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Abstract There is a long-standing debate over how many and what types of plumes underlie the East
African Rift and whether they do or do not drive its extension and consequent magmatism and seismicity.
Here we present a new tomographic study of relative teleseismic S and SKS residuals that expands the
resolution from previous regional studies below the northern East African Rift to image structure from the
surface to the base of the transition zone. The images reveal two low-velocity clusters, below Afar and west of
the Main Ethiopian Rift, that extend throughout the upper mantle and comprise several smaller-scale (about
100 km diameter), low-velocity features. These structures support those of our recent P tomographic study
below the region. The relative magnitude of S to P residuals is around 3.5, which is consistent with a
predominantly thermal nature of the anomalies. The S and P velocity anomalies in the low-velocity clusters
can be explained by similar excess temperatures in the range of 100–200°C, consistent with temperatures
inferred from other seismic, geochemical, and petrological studies. Somewhat stronger VS anomalies below
Afar than west of the Main Ethiopian Rift may include an expression of volatiles and/or melt in this region.
These results, together with a comparison with previous larger-scale tomographic models, indicate that these
structures are likely small-scale upwellings with mild excess temperatures, rising from a regional thermal
boundary layer at the base of the upper mantle.

1. Introduction

East African extension and its accompanying volcanic and tectonic activity (Figure 1a) are commonly asso-
ciated with one or more mantle plumes rising below the region [e.g., Burke, 1996; Ebinger and Sleep, 1998].
Indeed, global- and continental-scale models have consistently found strong low-velocity regions below
the continent, both in the shallow and deep mantle [e.g., Fishwick, 2010; Ritsema et al., 1999]. There is how-
ever much debate about whether the deeper structure connects with that of the upper mantle.

Some groups have advocated the existence of a single strongly tilted upwelling rooted in the African Large
Low-Shear-Velocity Province and rising to fill most of the upper mantle from Tanzania to the Red Sea. This is
consistent with the pervasive low velocities in the region [Hansen et al., 2012; Ritsema et al., 1999], broad-scale
uplift [Daradich et al., 2003], and a consistent pattern of along-rift directions of fast seismic anisotropy [e.g.,
Gao et al., 2010; Hammond et al., 2014; Kendall et al., 2005;Montagner et al., 2007]. However, others have pro-
posed the existence of at least two separate branches from the lower into the upper mantle, based on more
detailed tomographic imaging [Chang and Van der Lee, 2011; Debayle et al., 2001; Koulakov, 2007; Montelli
et al., 2004b], variations in lava chemistry [Furman et al., 2004; George et al., 1998; Pik et al., 2006; Rogers
et al., 2000], and modeling of the geoid and the evolution of magmatism [Lin et al., 2005]. A recent P tomo-
graphic study we performed below the northern East African Rift [Civiero et al., 2015] combined regional seis-
mic data sets across the region to obtain resolution to the base of the transition zone and revealed even
smaller structures (scales ~100 km) extending across the depth of the upper mantle. We proposed these to
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be small-scale upwellings rising from a zone of (ponded) hot material at the base of the upper mantle. Such
small-scale structures are consistent with those imaged by previous tomographic studies with resolution
down to about 400 km depth [Bastow et al., 2005; Bastow et al., 2008; Hammond et al., 2013] and also with
proposed interpretations of strongly variable isotopic characteristics of lava along the rift [Furman et al.,
2006; Meshesha and Shinjo, 2008].

Here we present a complementary tomographic inversion of relative S and SKS travel times to (a) assess
robustness of the structure revealed by our P tomography [Civiero et al., 2015], which we refer to as NEAR-
P15, and (b) more importantly, to further constrain the thermal and/or chemical nature of the structures.

2. Method
2.1. Data

This study uses broadband recordings of teleseismic S and SKS wave phases from 379 stations across east-
ern Africa, from Malawi to Eritrea, and the Arabian Peninsula (i.e., all those shown in Figure 1b). The seis-
mic stations belong to 16 multinational projects and overlap spatially and/or temporally in our region of
interest (see supporting information). There has been some confusion in the literature about the resolving
capability of the different generations of tomographic models in the northern East African Rift [e.g., Reed
et al., 2016]. Early studies used stations in and around the Main Ethiopian Rift, resolving P and S wave
velocities in the top 300–400 km [Bastow et al., 2005; Benoit et al., 2006; Bastow et al., 2008]. The data
set was extended into Afar and Eritrea by Hammond et al. [2013], who focused their interpretation on

Figure 1. (a) Tectonic map of the East African Rift, showing the presence of two topographic domes, the main faults of the
rift system (in brown), with the Main Ethiopian Rift (MER) cutting through the Ethiopian Plateau, and a Western (WB) and
Eastern Rift Branch (EB) around the Kenyan Plateau. Holocene volcanoes (in orange) largely concentrate along the rift zone
(Smithsonian Volcanism Program 2013). The black rectangle delineates the area of interpretation. (b) Distribution of all
stations used in this study, symbol coded according to their network. Network and station information can be found in
Table S1 in the supporting information. (c) Distribution of earthquake sources used for the S-SKS tomography. Source-
receiver distances shown by the circles on the inset are from the center of the black rectangle in Figures 1a and 1b.

Journal of Geophysical Research: Solid Earth 10.1002/2016JB013070

CIVIERO ET AL. SMALL UPWELLINGS BELOW EAST AFRICA 7396



the top 400 km in relation to rifting in Afar. However, due to the increased aperture of their seismic array
resolution, particularly, the S wave model, due to the inclusion of significant SKS data, was good to depths
of ~600 km. As a result, the Hammond et al. [2013] model was used to compare against images of
transition-zone discontinuity structure in Thompson et al. [2015]. The most recent models of Civiero
et al. [2015] and this study have extended the data significantly further, including data from Saudi
Arabia to Malawi. As shown in Civiero et al. [2015] and Figure S8 in the supporting information this sub-
stantially increases crossing rays in and around the transition zone and thus allows us to confidently inter-
pret seismic velocity models to the base of the transition zone.

We pick arrival times from 590 earthquakes of magnitude mb ≥ 5.5, ranging in epicentral distance from 30°
to 130° (30°–90° for S waves and 90°–130° for SKS waves). The azimuthal and distance coverage provided
by the selected earthquakes is displayed in Figure 1c. After applying a 0.04–0.15 Hz band-pass
Butterworth filter, S picking was performed on the transverse component, to minimize the effect of P,
P-S, and S-P conversions, while SKS picking was done on the radial component, as it is dominated by
SV energy. Final picks and relative arrival times were determined using the multichannel cross-correlation
method of VanDecar and Crosson [1990], in a 12 s window around the initial pick. We deleted all picks
with cross-correlation coefficients <0.80 from our analysis. In total, we retain 16,569 travel time picks,
divided into 8730 and 7839 S and SKS wave phases, respectively. The mean RMS uncertainty in the delay
times, based on the number of picks rather than on cross-correlation pairs for each event [Tilmann et al.,
2001], is 0.38 s with a standard deviation of 31 s (S wave mean RMS uncertainty = 0.34 s with standard
deviation = 0.28 s and SKS wave mean RMS uncertainty = 0.43 s with standard deviation = 0.33 s). The range
of S and SKS travel time residuals is about ±10 s. To reduce the effect of a few higher outliers, residuals
larger than 3.0 standard deviations are downweighted iteratively in the inversion [Huber, 1981]; 827 rays
end up downweighted, i.e., about 5% of the data.

2.2. Tomographic Inversion

The data are inverted using the teleseismic travel time inversion method of VanDecar et al. [1995], with
the same scheme as in our previous P wave tomographic analysis [Civiero et al., 2015], which has been
used and described in numerous previous studies [e.g., Hammond et al., 2013; Ritsema et al., 1998;
Schimmel et al., 2003; Wolfe et al., 1997; Wolfe et al., 2009]. We use ray theory and perform a linear inver-
sion; both assumptions should not have a substantial effect on the shape of the anomalies but may
somewhat affect amplitudes [e.g., Bastow et al., 2005; Montelli et al., 2004a; Peter et al., 2009]. There is
insufficient information on crustal structure below the whole network to correct the data for station sta-
tics, so we solve for station (and event) corrections as part of the inversion. We use exactly the same para-
meterization as in NEAR-P15, with an inner grid below the stations of 0.5°/0.4° node spacing in
latitude/longitude and 50 km in depth, extending down to 1500 km, and an outer grid with 1° node spa-
cing and 100 km depth spacing extending to 28°N–25.40°S in latitude, 25°E–57.20°E in longitude, and
2000 km in depth, to avoid mapping outside structure into our region of interest.

We regularize the model by suppressing spatial and curvature gradients (smoothing and flattening), as
well as, in part of the cases, by damping toward a 3-D reference structure. We first investigate the
trade-off between the RMS residual reduction and RMS model roughness for different combinations of
smoothing and flattening to choose a preferred model that fits the data well, i.e., within a residual reduc-
tion that can be justified by the estimated noise level. We obtain the same preferred regularization para-
meters for our final model (which we will call NEAR-S16), as for NEAR-P15, although they were
determined independently. Preferred flattening and smoothing factors are 4800 and 153,600, respectively
(Figure 2).

In most previous travel time inversions for the region, a 1-D starting model was used (i.e., zero anomaly,
as the relative travel time method has no sensitivity to 1-D structure) and no explicit damping to it was
performed [Bastow et al., 2005; Bastow et al., 2008; Hammond et al., 2013]. However, teleseismic travel
time tomography provides relatively poor resolution of the crustal and uppermost mantle structures
above ~200 km depth because of the paucity of crossing raypaths in that depth range. Regional surface
wave data can resolve this shallow part of the upper mantle better. Therefore, as for our NEAR-P15 model,
we damp the inversion using the regional surface wave model of Fishwick [2010] [F2010] as our starting
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model above 350 km depth (shown
in Figure S1). The surface wave
model is estimated to reach a verti-
cal resolution of ~50 km and lateral
resolution between 150 and
500 km. In the area of interest, given
the large number of stations and
path coverage, we are using one of
the best resolved parts of the
model. Where required by the travel
time data, our inversion will add
smaller-scale structure to this long-
wavelength starting model. Below
350 km, we damp to a 1-D (zero-
anomaly) reference. The benefits
and effects of such damping are dis-
cussed in detail in Civiero
et al. [2015].

We test a range of damping factors
from 0 (no damping) to a fairly strong
factor of 70 (where the shallow part
of the model is largely the same as
F2010). As was found for the P wave
models, the RMS residual reduction
does not change significantly with
changes in damping (for our pre-
ferred flattening and smoothing fac-
tors of 4800 and 153,600, the
residual reduction is 85.8, 86.1, and

85.8%, for a damping of 0, 35, and 70, respectively). However, the heavily damped case (damping= 70) has
stronger shallow anomalies and weaker (but still required) deeper structure, while the undamped case
(damping= 0), which is fully determined by the travel times, shows the same spatial distribution of anomalies
but has weaker shallower and stronger deeper anomalies (Figures S3 and S4).

3. Tomographic Model
3.1. Resolution

We performed a range of resolution tests to assess the quality of our retrieved tomographic models. Standard
checkerboard tests are included in the Figures S9 and S10, as well as several tests for how much smearing
occurs from structures above and below the transition zone into the transition zone (Figure S11). In addition,
we run a set of tests for the three alternative plume hypotheses (Figure 3): (a) a large-scale plume head filling
all of the upper mantle, (b) a single plume (with assigned width of 380 km, defined as the distance where the
anomaly amplitude is 20% of that in the center of the synthetic plume structure), and (c) two narrow vertical
plumes (with widths of 150 km). For cases B and C a hot layer is added at the top of the input structures to
mimic plumematerial spread in the rift zone below the plate. As a startingmodel for the damped plume reso-
lution tests, we used the corresponding synthetic input models, filtered to mimic the effect of the surface
wave resolution. The filter applies a variable vertical averaging (lower vertical resolution as absolute depth
increases) and a variable Gaussian spatial filter (lower spatial resolution as depth increases).

The checkerboard tests illustrate that we achieve quite good resolution for anomalies of 125 km and 250 km
diameter through most of the transition zone (Figures S9 and S10). At shallow depths (around 100 km), the
resolved area is confined to directly below the stations, and from about 300 km depth covers much of the
region of interest shown in Figure 1. At the edges of the model, the checkers become more smeared with
depth. For 125 km sized features, resolution becomes poor below about 600 km depth for most of the area

Figure 2. Trade-off between S/SKS-velocity model roughness and data fit for
inversions with different degrees of flattening and smoothing (symbols) and
three different degrees of damping toward the surface wave-constrained
initial structure (colors). The dashed line represents our estimate of travel
time residual error (see text for details). The regularization parameters for our
preferred model are 4800 for flattening and 153,600 for smoothing and a
damping of 35 (red star).
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Figure 3. Three synthetic tests to examine the resolving power of our tomographic inversion for three previously proposedmantle upwelling structures: (a–d) case A
—superplume, (e–h) case B—single plume, and (i–l) case C—multiple plume scenarios. Vertical cross sections through the input and output models are shown in
Figures 3a–3l. (m) The location of the cross section is shown on a depth slice through the two-plume velocity input. Input models are defined in terms of temperature
anomalies (Figures 3a, 3e, and 3i) and thenmultiplied by the isomorphic derivative from Figure S12 to obtain VS anomalies (Figures 3b, 3f, and 3h). In all cases, a set of
4% VS checker anomalies below the rift is added to the plume structures above 100 km depth to mimic lateral variability due to lithospheric topography and melt
concentration. (Figures 3a–3d) Case A: superplume represented by a flat ellipsoid with a maximum excess T of 400°C at 120 km depth and a Gaussian falloff with
depth leading to 0° anomalies at 660 km. (Figures 3e–3h) Case B: single larger upwellingmodeled as a vertical cylinder positioned beneath Afar with maximum 200°C
excess temperature that is constant with depth and Gaussian variation laterally over a 380 km width (defined as the distance to 20% of the maximum amplitude),
plus a layer of 200°C excess temperature above 200 km depth. (Figures 3i–3l) Case C: two smaller upwellings represented by vertical cylinders, positioned beneath
Afar and MER, again assuming a maximum 200°C T anomaly that is constant with depth, a Gaussian variation laterally over a 150 km width, and a 200°C hot layer
above 200 km depth. (Figures 3c, 3g, and 3k) Recovered models using the same parameters as in the data inversion but with no damping. (Figures 3d, 3h, and 3l)
Recovered models using the same parameters as in the data inversion, including damping (factor = 35). The starting model to which the inversion is damped is a
version of the 3-D synthetic model down to a depth of 350 km smoothed to mimic spatial resolution of F2010. Regions with less than five rays per node are shaded
gray. The spacing between the contours is 0.25%. The white points indicate the distance every 2°. Profiles through the center of the plumes showing the input and
retrieved anomalies are shown in Figure S15. These tests illustrate that without damping most shallow structure is not recovered. Damped inversions yield a better
representation of the vertical continuity of the plume structures.
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(Figure S10). Larger features, with diameters of at least 250 km, are resolved over a wider region and through
the transition zone, down to 700–800 km depth (Figure S9).

The plume tests in Figure 3 illustrate the importance of using a priori constraints for the shallow structure in
the starting model and damping toward these structures. Without such constraints, the expected laterally
widespread low-velocity structures above 200 km depth cannot be retrieved. While undamped inversions
emphasize lateral variations in velocity structures, which in the case of models B and Cmeans the plume tails,
in the damped inversions the geometry of the imaged structures is much closer to that of the input struc-
tures. Note that due to the decrease in thermal sensitivity of VS with depth (from about 3%/100 K at
100 km depth to<1%/100 K at 600 km depth; Figure S12) and the expectation that temperatures of adiabatic
upwellings only change by a few tens of degrees over the depth of the upper mantle, we would expect plume
anomalies to decrease with depth. Thus, tomographic images of upper mantle plumes are not expected to
have simple cylindrical morphologies.

3.2. S Velocity Structure

Our preferred S-SKS model (with intermediate damping) is shown in Figure 4. Undamped and strongly
damped models are included as Figures S3 and S4. The color scale used is the same in all panels to illus-
trate how anomaly amplitudes vary with depth. The scale best illustrates the transition zone anomalies
and saturates at depths from 300 km upward, for which the structures have been analyzed in detail in
previous studies [Bastow et al., 2005; Bastow et al., 2008; Hammond et al., 2013]. The damped models
in particular emphasize that the strongest low velocities are shallow, where they are widespread. Deep
structures persist at all degrees of damping and are hence required by the data. Also, the synthetic test
for a large anomaly confined to the top 400 km shows limited smearing to deeper depths (Figure S11),
illustrating that the transition zone anomalies are not a result of smearing.

Station terms are mostly negative below the oceanic Red Sea and generally positive beneath the African con-
tinent. Some of the negative station corrections under Arabia and the Afar Depression may in effect be a
compensation for lateral smearing of the low velocity from northeastern Africa in the surface wave model
(compare with the undamped case in Figure S3, where these stations have positive corrections). Overall,
the station correction trend reflects crustal structure [e.g., Hammond et al., 2011].

The mantle structure shows the same first-order features as NEAR-P15 [Civiero et al., 2015]. The shallow upper
mantle, down to ~100 km, reveals a broad low-velocity layer with the strongest anomalies following the rift
morphology (�4.5%< δVS<�3.0%), similar to other previous tomographic studies for this region [e.g.,
Bastow et al., 2008; Fishwick, 2010; Hammond et al., 2013].

At larger depths, the low-velocity structure splits into several separate anomalies that persist down to at
least ~650 km depth. In NEAR-P15, these deeper anomalies clearly form two clusters, each about ~400 km
in diameter, beneath Afar and west of the Main Ethiopian Rift (MER; Figure S5), correlating with active vol-
canism in the Afar region and volcanism along and off axis of the MER. In the S-SKS model, the same two
clusters are also clear from about 200 to 400 km depth. In the transition zone, the Afar cluster is more
strongly defined than the one below the MER, which breaks up into several smaller-scale features. Note
that, in NEAR-P15, the clusters also contained additional small-scale structure in the transition zone
(Figures S5 and S6).

The amplitude of the low-velocity features in the intermediately damped case decreases with depth from
~�4% in the uppermost mantle to ~�0.5% below the transition zone. The deepest resolution is too limited
to determine how the transition zone structure relates with that below 600–700 km depth.

Complexity in the structure may be to some extent influenced by anisotropy. However, we have quite
good azimuthal coverage (as shown in Figure S8), where the core of the region is traversed by rays span-
ning an azimuthal range of 270–360°, which should aid in averaging out azimuthal anisotropic effects.
And although we combine SH and SV data, we get images that are quite consistent with those of the
P data, so if radial anisotropy exists it does not appear to map significantly into the S structures we
resolve. Nonetheless, this would be an aspect that warrants future work.

Vertical cross sections through the models (Figure 5) further illustrate the vertical continuity of the two clus-
ters from the shallow mantle through the transition zone, again consistent with the P wave structure.
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However, different from the P velocity structure (Figures S5 and S6), the anomalies below Afar are stronger in
amplitude and more continuous than the anomalies west of the MER (see profiles E-F and G-H in Figure 5).

4. Physical Interpretation
4.1. Ratio of P and S Velocity Anomalies

Several studies have used the ratio of relative changes in shear and compressional wave velocities, defined as
RS,P (=dlnVS/dlnVP= [dVS/VS]/[dVP/VP]), as diagnostic of the cause of the seismic anomalies [e.g., Karato and

Figure 4. Depth slices through our S-SKS preferred intermediate-damped tomographic model (flattening = 4800, smoothing = 153,600, damping = 35), at depths
between 200 and 700 km. Regions with less than five rays per node are shaded gray (a version where regions with less than 10 rays per node are shaded can be
found in Figure S2). The spacing between the contours is 0.5%. The black lines delineate the major border faults and magmatic zones bounding the Afar Depression,
and the black over white lines show the coastlines. The triangular and square symbols in Figure 4g represent the sign and magnitude of the station static terms.
Compare with Figure S5 to see the first-order similarities in structure between the independently inverted S/SKS and P velocity models. Compared to the undamped
model (Figure S3), the shallow mantle anomalies are enhanced and more extensive. Otherwise, similar features, including the low velocities below Afar and west of
the MER, appear.
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Karki, 2001; Masters et al., 2000; Robertson and Woodhouse, 1996; Simmons et al., 2009]. The expected RS,P for
purely thermal variations spans a range from 1.3 (for low values of temperature, with a weak anelasticity
effect) to 2.2 (at high temperatures, where the anelasticity effect is strong) [Cammarano et al., 2003; Goes
et al., 2000]. Where water is present, it may enhance the anelastic sensitivity to temperature by lowering
themelting temperature [Karato and Jung, 1998] and/or form hydrated minerals that usually have lower velo-
city than average mantle minerals [e.g., Abers and Hacker, 2016; Angel et al., 2001]. The anelastic effects of
fluids can increase RS,P to up to about 2.3; hydrous minerals, if present in large enough quantities possibly
somewhat more [e.g., Goes et al., 2000; Hacker and Abers, 2012].

Figure 5. (a–i) Vertical cross sections through the S-SKSmodel and (j and k) comparison with a section through NEAR-P15. Regions with less than five rays per node
are shaded gray. The spacing between the contours is 0.5% for the Smodel and 0.25% for the Pmodel. The white circles along the top of the vertical profiles mark the
distance every 2°. (Figures 5a–5d) Damped (damping = 35) and (Figures 5e and 5f) undamped (damping = 0) S-SKS models (both have flattening = 4800, smooth-
ing = 153,600). The location of the cross sections (black lines) is shown in the 500 km depth slice through the damped model (Figure 5i). Cross sections A-B, C-D, E-F,
and G-H have the same orientations as the profiles through the P velocity models in Figures 5j and 5k and Figure S6. The undamped models (Figures 5e–5h)
emphasize the stronger amplitude of the low-velocity cluster below Afar compared to that beneath MER; the damped models (Figures 5a–5d) show that the low-
velocity anomalies extend from the surface to at least the bottom of the transition zone. The features in Smodel are similar to those seen in the Pmodel (Figures 5j
and 5k).
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For most plausible large-scale com-
positions (i.e., more or less melt-
depleted forms of peridotite or
alternative chondritic composi-
tions), the effect of composition
on VP and VS above the transition
zone is small compared to that of
temperature [Afonso et al., 2010;
Cammarano et al., 2003; Goes
et al., 2000; Worthington et al.,
2013]. In the transition zone, the
sensitivity of velocity to changes
in composition is complicated by
the different depths, Clapeyron
slopes, and widths of the phase
transitions expected for different
bulk compositions [Cammarano
et al., 2003; Xu et al., 2008]. Overall,
for most upper mantle composi-
tions and depths, the sensitivity of
RS,P to temperature and composi-
tion is likely not different enough
to distinguish the two factors.

The largest effects on RS,P are
expected from partial melt [e.g.,
Faul et al., 2004; Hammond and
Kendall, 2016; Hammond and
Humphreys, 2000; Schmeling, 1985]
with values that can range from
around 1.6 for ellipsoidal melt
inclusions, to 2.2 for films in a geo-
metry taken from natural samples

[Hammond and Humphreys, 2000], to up to 4.0 for aligned film and layer geometries [Takei, 2002], which
would also lead to strong anisotropy.

Several studies use the ratio of P and S wave relative arrival-time residuals δS,P, i.e., using the data rather than
the tomographically imaged anomalies [e.g., Bastow et al., 2005; Gao et al., 2004; Rocha et al., 2011]. δS,P should
be proportional to the ratio of absolute dVS and dVP along the chosen station-event pairs. Thus, the slope δS,P
equals (VP/VS) RS,P or about √3 times RS,P. Bastow et al. [2005] perform a δS,P analysis below the Main Ethiopian
Rift and find a gradient between ~5 and ~10, which they attribute to significant fractions of shallow melt
ponding beneath the rift, consistent with other geochemical and geophysical results [e.g., Bastow et al.,
2005; Ebinger and Casey, 2001; Gao et al., 1997; Hammond et al., 2014; Kendall et al., 2005; Rooney et al.,
2007]. Other studies have used δS,P to argue for chemical heterogeneity. For example, Gao et al. [2004] con-
clude a δS,P of ~2.9 for fast anomalies below the Colorado Plateau is on the high side to invoke temperature
perturbations. Similarly, Rocha et al. [2011] find δS,P> 2.9 below the São Francisco Craton and interpret it as
due to compositional effects. However, from our preceding discussion of the expected range of RS,P values
including the effect of anelasticity, δS,P up to 3.6–3.8 correspond to RS,P which fall within the thermal range.

To get further insight into the possible physical causes of the seismic anomalies we imaged below the north-
ern East African Rift, we perform a comparison of the P and S-SKSwave relative arrival-time residuals for com-
mon events (Figure 6). Prior to the analysis, we remove all residuals downweighted by the Huber iterations. A
straight line fit through our measurements (least squares, accounting for the estimated picking errors) yields
a δS,P of 3.69 ± 0.01, which corresponds to an RS,P of ~2.1. This value is toward the higher end of estimates of
purely thermal RS,P between ~1.3 and 2.2 [Cammarano et al., 2003; Goes et al., 2000], and is as expected, given

Figure 6. P wave [from Civiero et al., 2015] versus S wave (this study) relative
arrival-time residuals for all common earthquakes. The solid red line is a least
squares fit including picking errors for all data (blue and white circles) and
has a gradient, δS,P, of 3.69 ± 0.01 for all data corresponding to a ratio RS,
P = lnVS/dlnVP of ~2.1, consistent with a dominantly thermal origin of the
anomalies. The dashed red line is a least squares fit including only data close
to the MER (white circles) and has a gradient of 5.60 ± 0.03 (RS,P = ~3.2),
previously interpreted as implying the presence of melt in a region around
the MER [Bastow et al., 2005].
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the likely elevated mantle temperatures (and thus expected higher anelasticity effect) below the region indi-
cated by previous work [Armitage et al., 2015; Ferguson et al., 2013; Rooney et al., 2012].

This result seems contradictory to the previous δS,P, between ~5 and ~10, for stations within the MER [Bastow
et al., 2005]. However, when we calculate the δS,P only for the subset of stations centered around MER (i.e.,
more or less corresponding to the area covered by the Ethiopia Afar Geoscientific Lithospheric Experiment
that Bastow et al. [2005] analyzed), we find a higher slope of 5.60 ± 0.03 corresponding to an RS,P ~3.2. This
indicates that what Bastow et al. [2005] interpreted as the signature of melt is likely local and shallow. Our
new travel time data set covers a significantly longer time span and a larger region of the rift, and thus,
the effects of local shallow melt signatures are mixed in with deeper mantle thermal signatures.

We also computed RS,P values after the tomographic inversion. These ratios are strongly scattered, ranging
from about 0 to 4 (Figure S13), as they are affected by any differences in spatial resolution of the two models.
For this reason, care must be taken interpreting the RS,P distribution. Broadly, the RS,P distribution is peaked in
the thermal range (median 1.7 for damping = 35). The RS,P in the damped models is more strongly peaked in
the thermal range, as it is conditioned by our thermally scaled starting model for P. This does however con-
firm that a thermal interpretation is compatible with the data. Also, as expected for thermal mechanisms (but
also from melt or hydration), the peak in RS,P shifts to higher values in low-velocity regions (median 1.9 for
damping= 35; Figure S14). This trend is seen in both damped and undamped models.

Figure 7. Histograms showing the range of velocity anomalies, after scaling for resolution, and the corresponding tem-
perature anomalies from the NEAR-P15 P and NEAR-S16 S/SKS wave models (with a degree of damping of 35), at depths
ranging from 300 to 700 km. The two regions considered are outlined by the boxes in Figure S5 for P and Figure S7 for S: (a
and b) Afar Depression and (c and d) west of the MER. Figures 7a and 7c show in light green the P wave velocity anomalies
scaled according to the resolution as a function of depth based on the P wave synthetic test in Civiero et al. [2015], and in
dark blue the S-SKS wave velocity anomalies scaled according to the resolution as a function of depth based on the reso-
lution test in Figures 3 and S15. The red dashed bars in Figures 7b and 7d illustrate the mean and standard deviation of the
temperature excess for P velocity anomalies estimated in each region; the red solid bars denote the mean and standard
deviation of the temperature excess for S velocity anomalies. These values show that temperatures inferred from dVP and
dVS are in a similar thermal range of 100–200°C from 300 to 700 km depth.
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4.2. Temperature Estimates

As, to first order, the anomalies appear to be thermal in nature, we convert the low-velocity anomalies in the
two main clusters (see boxes in Figure S7) to temperature anomalies, using the same method as in Civiero
et al. [2015]. To account for the fact that the tomography underresolves anomaly amplitudes and the recov-
ered amplitudes depend on regularization, we first scale (Figure 7a) the S velocities according to the ampli-
tude resolution with depth estimated from an idealized plume model (Figures 3 and S15). The effect and
uncertainties of the amplitude resolution are discussed in detail in Civiero et al. [2015], where the results from
differently damped inversions were in a similar range. Next, the scaled dVS anomalies are converted to dT
using a smooth dVS/dT derivative for a pyrolitic composition along a 1300°C adiabat (taken from Styles
et al. [2011]; Figure S12). Uncertainties in this conversion to temperature anomalies are a few tens of degrees
including consideration of uncertainties in the reference profile, and would largely work in the same direction
for the conversion from P and S velocity anomalies, as both depend on shear modulus and density. Figure 7b
shows that the inferred estimates of excess temperatures for both wave speeds agree well within their uncer-
tainties and scatter and fall between 100 and 200°C.

Note that although the temperature estimates from dVP and dVS for both the Afar andMER clusters agree, the
significant uncertainties and scatter would allow for some influence of other mechanisms. dTS estimates tend
to be slightly higher than dTP above 500 km depth, while at larger depths dTS tends to be somewhat lower
than dTP. The latter is probably due to the stronger decrease of the resolution with depth of VS than VP.
The former may be a hint of a signature of deep melts. Thompson et al. [2015] used receiver functions to
image a distinct low-velocity zone above the transition zone beneath Afar. They interpreted this to be a melt
layer caused by the release of volatiles from an upwelling below Afar. Rooney et al. [2012] also proposed a
contribution of deep CO2-assisted melting to the very slow velocities below Afar. Our tomographic model
does not have the resolution to distinguish such local features [Civiero et al., 2015] but does leave room for
such an interpretation.

Our temperature estimates are consistent with those inferred from geochemistry and petrology [Ferguson
et al., 2013; Rooney et al., 2012], from seismic studies of the shallow mantle [Armitage et al., 2015; Rychert

Figure 8. Comparison of global tomographic model SGLOBE-RANI [Chang et al., 2015] and NEAR-S16. (a) Vertical section through SGLOBE-RANI. The white dots are
spaced 10°. (b) The top 800 km, our model NEAR-S16, structure below 800 km (marked by a white line) SGLOBE-RANI. NEAR-S16 is shaded gray, where there are less
than five rays per node. Note the consistency between the two models, with NEAR-S16 resolving more small-scale structure inside the large low-velocity region in
SGLOBE-RANI. (c) Map shows the location of the vertical cross section on a horizontal slice at 500 km depth through model SGLOBE-RANI.
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et al., 2012] and transition zone [Thompson et al., 2015], and from estimates of melt production [Armitage
et al., 2015]. The estimates are lower than inferred below some other hot spots, e.g., Hawaii, North Atlantic,
and Deccan [Armitage et al., 2010; Watson and McKenzie, 1991]. They are also somewhat lower than those
from Mulibo and Nyblade [2013], who in a recent tomographic study conclude that a thermal perturbation
of ~150–300 K reconciles P and S wave velocities beneath Tanzania and northwestern Zambia. The tempera-
ture estimates below the northern EAR are consistent with the interpretation that the low velocities through
the transition zone are due to warm thermal upwellings.

5. Conclusions

In this study, we combine S and SKSwave relative travel times to achieve a high-resolution tomographic shear
wave model, NEAR-S16, that extends throughout the whole upper mantle below of the northern East Africa.
This Smodel complements a recent P travel time model, NEAR-P15, for the same region [Civiero et al., 2015].
The patterns of P and S wave velocities strongly resemble each other in terms of geometry and scale. The
tomographic images reveal widespread low velocities in the upper 200 km of the mantle below the region.
Below this depth, two clusters of low velocities emerge, situated below Afar and west of the MER. These
extend through the transition zone. Both the P and S low-velocity anomalies yield excess temperature esti-
mates in the range of 100–200°C in these two clusters. These results give us more confidence in interpreting
the structure imaged in both P and S-SKS wave models below the northern East African Rift as being mainly
the signature of multiple small-scale upper mantle thermal upwellings.

A comparison of our imaged structure with that of previous global tomographic studies reveals the consis-
tency of our structures with these large-scale models, as shown in Figure 8 for the global anisotropic S velo-
city model SGLOBE-RANI [Chang et al., 2015]. As more data have been added to the global models, the
complexity of the low-velocity structure below the East African Rift has increased, e.g., compare S20RTS
[Ritsema and van Heijst, 2000], which imaged a single large-scale feature that appeared to be continuous from
the lower mantle below southern Africa to the upper mantle from Kenya/Tanzania to Afar, with S40RTS
[Ritsema et al., 2011] and SGLOBE-RANI [Chang et al., 2015], which find two low-velocity anomalies in the
upper mantle below Kenya/Tanzania and Afar, as well as variability within the lower mantle, low-velocity
anomalies (Figure 8). The comparison between our travel time model and the global model SRANI clearly
shows that what appeared like one large-scale feature below Afar in several previous studies [e.g., Hansen
et al., 2012] has in fact internal small-scale structure, as was previously suggested based on surface wave
tomography by Debayle et al. [2001]. Models S40RTS and SGLOBE-RANI even hint at a low-velocity anomaly
at the base of the transition zone directly below the strong low velocities we image. As discussed fully in
Civiero et al. [2015], this might be a ponding of warm material that forms the source of the small-scale upwel-
lings we infer, a feature that is seen in analogue and numerical models of plume transition-zone interaction
[e.g., Kumagai et al., 2007; Tosi and Yuen, 2011]. Evaluation of the global models along different cross sections
indicates that this low-velocity region at the base of the transition zone may connect with one of the low-
velocity features that appear to rise off the Large Low-Shear-Velocity Provinces below Africa. Further work
to improve resolution of lower mantle structure below the rift system with more stations and/or by making
use of a larger part of the waveforms will be necessary to identify the lower mantle source of the small-scale
shallow mantle upwellings.
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