenting spermatogonial arrest, displayed much lower ADAD2 expression levels compared to SGA. 

Figure 2. Investigation on patient carrying the FANCA mutation. A) The inverted pyramid scheme indicates how WES data were filtered for patient 04-

170. The patient carried a total of 20 477 variants. Synonymous/silent variants were filtered out to obtain a total of 10 012 missense and splicing variants. 

Then, we filtered out variants with a minor frequency allele (MAF) higher than 5% and obtained a total of 2 247 rare or not reported (n.r.) variants. Of these, 

380 were homozygous or X-linked (hem). Finally, variants with an index of pathogenicity ≥0.7 were filtered in to reach to a total of 8 variants in 8 different 

genes (in bold gene expressed in testis), also reported. Each variant was checked in the Integrative Genomics Viewer (IGV), to exclude eventual false 

positives. B) Graphic representation of the chromosomal breakage test for patient 04-170.The graph illustrates the patient’s position (*) in relation to the 

distribution of historical data collected in our laboratory according to the percentage of DEB-induced aberrant cells and the number of breakages in each DEB-

induced aberrant cell. In the No FA group only individuals with at least one aberrant cell were included. C) The pedigree structure shows the segregation of 

the c.2639C>T (p.Arg880Gln) mutation. Colored symbols are explained in the legend in the lower part of the figure. The lower-left arrow indicates the 

proband 04-170. Our patient and his brother both carried the c.2639G>A (p.Arg880Gln) mutation in homozygosis and were azoospermic. The parents’ DNA 

samples were not available for testing, but being the mutation rare it can be assumed that the parents were both heterozygous carriers. The brothers’ father 

died of lung cancer and the mother was treated for colon cancer. Several other members of the family suffered various types of cancer, though all had children 

(not reported). 
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Figure 3. Expression evaluation of the FANCA gene. Quantitative RT-PCR (qRT-PCR) analysis was performed to evaluate FANCA expression in biopsy 

samples of different types of adult testis histologies: i) three SCOS (Sertoli Cell-Only Syndrome); ii) one SGA: maturation arrest at the spermatogonial level; 

iii) one SCA: maturation arrest at the spermatocytic level. Two samples with obstructive azoospermia (OA) were used as internal controls. Samples were first 

characterized by testing for four spermatogenic markers expressed at different stages of spermatogenesis: PRM2 (spermatids/mature spermatozoa); CDY1 

(spermatids); BRDT (pachytene spermatocytes/round and elongating spermatids) and  

DAZ (spermatogonia/early spermatocytes).  

 

Figure 1. Expression analysis of the ADAD2 gene.  
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Figure 2. Investigation on patient carrying the FANCA mutation. 
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Figure 3. Expression evaluation of the FANCA gene  
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Supplementary Materials and Methods 1 

Whole-exome Sequencing 2 

Briefly, the qualified genomic DNA was randomly fragmented to an average size of 200-400 bp 3 

and then, AdA 5'- and 3'-adaptors were ligated to the 5'- and 3'-ends of the fragments, 4 

respectively. The AdA adaptor-ligated fragments were amplified by PCR, and the PCR products 5 

were used for the follow-up exon captured. During the exon capture, the exon fragments 6 

hybridized with the capture kit probes stably and were therefore captured effectively. The 7 

captured exon fragments were purified by DynabeadsM-280 Streptavidin Bead purification and 8 

were further amplified by another round PCR. Then, the PCR products were circularized and the 9 

resulting double strand (ds) circles were digested with Ecop15. Among these digested 10 

fragments, small fragments were collected after bead purification. Similar to the AdA adaptor 11 

ligation, AdB were ligated to both end of the purified fragments (aforementioned). These 12 

fragments were denatured into two single strands (ss) and the target strands were selected for 13 

the circularization. The ss circles as templates were amplified to be DNA nanoballs (DNBs). 14 

DNBs were loaded on the slides and sequenced on the Complete Genomics' platform with a 100x 15 

mean coverage depth. 16 

Bioinformatic analysis 17 

First, the base-calling software received data from the imager after each reaction cycle to create 18 

raw data. Exome reads were analysed using a proprietary technology based on Teramap for 19 

alignment on GRCh37 (hg19) reference sequence. According to the alignment results, regions of 20 

the genome deemed likely to differ from the reference genome were identified. Then, individual 21 

reads that were likely to lie in those regions were collected and a local de novo assembly was 22 

performed. Next, based on the initial mapping and assembly results, a probability statistical 23 

model (Bayesian Modeling) was applied to call variants by computing a probability ratio for any 24 

two hypotheses from the optimization step; variant calls are then made based on the most likely 25 

hypothesis according to this Bayesian probability model. Variants extracted from those 26 

hypotheses with a likelihood exceeding the significance threshold were reported. 27 

Variants filtering 28 

Firstly, standard filtering was applied to all samples. Briefly, we selected missense variants, stop 29 

gains/losses, frameshift insertions/deletions, and filtered out common polymorphisms (≥5% in 30 

the general population) after consulting the dbSNP 138 and the 1000G 31 

(http://www.1000genomes.org). Variants displaying low-quality reads were filtered out and the 32 

Integrative Genomics Viewer (IGV) was employed to exclude eventual false positive calls. After 33 

applying the abovementioned filter, we applied the recessive model approach and filtered for 34 
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homozygous autosomal variants for which the global minor allele frequency (MAF) was ≤0.05 or 35 

not reported. Overall, obtained data was further filtered according to their potentially damaging 36 

effect predicted on the basis of the SIFT, Polyphen2, Mutation Taster, Mutation Assessor, 37 

RadialSVM, LRT and LR prediction tools. An index of pathogenicity was created as a score 38 

calculated on the basis of the seven prediction tools employed, each providing a value ranging 39 

from -1 (null probability of being a deleterious variant) to 1 (full probability of being a 40 

deleterious variant), as illustrated in Supplementary Table 3. Not all prediction tools were 41 

always available; therefore a ratio was calculated between the summary score of pathogenicity 42 

and the number of prediction tools available for a determined variant. We set an arbitrary 43 

threshold of pathogenic index≥0.7 for further prioritization of variants and considered of further 44 

interest only filtered homozygous variants that were present in genes with potential implication 45 

in the early phases of spermatogenesis (Supplementary Figure 1). Variants prioritized as 46 

described above were validated by Sanger sequencing (Supplementary table 2). Upon validation, 47 

since data currently available in the 1000 genomes project (1000G) and the Exome Server 48 

Project (ESP) include indistinctly men and women from different ethnic groups and do not 49 

provide any information about the spermatogenic phenotype of the healthy male controls 50 

reported, we tested the selected variants in a total of 150 normozoospermic men with the same 51 

geographic and ethnical origins. 52 

Molecular characterization of testis biopsy samples 53 

RNA were isolated from snap frozen adult testis biopsies collected from azoospermic patrients 54 

with different testis histology (obstructive azoospermia with normal spermatogenesis, SCOS, 55 

spermatogenic arrest at various stages). The extraction was performed through a combination of 56 

two commercially available kits, the TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA) and the 57 

AllPrep DNA/RNA kit (Sigma-Aldrich, St. Louis, MO, USA), according to the manufacturer’s 58 

instructions. cDNA synthesis was carried out using the High-Capacity cDNA Reverse 59 

Transcription Kit (Lifetechnologies, Foster City, CA, USA). qRT-PCR was performed using the 60 

TaqMan® Universal PCR Master Mix (Lifetechnologies, Foster City, CA, USA) with the following 61 

standard thermal cycler conditions: 40 cycles at 95 °C for 30 seconds and 60 °C for 1 min. 62 

Commercially available assays were employed to evaluate gene expression of four genes used 63 

for characterization(BRDT, CDY1, DAZ, PRM2) , the two target genes (ADAD2 and FANCA) and 64 

GAPDH, as reference gene for relative quantization of the target gene (Supplementary table 4). 65 

qRT-PCR runs were performed on a StepOne™ System (Applied biosystems, Carlsbad, CA, USA). 66 

Experiments were run in triplicates. 67 
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Supplementary Tables 

 

Supplementary Table 1. Clinical characteristics of the study population. 

C. Patients 

Sample Histology FSH LH T (nmol/L) 
Testis volume 

(left; right) 

11-151 SGA; sp- 12.1 7.01 17.7 15; 15 

12-056 SCOS 13.7 12.1 13.7 10; 10 

04-170 SCOS 25.6 5.9 15.3 12; 7 

12-611 SCA + hyposp; sp+ 13 6.9 23.1 10; 6 

D. Controls 

N. samples  
Mean Conc. 
(mill.ml-1) 

Mean Tot. Count 
(mill.) 

Mean Mot a+b (%) 
Mean Normal Forms 

(%) 

150 98.87 309.81 51.10 10.4 

SCOS= Sertoli-cell only syndrome. SGA= Spermatogonial arrest. SCA=Spermatocytic arrest.  

Sp-: no sperm retrieval; Sp+: retrieved sperm. N= reported as normal 
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Supplementary Table 2. Primers employed for candidate variants validation by Sanger sequencing 
A. WES analysis 

Gene Variant Forward  Reverse Size (bp) 

FANCA NM_000135.2: c.2639G>A, p.Arg880Gln TGCCAGTCTGCAGAAGGAAG TGTGTGTGTGGGCTGTTGAT 215 

ADAD2 NM_139174.3: c.1186C>T, p.Gln396* TGGCTGGCTGGAGTTCTC TGTAGAGGTGCAGGAAGACG 289 

MRO NM_001127176.1: c.382_383delCT, p.Leu128fs GGGAGCAGTTCCTGTGCTAT AGGAACCCAAACCTTTCCCC 185 
B. FANCA gene analysis 

Exon Variant Forward Reverse Size (bp) 

9 NM_000135.2: c.796A>G, p.Thr266Ala ACTAAGTCATTTACAGTCTGGGCT TTCTCTTGTGTGATGCAGGTAT 151 

19 NM_000135.2: c.1756G>A, p.Ala586Thr GGGAGCTGTGGGAAGAGAAG GAATTGCCTTCTCGCTGCTC 212 

26 NM_000135.2: c.2426G>A, p.Gly809Asp ACGCGACTGTGGAAGAAGAG ACCCTCATTCTCGTTGCAGG 232 
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 Index of pathogenicity (IP) was calculated according to the following formula: 

    
 Where k= number of available prediction tools.  

Supplementary Table 3. Algorithms employed to calculate the index of pathogenicity for variant 
prioritization. 

Algorithm Prediction Meaning Numeric value (u) 

SIFT T tolerated -1 

 D damaging 1 

 NA not assigned 0 

Polyphen B Benign -1 

 P probably damaging 0.5 

 D damaging 1 

 NA not assigned 0 

Mutation Assessor N neutral -1 

 L low -0.5 

 M medium 0.5 

 H high 1 

 NA not assigned 0 

RadialSVM T tolerated -1 

 D damaging 1 

 NA not assigned 0 

MutationTaster P polymorphism -1 

 D damaging 1 

 NA not assigned 0 

LRT N tolerated -1 

 D damaging 1 

 NA not assigned 0 

LR T tolerated -1 

 D damaging 1 
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Supplementary Table  4. Commercially available TaqMan gene expression assays. 

Gene Function Assay ID 

ADAD2 Target gene Hs00952793_g1 

DAZ Spermatogonia/early spermatocytes biomarker Hs00414014_m1 

CDY1 Spermatids biomarker Hs00371514_m1 

PRM2 Spermatids/mature spermatozoa biomarker Hs04187294_g1 

GAPDH Reference housekeeping gene Hs0275891_g1 

FANCA  Target gene  Hs01116668_m1 

 

 

Supplementary Table 5. Primers employed for resequencing of FANCA coding exons with a mean coverage depth lower than 20x. 

Gene Exon Position Forward primer Reverse primer Reference 

FANCA 
1 chr16:89882944_89883065 CGCAAGGCCTCGACCTGAG ATCGGGGAACCGGCGAAA 

This study 
24 chr16:89836971_89837042 ACACCACGCTCATGAGAACT ACGAGCTCATGAGTCCCTGG 
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Supplementary Figure 1. Flowchart. The scheme briefly resumes how variants were 

filtered and then prioritized in our cohort of patients, after standard filtering. We applied 

the recessive model approach and filtered for homozygous and hemizygous variants that 

presented a global MAF <0.05 or had no reported frequency. Prioritization was performed 

according to the probability of being pathogenic (index of pathogenicity: IP≥0.7) and then 

according to the implication of the gene in early phases of spermatogenesis. All prioritized 

variants were validated by Sanger and, upon validation, were tested in a group of 150 

normozoospermic controls. 

 

 

Supplementary Figure 2. Protein multiple alignment. The figure shows the partial 

sequence alignment of FANCA protein orthologs, performed by HomoloGene. As 

highlighted by the green box the Arginine in position 880 is highly conserved among 

species. 
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ABSTRACT 36 

The severest form of male factor infertility is non-obstructive azoospermia (NOA), which 37 

occurs in approximately 1% of all men in reproductive age.  Whole Exome Sequencing (WES) 38 

analysis has been successful in diagnosing the genetic cause of NOA especially for descendants 39 

of consanguineous families and familial cases of infertility. The aim of the present study was to 40 

test the diagnostic power of WES in sporadic azoospermia. For this purpose 5 sporadic NOA 41 

patients and 9 fertile controls were analyzed through WES combined with a high-resolution X-42 

chromosome specific array-CGH. The normozoospermic control group gives information about 43 

what extent normal spermatogenesis can tolerate potentially damaging variants and was also 44 

essential for a correct interpretation of deleterious mutations found in affected individuals. 45 

Four different models were employed: i) search for hemyzigous rare X-linked pathogenic 46 

mutations (MAF≤0.01); ii) oligogenic inheritance of low-frequency/rare mutations in 582 genes 47 

with a putative role during early spermatogenic stages; iii) synergistic effect of genes 48 

containing low-frequency/rare mutations belonging to the same biological pathway; iv) 49 

combined effect of proven genetic risk factors (common SNPs) reported in previous GWAS.  50 

We identified a novel X-linked candidate gene for early spermatogenic stages (RBBP7). Our 51 

analysis through the synergistic effect model (enrichment analysis), suggest that genes related 52 

to the actin family members and their regulation are valid candidate targets for further studies 53 

in relationship with NOA. Moreover, we provide novel piece of evidence on the association 54 

between impaired reproductive health and higher risk for neoplasms. Since multiple 55 

heterozygous and deleterious mutations in genes with a predicted role during early 56 

spermatogenic stages and genetic risk factors (even in homozygosis) were identified in the 57 

normozoospermic control group, the oligogenic model and the combined effect of multiple 58 

genetic risk factors are unlikely models for NOA. In conclusion for the first time in the literature 59 

we provide data on the exome in sporadic NOA patients and in normozoospermic controls. In 60 

addition, this study gives the most comprehensive data available so far in the literature on X 61 

chromosome linked mutations and CNVs in NOA patients. 62 
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INTRODUCTION 63 

Approximately 7% of the general population suffers from male infertility and in at least 15% of 64 

the cases this condition is related to genetic disorders that can be detected at the pre-65 

testicular, testicular and post-testicular level (Krausz 2011).The most severe phenotype of 66 

male infertility is non-obstructive azoospermia (NOA), which is characterized by the absence of 67 

spermatozoa in the ejaculate attributable to a testicular defect in sperm production. 68 

Klinefelter Syndrome (47,XXY) and Y-chromosome microdeletions are direct causes of NOA, 69 

but only in a small proportion (approximately 20%) of patients these genetic defects explain 70 

the abnormal spermatogenic phenotype, whereas for most the cause remains unidentified. 71 

Being spermatogenesis a complex process in which the concerted action of >2000 genes is 72 

required, a large proportion of idiopathic NOA is probably underlying a genetic origin. After the 73 

unrewarding application of the “candidate-gene approach”, genome-wide association studies 74 

(GWAS) became one of the most promising ways to characterize the genetic basis of 75 

spermatogenic impairment (Krausz et al. 2015 and references therein). Various GWAS studies 76 

were performed in the United States (Aston & Carrell 2009; Kosova et al. 2012) and China (Hu 77 

et al. 2014)(Hu et al. 2011; Zhao et al. 2012; Ni et al. 2015) but the clinical relevance of the 78 

findings were not as useful as expected because of discordant results between studies, as well 79 

as of the low effect size of the conferred risk by the identified SNPs. Nonetheless, SNP-array 80 

based GWAS delivered the conclusive information that common polymorphisms do not 81 

contribute individually to a clinically significant risk for severe male infertility phenotypes. 82 

Another array-based approach, array-CGH focusing on whole-genome (Tuttelmann et al. 2011; 83 

Stouffs et al. 2012; Lopes et al. 2013) and specifically on the X chromosome (Krausz et al. 2012; 84 

Yatsenko et al. 2015) have investigated the involvement of copy number variations (CNVs) in 85 

spermatogenic impairment. All these studies converged on the hypothesis that patients have a 86 

significantly higher CNV burden compared to controls. These studies represented a starting 87 

point for subsequent identification of variants/mutations with potential clinical relevance (Lo 88 

Giacco et al. 2014; Chianese et al. 2014; Yang et al. 2015). 89 

With the advent of next generation sequencing (NGS), a Chinese study has focused on sporadic 90 

non-obstructive azoospermia (Li et al. 2015). The study based on the analysis of 654 candidate 91 

genes in >1400 individuals found that NOA patients have a significantly higher number of rare, 92 

non-silent mostly heterozygous variants in genes that are epigenetic regulators of 93 

spermatogenesis(Li et al. 2015). Exome analysis has been successful especially for descendants 94 

of consanguineous families and familial cases of infertility. Concerning sporadic azoospermia, 95 

the situation is more complex and, since the infertile trait undergoes negative selection, at 96 
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least three scenarios can be predicted. First, there is a possibility that rare or de novo large-97 

effect mutations are involved in these pathological conditions; in this regard, the X 98 

chromosome represents one of the most exciting target for both its enrichment in genes 99 

involved in spermatogenesis and its hemizygous state in males, which implies a direct effect of 100 

a damaging mutation. Second, an alternative pathogenic mechanism can be related to the 101 

presence of multiple low frequency heterozygous pathogenic mutations in candidate genes for 102 

spermatogenic impairment (oligogenic inheritance) or mutations in genes belonging to the 103 

same biological pathway (synergistic effect). Finally a third scenario can be a combined effect 104 

of proven genetic risk factors (SNPs) for impaired spermatogenesis (SNPs). 105 

In order to advance our understanding of genetic factors in male infertility, we performed 106 

Whole Exome Sequencing (WES) in 5 Non-Obstructive Azoospermic (NOA) patients affected by 107 

Sertoli Cell-Only Syndrome (SCOS) and Spermatogenic arrest. The reason for selecting these 108 

phenotypes is related to the hypothesis that the number of genes involved in early phases of 109 

spermatogenesis is limited to a few hundreds instead of thousands. In this regard, previous re-110 

sequencing studies of a few candidate genes in small study populations including highly 111 

selected NOA patients have been already successful (Miyamoto et al. 2003; Choi et al. 2010; 112 

Mou et al. 2013; Yatsenko et al. 2015; Yang et al. 2015). In addition, we analyzed 9 fertile 113 

normozoospermic controls overall providing data on the two extremes of spermatogenesis 114 

(from SCOS to normozoospermia belonging to the 95th percentile of normal values). 115 

Besides WES, aimed at the identification of Single Nucleotide Variants (SNVs), we also 116 

performed a high resolution X chromosome array-CGH analysis to define the Copy Number 117 

Variations (CNVs) status of each patient. For the first approach, we have used two types of 118 

analyses: i) a “discovery-oriented” approach, which consisted in the extrapolation of all X 119 

chromosome-linked variants from the exome data; ii) a “hypothesis-driven” analysis, which 120 

was performed by filtering data against a panel of autosomic genes predicted to be involved in 121 

early germ cell development or reported as validated genetic risk factors for NOA. Finally, a 122 

pathway and diseases enrichment analysis was performed in all autosomic genes containing 123 

low frequency pathogenic mutations. This is the first WES study providing information not only 124 

on affected individuals but also on normozoospermic men. The latter serves to understand to 125 

what extent normal spermatogenesis can tolerate potentially damaging variants in genes 126 

involved in early phases of spermatogenesis. Moreover, data on normozoospermic men was 127 

also essential for a correct interpretation of deleterious mutations found in affected 128 

individuals. By performing this comprehensive analysis, we were able to assess the viability of 129 

different pathogenic models for diagnostic purposes.  130 

 131 
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MATERIALS AND METHODS 132 

Study population 133 

A total of 14 subjects (5 patients and 9 controls) were included in this study. Patients referred 134 

to the Fundació Puigvert for infertility problems and were selected according to the following 135 

inclusion criteria: i) azoospermia due to either maturation arrest or pure SCOS; ii) normal 136 

karyotype; iii) absence of Y-chromosome microdeletions and iv) absence of all known causes of 137 

azoospermia. Clinical characteristics are reported in supplementary table 1. Controls were 138 

normozoospermic and fertile men referring to the same clinic in order to undergo vasectomy. 139 

In five of the controls, sperm counts were above the 95th percentile, whereas the remaining 140 

had sperm counts ranging within the 25th and 50th percentile. Clinical characteristics are 141 

reported in Supplementary Table 1. All recruited subjects signed an informed consent, upon 142 

approval by the local ethical committee. 143 

 144 

Whole-exome Sequencing 145 

Genomic DNA was extracted from peripheral blood samples using the salting-out method. 146 

Library preparation and whole-exome analysis were performed as service at BGI TECH 147 

SOLUTIONS (Hong Kong) co., LIMITED. Briefly, the qualified genomic DNA was randomly 148 

fragmented to an average size of 200-400 bp and then, AdA 5'- and 3'-adaptors were ligated to 149 

the 5'- and 3'-ends of the fragments, respectively. The AdA adaptor-ligated fragments were 150 

amplified by PCR, and the PCR products were used for the follow-up exon captured. During the 151 

exon capture, the exon fragments hybridized with the capture kit probes stably and were 152 

therefore captured effectively. The captured exon fragments were purified by DynabeadsM-153 

280 Streptavidin Bead purification and were further amplified by another round PCR. Then, the 154 

PCR products were circularized and the resulting double strand (ds) circles were digested with 155 

Ecop15. Among these digested fragments, small fragments were collected after bead 156 

purification. Similar to the AdA adaptor ligation, AdB were ligated to both end of the purified 157 

fragments (aforementioned). These fragments were denatured into two single strands (ss) and 158 

the target strands were selected for the circularization. The ss circles as templates were 159 

amplified to be DNA nanoballs (DNBs). DNBs were loaded on the slides and sequenced on the 160 

Complete Genomics' platform with a 100x mean coverage depth. Exome coverage with at least 161 

40x ranged from 85-88%; with at least 20x ranged from 92.4% to 95.56%. 162 
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As for sex chromosomes a 101x mean coverage depth was achieved with 85% of exons 163 

displaying a mean coverage depth higher than 20x.  164 

Early Spermatogenic candidate Gene (ESG) list  165 

A list of autosomic genes with potential role in early spermatogenesis was generated by 166 

reviewing data from MGI - Mouse Genome informatics (http://www.informatics.jax.org/), 167 

Gene Ontology (GO) Consortium (http://geneontology.org/), Uniprot 168 

(http://www.uniprot.org/) and PubMed (https://www.ncbi.nlm.nih.gov/pubmed). Briefly, we 169 

selected genes in which KO or mutated mice were azoospermic due to problems in the first 170 

stages of spermatogenesis; then, we filtered for genes with a GO term related to the early 171 

spermatogenic stages in the Gene Ontology Consortium and finally we added genes with a 172 

reported function and expression in the early spermatogenic stages in Uniprot and PubMed. A 173 

total of 582 candidate genes were selected and were used for a “hypothesis-driven” analysis of 174 

whole exome data in the two groups of subjects with extreme semen phenotypes i.e. from 175 

pure SCOS or spermatogenic arrest to controls with a extremely high sperm counts (above the 176 

95th percentile) (see Supplementary Information). 177 

Bioinformatic analysis 178 

The bioinformatic analysis of the sequencing data generated from the Complete Genomics' 179 

Sequencing Platform was performed. First, the base-calling software received data from the 180 

imager after each reaction cycle to create raw data. Exome reads were analysed using a 181 

proprietary technology based on Teramap for alignment on GRCh37 (hg19) reference 182 

sequence. According to the alignment results, regions of the genome deemed likely to differ 183 

from the reference genome were identified. Then, individual reads that were likely to lie in 184 

those regions were collected and a local de novo assembly was performed. Next, based on the 185 

initial mapping and assembly results, a probability statistical model (Bayesian Modeling) was 186 

applied to call variants by computing a probability ratio for any two hypotheses from the 187 

optimization step; variant calls are then made based on the most likely hypothesis according to 188 

this Bayesian probability model. Variants extracted from those hypotheses with a likelihood 189 

exceeding the significance threshold were reported. 190 

Variants filtering 191 

Firstly, standard filtering was applied to all samples. Briefly, we selected non-silent single 192 

nucleotide variants (missense variants, stop gains/losses, start gains/losses, splice site 193 

mutations), and filtered out common polymorphisms (≥5% in the general population) after 194 

consulting the dbSNP 138 and the 1000G  and 1000G-European (CEU) 195 

http://www.informatics.jax.org/
http://geneontology.org/
http://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/pubmed
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(http://www.1000genomes.org). Variants displaying low-quality reads were filtered out and 196 

the Integrative Genomics Viewer (IGV) was employed to exclude eventual false positive calls 197 

and we selected variants with alternate allele read ratio ≥ 0.25. Due to the inherent inability of 198 

WES to provide fully reliable data on small insertions/deletions (indels) (Lam et al. 2011) only 199 

the Single Nucleotide Variants (SNVs) were taken into consideration for further analyses. 200 

We applied two different filters for X-linked and autosomal variants. As for X-linked variants, 201 

we filtered for variants for which the global Minor Allele Frequency (MAF) was ≤0.01 or not 202 

reported. Concerning the autosomal variants we filtered for low frequency variants 203 

(MAF≤0.05) and then we crossed with the list containing 582 early spermatogenesis candidate 204 

genes. 205 

Overall, obtained data was further filtered according to their potentially damaging effect 206 

predicted on the basis of the SIFT, Polyphen2, Mutation Taster, Mutation Assessor and 207 

FATHMM prediction tools. An in-house index of pathogenicity was created as a score based on 208 

five prediction tools, each providing a value ranging from 0 (null probability of being a 209 

deleterious variant) to 1 (full probability of being a deleterious variant), as illustrated in 210 

Supplementary Table 2. Not all prediction tools were always available; therefore a ratio was 211 

calculated between the summation score of pathogenicity and the number of prediction tools 212 

available for a given variant. We set an arbitrary threshold of index of pathogenicity ≥0.7 for 213 

further prioritization of variants. In addition, in order to identify putative large effect size 214 

mutations causing azoospermia, in the patients’ group we filtered out those genes containing 215 

pathogenic variants identified also in the controls’ group.  216 

Variants prioritized as described above were validated by Sanger sequencing and, upon 217 

validation, were taken into consideration for interpretation. For RBBP7 a group of 150 218 

normozoospermic controls of the same geographic and ethnical origin (Supplementary Table 219 

3). 220 

Furthermore, for both patients and controls we estimated the load of low frequency or rare 221 

and potentially damaging variants by filtering in variants with MAF≤0.05 and MAF≤0.01 with 222 

an IP≥0.7. 223 

Enrichment analysis  224 

WebGestalt (http://www.webgestalt.org/) was used for Kyoto Encyclopedia of Genes and 225 

Genomes (KEGG) pathway and disease association enrichment analysis. Briefly, the enrichment 226 

analyses consisted in assessing whether the number of mutated genes belonging to a specific 227 

pathway or disease was over-represented in the patients’ group. First, as no data about early 228 

spermatogenic pathways is available in these databases, we performed an enrichment analysis 229 

http://www.1000genomes.org/
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of the 582 ESG genes in order to assess which enriched pathways or disease were associated 230 

with spermatogenic impairment. Then, we selected all autosomal genes containing pathogenic 231 

low frequency variants (MAF≤0.05) in both groups of patients and controls and we performed 232 

the same enrichment analyses. We used a corrected p-value <0.05 after Benjamini&Hochberg 233 

adjustment to consider enrichments as significant. The control group was used to define which 234 

enrichments were specific to the patient. Finally, we crossed the patients’ specific enriched 235 

pathways and diseases with those identified in ESG list. 236 

Search for the presence of selected SNPs and low-frequency mutations previously reported in 237 

GWAS and NGS based gene panel studies. 238 

In order to investigate the presence of multiple genetic risk factors with putative combined 239 

negative effect on spermatogenesis, we searched in the WES data for SNPs associated to NOA 240 

previously described in Genome Wide Association Studies (GWAS) (Krausz et al. 2015 and 241 

reference therein). 242 

Quantitative RT-PCR. 243 

RNA was isolated from snap-frozen testis biopsies collected from azoospermic patients with 244 

different testis histology (obstructive azoospermia with normal spermatogenesis, SCOS, 245 

spermatogenic arrest at various stages). The extraction was performed through a combination 246 

of two commercially available kits, the TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA) and the 247 

AllPrep DNA/RNA kit (Sigma-Aldrich, St. Louis, MO, USA), according to the manufacturer’s 248 

instructions. cDNA synthesis was carried out using the High-Capacity cDNA Reverse 249 

Transcription Kit (Lifetechnologies, Foster City, CA, USA). qRT-PCR was performed using the 250 

TaqMan® Universal PCR Master Mix (Lifetechnologies, Foster City, CA, USA) with the following 251 

standard thermal cycler conditions: 40 cycles at 95 °C for 30 seconds and 60 °C for 1 min. 252 

Commercially available assays were employed to evaluate gene expression of four genes used 253 

for molecular characterization (BRDT, CDY1, DAZ, PRM2) of the testis phenotype (see 254 

supplementary table 4).  255 

Quantitative RT-PCR (qRT-PCR) analysis was performed to evaluate expression of RBBP7 and 256 

GAPDH (as reference gene) in 11 testis biopsies with different types of testis histologies: 3 257 

SCOS, 3 spermatogonial arrest, 1 spermatocytic arrest and 4 obstructive azoospermia. qRT-PCR 258 

runs were performed on a StepOne™ System (Applied biosystems, Carlsbad, CA, USA). 259 

Experiments were run in triplicates. 260 

 261 

 262 
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High resolution X-chromosome specific array-CGH 263 

To define X-linked CNVs present in patients, we performed an X-chromosome high resolution 264 

array-CGH as described in(Krausz et al. 2012). Briefly customized array-CGH platforms (custom 265 

8×60 K, Agilent Technologies, Santa Clara, CA, USA) were generated using the eArray software 266 

(http://earray.chem.agilent.com/); 53069 probes (60-mer oligonucleotides) were selected 267 

from those available in the Agilent database and cover the whole X chromosome, including Xp 268 

and Xq pseudoregions, with a medium resolution of 4 Kb. Four replicate probe groups, with 269 

every probe present in two copies on the platform, were designed in regions containing mouse 270 

infertility-associated genes i.e. sperm protein associated with the nucleus, X-linked family 271 

members (SPANX); testis expressed 11 TEX11, TAF7-like RNA polymerase II, TATA box binding 272 

protein (TBP)-associated factor (TAF7L). In these regions, the medium resolution is 2 Kb. The 273 

array also included, for the normalization of copy number changes, Agilent control clones 274 

spread along all autosomes (6842 probes). As a reference DNA, we used the same 275 

normozoospermic subject for all the study population. This control DNA was already 276 

characterized for CNV content in previous array-CGH experiments against eight different 277 

normospermic controls and presented one private gain of 27 Kb mapping to Xcentr, which was 278 

not considered for the frequency analyses. Finally, we filtered out those CNVs that have been 279 

identified in the cohort of 103 normozoospermic controls analyzed in our previous study 280 

(Krausz et al. 2012). 281 

 282 

RESULTS 283 

Search for X-chromosome linked mutations 284 

Since the X chromosome represents one of the most exciting targets for both its enrichment in 285 

genes involved in spermatogenesis and its hemizygous state in males, which implies a direct 286 

effect of a damaging deletion, we first focused on variants linked to this chromosome by using 287 

two approaches: i) extrapolation of X-linked variants from the whole exome sequencing data; 288 

ii) analysis of X-linked CNVs from high resolution X-chromosome specific array-CGH.  289 

Screening for x-linked single nucleotide variants identified through WES. 290 

By WES, we did not identify differences regarding the X-linked mutation load between patients 291 

and controls. We identified on average a total of 293±4.51 variants in patients and 292 

283.1±13.71 in controls. Similarly, after filtering for MAF≤0.01 and pathogenicity, the mutation 293 

load did not differ between groups. (Table1.) 294 

http://earray.chem.agilent.com/
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Variants identified in the patient’s group: after the filtering for rare (MAF≤0.01) and predicted 295 

as pathogenic X-linked variants as described in Material&Methods (M&M), we identified 2 296 

variants: the NC_000023.11(NM_002893.3):c.16+1G>A in RBBP7 and the NM_000032.4: 297 

c.1559C>Tin ALAS2 gene. However, since only RBBP7 may have a direct role during early 298 

phases of spermatogenesis since it has been described important for the regulation of cell 299 

proliferation/differentiation and accurate chromosome segregation in oocytes, only this gene 300 

has been furthered studied. The carrier of this mutation (patient 13-188) is affected by 301 

spermatogenic arrest at spermatogonial level. The mutation is located in the first base of 302 

intron 1, in the splice donor position of exon 1 in RBBP7 gene and affects the longest transcript 303 

and may alter the protein formation. The variant has never been described, however, in order 304 

to discard the possibility of a common Spanish variant, 150 normozoospermic controls were 305 

sequenced and the mutation was absent. Interestingly, none of the controls analyzed by WES 306 

presented any rare deleterious mutations in the RBBP7 exons or exon-intron junctions (Table 307 

1).  308 

Expression analysis: in order to further characterize RBBP7, we performed a quantitative RT-309 

qPCR analysis. This analysis shows a high RBBP7 mRNA expression in testis with the highest 310 

expression in spermatogonia. (Figure 1)  311 

Variants identified in the control’s group: after the filtering described in M&M, 2 rare and 312 

pathogenic variants have been observed in the controls’ group: a splice site variant 313 

(NM_001001671.3:c.2326G>T) in the MAP3K15 and a missense variant NM_080873.2: 314 

c.875G>T in the ASB11 gene. Available data on the two genes do not suggest a potential role 315 

during early spermatogenic stages (Table 1).  316 

Screening for X-linked Copy Number Variations (CNVs):  317 

A high resolution X chromosome-specific array-CGH analysis was performed in the patients 318 

group. After filtering out CNVs identified in the 103 controls analyzed in our previous study 319 

(Krausz et al. 2012), we indentified the following rearrangements: patient 13-178 affected by 320 

SCOS presented a deletion located 42.5kb downstream of ZC4H2 and 470kb upstream of 321 

MTMR8 gene (CNV1). To date, no data about these two genes and male infertility has been 322 

reported in the literature. Patient 12-086, also affected by SCOS, presented a deletion 323 

involving SPANXA2-OT1 gene (CNV3). SPANX- genes belongs to Cancer Testis Antigen with 324 

expression restricted to mature germ cells. Finally, in patient 13-567 affected by 325 

spermatogenic arrest at the spermatocytic level, we could identify a deletion located in 326 

Xq11.1-2; however, no genes are located neither inside nor in the maximum size +/- 500kb 327 
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(CNV2) Concerning the two remaining patients (11-332 and 13-188) no patient-specific CNVs 328 

were detected. These results are summarized in Table 2. 329 

WES: search for autosomal gene variants: 330 

Similar to the X chromosome, we did not identify differences regarding the autosomal 331 

mutation load between patients and controls. We identified on average a total of 332 

19302.8±297.14 variants in patients and 19409.14± 606.4 in controls. Similarly, after filtering 333 

for MAF≤0.05 and pathogenicity, the mutation load did not differ between groups. (Table 3) 334 

Search for variants in genes with potential involvement in early stages of 335 

spermatogenesis. 336 

This part of the analysis consisted in crossing all autosomal low-frequency (MAF≤0.05) and 337 

predicted as pathogenic variants with the list of 582 early spermatogenic candidate genes. 338 

(further information in M&M). No homozygous variants with the above characteristics were 339 

identified in the study population.  340 

Heterozygous mutations identified in the patients’ group: we identified 4 different pathogenic 341 

variants in 3 genes (ESPN, FHOD3 and SPIRE2). According to SNP Effect database 342 

(http://snpeffect.switchlab.org/menu) and the public version of the Human Gene Mutation 343 

Database (HGMD) (http://www.hgmd.cf.ac.uk/ac/search.php) these mutations have not been 344 

reported previously in patients. However, it has been described that other pathogenic variants 345 

in these genes leading to an adverse phenotype are inherited by autosomal recessive model 346 

(Table 4 and 5). 347 

Heterozygous variants identified in the controls’ group: we identified a total of 9 pathogenic 348 

variants in 9 genes (SAFB, EXD1, CLCN2, PIWIL3, M1AP, RHOB, PRDM9 and SMC2). Three 349 

controls did not present variants in any of the genes belonging to the ESG list, whereas three 350 

controls presented 2 mutated genes/person: STRA6 and SAFB in control 13-055; EXD1 and 351 

CLCN2 in control 13-151 and PRDM9 and SMC2 in control CT181. In order to identify potential 352 

interaction between the two proteins resulted mutated in the same subject, we performed a 353 

search in the STRING database (http://string-db.org/) showing no interaction among them. The 354 

remaining three controls presented only one ESG mutation (Table 4 and 5). 355 

Search for the presence of selected SNPs and low-frequency variants previously reported in 356 

GWAS and NGS-based gene panel studies. 357 

http://snpeffect.switchlab.org/menu
http://www.hgmd.cf.ac.uk/ac/search.php
http://string-db.org/
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In order to investigate the combined effect of previously reported genetic risk factors, we 358 

crossed our WES data with the 10 exonic autosomal risk factors for NOA (common SNPs) 359 

derived from GWAS. We observed on average 5.2 SNPs in the patients’ group and 5.7 SNPs in 360 

the controls’ group (Table 6). 361 

Pathway and disease enrichment analysis: search for multiple variants in genes 362 

belonging to the same pathway/disease. 363 

The analysis of enrichment was performed by WebGestalt website as described in M&M. 364 

Given that in this database there are no specific pathways dedicated to early spermatogenic 365 

processes, as a first step we analyzed the enrichment for the 582 ESGs. We obtained 55 366 

enriched KEGG pathways and 530 enriched diseases (top ten diseases are reported in Table 7). 367 

Then, we performed the same enrichment analyses in the patients’ group (with a total of 398 368 

genes containing mutations at low frequency (MAF≤0.05) and predicted as pathogenic) and in 369 

the control’s group (798 mutated genes with the same characteristics). We observed a total of 370 

19 enriched pathways in the patients’ group, 54 enriched pathways in the controls’ group, and 371 

201 and 501 enriched diseases in the patients’ and controls’ group, respectively. After crossing 372 

the results from the patients and the controls’ group we identified 9 patient-specific enriched 373 

KEGG pathways and 92 patient-specific enriched diseases. 374 

Concerning the pathway enrichment, to assess which of the 9 patient-specific pathways are 375 

related to early spermatogenic stages we crossed them with the 55 enriched pathways from 376 

the ESG list and identified a total of 3 common pathways: arrhythmogenic right ventricular 377 

cardiomyopathy (ARVC), regulation of actin cytoskeleton and cysteine and methionine 378 

metabolism. A total of 12 genes containing 14 pathogenic rare variants were involved in these 379 

three pathways. In order to discard that these variants could correspond to common Spanish 380 

variants we performed a search in Ensembl database for their MAF in the Iberian population 381 

and all of them were low frequency/rare variants. (Supplementary Table 5) The most 382 

interesting KEGG pathway is the regulation of actin cytoskeleton due to its putative role during 383 

spermatogenesis. Patient 13-567 (spermatocytic arrest) presented multiple genes mutated 384 

(ITGA3, ITGA11, ITGAD) belonging to this pathway. These three genes are belonging to the 385 

integrin gene family and their expression level in testis is low or medium according to the 386 

protein atlas database. No pathogenic variants in these genes were identified in the controls’ 387 

group. 388 
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Regarding disease enrichment analyses, in order to asses which patient-specific disease is 389 

more likely associated to male infertility, we crossed the 92 enriched diseases defined as 390 

patient-specific with the top ten enriched diseases from the ESG list. We obtained a total of 391 

three enriched diseases: neoplasms, Fanconi anemia/syndrome and urogenital neoplasms. A 392 

total of 20 genes containing 19 different pathogenic variants in genes associated to these 393 

diseases were observed. Looking at the number of genes mutated in each patient we observed 394 

that 4/5, 2/5 and 5/5 patients presented two or more genes mutated in neoplasms, Fanconi 395 

anemia/syndrome and urogenital neoplasms, respectively. Concerning the MAF in the Iberian 396 

population, with the exception of the variant in POLI gene, all the remaining 18 variants were 397 

at low frequency also in this population (Supplementary Table 6). 398 

 399 

DISCUSSION 400 

The introduction of high-throughput sequencing has exponentially improved diagnostic and 401 

research yields in relation to both rare and common complex diseases. In the field of 402 

andrology, exome analysis has been successful especially for descendants of consanguineous 403 

families and familial cases of infertility. While in consanguineous cases rare homozygous 404 

mutations are responsible for the phenotype, in sporadic azoospermia such a scenario is highly 405 

unlikely. In sporadic cases of severe spermatogenic impairment a major role for rare or de 406 

novo large-effect size mutations in the X chromosome is predicted based on the lack of a 407 

compensatory allele. Concerning the role of low-frequency/rare autosomal mutations the 408 

most likely genetic condition is a heterozygous status which may be responsible for the 409 

phenotype by two predicted mechanism: i) acting as dominant negative (single mutation) or ii) 410 

multiple mutations in genes related to early spermatogenic stages (oligogenic inheritance) or 411 

involved in the same biological pathway (synergistic effect). An alternative scenario foresees a 412 

combined effect of multiple genetic risk factors for NOA in heterozygous or homozygous status 413 

(common SNPs). In this study we aimed to address various issues in relationship with sporadic 414 

SCOS and spermatogenic arrest. Our first aim was to identify novel X-linked candidate genes 415 

and enriched pathways /diseases associated with NOA.  Secondly, we wanted to define the 416 

diagnostic potential of whole exome sequencing combined with the X chromosome array-CGH 417 

in the above pathological conditions by testing various models (oligogenic, synergistic and 418 

combined risk factors). Moreover, by analyzing normozoospermic controls, we also obtained 419 

information about to what extent normal spermatogenesis can tolerate potentially damaging 420 

variants in genes involved in early phases of spermatogenesis. Data from controls has been 421 
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also relevant for the filtering of the mutations encountered in patients and for data 422 

interpretation.  423 

Concerning the first aim, here we report a novel X-linked candidate gene for the early stages of 424 

spermatogenesis. We report a variant located in the splice donor position of the intron 1 in 425 

RBBP7 gene ((NC_000023.11(NM_002893.3):c.16+1G>A)) in a patient affected by 426 

spermatogonial arrest. RBBP7 is a core histone-binding subunit that may target chromatin 427 

remodeling factors, histone acetyltransferases and histone deacetylases. This protein is 428 

involved in the regulation of cell proliferation and differentiation and is overexpressed in 429 

adrenal gland, testis and ovaries. Balboula et al. (2014) described that this protein regulates 430 

histone deacetylation during oocyte meiotic maturation and experiments with siRNA 431 

demonstrate that is essential for accurate chromosome segregation during meiosis (Balboula 432 

et al. 2014). Our expression analysis in testis biopsies with different histology corroborates 433 

that RBBP7 is highly expressed in testis and shows an overexpression in spermatogonia 434 

suggesting a role also in this cell type. In addition, detailed bioinformatic analysis using 435 

Ensembl genome browser indicates that RBBP7 presents only few pathogenic variants, with a 436 

maximum MAF of 0.0001, being truly uncommon in the general population. Moreover, the 437 

Exac database provides a Z score of +3.46 for missense variants and pLI score of 0.98. A 438 

positive Z scores indicate an intolerance to missense variants and therefore that the gene had 439 

fewer variants than expected. Regarding the pLI score, this determines the probability that a 440 

given gene is extremely intolerant to loss-of-function variation (Nonsense, splice acceptor, and 441 

splice donor variants caused by single nucleotide changes) considering pLI ≥ 0.9 as an 442 

extremely LoF intolerant gene. Therefore the observed scores for the RBBP7 gene indicates 443 

that it is under negative selection and is highly intolerant to changes in its sequence. Taking 444 

these results together, we propose RBBP7 as a novel genetic target for impaired 445 

spermatogenesis in human. Regarding ALAS2 mutation NM_000032.4:c.1559C>T 446 

(p.Pro520Leu) it has been previously associated with X-linked Sideroblatic Anemia when it is 447 

co-mutated wit HFE gene (Lee et al. 2006) and inherited by paternal transmission, excluding its 448 

association with azoospermia. Two other X-linked genes ASB11 and MAPK315 have been 449 

found with rare pathogenic mutations in two controls. Regarding ASB11 gene, it is associated 450 

with premature commitment to the neuronal cell lineage, premature post-mitotic neuronal 451 

differentiation and act as a regulator of embryonic and adult regenerative myogenesis in 452 

zebrafish. Concerning to MAP3K15 plays an essential role in apoptotic cell death triggered by 453 

cellular stresses. However even so, no potential role during early spermatogenic stages has 454 

been proposed up to now in any of these two genes. Moreover, bioinformatic analyses of 455 

ASB11 and MAP3K15 shows a Z score for missense mutations of -0.99 and -1.61 and a pLI score 456 
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for loss of function mutations of 0.16 and 0.00 respectively suggesting that these genes are not 457 

under negative selection and that their loss of function may be compensated for other genes. 458 

Finally, although it has been largely been demonstrated that X-linked CNVs are associated to 459 

male infertility (Krausz et al. 2015 and references therein) in this study we could only identify 460 

three non-relevant CNVs in three patients. These CNVs have low probability to have a negative 461 

effect during the early stages of spermatogenesis. Two patients’ specific CNVs (CNV1 and 462 

CNV2) are located in intergenic regions and no data on the presence of regulatory regions 463 

within these CNVs are available. The third deletion (CNV3) may affect SPANX gene family 464 

which belongs to Cancer Testis Antigen group and has a potential role during spermatogenesis, 465 

however its expression is restricted to mature spermatozoa and its function is associated to 466 

the late stages of spermatogenesis. 467 

 468 

Concerning the autosomal genes, we focused on low-frequency and predicted as pathogenic 469 

variants in relationship with various models. As expected, with the above characteristics only 470 

heterozygous mutations have been found. First, we searched for variants in genes with 471 

potential involvement in early stages of spermatogenesis in order to test the oligogenic 472 

inheritance model. Oligogenic inheritance is defined by phenotypic outcome (physical 473 

characteristic or disease predisposition) that is determined by mutations in more than one 474 

(few) genes involved in the same disease. One example in the field of andrology is central 475 

hypogonadism which may be due to multiple heterozygous pathogenic mutations located in 476 

key genes in the Hypothalamic-pituitary-gonadal axis(Tournaye et al. 2016). We have 477 

generated a list of 582 autosomal candidate genes, which are predicted to have a role during 478 

early spermatogenic stages according the mouse phenotype, GO terms, function, expression 479 

patterns and the literature. After filtering we have identified four heterozygous mutations in 480 

three candidate genes: ESPN, FHOD3 and SPIRE2. None of these genes was mutated in the 481 

controls’ group. Since no patients presented more than one variant, we exclude the possibility 482 

that the azoospermic phenotype is due to multiple mutations in ESG. However, although 483 

recessive inheritance has been described in relationship with these genes, we cannot discard 484 

that the variants identified in our NOA patients have a dominant negative effect. In order to 485 

verify this hypothesis a functional studies are needed. Regarding the variants identified in the 486 

controls’ group; nine variants in nine genes (STRA6, SAFB, EXD1, CLCN2, PIWIL3, M1AP, RHOB, 487 

PRDM9 and SMC2) have been identified. Interestingly enough, three controls presented 2 488 

mutations/person, and although these genes are involved in early phases of spermatogenesis 489 

no data indicate a direct interaction between the encoded proteins (String database and 490 

Pubmed). Given that also for these genes, recessive diseases have been reported, the lack of 491 
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functional consequences (normozoospermia) for the observed mutations excludes the 492 

possibility of dominant negative effect. Moreover, for two genes (STRA6 and CLCN2) the same 493 

variants have been already reported in heterozygosis in fertile men (Pasutto et al. 2007; Chen 494 

et al. 2013). Overall, our data was unable to provide evidence for a dysgenic/oligogenic cause 495 

of NOA and the fact that more than one variant in these genes was found in three 496 

normozoospermic men suggests that it is an unlikely model for NOA. Based on these data, we 497 

can speculate that rare/low-frequency and predicted as pathogenic mutations in heterozygosis 498 

in ESG are well tolerated in the absence of dominant negative effect. 499 

The enrichment analyses aimed at the investigation on the presence of an overrepresentation 500 

of genes (containing low-frequency predicted as pathogenic mutations) belonging to a specific 501 

pathway or disease. (Vockley et al. 2000) described “synergic heterozygosity” as a potential 502 

disease mechanism in some metabolic disorders with the idea that concurrent partial defects 503 

in more than one pathways, or at multiple steps in one pathway may lead to disease, even 504 

though no complete enzymatic deficiency is present. Regarding the genetics of male infertility, 505 

several hypomorphic variants may accumulate in specific pathways and would be consistent 506 

with the hypothesis that men from families in which both parents manifest sub-fertility more 507 

likely show more severe spermatogenic impairment. To this purpose, we used WebStalt for 508 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in order to define whether 509 

variants in genes belonging to specific pathways enriched in the early spermatogenesis are 510 

accumulated in individual patients. As KEGG database do not provide information about 511 

specific pathways related to early spermatogenic stages, we first performed the enrichment 512 

analyses in genes belonging to the ESG list. Among the 19 pathways, the regulation of actin 513 

cytoskeleton pathway is the most interesting since actin cytoskeleton is remodeled during 514 

germ cell formation and is involved in Blood-Testis Barrier (BTB) integrity and germ cell 515 

transport (Lie et al. 2010; Tang et al. 2015). One patient (13-567) affected by meiotic arrest 516 

presented multiple genes mutated (ITGA3, ITGA11 and ITGAD) belonging to this pathway. 517 

Integrin alpha 3 (ITGA3) was found expressed in the basement membrane of the seminiferous 518 

tubule, spermatocytes, spermatids and testicular spermatozoa (Schaller et al. 1993) and may 519 

stabilize spermatogenic cell attachment to Sertoli cell surfaces (Kierszenbaum et al. 2006) 520 

Although no data about ITGA11 and male infertility is available, this gene dimerizes with 521 

ITGB1, which is expressed in germ cells. (Schaller et al. 1993). Finally ITGAD is an Androgen 522 

Receptor (AR) regulated gene and its expression in murine Sertoli cell increase x1.92 in P10 523 

stage, coinciding with the start of meiosis (De Gendt et al. 2014). It is therefore plausible that 524 

multiple mutations in members belonging to the integrin gene family in this patient may act 525 

synergistically leading to meiotic arrest and therefore we propose that genes belonging to this 526 
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pathway are potential targets for future large scale screening. From a diagnostic point of view, 527 

although these mutations are predicted as deleterious, functional studies are needed to 528 

confirm their pathogenic role. Concerning the disease association enrichment analysis, we 529 

took in consideration the top ten enriched diseases identified in ESG and we crossed with the 530 

patient-specific enriched diseases. The analyses allowed the identification of three enriched 531 

diseases: neoplasms, Fanconi anemia/syndrome and urogenital neoplasms. Men affected by 532 

male infertility have been reported to be at higher risk for testis cancer (Olesen et al. 2016 and 533 

reference therein) and patients wih Fanconi anemia, a cancer prone disease, are infertile 534 

(Simhadri et al. 2014; Hotaling & Walsh 2009). Moreover, the association with neoplasms is in 535 

line with previous studies reporting higher morbidity (including cancers) and lower life 536 

expectancy in infertile men (Salonia et al. 2009; Eisenberg et al. 2013; Eisenberg et al. 2014; 537 

Ventimiglia et al. 2016). Analyzing patients individually, we observed that all patients 538 

presented more than one pathogenic variants in multiple genes belonging to the disease group 539 

“urogenital neoplasms”. Interestingly, three patients presented previously described 540 

mutations in OOG1 and MSH3 genes reported in patients affected by hereditary nonpolyposis 541 

colorectal carcinoma (Morak et al. 2011; Duraturo et al. 2011). 542 

Finally, the analysis of a possible combined effect of proven genetic risk factors (SNPs) for 543 

impaired spermatogenesis did not lead to a plausible explanation of NOA since the number of 544 

variants between patients and controls was similar. The fact that our normozoospermic 545 

controls carried more than one genetic risk factor for NOA, also in a homozygous status, the 546 

role of these SNPs in spermatogenesis is highly questionable.  547 

In conclusion, this is the first WES study providing information on all protein-coding genes 548 

(≥160.000 exons) not only on sporadic azoospermic individuals but also normozoospermic 549 

men. Moreover, this study gives the most comprehensive data available so far in the literature 550 

on X chromosome-linked variants and CNVs in highly selected NOA patients. One of our major 551 

findings is the identification of a novel X-linked candidate gene for impaired spermatogenesis 552 

(RBBP7), which represents a future genetic target for follow-up studies. Although WES has 553 

been successful in diagnosing genetic causes in descendants of consanguineous 554 

families/familial cases of infertility, concerning sporadic azoospermia its diagnostic power is 555 

relatively low. In fact, we can only provide a putative genetic cause for spermatogenic 556 

impairment in patient 13-188 presenting RBBP7 gene variant and in patient 13-567 who carries 557 

multiple variants in genes belonging to a pathway found to be enriched in genes involved in 558 

early stages of spermatogenesis (“regulation of actin cytoskeleton” pathway). Finally, we 559 

provide novel piece of evidence on the association between impaired reproductive health and 560 

higher risk for neoplasms. 561 
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Table 1. Load of rare and potentially pathogenic Single Nucleotide Variants (SNVs) in the X 

chromosome in: A. Patients; B. Controls 

A 
 

 
 
 
 
 
 
 
 
 
 

B. 
 

Control code 13-055 13-151 13-166 13-456 13-186 13-347 13-173 14-232 CT181 

Total X-linked SNV 302 263 266 286 289 303 281 288 270 

Non-silent variants 149 132 130 136 147 139 141 150 140 

Non-silent variants; 
MAF≤0.05 

23 12 11 17 19 13 19 18 17 

Non-silent variants; 
MAF≤0.01 (N genes) 

18 (15) 9 (7) 8 (7) 10 (9) 10 (8) 10 (8) 17 (11) 10 (10) 6 (5) 

Non-silent variants; 
MAF≤0.01; IP≥0.7 

1 0 0 0 0 0 1 0 0 

Genes MAP3K15           ASB11     

IP: Index of Pathogenicity 
Gene in bold and underlined: gene with a potential role during early spermatogenic stages 
Grey shadow: controls belonging to 95

th
 percentile 

  

Patient code 11-332 12-086 13-178 13-188 13-567 

Total X-linked SNV 297 285 291 296 296 

Non-silent variants 140 151 145 147 154 

Non-silent variants; 
MAF≤0.01 (N genes) 

10 (8) 19 (15) 12 (9) 21 (19) 16 (12) 

Non-silent variants; 
MAF≤0.01; IP≥0.7 

0 1 0 1 0 

Genes   ALAS2   RBBP7   
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Table 2. Copy Number Variations (CNVs) identified by High resolution X chromosome specific 

array-CGH 

Patient 
code 

CNV size 
description 

hg19 position 
Type 

of CNV 
Size (Kb Genes inside 

13-178 
(CNV1) 

Minimum size 
ChrX:6408545
6-64093216 

Loss 

7.76 - 

Maximum size 
ChrX:6407819
3-64105912 

27.72 - 

Maximum size +/- 
500Kb 

ChrX:6357819
3-64605912 

1027.72 
ZC4H2 and 

MTMR8 

13-567 
(CNV2) 

Minimum size 
ChrX:1436284
63-143633685 

 
Loss 

5.22 - 

Maximum size 
ChrX:1436270
43-143634843 

7.80 - 

Maximum size +/- 
500Kb 

ChrX:1431270
43-144134843 

1007.80 - 

12-086 
(CNV3) 

Minimum size 
ChrX:1403474
37-140616149 

Loss 

268.71 SPANXA2-OT1 

Maximum size 
ChrX:1403177
11-140673376 

355.67 
SPANXA2-OT1 
SPNAXA1/A2 

Maximum size +/- 
500Kb 

ChrX:1398177
11-141173376 

1355.67 

LNC00632 
 CDR1 

SPANXA1/A2 
SPANXA2-OT1 
SPANXB1/B2 

SPANXC 
SPANXD, 

MAGEC1/C3 
RNU6-2 and 

LDOC1 

11-332 No CNVs 
 

 
  

13-188 No CNVs 
 

 
  

 

 

 

 

 

 

 



131 
 

Table 3. Load of autosomic Single Nucleotide Variants (SNVs) with different MAF and 

predicted pathogenicity in: A. Patients; B. Controls 

A. 

Patient code 11-332 12-086 13-178 13-188 13-567 

Total autosomic 
SNVs 

19.752 19.563 19.014 19.101 19.084 

Non-silent variants 9.561 9.512 9.238 9.369 9.410 

Non silent variants 
MAF≤0.05 (N genes) 

988 (832) 982 (818) 1.064 (870) 1.063 (883) 1.194 (944) 

Non silent variants 
MAF≤0.05; IP≥0.7 

89 100 114 90 102 

 

B. 

Control code 13-055 13-151 13-166 13-456 13-186 13-347 13-173 14-232 CT181 

Total autosomic 
SNVs 

19.934 19.520 19.492 20.039 19.936 19.526 19.550 18.217 18.468 

Non-silent variants 9.800 9.543 9.762 9.794 9.791 9.519 9.669 8.926 9.094 

Non silent variants; 
MAF≤0.05 (N genes) 

1.101 
(896) 

1.020 
(852) 

1.176 
(961) 

1.079 
(857) 

1.084 
(884) 

1.491 
(1.186) 

1.117 
(889) 

1.021 
(834) 

1.139 
(940) 

Non silent variants; 
MAF≤0.05; IP≥0.7 106 103 111 85 100 126 91 123 90 

IP: Index of Pathogenicity 
Grey shadow: controls belonging to 95

th
 percentile 

 

 

 

 

 

 

 

 

 

 

 

 



132 
 

Table 4. Number of low frequency variants (MAF≤0.05) identified in early spermatogenic 

candidate genes in: A. patients; B. Controls 

A. 

 

 

 

 

 
 
 

 
B. 
 

IP: Index of Pathogenicity 
Grey shadow: controls belonging to 95

th
 percentile 

  

Patient code 11-332 12-086 13-178 13-188 13-567  

N variants MAF≤0.05 
 (N genes) 

28 (27) 28 (23) 28 (27) 26 (23) 41 (34) 

N variants  MAF≤0.05 
with IP≥0.7 

0 1 1 1 1 

Genes 
 

ESPN FHOD3 SPIRE2 FHOD3 

Control code 13-055 13-151 13-166 13-456 13-186 13-347 13-173 14-232 CT181 

N variants MAF≤0.05 
 (N genes) 

24 (23) 21 (19) 23 (22) 30 (27) 25 (24) 31 (29) 32 (29) 24 (23) 28 (25) 

N variants MAF≤0.05 
with IP≥0.7 

2 2 1 1 0 0 0 1 2 

Genes 
STRA6, 
SAFB 

EXD1, 
CLCN2 

PIWIL3 M1AP       RHOB 
PRDM9, 

SMC2 
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Table 5. Genotype/phenotype correlation of variants identified in candidate genes for early 

stages of spermatogenesis in: A. Patients; B. Controls 

 

A. 
 

 
 
B. 
 

Control code Gene Variant MAF 
Putative 

phenotype 

13-055 STRA6 NM_001199042.1: c.877C>T p.Leu293Phe 0.01499 SCOS 

13-055 SAFB NM_001201338.1: c.2101C>T p.Arg701Cys n.r MA 

13-151 CLCN2 NM_004366.5: c.1930C>G p.Arg644Gly 0.001303 SCOS 

13-151 EXD1 NM_001286441.1: c.106C>A p.Pro36Thr n.r MA 

13-166 PIWIL3 NM_001008496.3: c.1921G>A p.Val641Met 0.005469 MA 

13-456 M1AP NM_138804.4: c.1457G>C p.Arg486Pro 0.0001202 SCOS-MA 

14-232 RHOB NM_004040.2: c.262A>T p.Ser88Cys 0.00006 SCOS-MA 

CT181 PRDM9 NM_020227.2: c.1016T>A p.Ile339Asn 0.002908 MA 

CT181 SMC2 NM_001042550.1: c.1855G>T p.Ala619Ser 0.004801 SCOS-MA 
MAF: Minor Allele Frequency 
SCOS: Sertoli Cell Only Syndrome; MA: Maturation arrest at spermatogonial or spermatocytic arrest 
n.r: non reported 
 Grey shadow: controls belonging to 95

th
 percentile. 

 

 

 

 

 

 

 

 

 

 

 

Patient code Gene Variant MAF 
Putative  

phenotype 

12-086 ESPN NM_031475.2: c.2006C>T p.Pro669Leu 0.00029 SCOS 

13-567 FHOD3 NM_001281740.1: c.1948C>T p.Arg650Trp 0.01131 SCOS-MA 

13-188 SPIRE2 NM_032451.1: c.760C>T p.Arg254Cys n.r MA 

13-178 FHOD3 NM_001281740.1: c.3100C>A p.Pro1034Thr n.r SCOS- MA 
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Table 6. Analysis of the presence of genetic risk factors (common SNPs) either in heterozygosis 

(het) or in homozygosis (homo) in: A. Patients; B. Controls 

A. 

SNP Iberian MAF Gene  11-332 12-086 13-178 13-188 13-567 

rs10246939 0.5 TAS2R8 
  

homo homo homo 

rs3088232 0.17 BRDT 
  

het 
 

het 

rs323344 0.13 TEX15 
     

rs323345 0.13 TEX15 
     

rs5764698 0.44 SMC1B het homo het het het 

rs1801131 0.27 MTHFR homo 
  

het 
 

rs631357 0.14 KIF17 homo homo homo het homo 

rs34605051 0.12 JMJD1A 
 

homo 
   

rs2030259 0.34 JMJD1A 
 

homo het het 
 

rs11204546 0.34 OR2W3 het homo het homo het 

B.  

SNP 
Iberian 

MAF 
Gene 13-055 13-151 13-166 13-456 13-186 13-347 14-232 13-173 CT181 

rs10246939 0.5 TAS2R8 
 

het het het 
 

het het het 
 

rs3088232 0.17 BRDT 
 

het homo 
   

het 
  

rs323344 0.13 TEX15 het 
  

het 
     

rs323345 0.13 TEX15 het 
  

het 
     

rs5764698 0.44 SMC1B het het 
    

het homo homo 

rs1801131 0.27 MTHFR 
 

het het 
    

homo 
 

rs631357 0.14 KIF17 homo homo het homo homo homo homo homo homo 

rs34605051 0.12 JMJD1A 
  

het het het het 
 

het 
 

rs2030259 0.34 JMJD1A het het homo het homo het het het homo 

rs11204546 0.34 OR2W3 homo het homo het het 
 

het het het 
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Table 7. Enriched diseases associated to early stages of spermatogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
n.e: not significantly enriched 
n.a: not available. 
Adjusted p-value: corrected p-value after BH correction 
*Cancer or viral infections was found significantly enriched also in the controls’ group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ESG list: 582 genes Patients: 398 genes 

Disease associated N genes Adjusted p-value N genes Adjusted p-value 

Infertility 49 P=2.97e-44 n.e n.a 

Neoplasms 79 P=7.07e-41 17 P=0.0244 

Fanconi 
Anemia/syndrome 

39 P=6.53e-39 5 P=0.0441 

Infertility, Male 42 P=3.31e-37 n.e n.a 

Ataxia 
Telangiectasia 

32 P=9.59e-30 n.e n.a 

Breast Diseases 45 P=5.29e-29 n.e n.a 

Breast Neoplasms 45 P=1.21e-27 n.e n.a 

Urogenital 
Neoplasms 

46 P=3.82e-26 11 P=0.0217 

Ovarian neoplasms 34 P=3.82e-25 n.e n.a 

Bloom Syndrome 19  P=1.18e-23 n.e n.a 
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Figure 1. Expression evaluation of the RBBP7 gene. Quantitative RT-PCR (qRT-PCR) analysis was 

performed to evaluate RBBP7 expression in biopsy samples of different types of testis histology: i) 

three SCOS (Sertoli Cell-Only Syndrome); ii) three SGA: maturation arrest at the spermatogonial 

level; iii) one SCA: maturation arrest at the spermatocytic level. Four samples with obstructive 

azoospermia (OA) were used as internal controls. Samples were first characterized by testing for 

four spermatogenic markers expressed at different stages of spermatogenesis: PRM2 

(spermatids/mature spermatozoa); CDY1 (spermatids); BRDT (pachytene spermatocytes/round and 

elongating spermatids) and DAZ (spermatogonia/early spermatocytes). 

  

0 
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0,4 
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0,8 
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Supplementary Table 1. Clinical characteristics of the study population. A) Patients; B) 

Controls. 

A. 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

  

SCOS: Sertoli-cell only syndrome. SGA: SpermatoGonial Arrest. SCA:SpermatoCytic Arrest. 

N= reported as normal. Grey Shadow: controls belonging to 95
th

 percentile  

 

 

 

  

Sample Histology FSH LH T(nmol/L) 

13-178 SCOS 19.7 N N 

13-188 SGA 57.9 17.6 17.7 

13-567 SCA 7.1 5.7 N 

11-332 SCOS 16.7 3.3 20 

12-086 SCOS 16 5 9.67 

Sample Conc. (mill.ml
-1

) Tot. (mill.) Mot a+b (%) 
Normal Forms 

(%) 

13-166 180 630 67 15 

13-173 297 891 54 6 

13-347 96 672 50 23 

14-232 154 231 50 33 

CT181 230 808 60 10 

13-055 30 75 59 8 

13-151 22 55 30 3 

13-186 31 33.2 70 6 

13-456 22 55 64 36 
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Supplementary Table 2. Scores employed to calculate the index of pathogenicity for 

variant prioritization. 

IP: index of pathogenicity. 

 

 

Supplementary table 3. Primers employed for RBBP7 variant validation and for the screening 

of 150 normozoospermic controls. 

 

 

 

Supplementary table 4. TaqMan probes employed and amplicon size for gene expression 

analysis in testis biopsies. 

 

  

Database Prediction Meaning Score 

SIFT 
T tolerated 0 

D damaging 1 

Polyphen 

B Benign 0 

P probably damaging 0.5 

D damaging 1 

Mutation Assessor 

N neutral 0 

L low 0.25 

M medium 0.5 

H high 1 

MutationTaster 
P polymorphism 0 

D damaging 1 

FATHMM 
T tolerated 0 

D damaging 1 

Gene Variant Forward Primer Reverse Primer 
Size 
(bp) 

N Mutations 
indentified in 
150 controls 

RBBP7 NM_002893.3:c.16+1G>A GCCAATTCGCGCCTTTCG GGCTGCTCTTGGCTAACGAG 172 0 

Gene Probe Amplicon length 

DAZ Hs00414014_m1  81 

BRDT Hs00976114_m1  68 

CDY1 Hs00371514_m1  86 

PRM2 Hs04187294_g1  73 

GAPDH Hs03929097_g1  58 

RBBP7 Hs00171476_m1  70 
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Supplementary table 5. Mutations identified in patient 13-567 in genes belonging to the 

regulation of actin cytoskeleton pathway. 

* Expression in testis: expression levels according to the Human Protein Atlas database 

  

Patient 
code 

Gene 
name 

Mutation 
Iberian 

MAF 
Expression in testis* 

13-567 

ITGA3 NM_005501.2:c.94G>A (p.Ala32Thr) n.r mRNA low, protein medium 

ITGA11 NM_001004439.1:c.2102G>A (p.Arg701Gln) n.r. mRNA low, protein medium 

ITGAD NM_005353.2:c.844C>T (p.Arg282Cys) 0.03 mRNA low, protein no data 
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Supplementary table 6. Information about mutations identified in genes belonging to the 

patients’ specific enriched diseases appertaining to the top ten enriched diseases in the ESG 

list. 

 

† HGMD: data from public version of the Human Gene Mutation Database. n.r.: the variant has not been 
reported in HGMD. Colorectal cancer: the variant has been reported in patients affected by colorectal 
cancer. 
* A low frequency pathogenic mutations has been found in the controls’ group in this gene 
** The variant is not a low-frequency variant in the Iberian population 

 

  

Patient 
code 

Gene 
name 

Mutation 
Iberian 

MAF 
Associated disease HGMD

†
 

11-332 

ETV4 NM_001079675.2:c.583T>A (p.Phe195Ile) 0.014 
Urogenital neoplasms 
and neoplasms 

n.r. 

OGG1 NM_016821.2:c.923G>A (p.Gly308Glu) 0.009 
Urogenital neoplasms 
and neoplasms 

Colorectal cancer 

TRPM8 NM_024080.4:c.2195C>T (p.Thr732Ile) n.r Urogenital neoplasms n.r. 

PGR NM_000926.4:c.2780C>A (p.Pro927His) n.r Urogenital neoplasms n.r. 

12-086 

KLK10 NM_001077500.1:c.328C>T (p.Arg110Cys) 0.005 Urogenital neoplasms n.r. 

HTRA3 NM_053044.4:c.805G>A (p.Val269Met) 0.009 Urogenital neoplasms n.r. 

FOXM1 NM_202002.2:c.1205C>A (p.Ala402Glu) 0.028 Neoplasms n.r. 

FZD9 NM_003508.2:c.884A>C (p.Asp295Ala) 0.014 Neoplasms n.r. 

13-178 

BIRC7 NM_139317.2:c.269G>A (p.Arg90His) n.r Urogenital neoplasms n.r. 

OGG1 NM_016821.2:c.923G>A (p.Gly308Glu) 0.009 
Urogenital neoplasms 
and neoplasms 

Colorectal cancer 

KIF14 NM_014875.2:c.2020A>G (p.Met674Val) n.r Neoplasms n.r. 

DMBT1* NM_007329.2:c.3165T>G (p.Ile1055Met) 0.009 Neoplasms n.r. 

HSP90B1 NM_003299.2:c.962C>T (p.Pro321Leu) 0.014 
Fanconi 
anemia/syndrome 

n.r. 

POLI NM_007195.2:c.1595T>C (p.Phe532Ser) 0.051** 
Fanconi 
anemia/syndrome 

n.r. 

13-188 
COL18A1 NM_030582.3:c.4141G>A (p.Ala1381Thr) 0.009 

Urogenital neoplasms 
and neoplasms 

n.r. 

IGFBP1 NM_000596.2:c.653A>T (p.Glu218Val) n.r Urogenital neoplasms n.r. 

13-567 

MSH3 NM_002439.4:c.2732T>G (p.Leu911Trp) 0.005 
Urogenital neoplasms 
and Fanconi 
anemia/syndrome 

Colorectal cancer 

CYP11A1 NM_000781.2:c.535G>A (p.Val179Ile) n.r Urogenital neoplasms n.r. 

ITGA11 NM_001004439.1:c.2102G>A (p.Arg701Gln) n.r Neoplasms n.r. 

MVP NM_005115.4:c.1592C>T (p.Thr531Met) n.r Neoplasms n.r. 

OLFML2A NM_182487.3:c.1817C>T (p.Thr606Met) 0.0002 
Fanconi 
anemia/syndrome 

n.r. 
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Supplementary information: 

Preparation of the Early Spermatogenic candidate Gene list (ESG) 

Following an extensive interrogation of different bioinformatic databases and a thoughtful 

literature search, we selected 582 genes that are predicted or demonstrated to be involved in 

early stages of spermatogenesis. In order to create this Early Spermatogenic candidate Gene 

list (ESG), we selected those genes which contain a specific Mammalian Phenotype in MGI, 

Gene Ontology Terms in Gene Ontology Consortium and specific terms in Uniprot.  

Mammalian Phenotypes (MP) selected in Mouse Genomics Informatics (MGI): 

Azoospermia (MP:0005159), arrest of male meiosis (MP:0008261), abnormal male meiosis 

(MP:0005169), abnormal meiosis (MP:0001930), abnormal chromosome pairing during meiosis 

(MP:0009451), abnormal X-Y chromosome synapsis during male meiosis (MP:0011751), 

abnormal spermatocyte morphology (MP:0006379), abnormal spermatogonia morphology 

(MP:0006378), abnormal male germ cell apoptosis (MP:0014052), abnormal DNA methylation 

during gametogenesis (MP:0008878), abnormal Sertoli cell barrier function (MP:0020356), 

abnormal Sertoli cell development (MP:0004109), abnormal Sertoli cell morphology 

(MP:0002784), Sertoli cell hypoplasia (MP:0005250), abnormal primordial male germ cell 

proliferation (MP:0008390), abnormal primordial male germ cell apoptosis (MP:0011610), 

abnormal primordial male germ cell migration  (MP:0002982). 

Gene Ontology (GO) terms selected in Gene Ontology Consortium: 

Meiotic cell cycle (GO:0051321), male meiosis (GO:0007140), germ cell proliferation 

(GO:0036093), male germ cell proliferation (GO:0002176), regulation of male germ cell 

proliferation (GO:2000254), germ cell development (GO:0007281), germ cell migration 

(GO:0008354), spermatogonial cell division (GO:0007284), primary spermatocyte growth 

(GO:0007285), Sertoli cell proliferation (GO:0060011), Sertoli cell development (GO:0060009), 

sertoli cell differentiation (GO:0060008), sertoli cell apoptotic process (GO:1902484), sertoli 

cell fate commitment (GO:0060010), establishment of Sertoli cell barrier (GO:0097368), germ-

line stem cell division (GO:0042078). 

Filters used in Uniprot: 

We filtered human and mice genes, within the description of which the following words 

appeared: Sertoli Cell-Only Syndrome, sertoli cell, spermatogonia, spermatocyte, 
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synaptonemal complex and male meiosis. Finally, we added to the list a number of genes 

reported in Pubmed that are strong candidates to the early spermatogenic phases and that 

had not been identified using the previous filters. 

All genes obtained using the previous filters were further screened in the literature according 

to whether their function and expression corresponds to early spermatogenic stages and could 

lead to an azoospermic phenotype. Consequently, we removed genes functioning solely during 

late spermatogenic stages. Moreover, we removed from the list genes that had been 

previously reported as causative of congenital hypogonadotrophic hypogonadism, obstructive 

azoospermia, and androgen insensitivity in which mutations will lead a non-idiopathic 

azoospermic phenotype. 

Overall, we obtained a total of 582 candidate genes for early spermatogenic stages that are 

listed below: 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

AARD 8 Uniprot/literature ATM 11 MGI CALR 19 GO 

ABCB9 12 Uniprot/literature AURKA 20 GO CCDC155 19 GO 

ACSBG2 19 Uniprot/literature AURKB 17 MGI CCDC65 12 Uniprot/literature 

ACTR2 2 GO AURKC 19 Uniprot/literature CCNA1 13 MGI 

ACTR3 2 GO AVEN 15 Uniprot/literature CCNA2 4 Uniprot/literature 

ADAD1 4 Uniprot/literature BAG6 6 GO CCNB1 5 GO 

ADRM1 20 MGI BAX 19 MGI CCNB1IP1 14 MGI 

AFF4 5 MGI BCL2 18 GO CCNE1 19 Uniprot/literature 

AGO4 1 MGI BCL2L1 20 GO CCNE2 8 MGI 

AGPS 2 MGI BCL2L2 14 MGI CCNH 5 Uniprot/literature 

AGTPBP1 9 MGI BLM 15 Uniprot/literature CDC20 1 MGI 

AKAP1 17 MGI BMP4 14 GO CDC25A 3 Uniprot/literature 

AKAP9 7 MGI BOLL 2 MGI CDC25B 20 MGI 

AMH 19 Uniprot/literature BRCA1 17 MGI CDC7 1 MGI 

AMHR2 12 MGI BRCA2 13 MGI CDK2 12 MGI 

AMZ2 17 Uniprot/literature BRDT 1 MGI CDK4 12 MGI 

ANG 14 GO BRIP1 17 MGI CDKN2D 19 MGI 

ANK3 10 Uniprot/literature BRWD1 21 MGI CEACAM1 19 Uniprot/literature 

ANKRD49 11 Uniprot/literature BSG 19 MGI CELF1 11 Uniprot/literature 

APAF1 12 MGI BTRC 10 MGI CFLAR 2 Uniprot/literature 

ARID4A 14 GO BUB1B 15 Uniprot/literature CGA 6 MGI 

ARID4B 1 GO BUB3 10 GO CGN 1 Uniprot/literature 

ART3 4 Uniprot/literature C11orf80 11 GO CHD5 1 GO 

ASPM 1 Uniprot/literature CADM1 11 Uniprot/literature CHTF18 16 MGI 

ASZ1 7 MGI CALB2 16 Uniprot/literature CIB1 15 MGI 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

CIRBP 19 MGI DMC1 22 MGI ERBB2 17 Uniprot/literature 

CKS2 9 MGI DMRT1 9 MGI ERCC1 19 GO 

CLCN2 3 MGI DMRT3 9 Uniprot/literature ERCC4 16 GO 

CLDN11 3 MGI DMRTB1 1 MGI EREG 4 GO 

CLGN 4 Uniprot/literature DMRTC2 19 MGI ESPN 1 Uniprot/literature 

CLPP 19 MGI DND1 5 GO ETV5 3 MGI 

CNBD2 20 MGI DNMT1 19 Uniprot/literature EXD1 15 GO 

CNTD1 17 GO DNMT3A 2 MGI EXO1 1 MGI 

CPEB1 15 MGI DNMT3B 20 Uniprot/literature FADS2 11 MGI 

CREM 10 MGI DNMT3L 21 MGI FAM50B 6 Uniprot/literature 

CRIM1 2 Uniprot/literature DPEP3 16 GO FANCA 16 MGI 

CST3 20 Uniprot/literature DPPA2 3 Uniprot/literature FANCD2 3 MGI 

CTCFL 20 MGI DPPA3 12 Uniprot/literature FANCG 9 GO 

CTNNB1 3 GO DPPA4 3 Uniprot/literature FANCL 2 MGI 

CTSV 9 GO DUSP1 5 GO FANCM 14 MGI 

CUL4A 13 MGI DUSP13 10 GO FBXO43 8 GO 

CYP26B1 2 MGI DYNLT1 6 Uniprot/literature FBXO5 6 GO 

CYP2E1 10 Uniprot/literature DZIP1 13 GO FGF9 13 MGI 

DAZAP1 19 MGI E2F1 20 Uniprot/literature FHOD3 18 Uniprot/literature 

DAZL 3 GO EFHD1 2 Uniprot/literature FIGLA 2 MGI 

DDX1 2 Uniprot/literature EGR4 2 MGI FKBP6 7 MGI 

DDX20 1 GO EHD1 11 MGI FMN2 1 MGI 

DDX4 5 MGI EHMT2 6 MGI FNDC3A 13 MGI 

DHH 12 MGI EIF4G3 1 MGI FNDC3B 3 Uniprot/literature 

DICER1 14 MGI ENTPD5 14 MGI FOXA3 19 Uniprot/literature 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

FOXJ2 12 Uniprot/literature H3F3B 17 GO HSPBP1 19 MGI 

FOXL2 3 GO HCN2 19 MGI HUS1 7 GO 

FOXO3 6 GO HERC2 15 Uniprot/literature HUS1B 6 GO 

FOXS1 20 Uniprot/literature HFM1 1 MGI ICAM1 19 GO 

FUS 16 MGI HIST1H2BA 6 GO IGF1 12 GO 

FZR1 19 GO HIST1H3A 6 Uniprot/literature IGF1R 15 MGI 

GAL3ST1 22 MGI HIST1H3B 6 Uniprot/literature IGF2BP1 17 Uniprot/literature 

GATA4 8 Uniprot/literature HIST2H3A 1 Uniprot/literature IGF2BP2 3 Uniprot/literature 

GDF9 5 GO HK1 10 Uniprot/literature IGF2BP3 7 Uniprot/literature 

GDNF 5 Uniprot/literature HMGA1 6 MGI IGSF5 21 Uniprot/literature 

GGN 19 Uniprot/literature HMGA2 12 MGI INCENP 11 Uniprot/literature 

GJA1 6 MGI HMMR 5 MGI ING2 4 MGI 

GJA4 1 MGI HORMAD1 1 MGI INSL6 9 MGI 

GNPAT 1 MGI HORMAD2 22 MGI INSR 19 GO 

GOLGA2 9 GO HOXA10 7 MGI IP6K1 3 MGI 

GOLGA3 12 MGI HOXA11 7 MGI IQCG 3 MGI 

GOLPH3 5 Uniprot/literature HPGDS 4 GO ISYNA1 19 Uniprot/literature 

GPER1 7 Uniprot/literature HSD17B4 5 GO ITGB1 10 GO 

GPR3 1 MGI HSF1 8 MGI JMJD1C 10 Uniprot/literature 

GTF2A1 14 MGI HSF2 6 MGI KATNB1 16 MGI 

GTF2A1L 2 Uniprot/literature HSF5 17 Uniprot/literature KCNJ6 21 MGI 

GTSF1 12 MGI HSP90AA1 14 MGI KDM3A 2 GO 

H1FOO 3 GO HSPA2 14 MGI KDM5B 1 Uniprot/literature 

H2AFX 11 MGI HSPA4 5 MGI KDM6B 17 Uniprot/literature 

H3F3A 1 Uniprot/literature HSPB9 17 Uniprot/literature KIAA0196 8 GO 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

KIAA0430 16 MGI MAN2A2 15 Uniprot/literature MLH3 14 MGI 

KIAA1109 4 Uniprot/literature MAN2B2 4 Uniprot/literature MND1 4 MGI 

KIF18A 11 MGI MAP2 2 MGI MNS1 15 GO 

KIT 4 MGI MAP7 6 MGI MORC1 3 Uniprot/literature 

KITLG 12 MGI MAS1 6 Uniprot/literature MOS 8 MGI 

KL 13 MGI MASTL 10 GO MOV10L1 22 MGI 

KLHDC3 6 GO MCM8 20 MGI MRE11A 11 GO 

KMT2B 19 MGI MCM9 6 MGI MRO 18 Uniprot/literature 

KMT2D 12 GO MCPH1 8 MGI MSH2 2 GO 

LFNG 7 MGI MEA1 6 Uniprot/literature MSH4 1 MGI 

LHX3 9 MGI MEI1 22 MGI MSH5 6 MGI 

LIF 22 GO MEI4 6 MGI MSH6 2 GO 

LIG3 17 Uniprot/literature MEIG1 10 MGI MSX1 4 GO 

LIMK2 22 Uniprot/literature MEIKIN 5 MGI MSX2 5 GO 

LIN28A 1 Uniprot/literature MEIOB 16 MGI MTOR 1 GO 

LIPE 19 MGI MEIOC 17 GO MYBL1 8 MGI 

LMNA 1 MGI MELK 9 Uniprot/literature MYH9 22 GO 

LMTK2 7 MGI MEMO1 2 MGI MYRIP 3 Uniprot/literature 

LRRC4C 11 Uniprot/literature MERTK 2 Uniprot/literature NANOG 12 Uniprot/literature 

LRWD1 7 Uniprot/literature MEX3B 15 MGI NANOS1 10 Uniprot/literature 

M1AP 2 MGI MGAT2 14 MGI NANOS2 19 MGI 

MAD2L2 1 MGI MINA 3 Uniprot/literature NANOS3 19 MGI 

MAEL 1 MGI MKI67 10 GO NBN 8 GO 

MAJIN 11 GO MKKS 20 GO NCAPD2 12 GO 

MAK 6 Uniprot/literature MLH1 3 MGI NCAPD3 11 GO 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

NDC1 1 MGI P2RX1 17 MGI PMS2 7 MGI 

NDUFAF3 3 Uniprot/literature P3H4 17 GO POC1A 3 MGI 

NEK1 4 Uniprot/literature PABPC1L 20 MGI POLB 8 Uniprot/literature 

NEK2 1 GO PAFAH1B1 17 MGI POLG 15 MGI 

NHLH2 1 MGI PALLD 4 Uniprot/literature PPP1CC 12 MGI 

NKAPL 6 MGI PANK2 20 MGI PPP2CA 5 GO 

NLRP14 11 Uniprot/literature PATZ1 22 MGI PPP2R1A 19 GO 

NLRP4 19 Uniprot/literature PCNA 20 MGI PRDM1 6 MGI 

NME5 5 MGI PDE3A 12 MGI PRDM14 8 GO 

NOS2 17 MGI PFKFB4 3 Uniprot/literature PRDM9 5 MGI 

NOS3 7 MGI PFN4 2 Uniprot/literature PRKACB 1 GO 

NPM2 8 GO PGR 11 Uniprot/literature PRKAR1A 17 GO 

NPPC 2 MGI PHF21A 11 Uniprot/literature PRMT7 16 Uniprot/literature 

NPR2 9 MGI PHF7 3 Uniprot/literature PRSS41 16 Uniprot/literature 

NR2C2 3 MGI PIN1 19 MGI PRSS42 3 GO 

NR5A1 9 Uniprot/literature PIWIL1 12 MGI PRSS55 8 Uniprot/literature 

NRG1 8 MGI PIWIL2 8 MGI PSMC3IP 17 MGI 

NSUN2 5 GO PIWIL3 22 GO PSMD13 11 GO 

NUMA1 11 GO PIWIL4 11 MGI PSME4 2 Uniprot/literature 

NUP210L 1 MGI PLD6 17 MGI PTGDS 9 GO 

NUPR1 16 MGI PLEKHA5 12 MGI PTH2 19 MGI 

OCLN 5 Uniprot/literature PLK1 16 GO PTK2B 8 GO 

OSGIN2 8 GO PLPP1 5 GO PTTG1 5 GO 

OSM 22 GO PMCH 12 Uniprot/literature PYGO2 1 GO 

OVOL1 11 GO PMS1 2 Uniprot/literature RAB13 1 GO 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

RAB8B 15 Uniprot/literature REC114 15 GO SDC1 2 GO 

RAD1 5 GO REC8 14 MGI SEC31B 10 Uniprot/literature 

RAD17 5 Uniprot/literature RECQL 12 Uniprot/literature SECISBP2 9 Uniprot/literature 

RAD18 3 MGI RGS22 8 Uniprot/literature SEPT1 16 GO 

RAD21 8 MGI RHOB 2 Uniprot/literature SERPINA5 14 Uniprot/literature 

RAD21L1 20 MGI RIF1 2 Uniprot/literature SETX 9 MGI 

RAD50 5 GO RNF17 13 MGI SGO1 3 GO 

RAD51 15 GO RNF2 1 GO SGO2 2 GO 

RAD51B 14 GO RNF212 4 MGI SHCBP1L 1 MGI 

RAD51C 17 MGI RNF6 13 Uniprot/literature SIAH1 16 MGI 

RAD51D 17 GO RNF8 6 MGI SIN3A 15 Uniprot/literature 

RAD54B 8 GO RNFT1 17 Uniprot/literature SIRT1 10 MGI 

RAD54L 1 GO RPS6 9 GO SIRT2 19 GO 

RAD54L2 3 Uniprot/literature RPS6KA2 6 GO SIX5 19 MGI 

RANBP1 22 MGI RSPH1 21 GO SLC12A2 5 MGI 

RANBP9 6 MGI RSPO1 1 MGI SLC19A2 1 MGI 

RARA 17 GO RTEL1 20 Uniprot/literature SLC25A31 4 MGI 

RB1 13 Uniprot/literature RXFP1 4 MGI SLC26A8 6 GO 

RBBP8 18 GO RXFP2 13 MGI SLC2A8 9 GO 

RBM26 13 Uniprot/literature SAFB 19 MGI SLC4A2 7 MGI 

RBM5 3 MGI SAFB2 19 MGI SLX4 16 MGI 

RBM7 11 GO SALL4 20 Uniprot/literature SMAD4 18 MGI 

RBMXL2 11 Uniprot/literature SBF1 22 MGI SMAD5 5 GO 

RCC1 1 Uniprot/literature SCMH1 1 MGI SMARCA2 9 GO 

RDH10 8 MGI SCX 8 GO SMC1B 22 MGI 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

SMC2 9 GO STK11 19 MGI TDRD12 19 MGI 

SMC3 10 GO STRA13 17 GO TDRD5 1 MGI 

SMC4 3 GO STRA6 15 Uniprot/literature TDRD6 6 MGI 

SMC5 9 Uniprot/literature STRA8 7 MGI TDRD7 9 Uniprot/literature 

SOHLH1 9 GO STX2 12 MGI TDRD9 14 MGI 

SOHLH2 13 MGI SUN1 7 MGI TDRKH 1 MGI 

SOX17 8 Uniprot/literature SUV39H2 10 Uniprot/literature TERB1 16 MGI 

SOX8 16 Uniprot/literature SYCE1 10 MGI TERB2 15 GO 

SOX9 17 MGI SYCE1L 16 GO TERC 3 MGI 

SP1 12 Uniprot/literature SYCE2 19 MGI TERF1 8 GO 

SPATA17 1 Uniprot/literature SYCE3 22 MGI TESK2 1 Uniprot/literature 

SPATA2 20 Uniprot/literature SYCP1 1 MGI TESMIN 11 Uniprot/literature 

SPATA22 17 MGI SYCP2 20 MGI TET1 10 MGI 

SPATA25 20 Uniprot/literature SYCP2L 6 Uniprot/literature TEX12 11 MGI 

SPATA3 2 Uniprot/literature SYCP3 12 MGI TEX14 17 MGI 

SPATA33 16 Uniprot/literature SYDE1 19 Uniprot/literature TEX15 8 MGI 

SPATA4 4 Uniprot/literature TAF1L 9 GO TEX19 17 MGI 

SPATA9 5 Uniprot/literature TAF4B 18 GO TEX40 11 GO 

SPDYA 2 GO TASP1 20 MGI TGFBR1 9 GO 

SPIN1 9 MGI TBPL1 6 MGI THEG 19 MGI 

SPIRE1 18 GO TCEA2 20 Uniprot/literature TIAL1 10 GO 

SPIRE2 16 GO TCF21 6 GO TJP1 15 Uniprot/literature 

SPO11 20 MGI TCFL5 20 Uniprot/literature TMEM184A 7 Uniprot/literature 

SRPK1 6 GO TDP1 14 Uniprot/literature TMEM203 9 MGI 

STAG3 7 GO TDRD1 10 MGI TNF 6 Uniprot/literature 
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Gene name Chromosome Source Gene name Chromosome Source Gene name Chromosome Source 

TOP2A 17 GO UBE2B 5 MGI ZNF541 19 Uniprot/literature 

TOP2B 3 GO UBE2I 16 Uniprot/literature ZNF717 3 Uniprot/literature 

TOP3A 17 GO UBR1 15 Uniprot/literature ZSCAN21 7 Uniprot/literature 

TOP3B 22 MGI UBR2 6 MGI ZW10 11 GO 

TOPAZ1 3 MGI UTP14C 13 MGI 

TOPBP1 3 Uniprot/literature VRK1 14 MGI 

TP73 1 MGI WAPL 10 Uniprot/literature 

TPST2 22 MGI WBP2NL 22 GO 

TRIM9 14 Uniprot/literature WDR81 17 GO 

TRIP13 5 MGI WEE2 7 GO 

TSC1 9 MGI WNT4 1 GO 

TSC2 16 MGI WT1 11 MGI 

TSN 2 MGI XPA 9 Uniprot/literature 

TSSK2 22 Uniprot/literature XRCC1 19 Uniprot/literature 

TTC26 7 MGI XRCC2 7 GO 

TTK 6 MGI XRCC3 14 GO 

TUBG1 17 GO YBX2 17 MGI 

TUBGCP2 10 GO ZBTB16 11 MGI 

TUBGCP3 13 GO ZC3HC1 7 MGI 

TUBGCP4 15 GO ZFP41 8 Uniprot/literature 

TUBGCP5 15 GO ZFP42 4 GO 

TUBGCP6 22 GO ZFR 5 Uniprot/literature 

TXNRD3 3 Uniprot/literature ZGLP1 19 GO 

TYRO3 15 Uniprot/literature ZMYND15 17 GO 

UBB 17 MGI ZNF318 6 GO 
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5. DISCUSSION 

The severest form of male factor infertility is non-obstructive azoospermia (NOA), which 

occurs in approximately 1% of all men in reproductive age (Maduro & Lamb 2002). A number 

of known genetic and combined factors may cause NOA. However in about 40% of cases the 

etiology of this spermatogenic alteration is still unknown. Since spermatogenesis is a complex 

process regulated by the concerted action of >1500 genes, a large proportion of cases of 

idiopathic NOA might be attributable to a not yet identified genetic defect.  Therefore, 

research has been and is still being done to detect novel genetic factors involved in idiopathic 

NOA. The present thesis focuses to enhance our understanding on genetic factors, from the X 

chromosome to the whole exomein idiopathic non-obstructive azoospermia. 

 

5.1 X-LINKED “AZF-LIKE” REGIONS 

 

Y- Chromosome microdeletions are the most frequent genetic cause of male infertility, second 

only to the Klinefelter Syndrome. Hence, the molecular diagnoses of these deletions have 

become a routine diagnostic test in patients affected by azoospermia and severe 

oligozoospermia (Krausz et al. 2014). Y chromosome microdeletions, also called AZF deletions, 

arise through Non-Allelic Homologous Recombination (NAHR) between two Segmental 

Duplications (SDs) flanking each of these regionscontaining genes essentials for normal 

spermatogenesis. These microdeletions can be classified in AZFa, AZFb, AZFc and AZFbc, with 

different size ranging from 792kb to 7.7 Mb lengths. The deletion’sphenotype depends on the 

type of deletion i.e. in case of complete AZFa and AZFb deletions the chance of finding 

spermatozoa is virtually zero. The AZFc deletion and it subtypes, are compatible with the 

presence of spermatozoa in the ejaculateor in the testis and are obligatorily transmitted to the 

male offspring.In analogy to the Y chromosome, the X chromosome is enriched in genes 

involved in spermatogenesis and its hemizygous state in males implies a direct effect of a 

damaging deletion making it a promising target for the discovery of new genetic factors 

leading to male infertility. Four groups have employed comparative genomic hybridization 

(CGH) arrays and provided information about X-linked CNVs with potential clinical relevance in 

the etiology of male infertility and three of them converged on a significantly higher burden of 
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CNVs in men with spermatogenic disturbances (Tuttelmann et al. 2011; Krausz et al. 2012; 

Lopes et al. 2013). However, by performing a comparison between the raw data of the four 

studies only a few overlapping CNVs can be identified. To date, the only CNV with a clear-cut 

cause-effect is the 91 kb deletion encompassing exons 10, 11 and 12 of TEX11 gene (Yatsenko 

et al. 2015) whereas CNV67 (a patient-specific deletion) awaits validation in independent study 

populations (Lo Giacco et al. 2014). 

The first part of this thesis focuses on the search of X-linked “candidate AZF-like” regions. The 

working hypothesis was to identify recurrent CNVs (more than one CNV with the same 

breakpoint), probably generated by SD-NAHR, with an inverted ratio of deletions/duplications 

and containing protein coding genes inside. This objective was addressed through a multi-step 

bioinformatic analysis starting from all X-linked CNVs reported in UCSC Genome 

BrowserOverall. We identified a total of 15 AZF-like CNVs, from which 12 CNVs were screened 

in a group of 82 idiopathic NOA patients. 

As predicted from our model (inverted ratio of deletions/duplications suggesting a negative 

selection for deletions), in the majority of the identified CNVs (10/12 CNVs), genes with a 

predicted role during spermatogenesis were involved. Among them five included at least one 

cancer testis gene (CNV4-8-9-10 and 11). Cancer Testis (CT) genes present a unique expression 

pattern, physiologically they are expressed exclusively or predominantly in male germ cells and 

in embryonic trophoblasts, but their gene products are also found in a significant number of 

human tumors of different histological origin. The biological function of most X-CT genes is still 

largely unknown and only functional studies in MAGE genes suggest that this family acts as 

signal transducing transcriptional modulator and appear to be able to mediate proliferative 

signals (Park & Lee 2002; Duan et al. 2003; Glynn et al. 2004). Interestingly, the above 

mentioned small, patient-specific deletion (CNV67) is located inside the CNV10 region (Krausz 

et al. 2012). This small deletion is not generated by SD-NAHR and it has been found in 1.1% of 

patients affected by azoospermia and oligozoospermia. This rearrangement may alter the 

function/expression of the MAGEA9 gene leading to male infertility (Krausz et al. 2012). 

Consequently, the CNV10 region remains a promising candidate for further large scale analyses 

in milder semen phenotypes, including oligozoospermia. 

A part from the cancer testis genes, a number of CNVs contain other genes with predicted or 

demonstrated role in spermatogenesis. For instance, the CNV7 includes TMSB15B, H2BFWT, 

H2BFM, SLC25A53 and ZCCHC18 genes. Among them the most interesting are H2BFWT and 

H2BFM that encodes testis specific histones that plays a crucial role in the reorganization and 

remodeling of chromatin and in the epigenetic regulation of spermatogenesis. Moreover, 

H2BFWT is essential for specific functions in meiosis during chromatin reorganization and the 
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regulation of spermatogenesis. Interestingly, two papers reported patients’ specific 

duplications overlapping with some of these genes (Tuttelmann et al. 2011; Lopes et al. 2013). 

CNV3, and CNV6 also contain genes over-expressed (DMRTC1/B) or exclusively expressed 

(SPACA5/B) in the testis however, the exact biological function of these proteins is still 

unknown. CNV1 and CNV2 are two contiguous regions belonging to the same cluster, flanked 

by two different SDs and including some members of the VCX gene family.  VCX gene family 

belongs to the VCX/Y gene family, which has multiple members on both the X and Y 

chromosomes, and all are expressed exclusively in male germ cells. Functional analysis 

demonstrated that VCX regulates cell apoptosis and cell growth during spermatogenesis. 

Overexpression of VCX was related with delayed cell-progression in G1 to S transition, resulting 

in cell division disorder and spermatogenic failure. Although, recently it has been reported that 

an increased copy number of VCX is associated with a risk for non obstructive azoospermia (Ji 

et al. 2016) this data remains to be confirmed also in view of the observed distortion of the 

deletion/duplications rate which would predict a neutral effect for duplications. 

Finally, the unique deletion identified in our cohort concerns the CNV12 region in which the 

minimum size of the deletion removes the OPN1LW gene and at least one of the three copies 

of OPN1MW, OPN1MW2 and OPN1MW. Opsins are a group of light-sensitive 35–55 kDa 

membrane-bound G protein-coupled receptors of the retinylidene protein family found in 

photoreceptor cells of the retina and are essential for normal color vision. The deletion carrier 

is affected by pure spermatocytic arrest and no information was given about colorblindness in 

the medical history. Our expression analysis showed a very weak expression of OPN1- gene 

family in the testis. We hypothesized that the transcription of the gene located next to the 

deletion (TEX28), which has a testis specific expression, may be altered due to the CNV. 

However, our results indicate that TEX28 is expressed in the latest stages of spermatogenesis 

and no differences between the deletion carrier and another wild type SCA biopsy were 

observed indicating that the deletion does not affect TEX28 transcription. Therefore, we were 

unable to explain the relationship between this deletion and the azoospermic phenotype.  

Despite the structural similarities between the 12NVs and the AZF regions the screening for 

deletions in our NOA patients was unable to detect deletion carrier.  We hypothesize that the 

lack of deletions in our cohort may be partially due to the strictly selected testicular 

phenotype. Since the AZFc deletions may lead also to severe oligozoospermia, we cannot 

exclude that these X-linked CNVs may cause a less severe impairment of spermatogenesis. On 

the other hand, for the regions containing ubiquitously expressed genes, the removal of one or 

more of these genes may cause a more complex phenotype. 
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Overall, the work presented in this part of the thesis is the first study that explores through a 

multi-step bioinformatic analysis whether the X chromosome contains “AZF-like” regions. We 

indentified a total of 12 CNVs with characteristics similar to the AZF deletions. According to our 

working hypothesis, deletions removing genes affecting spermatogenesis should be under 

negative selection, in fact 10/12 CNVs contain at least one gene with high or exclusive 

expression in the testis. Our study represents a starting point for future large scale screening in 

less severe forms of male infertility i.e. hypospermatogensis or oligozoospermia. 

 

5.2 HIGH THROUGHPUT PLATFORMS AND MALE 

INFERTILITY 

 

It has been predicted that more than 1500 genes (housekeeping and specific germ cell genes) 

are involved in spermatogenesis (Hochstenbach & Hackstein 2000) and mutation in these 

genes may act directly or through gene-environmental interaction. However, for many years, 

the pillar of genetic research of male infertility, involved the targeted search for SNPs or gene 

mutations of individual/few genes in small cohorts of infertile men and normozoospermic 

controls. Starting from 2009, novel approaches such as single nucleotide polymorphisms 

(SNPs) arrays and comparative genomic hybridization-arrays (array-CGH) provided important 

data for the entire genome. Array studies are typically based on Genome Wide Association 

Studies (GWAS) which reported a number of common SNPs associated with male infertility. 

However, most of them were not replicated in other independent studies populations with 

different ethnic origin (Krausz et al. 2015). Regarding array-CGH five studies investigated the 

relationship between CNVs and male infertility and four of them reported data on the X-

chromosome  with few overlapping CNVs among studies (Tuttelmann et al. 2011; Krausz et al. 

2012; Lopes et al. 2013; Yatsenko et al. 2015)). Now, in the era of Next Generation Sequencing 

we expect to expand our diagnostic skills, since this approach provides also information on 

rare variants. In this regard the Whole Exome Sequencing (WES), providing information on all 

coding exons is predicted to be successful to help to elucidate the genetic causes of idiopathic 

male infertility. 

For this purpose the second part of the thesis focuses on the analysis of all protein coding 

genes combined with the analysis of X-linked CNVs in idiopathic NOA patients and 

normozoospermic fertile controls. We aimed at identifying: i) the diagnostic value of these 

platforms in idiopathic NOA; ii) novel X-linked candidate genes for spermatogenesis; iii)  to 
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elucidating to what extent normal spermatogenesis can tolerate potentially damaging variants 

in genes involved in early phases of spermatogenesis. 

 

5.2.1 Whole Exome Sequencing (WES) in NOA patients with consanguineous 

parents. 

 

Application of the recessive model approach. 

Concerning male infertility, the application of WES has been successful mainly in familiar cases 

of spermatogenic failure (Ayhan et al. 2014; Ramasamy et al. 2015; Okutman et al. 2015), for 

which causative recessive mutations were identified. Besides defining the genetic etiology of 

impaired spermatogenesis, the analysis of familial cases led also to the identification of novel 

candidate genes. With this double purpose (diagnostics and translational research) we 

performed WES in the attempt of providing further insights into the genetic background of 

NOA. We analyzed four azoospermic patients with consanguineous parents and applied the 

recessive model approach for the selection of variants.  Following, we filtered for rare and 

potentially pathogenic variants found in homozygosis, which may have a direct impact on the 

carrier’s phenotype. We have identified two novel candidate genes (MRO and ADAD2) for NOA 

and the potential cause of SCOS in one patient (FANCA mutation). 

In patient 12-056, affected by SCOS, the c.382_383delCT frameshift deletion was detected in 

the MRO gene. Although in mice the expression pattern of Mro during embryonic 

gonadogenesis suggests a possible function in testis development (Smith et al. 2008 and 

reference therein), Mro-/- mice do not display fertility problems (Smith et al. 2008). Moreover, 

MRO exclusive expression in the sexual cords (Sertoli cells and germ cells) remains puzzling 

and a role in human SCOS cannot be excluded in the homozygous state. 

In patient 11-151 affected by spermatogonial arrest (SGA) the novel nonsense variant 

c.1186C>T was detected in the ADAD2 gene. The encoded protein belongs to the class of 

double-stranded RNA binding proteins (dsRBP); in particular, the ADAD2 protein binds with 

higher affinity to highly structured RNA substrates, such as sncRNAs. Double-stranded proteins 

bind and repress sncRNAs (Sanders & Smith 2011; de Mateo & Sassone-Corsi 2014) and the 

failure in silencing sncRNA was proposed to cause a loss of germline stem cells in Drosophila 

Melanogaster (Sanders & Smith 2011). No data on Adad2 KO mice is available whereas male 

mice homozygous for a mutated Adad1 (Adad2 paralog) allele have reduced sperm counts and 

motility, and increased sperm malformation (Connolly et al. 2005). While Adad1 expression is 

restricted to pachytene spermatocytes until spermatids (Schumacher et al. 1995), our qPCR 
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analysis suggests that ADAD2 is prevalently expressed in spermatogonia. These data indicate 

that ADAD2 might be involved in earlier phase whereas ADAD1 in later phases. Although our 

patient presented a spermatogonial arrest, ADAD2 expression levels were low, indicating a 

potential effect of the mutation on RNA stability. In light of this data, the observed 

homozygous status might contribute to the altered spermatogenic phenotype. To further 

support a role for ADAD2 in early stages of spermatogenesis is the fact that the patient’s fertile 

brother is heterozygous for the same variant. 

The FANCA c.2639C>T mutation was detected as the most likely explanation of the patient’s 

SCOS phenotype. Mutations in FANCA are the most common cause of FA, a hereditary 

chromosomal instability cancer-prone syndrome associated with, among other phenotypes, 

hypogonadism and fertility defects (Bargman et al. 1977; Cheng et al. 2000). For instance, 

studies on animal models suggest that FANCA might play a double role in spermatogenesis: i) 

primordial germ cells maintenance during migration into the gonadal ridges; ii) meiosis. In 

particular, it was reported that Fanca-/- homozygous male mice exhibited fertility defects due 

to a diminished population of primordial germ cells, as well as an elevated frequency of 

mispaired meiotic chromosomes and increased apoptosis in germ cells (Cheng et al. 2000; 

Wong et al. 2003). FANCA is required for activation by monoubiquitination of FANCD2, another 

protein with a role in male meiosis (Garcia-Higuera et al. 2001). A recent study on meiosis in 

eight mouse models deficient for FA proteins, demonstrated that FA proteins comprise the FA-

DDR network, which regulates the sex chromosomes during meiosis (Alavattam et al. 2016). 

Expression profiling in our collection of testis biopsies indicate a role of FANCA in the early 

phases of spermatogenesis with the strongest expression in spermatogonia. Our study 

represents the first detailed description of testis function in men carrying FANCA mutations. 

The encountered variant was firstly reported in compound heterozygosis with the c.2524delT 

frameshift deletion in two monozygotic twin sisters suffering from non-hematologic symptoms 

of FA (Mankad et al. 2006). The authors proved that the c.2639C>T variant caused the FANCA 

protein mislocalization, which was corrected by a third mutation, the c.2927G>A 

(p.Glu966Lys), which was detectable only in the girls’ hematopoietic cells but not in their 

fibroblasts, nor in their parents. Apparently, this acquired compensatory mutation reverted 

the phenotype explaining why the twins had FA-associated skeletal malformations but normal 

hematopoiesis. Similarly, since our patient displayed normal hematological parameters FA had 

never been suspected before, although he presented several FA symptoms e.g. dysmorphic 

facies, microcephaly, retromicrognathia, scoliosis. However, our comparative mutation 

analysis in the patient’s buccal DNA did not reveal any mutations to resemble the case of 

natural gene therapy observed in the twins. Chromosomal breakage test indicated a picture of 
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FA with reverse somatic mosaicisms, compatible with the absence of hematological symptoms. 

We therefore propose that the genetic reversion most probably occurred in a blood progenitor 

already committed to the myeloid lineage. According to the FA test results and the ascertained 

manifestation of fertility defects in FA patients (D’Andrea & Grompe 1997), we consider the 

c.2639C>T variant the most likely cause of the SCOS phenotype.  

In addition to the originally interrogated pathology, we were able to diagnose a chromosome 

instability/cancer-prone condition, FA not only in our patient but also in his brother. Our study 

is a clear example of how WES can lead to important secondary findings, which might 

represent a valid tool for both diagnosis and prevention of serious pathological conditions. 

Since the patient and his brother originally presented no hematological alterations, clinicians 

had not suspected FA until our investigation. Interestingly, even that heterozygous FANCA 

mutations carriers are not known to have increased cancer risk (Berwick et al. 2007), several 

family members suffered various types of cancer, including solid tumors such as lung, stomach, 

colon and breast cancer. Based on this family tree, a subset of FANCA mutations might 

increase cancer risk in monoallelic mutation carriers. Our finding added important information 

on the present and future general health status of the two brothers. In particular, the more 

recent hematocrits allowed detecting the first hematological alterations in the brother. Thanks 

to this incidental diagnosis, they are now under strict follow-up by onco-hematologists since 

along with intrinsic chromosomal instability, there is a higher risk of myelodysplastic syndrome 

(MDS) and acute myeloid leukemia (AML). To early identify and further predict bone marrow 

(BM) clonal progression and enable timely treatment, the follow-up of FA patients includes 

regular BM morphological and cytogenetic examinations (Peffault de Latour & Soulier 2016). 

Besides hematological neoplasias, these patients are also at higher risk for squamous cell 

carcinomas, which are usually treated with mitomicyn c. This chemotherapeutic agent is 

contraindicated in FA patients; therefore the diagnosis of FANCA mutation in these two men 

has also relevance for any potential future cancer treatment. The finding of FA in patient 04-

170 and his brother is in line with previously reported epidemiological observations that 

oligo/azoospermic men also have a higher risk of morbidity (including cancer) and a lower life 

expectancy (Salonia et al. 2009; Jensen et al. 2009; Eisenberg et al. 2015), and supports the 

hypothesis that spermatogenic efficiency might be linked to chromosomal instability (Krausz et 

al. 2012). Our observation implies that FANCA should be included in any diagnostic panel of 

NOA and stimulates further research on the role of FANCA mutations in men with impaired 

spermatogenesis in the light of its potential link to higher morbidity and impaired fertility.  
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5.2.2 Whole Exome Sequencing in sporadic NOA cases and normozoospermic 

controls.  

 

In the field of andrology, as it has been mentioned above, exome analysis has been successful 

especially for descendants of consanguineous families and familial cases of infertility. While in 

consanguineous cases rare homozygous mutations are responsible for the phenotype, in 

sporadic azoospermia such a scenario is highly unlikely. In sporadic cases of severe 

spermatogenic impairment a major role for rare or de novo large-effect size mutations in the X 

chromosome is predicted based on the lack of a compensatory allele. Concerning the role of 

low-frequency/rare autosomal mutations the most likely genetic condition is a heterozygous 

status which may be responsible for the phenotype by two predicted mechanism: i) acting as 

dominant negative (single mutation) or ii) multiple mutations in genes related to early 

spermatogenic stages (oligogenic inheritance) or involved in the same biological pathway 

(synergistic effect). An alternative scenario foresees a combined effect of multiple genetic risk 

factors for NOA in heterozygous or homozygous status (common SNPs). In parallel to patiens, 

we have tested the same scenarios in normozoospermic controls in order to get a better 

understanding on to what extent normal spermatogenesi is compatible with heterozygous 

mutations.  The next part of the thesis focuses on the exploration of these aforementioned 

scenarios by applying the four models to exome data analysis.  

 

Hemyzigous X-linked transmission 

Since the X chromosome is enriched in genes expressed during spermatogenesis that do not 

have a compensatory allele in case of mutation, makes it a perfect target for the identification 

of both novel candidate genes for impaired spermatogenesis and provide a diagnosis for the 

patient. After the filtering for rare (MAF≤0.01) and predicted as pathogenic mutations, we 

identified a novel X-linked candidate gene for the early stages of spermatogenesis (RBBP7). We 

identified a variant located in the splice donor position in RBBP7 gene 

(NM_002893.3:c.16+1G>A) in a patient affected by spermatogonial arrest. RBBP7 is a core 

histone-binding subunit that may target chromatin remodeling factors, histone 

acetyltransferases and histone deacetylases. This protein is involved in the regulation of cell 

proliferation and differentiation and is overexpressed in adrenal gland, testis and ovaries. 

Balboula et al. (2014) described that this protein regulates histone deacetylation during oocyte 

meiotic maturation and experiments with siRNA demonstrate that is essential for accurate 

chromosome segregation during meiosis. Our qPCR analysis in testis biopsies corroborates that 
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RBBP7 is highly expressed in testis especially in the spermatogonia cells. Moreover, Exac 

database provides a Z score of +3.46 for missense mutations and pLI score of 0.98 for this gene 

indicating that the encoded protein is intolerant to missense and loss of function (LoF) 

mutations suggesting that this gene is under negative selection. Our observations implies that 

RBBP7 gene should be included in any diagnostic panel of NOA and stimulates further research 

on the role of RBBP7 mutations in men with impaired spermatogenesis. Concerning the 

normozoospermic controls’ group, we identified rare and pathogenic mutations in ASB11 and 

MAPK315 genes. However, even so, no data about these genes in relationship with male 

infertility have been reported in the literature. Moreover, Exac scores for each gene suggest 

that the genes are not under negative selection, indicating that their loss of function may be 

compensated for other genes.  

Finally, although it has been largely been demonstrated that X-linked CNVs may be associated 

with male infertility (Krausz et al. 2015 and reference therein) in this study we could only 

identify three  patient’s specific but non-relevant CNVs.  

 

Oligogenic inheritance 

Oligogenic inheritance is defined by phenotypic outcome that is determined by mutations in 

more than one genes involved in the same disease. One example in the field of andrology is  

central hypogonadism which may be due to multiple heterozygous pathogenic mutations 

mapping to key genes in the Hypothalamic-pituitary-gonadal axis (Tournaye et al. 2016).First, 

in order to test the putative role of oligogenic inheritance in male infertility, we compiled a list 

of 582 autosomal candidate genes, which are predicted to have a role during early 

spermatogenic stages according to mouse KO phenotype, GO terms, biological function, 

expression pattern and the literature. After filtering our data against this list, we have 

identified four heterozygous mutations in three candidate genes: ESPN, FHOD3 and SPIRE2 in 

the patient group. None of these genes was mutated in the control group. ESPN (ESPIN)   is an 

actin-bundling protein and an integral part of the ectoplasmic specialisations which are specific 

to the Sertoli cell and contribute to the Sertoli cell-blood testis barrier (Abel et al. 2008).  

FHOD3 (ForminHOmology 2 Domain containing 3), mutated in two patients, codifies for an 

actin-organizing protein that may cause stress fiber formation together with cell elongation 

and the isoform 4 may play a role in actin filament polymerization in cardiomyocytes. This 

gene is expressed in Sertoli cells and is under regulation of Androgen Receptor signaling (Zhou 

et al. 2010). Finally, SPIRE2 (SPIRE type actin nucleation factor 2) codifies for a protein that acts 

as an actin nucleation factor and is involved in intracellular vesicle transport along actin fibers, 

providing a novel link between actin cytoskeleton dynamics and intracellular transport. The 
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encoded protein is a key factor in asymmetric division of mouse oocytes (Pfender et al. 2011) 

and although no data about male meiosis defects are reported, this protein has been found 

also expressed in Drosophila spermatocytes (Pleiser et al. 2010). Notwithstanding recessive 

inheritance has been described in relationship with these genes, we cannot discard that the 

mutations identified in our NOA patients have a dominant negative effect. In order to verify 

this hypothesis functional studies are needed. Regarding the control group; nine variants in 

nine genes (STRA6, SAFB, EXD1, CLCN2, PIWIL3, M1AP, RHOB, PRDM9 and SMC2) have been 

identified. Interestingly enough, three controls presented 2 variants/person, and although 

these genes are involved in early phases of spermatogenesis no data indicate a direct 

interaction between their encoded proteins (String database and PubMed). The normal semen 

phenotype, together with the fact that the same variant in STRA6 and CLCN2 have been 

already reported in heterozygous state in fertile men (Pasutto et al. 2007; Chen et al. 2013) 

allow us to conclude about the lack of functional consequences (dominant negative effect) for 

the observed variants. In summary, our data does not support dysgenic/oligogenic cause of 

NOA in our patients and shows that the presence of a normal allele of these genes is 

compatible with normal spermatogenesis 

 

Synergistic heterozygosisty 

Variation in the severity of symptoms of inborn errors is often attributed to the effects of 

specific mutations. However, some affected individuals can have partial defects at multiple 

steps in a single pathway. These individuals can show clinical symptoms consistent with a 

homozygous defect in the affected pathway even though they do not have a complete 

deficiency in any one enzyme. Vockley et al. (2000) and Schuler et al. (2005) coined the term 

“Synergistic Heterozygosity” for such individuals having clinically significant metabolic 

problems due to the compound effects of these partial defects. We have incorporated this 

idea of “Synergistic heterozygosity” into our hypothesis that heterozygosity for multiple low-

frequency/rare variants belonging to the same pathway interact to influence spermatogenesis 

outcome or are associated to a specific disease. In order to investigate the possible synergistic 

effect of multiple low-frequency variants in genes belonging to the same pathway/disease we 

performed an enrichment analysis for the 582 spermatogenesis candidate genes. This analysis 

allowed us to obtain those pathways, which are relevant for the early stages of 

spermatogenesis and were compared with the enrichment analysis obtained based on genes 

with low-frequency/rare pathogenic mutations in patients and controls. Among the 9 patients’ 

specific  enriched KEGG pathways, the “regulation of actin cytoskeleton” pathway was of 

major interest due to its putative role during spermatogenesis since actin cytoskeleton is 
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remodeled during germ cell formation and is involved in Blood-Testis Barrier (BTB) integrity 

and germ cell transport (Lie et al. 2010; Tang et al. 2015). Interestingly enough, the three gene 

mutations (ESPN, FOHD3 and SPIRE2) found in three distinct patients through the oligogenic 

inheritance model are also related to actin regulation. One patient affected by meiotic arrest 

presented multiple genes mutated (ITGA3, ITGA11 and ITGAD) belonging to this pathway. 

Integrin alpha 3 (ITGA3) has been found expressed in the basement membrane of the  

seminiferous tubule, spermatocytes, spermatids and testicular spermatozoa (Schaller et al. 

1993) and may stabilize spermatogenic cell attachment to Sertoli cell surfaces (Kierszenbaum 

et al. 2006). Although no data about ITGA11 and male infertility is available, this gene 

dimerizes with ITGB1, which is expressed in germ cells. (Schaller et al. 1993). Finally ITGAD is 

an Androgen Receptor (AR) regulated gene and its expression in mouse Sertoli cell increase 

x1.92 in P10 stage, coinciding with the start of meiosis (De Gendt et al. 2014). It is therefore 

plausible that multiple mutations in members belonging to the integrin gene family in this 

patient may act synergistically leading to meiotic arrest. From a diagnostic point of view, 

although these mutations are predicted as deleterious, functional studies are needed to 

confirm their pathogenic role. Based on our data, we propose that genes belonging to this 

pathway are potential targets for future large scale screening. The disease enrichment 

analyzes showed an overrepresentation of mutations in genes associated to neoplasms, 

urogenital neoplasms and Fanconi anemia/syndrome in the patient group but not in the 

controls. These results are in line with our results in regards of the patient with 

consanguineous parents who carries the mutation in the FANCA gene causing a mosaic form of 

Fanconi anemia, a cancer prone disease. The association with neoplasms is a novel piece of 

evidence supporting previous studies reporting higher morbidity (including cancers) and lower 

life expectancy in infertile men. (Salonia et al. 2009; Eisenberg et al. 2015; Ventimiglia et al. 

2016). 

 

Combined effect of multiple genetic risk factor (SNPs) 

 

In order to investigate the presence of multiple genetic risk factors with putative combined 

negative effect on spermatogenesis we searched in the WES data for exonic SNPs described in 

Genome Wide Association Studies (GWAS) and validated in independent NOA cohorts (Krausz 

et al. 2015 and reference therein). The major limitation of this analysis is the fact that the 

majority of the SNPs described to be associated to male infertility are located in intronic and 

intergenic regions and WES only provide information on exons and splice sites. This model 

could not lead to a plausible explanation of NOA since the number of variants (homozygous 
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and heterozygous) in patients and controls were similar. This finding indicates that the role of 

validated SNPs (even in combination), must be marginal and thus it is an unlikely model for 

NOA. 

 

Overall, the second part of this thesis proved that the recessive model allows defining the 

cause of infertility and the identification of novel autosomic candidate genes for impaired 

spermatogensis in patients with consanguineous parents. Moreover, we provided a clear 

example on how WES might lead to important incidental findings, since in one of the patients 

we were able to diagnose a chromosome instability/cancer-prone condition, FA, other than 

the interrogated one, NOA. Concerning sporadic azoospermia its diagnostic power is relatively 

low. Notwithstanding, the different models employed allowed the identification of a novel X-

linked candidate gene for early spermatogenic stages (RBBP7). Moreover, our analysis through 

the oligogenic inheritance and the Synergistic effect model (enrichment analysis), suggest that 

genes related to the actin family members and their regulation are valid candidate targets for 

further studies in relationship with male infertility. Finally, both recessive model and the 

synergistic effect are in line with the reported epidemiological observations that suggest that 

oligo/azoospermic men also have a higher risk of morbidity (including cancer) and a lower life 

expectancy.  
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6. CONCLUSIONS 

 

Objective 1: 

 

 The X-chromosome contains 12 X-linked CNVs with structural characteristics (flanked 

by segmental duplications, containing protein coding genes) similar to the Y 

chromosome-linked AZF deletions.  

 Ten out of twelve CNVs contain at least one gene with high or exclusive expression in 

the testis and show an inverted deletion/duplication ratio suggesting that these CNVs 

are likely to be under negative selection. 

 The lack of deletions in our cohort may be partially due to the strictly selected 

testicular phenotype (SCOS and spermatogenic arrest) i.e. the phenotypic 

consequence of these deletions maybe a less severe form of spermatogenic 

impairment 

 The study represents a starting point for future large scale investigations involving 

patients with crypto-or oligozoospermia.  

 

Objective 2: 

 

 The recessive model used for NOA patients with consanguineous parents has been 

successful to define the cause of SCOS  in one and to identify novel autosomic 

candidate genes for impaired spermatogenesis in two other patients.. 

 WES lead to an important incidental finding, since through this analysis Fanconi 

Anemia was diagnosed (chromosome instability/cancer-prone condition) in a familial 

case of NOA. 

 The diagnostic power of WES for sporadic NOA is still relatively low. 

 RBBP7 has been purposed as a novel X-linked candidate gene for early spermatogenic 

stages and should be included in future diagnostic panel of NOA. 

 Mutations in genes belonging to the regulation of actin cytoskeleton pathway may act 

synergically and lead to azoospermia. Genes belonging to this pathway are potential 

targets for future screening. 

 Disease pathway analysis in NOA patients provided evidence for an increased risk of 

urogenital neoplasms and Fanconi anemia adding a novel piece of evidence for the 
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previously described association between higher morbidity and lower life expectancy 

in infertile men. 

 Our WES data was unable to provide evidence for the oligogenic and the combined 

effect of multiple genetic risk factor (common SNPs) as potential causes of NOA. 

 Multiple heterozygous and deleterious mutations in genes with a predicted role during 

early spermatogenic stages are compatible with normozoospermia. 

 For the first time in the literature we provide data on the exome in sporadic NOA 

patients and in normozoospermic controls. 
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SUMMARY
The aim of this study was to provide a comprehensive genetic/phenotypic characterization of subjects suffering infertility owing to

sperm macrocephaly (n = 3) or globozoospermia (n = 9) and to investigate whether the patients’ genetic status was correlated with

the alteration of various sperm parameters. AURKC was sequenced in case of sperm macrocephaly while the DPY19L2 status has

been analyzed by multiple approaches including a novel qPCR–based copy number assay in case of globozoospermia. Globozoosper-

mic patients were also analyzed for SPACA1, a novel candidate gene herein tested for the first time in humans. The effect of the

patients’ genetic status was interrogated by implementing the molecular screening with the characterization of several sperm param-

eters: (i) routine sperm analysis, integrated with transmission electron microscopy; (ii) sperm fluorescent in situ hybridization (FISH)

analysis; (iii) sperm DNA fragmentation (DF) analysis. Moreover, for the first time, we performed microsatellite instability analysis as

a marker of genome instability in men with sperm macrocephaly and globozoospermia. Finally, artificial reproductive technology

(ART) history has been reported for those patients who underwent the treatment. Macrocephalic patients had an AURKC mutation

and >89% tetraploid, highly fragmented spermatozoa. DPY19L2 was mutated in all patients with >80% globozoospermia: the two

homozygous deleted men and the compound heterozygous showed the severest phenotype (90–100%). The newly developed qPCR

method was fully validated and has the potential of detecting also yet undiscovered deletions. DPY19L2 status is unlikely related to

FISH anomalies and DF, although globozoospermic men showed a higher disomy rate and DF compared with internal reference

values. No patient was mutated for SPACA1. Our data support the general agreement on the negative correlation between macro/

globozoospermia and conventional intracytoplasmic sperm injection outcomes. Microsatellites were stable in all patients analyzed.

The comprehensive picture provided on these severe phenotypes causing infertility is of relevance in the management of patients

undergoing ART.

INTRODUCTION
It is estimated that infertility affects about 7% of men in their

reproductive age (Krausz, 2011). The etiology of male infertility

also includes two monomorphic forms of teratozoospermia,

sperm macrocephaly, and globozoospermia. Sperm macroceph-

aly is described as a rare condition with a <1% prevalence in the

subfertile population (Nistal et al., 1977) and is characterized by

large-headed and multi-flagellated spermatozoa. Globozoosper-

mia (incidence of 0.1%) is characterized by the production of

round-headed acrosomeless spermatozoa that are unable to

fertilize the oocyte, as no acrosome reaction can occur (Sen

et al., 2009).

Literature offers a number of studies dealing with sperm

macrocephaly or globozoospermia in relation to artificial repro-

ductive technology (ART) outcomes (Koscinski et al., 2011; Dam

et al., 2012; Shimizu et al., 2012; Molinari et al., 2013). These

studies demonstrate that such sperm morphological defects are

related to impairment of spontaneous conception and that a
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better option should be intracytoplasmic sperm injection (ICSI),

although the fertilization rate is relatively low or even absent in

pure forms of macro/globozoospermia. Assisted oocyte activa-

tion (AOA) has been proposed as treatment for globozoospermic

patients (Kuentz et al., 2013).

A number of studies focused on the relationship between ter-

atozoospermia and sperm DNA fragmentation (DF), and the

majority reports that teratozoospermic males had a sperm DF

significantly higher than fertile men (Vicari et al., 2002; Egashira

et al., 2009; Brahem et al., 2011; Perrin et al., 2011; Mangiarini

et al., 2013). As for sperm aneuploidies, a different picture is por-

trayed according to whether we refer to sperm macrocephaly or

globozoospermia: regarding the former, a high incidence of

sperm chromosomal abnormalities is observed in patients with

large-headed spermatozoa, typically displaying a >95% of poly-

ploid/aneuploid genetic content (Benzacken et al., 2001; Perrin

et al., 2008; Brahem et al., 2011); concerning the latter, a com-

prehensive review of 16 studies dealing with globozoospermia

(Perrin et al., 2013) reports that, on the contrary, this form of ter-

atozoospermia shows a much lower rate of aneuploidy and on

average does not appear to be responsible for higher rates of

sperm chromosomal anomalies.

Concerning the genetic background, sperm macrocephaly can

be caused by the occurrence in homozygosity of a 1-bp deletion

(c.144delC) in the AURKC gene, which is essential for correct

meiotic chromosomal segregation and cytokinesis (Dieterich

et al., 2007). This mutation results in a truncated protein lacking

the kinase domain, which leads to a blockage of both meiotic

divisions finally causing the presence of tetraploidy and numer-

ous flagella. The c.144delC has been reported to occur exclu-

sively in the North African ancestry, suggesting the possibility of

a founder effect (Dieterich et al., 2009; Ben Khelifa et al., 2011,

2012; El Kerch et al., 2011). Dieterich et al. (2009) reported one

patient with a pure phenotype displaying the c.144delC muta-

tion in compound heterozygosis with a newly found missense

mutation, p.C229Y (c.686G>A). A heterozygous splicing mutation

in exon 5 (c.436-2A>G) was also identified in two affected broth-

ers who also carried the c.144delC mutation (Ben Khelifa et al.,

2011). Later, the same authors (Ben Khelifa et al., 2012), identi-

fied the p.Y248* (c.744C>G; rs55658999) variant in homozygosis

in six men of North African origin and in four Europeans, of

which two were homozygous and two were compound heterozy-

gous for the c.144delC. This nonsense mutation was always asso-

ciated with another variant located in AURKC 30UTR,

c.930+38G>A. In addition, a single case of sperm macrocephaly

has been recently reported without mutations in the AURKC

gene (Molinari et al., 2013).

Regarding globozoospermia, a genetic basis was suggested by

the familial distribution of the syndrome (Kilani et al., 2004),

and different patterns of inheritance (polygenic, X-linked, auto-

somal dominant, autosomal recessive) have been proposed

(Trokoudes et al., 1995; Stone et al., 2000). Presently, the most

prevalent genetic defect observed in human globozoospermia is

a ~200 Kb homozygous deletion of DPY19L2 (12q14.2), firstly

identified by a genome-wide scan analysis using a 10K SNP

array (Koscinski et al., 2011). It has been proved that DPY19L2

deletion leads to the blockage of sperm head elongation and

acrosome formation. This might be explained by the fact that

the absence of the protein leads to the destabilization of both

the nuclear dense lamina and the junction between the

acroplaxome and the nuclear envelope. Consequently, the acro-

some and the manchette fail to be linked to the nucleus leading

to the disruption of vesicular trafficking, failure of sperm

nuclear shaping and eventually to the elimination of the

unbound acrosomal vesicle. Finally, two further genes have

been associated with globozoospermia in humans, SPATA16

and PICK1 (Perrin et al., 2013). The former was firstly proposed

as possibly implicated in globozoospermia by Dam et al.

(2007), who identified a homozygous mutation in the spermato-

genesis-specific gene SPATA16. The localization in the Golgi

apparatus and the shift with Golgi vesicles to the acrosome

observed in round and elongated spermatids suggested a role

for the SPATA16 protein in acrosome formation during sper-

miogenesis (Lu et al., 2006). As for the PICK1 gene, it encodes a

peripheral membrane protein involved in protein trafficking, a

function that has been well characterized in neurons. Apart

from being expressed in the brain, the PICK1 protein shows rel-

atively high levels also in the testes and the pancreas. The first

association with globozoospermia was reported by Xiao et al.

(2009), who showed that Pick1-knockout mice displayed similar

sperm anomalies to those found in human globozoospermia.

Then, in another Chinese study, PICK1 was screened for the

first time in humans and a homozygous missense mutation

(G198A) was reported as the cause of the globozoospermic phe-

notype. Studies on mice models showed that disruption of

other genes, that is, Csnk2a2 (Xu et al., 1999), Hrb (Kang-Decker

et al., 2001), Gopc (Yao et al., 2002) and the most recently

reported Spaca1 (Fujihara et al., 2012), results in a phenotype

resembling that of globozoospermia in humans. Mutational

screening has been performed in humans for CSNK2A2, HRB,

and GOPC (Pirrello et al., 2005; Christensen et al., n.d.), but no

mutations potentially linked to the pathology were found.

Instead, no genetic studies are available on human SPACA1,

making this gene an interesting genetic target of investigation.

SPACA1 (6q15) encodes a membrane protein localized in the

equatorial segment of spermatozoa. Immunohistochemistry of

human testicular cells (Hao et al., 2002) demonstrated that

SPACA1 distribution coincided with acrosome development

and that rat anti-SPACA1 antibodies blocked the binding and

fusion of capacitated human spermatozoa with zona-free ham-

ster eggs.

Present literature offers the description of different aspects of

these two forms of teratozoospermia, but the picture provided

remains partial as available studies focus on specific issues sepa-

rately. The major aim of this study was to provide a genetic

screening of the two known causative genes, AURKC in case of

sperm macrocephaly and DPY19L2 in case of globozoospermia.

In addition, our patients were also tested for SPACA1, a novel

candidate gene herein tested for the first time in humans. To

provide a comprehensive phenotypic description, we imple-

mented the genetic investigation with the characterization of

both previously analyzed and novel sperm parameters. Hence,

our patients were also subjected to routine sperm analysis, inte-

grated with transmission electron microscopy (TEM) to finely

characterize sperm morphology, sperm fluorescent in situ

hybridization (FISH) analysis and sperm DF analysis. Moreover,

for the first time, we performed microsatellite instability (MSI)

analysis as a marker of genome instability in teratozoospermic

men. Studies in the literature reported that in these two types of

monomorphic teratozoospermia the observed pregnancy rate is
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rather low (Viville et al., 2000; Dam et al., 2007; Molinari et al.,

2013); therefore, by performing the MSI analysis we aimed at

understanding whether this phenomenon might be because of a

higher instability of these patients’ genome. Finally, ART history

has been reported for those patients who underwent the treat-

ment. This is the first comprehensive study that cumulatively

collects a relevant load of information on two types of morpho-

logical defects of human spermatozoa with potential benefit for

future medical practice.

MATERIALS ANDMETHODS

Subjects

A total of twelve unrelated patients displaying a >90% terato-

zoospermic phenotype of sperm macrocephaly (n = 3) and

globozoospermia (n = 9) were selected for this study. All patients

consulted for primary infertility to the Fundaci�o Puigvert, Spain

(n = 4) and to the Division of Sexual Medicine and Andrology

Unit, University Hospital Careggi, Italy (n = 8). Two patients,

one referring to the Spanish clinic and the other referring to the

Italian one, had North African origins, whereas the remaining 10

patients had no known ascendants from North Africa. None of

the patients had karyotype anomalies or Y-chromosome mic-

rodeletions. The brother of one of the Spanish macrocephalic

patients was also recruited. Genetic and sperm analyses were

performed in the frame of the diagnostic work-up. All partici-

pants and family members gave written, informed consent for

the analyses.

Routine sperm analysis

Semen parameters were assessed according to the WHO

guidelines (WHO, 2010; Data S1).

Transmission electron microscopy

TEM analyses were requested as a service at the University

Hospital of Siena and performed as described elsewhere (Bacc-

etti et al., n.d.) (Data S1).

Fluorescent in situ hybridization

For patients attending the Italian clinic, FISH was provided by

the University Hospital of Siena according to the protocol

described by Baccetti et al. (2003). For patients referring to the

Spanish clinic, the analysis was performed at Reprogenetics

(Barcelona, Spain) according to the protocol described by

S�anchez-Castro et al. (2009) (Data S1).

Terminal deoxynucleotidyl transferase dUTP nick end labeling/pro-

pidium iodide assay

Sperm DF was determined by TUNEL/PI assay as described

elsewhere (Muratori et al., 2008); Data S1).

MSI analysis

Seven microsatellite loci located on different chromosomes

were investigated using genomic DNA from both peripheral

blood and sperm samples belonging to the same subject. In this

study, selected loci consisted of two mononucleotide tandem

repeats (BAT-25 and BAT-26), three dinucleotide tandem repeats

(D2S123, D17S250, D5S346), one dinucleotide (TA)n repeat locus

[within the promoter of the estrogen receptor (ESR1)] and one

trinucleotide (CAG)n repeat locus [within exon 1 of the androgen

receptor (AR)] (Table S1). MSI was defined as the presence of

discordant alleles between blood and sperm DNA belonging to

the same subject. Details are provided in the Data S1.

Candidate genes analysis

Sanger sequencing was performed using the BigDye Termina-

tor v3.1 sequencing kit and an ABI PRISM 3130 Genetic Ana-

lyzer (Applied Biosystems, Foster City, CA, USA). As for

macrocephalic patients, the seven AURKC exons and intron/

exon boundaries were analyzed (primers reported in Table S2).

Concerning globozoospermic patients, the DPY19L2 and

SPACA1 genes were analyzed. As for DPY19L2, screening was

performed according to the flow chart represented in Figure S1.

Standard � PCR of exons 10, 14, and 19 served to detect the

complete homozygous deletion. Deletion junction fragment

analysis (DJFA) was performed to detect the heterozygous

DPY19L2 deletion in STS (Sequence-Tagged Sites)-positive

patients and to define the type of breakpoint (Elinati et al.,

2012) in heterozygous and homozygous deletions. Primers used

are reported in Table S3. Mutational screening by direct

sequencing was also performed and pathogenic predictions for

missense variations were realized using Polyphen (http://genet-

ics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.org) and Mu-

tationTaster (www.mutationtaster.org). Intronic variants

predictions were performed using Human Splice Finder

(www.umd.be/HSF/) and BDGP (www.fruitfly.org/) websites.

Multiple sequence alignment of the human DPY19L2 protein

among species was performed with MultAlin (http://multa-

lin.toulouse.inra.fr/multalin/). The effect of the missense vari-

ants on the properties of the involved extramembrane loops of

the DPY19L2 protein was predicted using TMHMM server v.2

(http://www.cbs.dtu.dk/services/TMHMM/). As for SPACA1,

primers were designed to amplify and sequence all seven exons

and intron/exon boundaries (Table S4).

Quantitative-PCR

Exploration on the DPY19L2 locus in the Database of Genomic

Variants (DGV) showed a threefold increase in duplications

compared with deletions, and that several deletions might have

a different breakpoint possibly undetected by standard DJFA.

Therefore, we applied qPCR to identify both novel deletions and

duplications involving the DPY19L2 gene by designing a TaqMan

assay based on the amplification of the 50UTR-Exon1 region

(Data S1 and Table S5).

Statistical analysis

The statistical software SPSS 20.0 (Chicago, IL, USA) was

employed. Comparison of DF mean values was performed with

the parametric independent t-test, according to the fact that

sperm DF was normally distributed among samples. A p-value

<0.05 was considered statistically significant.

RESULTS

Sperm analysis

Routine semen analysis

As for macrocephalic patients, two (11-527 and 12-550) pre-

sented a moderate reduction in total sperm count (17.5 and

© 2015 American Society of Andrology and European Academy of Andrology Andrology, 2015, 3, 203–212 205

SPERMMACROCEPHALY AND GLOBOZOOSPERMIA ANDROLOGY

http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org
http://www.mutationtaster.org
http://www.umd.be/HSF/
http://www.fruitfly.org/
http://multalin.toulouse.inra.fr/multalin/
http://multalin.toulouse.inra.fr/multalin/
http://www.cbs.dtu.dk/services/TMHMM/


16 million/ejaculate, respectively), whereas CT154 sperm count

was normal (64.3 million/ejaculate). Sperm morphology analysis

showed in all patients 100% combined anomalies including the

typical features of sperm macrocephaly (Fig. 1A). As for globo-

zoospermic patients, total sperm count varied from very low to

normal with variable percentages of round-headed acrosomeless

spermatozoa (50–100%).

TEM analysis

TEM evaluation was performed in three patients with globo-

zoospermia, A1869, CT158, and CT196. The analysis revealed in

all cases the presence of typical sperm head morphology altera-

tions with most of the analyzed nuclei presenting a high level of

chromatin decondensation; sperm flagella appeared disorga-

nized and coiled around the nucleus (Fig. 1B). Patient CT158

also presented rarely elliptic or elongated nuclei and some

perinuclear structures possibly representing a developmental

failure of the acrosome.

Sperm FISH

FISH analysis was performed in all patients affected by macro-

cephaly and in four of nine patients with globozoospermia.

Although the number of chromosomes analyzed was different

in the Spanish and Italian patients (5 and 3, respectively) the

results were very similar. As expected, the most frequent sperm

chromosomal anomaly in patients with sperm macrocephaly

was tetraploidy (mean value � standard deviation: 84.27 �
9.66%), but also disomies/diploidies were higher than reference

values (disomies: 4.29 � 3.40%; diploidies: 7.15 � 2.55%). Sper-

matozoa of globozoospermic patients mostly presented with a

normal sperm chromosomal content, although average

disomies/diploidies levels were higher than reference values

(disomies: 0.61 � 0.26%; diploidies: 0.53 � 0.31%) (Table S6).

Sperm DF analysis

TUNEL/PI assay was performed for two macrocephalic and

eight globozoospermic patients. Macrocephalic patients’ (CT154

and 12-550) sperm DF was 54.29 and 52%, respectively, although

it did not reach statistical significance compared with the inter-

nal reference values calculated on a population of 90 fertile con-

trols, probably because of the small number (n = 2). Among

globozoospermic patients, the proportion of fragmented sper-

matozoa varied from 32.61% (patient CT190) to 64.9% (patient

CT196) with a mean value that was significantly higher com-

pared with the internal reference values (mean value � standard

error: 46.92 � 4.20% vs. 34.04 � 1.53%; p = 0.017; Table 1).

Microsatellite instability

MSI analysis was performed for one of three macrocephalic

patients (CT154) and for eight globozoospermic patients. In each

patient, all seven markers analyzed resulted stable between sper-

matozoa and blood DNA samples (Table 1).

Molecular genetics

AURKC screening

The two macrocephalic patients with North African origin

(CT154 and 11-527) carried the c.144delC mutation. The other

patient, as well as his brother, were homozygous for the

p.Tyr248* (c.744C>G) mutation in exon 6 (Table S7); both broth-

ers also carried the c.930 + 38C>G mutation in the 30UTR,

reported to be in linkage with the p.Tyr248* mutation (Ben Khe-

lifa et al., 2012).

DPY19L2 screening

Three patients carried the DPY19L2 deletion: A1869 and

CT190, who were homozygous, and CT158, who was heterozy-

gous. DJFA resulted in the amplification of the expected 1.7 Kb

product in all of them, revealing the presence of breakpoint type

‘a’. The rest of patients showed amplification of all exons, thus

qPCR analysis was performed to check whether they harbored

novel deletions undetectable by DJFA. Q-PCR confirmed the

presence of the heterozygous deletion in CT158 as well as the

homozygous deletion in CT190 and A1869, but no other novel

CNVs were found in the remaining samples. Finally, sequencing

was performed to check for the presence of point mutations in

(A)

(B)

Figure 1 Representative view of sperm morphology. (A) Macrocephalic

patients’ ejaculate presented 100% large-headed and multi-flagellated

spermatozoa (in the picture, CT154’s spermatozoa are showed). (B) Round-

headed and acrosomeless spermatozoa depicted by TEM in globozoosper-

mic patients (in the picture, CT158’s spermatozoa are showed).
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the heterozygous deletion carrier (CT158) and the non-deleted

patients (n = 6).

The heterozygous patient did not show any amplification of

exon 7, suggesting a deletion of this exon. The consequence at

the protein level is the loss of 20 amino acids, predicted by

TMHMM to substantially change the protein conformation

owing to hydropathic changes. As for point mutations, we found

a total of nine variants (4 missense, 3 intronic, and 2 synony-

mous) in five patients (Table S8). Three reported missense vari-

ants were found in exon 1: rs10878075, rs10878074, and

rs10878073. These variants are seemingly in linkage disequilib-

rium and in our cohort three non-deleted patients (CT157,

CT196, 11-387) carried them in heterozygosis and one (CT176)

in homozygosis. The minor allele frequency (MAF) denotes a

high frequency of these variants in the general population; for

instance, the bioinformatic predictions indicate a non-patho-

genic effect of the amino acidic changes. The fourth missense

variant, also described in the databases (rs371693431), was

detected in heterozygosis in exon 4 of one non-deleted patient

only (11-387). This mutation is a serine to leucine substitution

(p.Ser165Leu) in a highly conserved region. No MAF is reported

for this variant and all prediction tools employed in this study

predicted it as potentially pathogenic; for instance, using

TMHMM it is predicted to be located in one of the extramem-

brane loops of the protein and to increase its hydrophobic prop-

erties leading to a consistent change of the protein conformation

(Fig. 2). Of the three intronic variants found in three different

patients, two are reported with a MAF>5% and one is novel, but

all seemingly have no effect on splicing. Interestingly patient

CT175, displaying the lowest value of globozoospermic sperma-

tozoa (50%), had no variants at all.

SPACA1 screening

Sequencing of the whole SPACA1 gene was performed in all

globozoospermic patients. No mutations were found in any of

them.

ART outcome

ART treatment was an option for nine of the patients included

in the study (Table 2). In patients with milder forms of globo-

zoospermia oocyte fertilization occurred, although this was not

always followed by embryo formation. Patients with severe

forms of globozoospermia – who also displayed either the homo-

zygous DPY19L2 deletion or were compound heterozygous –

could not even obtain oocyte fertilization. In the case of patient

CT154 (macrocephalic), although 5 MII oocytes were injected,

none of them was fertilized. Of the other two macrocephalic

patients (11-527 and 12-550), the former did not undergo ART,

whereas the latter underwent an ICSI cycle reaching embryo

transfer, but achieved no pregnancy. We also obtained data on

patient 12-550’s family investigating on his brother’s ART history

(sample 13-039), who displayed a mild form of sperm macro-

cephaly (39%); in this case, 2 ICSI cycles were performed and

both ended in embryo transfer, but both times no pregnancy

was achieved. Pregnancy was achieved only for one couple

(patient 11-387), who went for IVF with a donor’s sample.

DISCUSSION
Sperm macrocephaly and globozoospermia are rare forms of

teratozoospermia causing male infertility. The literatureT
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provides well-defined data concerning sperm macrocephaly, for

which a consensus exists about the genetic etiology and its con-

sequences on sperm genome and ART outcome. Contrastingly,

the picture is rather complex when it comes to globozoospermia,

for which more candidate genes have been proposed and data

on aneuploidy, sperm DF as well as ART outcomes are largely

heterogeneous.

Literature is especially poor of studies where mutational

screening of candidate genes for these two conditions is com-

bined with sperm genomic analysis and ART history. In fact,

such a comprehensive study has been published only for two

patients with sperm macrocephaly (Guthauser et al., 2011; Moli-

nari et al., 2013). Concerning globozoospermia, ours is the first

study providing information about the mutational status of

DPY19L2 and a novel candidate gene (SPACA1) concurrently to

sperm FISH, DF, MSI, and ART outcome.

As expected all patients with macrocephaly had a mutation in

the AURKC gene, directly associated with the pathology. Consis-

tent with the literature, the two North African patients in our

cohort were homozygous for the c.144delC mutation. The two

Spanish brothers, instead, were homozygous for the p.Tyr248*
mutation; as they came from a small town in Spain, their par-

ents’ consanguinity cannot be excluded. Interestingly, patient

12-550’s spermatozoa were all macrocephalic, whereas his

brother displayed a 39% of macrocephalic spermatozoa,

suggesting that the p.Tyr248* mutation has a variable pene-

trance. Unfortunately, sperm morphology data of distinct

p.Tyr248* mutation carriers are not available in the current liter-

ature (Ben Khelifa et al., 2012). In accordance with previous

studies (Benzacken et al., 2001; Devillard et al., 2002; Guthauser

et al., 2006; Perrin et al., 2011; Brahem et al., 2012; Molinari

et al., 2013; Achard et al., n.d.), FISH analysis in spermatozoa

revealed a high rate of tetraploidy in all three tested patients.

Interestingly, the two Moroccan patients carrying the c.1144delC

showed >90% polyploidy, whereas the Spanish patient 12-550

presented a lower value (68.56%) indicating a milder effect of

this mutation on sperm chromosomal constitution. In contrast,

the two patients for whom TUNEL/PI assay was performed

(CT154 and 12-550) displayed a similarly high level of sperm DF

(54.29 and 52%, respectively), regardless of the type of mutation.

As for globozoospermic patients, the genetic analysis included

not only the screening of the DPY19L2 gene, the major genetic

factor causing globozoospermia, but also that of a novel candi-

date gene, SPACA1, here studied for the first time in humans.

The importance of DPY19L2 mutations in the etiology of globo-

zoospermia has been emphasized by Elinati et al. (2012), who

found an involvement of this gene (deletion and/or point muta-

tions on both alleles) in 56% of cases (36/64). We report a fre-

quency of DPY19L2 homozygous deletions of 22.2% (2/9), which

seems to be lower compared with the overall frequency reported

in the literature. Unfortunately, articles available not always pro-

vide data on the consanguinity of homozygous carriers; however,

when considering patients from non-consanguineous families

and those with unknown family history, we estimated that the

frequency of homozygous deletion carriers was of 34.7%.

In our cohort, patients with the severest phenotype had either

a homozygous or a heterozygous DPY19L2 deletion together

with a deletion of exon 7 on the other allele. When it comes to

point mutations, one patient was heterozygous for a deleterious

missense variant, but no other potentially deleterious variants

could be identified. This finding suggests that in men with the

heterozygous mutations the phenotype could either be caused

by a second mutation on another candidate gene (digenic etiol-

ogy) or that the heterozygous mutation is already sufficient to

induce a partial globozoospermia. We propose this later scenario

as the severity of globozoospermia was milder in the heterozy-

gous patient (83%) compared with the two homozygous deletion

carriers (100% globozoospermic) and the compound heterozy-

gote (91%). Moreover, the five patients with wild type DPY19L2

showed the lowest percentage of globozoospermia (50–75%).

Our data therefore confirm that DPY19L2 mutations are impor-

tant contributors to severe forms of globozoospermia suggesting

that its screening should not be restricted to the complete forms.

The diagnosis of both heterozygous and homozygous mutation

is relevant for genetic counseling as loss in DPY19L2 involves 7

over 1000 person in the general population (DGV). The deletion

occurs between two segmental duplications that predispose to

deletion formation during meiosis. Considering that such an

event is not exceptionally rare, screening for the non-allelic

homologous recombination (NAHR)-mediated deletion in the

female partners of male carriers should be advised in order to

predict the possible consequences on the offspring.

The lack of DPY19L2 mutations in the milder forms (50–75%

of globozoospermia) suggests that other genes could be involved

in this phenotype. Concerning other genetic factors previously

Mutant

Wild type

S165L

110–127

193 215(A)

(B)

Figure 2 Bioinformatic analysis of the missense mutation p.Ser165Leu

(rs371693431) in DPY19L2. (A) Prediction of the mutation on the properties

of the involved extramembrane loop of the DPY19L2 protein using the

TMHMM server. Plot of the posterior probabilities for wild type (upper

panel) and mutant (lower panel) sequences of the DPY19L2 proteins are

shown, based on a hidden Markov model approach. The hydrophobicity,

one of the most important parameters incorporated into this model, can be

revealed by the plot. The dashed box highlights the significant increase in

the protein hydrophobic properties caused by the Serine into Leucine

change, which leads to a consistent change in the protein conformation.

(B) Amino acid alignment of partial exon 4 of DPY19L2 selected orthologs,

performed by MultAlin. The box highlights the Serine in position 165.
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proposed to be involved in globozoospermia, data are very

scarce and only single mutation carriers with complete globo-

zoospermia are reported for the SPATA16 and PICK1 gene from

consanguineous families (Dam et al., 2007; Liu et al., 2010).

Later, only SPATA16 was screened in an overall relatively large

group of globozoospermic subjects (n = 65) and no mutation

was found (Dam et al., 2007; Kuentz et al., 2013; Noveski et al.,

2013). Given that research focused on these genes was relatively

unsuccessful, we searched for a not yet tested candidate gene. As

mentioned above, this is the first time that SPACA1 is considered

a candidate gene for human globozoospermia, based on data by

Fujihara et al. (2012), reporting a globozoospermia-like pheno-

type in knockout mice. We found no mutations in SPACA1 in our

globozoospermic patients but, given the small cohort tested, it

cannot be excluded that this gene might still be involved in this

phenotype in humans.

The existence of a clear-cut correlation between globozoosper-

mia and a higher rate of abnormal chromosomal content as well

as higher DF is questioned by the fact that only a proportion of

patients show abnormal values (Machev et al., 2004; Perrin

et al., 2011). In our cohort of globozoospermic patients, we did

found an increase in disomies and diploidies compared with the

reference values; however, inter-individual differences were evi-

dent. For the first time, we tested whether the presence of the

DPY19L2 deletion might confer a higher rate of both sperm an-

euploidies and DF. According to our data, no correlation exists

between the presence of the DPY19L2 deletion and the rate of

abnormal chromosomal content, as patients carrying a DPY19L2

either homozygous (A1869) or heterozygous (CT158) deletion

did not have higher aneuploidy rate compared with non-carrier

globozoospermic patients. Considering sperm DF, also this

parameter was highly variable between patients (32.6–64.9%)

showing on average a significantly higher DF rate (46.9 � 4.2%)

compared with the 90 controls (34.04 � 1.5%). In relation to the

presence of the DPY19L2 deletion, both homozygous carriers

displayed a fragmentation rate within the normal range, whereas

DF in the heterozygous carrier was definitely above normality

(61%). Therefore, a clear relationship between the DPY19L2 dele-

tion and a consistently higher DF cannot be established.

ART history was followed for 8/12 patients, of whom none

achieved pregnancy (Table 2). The two patients with 100% large-

headed spermatozoa in the ejaculate showed different

fertilization rate at ICSI: as for the patient carrying the c.144delC

(CT154) and his 28-year-old partner, despite having recovered

5MII oocytes during the ICSI attempt, no oocyte fertilization

occurred; instead, patient 12-550, with the p.Tyr248* mutation

and a 34-year-old partner, managed to fertilize one of two recov-

ered MII oocytes after ICSI, achieving embryo transfer. Embryo

transfer was successful, although not resulting in a pregnancy,

only in patient 12-550’s brother (sample 13-039), who carried

the same mutation but a lower percentage of macrocephalic

spermatozoa.

Concerning the globozoospermic subjects, we observed a cor-

relation between DPY19L2 status and the oocyte fertilization rate;

for instance, for the two patients carrying the DPY19L2 deletion

that underwent ART treatment (A1869 in homozygosis and

CT158 in heterozygosis) oocyte fertilization did not occur, even

when the female partner was young (CT158’s case) or had a per-

fect ovarian response to stimulation (A1869). In non-deleted

patients, instead, the ART procedure was carried out until

embryo transfer, which in no cases, although, developed in a

pregnancy. Given our assumptions above, this correlation is

explained by the DPY19L2-dependent severity of the globozoo-

spermic phenotype, for which the fertilization rate is reduced in

the presence of the genotype leading to a higher percentage of

abnormal spermatozoa that will fail at ICSI. Our data support the

general agreement on a negative correlation existing between

macro/globozoospermia and conventional ICSI outcome (Viville

et al., 2000; Dam et al., 2007; Dirican et al., 2008; Banker et al.,

2009; Kuentz et al., 2013). Unsuccessful fertilization derives from

the missing PLCf-dependent induction of calcium increase in

the oocyte. AOA has been proposed as an option for patients with

complete globozoospermia, although its safety has been ques-

tioned: it is, in fact, advisable to restrict its use to selected cases

and to avoid it when there is a chance of finding normal sperma-

tozoa, as the case of partial globozoospermia (Kuentz et al.,

2013). In these cases, intracytoplasmic morphologically selected

sperm injection (IMSI), have been proposed (Kuentz et al., 2013).

In our cohort, neither AOA nor IMSI have been performed.

Given the very low pregnancy rate observed in these two types

of monomorphic teratozoospermia (Viville et al., 2000; Dam

et al., 2007; Molinari et al., 2013), we aimed to evaluate whether

a higher genomic instability would concur to this phenomena.

Consequently, another novelty of our study is the analysis of

Table 2 History of ART treatment in patients with teratozoospermia

Patient Phenotype No. abortions Partner’s age ART treatment No. recovered oocytes No. fertilized

oocytes

No. embryo

(day 2)

No. embryo

transfer

Pregnancy

CT154 Macro 0 28 IUI NA 0 0 0 No

IVF cycle 0 0 0 0 No

ICSI cycle 5 MII; 1 deg. 0 0 0 No

12-550 Macro 0 34 ICSI cycle 2 MII; 3 prophase 1 1 1 No

13-039a Macro 0 33 1° ICSI cycle 7 MII; 1 deg. 2 2 2 No

2° ICSI cycle NA NA NA NA No

A1869 Globo 0 36 ICSI cycle 11 MII; 1 deg. 0 0 0 No

CT158 Globo 0 29 ICSI cycle 5 MII 0 0 0 No

10-260 Globo 0 35 1° ICSI cycle 3 MII 1 1 1 No

2° ICSI cycle 2 MII; 1 MI 0 0 0 No

3° ICSI cycle 2 MII 1 1 1 No

CT157 Globo 2 39 ICSI cycle 5 MII 2 2 2 No

CT176 Globo 0 38 ICSI cycle 4 MII 3 3 3 No

IUI, intra-uterine insemination; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; MI, maturation phase I; MII, maturation phase II; ART, artificial reproduc-

tive technology; NA, not available. a13-039 is patient 12-550’s brother.
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MSI, which may originate from alteration in the DNA mismatch

repair system and is considered a marker of genomic instability

(Maduro et al., 2003). All patients resulted stable to MSI analysis,

excluding the contribution of genomic instability to the poor

ICSI outcomes.

In summary, this study represents the first comprehensive

clinical characterization of patients suffering infertility because

of two forms of monomorphic teratozoospermia. Our data about

sperm macrocephaly basically confirm previous findings on the

role of AURKC and the exceptionally high aneuploidy rate in this

pathological condition. As for globozoospermia, we observed no

direct relationship between the DPY19L2 status and sperm

anomalies in terms of FISH, DF but a correlation was detected

between the type of DPY19L2 mutations and severity of the phe-

notype and oocyte fertilization. In the light of our data, we agree

that in case of 100% globozoospermia, AOA should be recom-

mended, as there is biological evidence that spermatozoa will

not be able to activate the oocyte alone. DPY19L2 genetic

screening would help to characterize both complete and partial

cases with >80% of globozoospermia, whereas the DPY19L2 sta-

tus of the female partner of mutation carriers will provide addi-

tional information for an appropriate genetic counseling. Apart

from offering a comprehensive spermatozoa and clinical charac-

terization, our study presents a number of novel aspects. We

aimed to provide an alternative technical approach for the

detection of DPY19L2 deletions that might be missed by the pre-

viously proposed DJFA analysis. Therefore, we developed the

qPCR method herein presented for a rapid and highly reliable

analysis of the presence of both common and still undiscovered

DPY19L2 deletions. Importantly, for the first time, we provide

evidence that neither macrocephaly nor globozoospermia are

associated with genomic instability. Finally, the novel candidate

gene herein proposed (SPACA1) and tested for the first time in

human, does not appear a frequent cause of this phenotype in

humans, although studies on a larger study population should

be performed to confirm this conclusion.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of

this article:

Figure S1. Flowchart indicates the molecular investigation performed in

globozoospermic patients and potential outcome.

Figure S2. qPCR amplification plots. (A) Amplification plot of the normal

control carrying two copies of the DPY19L2: no difference is observed

between the Ct values of the DPY19L2 gene and the reference gene

HAL; (B) Amplification plot of the patient carrying the DPY19L2 heterozy-

gous deletion: a difference of one Ct is observed between the DPY19L2

and the reference gene HAL; (C) Amplification plot of the patient carrying

the DPY19L2 homozygous deletion: no amplification is observed for the

DPY19L2.

Table S1. Sequences of primers used for MSI analysis.

Table S2. Sequences of primers used for AURKC analysis.

Table S3. List of primers used for DPY19L2 analysis.

Table S4. List of primers used for SPACA1 analysis.

Table S5. Primers used for qPCR analysis.

Table S6. Frequency of chromosomal anomalies found in patients with

teratozoospermia.

Table S7. AURKC mutations identified in macrocephalic patients.

Table S8. DPY19L2 mutations identified in globozoospermic patients.

Data S1. Supplemental Materials and Methods.
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Supplemental Materials and Methods 

Routine sperm analysis -Sperm samples were obtained after 2–7 days of 

ejaculatory abstinence. After complete liquefaction at 37°C, semen parameters 

were assessed according to the WHO guidelines (WHO, 2010). After Diff-Quick 

staining, morphological estimation was accomplished on 100 replicates at 100 

magnification. 

Transmission electron microscopy (TEM) 

Sperm samples were fixed in cold Karnovsky fixative and maintained at 4°C for 2 

hours. Fixed semen was washed in 0.1 mol/L cacodylate buffer (pH 7.2) for 12 

hours, post-fixed in 1% buffered osmium tetroxide for 1h at 4°C, then 

dehydrated and embedded in Epon Araldite. Ultrathin sections were cut with a 

Supernova ultramicrotome (Reicker Jung, Vienna, Austria), mounted on copper 

grids, stained with uranyl acetate and lead citrate, and then observed and 

photographed with a Philips CM10 TEM (Philips Scientifics, Eindhoven, The 

Netherlands). For each patient, about 300 ultrathin sperm sections were 

analyzed.  

FISH analysis 

FISH analyses varied slightly according to the clinic to which patients referred. 

As for patients attending the Italian clinic, the service was provided by the 

University Hospital of Siena according to the protocol that follows. An aliquot of 

sperm sample was washed with 150 mmol/l NaCl and 10 mmol/l Tris±HCl (pH 

8), smeared onto glass slides and air-dried. Slides were then fixed in 

methanol:acetic acid (3:1) for 10 min, dehydrated in 70%, 80% and 100% cold 

ethanol, and air-dried. Samples were swell-treated with 0.01 mol/l dithiothreitol 

(Biorad, Hercules, CA) in 0.1 mol/l Tris±HCl (pH 8), followed by 20 mmol/l 3,5-

diiodosalicylic acid, lithium salt (Sigma-Aldrich, St. Louis, MO, USA) in the same 

buffer, checking sperm head swelling. The slides, rinsed in 2x standard saline 

citrate (SSC), pH 7, air-dried and then dehydrated and denatured in 70% 

formamide (Sigma-Aldrich, St. Louis, MO, USA) 2x SSC at 73°C for 4 min. Slides 

were then quickly dehydrated in a graded ethanol series at 0°C and air-dried. 

During this last step, chromosome enumeration probes for chromosomes X, Y, 



and 18 (Vysis, IL, USA) for FISH triple were used. The probe mix was denatured 

for 5 min at 73°C in a water bath. Hybridization was carried out at 37°C in a 

moist chamber for 12hrs. The slides were then washed with 0.4x SSC±0.3% 

Nonidet P40 (NP40) for 2 min at 73°C, quickly in 2x SSC±0.1% NP40 at room 

temperature, and finally mounted with DAPI 125 ng/ml in antifade solution 

(Vysis, IL, USA). Sperm nuclei were scored according to published criteria 

(Martin and Rademaker, 1995). Observation and scoring were performed on a 

Leica AFM6000 microscope equipped with fluorescence apparatus. Reference 

values according to Gambera et al. (2011) were used. 

For patients referring to the Spanish clinic, FISH analysis was performed as a 

service at Reprogenetics (Barcelona, Spain) according to the protocol that 

follows. Semen samples were fixed in a methanol:acetic acid (3:1) and spread 

onto microscope slides by means of the air-dry method. Slides were pre- served 

at 22°C until needed. Sperm nuclei decondensation and chromatin 

denaturalization was performed according to previous standardized protocols 

(Vidal et al., 1993). In each case, two hybridizations were performed on two 

different slides using the following probe combinations: a triple-color FISH 

protocol with centromeric probes for chromosomes 18 (CEP 18, locus D18Z1, 

Spectrum Aqua), X (CEP X, locus DXZ1, Spectrum Green) and Y (CEP Y, locus 

DYZ3, Spectrum Orange), and a dual-color FISH protocol with locus-specific 

probes for chromosomes 13 (LSI 13, locus RB1, Spectrum Green) and 21 (LSI 21, 

loci D21S259, D21S341, D21S342, Spectrum Orange) (AneuVysionw, Multicolor 

DNA Probe Kit, Vysis Inc.). A minimum of 1,000 spermatozoa was analyzed in 

each case, and sperm nuclei were scored according to previously described strict 

criteria (Blanco et al., 1996). For each patient, the incidence of disomy for 

chromosomes X, Y, 13, 18 and 21, the incidence of sperm diploidy and the 

proportion of sperm carriers of chromosomes X and Y were determined. The 

normality or abnormality of sperm-FISH results was determined by comparing 

the incidence of chromosome abnormalities in each sperm sample with the 

sperm-FISH results obtained from 10 healthy, normozoospermic and fertility-

proven individuals (reference population). 



Terminal deoxynucleotidyl transferase dUTP nick end labeling/Propidium 

iodide (TUNEL/PI) Assay 

We evaluated SDF by use of the TUNEL/PI assay recently set up in our laboratory  

(Muratori et al. 2010). Semen samples were washed twice with HTF medium and 

then fixed with paraformaldehyde [500 µl, 4% in phosphate buffered saline 

(PBS) pH 7.4] for 30 min at room temperature. Briefly, fixed spermatozoa 

(10x106) were centrifuged at 500 x g for 10 min and washed twice with 200 µl of 

PBS with 1% BSA. Then, spermatozoa were permeabilized with 0.1% Triton X-

100 in 100 µl of 0.1% sodium citrate for 2 min on ice. After washing two times, 

the labeling reaction was performed by incubating sperm in 50 µl of labeling 

solution (supplied with the In Situ Cell Death Detection Kit, fluorescein, Roche 

Molecular Biochemicals, Milan, Italy) containing the terminal deoxynucleotidyl 

transferase (TdT) enzyme for 1h at 37°C in the dark. Finally, samples were 

washed twice, resuspended in 500 µl of PBS, stained with 10 µl of PI (30 µg/ml in 

PBS) and incubated in the dark for 10 min at room temperature. Samples were 

acquired by a FACScan flow cytometer (Becton–Dickinson, Mountain View, CA, 

USA) equipped with a 15-mW argon-ion laser for excitation. For each test sample, 

three sperm suspensions were prepared for instrumental setting and data 

analysis, by omitting (i) both PI staining and TdT; (ii) only TdT (negative control) 

and (iii) only PI staining (for fluorescence compensation). Green fluorescence of 

nucleotides was revealed by an FL-1 (515–555 nm wavelength band) detector; 

red fluorescence of PI was detected by an FL-2 (563–607 nm wavelength band) 

detector. For each sample, 10,000 events were recorded within the characteristic 

flame shaped region in the FSC/SSC dot plot which excludes debris and large 

cells (Muratori et al., 2003, 2004). We determined sperm DF, within the 

nucleated events (i.e., the events labeled with PI) of the characteristic FSC/SSC 

region of sperm. 

MSI analysis 

Seven microsatellite loci located on different chromosomes were investigated 

using genomic DNA derived from both peripheral blood and sperm DNA samples 

from the same subject. According to the ‘International Workshop on 

Microsatellite Instability and RER Phenotypes in Cancer Detection and Familial 



Predisposition’ guidelines, analysis of a panel of at least five microsatellite loci is 

recommended to establish whether instability is present or not (Boland et al., 

1998). In this study, selected loci consisted of two mononucleotide tandem 

repeats (BAT‐25 and BAT‐26), three dinucleotide tandem repeats (D2S123, 

D17S250, D5S346), one dinucleotide (TA)n repeat locus [within the promoter of 

the estrogen receptor (ESR1)] and one trinucleotide (CAG)n repeat locus [within 

exon 1 of the androgen receptor (AR)]. Sequences of corresponding primers used 

for PCR are described in Supplementary Table 1. For each locus either the 

forward or the reverse primer (Life Technologies, Carlsbad, CA, USA) was 

fluorescent‐labeled as showed in Supplementary Table 1. Amplification was 

performed in simplex using peripheral blood and sperm DNA separately and 

results were validated on a 2% agarose gel. Two mixes were produced: one 

containing PCR products from the ESR1 and the AR amplification and the other 

including PCR products from the other five markers amplification (BAT‐25, 

BAT‐26, D2S123, D17S250 and D5S346). The so assembled PCR products were 

then run on an ABI Prism 310 (Life Technologies, Carlsbad, CA, USA) sequence 

analyzer following the manufacturer’s recommended protocol (Perkin Elmer, 

USA). Briefly, PCR products were separated by capillary electrophoresis and the 

length of each fragment was determined by GeneScan software by comparison 

with the fluorescent‐labeled internal size marker GenScan HD ROX Size Standard 

400 (Applied Biosystems, Foster City, CA, USA). In the case of the (TA)n and 

(CAG)n loci, internal controls, represented by previously sequenced fragments 

with known repeat length, were also included in the electrophoretic run. The 

length of the polymorphic repeats was determined for all loci and comparison of 

repeat lengths was performed between paired blood and sperm PCR fragments. 

Microsatellite instability is defined as the presence of discordant alleles between 

blood and sperm DNA belonging to the same subject. The ‘National Cancer 

Institute’ classifies microsatellite instability as High Microsatellite Instability (H-

MSI), when 30-40% of markers analyzed results unstable, and as Low frequency 

Microsatellite Instability (L-MSI), when the percentage of unstable markers is 

lower. 

 



Quantitative-PCR for DPY19L2 copy number 

Before testing, all samples were put through rigorous quality control to ensure 

that DNA quality and then diluted to 40ng.µL-1. Each sample was analyzed in 

triplicate in a 96-well plate. The SYBR Select Master Mix produced by Invitrogen 

was used, and the HAL gene was amplified as a reference for analysis purposes. 

Due to the high homology of DPY19L2 with different genomic regions, primers 

design for reliable results required a thorough bioinformatic analysis. The 

reaction conditions were as follows: 40ng DNA; 500nM Primer (forward and 

reverse); SYBR Green SELECT Master mix (1x concentration) in a total reaction 

volume of 20µL. qPCR was performed on TaqMan 7900HT on ‘Absolute 

Quantification’, using the pre-set ‘Standard’ cycle conditions. The annealing 

temperature was 60°C. A non-targeting control and a normal control (carrying 

two copies of DPY19l2) was included on each plate (Supplemental Figure 2). 

Threshold cycle and baseline were calculated automatically and relative 

quantification was determined using the ΔΔCt analysis method. 

 



Supplemental Table 1. Sequences of primers used for MSI analysis. 

Marker Repeat type Forward primer (5’3’) Reverse primer (5’3’) Size (bp) 

AR Trinucleotide (CAG)n TCCAGAATCTGTTCCAGAGCGTGC Fam-GCTGTGAAGGTTGCTGTTCCTC 240-290 

ER Dinucleotide (TA)n GACGCATGATATACTTCACC GCAGAATCAAATATCCAGATG 160-180 

D17S250 Dinucleotide (TA)n GCTGGCCATATATATATTTAAACC CCAAATTTATATATATACCGGTCG 158 

D2S123 Dinucleotide (CA)n ACATTGCTGGAAGTTCTGGC Hex-ACCATAGGTTCAGTCTTTCC 217 

D5S346 Dinucleotide (CA)n ACTCACTCTAGTGATAAATCG Ned-AGCAGATAAGACAGTATTACTAGTT 131 

BAT26 Mononucleotide (A)n TGACTACTTTTGACTTCAGCC CCCAATTTTTACAACTAACCAA 122 

BAT25 Mononucleotide (T)n TCGCCTCCAAGAATGTAAGT TCTGCATTTTAACTATGGCTC 127 

 

Supplemental Table 2. Sequences of primers used for AURKC analysis 
Exon Forward primer (5’3’) Reverse primer (5’3’) Size 

(bp) 

1 GTCCTTTCTATTGGGCGCACTTC GTGTCTTCTGTGCACCCGACC 433 

2-3 CTCACCTCTCGCTCCCTATTCC GCTGGGCTCAGACGTCAAAGA 644 

3-4 GACTTTCCCTCCGCCTACCCTAC CACCAGCCCACAGTAAACTC 761 
5 CACACCCCACACACCAGTAA GACTGAGGCAGTAGAACCGC 555 

6-7 TAGGCCCCAGTACTTTTCTGA GACAAATGAGGTGGCAGAGC 786 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 3. List of primers used for DPY19L2 analysis 

Exon Forward primer (5’3’) Reverse primer (5’3’) Size 
(bp) 

TAn 

(°C) 
References 

1 GGCCAACTTCTTTCTACTCGGAC ATTTCACAGTCGCCATGACG 627 68 Coutton 2012 

2 GACAGGATTAGCTGGCCG AGCAAAAATATTTTAATTCATAAGTG 386 55 Elinati 2012 

3 GAAACAGTGCAGTTGACCAG ATTTCAGGTGTGTGCCATAC 373 61 Coutton 2012 

4 TGGCCATTATTTACACACTAAGG GCGAGAAGTGATTAGGAAGTCTT 498 60 Coutton 2012 

5 AGCTTCATCCATGTCACTAT AGCCTTCTCAGAAAACTATTTT 432 57 Elinati 2012 

6 GGGTAAATAATTAAACACAGCA AAACAACAGAATAAAAGGGAT 462 52 Elinati 2012 

7 TAAGGCAAGAGATTTCATGT GTAAGCTGAGATTTCGACA 590 54 Coutton 2012 

8 GCCTTCGTTTTATAAATCG GGTAGTTAATTGCTGTCTAC 310 57 Coutton 2012 

9 GCATACATTTACCTACAT AGTTCTTTTTAGTATACTTTAAG 353 51 Coutton 2012 

10 CCAAAGAGGAGGTACCGTATAA GCCATCCATCTTTTTAATTCTG 426 60 Coutton 2012 

11 AACCTCCTCAAGTGACTTAG TTGGCCAAGAGTCATT 516 55 Coutton 2012 

12 GGTATTTAAGTGAGGAAATAAT TTTAAGACAGTAGCTATTTATTAAC 422 53 Elinati 2012 

13 AATTTTTTCTATGTCATTTGTAGAC CCAATAACTCGTCTAGAGACCTTAG 306 53 Elinati 2012 

14 CTTAGAGGGATGTCTAAATAT TCCAAGTGGCCTAGATTATC 544 53 Coutton 2012 

15 ATTATTTTATTAAGGCATGGAAGAC AATTCTGAGCAATTTGCATTC 315 54 Elinati 2012 

16 TTTAAACTTTGAGTTGGTTCACA GGCATCTATAGTATGACCGTCC 431 60 Coutton 2012 

17 TCTAAGATCAAGCAAATGAA CTTTGTCAATTATCCTCAAACTAC 181 52 Elinati 2012 

18 AATTAGTCAGCAAAGCCACA TAGACATTCGATAAATTATTGC 358 56 Coutton 2012 

19 GGGTTTAATTGATTGACATT AATTTATTGTTGACCCTACG 423 59 Coutton 2012 

20 CAATTTCTAGCCCCAAGATAGT TCCAGAGGCAACAGGTACG 505 60 Elinati 2012 

21 CTGTTTTGAGTCATGTATATCG ATTCTTAAAGAATCAGGACTACTA 345 56 Elinati 2012 

22 CTTTATTATTAGGATATGTCTTTCCC  TTACCTTTTAGTAATCAGAAAAATTTC  540 57 Elinati 2012 



Supplemental Table 4. List of primers used for SPACA1 analysis 

Exon Start End Forward primer (5’3’) Reverse primer (5’3’) Size (bp) 

1 88757547 88757905 GCAGCTCTCTTCGACGTACC CTCAGGCAAAGAGCAGGCC 359 

2 88763589 88763777 TCTCCAAGTAAGAGGTGTTTCACT ACCTTTCCTCCCCCGCAAAT 189 

3 88767261 88767525 TGGGAAAGTGAAGACACTCTGG GCCTCCTTCTACTCAGTGGC 265 
4 88768337 88768576 ACAGAACCAGATCCTGTCTCA CTAGAAAGCACCAGGTTATATC 240 
5 88769073 88769330 GAGACAGTAACCCTCCTTTCCT ACCAAGACATTGCTGGACACT 258 

6 88773771 88774062 CTTTTCCTCAGTAGTAATACTCC GCGATGGACAGTTTCAAGGC 292 

7 88775824 88776163 CATAGAAAATATAGAAATC GTGGCAATCCATCGCAACAT 340 

Start and End positions are in Hg19 

 

Supplemental Table 5. Primers used for qPCR analysis 

Gene region Forward Reverse Size (bp) 

DPY19L2 (5’UTR-Exon1) GCGAGTCAGGTCTCTCTGGA GCCGCTTTGAGCTTACTCCT 112 

HAL Exon10 CTCCAACTAGCCCAAGAGCA TGCTGCCTACTTCTCTCCCA 114 

 

 

 

 

 

 

 

 



 

Supplemental Table 6. Frequency of chromosomal anomalies found in patients with teratozoospermia. 
Center Patient Phenotype N°spz Nullisomy Disomy Diploidy Polyploidy Total 
Spain 11-527 Macro 201 0.45 5.23 4.24 89.19 99.10 
 12-550 Macro 264 1.16 7.13 8.22 73.15 89.65 

 Mean Value±SD   0.81±0.50 6.18±1.34 6.23±2.81 81.17±11.34 94.38±6.68 

 10-260 Globo 1019 0 0.85 0.79 1.54 3.19 
 Ref. Valuesa   n.a. 0.35 0.22 n.a. n.a 

Italy CT154 Macro 1924 0 0.52 8.991 90.5 100 

 A1869 Globo 1150 0.080 0.595 0.2 0 0.875 
 CT158 Globo 3924 0.151 0.406 0.458 0 1.02 
 CT175 Globo 220 0 0.91 0.91 0 1.82 
 CT157 Globo 4522 0.044 0.308 0.288 0 0.64 

 Mean Value±SD*   0.07±0.06 0.55±0.27 0.46±0.32 0 1.09±0.51 

 Ref. Valuesb   n.a. 0.34±0.003 0.28±0.003 n.a. n.a 

SD= Standard deviation; Spz= spermatozoa; *Refers to Globozoospermic patients only.  
a Reported in Sánchez-Castro et al. 2009, where no SD is available. 
b Reported in Gambera et al. 2011. 

Values above the reference values are indicated in bold.  

 

Supplemental Table 7. AURKC mutations identified in macrocephalic patients. 

Patient Nationality Macrocephaly Mutation Genotype 

CT154 Morocco 100% c.144delC Homozygous 

11-527 Morocco 100% c.144delC Homozygous 

12-550 Spain 100% p.Tyr248* Homozygous 

13-039a Spain 39% p.Tyr248* Homozygous 
aPatient 12-550’s brother 

 



 

Supplemental Table 8. DPY19L2 mutations identified in globozoospermic patients.  

Variant Heterozygous carriers Homozygous carriers Variant location Variant effect Pathogenic prediction§ 

DPY19L2 deletion CT158 CT190, A1869 - Whole gene deletion Deleterious 

Exon 7 deletion CT158 - Exon 7 Loss of 20 amino acids Changes protein structure 

rs10878075 (MAF= 0.35)* CT157, CT196, 11-387 CT176 Exon 1 Missense (p.Met37Val) Tolerated 

rs10878074 (MAF= 0.35)* CT157, CT196, 11-387  CT176 Exon 1 Missense (p.Ala41Val) Tolerated 

rs10878073 (MAF= 0.34)* CT157, CT196, 11-387  CT176 Exon 1  Missense (p.Ser51Ala) Tolerated 

rs11175111 (MAF=0.05)** CT196 - Exon 1 Synonymous - 

rs11532475 (MAF=0.06)** CT196 - Intron 2-3 Intronic No splice changes 

rs371693431 (MAF=n.a.) 11-387 - Exon 4 Missense (p.Ser165Leu) 
Deleterious; Changes 

protein structure 

c.803-15G>T; g.42399G>T 10-260 - Intron 6-7 Intronic No splice changes;  

rs4105524 (MAF=0.41) 11-387 - Intron 11 Intronic No splice changes 

rs1054891 (MAF=0.46) CT157, CT176 - Exon 22 Synonymous - 

*= Linkage disequilibrium between the three variants; **= Linkage disequilibrium between the two variants; §Pathogenic predictions for missense variants are 
based on Polyphen, SIFT and MutationTaster prediction tools. MutationTaster, Human Splice Finder and BDGB were used to predict the effect of intronic 
variants on splice sites. TMHMM server was used to predict the effect of the mutation on protein structure. No mutations were found in patient CT175. 
g 



 

 



 

 

Figure S1. Flowchart indicates the molecular investigation performed in globozoospermic 

patients and potential outcome. 

 

 

 

 

 

 

 

 

 



 

Figure S2. qPCR amplification plots. (A) Amplification plot of the normal control carrying two 

copies of the DPY19L2: no difference is observed between the Ct values of the DPY19L2 gene 

and the reference gene HAL; (B) Amplification plot of the patient carrying the DPY19L2 

heterozygous deletion: a difference of one Ct is observed between the DPY19L2 and the 

reference gene HAL; (C) Amplification plot of the patient carrying the DPY19L2 homozygous 

deletion: no amplification is observed for the DPY19L2 
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Abstract

Male infertility is a multifactorial complex disease with highly heterogeneous phenotypic representation and in at least 15% of cases,

this condition is related to known genetic disorders, including both chromosomal and single-gene alterations. In about 40% of primary

testicular failure, the etiology remains unknown and a portion of them is likely to be caused by not yet identified genetic anomalies.

During the last 10 years, the search for ‘hidden’ genetic factors was largely unsuccessful in identifying recurrent genetic factors with

potential clinical application. The armamentarium of diagnostic tests has been implemented only by the screening for Y chromosome-

linked gr/gr deletion in those populations for which consistent data with risk estimate are available. On the other hand, it is clearly

demonstrated by both single nucleotide polymorphisms and comparative genomic hybridization arrays, that there is a rare variant

burden (especially relevant concerning deletions) in men with impaired spermatogenesis. In the era of next generation sequencing

(NGS), we expect to expand our diagnostic skills, since mutations in several hundred genes can potentially lead to infertility and each

of them is likely responsible for only a small fraction of cases. In this regard, system biology, which allows revealing possible gene

interactions and common biological pathways, will provide an informative tool for NGS data interpretation. Although these novel

approaches will certainly help in discovering ‘hidden’ genetic factors, a more comprehensive picture of the etiopathogenesis of

idiopathic male infertility will only be achieved by a parallel investigation of the complex world of gene environmental interaction

and epigenetics.
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Introduction

Nearly 7% of men from the general population are
infertile and in at least 15% of cases this condition is
related to genetic disorders, including both chromo-
somal and single-gene alterations. Genetic causes can
be detected in all major etiologic categories of male
infertility (pre-testicular, testicular and post-testicular
forms) and genetic tests became part of the routine
diagnostic procedure in selected groups of patients
(Krausz 2011). Karyotype and azospermia factor (AZF)
microdeletion analyses are indicated in patients with
!10 million spermatozoa/ml and !5 million sperma-
tozoa/ml respectively (Krausz et al. 2014). CFTR gene
mutation screening is performed in men affected by
congenital absence of vas deferens, whereas in the case
of central hypogonadism a growing number of candidate
genes involved in gonadotrophin-releasing hormone
receptor migration, development, secretion and
response can be analyzed. After a complete diagnostic
work-up (including also genetic testing), in about 40% of
primary testicular failure the etiology remains unknown
and is referred to as ‘idiopathic infertility.’ The search for
‘hidden’ genetic factors, especially focusing on

polymorphisms, in idiopathic infertile patients were
intensified in the late 1990s, since this approach turned
out to be successful in some other complex multifactorial
diseases (Riggs et al. 2014, Smith & Newton-Cheh 2015).
Starting from 2009, novel approaches such as single
nucleotide polymorphism (SNP) array, comparative
genomic hybridization-array (array-CGH) and next
generation sequencing (NGS) provided important data
also on rare variants. This review is aimed at providing an
overview of i) genetic risk factors including SNPs,
variable number tandem repeats (VNTRs) and copy
number variations (CNVs) and ii) potential causative
mutations/CNVs related to idiopathic male infertility.

Genetic susceptibility factors: the candidate gene
approach

Since late 1990s, the field of genetics of male infertility
entered an era of intense search for genetic risk factors,
mainly SNPs, VNTRs and Y chromosome-linked CNVs.
The results obtained up to 2007 have been summarized
in the meta-analysis by Tüttelmann et al. (2007), who
reported significant association with impaired
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spermatogenesis only for two genetic factors: a partial
AZFc deletion (gr/gr deletion) and the rs1801133
(c.677COT) variant in the MTHFR gene. At that time,
for many other SNPs, either only single studies were
available or results from different laboratories were
discordant (Nuti & Krausz 2008).

We herein review the existing literature via a search in
the PubMed database of case–control studies published
since 2008. The following keywords were used to select
eligible studies: ‘genetic risk factor (s)’ AND ‘male
infertility.’ Additionally, all identified gene/polymorph-
ism combinations were searched individually (e.g.,
‘FASLG’ and ‘male (in)fertility’). Data were extracted
from single papers and are summarized in Tables 1, 2
and 3 and Supplementary Table 1.

As in other fields of medicine, targeted search for SNPs
or gene mutations is based on the candidate gene
approach. This approach has been facilitated by an
increasing body of information from model organisms,
expression analyses (transcriptomic and proteomic) in
relationship with spermatogenesis and, together with
data produced by Genome-Wide Association Studies
(GWAS) (Tables 2 and 3), represents the major source for
genetic studies in humans. A minority of SNPs (nZ28)
studied before 2008 have been the objects of subsequent
publications, whereas the large majority, listed in Table 1,
are new entries (nZ286). A total of 314 SNPs have been
reported in 123 genes. Approximately 70% of SNPs are
related to genes with common cell function but with
predicted relevance in germ cells, such as apoptotic
process, DNA repair, detoxification of environmental
molecules, response to reactive oxygen species and so
on. Indeed, the best candidate genes are those with
specific expression in germ cells or those that have
specific spermatogenic function or play important roles
in meiosis or endocrine regulation of the testis (Table 1).
Data in existing literature are rarely concordant, and for
many SNPs (nZ269), only single studies are available.
To date, meta-analyses are available for ten genes: AR,
CYP1A1, DAZL, ESR1, ESR2, MTHFR, NOS3, POLG,
TP53 and USP26. Although data remains largely
controversial, ethnic/geographic origin seems to play
an important role in the phenotypic expression of
polymorphisms in the MTHFR, ESR1/ESR2, NOS3 and
DAZL. Data remains inconclusive for CYP1A1 and AR
genes, whereas a lack of association with male infertility
has been clearly demonstrated for polymorphisms
related to TP53, USP26 and POLG. Although reliability
of the presently available meta-analyses is largely limited
by the heterogeneous inclusion criteria used for patients
and controls selection, in this review we attempt to
provide a short description of those SNPs that according
to the latest meta-analyses result significantly associated
with spermatogenic failure.

Tüttelmann et al. (2007) reported that the c.677COT
variant in the MTHFR (methylenetetrahydrofolate
reductase (NAD(P)H) gene was the only one showing

significant association with male infertility. The MTHFR
gene is located on chromosome 1p.36.22, encodes an
enzyme that produces 5-methyltetrahydrofolate and is in
involved in folate metabolism. Folate is necessary for the
preservation of genome integrity due to its role in DNA
synthesis, repair and methylation, and it has been
predicted that its deficiency may lead also to male
infertility. The c.677COT variant impairs the enzyme
activity by 35% in heterozygosis and by 70% in
homozygosis (Frosst et al. 1995). The conclusion
presented by Tüttelmann et al. (2007) stimulated further
studies, which led to controversial results and to novel
meta-analyses (Gupta et al. 2011, Wei et al. 2012, Wu
et al. 2012, Weiner et al. 2014, Gong et al. 2015).
Interestingly, there is discordance even between the five
meta-analyses, with some reporting an association
(Tüttelmann et al. 2007, Gupta et al. 2011, Wu et al.
2012) and others reporting a lack of association (Wei
et al. 2012, Weiner et al. 2014). The last meta-analysis
(Gong et al. 2015), which included 26 published studies
(5575 cases and 5447 controls from Asian, African and
Caucasian populations), indicated that the MTFHR
variant is associated with AZ (AZ) (ORZ1.36, 95% CI:
1.18–1.55, PZ0.000) and oligoasthenoteratozoo-
spermia (OAT) (ORZ1.35, 95% CI: 1.11–1.64,
PZ0.003), but not with oligozoospermia. Finally, a
second SNP in the MTHFR gene has also been the object
of numerous studies but with similar discordant results.
Rs1801131, also known as 1298COA, is a missense
polymorphism found in exon 7 that also reduces MTHFR
activity, though apparently less severely than C677T (Van
der Put et al. 1998). The meta-analysis of seven studies
with a total of 1633 cases and 1735 controls from
different ethnic groups shows that the polymorphism is
significantly associated with azoospermia (ORZ1.12,
95% CIZ1.00–1.26) but not with OAT (Shen et al. 2012).

Overall, for both SNPs the conferred susceptibility to
AZ and OAT is modest, implying a marginal biological
role for this SNP in infertility. Controversies might
depend on different ethnic origin (variant frequency
does differ among different populations), and the
penetrance of this mutation is likely to be affected by
diet, e.g., subjects carrying the variant may have a major
risk for male infertility in cases of low folate intake.
Consequently, it could be of interest to test for these
SNPs in relationship to the responsiveness to folate
supplementation, i.e., to select potential ‘responders’
through a pharmacogenetic approach.

Other SNPs that have been objects of investigation
occur in the estrogen receptor 1 (ESR1) and estrogen
receptor 2 (ESR2) genes. Estrogens are predicted to play
an important role in the male reproductive tract, and
both the deficit and the excess of estrogens can alter
sperm production and maturation (Atanassova et al.
1999, Hess 2003). Three different receptor isoforms ERa,
and ERg are known. The ESR1 gene on 6q25 codifies for
ERa, a 595 amino acid receptor. The ESR2 gene is
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Table 1 Summary of case-control studies focusing on gene poly-
morphisms since 2008. SNPs related to genes with (A) common cell
function, (B) specific spermatogenic function, (C) endocrine function.
Further details are given in the Supplementary Table 1, see section on
supplementary data given at the end of this article.

Gene name
CasesC
controls

Country of
origin Association

(A) Common cell function
ABCB1a 162C191 Poland YES
ABLIM1a 3608C5909 China YES
AHR 991C1256 China; Estonia;

Iran; Japan
YES**

AHRR 235C324 Estonia; Japan DISCORDANT
APOB 604C501 Slovenia; India DISCORDANT
ARNTLa 589C444 Slovenia, Serbia NO
ATM 809C816 China DISCORDANT
BCL2a 1653C2329 China YES
BHMTa 153C184 Sweden NO
BRCA2 820C830 China YES**
CAT 885C839 China; France;

Iran
DISCORDANT

CDC42BPAa 3608C5909 China YES
CHD2a 1653C2329 China NO
CLOCKa 517C444 Slovenia YES
CRISP2a 92C176 Australia NO
CYP1A1 1060C1225 Meta-analysis YES
CYP17A1a 456C465 Korea YES
CYP26B1a 719C383 China NO
EPSTI1 917C2015 Japan DISCORDANT
ERCC1a 202C187 China NO
ERCC2 202C187 China NO
ETV5a 204C296 Australia, USA YES
FAS 547C571 China; India;

Turkey
NO

FASLG 447C532 Albania,
Macedonia;
China; Turkey

NO

FOLH1a 153C184 Sweden NO
GNAO1a 1653C2329 China YES
GPX1 690C649 China; France NO
HLA-DRA 4508C7588 China; Japan YES
JMJDIAa 136C161 Albania,

Macedonia
NO

KLK2a 218C220 Korea YES
LIG4a 580C580 China YES
LOC203413 623C530 Albania,

Macedonia;
Japan

NO

LRWD1 130C100 Japan NO
MAS1L/UBD 917C2015 Japan NO
MCT2

(SLC16A7)a
471C265 Korea YES

MDM2a 580C580 China YES
MLH1a 1292C480 China NO
MLH3 1454C640 China YES**
MSH4a 1292C480 China NO
MSH5 1454C640 China YES
MTHFD1 428C533 Sweden; Russia NO
MTHFR 5575C5447 Meta-analysis YES
MTR 713C739 Brazil; China;

Poland
NO

MTRR 1790C1622 Brazil; China;
France;
Jordania;
Korea; Poland;
Sweden

DISCORDANT

NFE2L2
(NRF2)a

336C295 China YES

NOS1a 580C580 China NO
NOS2a 580C580 China NO
NOS3 2019C1509 Meta-analysis DISCORDANT

Table 1 Continued.

Gene name
CasesC
controls

Country of
origin Association

NQO1a 580C580 China NO
OR2W3 623C530 Albania, Mace-

donia; Japan
DISCORDANT

PACRGa 610C156 Australia YES
PARP1a 317C231 China YES
PCFT1a 153C184 Sweden NO
PEMTa 153C184 Sweden YES
PEX10 2369C2946 China; Japan NO
PMS2a 1292C480 China YES
POLG 2463C1480 Meta-analysis NO
PON1 1037C1094 China; Greece;

Iran; Slovenia
DISCORDANT

PON2 270C320 Greece; Iran DISCORDANT
PSAT1 917C2015 Japan DISCORDANT
RAG1a 580C580 China YES
RFC1a 153C184 Sweden NO
RGS9a 3608C5909 China NO
SHMT1 153C184 Sweden NO
SFRS1a 962C1931 China NO
SFRS2a 962C1931 China NO
SFRS3a 962C1931 China NO
SFRS4a 962C1931 China NO
SFRS5a 962C1931 China NO
SFRS6a 962C1931 China YES
SFRS7a 962C1931 China NO
SFRS9a 962C1931 China NO
SIRPA 1402C1172 China YES**
SIRPA-SIRPGa 490C1167 China NO
SIRPG 1402C1172 China DISCORDANT
SOD2 690C649 China; France DISCORDANT
SOD3a 580C580 China NO
SOX5 2987C3526 China; Japan DISCORDANT
TAS2R38 623C530 Macedonia,

Albania and
Japan

NO

TCblRa 153C184 Sweden YES
TCN2a 153C184 Sweden NO
TMEM132Ea 3608C5909 China NO
TNFa 780C260 India YES
TP53 1134C1545 Meta-analysis NO
UBR2a 30C80 Japan YES
USP26 1716C2597 Meta-analysis NO
USP8 917C2015 Japan DISCORDANT
XPCa 252C288 China NO
XRCC2a 580C580 China NO
XRCC3a 580C580 China NO
XRCC4a 580C580 China NO
XRCC5a 580C580 China NO

(B) Specific spermatogenic function
BRDT 259C343 Albania, Mace-

donia; Israel
NO

DAZL 2715C1835 Meta-analysis DISCORDANT
EPPINa 473C198 China YES
H2BFWT 851C445 China; Korea YES
HORMAD1 391C448 China; Japan YES**
HORMAD2a 361C368 China NO
MOV10L1a 30C70 Iran NO
NANOS1a 719C383 China NO
PIWIL1a 490C468 China NO
PIWIL2a 490C468 China NO
PIWIL3a 490C468 China NO
PIWIL4a 490C468 China NO
PRDM9a 309C377 China NO
PRM1 851C955 China; Iran;

Japan; Spain
YES**

PRM2 525C648 China; Japan NO
PRMT6 2369C2946 China; Japan NO
REC8a 96C96 USA NO
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located on chromosome 14q23-24 and codifies for ERb,
a protein with 530 amino acids. Both receptors are
highly expressed in human testicular germ cells.
Regarding ESR1, the two most studied SNPs are
rs2234693 (also known as PvuII) and rs9340799
(known as XbaI), both located in intron 1 (c.453-
397TOC and c.453-351AOG respectively). Although a
relationship between these SNPs and ESRs gene/protein
function and stability has been proposed, their exact
effect remains unclear. The last meta-analysis performed
so far involves 12 studies comprising from 736 to 1418
infertile cases and 841–1601 controls depending on the
type of analyzed SNP (Ge et al. 2014). The meta-analysis
includes azoospermic, oligozoospermic and oligoastheno-
zoospermic (OAZ) and OAT patients of different
ethnic and geographic origin. According to this analysis,
ethnic background plays an important role in the
biological effect of the variants. For instance, the minor
allele C of rs2234693 (c.453-397TOC) seems to show a
protective effect in the Asian population (C allele vs
T allele ORZ0.78, 95% CI: 0.64–0.96; CC vs TT, ORZ
0.61, 95% CI: 0.40–0.93), whereas in Caucasians it is
associated with an increased risk for infertility (CC vs
CTCTT: ORZ1.52, 95% CI: 1.05–2.22). As far as the
XbaI SNP (c.453-351AOG), the G allele is associated
with a decreased risk, according to the dominant model
in the Asian population, whereas no association was
found in Caucasians. A similar situation was encoun-
tered also for the SNP rs1256049 in ESR2 (c.984GOA),

which according to the recessive model is associated
with a decreased risk in Asian populations, whereas in
Caucasian men it is associated with an increased risk for
male infertility according to the dominant model.
Finally, rs4986938 (c.1406C1872GOA) mapped on
ESR2 does not affect male fertility in any population.
These results show again the importance of the patients’
ethnic origin and their genetic background in modulat-
ing the effect of a given variant. Controversies may also
derive from the different level of exposition to endocrine
disrupters, which also interact with these receptors and
alter testis development and function. It is therefore
plausible that a more pronounced effect of these SNPs
can be observed only in relationship with a high level of
exposure to these environmental factors.

As for the nitric oxide synthase 3 (NOS3 or eNOS)
gene, three principal SNPs have been studied in
relationship with male infertility: rs1799983 (c.894TOG
in the exon 8), rs2070744 (c.-786COT in the promoter
region) and rs61722009 (27 bp VNTR polymorphisms in
the intron 4, also known as 4a4b polymorphisms). NOS3
is located on chromosome 7q36.1 and produces nitric
oxide (NO), which is implicated in several cellular
functions such as vascular smooth muscle relaxation
through a cGMP-mediated signal transduction pathway,
but also predicted to have an important role in fertility,
including sperm motility and maturation, as well as germ
cell apoptosis in the testis (Zini et al. 1996, Lee & Cheng
2008). The eNOS rs2070744 variant is associated with
reduced promoter activity, suppressed eNOS transcrip-
tion and decreased NO generation (Dosenko et al.
2006). There is also a trend for diminished eNOS
enzyme activity in eNOS rs1799983 SNP carriers
(Wang &.Mahaney 1997). The VNTR within intron 4 of
the eNOS gene accounts for O25% of basal plasma NO
generation, suggesting that this gene might have an
important role in NO-mediated physiology (Wang et al.
1997). The first case–control study related to fertility
analyzed the three SNPs in a cohort of 371 patients and
association was found only between the 4a4b variant
and sperm morphology (Yun et al. 2008). Subsequently,
relatively small studies from Italy, China, Iran and Brazil
reached discordant results (Buldreghini et al. 2010,
Safarinejad & Shafiei 2010, Bianco et al. 2013, Yan
et al. 2014). Finally, Song et al. (2015) performed a
meta-analysis on 2018 infertile patients (from eight
studies, including their own) and concluded that only
c.-786COT and 4a4b were significantly associated with
male infertility in both the Asian and Caucasian
populations (ORZ1.53, 95% CIZ1.10–2.22 and
ORZ3.24, 95% CIZ2.49–4.22 respectively). Indeed,
these SNPs are promising and merit further investigations
in order to define their potential clinical relevance.

The deleted in azoospermia-like (DAZL ) gene is an
autosomal homologue of the Y-chromosomal DAZ
(deleted in azoospermia) gene cluster and maps to
chromosome 3p24 (Yen et al. 1996). As the other family

Table 1 Continued.

Gene name
CasesC
controls

Country of
origin Association

SEPT12 290C480 Japan; Taiwan DISCORDANT
SPATA17a 38C96 Japan YES
SPO11 186C167 China; Iran DISCORDANT
STRA8a 719C383 China YES
TEX15 445C538 Albania, Mace-

donia; China
NO

TSSK4a 372C220 China NO
TSSK6a 519C359 China NO
UBE2B 568C612 China and India YES*a

YBX2a 326C210 China YES

(C) Endocrine function
AR 2084C1831 Meta-analysis YES
ESR1 1576C1777 Meta-analysis DISCORDANT
ESR2 2815C3178 Meta-analysis DISCORDANT
INSR 624C530 Albania, Mace-

donia; Japan
NO

MSMBa 338C382 China YES
SRD5A2a 132C111 Estonia NO

Underlined, gene polymorphisms evaluated in meta-analyses com-
prising study populations with different ethnic/geographic origins and
association description refers to the global meta-analysis results;
YES, SNP is associated in all studies; YES**, multiple SNPs studied in
the gene by different authors, but specific SNPs analyzed in a single
study result as associated to male infertility; DISCORDANT, the same
SNP analyzed in different studies show discordant results; NO, SNP
shows no association in any study.
aGene analyzed by a single study. Alternative gene names appearing in
other studies are reported in brackets.
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members (DAZ and BOLL), this gene encodes RNA
binding proteins with important roles in spermatogenesis
(Yen 2004). One of the most studied SNPs is
rs121918346, a missense variant that changes threonine
54 to an alanine on exon 3. The last meta-analysis
comprised 13 studies with a total of 2715 cases and 1835
controls from different ethnic origins and concluded that
the variant was significantly associated with male
infertility exclusively in Chinese men (Chen et al.
2015). This finding is in line with the conclusion of the
first Caucasian study that considered this polymorphism
as ‘an example of remarkable ethnic differences’ for its
effect on predisposing carriers to spermatogenic failure
(Becherini et al. 2004).

The androgen receptor (AR) gene also contains two
polymorphic sites in the N-terminal trans-activation
domain of the receptor: a polyglutamine tract – (CAG)n
– and a polyglycine tract – (GGC)n,, which were objects
of many publications related to male infertility (for
review see Davis-Dao et al. (2007) and Nenonen et al.
(2011)) The (CAG)n length normally ranges between six
and 39 repeats in the general population, with a median
value that varies according to the ethnicity (21–22 in
White Caucasian, 19–20 in African–American, 22–23 in
Asian, 23 in Hispanic populations). The originally
described inverse relationship between CAG repeat
length and the receptor trans-activation led to the
hypothesis that longer CAG repeat conferred a higher
risk for a series of androgen-dependent diseases,
including infertility and cryptorchidism (Tut et al.
1997). The first meta-analysis based on 33 publications

in 2007 was unable to find a cut-off value above which
infertility risk is increased (Davis-Dao et al. 2007).
A more recent meta-analysis has proposed an alternative
way of analysis based on the ‘optimal range’ hypothesis,
which derives from novel functional studies reporting
that the AR activity was actually higher in the presence of
a determined number of CAG (Nenonen et al. 2011).
Therefore, according to this hypothesis either a longer or
a shorter CAG tract might have a negative effect on the
receptor function. Although Nenonen et al. (2011) were
able to demonstrate a significant association between
the length of this polymorphism below or above the
‘optimal range’ and impaired sperm production (CAG
!22: PZ0.03, ORZ1.18 95% CI: 1.02–1.39; for CAG
O23: PZ0.02, ORZ1.22, 95% CI 1.03–1.44), the role of
CAG repeats in male infertility is probably more complex
than it has been previously considered. More functional
and clinical studies are needed before the introduction of
this polymorphism into the diagnostic setting.

The CYP1A1 (cytochrome P450, family 1, subfamily A,
polypeptide 1) is located on chromosome 15q24.1
and encodes a member of the cytochrome P450
superfamily. The cytochrome P450 proteins are mono-
oxygenases that catalyze many reactions involved in
drug metabolism and synthesis of cholesterol, steroids
and other lipids. CYP1A1 encodes a 522-aminoacide
protein that, among its functions, is involved in the
metabolism of polycyclic aromatic hydrocarbons into
their biologically active intermediates that have potential
reproductive toxicity in men (McManus et al. 1990). The
rs4646903 variant, a TOC substitution in 3’UTR of

Table 2 Summary of GWAS results. SNPs and related genes described as significantly associated in GWA Studies.

Aston & Carrell (2009) Aston et al. (2010)a Hu et al. (2012) Zhao et al. (2012) Kosova et al. (2012)

SNP
associated

Gene
related

SNP
associated

Gene
related

SNP
associated

Gene
related

SNP
associated

Gene
related

SNP
associated

Gene
related

rs1399645 NXPH2 rs763110 FASLG rs12097821 PRMT6 rs3129878 HLA-DRA rs10966811 TUSC1
rs2063802 NXPH2 rs5911500 LOC203413 rs2477686 PEX10 rs498422 C6orf10/BTNL2 rs7867029 PSAT1
rs4954657 NXPH2 rs10246939 TAS2R8 rs10842262 SOX5 rs12870438 EPSTI1
rs11707608 CNTN3 rs3088232 BRDT rs7174015 USP8
rs2976084 CNTN3 rs323344 TEX15 rs10129954 DPF3
rs3105782 MASP1 rs323345 TEX15 rs680730 DSCAML1
rs4484160 PROK2 rs5764698 SMC1B rs11236909 TSKU/LRRC32
rs9814870 ARL6 rs1801131 MTHFR rs10488786 ARHGAP42
rs9825719 NSUN3 rs631357 KIF17 rs724078 MAS1L/UBD
rs2290870 ATP8A1 rs35397110 USP26
rs4343755 GNPDA2 rs34605051 JMJD1A
rs4695097 GNPDA2 rs2030259 JMJD1A
rs4541736 LRFN2 rs11204546 OR2W3
rs1545125 COBL rs2059807 INSR
rs215702 LSM5
rs6476866 SLC1A1
rs10841496 PDE3A
rs10848911 EFCAB4B
rs12920268 MAF
rs2032278 GALR1
rs608020 SALL4

aAston et al. (2010) analyzed a total of 172 SNPs including also 84 SNPs from Aston & Carrell (2009).
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CYP1A1 gene has been associated with increased
transcript half-life and therefore increased enzyme
activity resulting in elevated levels of activated metab-
olites (Manfredi et al. 2007). This SNP has been
associated with different types of cancers (Salnikova
et al. 2013, Abbas et al. 2014), further supporting their
biological importance. Studies focusing on the role of

this SNP in male infertility overall produced discordant
results even in the same ethnic groups. Despite
discrepancies, the last meta-analysis performed on a
total of 1060 cases and 1225 controls concluded for a
significant association between the variant and male
infertility reaching the highest risk’s entity according to
the homozygous model (ORZ2.18, 95% CI: 1.15–4.12)
(Luo et al. 2014). However, since only two out of six
studies report it as a significant susceptibility factor, this
meta-analysis awaits further confirmation. Given the
biological function of this gene, differences in exposure
to environmental factors may also influence the outcome
of single studies; lack of information about careful
matching of important variables such as drug and
alcohol intake and life-style factors between patients
and controls may well be responsible for controversies.

Apart from the meta-analyses focusing on the ten
genes, in case of multiple studies analyzing the same
SNPs/gene, results are almost constantly controversial
and even if association is found generically with
‘infertility,’ the subgroup analysis shows differences
(Supplementary Table 1). An example is the rs7885967
(c.-9COT) of the H2BFWT (H2B histone family, member
W, testis-specific) gene encoding for a testis-specific
histone with an essential role during meiotic chromatin
reorganization (Gineitis et al. 2001). This SNP maps to
the 5’UTR of H2BFWT and has been demonstrated to
affect the translation of the protein (Lee et al. 2009). The
two case–control studies found significant association
(with moderate OR ranging from 1.51–1.88) with
completely different semen phenotypes: azoospermia
in the Chinese population (Ying & Scott 2012) whereas
lack of association with azoospermia and association
with non-azoospermia (a heterogenous group of oligo/
astheno/teratozoospermic men) in the Korean study
(Lee et al. 2009). Such contradictory results clearly
discourage further studies on this SNP.

The unique example of a polymorphism with fully
concordant results in more than one relatively large
independent study populations is related to the MSH5
gene (rs2075789). The mutS homolog 5 (MSH5) encodes
a member of the mutS family of proteins that are
involved in DNA mismatch repair and apoptosis. Msh5
knockout mice present sterility due to the defect in
resolving meiotic chromosomal crossovers (Edelmann
et al. 1999) Yeast two-hybrid analysis demonstrated that
the SNP rs2075789 impairs interaction between MSH4
and MSH5 proposing a functional effect (Yi et al. 2005).
The two independent studies that include a total of 1454
cases and 640 controls from the Chinese population
report a similar risk’s entity for homo/heterozygous
minor allele carriers compared to WT homozygous
carriers (ORZ2.51; 95% CIZ1.43–4.40 and OR Z1.83,
95% CIZ1.32–2.55, by Xu et al. (2010) and Ji et al.
(2012) respectively). Although this is a promising
candidate SNP, its importance remains limited until
new data are available in other populations.

Table 3 Summary of GWAS replication studies for SNPs and related
genes (including SNPs presenting significant or borderline association
in the original GWAS).

Reference SNPs analyzed Gene related

Follow-up Aston et al. (2010)
Plaseski et al. (2012)a rs5911500b LOC203413

rs11204546b OR2W3
rs3088232b BRDT
rs2059807 INSR
rs10246939 TAS2R8
rs34605051 JMJD1A
rs323344 TEX15
rs323345 TEX15
rs763110 FASLG

Chihara et al. (2015) rs11204546b OR2W3
rs5911500 LOC203413
rs10246939 TAS2R8
rs2059807 INSR

Follow-up Hu et al. (2012)
Xu et al. (2013) rs3197744b SIRPA

rs11046992b SOX5
rs146039840 SOX5
rs1129332 PEX10
rs3791185 PRMT6
rs2232015 PRMT6
rs1048055 SIRPG

Lu et al. (2014) rs1048055b SIRPG
rs2281807 SIRPG
rs11046992 SOX5
rs146039840 SOX5

Zou et al. (2014) rs10842262b SOX5
rs12097821 PRMT6
rs2477686 PEX10

Hu et al. (2014),c rs7194b HLA-DRA
rs7099208b ABLIM1
rs13206743b MIR133BL17A
rs3000811b CDC42BPA

Sato et al. (2013) rs12097821 PRMT6
rs2477686 PEX10
rs10842262 SOX5
rs6080550 SIRPA-SIRPG

Follow-up Hu et al. (2012), Zhao et al. (2012)
Tu et al. (2014) rs3129878b HLA-DRA

rs12097821 PRMT6
rs10842262 SOX5
rs2477686 PEX10

Follow-up Zhao et al. (2012)
Jinam et al. (2013) rs3129878b HLA-DRA

rs498422 C6orf10/BTNL2
Follow-up Kosova et al. (2012)
Sato et al. (2015) rs7867029b PSAT1

rs7174015b USP8
rs12870438b EPSTI1
rs724078 MAS1L/UBD

aSNPs in this study are not significantly associated after Bonferroni
correction. bSNPs described as significantly associated. cOnly SNPs
described as significantly associated to male infertility are listed (in the
study, a total of 77 SNPs originated from the Hu et al. (2012) paper were
screened).
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Genetic susceptibility factors: GWAS and SNPs

All the genetic risk factors discussed above originate
from the candidate gene approach, which is based on the
analysis of genes/polymorphisms with predicted or
known function in spermatogenesis. Given the relatively
poor outcome of these studies, much expectation was
given to whole genome analysis. Gene discoveries from
GWAS have been successful for several diseases and
helped unravel pathways important for a certain
biological process (Visscher et al. 2012) Overall, four
GWAS based on SNP-arrays are available in the
literature and are summarized in Table 2 (Aston &
Carrell 2009, Hu et al. 2012, Kosova et al. 2012, Zhao
et al. 2012). The first study by Aston and Carrell (2009)
analyzed 370 000 SNPs in 92 oligozoospermic and non-
obstructive azoospermic (NOA) patients and 80 healthy
controls and found 21 SNPs associated with azoosper-
mia or oligozoospermia. Due to the prohibitively high
cost of the array studies in 2009, the study population
size was clearly underpowered and the associations
reported did not reach genome-wide significance. This
pioneer work was followed by two large, properly
powered Chinese GWAS, which reported a number of
SNPs with stringent P value !1!10K8. Hu et al. (2012)
analyzed 2927 individuals with NOA and 5734 controls
from Han Chinese population and found a few SNPs
predisposing to NOA in PRMT6, PEX10 and SOX5 genes.
The second study analyzed 2226 NOA patients and 4576
controls in the same population and reported significant
associations with SNPs mapping to two regions: HLA-DRA
and C6orf10/BTNL2 (Zhao et al. 2012). Despite meeting
requirements for genome-wide significant results, no
overlapping SNPs were observed between these two
large studies. Finally, in the same year Kosova et al.
(2012) analyzed 269 Hutterite men and 123 men from
Chicago with diverse ethnic background, and described
nine SNPs associated with reduced fertility or impaired
sperm parameters, but in this case also no SNPs
overlapping with the previous three GWAS were
reported (Table 2).

Subsequently, SNPs reported as significantly associ-
ated or with borderline P values in the above GWAS
were analyzed in independent study populations with
variable success (Table 3). Findings on the majority of
candidate SNPs were not confirmed by the replication
studies, and the few SNPs that show association either
confer a moderate risk for impaired sperm production or
loose significance after Bonferroni correction (for
instance, OR2W3, BRDT). Interestingly, the SNP
reported in SIRPA/G (rs6080550) with borderline
significance in one of the GWAS (Hu et al. 2012) was
not confirmed in the follow-up studies, but following
re-sequencing of the SIRPA gene, another SNP
(rs3197744) was identified as a significant susceptibility
factor for oligozoospermia with ORZ4.62 (95% CIZ
1.58–13.4 PZ0.005) (Xu et al. 2013) Similarly, the

re-sequencing of SIRPG also provided an interesting
candidate SNP (rs1048055) with similarly high OR for
NOA (ORZ3.93, 95% CIZ1.59–9.70 PZ3.00!10K3)
(Lu et al. 2014). Both genes are members of the signal-
regulatory-protein (SIRP) family and belong to the
immunoglobulin superfamily, and when they bind to
CD47 can induce cell apoptosis (Brooke et al. 2004).
According to the above data, SIRPA/G can be considered
as promising candidate genes for spermatogenic impair-
ment and furtherer investigations.

The HLA-DRA gene-related SNPs turned out to be the
most promising, since highly significant association with
NOA was found in the GWAS of Zhao et al. (2012) and in
four case–control studies in Chinese and Japanese
populations (Tsujimura et al. 2002, Jinam et al. 2013,
Hu et al. 2014, Tu et al. 2014). HLA-DRA gene is a
member of class II genes and encodes the alpha chain of
HLA-DR and heterodimerizes with b chains (HLA-DRBs)
and plays an important role in the immune system by
presenting peptides on the cell surface of antigen-
presenting cells. Three variants have been described
with significant association with male infertility in
Japanese and Chinese populations (Zhao et al. 2012,
Jinam et al. 2013, Hu et al. 2014, Tu et al. 2014):
rs3129878, rs7194 and rs7192. The variant rs7194 is in
linkage disequilibrium with rs7192 and is located on
3 0UTR. It was predicted to map to the has-miR-6507-3p
binding site and may play an important role during
transcription by influencing HLA-DRA expression level
through microRNA-mediated post-transcriptional
regulation (Lin et al. 2015). As for rs7192, it is a
missense variant (L242V) located in exon 4, which
encodes part of the DRA a-chain cytoplasmic domain
(Neefjes et al. 2011). This SNP might alter interactions
with b-chain or ubiquitin E3 ligases, which control the
cell-surface expression of class II MHC proteins (Gueant
et al. 2015). Finally, rs3129878 maps to intron 1 and its
putative effect is not yet clarified. These polymorphisms
have been already described as susceptibility factors for
a number of autoimmune diseases, therefore it has been
hypothesized that they might mediate the response to
testicular micro-environmental antigens and therefore
may elicit autoimmune inflammatory responses leading
to azoospermia (Hu et al. 2012). It would be interesting
to study this polymorphism also in Caucasians and in
subgroups of patients with previous history of urogenital
inflammation, especially orchiepididymitis.

Rare variants: gene re-sequencing studies

Besides the polymorphisms described above, many
re-sequencing studies of candidate spermatogenesis
genes have been also published. Although many genes
are known to be essential for gametogenesis, there are
surprisingly few monogenic mutations that have been
conclusively demonstrated to cause human spermato-
genic failure. The majority of mutations identified are in
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heterozygosis and therefore the demonstration of a
cause-effect relationship remains difficult. In addition,
functional studies are lacking in a large majority of the
cases. Some of the most promising mutations, for which
also functional studies were performed, have been
identified in the following genes: i) HSF2 (Mou et al.
2013) and SOHLH1 (Choi et al. 2010) reported in NOA
men; ii) NANOS1 (Kusz-Zamelczyk et al. 2013) and
NR5A1 (Bashamboo et al. 2010) reported in NOA and
oligozoospermic patients; iii) Yatsenko et al. 2006),
GALNTL5 (Takasaki et al. 2014) and SEPT12 (Kuo et al.
2012) identified in oligo or OAT men. All the above
genes are autosomal and the reported mutations are in
heterozygosis. Whether these mutations are fully
responsible for the given phenotypes (dominant effect)
or are acting in synergy with other yet unidentified
heterozygous mutations in genes with similar function
(oligogenic model) remains to be defined.

Thanks to the diffusion of NGS platforms, testing for a
large panel of candidate genes in large group of patients
and controls has now became an affordable approach.
The first NGS-based, candidate gene panel study has
been recently performed in a Chinese case–control
setting including 757 NOA patients and 709 fertile males
(Li et al. 2015), Using the HiSDefault 2000 platform,
they sequenced a total of 650 infertility-related genes
and described a significant excess of rare, non-silent
variants in genes that are key epigenetic regulators
during spermatogenesis such as BRWD1, DNMT1,
DNMT3B, RNf17, UBR2, USP1 and USP26. The authors
do not provide detailed information about the exact
genotype of the variants, but apparently ‘most of the non-
silent variants in these genes in the sporadic NOA
patients were heterozygous.’ As USP26 is located on the
X chromosome, the reported variants are hemizygous.
Given that these genes are involved in similar biological
function, the hypothesis about a synergic action of
heterozygous mutations is plausible. However,
functional analyses are still needed in order to support
this hypothesis,

NGS has been recently used with success also for
studies of familial cases of azoo/oligozoospermia from
Turkey. A novel homozygous mutation in the NPAS2
gene was reported in three brothers from a consangui-
neous family, showing variable semen phenotypes
ranging from azoospermia to oligozoospermia (Rama-
samy et al. 2015). Another publication focused on two
families: in one case, the most plausible cause for
impaired spermatogenesis was a homozygous truncating
mutation in TAF4B; in the other case, two azoospermic
brothers were homozygous for a mutation in the
ZMYND15 gene (Ayhan et al. 2014). All these genes
are expressed in the testis and are plausible candidates
for the observed phenotypes. However, given that the
heterozygous carriers of the families are not affected,
mutation screening in sporadic NOA patients has
limited, if any, diagnostic relevance.

On the contrary, sex chromosomes represent an
optimal target in sporadic cases since mutations are in
hemizygosis with a potential direct effect on protein
function without a compensating effect from a normal
allele. Stouffs & Lissens (2012) have reviewed the
literature concerning X-linked gene mutations in eight
genes. With the exception of the AR gene, no other
causative mutations/polymorphisms have been
described with clinical relevance. Novel data on
X chromosome-linked genes derives from recent array-
CGH studies (see paragraph below) and the most
interesting findings concern genes belonging to the
cancer testis antigen (CTA) family (Krausz & Giachini
2012) and to a meiosis genes, TEX11 (Yatsenko et al.
2015) (Fig. 1B).

As far as the Y chromosome-linked genes are
concerned, studies are limited to deletion analysis rather
than intragenic mutation screening, and the only
relevant finding concerns the USP9Y gene in the AZFa
region (Tyler-Smith & Krausz 2009) Deletions affecting
this gene have been associated with a variable semen
phenotype from azoospermia to normozoospermia,
indicating that the gene is more likely a fine tuner than
an essential factors for spermatogenesis.

CNVs and male infertility

CNVs are a class of structural variation that may involve
complex gains or losses of homologous sequences at
multiple sites in the genome. The first genome-wide map
of CNVs existing in the human genome showed that
these variations cover w360 Mb, i.e., 12% of the human
genome and represent the primary source of inter-
individual variability between genomes (Redon et al.
2006). Notwithstanding, the gain or loss of DNA
sequence can also produce a spectrum of functional
effects and human disease phenotypes, by both disrupt-
ing gene-coding sequences and affecting region void of
genes but involving regulatory elements with an indirect
effect on gene transcription. Although the functional
consequences of a CNV might be difficult to predict,
many CNVs do generate alleles with a clear-cut impact
on health and have been associated with a growing
number of common complex diseases (Riggs et al.
2014). As infertility is indeed a complex disease, it has
been hypothesized that certain CNVs may cause
defective recombination (especially those mapping to
PAR), leading to meiotic failure and the loss of germ
cells, or might affect the activity of individual genes
important for spermatogenesis. To date, the only CNVs
proved to be in a clear-cut cause-effect relationship with
spermatogenic impairment are the AZF microdeletions
on the Y chromosome (Vogt et al. 1996, Krausz et al.
2014). Furthermore, the relationship between CNVs and
male infertility was also investigated on a larger scale by
performing array-CGH on the whole genome (Tüttelmann
et al. 2011, Stouffs et al. 2012, Lopes et al. 2013) or at
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high resolution on the X chromosome (Krausz et al.
2012). The three studies that compared the CNV load
between patients and controls all converged on a
significantly higher burden of CNVs in men with
spermatogenic disturbances (Tüttelmann et al. 2011,
Krausz et al. 2012, Lopes et al. 2013). In our study,
both the mean number of CNVs/person (mainly
dependent on an over-representation of losses) and the
mean size/person were significantly increased in the
patient group (Krausz et al. 2012). In addition, a
significantly lower sperm concentration and total
sperm count was found in patients with O1 CNV
compared to those with %1 CNV. This excess of X-linked
CNVs and DNA loss in patients with reduced sperm
count and the significant association between CNV
number and sperm count in the infertile group
support the existence of a potential link between the
observed CNV burden and spermatogenic failure. These
conclusions are supported also at the whole genome
level, but the CNV burden is especially pronounced
on the sex chromosomes (Tüttelmann et al. 2011,

Lopes et al. 2013). More specifically, Tüttelmann et al.
(2011) reported a significant over-representation of
sex-chromosomal CNVs in azoospermic men with
Sertoli-cell only (SCO) histology, whereas Lopes et al.
(2013) in azoo/oligozoospermic men.

Sex chromosomes

Sex chromosomes clearly play an important role in
spermatogenesis since they are enriched with genes
involved in the development and differentiation of
gonads and gametogenesis (Skaletsky et al. 2003,
Mueller et al. 2008, 2013). Given that with the exception
of the PAR genes, men are hemizygous for most of the
genes located on this chromosome, any de novo
mutation/CNV might have an immediate impact, since
no compensation is provided by another normal allele.
Moreover, both chromosomes have accumulated a
relevant number of segmental duplications (also called
amplicons), which constitute a favorable substrate for
CNV formation.
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DUP1a Duplication 1.4 0

c.652del237bp Deletion 0.7 0
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Figure 1 Schematic representation of sex chromosome-linked CNVs with clinical relevance. (A) Y chromosome CNVs: the picture illustrates
complete AZF microdeletions, a direct cause of impaired spermatogenesis and the gr/gr deletion, an ascertained risk factor for spermatogenic
impairment. In the lower table, AZF microdeletions and gr/gr deletion frequencies in patients and controls are reported. Azoo: azoospermic;
OAT: oligoasthenoteratozoospermic. * mean frequencies of the gr/gr deletion are relative to the Italian and Spanish populations. (B) X chromosome
CNVs: DUP1a (Chianese et al. 2014), c.652del237bp in TEX11 (Yatsensko et al. 2015) and CNV67 (Lo Giacco et al. 2014a) are three novel variants
with potential clinical implication given their specific association with impaired spermatogenic phenotypes. In the lower table, CNVs type and
frequencies in patients and controls are reported. Figure is not in scale.
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The Y chromosome

The Y chromosome: as already mentioned, Y chromo-
some microdeletions occurring on the AZF region are the
first and thus far the only example of CNVs with clinical
significance (Krausz et al. 2014). While the complete
AZF deletions have been introduced as a routine genetic
test for patients with severe OAT and NOA, the role of
partial AZFc deletions, i.e., gr/gr deletion, b1/b3, b2/b3
(Repping et al. 2003, 2004) has been the object of long-
lasting debates (Fig. 1A). Four meta-analyses are
available on the gr/gr deletion and all reach significant
odds ratios, reporting on average two- to 2.5-fold
increased risks of reduced sperm output/infertility
(Tüttelmann et al. 2007, Visser et al. 2009, Navarro-
Costa et al. 2010, Stouffs et al. 2011). In a more recent
survey on AZFc deletions in a sample of 20 884 men,
Rozen et al. (2012) found the gr/gr deletion to be the
most common among partial AZFc deletions (2.4% or
1/41 men), as well as that it doubles the risk for impaired
spermatogenesis. These data altogether thus confirm the
gr/gr deletion as an established significant genetic risk
factor for impaired sperm production. The entity of the risk
associated with this genetic anomaly varies between
populations, reaching the highest OR in Italians, which
have a 7.9-fold increased risk for spermatogenic impair-
ment (ORZ7.9, 95% CI 1.8–33.8) (Ferlin et al. 2005,
Giachini et al. 2005, 2008). The existence of Y chromo-
somal haplogroups that constitutively carry the gr/gr
deletion, such as the Db2 branch common in Japan and
the Q1 haplogroup common in China, indicates that the
Y background may modulate the penetrance of this CNV in
Asia (Repping et al. 2006, Zhang et al. 2007). Interestingly,
phenotypic variation within European carriers of the
Y-chromosomal gr/gr deletion is independent of the
Y-chromosomal background (Krausz et al. 2009).

Though Y-chromosome microdeletions are directly
associated only with spermatogenic failure, concerns
have been raised about the potential risk for carriers
undergoing assisted reproductive technology to father
children affected not only by impaired spermatogenesis
but also other conditions such as Turner’s syndrome
(45,X) and other phenotypic anomalies associated with
sex chromosome mosaicism (e.g., ambiguous genitalia)
(Patsalis et al. 2002, Krausz et al. 2014). Furthermore, a
recent study (Jorgez et al. 2011) reported that 5.4% of
men with AZF deletions and a normal karyotype also
carried SHOX haploinsufficiency. Indeed, this infor-
mation raised the question about the importance of
screening for SHOX-linked CNVs in men carrying
Y-chromosome microdeletions. Our group performed a
large multicenter study in order to evaluate whether
such an alarming hypothesis was actually true (Chianese
et al. 2013). No association was found between
Y-chromosome microdeletions and SHOX haploinsuffi-
ciency, implying that deletion carriers have no

augmented risk of SHOX-related pathologies (short
stature and skeletal anomalies).

The question whether increased gene dosage of the
AZFc region may also affect fertility originates from the
observation of a limited variation in the copy number of
AZFc-linked genes, which strongly indicates a natural
selection for the conservation of an ‘optimal’ copy
number by removing exceptionally high or low copy
number variants from the population (Repping et al.
2006). The DAZ gene in the AZFc region is a clear
example: about 90% of men carry four DAZ copies,
which suggests that this is the optimal number required
for normal spermatogenesis and that both a reduction
and an increase of AZFc gene dosage may have a
negative effect. This observation encouraged initially two
groups to investigate the clinical consequences of partial
AZFc duplications, reaching different conclusions: an
association between increased AZFc gene dosage and
male infertility was observed in the Han Chinese study
(Lin et al. 2007), whereas no association could be
detected in the Italian study population (Giachini et al.
2008). Later on, the effect of AZFc duplications on
spermatogenesis was further investigated and again
different results were obtained. Ye et al. (2013) found a
significantly higher frequency of partial duplications in
the infertile patients (4.0%) compared to controls (0.7%)
in the Chinese-Yi population. Contrastingly, in the
analysis by Lo Giacco et al. (2014a), performed on a
study population including prevalently Spanish subjects,
AZFc duplications were found at comparable frequen-
cies in patients (4.9%) and controls (3.5%). Seemingly,
this discordance reflects mere ethnic differences; there-
fore, if increased AZFc gene content does play a role in
spermatogenic impairment, the effect is probably
modulated by population-specific factors.

The X chromosome

The first X chromosome studies were based on the
candidate gene approach, and a total of seven X-linked
candidate genes have been studied so far (AR, AKAP,
FATE, NXF2, TAF7L, SOX3, USP26). With the exception
of the AR gene, no clear-cut causative mutations have
been reported and SNPs linked to some of these genes
have been the objects of discordant results (Table 1).
With the shift of discovery research to high-throughput
approaches, researchers were encouraged to apply such
technologies to investigate X chromosome-linked CNVs
and their role in spermatogenic failure. To date, four
groups have employed comparative genomic hybrid-
ization (CGH) arrays (Tüttelmann et al. 2011, Krausz
et al. 2012, Stouffs et al. 2012, Lopes et al. 2013) and
three provide information about X-linked CNVs with
potential clinical relevance in the etiology of male
infertility (Tüttelmann et al. 2011, Krausz et al. 2012,
Lopes et al. 2013) (Fig. 1B).
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The analysis performed by array-CGH employing a
high-resolution (probe distance of 2–4 Kb) X chromo-
some-specific platform (Krausz et al. 2012) allowed the
identification of a consistent number of CNVs on the
X chromosome, the majority of which (75.3%) were
novel. From a clinical standpoint, of particular interest
are patient-enriched (significantly more frequent in
patients) and patient-specific (not found in controls)
CNVs, since genes and regulatory elements within or
nearby these regions presumably have a higher prob-
ability of being implicated in spermatogenic failure.
Although there are some partially overlapping findings
regarding the X chromosome-linked CNVs between the
three studies (Tüttelmann et al. 2011, Krausz et al. 2012,
Lopes et al. 2013), differences in the resolution of the
arrays may explain the lack of complete overlaps. By
performing a comparison between the raw data of the
three studies we observed a few interesting overlapping
CNVs. Three patient-specific CNVs – DUP1a, DUP55
and DUP60 – detected in the study by Krausz et al. (2012)
were also found by Tüttelmann et al. (2011) in men
affected by SCOS. The comparison with data by Lopes
et al. (2013) also shows an overlap of a recurrent deletion
detected in their study at a significantly higher frequency
in patients compared to controls and two patient-specific
CNVs, CNV30 (gain) and CNV31 (loss), identified in the
Krausz’ study. When comparing patient-specific CNVs
detected in the study by Tüttelmann et al. (2011), the loss
nssv1496532 overlaps with CNV69, which was found
significantly more frequent in patients than controls in the
Krausz’ study. One gain on Xq22.2 (Lopes et al. 2013)
overlapped with the private duplication nssv1499049
found in an oligozoospermic man in Tüttelmann’s study.
It is worth noting that this duplication intersects a number
of genes with specific or exclusive expression in the testis
(H2BFWT, H2BFXP and H2BFM). No CNVs were found
to be common to all three studies. In the light of these
comparisons, DUP1a, CNV69 and the nssv1499049 are
promising variants, since their potential involvement in
spermatogenic impairment was reported by more than
one study.

In fact, the two variants DUP1a and CNV69 were
objects of large follow-up studies, together with other
recurrent deletions, CNV67 and CNV64 (Chianese et al.
2014, Lo Giacco et al. 2014b). The first study analyzed
three recurrent deletions (frequency O1%) in a large
case–control setting (nZ1255) for their exclusive
(CNV67) and prevalent (CNV64 and CNV69) presence
in patients. For instance, deletion carriers displayed a
higher probability of having impaired spermatogenesis
(ORZ1.9 and 2.2 for CNV64 and CNV69 respectively)
as well as sperm concentration and total motile sperm
number was lower in carriers compared to non-carriers
The most interesting deletion was CNV67 because it was
exclusively found in patients with a frequency of 1.1%
(P!0.01) and is likely to involve the MAGE9A gene –
a CTA family member – and/or its regulatory elements

(Lo Giacco et al. 2014b). Similarly, a follow-up study
was performed on five selected gains (DUP1A, DUP5,
DUP20, DUP26 and DUP40), which include, or are in
close proximity to, genes with testis-specific expression
and potential implication in spermatogenesis (Chianese
et al. 2014). While four of the five CNVs (DUP5, DUP20,
DUP26 and DUP40) did not individually reach statistical
significance, they remained patient-specific. DUP1A,
instead, was found exclusively and at a significantly
higher frequency in patients. This gain fully duplicates a
long non-coding RNA (LINC00685) that potentially acts
as a negative regulator of a gene with potential role in
spermatogenesis, PPP2R3B; according to our hypothesis,
the mechanism by which DUP1A could lead to
spermatogenic failure is a misbalanced ratio of the
PPP2R3B and its antisense, causing a decrease in
PPP2R3B transcription in the developing germ cells
(Chianese et al. 2014). Our data together with the
identification of two SCOS patients with a duplication
disrupting the PPP2R3B gene (Tüttelmann et al. 2011)
indicate that CNVs mapping into this region and
affecting either PPP2R3B or the long non-coding RNA
(LINC00685) are good mutational targets for future
case–control studies.

Lastly, a recent study proved the implication of the
TEX11 gene in meiotic arrest and azoospermia (Yatsenko
et al. 2015). The study population included a total of 289
patients with different testis histology (63 with SCOS,
33 with meiotic arrest and 193 with mixed testicular
atrophy) and 384 normozoospermic controls. With the
use of an X-chromosome high-resolution GCH micro-
array, they firstly analyzed 15 azoospermic men and
found that a patient with mixed atrophy carried a 91-KB
deletion (c.652del237bp) encompassing exons 10, 11
and 12 of TEX11. Further Sanger sequencing in the rest of
the patients allowed detecting that another man with
meiotic arrest carried the same deletion c.652del237bp,
which was confirmed by array-CGH validation; more-
over, they found five patients with either meiotic arrest or
mixed testicular atrophy carrying missense mutations in
TEX11. None of the controls carried any of these
variants. Finally, the finding of TEX11 mutations in
2.4% (nZ7/289) of patients, of which 15% (nZ5/33)
suffered from meiotic arrest and 1% (nZ2/193) had a
mixed testicular atrophy, supports the importance of this
gene for normal spermatogenesis.

Autosomes

Whole-genome approaches allowed providing data also
on the potential role of autosome-linked CNVs in
relation to different semen phenotypes (Tüttelmann
et al. 2011, Stouffs et al. 2012, Lopes et al. 2013). The
first study reported eight autosomal rearrangements
(involving chromosomes 1, 2, 3, 5, 12, 15, 16, 17) poten-
tially linked to fertility problems, as they were not detec-
ted in normozoospermic controls (Stouffs et al. 2012).
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The second study reported recurrent and patient-specific
autosomal CNVs potentially associated with oligozoos-
permia (nZ11) and with SCOS (nZ4), also reporting a
list of genes intersecting the CNVs and with potential
involvement in the spermatogenic phenotype. Finally,
after assaying genome-wide SNPs and CNVs, the third
study estimated that rare autosomal deletions multi-
plicatively change a man’s risk of disease by 10% (OR
1.10 (1.04–1.16), P!2!10K3). The same authors
observed five deletions (ranging in size from 54 kb to
over 2 Mb) of the autosomal DMRT1 gene in four cases
of azoospermia and one in normozoospermia. Despite
the normozoospermic deletion carrier, statistical
analysis based on the comparison of all patients versus
7000 controls lead to a significant association with
impaired sperm production. Given the low frequency of
this mutation and the wide range of associated
phenotype, it remains difficult to include the testing for
DMRT1-linked CNVs in the routine diagnostic workup.

The comparison between the three studies shows
some overlapping findings. When comparing the CNVs
detected by Stouffs et al. (2012) with the raw data
deposited in dbVar by Tüttelmann et al. (2011), five
overlapping loci can be observed on chromosomes 1, 5,
15, 16 and 17, but only those related to chromosome
1 and 16 results are patient-specific in both studies. The
first locus on chromosome 1 shares a 46 kb-span overlap
with the gain nssv1495850 reported in an oligozoos-
permic man in Tüttelmann’s study. The other locus on
chromosome 16 overlaps with both gains and losses
from Tüttelmann’s study; interestingly, gains are found in
both patients and controls, whereas the reciprocal losses
were exclusively detected in OAT patients. When
comparing the Lopes’ and the Tüttelmann’s study, one
overlap is reported on chromosome 8: at this locus,
Tuttelmann et al. identified a deletion in an azoospermic
man and another with a duplication, intersecting the
PLEC1 and MIR661 genes, whereas Lopes et al.
identified a duplication in an oligozoospermic man
affecting the same genes. No CNVs were observed to be
common to all three studies.

Summary and future directions

Male infertility is a multifactorial complex disease with
highly heterogeneous phenotypic representation. The
wide range of quantitative and qualitative impairments
can be caused by several acquired and congenital
factors, including genetic/epigenetic anomalies. Despite
a 10-year effort, research was largely unsuccessful in
identifying recurrent genetic factors with potential
clinical application. The armamentarium of diagnostic
tests has been implemented only by the screening for
Y chromosome-linked gr/gr deletion in those popu-
lations for which robust and consistent data with risk
estimate are available. Much expectation was given to
genome-wide SNP arrays, based on the analysis of

common variants, but no overlapping SNPs have been
identified between different studies. Meta-analyses have
been able to demonstrate significant association only for
a few SNPs, conferring generally weak predisposition to
infertility. According to a few observations, common
SNPs with significant but low effect size may eventually
lead to impaired spermatogenic efficiency if they are
present contemporarily in the same individual (Aston
et al. 2010, Kosova et al. 2012). On the other hand, it is
clearly demonstrated by both SNP and array-CGH, that
there is a rare variant burden in men with impaired
spermatogenesis, which is especially relevant concern-
ing CNVs. Whether this phenomenon is an expression of
a more generalized genomic instability is still an open
question. Epidemiological observations indicating lower
life expectancy and higher morbidity in infertile men
(Jensen et al. 2009, Salonia et al. 2009, Eisenberg et al.
2014) are suggestive for such a potential relationship.

It has been predicted that more than 2000 genes
(housekeeping and specific germ cell genes) are involved
in spermatogenesis (Hochstenbach & Hackstein, 2000)
and mutation in these genes may act directly or through
gene-environmental interaction. In the era of NGS we
expect to expand our diagnostic skills, since mutations in
several hundred of genes can potentially lead to
infertility and each of them is likely responsible for
only a small fraction of cases. Exome analysis is
predicted to be successful especially for descendants of
consanguineous families and familial cases of infertility.
Concerning sporadic oligo/azoospermia, the situation is
more complex and, since the infertile trait undergoes
negative selection, at least two scenarios can be
predicted. On one hand, there is a possibility that rare
or de novo large-effect mutations are involved in these
pathological conditions; in this regard, the X chromo-
some represents one of the most exciting future targets
for both its enrichment in genes involved in spermato-
genesis and its hemizygous state in males, which implies
a direct effect of a damaging mutation. On the other
hand, an alternative pathogenic mechanism can be
related to a synergistic effect of multiple heterozygous
mutations in genes involved in the same biological
pathway. In this regard, system biology, which allows
unrevealing possible gene interactions and common
biological pathways, will provide an informative tool
for NGS data interpretation. Although these novel
approaches will certainly help discover ‘hidden’ genetic
factors, a more comprehensive picture of the
etiopathogenesis of idiopathic male infertility will
only be achieved by a parallel investigation of the
complex world of gene environmental interaction
and epigenetics.
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This is linked to the online version of the paper at http://dx.doi.
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BlancaLópez N, Guéant-Rodriguez RM, Gaeta F, Rouyer P, Josse T
et al. 2015 HLA-DRA variants predict penicillin allergy in genome-wide
fine-mapping genotyping. Journal of Allergy and Clinical Immunology
135 253–259. (doi:10.1016/j.jaci.2014.07.047)

Gupta N, Gupta S, Dama M, David A, Khanna G, Khanna A & Rajender S
2011 Strong association of 677 COT substitution in the MTHFR gene
with male infertility – a study on an indian population and a meta-
analysis. PLoS ONE 6 e22277. (doi:10.1371/journal.pone.0022277)

Hess RA 2003 Estrogen in the adult male reproductive tract: a review.
Reproductive Biology and Endocrinology 1 52.

Hochstenbach R & Hackstein JH 2000 The comparative genetics of human
spermatogenesis: clues from flies and other model organisms. Results
and Problems in Cell Differentiation 28 271–298.

Hu Z, Xia Y, Guo X, Dai J, Li H, Hu H, Jiang Y, Lu F, Wu Y, Yang X et al. 2012
A genome-wide association study in Chinese men identifies three risk
loci for non-obstructive azoospermia. Nature Genetics 44 183–186.
(doi:10.1038/ng.1040)

Hu Z, Li Z, Yu J, Tong C, Lin Y, Guo X, Lu F, Dong J, Xia Y, Wen Yet al. 2014
Association analysis identifies new risk loci for non-obstructive
azoospermia in Chinese men. Nature Communications 5 3857.

Jensen TK, Jacobsen R, Christensen K, Nielsen NC & Bostofte E 2009 Good
semen quality and life expectancy: a cohort study of 43,277 men.
American Journal of Epidemiology 170 559–565. (doi:10.1093/aje/
kwp168)

Ji G, Long Y, Zhou Y, Huang C, Gu A & Wang X 2012 Common variants in
mismatch repair genes associated with increased risk of sperm DNA
damage and male infertility. BMC Medicine 10 49. (doi:10.1186/1741-
7015-10-49)

Jinam TA, Nakaoka H, Hosomichi K, Mitsunaga S, Okada H, Tanaka A,
Tanaka K & Inoue I 2013 HLA-DPB1*04:01 allele is associated with non-
obstructive azoospermia in Japanese patients. Human Genetics 132
1405–1411. (doi:10.1007/s00439-013-1347-7)

Jorgez CJ, Weedin JW, Sahin A, Tannour-Louet M, Han S, Bournat JC,
Mielnik A, Cheung SW, Nangia AK, Schlegel PN et al. 2011 Aberrations
in pseudoautosomal regions (PARs) found in infertile men with
Y-chromosome microdeletions. Journal of Clinical Endocrinology and
Metabolism 96 E674–E679. (doi:10.1210/jc.2010-2018)

Kosova G, Scott NM, Niederberger C, Prins GS & Ober C 2012 Genome-
wide association study identifies candidate genes for male fertility traits
in humans. American Journal of Human Genetics 90 950–961.
(doi:10.1016/j.ajhg.2012.04.016)

Krausz C 2011 Male infertility: pathogenesis and clinical diagnosis. Best
Practice & Research. Clinical Endocrinology & Metabolism 25 271–285.
(doi:10.1016/j.beem.2010.08.006)

Krausz C, Giachini C, Xue Y, O’Bryan MK, Gromoll J, Rajpert-de Meyts E,
Oliva R, Aknin-Seifer I, Erdei E, Jorgensen N et al. 2009 Phenotypic
variation within European carriers of the Y-chromosomal gr/gr deletion is
independent of Y chromosomal background. Journal of Medical
Genetics 46 21–31. (doi:10.1136/jmg.2008.059915)

Krausz C, Giachini C, Lo Giacco D, Daguin F, Chianese C, Ars E, Ruiz-
Castane E, Forti G & Rossi E 2012 High resolution X chromosome-
specific array-CGH detects new CNVs in infertile males. PLoS ONE 7
e44887. (doi:10.1371/journal.pone.0044887)

Krausz C, Hoefsloot L, Simoni M & Tüttelmann F 2014 EAA/EMQN best
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Abstract 14 

Despite increasing frequency of testicular and haematological cancers in young men over the 15 

past two decades, improvements in cancer therapies have created a greater chance of these 16 

men living full and active lives following treatment. Sperm genomic quality prior cytotoxic 17 

therapy is variable in different cancer patients, therefore its assessment should be important 18 

when sperm cryopreservation is performed. In this study, we measured double and single 19 

strand DNA breaks using three different DNA damage assays: alkaline and neutral Comet 20 

and TUNEL assays in men presenting with testicular cancer (n=10) and haematological 21 

malignancies (n=8) in comparison with fertile donors (n=20). A significant increase in sperm 22 

DNA damage (p<0.05) was observed for  when measured by both alkaline and neutral Comet 23 

assays in each patient group. Sperm DNA fragmentation was significantly higher in testicular 24 

cancer patients than in the control group as assessed by both the alkaline (12.4 % vs. 35.7%, 25 

p<0.001)  and neutral (7.5% vs. 13.6 %; p<0.05) Comet assays. Similar trends were observed 26 

in patients with haematological malignancy.. In this disease group , the sperm DNA 27 
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fragmentation was higher than the control group using both the alkaline (34.6% vs. 12.4%),  28 

and neutral (13.4% against 7.5% (p<0.05)) Comet assays. No difference was observed using 29 

the TUNEL assay. spermThe present findings are limited by the small numbers  of cancer 30 

patients available for study.. Sperm DNA testing is a more sensitive test than semen analysis  31 

for detecting semen quality of  men presenting with cancer.  It may provide a useful adjunct 32 

when considering storage prior to treatment.  33 

 34 

Introduction 35 

The question about adverse effects of cancer on spermatogenesis is still debated and 36 

stimulates further research on both quantitative and qualitative sperm parameters in 37 

oncological patients (O'Flaherty et al. 2008, Smit et al. 2010, McDowell et al. 2013, Paoli et 38 

al. 2015). Cryopreservation is the only available preventive measure prior to cytotoxic 39 

therapies, and it allows the use of frozen/thawed sperm for assisted reproductive techniques 40 

(ART). Since the most important sperm characteristic for fathering a healthy child is good 41 

sperm DNA quality, it is important to determine the DNA quality of sperm from men with 42 

cancer at the time of sperm cryopreservation. Damaged sperm DNA is negatively associated 43 

with early fertility checkpoints such as fertilization rate, embryo quality, implantation and 44 

positively with miscarriage [reviewed by (Robinson et al. 2012)]. The quality of the paternal 45 

genome is also associated with the later checkpoints in offspring health (Lewis and Kumar 46 

2015). To date, however, there are conflicting reports on the effect of cancer on sperm DNA 47 

(O'Donovan 2005, O'Flaherty et al. 2008, Stahl et al. 2009, Smit et al. 2010, McDowell et al. 48 

2013, Paoli et al. 2015). Here a novel sperm DNA test specifically for double stranded breaks 49 

(the neutral single cell gel electrophoresis Comet) is compared with the other methods 50 

detecting a combination of single and double strand breaks; namely the alkaline Comet and 51 
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the terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labelling 52 

(TUNEL) assay. Each test has its benefits, limitations, and measures a unique aspect of DNA 53 

damage. It is hypothesized that double stranded damage has more adverse consequences than 54 

single strand breaks for later stages of fertility because the oocyte has less capability to repair 55 

it following fertilization but before the first cleavage (Alvarez 2005). In most of the previous 56 

studies on cancer patients, a single assay was used to analyse the sperm DNA damage level in 57 

cancer patients. To our knowledge, this is the first study to compare assays to determine 58 

which assay has the greater sensitivity. In this study we have sought to ascertain the levels of 59 

double and single strand DNA breaks using the three different DNA damage assays: alkaline 60 

and neutral Comet and TUNEL in men presenting with testicular cancer and haematological 61 

malignancies in comparison with fertile donors. 62 

Materials and methods  63 

Male patients attending the Andrology Unit, Department of Clinical Physiopathology, 64 

University of Florence were invited to participate in this study. A total of 18 patients were 65 

included in this study with inclusion criteria as patients presenting with testicular cancer (post 66 

orchiectomy) or lymphoma prior to cytotoxic therapy. Azoospermic patients were not 67 

enrolled for this study. Men with testicular cancer (n=10) and haematological malignancy 68 

(n=08) were finally included. Two control groups were recruited: i) for the TUNEL assay: 23 69 

normozoospermic fertile volunteers;  ii) for the COMET assay: 20 fertile donors obtained 70 

from Cryos International, Vesterbro Aarhus, Denmark. Semen samples were obtained (both 71 

patients and donors) after 3-7 days of sexual abstinence. All semen samples were examined 72 

for liquefaction time, pH, semen volume, sperm concentration, sperm morphology, sperm 73 

motility, according to World Health Organisation guidelines (WHO 2010). After collection of 74 

semen immediately it was incubated at 37°C for 30-60 minutes for complete liquefaction. All 75 

the seminal parameters were evaluated once the samples were completely liquefied. Fresh 76 
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semen samples were used for analysis for DNA damage by the TUNEL assay. Semen 77 

samples were cryopreserved for the later analysis of DNA damage by Comet assay. The 78 

project was approved by the local research ethics and clinical governance committees and 79 

written informed consent for participation was obtained from each subject.  80 

Sperm DNA fragmentation was assessed by alkaline and neutral Comet and TUNEL assay. 81 

Sperm DNA fragmentation was assessed using an alkaline single-cell gel electrophoresis 82 

assay as reported previously (Hughes et al. 1997, Donnelly et al. 1999). Unless otherwise 83 

stated, all the reagents were purchased from Sigma-Aldrich, England, UK. Briefly, the semen 84 

sample concentration was adjusted to 2 x 10
6
/ml in PBS. Fully frosted slides (Surgipath 85 

Europe, UK) were layered with 150 µL of 1% normal melting agarose (NMA) and 86 

immediately covered with a coverslip. Once the NMA had solidified, the coverslip was 87 

removed and immediately layered with a mixture of 10 µL of diluted sample (2 x 10
6
/ml in 88 

PBS) and 75 µL of 0.5% low melting agarose (LMA). The slides were quickly covered with a 89 

coverslip and allowed to solidify at room temperature. Once LMA solidified, the coverslip 90 

was removed and slides were immersed in a coplin jar containing lysis solution (2.5M NaCl, 91 

100mM Na2EDTA and 10mM Tris-HCl, pH 10) with 1% Triton X-100, for 1 hour at 4°C. 92 

Slides were further incubated for 30 min at 4°C with dithiothreitol (10 mM) followed by 90 93 

minutes incubation at room temperature with lithium diiodosalicyclate (4 mM) to decondense 94 

the DNA. Slides were then incubated with cold alkaline electrophoresis buffer (300 mM 95 

NaOH, 1 mM EDTA), for 20 minutes to unwind the DNA. The slides were further subjected 96 

to electrophoresis using cold alkaline electrophoresis buffer for 10 minutes at 25 V, with the 97 

current adjusted to 300mA. Then slides were removed from electrophoresis tank and was 98 

neutralized in neutralization solution (0.4M Tris-HCl, pH 7.5). Finally, slides were stained 99 

with 30 µL of 20mg/ml ethidium bromide and analysed immediately. At least 50 Comet 100 
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images were analysed using image analysis software (Komet 6, Andor Technology, UK), and 101 

the results were expressed in percentage tail DNA.  102 

Double stranded sperm DNA fragmentation was assessed using single cell gel electrophoresis 103 

(Neutral Comet) assay; optimized in the authors’ laboratory. The initial preparation of slides 104 

with agarose and sample were similar to the alkaline assay as mentioned above. Once the 105 

slide completely solidified with agarose with sample, slides were then treated with 1% Triton 106 

X-100 solution for 30min at room temperature (RT). Next, slides were washed in 0.9% NaCl 107 

solution three times for 5 minutes and then washed two times for 5 minutes in PBS. Control 108 

slides were treated with 15UI Alu I restriction enzyme for 30 minutes at 37°C. All slides 109 

were then incubated for 30 minutes at RT in lysis buffer I (TRIS-HCl 0.4M, DTT 0.8M, SDS 110 

1%, pH 7.5), followed by 30 minutes at RT in lysis buffer II (TRIS-HCl 0.4M, NaCl 2M, 111 

DTT 0.4M, Na2EDTA 50mM, pH 7.5), followed by 30 minutes at RT in lysis buffer III 112 

(TRIS-HCl 0.4M, SDS 1%, DTT 0.8mM, pH 7.5) in the fume hood. Following this, slides 113 

were rinsed in cold TBE electrophoresis buffer (TRIS-HCl 0.445M, Boric acid 0.445M, 114 

10mM EDTA, pH 7.5) for 10 minutes. Electrophoresis was carried out in a cold room with 115 

cold TBE electrophoresis buffer. Slides were submerged, and electrophoresis was run at 116 

20V(1V/cm) for 8 minutes. Following electrophoresis, slides were rinsed in 0.9% NaCl and 117 

stained with 30µl of 20µl/ml of Ethidium Bromide. 50 Comets per slide were scored with 118 

Komet 6 software (Komet 6, Andor Technology, UK). TUNEL assay protocol was adapted 119 

from Muratori et al., (Muratori et al. 2008).  120 

Statistical analysis was performed using the Statistics Package for the Social Sciences 121 

software, version 20 (SPSS Inc., Chicago, IL, USA). Comparisons of DNA damage and 122 

seminal parameters between cancer (testicular and haematological malignancy) patients and 123 

healthy donors were assessed using the non-parametric Mann-Whitney U test as the data was 124 

not normally distributed. Further, the repeated-measures Friedman test was used to compare 125 
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the effect of each assay on the measurement of DNA damage in each group of men. A 126 

pairwise comparison between damage between assay was conducted using Wilcoxon Signed 127 

Ranks Test. For all statistical analysis p<0.05 was considered significant. 128 

Results 129 

Comparison between patients and controls 130 

The semen parameters of the two patient groups tended to be above the WHO 2010 cut-off 131 

values. Further, no significant differences were found in any conventional semen parameters 132 

between the two patient groups or controls (Suppl. Table A). In contrast, sperm DNA 133 

fragmentation was significantly higher in testicular cancer patients than in the control group 134 

as assessed by both the neutral (7.5% vs. 13.6 %; p<0.05) and alkaline (12.4 % vs. 35.7%, 135 

p<0.001, Table 1A) Comet assays. Similar results were obtained for haematological 136 

malignancy patients. Sperm DNA fragmentation (composed of both double and single 137 

strands) of 34.6% against 12.4% in donor group; (p<0.001 using the alkaline Comet), 138 

whereas DNA fragmentation of 13.4% against 7.5 (p<0.05; using the neutral Comet and 139 

measuring double strands only) (Table 1A). In contrast to both alkaline and neutral Comet 140 

assays, there was no significant difference in sperm DNA damage between patient and donor 141 

groups when measured with the TUNEL assay (Table 1A). 142 

Comparison between the three techniques  143 

The three assays used in this study measure different aspects of DNA damage. The results of 144 

repeated measures analysis of variance to the three assays showed a significant effect in 145 

testicular cancer and haematological malignancy patients (Table 1B). A Friedman test was 146 

used to evaluate the median difference between the DNA damage for alkaline Comet assay 147 

(median=35.7), neutral Comet assay (median=13.6), and TUNEL assay (median=29.5) in 148 
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testicular cancer patients. The test was significant χ
2 

(2, N=10)= 16.8 p<0.001. Similarly, the 149 

Friedman test in the haematological malignancy patient group demonstrated a significant 150 

difference in the median values (alkaline comet assay=34.6; neutral comet assay=13.4; 151 

TUNEL assay=30.7) of DNA damage between assays (χ
2
 (2, N=08)= 9.2, p<0.05).  152 

Follow-up pairwise comparisons were performed using Wilcoxon test in each patient group 153 

(Table 1C). The median DNA damage for alkaline Comet assay was significantly greater than 154 

the median DNA damage for neutral comet assay, p=0.005, and median DNA damage for 155 

neutral comet assay was significantly less than the TUNEL assay in testicular cancer. No 156 

significant difference was observed between medians of TUNEL and alkaline Comet assays 157 

(p=0.139). Also, a similar pattern was observed in haematologic patients, wherein median 158 

DNA damage for alkaline Comet assay was significantly greater than the median DNA 159 

damage for neutral comet assay ( p=0.0.17). The median DNA damage for neutral Comet 160 

assay was significantly lower than TUNEL assay (p=0.012) but no significant difference was 161 

observed between the medians of the TUNEL and alkaline Comet assays (p=1.00). 162 

Discussion 163 

Data in the literature as to the quality of semen, as assessed by a conventional semen analysis, 164 

in men presenting with cancer are conflicting  (Rives et al. 2012, McDowell et al. 2013, 165 

Caponecchia et al. 2016). Our study has an intrinsic selection bias since we had to discard 166 

samples with low sperm count given that the TUNEL assay necessitates 10 millions of sperm. 167 

Consequently, we found no significant reductions in sperm concentrations, motility or 168 

morphology in our cancer patients compared with healthy, fertile men. However, in 169 

agreement with other larger studies, we observed poorer seminal values in the group of 170 

testicular cancer patients in respect to the hematological malignancies (Williams et al. 2009, 171 

Caponecchia et al. 2016) (Suppl. Table A). Although the semen samples fell within the 172 
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normozoospermic category in 40% and 50% testicular cancer and haematologic malignancy 173 

patients, respectively, a large percentage of patients had lower sperm chromatin quality. 174 

Among the testicular cancer patients using alkaline comet assay 100% of subjects had DNA 175 

damage above normal value compared to control median value (12.4%). Also with neutral 176 

Comet assay and TUNEL assay relatively high proportion of patients  (90% and 50%, 177 

respectively)  had DNA damage above normal value. Also in haematologic malignancy 178 

patients a similar trend was observed. Using alkaline and neutral comet assay 100% of 179 

subjects had DNA damage above normal values compared to control median value (12.4 & 180 

7.0%). However, with TUNEL assay 50% of patients had DNA damage above normal values. 181 

The literature is contradictory also concerning sperm DNA fragmentation, reporting both 182 

significantly higher (Gandini et al. 2000, O'Flaherty et al. 2008, Stahl et al. 2009, O'Flaherty 183 

et al. 2012) and normal (Ribeiro et al. 2008, Smit et al. 2010, McDowell et al. 2013) DNA 184 

fragmentation in cancer patients. In our study, by performing alkaline and neutral Comet we 185 

observed high single and double strand breaks in our patients indicating a potential adverse 186 

genomic effects of cancer. Discrepancies between studies may be due to the use of different 187 

DNA damage-detecting assays or selection bias in cancer patients. From a methodological 188 

point of view,  our study is comprehensive as we have compared three types of DNA damage 189 

in the same semen samples thereby avoiding the inherent variability from even consecutive 190 

samples from the same man. Despite using the same sample, we did find discrepancies 191 

between the outcome of the three assays. A reason to explain differences is the ability of the 192 

Comet to detect degrees of DNA damage in individual sperm rather than an overall 193 

percentage of damaged sperm in a semen sample as the TUNEL does. However, a more 194 

plausible explanation is related to the fact that the TUNEL assay has been performed in fresh 195 

semen samples whereas the COMET was carried out in frozen/thawed samples. In a previous 196 

study by Muratori/Baldi’s group, it has been demonstrated that cancer patients have a higher 197 
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sensitivity to cryodamage than normal healthy men (Tamburrino et al. 2015). This is a very 198 

important point since these patients will eventually use their frozen samples for future ART.  199 

The Comet assay under alkaline conditions (pH≥13), detects both single and double strand 200 

breaks while under neutral conditions it detects only double strand breaks (DSBs) (Olive et 201 

al. 1991, Collins 2002). A further advantage is that unlike some other tests that detect 202 

primarily breaks in histone-associated chromatin, the Comet assay has a greater capacity to 203 

detect DNA damage because the Comet procedure removes all nucleoproteins revealing 204 

breaks in DNA associated with both protamine and histone bound chromatin. In patients with 205 

testicular cancer O'Donovan et al,. (2005) reported a significant difference of Comet head 206 

DNA integrity between cancer patients and controls (49.87 vs. 86.91%). Similarly, 207 

O'Flaherty et al (2008) reported higher levels of sperm DNA damage (comet tail extent 208 

moment) in men presenting with testicular cancer (≈12.0 vs. 30.0)  and Hodgkin's lymphoma 209 

(≈12.0 vs. 25). Using the alkaline Comet assay in this study, we report three times more DNA 210 

damage in testicular (35.7%) and haematological (34.6%) cancer patients compared to donor 211 

groups (12.4%). Whereas under neutral conditions, we report a significant difference in DNA 212 

double strand breaks compared to fertile donors (13.6 vs. 7.5 and 13.4 vs. 7.5; p<0.05) in men 213 

presenting with testicular cancer and haematological malignancies. In brief, marked increases 214 

were observed in single (188%) and double-strand breaks (81%) in sperm from patients with 215 

testicular cancer. Similarly, in patients with haematological malignancy, there were marked 216 

increase of 179% in the combination of double and single strand breaks and 78% in DNA 217 

double strand breaks only in respect to donors. Interestingly, sperm DNA double strand 218 

breaks were more prominent in testis cancer patients than in those affected by haematological 219 

malignancy (81% vs. 78%) suggesting a  potential association of testis cancer with sperm 220 

chromatin quality.  221 
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Previous studies performing the analysis of sperm DNA damage in testicular cancer patients 222 

using TUNEL assay showed no difference between seminoma, non-seminoma and fertile 223 

groups (12.6±4.5 vs. 12.2± 5.5 and 12.5±6.4 (Ribeiro et al. 2008). Similarly, O'Flaherty et al 224 

(O'Flaherty et al. 2008) did not found difference for TUNEL positive cells between fertile 225 

control and testicular and Hodgkin's lymphoma patients. Our findings are in accordance with 226 

these studies as here; the TUNEL assay failed to identify differences between cancer patients 227 

and fertile donor groups. As stated above the discrepancy between TUNEL and COMET 228 

results in our study is likely to be due to the fact that TUNEL was performed in fresh 229 

samples. However, some earlier papers report that the Comet assay has higher sensitivity than 230 

TUNEL staining, and it can provide more information about the extent and heterogeneity of 231 

DNA (Godard et al. 1999, Kindzelskii and Petty 2002). Moreover, an increased sensitivity of 232 

the neutral Comet assay in respect to TUNEL has been also demonstrated in somatic cells 233 

(Yasuhara et al. 2003). The differences between levels of damaged DNA as measured by 234 

each assay supports the hypothesis that each assay detects a different type of DNA damage. 235 

The alkaline Comet has the potential to detect all single strand breaks whereas the TUNEL 236 

detects specifically only those DSB and SSB breaks associated with ligation of dUTP to the 237 

3'-OH phosphate ends. The neutral Comet measures only DSBs. Not surprisingly, therefore, 238 

we failed to detect a relationship between different techniques. 239 

Fatherhood in cancer survivals is conflicting in the literature reporting both high (Brydoy et 240 

al. 2005) and low paternity rate (Saxman 2005). Knowing the detrimental effect of the cancer 241 

itself (especially in the case of testis cancer) and the effect of cytotoxic treatments, patient 242 

should be guided to preserve their reproductive potential. In this way, cancer patients will 243 

have a higher chance of conception using ART. Hence, clinicians undergoing subspeciality 244 

training in Andrology should be taught about preventive procedures and monitoring of sperm 245 

DNA integrity in cancer patients (Krausz et al. 2015). 246 
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In this study, the characterisation of sperm DNA damage using different assays has provided 247 

additional consistent, although limited data to indicate that their sperm DNA is already 248 

damaged at diagnosis, irrespective of cancer treatment. Moreover, double and single strand 249 

breaks were common in both types of cancer in this study. Although the number of studies on 250 

Neutral Comet assays is limited, DSBs assessed by this method in male partners of couples 251 

with unexplained recurrent miscarriage but no detectable female factors, found a strong 252 

association (Ribas-Maynou et al. 2012). In addition, a recent study has found a significantly 253 

higher  number of DSBs in sperm of infertile patients compared to healthy men (Zhong et al. 254 

2015). It remains to be established how these strand breaks impact on the ability of DNA 255 

damaged sperm to achieve a pregnancy (with or without ART) and on the health of offspring. 256 

Although sperm cryopreservation is a crucial procedure for fertility preservation in cancer 257 

patients, much care should be taken concerning DNA quality on the day of cryopreservation. 258 

Our work supports earlier studies showing a higher DNA damage in these patients  and 259 

provides further evidence that sperm from cancer patients is more sensitive to cryodamage 260 

than healthy fertile men. Sperm DNA testing is a more sensitive test than semen analysis in 261 

detecting  semen quality of men presenting with cancer. It may provide a useful adjunct when 262 

considering storage prior to treatment. 263 

sperm.   264 
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Table 1A: Comparison of sperm DNA damage using alkaline and neutral Comet assay and TUNEL in testicular cancer and haematologic 

 malignancy patients  

 

 

ALK-Alkaline Comet assay, NEU-Neutral Comet assay.  

All values in patient and donor groups are median (minimum-maximum, interquartile range). 

Mann-Whitney U test was used to compare the significance level for DNA fragmentation  in each group of patients. DNA damage was 

significantly higher while comparing using alkaline and neutral Comet assay in both cancer diagnosis group. Whereas no significant difference 

was observed when DNA damage was compared using TUNEL assay. P represents the level of significance for the statistical analysis 
 

 

 

 
Haematologic malignancy patients vs. donor 

Sperm DNA damage (%) 
Testicular cancer patients vs. donor 

Sperm DNA damage (%) 

DNA damage 

Assays 

 

Donor 

 

DNA 

damage 

(%) 

Percentage 

Difference 

(%) 

Mann-Whitney 

U test 

 

Donor 

 

DNA 

damage 

(%) 

Percentage 

Difference 

(%) 

Mann-Whitney 

U test 

ALK 

12.4 

(5.3-18.8, 7.2) 

(n=20) 

34.6 

(25.92-45.8, 7.48) 

(n=08) 

+179 P<0.001** 

12.4  

(5.3-18.9, 7.2) 

(n=20) 

35.7 

(19.45-49.31. 

14.03) 

(n=10) 

+188 P<0.001** 

NEU 

 

7.5 

(5.9-15.1, 3.7) 

(n=14) 

 

13.4 

(7.9-37.1, 10.16) 

(n=08) 

+78 P=0.014* 

7.5  

(5.9-15.1, 3.7) 

(n=14) 

13.6 

(4.36-19.6, 6.9) 

(n=10) 

+81 P=0.010** 

TUNEL 

27.9 

(11.9-63.6, 19.58) 

(n=23) 

30.7 

(21.0-61.4, 24.84) 

(n=08) 

+8 P=0.391 

27.9 

(11.9-63.6) 

(n=23) 

29.5 

(14.2-48.0, 12.8) 

(n=10) 

+5.7 P=0.841 
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Table 1 B: Relative comparison of DNA damage quantitation using all three DNA damage assays in 

testicular cancer and haematological malignancy patients 

All values in patient groups are mean±SD (median). 

Friedman test was used to compare the comparison of DNA fragmentation  measured by each 

assays (χ2
=Chi-square, 2=degree of freedom, N=no. of samples). 

 

Table 1 C: Follow-up comparisons between pairs of medians in cancer patient groups using 

Wilcoxon signed rank test 

 
Testicular cancer patients (N=10) 

 NEUTRAL-ALKALINE TUNEL-NEUTRAL TUNEL-ALKALINE 

 Z -2.803
b
 -2.803

c
 -1.478

d
 

Asymp. Sig. (2-tailed) 0.005 .005 0.139 

Haematologic malignancy patients (N=08) 

 
NEUTRAL-ALKALINE TUNEL-NEUTRAL TUNEL-ALKALINE 

 Z -2.380
b
 -2.521

c
 0.000

d
 

Asymp. Sig. (2-tailed) 0.017 .012 1.000 

ALKALINE, NEUTRAL and TUNEL- DNA damage assays.
 

b
Based on positive ranks. 

c
Based on negative ranks. 

d
The sum of negative ranks equals the sum of positive ranks. 

 

 Testicular cancer patients (N=10) Haematologic malignancy patients (N=08) 

DNA damage assays DNA damage % Friedman test DNA damage % Friedman test 

ALK 36.6±9.2 (35.7) p<0.001*** 34.2±6.1 (34.6) p=0.010** 

NEU 12.9±4.5 (13.6) χ
2 
(2, N=10)= 16.8 15.5±9.7 (13.4) χ

2
 (2, N=08)= 9.2 

TUNEL 28.9±9.0 (29.5)  35.2±14.6 (30.7)  
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