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Abstract Metastability is a physical phenomenon ubiquitous in first order phase transitions.
A fruitful mathematical way to approach this phenomenon is the study of rare transitions
Markov chains. For Metropolis chains associated with statistical mechanics systems, this
phenomenon has been described in an elegantway in terms of the energy landscape associated
to the Hamiltonian of the system. In this paper, we provide a similar description in the general
rare transitions setup. Beside their theoretical content, we believe that our results are a useful
tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular
Automata.

Keywords Stochastic dynamics · IrreversibleMarkov chains ·Hitting times ·Metastability ·
Freidlin Wentzell dynamics

Mathematics Subject Classification 60K35 · 82C26

1 Introduction

In this paper we are interested in the phenomenon of metastability for systems evolving
according to transformations satisfying the thermodynamic law for small changes of the
thermodynamical parameters. Metastability is a physical phenomenon ubiquitous in first
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366 E. N. M. Cirillo et al.

order phase transitions. It is typically observed when a system is set up in a state which is
not the most thermodynamically favored one and suddenly switches to the stable phase as a
result of abrupt perturbations.

Although metastable states have been deeply studied from the physical point of view, full
rigorous mathematical theories based on a probabilistic approach have been developed only
in the last three decades. We refer to [20] for a complete recent bibliography. Let us just
stress that the three main points of interest in the study of metastability are the description
of: (i) the first hitting time at which a Markov chain starting from the metastable state hits the
stable one; (ii) the critical configurations that the system has to pass to reach the stable states;
(iii) the tube of typical trajectories that the system typically follows on its transition to the
stable state. These notions are central quantities of interest in many studies on metastability,
which focus on proving convergence results in physically relevant limits, the most typical
ones being the zero temperature limit and the infinite volume regime.

In this paper, we focus on the finite volume and zero temperature limit setup.
The first mathematically rigorous results were obtained via the pathwise approach, which

has been first developed in the framework of special models and then fully understood in the
context of the Metropolis dynamics [12,34,36]. In this framework, the properties of the first
hitting time to the stable states are deduced via large deviation estimates on properly chosen
tubes of trajectories. A different point of view, the potential theoretical approach, has been
proposed in [5] and is based on capacity—like estimates. This last approach has recently
been developed and generalized to the non reversible setting in [29]. We mention that a more
recent approach has also been developed in [6,7].

Herewe adopt the pathwise point of view and generalize the theory to the generalFreidlin–
Wentzel Markov chains orMarkov chains with rare transitions setup. For Metropolis chains
associated to Statistical Mechanics systems and reversible with respect to the associated
Gibbs measure, the metastability phenomenon can be described in an elegant and physically
satisfactory way via the energy landscape associated with the Hamiltonian of the system
[34,36]. In particular the time needed by the system to hit the stable state can be expressed in
terms of the height of one of the most convenient paths (that is a path with minimal energetic
cost). Moreover, the state of the system at the top of such a path is a gate configuration in the
sense that, in the low temperature regime, the system necessarily has to go through it before
hitting the stable state. This description is very satisfactory from the physical point of view
since both the typical time that the system spends in the metastable state before switching to
the stable one and the mechanism that produces this escape can be quantified purely through
the energy landscape. Let us mention that a simplified pathwise approach was proposed in
[31], where the authors disentangled the study of the first hitting time from the study of the
set of critical configurations and of the tube of the typical trajectories.

In this paper we show that a similar physically remarkable description can be given in
the general rare transitions (Freidlin–Wentzel) framework, when the invariant measure of the
system is a priori not Gibbsian. In this setup the pathwise study of metastability has been
approached with a different scheme in [35], where the physical relevant quantities describing
the metastable state are computed via a renormalization procedure. Here we show that the
strategy developed in [31] can be extended at the cost of a higher complexity of techniques.
A typical way of proceeding is to redefine the height of a path in terms of the exponential
weight of the transition probabilities and of a function, the virtual energy, associated to the
low temperature behavior of the invariant measure. In other words we reduce the pathwise
study ofmetastability in the general rare transition case to the solution of a variational problem
within the landscape induced by this notion of path height, using as a main tool the general
cycle theory developed in [10,11].
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Metastability for General Dynamics with Rare Transitions... 367

Summarizing, in [34,36], in the framework of the pathwise approach, the problem of
metastability has been addressed exclusively for Metropolis dynamics and the study of the
exit time is striclty connected to that of the typical exit tube. In [31], with the same approach,
the study has again been performed only for Metropolis dynamics but the results on the
hitting time to the stable state have been disentagled from the detailed knowledge of the tube
of typical trajectories followed during the transition from the metastable to the stable state.
In [35], on the other hand, the authors consider the rare transition dynamics we address in
this paper and develop a renormalization scheme to describe the exit from a general domain.
The exit time estimate is, then, strictly related to the detailed study of the exit tube and all the
results are given in terms of the intermediate renormalized chains. In [3–5] the problem of
metastability has been studied via the potential theoretic approach only for reversibleMarkov
chains. Finally, in [6,8] the martingale approach to metastability has been developed. More
recently, see [7,29], in this framework the possibility to study non reversible chain has been
considered. These results have been used to study the specific problem of the metastable
behavior of the condensate of the one-dimensional totally asymmetric zero range model with
periodic boundary conditions [30].

This paper addresses the problem ofmetastability in the very general case of rare transition
dynamics possibly not reversible (specific examples are given in Sect. 2.2). Our aim is
threefold: (i) generality of the results (in the sense specified above); (ii) developing a theory
which reduces the computation of the exit time from themetastable state and the determination
of the critical configuration to the solution of variational problems in a energy landscape
defined in terms of the virtual energy and the cost function; (iii) developing a theory in which
the results on the transition time from the metastable to the stable state is disentagled from
the detailed knowledge of the critical configuration and of the tube of typical trajectories
followed during the transition from the metastable to the stable state.

The technical difficulties that we had to overcome are rather evident: giving a satisfactory
mathematical description of metastability in a context where no Hamiltonian is available is
a priori rather challenging. We overcame this difficulty using two key ideas.

First idea In the seminal papers on the pathwise approach to metastability [34,36] results
were proved via detailed probability estimates on suitably chosen tube of trajectories. A
simpler approach has been pointed out in [31], where, still in the framework of theMetropolis
dynamics, the authors have shown that the main ingredient necessary to achieve the pathwise
description of metastability is the classification of all the states of the systems in a sequence
of decreasing (for the inclusion) subsets of the state space, whose elements have increasing
stability, in the sense that starting from any one of them the height that has to be bypassed
to reach a lower energy level becomes increasingly higher. Moreover, the authors use in a
crucial way a recurrence property stating that starting from any state, the process reaches one
of these stability level sets within a time controlled exponentially by the stability level of the
set itself. We also use this idea in the present work.

Second idea One of the key tools in the pathwise study of metastability is the notion
of cycle. In the context of general Markov chains, a cycle can be thought as a subset of
the configuration states enjoying the following property: starting from anywhere within the
cycle, with high probability the process visits all the states within the cycle before exiting
the set itself. In the study of the metastable behavior of Metropolis chains a more physical
definition of the notion of cycle was used: a cycle is a set of configurations such that starting
from any of them any other can be reached by a path within the set with maximal energy
height smaller than the minimal one necessary for the process to exit the set. In this paper,
following [10], we use the fact that by defining the height of a path in terms of the virtual
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energy and of the exponential cost of transition, the two different approaches to cycles are
equivalent.

The paper is organized as follows. In Sect. 2 we describe our setup and state the main
results. Section 3 is devoted to the discussion of the theory of cycles. In Sect. 4 we prove
our main results. In Appendix 1, we develop a condition under which the virtual energy is
explicitly computable, and in Appendix 2, we make a quick recap about the virtual energy.

2 Model and Main Results

In this section we introduce our framework and state our main results on the metastable
behavior of a system fitting to this framework. Thenwe give a fine description of this behavior
in terms of the virtual energy.

2.1 The Freidlin–Wentzell Setup

In this paper we will deal with a finite state space Markov chain with rare transitions. We
consider

– an arbitrary finite state space X .
– A rate function � : X × X �→ R

+ ∪ {∞}. We assume that � is irreducible in the sense
that for every x, y ∈ X , there exists a pathω = (ω1, . . . , ωn) ∈ X n withω1 = x ,ωn = y
and for every 1 ≤ i ≤ n − 1,�(xi , xi+1) < ∞, where n is a positive integer.

Definition 2.1 A family of time homogeneous Markov chains (Xn)n∈N onX with transition
probabilities pβ indexed by a positive parameter β is said to “satisfy the Freidlin–Wentzell
condition with respect to the rate function �” or “to have rare transitions with rate function
�” when

lim
β→∞

− log pβ(x, y)

β
= �(x, y) (2.1)

for any x, y ∈ X .

The particular case where �(x, y) is infinite should be understood as the fact that, at low
temperature, there is no transition possible between states x and y. In many papers, instead
of the� = ∞ condition, a connectivity matrix is introduced, that is a matrix whose non zero
terms correspond to allowed transitions, see for instance [36] [Condition R, Chapter 6].

We also note that condition (2.1) is sometimes written more explicitly; namely, for any
γ > 0, there exists β0 > 0 such that

e−β[�(x,y)+γ ] ≤ pβ(x, y) ≤ e−β[�(x,y)−γ ] (2.2)

for any β > β0 and any x, y ∈ X . See for instance [36] [Condition FW, Chap. 6] where the
parameter γ is assumed to be a function of β vanishing for β → ∞, so that in particular the
Freidlin-Wentzell setup covers this case.

From now on, we will always consider the general case of a family of homogeneous
Markov chains satisfying the condition in Definition 2.1.

2.2 Examples

Since we are proving quite general results in an abstract, model-independent setup, it is worth
pointing at some examples towhich the techniques developed in this paper should apply. Note
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that some of the models we are mentioning are still quite poorly understood, and that our
results may provide tools for further investigation regarding their metastable behavior.

Setups covered by the Freidlin Wentzell assumptions We first mention that the Freidlin
Wentzell framework contains two setups which are themselves quite general and have been
quite studied in the past.

1. Metropolis algorithm with Hamiltonian U : X → R (see, for instance, [36] [Condi-
tion M, Chap. 6] and [32]). It is the particular case where

�(x, y) :=
{

(U (y) −U (x))+ if q(x, y) > 0
∞ otherwise

, (2.3)

for any (x, y) ∈ X ×X where q is an irreducible Markov matrix X ×X → [0, 1] which
does not depend on β. The Metropolis algorithm itself is a general framework which has
as stationary measure the Gibbs measure.

2. Weak reversible dynamics with respect to the potential U : X → R or dynamics induced
by the potential U : X → R.This is the case where the rate function � is such that for
any (x, y) ∈ X × X

U (x) + �(x, y) = U (y) + �(y, x) (2.4)

with the convention that+∞+r = +∞ for any r ∈ R. Even if the Metropolis dynamics
is an example of a potential induced dynamics, these models form a broader class in
which other important examples are reversible Probabilistic Cellular Automata; without
going too much into details about these rather involved models, let us mention that in
[14,18,28], the authors deal with models involving a potential Gβ(x) depending on β

and satisfying the balance condition

pβ(x, y)e−Gβ (x) = pβ(y, x)e−Gβ (y)

for every positive β. To bypass the technical difficulties inherent to these models, which
stem for a large part from the intricate dependence on β of pβ(·) and Gβ(·), the authors
computed directly the expressions of the rate function �(·) in (2.1). In this way, they
showed that the reversible PCA’s are in fact a weak reversible dynamics. Then, using
solely the limit expressions obtained (that is the rates transitions �(·)), they described
the metastable behavior for these models. We refer to Appendix 1 for a more general
context in which these techniques still apply and we mention that our hope is that this
generalization should cover some other relevant cases in which only the transitions rates
are explicitly computable.

Next we mention two concrete models which do not fit in the above setups, and to which
our techniques should apply. Note that as usual for models issued from statistical physics,
the model dependent part of the analysis of each specific model should still be very heavy.
See the papers [22–24] for recent examples in the Metropolis framework. In the following
two examples, we denote by T 2

N the 2 dimensional discrete torus with N 2 sites.
An irreversible PCA model In the recent paper [25], the authors consider a non-reversible

Probabilistic Cellular Automata, which informally should be understood as amassive parallel
updatingdynamics versionof the classical Isingmodel.Note that the above examples ofPCA’s
were dealt with in the symmetric context, that is when the local updating rule is performed
at each site on a box which is symmetric around this site. This is not the case in the model
we describe now.

We denote by SN = {−1,+1}T 2
N the space of configurations. As is standard in the

statistical physics literature, for a configuration σ ∈ SN and x ∈ T 2
N , we denote by σ x the
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370 E. N. M. Cirillo et al.

configuration coinciding with σ at all sites except at site x (hence such that σ x (x) = −σ(x)).
For x = (i, j) ∈ T 2

N , we write

xu := (i, j + 1) and xr := (i + 1, j), (2.5)

where the quantities have to be understood modulo N . Given two configurations σ, τ ∈ SN

and h > 0, we then define the Hamiltonian

H(σ, τ ) = −
∑
x∈T 2

N

(σx (τxu + τxr ) + hσxτx ) . (2.6)

Finally, we consider the discrete time Markov chain on SN with transitions given by

P(σ, τ ) = e−βH(σ,τ )∑
τ∈SN

e−βH(σ,τ )
. (2.7)

It is clear that this Markov chain is irreducible and fits the setup of Definition 2.1. The
behavior of this model for large enough (but fixed) β and N → ∞ has been described in
details in [25]. Up to the model dependent specificities ( which can be quite involved, as we
already mentioned), our approach deals with the case of fixed volume in the low temperature
asymptotics.

Irreversible Kawasaki type dynamics [21]We consider a conservative Kawasaki dynamics
evolving on �N := {0, 1}T 2

N . We let EN be the set of oriented edges (x, y) where x, y are
nearest neighbors. For e = (x, y) ∈ EN , we write e− = x, e+ = y. We then define μ as the
probability measure on the configuration space {0, 1}T 2

N by

μ(η) = 1

Z
e−βH(η) (2.8)

where the Hamiltonian is given by

H(η) = −1

2

∑
(x,y)∈EN

η(x)η(y) (2.9)

and η is a generic element of �N . For η ∈ �N , we write |η| =∑x∈T 2
N

η(x).

Now we define the notion of plaquette; it is a unit square of the form (x, x + e(1), x +
e(1) + e(2), x + e(2)) or (x, x + e(2), x + e(1) + e(2), x + e(1)) where (e(1), e(2)) denotes the
canonical basis of Z

2. The first plaquette is counterclockwise oriented whereas the second
one is clockwise oriented. Given an edge e ∈ EN , there are only two plaquettes to which e
belongs. We denote by C+(e) the one which is counterclockwise oriented and by C−(e) the
other one. Note that given a plaquette C , there are exactly four edges ei , i = 1, . . . , 4 such
that ei ∈ C .

For 
 ⊂ T 2
N , we define the energy restricted to 
 by:

H
(η) = −1

2

∑
e∈EN ;e∩

=∅

η(e−)η(e+). (2.10)

In the above sum,we say that e∩
 
= ∅ as soon as {e−, e+} 
= ∅. Consider noww+ 
= w−
two positive real numbers. We define the transition rates by

ce(η) := w+eβHC+(e)(η) + w−eβHC−(e)(η)
. (2.11)
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Now we define the evolution with generator given by

L f (η) =
∑
e∈EN

ce(η)η(e−)(1 − η(e+))
(
f (ηe) − f (η)

)
(2.12)

where ηe coincides with the configuration η, except at sites e− and e+, where the particle
sitting at e− in the configuration η has been moved to site e+. Note that this dynamics is
conservative, namely, when started from a configuration η0 ∈ �N , at any time t ≥ 0, it
satisfies |ηt | = |η0|.

In [21], the authors show that the dynamics defined by (2.12) with rates defined in (2.11)
satisfies the (continuous time analogous of) Freidlin Wentzell conditions. Its invariant mea-
sure is given by (2.8); furthermore, as soon as w+ 
= w−, this dynamics is not reversible.
Solving the model dependent issues of this dynamics is currently work in progress.

2.3 Virtual Energy

A fundamental notion for the physical approach of the problem of metastability in the setup
of rare transitions chains is the notion of virtual energy, whose definition is based on the
following result.

Proposition 2.1 [10, Proposition 4.1] Consider a family of Markov chains satisfying the
Freidlin–Wentzell condition in Definition 2.1. For β large enough, each Markov chain is
irreducible and its invariant probability distribution μβ is such that for any x ∈ X , the limit

lim
β→∞ − 1

β
logμβ(x)

exists and is a positive finite real number.

Definition 2.2 In view of Proposition 2.1, the limiting function

H(x) := lim
β→∞ − 1

β
logμβ(x), (2.13)

for x ∈ X , is called virtual energy.

The proof of Proposition 2.1 relies on some deep combinatorial results which are tailored
to the Freidlin–Wentzell context. In general, the virtual energy has an exact expression in
function of the transition rates � (see, for instance, [10, Proposition 4.1], or the Appendix
2 at the end of the present work). Unfortunately, in the most general setup, this expression
involving a certain family of graphs is intractable for all practical purposes when one is
interested to study particular models.

Finally, we stress that in the particular cases of the setups in Sect. 2.2, the virtual energy,
up to an additive constant, is precisely the potential which induces the dynamics.

Proposition 2.2 [10, Proposition 4.1] In the particular case of the dynamics induced by the
potential U : X → R (see Sect. 2.2) one can show the equality

H(x) = U (x) − min
X

U

for any x ∈ X .

123
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2.4 General Definitions

In the present and in the following sections, we introduce some standard notions, which are
natural generalizations of the analogous quantities in the reversible setup, see [31] or [36].

A real valued function f : R
+ �→ R

+ is super exponentially small (SES for short) if and
only if

lim
β→∞

1

β
log f (β) = −∞.

For x ∈ X , we let Xx
t be the chain started at x . For a nonempty set A ⊂ X and x ∈ X ,

we introduce the first hitting time τ x
A to the set A which is the random variable

τ x
A := inf{k ≥ 0, Xx

k ∈ A}.
A path is a sequence ω = (ω1, . . . , ωn) such that�(ωi , ωi+1) < ∞ for i = 1, . . . , n−1.

For a path ω = (ω1, . . . , ωn), we define |ω| = n its length. For x, y ∈ X a path ω : x → y
joining x to y is a path ω = (ω1, . . . , ωn) such that ω1 = x and ωn = y. For any x, y ∈ X
we write �x,y for the set of paths joining x to y. For A, B ⊂ X nonempty sets, we write
�A,B for the set of paths joining a point in A to a point in B.

A set A ⊂ X with |A| > 1 is connected if and only if for all x, y ∈ A, there exists a path
ω ∈ �x,y such that for any i ≤ |ω|, ωi ∈ A. By convention, we say that every singleton is
connected.

For a nonempty set A, we define its external boundary ∂A := {y ∈ X\A, there exists x ∈
A such that �(x, y) < ∞} and we write

H(A) = min
A

H. (2.14)

The bottom F(A) of A is the set of global minima of H on A, that is

F(A) := {x ∈ A, H(x) = H(A)}.
The set X s := F(X ) is called the set of stable points or the set of ground states of the virtual
energy.

2.5 Communication Height

A key notion in studying metastability is the one of the cost that the chain has to pay to follow
a path. In the case of Metropolis dynamics this quantity is the highest energy level reached
along a path. Such a notion has to be modified when general rare transitions dynamics are
considered [14,38]. We thus define the height or elevation �(ω) of a path ω = (ω1, . . . , ωn)

by setting

�(ω) := max
i=1,...,|ω|−1

[H(ωi ) + �(ωi , ωi+1)]. (2.15)

The communication height �(x, y) between two states x, y ∈ X is the quantity

�(x, y) := min
ω∈�x,y

�(ω). (2.16)

Given two nonempty sets A, B ⊂ X , we define

�(A, B) := min
x∈A,y∈B �(x, y) (2.17)

the communication height between A and B.
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H(x)=U(x)

H(y)=U(y)

Δ(x,y)

Δ(y,x)

H(x)

H(y)

Δ(x,y)

Δ(y,x)

Fig. 1 Illustration of the result in Corollary 2.1. The picture on the left refers to the weak reversible case,
whereas the picture on the right refers to the general dynamics with rare transitions

For A, B nonempty subsets of X , we define �
opt
A,B as the set of optimal paths joining A

to B, that is the set of paths joining a point in A to a point in B and realizing the min–max
�(A, B) defined in (2.17).

For rare transitions dynamics induced by a potential (see Sect. 2.2) it is easy to see that
the communication height between two states is symmetric. A non-trivial result due to A.
Trouvé [38] states that this is the case even in the general setup adopted in this paper.

Proposition 2.3 [10, Proposition 4.14] The communication height between states is sym-
metric, that is, �(x, y) = �(y, x) for any x, y ∈ X .

Corollary 2.1 [10, Proposition 4.17] For any x, y ∈ X , the virtual energy satisfies

H(y) ≤ H(x) + �(x, y).

This corollary is quite interesting and its meaning is illustrated in Fig. 1. Indeed, in the
case of a dynamics induced by a potential, the jump between two states can be thought of
as in the left part of the figure: the chain can jump in both directions and the height reached
in both cases is the same. This is not true anymore in general under the sole assumptions
of Definition 2.1 (see the illustration on the right in the same figure). Provided the chain
can perform the jump from x to y, that is �(x, y) < ∞, it is not ensured that the reverse
jump is allowed. Moreover, even in such a case, the heights which are attained during the two
jumps in general are different. Nevertheless, the important Corollary 2.1 states that the virtual
energies of the two states x and y are both smaller than the heights attained by performing
any of the two jumps.

2.6 Metastable States

The main purpose of this article is to define the notion of metastable states for a general rare
transition dynamics and to prove estimates on the hitting time to the set of stable states for
the dynamics started at a metastable state.

To perform this, we need to introduce the notion of stability level of a state x ∈ X . First
define

Ix := {y ∈ X , H(y) < H(x)} (2.18)

123



374 E. N. M. Cirillo et al.

Fig. 2 Illustration of the structure of the sets Xa ’s (see Definition (2.22)) with 0 < a < Vm

which may be empty in general. Then we define the stability level of any state x ∈ X by

Vx := �(x, Ix ) − H(x) (2.19)

and we set Vx = ∞ in the case where Ix is empty. Recalling the definition of the stable set
X s := F(X ), we also let

Vm := max
x∈X\X s

Vx (2.20)

be the maximal stability level.
Metastable states should be thought of as the set of states where the dynamics is typically

going to spend a lot of time before reaching in a drastic way the set of stable states X s.
Following [31] we define the set of metastable states Xm as

Xm := {x ∈ X , Vx = Vm} (2.21)

and in the sequel, see Sect. 2.8, we will state some results explaining why Xm meets the
requirements that one would heuristically expect from the set of metastable states. For exam-
ple, we prove that the maximal stability level Vm is precisely the quantity controlling the
typical time that the system needs to escape from the metastable state.

More generally, for any a > 0, we define the metastable set of level a > 0 as follows

Xa := {x ∈ X , Vx > a}. (2.22)

The structure of the sets Xa’s is depicted in Fig. 2. It is immediate to realize that Xa ⊂ Xa′
for a ≥ a′. Moreover, it is worth noting that XVm = X s.

2.7 Saddles, Gates, and Cycles

We stress that one of our main results (see Theorem 2.4 below) describes a family of sets
which will be crossed with high probability by the dynamics during its escape from the
metastable state.

To introduce these sets, we define as in [31] the notion of saddle points and of gates. These
notions, which are standard in the Metropolis setup, can be generalized here at the cost of a
higher complexity of definitions. To do so, we first introduce the set Ŝ(x, y) ⊂ X × X :

Ŝ(x, y) := {(z, z′) ∈ X × X , ∃ω ∈ �
opt
x,y, ∃i ≤ |ω| − 1,

(z, z′) = (ωi , ωi+1), H(z) + �(z, z′) = �(z, z′) = �(x, y)}. (2.23)
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In words, the pair (z, z′) belongs to Ŝ(x, y) if the edge (z, z′) belongs to an optimal path
joining x to y, the cost of the one step transition from z to z′ is equal to �(z, z′), which is
itself equal to the overall cost �(x, y).

We then define the projection of Ŝ(x, y) on its second component, that is the set

S(x, y) :=
{
z ∈ X , ∃z′, (z′, z) ∈ Ŝ(x, y)

}
. (2.24)

By analogy with the Metropolis setup (see [31, Definition (2.21)]), the set S(x, y) is the
set of saddles between x and y. Other natural extensions borrowed from theMetropolis setup
are then the following (see [31]). Given x, y ∈ X , we say that W ⊂ X is a gate for the pair
(x, y) if W ⊂ S(x, y) and every path in �

opt
x,y intersects W , that is

ω ∈ �
opt
x,y �⇒ ω ∩ W 
= ∅.

We also introduce W(x, y) as being the collection of all the gates for the pair (x, y).
A gate W ∈ W(x, y) for (x, y) ∈ X is minimal if it is a minimal (for the inclusion

relation) element of W(x, y). Otherwise stated, for any W ′
� W , there exists ω′ ∈ �

opt
x,y

such that ω′ ∩ W ′ = ∅. In the metastability literature, the following set is also standard

G(x, y) :=
⋃

W∈W(x,y),W is minimal.

W ;

namely, G(x, y) is the set of saddles between x and y belonging to aminimal gate inW(x, y).
Key notions in this work are the notions of cycle and of principal boundary of a set. In

this section, we just give some basic facts on these, and we note that they will be discussed
with more details in Sect. 3.

Definition 2.3 [10, Definition 4.2] A nonempty setC ⊂ X is a cycle if it is either a singleton
or for any x, y ∈ C , such that x 
= y,

lim
β→∞ − 1

β
logPβ

[
Xx

τ x
(X \C)∪{y}


= y
]

> 0.

In words, a nonempty set C ⊂ X is a cycle if it is either a singleton or if for any x ∈ C ,
the probability for the process starting from x to leave C without first visiting all the other
elements of C is exponentially small. We will denote by C(X ) the set of cycles. The set C(X )

has a tree structure, that is:

Proposition 2.4 [10, Proposition 4.4] For any pair of cycles C,C ′ such that C ∩ C ′ 
= ∅,
either C ⊂ C ′ or C ′ ⊂ C.

Definition 2.4 Consider A ⊂ X such that |A| ≥ 2 and x, y ∈ X . The tree structure of the
set C(X ) has two fundamental consequences, which we will use repeatedly in the rest of this
paper:

1. there exists a minimal cycle CA (for the inclusion) containing the set A. In the particular
case where A = {x, y}, we will always write Cx,y for the minimal cycle containing both
x and y;

2. the decomposition into maximal strict subcycles of A; i.e. a partition

A =
⊔
i∈I

Ci (2.25)
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where |I | ≥ 2 and for every i ,Ci is a cycle. Furthermore, for any J � I , the set
⋃

j∈J C j

is not a cycle. In the particular case where A = Cx,y , we will write Mx,y = (Ci , i ∈ I )
for the partition of Cx,y into maximal strict subcycles. Finally, for u ∈ Cx,y , in the
rest of this paper we will use the notation C(u) to refer to the unique element of Mx,y

containing u.

Next we introduce the important notion of principal boundary of an arbitrary subset of
the state space X .

Proposition 2.5 [10, Proposition 4.2] For any D ⊂ X and any x ∈ D, the following limits
exist and are finite:

lim
β→∞

1

β
logEβ [τ x

X\D] =: 
D(x) (2.26)

and, for any y ∈ X\D,

lim
β→∞ − 1

β
logPβ

[
Xx

τ xX \D
= y

]
=: �D(x, y). (2.27)

We stress that the limits appearing in the right hand side of (2.27) and (2.26) have explicit
expressions which, as in Definition 2.2 for the virtual energy, seem to be intractable for
practical purposes at least in the field of statistical mechanics (Fig. 3).

The meaning of the two functions introduced in the Proposition 2.5 is rather transparent:
(2.26) provides an exponential control on the typical time needed to escape from a general
domain D starting from a state x in its interior and 
D(x) is the mass of such an exponential.
On the other hand, (2.27) provides an exponential bound to the probability to escape from
D, starting at x , through the site y ∈ X\D. Hence, we can think to �D(x, y) as a measure
of the cost that has to be paid to exit from D through y.

Now, we remark that, due to the fact that the state spaceX is finite, for any domain D ⊂ X
and for any x ∈ D there exists at least a point y ∈ X\D such that �D(x, y) = 0. Thus, we
can introduce the concept of principal boundary of a set D ⊂ X

B(D) := {y ∈ X\D, �D(x, y) = 0 for some x ∈ D}. (2.28)

We mention that the set of saddles is linked in a very intricate way to the principal
boundaries of the elements of M(x, y). More precisely, we prove the following equality in
Sect. 4.

Fig. 3 Illustration of the notion of gate between two configurations x and y. The case depicted here is the

following: S(x, y) = {w1, . . . , w6}. The optimal paths in �
opt
x,y are represented by the five black lines. The

minimal gates are {w1, w2, w4, w6} and {w1, w2, w5, w6}. Any other subset of S(x, y) obtained by adding
some of the missing saddles to one of the two minimal gates is a gate

123



Metastability for General Dynamics with Rare Transitions... 377

Proposition 2.6 For x, y ∈ X , it holds the equality

S(x, y) =
⋃

C∈Mx,y

B(C). (2.29)

Note that this result implies the inclusion S(x, y) ⊂ Cx,y (see Remark 3.5 for details).
This result is quite remarkable, in the sense that it links in a natural way two quantities

which have been used in very different contexts. A priori, the set S(x, y) has been defined
purely in terms of a minmax principle, whereas the principal boundary of cycles have been
defined in a rather abstract way.

2.8 Main Results

In this section we collect our results about the behavior of the system started at a metastable
state. These results justify a posteriori why the abstract notion of metastable set Xm fits with
the heuristic idea of metastable behavior.

The first two results state that the escape time, that is the typical time needed by the
dynamics started at a metastable state to reach the set of stable states, is exponentially large
in the parameter β. Moreover, they ensure that the mass of such an exponential is given by
the maximal stability level; the first result is a convergence in probability, whereas the second
ensures convergence in mean.

Theorem 2.1 For any x ∈ Xm, for any ε > 0 there exists β0 < ∞ and K > 0 such that,
for all β ≥ β0,

Pβ

[
τ x
X s < eβ(Vm−ε)

]
< e−βK (2.30)

and

the functionβ �→ Pβ

[
τ x
X s > eβ(Vm+ε)

]
is SES. (2.31)

Theorem 2.2 For any x ∈ Xm, the following convergence holds

lim
β→∞

1

β
logEβ [τ x

X s ] = Vm. (2.32)

Theorem 2.3 Assume the existence of a state x0, satisfying the following conditions:

– late escape from the state x0:

Tβ := inf
{
n ≥ 0, Pβ

[
τ
x0
X s ≤ n

] ≥ 1 − e−1} β→∞−→ ∞; (2.33)

– fast recurrence to x0: there exist two functions δβ, T ′
β : [0,+∞] → R such that

lim
β→∞

T ′
β

Tβ

= 0, lim
β→∞ δβ = 0, (2.34)

and

Pβ

[
τ x{x0,X s} > T ′

β

]
≤ δβ (2.35)

for any x ∈ X and β large enough.

Then, the following holds
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1. the random variable τ
x0
X s/Tβ converges in law to an exponential variable with mean one;

2. the mean hitting time and Tβ are asymptotically equivalent, that is

lim
β→∞

1

Tβ

Eβ [τ x0
X s ] = 1; (2.36)

3. the random variable τ
x0
X s/Eβ [τ x0

X s ] converges in law to an exponential variable with mean
one.

We stress that such exponential behaviors are not new in the literature; for the Metropolis
case, we refer of course to [31, Theorem 4.15], and we refer to [1,2] for the generic reversible
case. In an irreversible setup, results appeared only much more recently; let us mention [8]
and [33]. In the case where the cardinality of the state space X diverges, more precise results
than the one described in Theorem 2.3 were obtained in [27] and [26].

Our result is different from the ones we mention here, since we are able to give the explicit
value of the expected value of the escape time in function of the transition rates of the family
of Markov chains.

The above results are related to the properties of the escape time, the following one gives
in particular some information about the trajectory that the dynamics started at a metastable
state follows with high probability on its way towards the stable state.

Theorem 2.4 For any pair x, y ∈ X we consider the set of gates W(x, y) introduced in
Sect. 2.7 and the corresponding set of minimal gates. For any minimal gate W ∈ W(x, y),
there exists c > 0 such that

Pβ [τ x
W > τ x

y ] ≤ e−βc

for β sufficiently large.

The typical example of application of this result is to consider x ∈ Xm, y ∈ X s, and
W ∈ W(x, y); Theorem 2.4 ensures that, with high probability, on its escape from the
metastable state x , the dynamics has to visit the gate W before hitting the stable state y.
This is a strong information about the way in which the dynamics performs its escape from a
metastable state. We remark that in the application to particular models, Theorem 2.4 allows
to find the gates without describing in details the typical trajectories followed by the system
during the transition.

We stress that our main tool to prove Theorem 2.4 is the construction of a set Kx,y that
contains the typical trajectories (see [36, Chap. 6]. In particular Sect. 6.7, Theorems 6.31
and 6.33 where an analogous description has been performed in the particular case of the
Metropolis dynamics). The set Kx,y is a subset of �

opt
x,y which can be described as follows:

1. as soon as the dynamics enters an element C ∈ Mx,y , it exits C through its principal
boundaryB(C). This implies in particular the fact that the dynamics stayswithin the cycle
Cx,y during its transition from x to y, as we will show later (see in particular Remark
3.5);

2. as soon as the dynamics enters C(y) (recall that C(y) is the unique element of Mx,y

containing y, Definition 2.4), it hits y before leaving C(y) for the first time.

We refer to equation (4.74) for a formal definition of Kx,y . We are ready to state the
following proposition:

Proposition 2.7 For any x, y ∈ X , as β → ∞, the set Kx,y has probability exponentially
close to 1, that is, for any ε > 0, there exists β0 such that for any β ≥ β0:

Pβ [Kx,y] ≥ 1 − e−βε.
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We stress that in concrete models, such a detailed description of the exit tube relies on
an exhaustive analysis of the energy landscape which is unlikely to be performed in general.
Nevertheless, for the particular case of PCA’s, this analysis can be greatly simplified.

Remark 2.1 For reversible PCA’s, the analysis of the phenomenon of metastability was per-
formed in [18] by studying the transition between the metastable state (the − phase) towards
the stable state (the + phase in this specific model) using a particular case of Proposition
2.7. Indeed, the decomposition into maximal cycles C(−),(+) was reduced to two cycles only,
and the one containing the (−) state was refered to as the subcritical phase. One of the main
tasks was then to identify the set of saddles, which in this case was reduced to the principal
boundary of the subcritical phase.

Our approach shows in which way this technique should be extended in the more general
case of several maximal cycles involved in the maximal decomposition of the cycle Cx,y . A
practical way to perform this would be to use Propostion 2.6 to identify recursively the set
of saddles.

2.9 Further Results on the Typical Behavior of Trajectories

In this section we collect some results on the set of typical trajectories in the large β limit.
The first result of this section is a large deviation estimate on the hitting time to the

metastable set Xa at level a > 0. The structure of the sets Xa’s is depicted in Fig. 2. Given
a > 0, since states outside Xa have stability level smaller that a, it is rather natural to expect
that, starting from such a set, the system will typically need a time smaller than exp{βa} to
reach Xa . This recurrence result is the content of the following lemma.

Proposition 2.8 For any a > 0 and any ε > 0, the function

β �→ sup
x∈X

Pβ

[
τ x
Xa

> eβ(a+ε)
]

is SES.

Remark 2.2 Proposition 2.8 allows to disentangle the study of the first hitting time of the
stable state from the results on the tube of typical trajectories performed in great details both
in [35] and in [11]. This remarkable fact relies on Proposition 3.23, which guarantees the
existence of downhill cycle paths to exit from any given set. In the Metropolis setup, this has
been performed in [31] (see Theorem 3.1 and Lemma 2.28).

The following result is important in the theory of metastability and, in the context of
Metropolis dynamics, is often referred to as the reversibility lemma. In that framework it is
simply stated as the probability of reaching a configuration with energy larger than the one
of the starting point in a time exponentially large in the energy difference between the final
and the initial point. In our general it is of interest to state a more detailed result on the whole
tube of trajectories overcoming this height level fixed a priori.

To make this result quantitative, given any x ∈ X and h, ε > 0, for any integer n ≥ 1, we
consider the tube of trajectories

E x,h
n := {(x0, x1, . . . ) ∈ XN : x0 = x and H(xn−1) + �(xn−1, xn) ≥ H(x) + h},

(2.37)

which is the collection of trajectories started at x whose height at step n is at least equal to
the value H(x) + h.
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Proposition 2.9 Let x ∈ X and h > 0. For any ε ∈ (0, h), set

E x,h(ε) :=
�eβ(h−ε)�⋃

n=1

E x,h
n . (2.38)

There exists β0 > 0 such that

Pβ [E x,h(ε)] ≤ e−βε/2 (2.39)

for any β > β0.

In words, the set E x,h(ε) is the set of trajectories started at x and which reach the height
H(x) + h at a time at most equal to �exp (β(h − ε))�.

3 Cycle Theory in the Freidlin–Wentzell Setup

In this section we summarize some well known facts about the theory of cycles, which can be
seen as a handy tool to study the phenomenon of metastability in the Freidlin–Wentzell setup.
Indeed, in [34] the authors developed a peculiar approach to cycle theory in the framework
of the Metropolis dynamics, see also [36]. This approach was generalized in [14] in order to
discuss the problem ofmetastability in the case of reversible Probabilistic Cellular Automata.
In the present setup however we need the more general theory of cycles developed in [10].
We showed in [20] that these two approaches actually coincide in the particular case of the
Metropolis dynamics.

We recall in this section some results developed by [10], which will turn out to be the
building bricks of our approach.

3.1 An Alternative Definition of Cycles

Thedefinition of the notion of cycle given inSect. 2.7 is based on a property of the chain started
at a site within the cycle itself. The point of view developed in [34, Definition 3.1] for the
Metropolis case and generalized in [14] in the framework of reversible Probabilistic Cellular
Automata is a priori rather different. The authors introduced the notion of energy-cycle, which
is defined through the height level reached by paths contained within the energy-cycle.

Definition 3.5 A nonempty set A ⊂ X is an energy-cycle if and only if it is either a singleton
or it verifies the relation

max
x,y∈A

�(x, y) < �(A,X\A). (3.40)

Even if the definitions 2.3 and 3.5 were introduced independently and in quite different
contexts, it turns out that they actually coincide. More precisely, we will prove the following
result (see the proof after Proposition 3.16):

Proposition 3.10 A nonempty set A ⊂ X is a cycle if and only if it is an energy-cycle.

After proving Proposition 3.10, we will no longer distinguish the notions of cycle and of
energy-cycle.
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3.2 Depth of a Cycle

Here we introduce the key notion of depth of a cycle.
In the particular case where D is a cycle, a relevant property is the fact that, in the large β

limit, on an exponential scale, neither τ x
Dc nor Xx

τDc depend on the starting point x ∈ D. More
precisely, recalling the definitions of the quantities �C (see (2.26)) and 
C (see (2.27)), we
can reformulate the following strenghthening of Proposition 2.5.

Proposition 3.11 [10, Proposition 4.6] For any cycle C ∈ C(X ), x, y ∈ C, and z ∈ X\C
�C (x, z) = �C (y, z) =: �C (z) and 
C (x) = 
C (y) =: 
(C). (3.41)

The quantity 
(C) is the depth of the cycle C .

Remark 3.1 For fixed x , the quantity
D(x) ismonotonewith respect to the inclusion, namely
for D, D′ ⊂ X , such that D′ ⊂ D, and x ∈ D′, since τ x

X\D′ ≤ τ x
X\D , from (2.26) we deduce

that 
D′(x) ≤ 
D(x). From Proposition 3.11 it follows that for any C,C ′ ∈ C(X ), C ′ ⊂ C
implies 
(C ′) ≤ 
(C).

3.3 Cycle Properties in Terms of Path Heights

The natural extension of the notion of cycle which has been developped in the context of the
Metropolis dynamics (see [34]) is Definition 3.5 (see also the generalization given in [14]).
In this section we prove that this extension actually coincides with the Definition 2.3.

The following result links theminimal height of an exit path to the quantitieswe introduced
previously.

Proposition 3.12 For any cycle C ∈ C(X ) and y ∈ X\C
min
x∈C H(x) + �(x, y) = H(C) + 
(C) + VC (y). (3.42)

where we recall the notation (2.14). Furthermore, given y ∈ X\C, we have the equivalence
y ∈ B(C) if and only if there exists x ∈ C such that H(x) + �(x, y) = H(C) + 
(C).

Proof Equality (3.42) is [10, Proposition 4.12].
On the other hand, the fact that y ∈ B(C) implies that there exists x ∈ C such that

H(x) + �(x, y) = H(C) + 
(C) is immediate.
Reciprocally, if there exists x ∈ C such that H(x) + �(x, y) = H(C) + 
(C), we get

H(C) + 
(C) = H(x) + �(x, y) ≥ min
x ′∈C

H(x ′) + �(x ′, y) = H(C) + 
(C) + VC (y),

(3.43)

and since we know that VC (y) ≥ 0, we immediately deduce y ∈ B(C). ��
The subsequent natural question is about the height that a path can reach within a cycle.

We thus borrow from [10] the following result.

Proposition 3.13 [10, Proposition 4.13] For any cycle C ∈ C(X ), x ∈ C, and y ∈ X\C,
there exists a path ω = (ω1, . . . , ωn) ∈ �x,y such that ωi ∈ C for i = 1, . . . , n − 1 and

�(ω) = H(C) + 
(C) + �C (y). (3.44)
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For any x, y ∈ C, there is a pathω = (ω1, . . . , ωn) ∈ �x,y such thatωi ∈ C for i = 1, . . . , n
and

�(ω) ≤ H(C) + sup{
(C̃) : C̃ ∈ C(X ), C̃ ⊂ C, C̃ 
= C} < H(C) + 
(C). (3.45)

We stress that the right hand side term of (3.44) is infinite unless y ∈ ∂C .
In an informal way, the first part of Proposition 3.13, together with Proposition 3.12, states

that there exists a path ω contained in C except for its endpoint and joining any given x ∈ C
to any given point y ∈ ∂C whose cost is equal to the minimal cost one has to pay to exit at
y starting from x . Furthermore, the second part can be rephrased by saying that one can join
two arbitrary points x and y within C by paying an amount which is strictly less than the
minimal amount the process has to pay to exit from C ; indeed, using Remark 3.1, the right
hand side of (3.45) can be bounded from above by H(C) + 
(C).

We stress that this last property ensures the existence of at least one path contained in the
cycle connecting the two states and of height smaller than the one that is necessary to exit from
the cycle itself. But in general, there could exist other paths in the cycle, connecting the same
states, with height larger than H(C) + 
(C). This is a major difference with the Metropolis
case, where every path contained in a cycle has height smaller than the one necessary to exit
the cycle itself. From this point of view, the weak reversible case is closer to the general
Freidlin–Wentzel setup than to the Metropolis one.

Another important property is the characterization of the depth of a cycle in terms of the
maximal height that has to be reached by the trajectory to exit from a cycle.

Proposition 3.14 [10, Proposition 4.15] For any cycle C ∈ C(X )


(C) = max
x∈C

[
min

y∈X\C �(x, y) − H(x)
]
. (3.46)

We state now a result in which we give a different interpretation of the depth of a cycle in
terms of the minimal height necessary to exit the cycle.

Proposition 3.15 Let C ∈ C(X ) be a cycle. Then


(C) = �(C,X\C) − H(C).

Proof Since any path connecting C to X\C has at least one direct jump from a state in C to
a state outside of C , we have that

�(C,X\C) ≥ min
y∈X\C min

x∈C [H(x) + �(x, y)].

Now, recalling that the principal boundary B(C) is nonempty, by Proposition 3.12 we have

�(C,X\C) ≥ H(C) + 
(C).

To get the opposite bound we pick x̄ ∈ C and ȳ ∈ X\C such that ȳ ∈ B(C). Then, by the
first part of Proposition 3.13 there exists a path ω ∈ �x̄,ȳ such that �(ω) = H(C) + 
(C).
Hence, we have that �(x̄, ȳ) ≤ �(ω) = H(C) + 
(C). Finally,

�(C,X\C) = min
x∈C min

y∈X\C �(x, y) ≤ �(x̄, ȳ) ≤ H(C) + 
(C),

which completes the proof. ��
We are now ready to discuss the equivalence between the probabilistic [10] and energy

[34] approaches to cycle theory. For any λ ∈ R, consider the equivalence relation

Rλ := {(x, y) ∈ X 2, x 
= y,�(x, y) < λ
} ∪ {(x, x), x ∈ X

}
.
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Proposition 3.16 [10, Proposition 4.18] For any λ ∈ R the equivalence classes in X/Rλ

are either singletons {x} such that H(x) ≥ λ or cycles C ⊂ C(X ) such that

max{H(C̃) + 
(C̃), C̃ ∈ C(X ), C̃ ⊂ C, C̃ 
= C} < λ ≤ H(C) + 
(C). (3.47)

Thus we have

C(X ) =
⋃
λ∈R

X/Rλ. (3.48)

The results we have listed above allow us to finally prove the equivalence between the
probabilistic [10] and energy approaches [14,34,36] to cycle theory, that is Proposition 3.10.

Proof of Proposition 3.10 The case A is a singleton is trivial. We assume A is not a singleton
and prove the two implications.

First assume A satisfies (3.40), then A is an equivalence class in X/R�(A,X\A). Thus, by
Proposition 3.16, it follows that A is a cycle.

Reciprocally, assume that A is a cycle. By (3.48), there exists λ such that A is an equiva-
lence class of X/Rλ. Moreover, by (3.47) we have that

λ ≤ H(A) + 
(A) = �(A,X\A)

where in the last step we made use of Proposition 3.15. ��
We stress that the following properties are trivial in the Metropolis and in the weak

reversible setups mentioned in Sect. 2.2, whereas in the general Freidlin–Wentzell setup,
they are consequences of the non-trivial properties discussed previously in this section (see
also [20]).

For example item 3.17 in the following proposition states that the principal boundary of a
non-trivial cycle is the collection of the elements outside the cycle that can be reached from
the interior via a single jump at height equal to the minimal height that has to be bypassed to
exit from the cycle. This is precisely the notion of principal boundary adopted in [14,18] in
the context of reversible Probabilistic Cellular Automata. Note also that such a notion is an
obvious generalization of the idea of set of minima of the Hamiltonian of the boundary of a
cycle used in the context of Metropolis systems.

Proposition 3.17 Let C ∈ C(X ) be a cycle. Then

1. B(C) = {y ∈ X\C, min
x∈C [H(x) + �(x, y)] = �(C,X\C)};

2. Vx < 
(C) for any x ∈ C\F(C);
3. Vx ≥ 
(C) for any x ∈ F(C).

Proof Item [1.] This result is an immediate consequence of Propositions 3.15 and 3.12.
Item [2.] Pick x ∈ C\F(C) and y ∈ F(C). By Proposition 3.10 we have that �(x, y) <

�(C,X\C). Thus:

�(x, y) − H(x) < �(C,X\C) − H(x) < �(C,X\C) − H(C),

where we used H(C) < H(x).
Item[3.] Pick x ∈ F(C). Since Ix ⊂ X\C , we have that �(x, Ix ) ≥ �(C,X\C). Since

H(x) = H(C), this entails

�(x, Ix ) − H(x) ≥ �(C,X\C) − H(C).

The item finally follows from Proposition 3.15 and definition (2.19). ��
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3.4 Exit Times of Cycles

The main reason for which the notion of cycles has been introduced in the literature is that
one has good control on their exit times in the large deviation regime. We summarize these
properties in the following proposition.

Proposition 3.18 For any cycle C ∈ C(X ), x ∈ C, and any ε > 0, we have that

1. the function

β ∈ R
+ �→ Pβ

[
τ x
∂C > eβ(
(C)+ε)

]
(3.49)

is SES;
2. the following inequality holds for any δ > 0:

lim
β→∞ − 1

β
logPβ

[
τ x
∂C < eβ(
(C)−δ)

] ≥ ε; (3.50)

3. for any z ∈ C

lim
β→∞ − 1

β
logPβ

[
τ x
z > τ x

∂C

]
> 0; (3.51)

4. for any y ∈ ∂C

lim
β→∞ − 1

β
logPβ

[
Xτ x∂C

= y
] = min

x∈C [H(x) + �(x, y)] − [H(C) + 
(C)]. (3.52)

This result is the refinement of Proposition 2.5 in the sense that the control on the exit
times and exit locations in (3.52) holds independently of the starting point of the process
inside the cycle.

The results of Proposition 3.18 are proven in [10]. More precisely, item 3.18 is the content
of the first part of [10, Proposition 4.19]. Item 3.18 is [10, Proposition 4.20]. Item 3.18 is
nothing but the property defining the cycles, see Definition 2.3 above. Item 3.18 follows
immediately by Propositions 2.5, 3.11, and 3.12.

By combining Proposition 3.12 and equations (3.49) and (3.52) we can deduce in a trivial
way1 the following useful corollary.

Corollary 3.2 For any cycle C ∈ C(X ), ε > 0, x ∈ C, and y ∈ B(C), we have that

lim
β→∞

1

β
logPβ

[
τ x
∂C < eβ(
(C)+ε), Xτ xX \C = y

] = 0. (3.53)

We discuss an interesting consequence of Proposition 2.9. For a given cycle C , starting
from the bottom of C , the probability of reaching an energy level higher than the minimal
cost necessary to exit C before exiting C is exponentially small in β. In an informal way, this
means that at the level of the typical behavior of trajectories, at least for trajectories started
from F(C), the classical notion of cycle for the Metropolis dynamics (which is defined in
terms of energies only, see for example [36, Chap. 6]) and the one of energy cycles are close
even in the Freidlin–Wentzell setup. More precisely we state the following proposition.

1 To deduce the corollary we use the following elementary remark: given two events A, B such that
(1/β) logPβ(B) → 0 and (1/β) logPβ(A) → −∞ in the limit β → ∞, we have that (1/β) logPβ(Ac ∩
B) → 0, where Ac denotes the event complementary to A. Indeed, since Pβ(Ac ∩ B) ≥ Pβ(B) − Pβ(A),
we get that logPβ(Ac ∩ B) ≥ logPβ(B) + log(1 − Pβ(A)/Pβ(B)). Then (1/β) logPβ(B) ≥ −ε as soon
as β is large enough, and on the other hand, since log(Pβ(A)/Pβ(B)) → −∞ as β → ∞, we get that
Pβ(A)/Pβ(B) → 0.
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Proposition 3.19 For any C ∈ C(X ), any ε > 0 and for β large enough:

sup
z∈F(C)

Pβ

[
�((Xz

t )0≤t≤τ zX \C ) > H(C) + 
(C) + ε
]

≤ e−βε. (3.54)

Let us remark that we expect Proposition 3.19 to hold as well starting from anywhere
within C , but the proof of this result should be more involved.

3.5 Downhill or via Typical Jumps Connected Systems of Cycles

Beside the estimate on the typical time needed to exit from a cycle, an important property is
the one stated in (3.52) which implies that when the chain exits a cycle it will pass typically
through the principal boundary. This leads us to introduce the collections of pairwise disjoint
cycles such that it is possible to go from any of them to any other by always performing
exits through the principal boundaries. To make this idea precise we introduce the following
notion of oriented connection.

Definition 3.6 Given two disjoint cyclesC,C ′ ∈ C(X ), we say thatC is downhill connected
or connected via typical jumps (vtj) to C ′ if and only if B(C) ∩ C ′ 
= ∅.

The fact that we introduced two names for the same notion deserves a comment: in
[31] downhill connection is introduced in the framework of the Metropolis dynamics. In our
opinion its natural extension to the general rare transition setup is the typical jumps connection
defined in [10, Proposition 4.10]. This is the reason for the double name, nevertheless, in
the sequel, we will always use the second one, which appears to be more appropriate in our
setup, and we will use the abbreviation vtj.

A vtj—connected path of cycles is a pairwise disjoint sequence of cycles C1, . . . ,Cn ∈
C(X ) such that Ci is vtj—connected to Ci+1 for all i = 1, . . . , n − 1. A vtj—connected
system of cycles is a pairwise disjoint collection of cycles {C1, . . . ,Cn} ⊂ C(X ) such that
for any 1 ≤ i < i ′ ≤ n there exists i1, . . . , im ∈ {1, . . . , n} such that i1 = i , im = i ′, and
Ci1 , . . . ,Cim is a vtj—connected path of cycles.

We let an isolated vtj—connected system of cycles to be a vtj—connected system of cycles
{C1, . . . ,Cn} ⊂ C(X ) such that

B(Ci ) ⊂
n⋃
j=1

C j

for any 1 ≤ i ≤ n.
Via typical jumps connected systems satisfy the following important property: the height

that has to be reached to exit from any of the cycles within the system is the same. Moreover,
if the system is isolated, then the union of the cycles in the system is a cycle. More precisely
we state the following two propositions.

Proposition 3.20 Let {C1, . . . ,Cn} be a vtj—connected system of cycles. Then, for any
1 ≤ i < i ′ ≤ n, we have that �(Ci ,X\Ci ) = �(Ci ′ ,X\Ci ′).

Proof Consider Ci and C j , 1 ≤ i < j ≤ n. By definition of a vtj—connected system, there
exists a path of cycles consisting of vtj—connected elements joining Ci to C j , that is

Ci = Ci1 ,Ci2 , . . . ,Cim−1 ,Cim

= C j such that B(Cik ) ∩ C jk+1 
= ∅ for k = 1, . . . ,m − 1,

where all the indexes k j , for j ≤ im, belong to [1, . . . , n].
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Now, given k ∈ {1, . . . ,m − 1} consider x ∈ Cik and y ∈ B(Cik ) ∩ Cik+1 . By Propo-
sition 3.10 and item 3.17 in Proposition 3.17 we have that �(x, y) = �(Cik ,X\Cik ). If
�(Cik+1 ,X\Cik+1) > �(Cik ,X\Cik ), then we would have �(y, x) > �(x, y), which is
absurd in view of Proposition 2.3. Thus

�(Cik ,X\Cik ) ≥ �(Cik+1 ,X\Cik+1)

for any k = 1, . . . ,m − 1.
Iterating this inequality along the cycle path

(
Ci1 ,Ci2 , . . . ,Cim−1 ,Cim

)
, we get that

�(Ci ,X\Ci ) ≥ �(C j ,X\C j ), and by symmetry we get

�(Ci ,X\Ci ) ≥ �(C j ,X\C j ). (3.55)

Since i and j were chosen arbitrarily in our vtj—connected system, we are done. ��

Proposition 3.21 Let {C1, . . . ,Cn} be a vtj—connected system of cycles. Assume that the
system is isolated (recall the definition given above). Then

⋃n
j=1 C j is a cycle.

Proof Let C = ⋃n
j=1 C j . From Proposition 3.20, there exists λ ∈ R such that λ =

�(C j ,X\C j ) for any j = 1, . . . , n.
Consider x, x ′ ∈ C and let i, i ′ ∈ {1, . . . , n} such that x ∈ Ci and x ′ ∈ Ci ′ . If i = i ′, then

by Proposition 3.10 we have that �(x, x ′) < λ. If, on the other hand, i 
= i ′, by definition
of vtj—connected system there exists i1, . . . , im such that Cik is vtj—connected to Cik+1 for
any k = 1, . . . ,m − 1. Thus, by using Proposition 3.10 and item 3.17 of Proposition 3.17,
we can prove that �(x, x ′) = λ. In conclusion, we have proven that �(x, x ′) ≤ λ for any
x, x ′ ∈ C .

Finally, since the system is isolated we have that �(Ci ,X\C) > λ for any i = 1, . . . , n
and hence, �(C,X\C) > �(x, x ′) for any x, x ′ ∈ C . Thus, by Proposition 3.10, we have
that C is a cycle. ��
3.6 Partitioning a Domain into Maximal Cycles

In the proof of our main results a fundamental tool will be the partitioning of a set into
maximal subcycles. The existence of such a partition has been pointed out in Definition 2.4,
and in Sect. 3.7 we describe a constructive way to get such a partition for any set D.

Proposition 3.22 [10, Proposition 4.10] Consider a non trivial cycle C ∈ C(X ) (in partic-
ular |C | ≥ 2), and its decomposition into maximal strict subcycles C =⊔n0

j=1 C j where C j

are disjoint elements of C(X ), n0 ≥ 2 (recall Definition 2.4).
The collection {C1, . . . ,Cn0} is an isolated vtj—connected system of cycles. Finally, from

Propositions 3.20 and 3.15 it follows that

H(Ci ) + 
(Ci ) = H(C j ) + 
(C j ) (3.56)

for any i, j ≤ n0.

Remark 3.4 Westress that the original Proposition 4.10 in [10] is actuallymuchmore exhaus-
tive than the version presented here, and it allows in particular to construct the set of cycles
C(X ) in a recursive way by computing at the same time the quantities 
(C) and the �C (y)
(for y ∈ ∂C) for any element C ∈ C(X ), but this version will be enough for our purposes.
We refer to [10] for more details.
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Remark 3.5 For x, y ∈ X , from Proposition 3.22 and from Proposition 2.6, one trivially gets
the inclusion

S(x, y) ⊂ Cx,y .

A useful property of a partition of a domain into maximal cycles is contained in the
following proposition.

Proposition 3.23 Consider a partition {Ci , i ∈ I } into maximal cycles of a nonempty set
D ⊂ X . Let J ⊂ I such that {C j , j ∈ J } is a vtj-connected system of cycles. Then this
system is not isolated, namely, there exists j ∈ J such that

B(C j ) ∩
[
(X\D) ∪

⋃
j ′∈I\J

C j ′
]


= ∅.

Proof The proposition follows immediately by the maximality assumption on the partition
of D and by Proposition 3.21. ��

As a consequence of the above property we show that any state in a nonempty domain
can be connected to the exterior of the domain by means of a vtj—connected cycle path
made of cycles belonging to the domain itself. This will be a crucial point in the proof of
Proposition 2.8.

Proposition 3.24 Consider a nonempty domain D ⊂ X . For any state x ∈ D there exists
a vtj—connected cycle path C1, . . . ,Cn ⊂ D with n ≥ 1 such that x ∈ C1 and B(Cn) ∩
(X\D) 
= ∅.
Proof If D is a cycle the statement is trivial. Assume D is not a cycle and consider {Ci , i ∈ I }
a partition of D into maximal cycles. Note that |I | ≥ 2.

Now, we partition {Ci , i ∈ I } into its maximal vtj—connected components {C ( j)
k , k ∈

I ( j)}, for j belonging to some set of indexes J . More precisely, we have the following:

1. each collection {C ( j)
k , k ∈ I ( j)} is a vtj—connected system of cycles;

2.
⋃

j∈J {C ( j)
k , k ∈ I ( j)} = {Ci , i ∈ I };

3. C ( j)
k 
= C ( j ′)

k′ for any j, j ′ ∈ J such that j 
= j ′, any k ∈ I ( j), and k′ ∈ I ( j ′).

4. for any j ∈ J and C ∈⋃ j ′∈J\{ j}{C ( j ′)
k′ , k′ ∈ I ( j ′)} we have that {C ( j)

k , k ∈ I ( j)} ∪ {C}
is not a vtj—connected system of cycles.

By the property 3.6 above and by Proposition 3.23, if the union of the principal boundary of
the cycles of one of those components does not intersect the exterior of D, then it necessarily
intersects one of the cycles of one of the other components. Otherwise stated, for any j ∈ J( ⋃
k∈I ( j)

B(C ( j)
k )
)

∩ (X\D) = ∅ ⇒ ∃ j ′ ∈ J\{ j}, k′ ∈ I ( j ′) :
( ⋃
k∈I ( j)

B(C ( j)
k )
)

∩ C ( j ′)
k′ 
= ∅.

(3.57)

Now, consider x ∈ D and j0 ∈ J such that x ∈ ∪k∈I ( j0)C
( j0)
k . We construct a sequence of

indexes j0, j1, · · · ∈ J by using recursively the following rule

if
(⋃

k∈I ( jr ) B(C ( jr )
k )

)
∩ (X\D) = ∅, choose j ∈ J such that there exists k′ ∈ I ( j)

satisfying
(⋃

k∈I ( jr ) B(C ( jr )
k )

)
∩ C ( j)

k′ 
= ∅ and let jr+1 = j

until the if condition above is not fulfilled.
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Note that all the indexes j0, j1, . . . are pairwise not equal, namely, the algorithm above
does not construct loops of maximal vtj—connected components. Indeed, if there were r and
r ′ such that jr = jr ′ then the union of themaximal vtj—connected components corresponding
to the indexes jr , jr+1, . . . , jr ′ would be a vtj—connected system of cycles and this is absurd
by definition of maximal connected component (see property 4 above).

Thus, since the number of maximal vtj—connected components in which the set {Ci , i ∈
I } is partitioned is finite, the recursive application of the above rule produces a finite sequence
of indexes j0, j1, . . . , jrx with rx ≥ 0 such that

(⋃
k∈I ( jrx ) B(C

( jrx )

k )
)

∩ (X\D) 
= ∅.
Finally, by applying the definition of vtj—connected system of cycles to each component

{C ( jr )
k , k ∈ I ( jr )} for r = 0, . . . , rx we construct a vtj—connected cycle path C1, . . . ,Cn ⊂

D such thatC1 is the cycle containing x andbelonging to the component {C ( j0)
k , k ∈ I ( j0)} and

Cn is one of the cycles in the component {C ( jrx )

k , k ∈ I ( jrx )} such that B(Cn) ∩ (X\D) 
= ∅.
��

3.7 Example of Partition into Maximal Cycles

It is interesting to discuss a constructive way to exhibit a partition into maximal cycles of
a given D ⊂ X . For this reason we now describe a method inherited from the Metropolis
setup in [31]. For D ⊂ X nonempty and x ∈ D, we consider

RD(x) := {x} ∪ {y ∈ X ,�(x, y) < �(x,X\D)}, (3.58)

namely, RD(x) is the union of {x} and of the points in X which can be reached by means of
paths starting from x with height smaller that the height that it is necessary to reach to exit
from D starting from x .

Proposition 3.25 Given the nonempty set D ⊂ X and x ∈ D,

1. the following inclusion holds: RD(x) ⊂ D;
2. the set RD(x) is a cycle;
3. if x ′ ∈ RD(x), then RD(x) = RD(x ′).

Proof The first item is clear by the definition of communication heights. Indeed, by contra-
diction, assume that there exists y ∈ RD(x)∩ (X\D), then �(x, y) satisfies simultaneously

�(x, y) ≥ �(x,X\D) and �(x, y) < �(x,X\D),

which is absurd.
Second item. We consider u, v ∈ RD(x) and we show that �(u, v) < �(x,X\A).

As a consequence, we will get that RD(x) is a maximal connected subset of X satisfying
that the maximum internal communication cost is strictly smaller than the given threshold
�(x,X\D), and, by Proposition 3.16, these sets are cycles.

We use a concatenation argument. Namely, consider ω ∈ �
opt
u,x and ω′ ∈ �

opt
x,v and let

ω′′ ∈ �u,v be the path obtained by concatenating ω and ω′. We then have

�(u, v) ≤ �(ω) ∨ �(ω′)

and hence

�(u, v) ≤ �(u, x) ∨ �(x, v).

By the symmetry property in Proposition 2.3, we get that �(u, x) = �(x, u). Since by
construction �(x, u) < �(x,X\D) and �(x, v) < �(x,X\D), we get indeed �(u, v) <

�(x,X\D).
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Third item. We first claim that

�(x ′,X\D) = �(x,X\D) for any x ′ ∈ RD(x). (3.59)

To prove (3.59) pick x ′ ∈ RD(x). First assume that �(x ′,X\D) < �(x,X\D). Then,
we can consider a path ω ∈ �x,x ′ such that �(ω) < �(x,X\D) and a path ω′ ∈ �

opt
x ′,X\D .

Note that�(ω′) = �(x ′,X\D) < �(x,X\D). Now, by concatenation of the two preceding
paths, we obtain a path ω′′ ∈ �x,X\D such that �(ω′′) = �(ω) ∨ �(ω′) < �(x,X\D),
which is absurd. Hence, we have that �(x ′,X\D) ≥ �(x,X\D).

To prove the opposite inequality, consider ω ∈ �
opt
x ′,x . From the Proposition (2.3), we get

that �(ω) = �(x ′, x) = �(x, x ′) < �(x,X\D). Similarly, consider a path ω′ ∈ �
opt
x,X\D

and note that�(ω′) = �(x,X\D). Then, the path ω′′ ∈ �x ′,X\D obtained by concatenating
ω andω′ satisfies�(ω′′) = �(x,X\D), fromwhichwe deduce�(x ′,X\D) ≤ �(x,X\D).
The proof (3.59) is thus completed.

Now we come back to the proof of the third item. We consider x ′ ∈ RD(x) and proceed
by double inclusion. We first show that RD(x ′) ⊂ RD(x). Pick up y ∈ RD(x ′): from the
definition of RD(x ′) and (3.59), we get that �(x ′, y) < �(x ′,X\D) = �(x,X\D). Now
we consider ω ∈ �

opt
x,x ′ , and by a concatenation argument similar to the one we already used

twice, we get that

�(x, y) ≤ �(ω) ∨ �(x ′, y) < �(x,X\D) ∨ �(x ′,X\D) = �(x,X\D),

which implies RD(x ′) ⊂ RD(x).
On the other hand, the inclusion RD(x) ⊂ RD(x ′) proceeds in the same vein. Consider

y ∈ RD(x) so that �(x, y) < �(x,X\D). Pick up a path ω ∈ �
opt
x ′,x . Using again the

symmetry of �, we get that �(ω) = �(x ′, x) = �(x, x ′) < �(x,X\D). Moreover, a
concatenation argument shows that

�(x ′, y) ≤ �(ω) ∨ �(x, y) < �(x,X\D)

where we have also used that y ∈ RD(x). Finally, from (3.59), we deduce �(x ′, y) <

�(x ′,X\D), which implies y ∈ RD(x ′). ��
The main motivation for introducing the sets (3.58) is the fact that they provide in a

constructive way a partition of a given set into maximal subcycles. The existence of such a
partition is ensured by the structure of the set of cycles, see Proposition 2.4, but we point out
that this way of obtaining the maximal subcycles of a given set D seems to be new in the
context of the irreversible dynamics. Before stating precisely this result, for D ⊂ X , we set

RD := {C ∈ C(X ), there exists x ∈ D such that C = RD(x)}. (3.60)

Proposition 3.26 Let D ⊂ X nonempty, then RD is a partition into maximal cycles of D.

Proof In view of Definition (3.58) and Proposition 3.25, the only not obvious point of this
result is the one concerning maximality. Note that the maximality condition on cycles can be
stated equivalently as follows: any cycle C ∈ C(X ) such that there exists R ∈ RD verifying
R ⊂ C and R 
= C satisfies C ∩ (X\D) 
= ∅.

Now, assume that C ∈ C(X ) is a cycle strictly containing RD(x) for some x ∈ D. We
will show that necessarily C ∩ (X\D) 
= ∅.

By definition of RD(x), C contains a point v /∈ RD(x), that is �(x, v) ≥ �(x,X\D).
As both x and v are elements of C , recalling Proposition 3.10, we get that

�(C,X\C) > �(x, v) ≥ �(x,X\D).
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On the other hand, we can choose y ∈ X\D such that there exists ω ∈ �x,y satisfying
�(ω) = �(x,X\D). Then the above bound implies that �(C,X\C) > �(ω) and in
particular y ∈ X\D. Hence the result. ��

4 Proof of Main Results

In this sectionweprove the results stated inSects. 2.7, 2.8, and2.9.Theproofs ofTheorems2.2
and 2.3 are quite similar to the analogous ones in [31], nevertheless we chose to include them
for the sake of completeness.

Proof of Proposition 2.6 Consider x, y ∈ X and we recall the notations Cx,y,Mx,y and
C(u), u ∈ Cx,y from Definition 2.4.

We proceed by double inclusion.

• ⋃C∈Mx,y
B(C) ⊂ S(x, y). Consider v ∈ ⋃C∈Mx,y

B(C); there exists Ĉ ∈ Mx,y such

that v ∈ B(Ĉ), that is such that �Ĉ (v) = 0. By Proposition 3.12, there exists u ∈ Ĉ

such that H(u) + �(u, v) = H(Ĉ) + 
(Ĉ). We showed (see Proposition 3.22) that the
quantity H(C)+
(C) does not depend on C ∈ Mx,y , and is equal to �(x, y). Thus we
have

H(u) + �(u, v) = �(x, y), (4.61)

and thus �(u, v) ≤ �(x, y).
Now, since u ∈ Ĉ and v /∈ Ĉ , we necessarily have �(u, v) ≥ �(C,X\C) = �(x, y).

Hence �(u, v) = �(x, y) = H(u) + �(u, v).
Now we show that (u, v) ∈ Ŝ(x, y); first we construct ω ∈ �

opt
x,y such that the edge

(u, v) belongs to ω. For this we use the fact that the system
⋃

C∈Mx,y
C is a vtj-

connected system of cycles. In particular there exists a path of v.t.j. connected cycles
(C1 = Cx , . . . ,Ck = Ĉ) (where k may be equal to 1) joining Cx to Ĉ . There also exists
a path of v.t.j. connected cycles (C̃1, . . . , C̃k′) from Cv to Cy .
Using the path (C1, . . . ,Ck) and Proposition 3.13 recursively, by concatenation, it is

easy to construct a path ω1 ∈ �x,u such that �(ω1) ≤ �(x, y) (the inequality being
strict when C(x) = C(u)). In the same way, one can construct a path ω2 ∈ �v,y such
that �(ω2) ≤ �(x, y). Then the path obtained by concatenation ω = (ω1, ω2) belongs
to �

opt
x,y ; indeed, �(ω) = max(�(ω1), H(u) + �(u, v),�(ω2)) = �(x, y). Finally the

edge (u, v) belongs to ω by construction.
• S(x, y) ⊂ ⋃

C∈Mx,y
B(C). Let us consider v ∈ S(x, y), and u ∈ X such that (u, v) ∈

Ŝ(x, y). We show that
v ∈ B(C(u)). (4.62)

We first note that it follows from Proposition 3.13 that, since H(u) + �(u, v) =
�(u, v) = �(x, y), it necessarily holds C(u) ∩C(v) = ∅. Indeed, we know that for any
C ∈ Mx,y , maxs,t∈C �(s, t) < �(C,X\C) = �(x, y), and hence by contradiction u
and v cannot belong to a common element of Mx,y . Hence v ∈ X\C(u).
We already noted that it follows from Proposition 3.22 that H(C(u)) + 
(C(u)) =

�(x, y). Since, by hypothesis, H(u) + �(u, v) = �(x, y), we deduce the equality

H(u) + �(u, v) = H(C(u)) + 
(C(u)). (4.63)

Making use of the characterization of the principal boundary in Proposition 3.12, this
last equality proves (4.62). This closes the proof. ��
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Proof of Theorem 2.1 Proof of refcp01 Let C be the set of states y ∈ X such that �(x, y) <

Vm + H(x). By Proposition 3.10 the set C is a cycle and, by construction, x ∈ F(C)

and �(C,X\C) = Vm. Hence, by Proposition 3.15 it follows that 
(C) = Vm − H(x).
Finally, since X s ∩ C = ∅ implies τ x

X s ≥ τ x
∂C , we have that (2.30) follows by item 3.18 in

Proposition 3.18.
Proof of (2.31) As we have already remarked at the end of Sect. 2.6, see also Fig. 2, XVm =
X s. Hence, (2.31) is an immediate consequence of Proposition 2.8. ��

Before provingTheorem2.2wefirst state and prove the following preliminary integrability
result.

Lemma 4.1 Given any real δ > 0 and any state x ∈ X , the family of random variables
Y x

β = τ x
X se−β(Vm+δ) is uniformly integrable, more precisely, for any n ≥ 1

sup
x∈X

Pβ

[
τ x
X se−β(Vm+δ) > n

]
≤ 1

2n
(4.64)

for β large enough.

Proof For any n ≥ 1, by making use of the Markov property, we directly get

sup
x∈X

Pβ

[
τ x
X se−β(Vm+δ) > n

]
≤
(

sup
x ′ /∈X s

Pβ [τ x
X s > eβ(Vm+δ)]

)n

.

Recalling that XVm = X s (see the end of Sect. 2.6) and making use of Proposition 2.8, we
get that the above quantity is bounded from above by 2−n as soon as β large enough. ��
Proof of Theorem 2.2 Fix x ∈ Xm and δ > 0. Combining the convergence to zero in proba-
bility of the randomvariablesYβ = τ x

X se−(Vm+δ)β , which has been shown inTheorem2.1 and
their uniform summability stated in Lemma 4.1, we get that the family of random variables
Yβ converges to 0 in L1. Hence,

Eβ [τ x
X s ] < eβ(Vm+δ) (4.65)

for β large enough,
On the other hand, by making use of the Markov’s inequality we get the following bound:

Pβ

[
τ x
X s > eβ(Vm−δ)

]
≤ Eβ

[
τ x
X s

]
e−β(Vm−δ).

Using once again Theorem 2.1, we obtain that there exists K > 0 such that

Eβ [τ x
X s ] ≥ eβ(Vm−δ)

(
1 − e−βK

)
(4.66)

as soon as β is large enough.
The Theorem 2.2 finally follows from bounds (4.65) and (4.66). ��

Proof of Theorem 2.3 We first prove item 1. Let x0 be the recurrent state of Theorem 2.3 and
recall (2.33)–(2.35). We consider s, t > 0 and let τ x0∗ (t) = inf{n ≥ tTβ, Xn ∈ {x0,X s}} be
the first hitting time to the set {x0,X s} after time tTβ for the chain Xn started at x0.

Then we decompose:

Pβ [τ x0
X s > (t + s)Tβ ] = Pβ [τ x0

X s > (t + s)Tβ; τ x0∗ (t) ≤ tTβ + T ′
β ]

+ Pβ [τ x0
X s > (t + s)Tβ; τ x0∗ (t) > tTβ + T ′

β ].
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Using the Markov property and of the fact that {τ x0
X s > τ

x0∗ (t)} ⊂ {X
τ
x0∗ (t) = x0}, we

directly get:

Pβ [τ x0
X s > (t + s)Tβ; τ x0∗ (t) ≤ tTβ + T ′

β ]

=
T ′
β∑

n=0

Pβ [τ x0∗ (t) = tTβ + n, τ
x0
X s > tTβ + n] Pβ [τ x0

X s > sTβ − n]. (4.67)

Combining monotonicity and the fast recurrence property (2.35), by the decomposition
(4.67) we deduce

Pβ [τ x0
X s > (t + s)Tβ; τ x0∗ (t) ≤ tTβ + T ′

β ]
≥
(
Pβ [τ x0

X s > tTβ + T ′
β ] − Pβ [τ x0

X s > tTβ + T ′
β; τ x0∗ (t) > tTβ + T ′

β ]
)

Pβ

[
τ
x0
X s > sTβ

]

≥
(
Pβ [τ x0

X s > tTβ + T ′
β ] − δβ

)
Pβ

[
τ
x0
X s > sTβ

]
. (4.68)

Here and later, we made use of the following obvious monotonicity property: for b, c ∈ R

such that b ≥ c,

{T ≥ b} ⊂ {T ≥ c}
where T is any random variable.

We bound the same quantity from above in a similar fashion. Namely, using (4.67) once
again:

Pβ [τ x0
X s > (t + s)Tβ; τ x0∗ (t) ≤ tTβ + T ′

β ] ≤ Pβ

[
τ
x0
X s > tTβ

] (
Pβ

[
τ
x0
X s > sTβ −T ′

β

]
+ δβ

)
.

(4.69)

Consider β large enough so that T ′
β ≤ Tβ . For any given integer k ≥ 1, combining (4.69)

and monotonicity, we get:

Pβ [τ x0
X s > (k + 2)Tβ ] ≤ Pβ [τ x0

X s > kTβ ] (δβ + Pβ [τ x0
X s > Tβ ]) .

Given the definition of Tβ (see (2.33)), there exists r ∈ (0, 1) such that δβ + Pβ [τ x0
X s >

Tβ ] ≤ r as soon as β is large enough. As a consequence, for β large enough, the following
inequality holds:

Pβ

[
τ
x0
X s > kTβ

]
≤ rk/2, (4.70)

and this implies the tightness of the family τ
x0
X s/Tβ .

Combining the upper bound (4.69) and the lower bound (4.68), we deduce that the limit
in law X of any subsequence

(
τ
x0
X s/Tβ

)
βk

satisfies the relation:

Pβ [X > t + s] = Pβ [X > t] Pβ [X > t] (4.71)

for any t, s ≥ 0 which are continuity points for the distribution of τ
x0
X s . Since the set of such

points is dense in R and a distribution function is always right continuous, (4.71) is valid for
every s, t ≥ 0. This implies that Pβ(X > t) = e−at with a ∈ (0,∞]. It is clear that the case
a = ∞ is excluded from the definition of Tβ , since it would imply that X is almost surely
equal to zero, which is in contradiction with the fact that

Pβ [X < 1] = lim
β→∞ Pβ [τ x0

X s < 1] ≤ 1 − e−1. (4.72)
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By the Porte-Manteau theorem, we get that

1 − e−1 ≤ lim
β→∞ Pβ [τ x0

X s ≤ 1] = Pβ [X ≤ 1], (4.73)

and combining (4.72) and (4.73), we conclude that a = 1.
As for item 2, combining the dominated convergence theorem and the uniform summa-

bility (4.70), we can write

lim
β→∞

Eβ [τ x0
X s ]

Tβ

= lim
β→∞

∫ ∞

0
Pβ [τ x0

X s ≥ Tβ t] dt =
∫ ∞

0
lim

β→∞ Pβ [τ x0
X s ≥ Tβ t] dt = 1,

which entails the convergence (2.36).
Item 3 directly follows from items 1 and 2 of the current theorem, which concludes the

proof. ��
Now, given x, y ∈ X , we consider a minimal gate W ⊂ W(x, y) as in Definition def-

gateFW and we go to the proofs of Theorem 2.4 and of Proposition 2.7.
To prove both these results, we first construct in amore formal way the setKx,y introduced

in Sect. 2.8; we stress that this task is performed by making an extensive use of the notions
developed in the previous sections. Thenwe showProposition 2.7. Our task to prove Theorem
2.4 will then be reduced to show the inclusion Kx,y ⊂ {τ x

W < τ x
y }.

Recall the notations introduced in Sect. 2.7. Note that any path �
opt
x,y is contained in Cx,y .

Also, we already noted (and this is actually the major technical difference with the analogous
result of [31]) that there might be paths contained in Cx,y , joining x to y and which do not

belong to �
opt
x,y .

Let us discuss some geometrical properties of the decomposition Mx,y .
We first note that it is clear that x and y are not contained in the same element of Mx,y .

Indeed, if they were contained in a common element C̄ ∈ Mx,y , we would have �(x, y) <

H(C̄) + 
(C̄) and in particular, from the definition of Cx,y , this would imply Cx,y ⊂ C̄ ,
which is absurd from the non triviality of the decomposition Mx,y .

To define Kx,y , we shall start to restrict the set of trajectories to the set of trajectories
�x,y ∩ {τ x

y < τ x
X\Cx,y

}, for which the events we are going to introduce are well defined.
More precisely, for a given trajectory of the canonical processω ∈ �x,y ∩{τ x

y < τ x
X\Cx,y

},
we first define θ x

0 := 0,Cx
0 = C(x) and for j ≥ 1:

θ x
j := inf

{
k ≥ θ x

j−1, ωk /∈ Cx
j−1

}

and Cx
j = C(ωθ xj

) is the element ofMx,y containing ωθ xj
. This construction goes on as long

as j ≤ jx,y , where we consider
jx,y := inf{ j ≥ 1,Cx

j = C(y)}.
More generally, for any u ∈ Cx,y , we introduce the similar quantities (θuj ) j , (C

u
j ) j , with

notations which are self explanatory.
Then we introduce the event

Ex,y :=
{
ω ∈ �x,y, τ x

y < τ x
X\Cx,y

and τ x
y < inf

{
k ≥ τ x

C(y), ωk /∈ C(y)
}}

,

which is the event that the process hits y after entering C(y) before leaving C(y) for the first
time.

For C ∈ Mx,y and u ∈ C , we introduce the event

Au
C :=

{
ωu

τ uX \C
∈ B(C)

}
,
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where (ωu
k )k≥0 denotes a trajectory of the canonical process starting from u. Finally we can

define the set Kx,y , the tube of trajectories of the dynamics on its transition between x and
y:

Kx,y :=
{
ω ∈ Ex,y,

jx,y⋂
i=0

A
ωθxi
Cx
i

}
. (4.74)

We refer to Sect. 2.8 for an informal definition of Kx .y .

Proof of Proposition 2.7 We prove that

Pβ [Kx,y] ≥ 1 − e−βε

as soon as β is large enough.
Our proof first relies on the fact that, given δ > 0, for β large:

inf
C∈Mx,y

inf
u∈C Pβ [Au

C ] ≥ 1 − e−βδ, (4.75)

which follows from the finiteness of X and Corollary 3.2. Then we will use the fact that for
any ε′ > 0, as soon as β is large enough:

Pβ [ jx,y > eεβ ] ≤ e−βε′
, (4.76)

which we show at the end of the proof of Proposition 2.7.
Let us note that in [11], the authors showed a result related to ours, in the sense that

they provide the precise cost on a large deviation scale of not following a path contained in
Kx,y ∩�

opt
x,y on the transition from x to y. For our sake such a level of precision is not needed.

On the other hand, we had to deal with the (easy) problem of giving an upper bound on the
random variable jx,y , which was overcome in [11] by the notion of pruning tree.

We show how to deduce Proposition 2.7 from combining (4.75) and (4.76). For lightness
of notations, we introduce the conditional probability

P̃β [·] := Pβ

[
·
∣∣∣Ex,y

]

in the next sequence of inequalities. Of course, since y ∈ Cx,y and y ∈ C(y), applying the
strong Markov property at time τ x

C(y) and Definition 2.3 we immediately get that, for any
ε′ > 0, as soon as β is large enough:

Pβ

[
Ex,y] ≥ 1 − e−βε′

. (4.77)

It follows from this inequality that similar inequalities to (4.75) and (4.76) also hold for
the probability P̃β instead of Pβ , and we will still refer to these slightly modified versions of
(4.75) and (4.76) as (4.75) and (4.76) in the following.

Denoting by ε′ a (small) positive constant which may change from line to line, we then
get:

Pβ

[
Kx,y

] ≥ P̃β

⎡
⎣ jx,y⋂

j=1

A
Xx

θxi
Cx
i

⎤
⎦ (1 − e−βε′

)

≥ P̃β

⎡
⎣ jx,y⋂

j=1

A
Xx

θxi
Cx
i

, jx,y ≤ eβε

⎤
⎦ (1 − e−βε′

)
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≥ P̃β

⎡
⎣ eβε⋂

j=1

A
Xx

θxi
Cx
i

, jx,y ≤ eβε

⎤
⎦ (1 − e−βε′

)

≥
⎛
⎝P̃β

⎡
⎣ eβε⋂

j=1

A
Xx

θxi
Cx
i

⎤
⎦− P̃β [ jx,y > eβε]

⎞
⎠ (1 − e−βε′

)

≥
⎛
⎝ eβε∏

j=1

inf
C̄∈Mx,y

inf
u∈A

P̃β [Au
C̄
] − e−βε′

⎞
⎠ (1 − e−βε′

)

where we used (4.77), (4.76) and the strong Markov property. Now from (4.75), we get

Pβ [Kx,y] ≥
(
(1 − e−βδ)e

εβ − e−βε′)
(1 − e−βε′

)

≥
(
e−eβ(ε−δ) − e−βε′)

(1 − e−βε′
),

and considering δ > ε, the statement of Proposition 2.7 follows.
Now we are left with the proof of (4.76).
Denote by n0 the cardinality of Mx,y . Since Mx,y is an isolated vtj—connected system

of cycles, we deduce that

max
C̄∈Mx,y

max
u∈C̄

Pβ

[
C(y) /∈ (Cu

1 , . . . ,Cu
n0)
] ≤ 1 − e−βε′n0 (4.78)

as soon as β is large enough.
Indeed, there exists a vtj connected path of cycles (C̃u

1 , . . . , C̃u
m) of lengthm (withm ≤ n0)

joining C(u) to C(y). For any u ∈ Cx,y , applying the strong Markov property at the time of
first entrance into C̃u

1 and proceeding iteratively, we get:

Pβ

[
C(y) ∈ (Cu

1 , . . . ,Cu
n0)
] ≥ Pβ

[
(Cu

1 , . . . ,Cu
m) = (C̃u

1 , . . . , C̃u
m)
]

=
∑

v∈C̃u
1∩B(C(u))

Pβ

[
Xu

τ uX \C(u)
= v, (Cu

2 , . . . ,Cu
m) = (C̃u

2 , . . . , C̃u
m)

]

≥ e−βε′
inf

v∈C̃u
1

Pβ

[
(Cv

1 , . . . ,Cv
m−1) = (C̃u

2 , . . . , C̃u
m)
]

≥ . . . ≥ e−ε′βn0 (4.79)

where in the third inequality we used Corollary 3.2 and the definition of vtj—connectedness.
Since the last term does not depend on u, we get (4.78).

Making use recursively of the strong Markov property at times θ x
keεβ/n0

, k = 1, . . . , n0,
of the trivial bound n0 ≤ |X | and of (4.78), we get:

Pβ

[
jx,y > eεβ

] = Pβ

[
C(y) /∈ (Cx

1 , . . . ,Cx
eεβ )
]

=
∑

C̄∈Mx,y\C(y)

∑
v∈Cx

eβε−n0

Pβ

[
C(y) /∈ (Cx

1 , . . . ,Cx
eβε−n0

), Xx
θ x
eβε−n0

= v,Cx
eβε−n0

= C̄

]

×Pβ

[
C(y) /∈ (Cv

1 , . . . ,Cv
n0)
]

≤ (1 − e−βε′n0)Pβ

[
C(y) /∈ (Cx

1 , . . . ,Cx
eβε−n0

)
]

≤ . . .
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≤ (1 − e−βε′|X |)eεβ/|X |

≤ e−eβ(ε/|X |−ε′ |X |)
(4.80)

and (4.76) then follows by choosing ε′ ∈ (0, ε/|X |2). This concludes the proof of Proposition
2.7. ��
Proof of Theorem 2.4 We first recall the following consequence of Proposition 3.22.

For any i = 1, . . . , n0:

H(Ci ) + 
(Ci ) = �(x, y). (4.81)

To get (4.81), we first note that, since y ∈ X\C(x), by Propositions 3.10 and 3.15, we
have that �(x, y) ≥ H(C(x)) + 
(C(x)). On the other hand, assume by contradiction
that �(x, y) > H(C(x)) + 
(C(x)). Recalling (3.56) in Proposition 3.22 and (3.44) in
Proposition 3.13, it follows that there exists a path ω ∈ �

opt
x,y such that �(ω) < �(x, y),

which is absurd.
Hence, we have proven that �(x, y) = H(C(x)) + 
(C(x)). By using again (3.56) in

Proposition 3.22, we then deduce (4.81).
Then we note that considering Proposition 2.7, for Theorem 2.4 to hold, it is enough to

show the inclusions (
�

opt
x,y ∩ Ex,y

)
⊂ Kx,y ⊂

{
τ x
W < τ x

y

}
. (4.82)

Indeed, this implies in particular the trivial bound

Pβ

[
τ x
W < τ x

y

]
≥ Pβ

[
Kx,y

]
,

and Proposition 2.7 provides the requested lower bound on this last quantity.
We remark that the inclusions of (4.82) are strict in general.
The first inclusion follows immediately from the fact that an optimal path in �

opt
x,y exits

from an element of Mx,y through its principal boundary. Also, it is clear that some paths in
the set Kx,y might not be optimal, and hence that it might be strict in general.

The second inclusion of (4.82) is not straightforward and we stress that it relies crucially
on Proposition 3.13. Let us detail it.

Consider first the case ω ∈ Kx,y ∩ �
opt
x,y . Since ω ∈ �

opt
x,y , by definition of a gate (see

Sect. 2.7), it follows immediately that ω ∩ W 
= ∅.
Consider now an element ω ∈ Kx,y\�opt

x,y , that is ω is an element of Kx,y such that
�(ω) > �(x, y).

To show the second inclusion of (4.82), the strategy is the following: we consider
the sequence of points (u1, . . . , u j ) which are the successive points where ω intersects⋃

C∈Mx,y
B(C). The sequence (u1, . . . , u j ) is nonempty from the construction of Kx,y and

from the fact that C(x) 
= C(y). We are going to construct stepwise a path ω̃ ∈ Kx,y ∩ �
opt
x,y

such that

ω̃
⋂⎛
⎝ ⋃

C∈Mx,y

B(C)

⎞
⎠ = {u1, . . . , u j }. (4.83)

From the definition of a gate and from the fact that ω̃ is optimal, we deduce that ω̃∩W 
= ∅.
From this it follows that ω̃ ∩ W = ω ∩ W 
= ∅, which indeed implies the second inclusion
of (4.82).

To construct the path ω̃, we proceed in a recursive way; more precisely, we construct
a sequence of paths (ω(k))k≥0 ∈ Kx,y which becomes stationary for k large enough. We
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initialize our recursion by setting ω(0) := ω. Then, as long as the path ω(k) is not optimal,
we proceed in the following way: consider

ik = inf
{
j ≤ |ω(k)|, H

(
ω

(k)
j

)
+ �

(
ω

(k)
j , ω

(k)
j+1

)
> �(x, y)

}
,

and Ck the element ofMx,y containing ω
(k)
ik

. Then we distinguish two cases: ω(k)
ik+1 ∈ B(Ck)

and ω
(k)
ik+1 ∈ Ck .

• In the case whereω
(k)
ik+1 ∈ B(Ck), wemake use of (3.44) in Proposition 3.13 and of (4.81)

to get that there exists a path ω′ ∈ �
ω

(k)
ik

,ω
(k)
ik+1

such that �(ω′) = 
(Ck) + H(Ck) =
�(x, y) and for any j ≤ |ω′| − 1, ω′

j ∈ Ck . We define the concatenated path

ω(k+1) :=
((

ω
(k)
j

)
j≤ik−1

, ω′,
(
ω

(k)
j

)
j≥ik+2

)
. (4.84)

Note that ω(k+1) ∈ Kx,y and that u ∈ ω(k+1). Then we continue the recursive construc-
tion.

• In the case where ω
(k)
ik+1 ∈ Ck , from (3.45) in Proposition 3.13, there exists ω′ ∈

�
ω

(k)
ik

,ω
(k)
ik+1

such that �(ω′) < �(Ck,X\Ck) = �(x, y) and such that ω′ is entirely

contained in Ck . Then we define the path ω(k+1) as in (4.84), and we note that in this
case also ω(k+1) ∈ Kx,y and u ∈ ω(k+1).

It is clear from the construction that the sequence of paths (ω(k))k≥0 is stationary after a
number of steps at most |ω|, and that the final path ω̃ obtained at the end of the recursion is
an element of Kx,y ∩ �

opt
x,y satisfying (4.83). Hence the second inclusion in (4.82) follows,

and thus Theorem 2.4 is proved. ��
Nowwe go to the proof of Proposition 2.8. We first note that, in the spirit of [31], we need

a downhill cycle path (see the definition in Sect. 3.5) connecting any given point x ∈ X\Xa ,
for a > 0, toXa . We recall that the notion of downhill cycle path given in [31] and [34], even
if quite peculiar to the Metropolis dynamics setup, finds its natural extension to the general
rare transition setup in [35] and in [11] through the notion of “via typical jumps” connection.

Proof of Proposition 2.8 Let a > 0, we assume that Xa is a proper subset of X , otherwise
there is nothing to prove. We consider x ∈ X\Xa and note that, by Proposition 3.24, there
exists a vtj—connected cycle pathC1, . . . ,Cl ⊂ X\Xa such that x ∈ C1 andB(Cl)∩Xa 
= ∅.

Since none of the cycles C1, . . . ,Cl can contain points of Xa , for any i = 1, . . . , l and
any z ∈ F(Ci ) the stability level Vz (recall definition (2.19)) of z satisfies Vz ≤ a, and hence
from item 3.17 in Proposition 3.17, we have 
(Ci ) ≤ a for any i = 1, . . . , l.

Then, from item 3.18 in Proposition 3.18, for any cycle Ci of the vtj—connected path, for
any z ∈ Ci , and for any ε > 0, the function

β ∈ R
+ �→ Pβ

[
τ z
∂Ci

> eβ(a+ε)
]

is SES.
We consider y ∈ B(Cl) ∩ Xa and, for each 2 ≤ i ≤ l, we consider yi ∈ B(Ci−1) ∩ Ci .

We define y1 = x and yl+1 = y, and we consider the set of paths

E := E
(
(C1, x), (C2, y2), . . . , (Cl , yl), (Xa, y)

)
(4.85)

consisting of the paths constructed by the concatenation of any l-uple of pathsω1, ω2, . . . , ωl

satisfying the following conditions:
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1. for any i = 1. . . . , l the length of the path ωi satisfies |ωi | ≤ eβ(a+ε/4);
2. for any i = 1, . . . , l the path ωi joins yi to yi+1, that is, ωi ∈ �yi ,yi+1 (recall the notation

introduced in Sect. 2.4);
3. ωi

j ∈ Ci for any i = 1, . . . , l and for any j = 1, . . . , |ωi | − 1.

The existence of such a family of paths is ensured by Propositions 3.10, 3.15, 3.12, and
3.13. We stress that condition 4 restricts the set E to paths which spend a time less than
eβ(a+ε/4) in any cycle Ci , i ≤ l.

For shortness, in the sequel, we shall use the notation E for the set of trajectories defined
in (4.85).

Note that the length of anyω ∈ E satisfies the upper bound |ω| ≤ |X |eβ(a+ε/4). Moreover,
since the state space X is finite, we can assume that β is large enough so that

|ω| ≤ |X | eβ(a+ε/4) ≤ eβ(a+ε/2) for any ω ∈ E .

Now, we write

Pβ

[
τ x
Xa

≤ eβ(a+ε/2)] ≥ Pβ

[
τ x
Xa

≤ eβ(a+ε/2), (Xk)k≤τ xXa
∈ E
] = Pβ

[
(Xk)k≤τ xXa

∈ E
]
,

where in the last step we have used the bound above on the length of the trajectories in E .
Then we use Markov’s property to get that

Pβ

[
τ x
Xa

≤ eβ(a+ε/2)] ≥ Pβ

[
(Xk)k≤τ xXa

∈ E
]=

l∏
i=1

Pβ

[
τ
yi
X\Ci

≤ eβ(a+ε/4), X yi
τ
yi
X \Ci

= yi+1

]
.

Combining this inequality and (3.53) implies that, for any ε′ > 0,

Pβ

[
τ x
Xa

≤ eβ(a+ε/2)] ≥ e−βε′l ≥ e−βε′|X |

as soon as β is large enough.
Since the last term in the right hand side of the bound above does not depend on x ∈ Xa ,

we get that

inf
x∈Xa

Pβ

[
τ x
Xa

≤ eβ(a+ε/2)] ≥ e−βε′|X |.

Now we iterate this inequality by making use of the Markov’s property at the times
keβ(a+ε/2), k = 1, . . . , eβε/2 to get that

Pβ

[
τ x
Xa

> eβ(a+ε)
] ≤

(
sup
x ′∈Xa

Pβ

[
τ x ′
Xa

> eβ(a+ε/2)])eβε/2

≤
(
1 − e−βε′|X |

)eβε/2

≤ e−eβ(ε/2−ε′ |X |)

for any x ∈ Xa .

Finally, picking up ε′ > 0 small enough, we get that the function β �→ e−eβ(ε/2−ε′ |X |)
is

SES, and thus Proposition 2.8 is proved. ��
Proof of Proposition 2.9 Set T := exp (β(h − ε)); writing x0 = x and making use of the
Markov property, we immediately get:

Pβ(E x,h(ε)) ≤
�T �∑
n=1

Pβ(E x,h
n ) =

�T �∑
n=1

∑
x1,...,xn∈X :

H(xn−1)+�(xn−1,xn )≥H(x)+h

pβ(x, x1) · · · pβ(xn−1, xn).
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We multiply and divide by μβ(x) on the right hand side (recall that for β large enough,
the Markov chain is irreducible, and hence μβ is strictly positive over X ). Also, we estimate
the first two terms with the sum over the first state, and we deduce

Pβ(E x,h(ε))

≤ 1

μβ(x)

�T �∑
n=1

∑
x1,...,xn∈X :

H(xn−1)+�(xn−1,xn )

≥H(x)+h

[ ∑
x0∈X

μβ(x0)pβ(x0, x1)

]
pβ(x1, x2) · · · pβ(xn−1, xn)

Now, making use of the stationarity of μβ , we get

Pβ(E x,h(ε)) ≤ 1

μβ(x)

�T �∑
n=1

∑
xn−1,xn∈X :

H(xn−1)+�(xn−1,xn )≥H(x)+h

μβ(xn−1)pβ(xn−1, xn),

and hence

Pβ(E x,h(ε)) ≤ �T � |X |2
μβ(x)

sup
w,z∈X :

H(w)+�(w,z)≥H(x)+h

μβ(w)pβ(w, z)

Recalling the convergences (2.1) and (2.3), we get that for any ε′ > 0, as soon as β is
large enough:

Pβ(E x,h(ε)) ≤ �T �|X |2eβ(H(x)+ε′) sup
w,z∈X :

H(w)+�(w,z)≥H(x)+h

e−β[H(w)+�(w,z)−ε′]

≤ �T �|X |2eβ(H(x)+2ε′)e−β(H(x)+h)

≤ |X |2eβ(2ε′−ε),

where in the last step we used the definition of T . Now, choosing ε′ ∈ (0, ε/4) concludes
the proof of Proposition 2.9. ��
Proof of Proposition 3.19 Consider C ∈ C(X ), z ∈ F(C) and ε > 0. By the finiteness of
F(C), it is enough to prove

Pβ

[
�((Xz

t )0≤t≤τ zX \C ) > H(C) + 
(C) + ε
]

≤ e−βε/4 (4.86)

for (3.54) to hold. We consider the following decomposition:

Pβ

[
�((Xz

t )0≤t≤τ zX \C ) > H(C) + 
(C) + ε
]

= Pβ

[
�((Xz

t )0≤t≤τ zX \C ) > H(C) + 
(C) + ε, τ z
X\C ≤ eβ(
(C)+ε/2)

]

+ Pβ

[
�((Xz

t )0≤t≤τ zX \C ) > H(C) + 
(C) + ε, τ z
X\C > eβ(
(C)+ε/2)

]
. (4.87)

For the second term in the right hand side above, we deduce from item 3.18 in Proposi-
tion 3.18 that

Pβ

[
�((Xz

t )0≤t≤τ zX \C ) > H(C) + 
(C) + ε, τ z
X\C > eβ(
(C)+ε/2)

]

≤ Pβ

[
τ z
X\C > eβ(
(C)+ε/2)

]
≤ e−βε/4 (4.88)

as β → ∞.
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As for the first term, we first have the inequality:

Pβ

[
�((Xz

t )0≤t≤τ zX \C ) > H(C) + 
(C) + ε, τ z
X\C ≤ eβ(
(C)+ε/2)

]

≤ Pβ

[
�((Xz

t )0≤t≤eβ(
(C)+ε/2) ) > H(C) + 
(C) + ε
]
. (4.89)

Using the fact that z ∈ F(C) (that is H(z) = H(C)), we have the equality of events:{
�((Xz

t )t≤eβ(
(C)+ε/2) ) > H(C) + 
(C) + ε
} = E z,
(C)+ε(ε/2),

where we have recalled (2.37) and (2.38). We deduce from Proposition 2.9 that the term in
the right hand side of (4.89) is less than e−βε/4 as β → ∞. Combining this inequality with
(4.87) and (4.88), we deduce (4.86), and, hence, Proposition 3.19. ��
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Appendix 1: Computing Differences of Virtual Energy

In this appendix, we describe an abstract framework for which the virtual energy has a priori
no explicit expression, but where we can construct it stepwise starting from a reference point
acting as a point of null potential.

We consider a FreidlinWentzell dynamics satisfying Definition 2.1 and such that for every
x, y ∈ X

�(x, y) < ∞ if and only if �(y, x) < ∞. (5.90)

Moreover, we assume that the dynamics satisfies the additional condition (where we recall
that μβ is the invariant measure): for any β > 0, there exists a function ρ : R+ → R+ such
that ρ(β) → 0 as β → ∞ and∣∣∣− logμβ(x) + β�(x, y) − [− logμβ(y) + β�(y, x)

] ∣∣∣ ≤ βρ(β) (5.91)

for any x, y ∈ X .
Of course, the convergence (5.91) is nothing else than requesting the existence of a poten-

tial, which is equal to the virtual energy up to a constant (see (2.4) and Proposition 2.2).
Now we fix an arbitrary state x̄ ∈ X and we define the Hamiltonian—like quantity

Gβ(x) := − log[μβ(x)/μβ(x̄)]. (5.92)

For any x ∈ X , x 
= x̄ , by irreducibility, there exists a path ω ∈ �x̄,x such that |ω| ≤ X .
Given such a path, we define the quantity

Wω(x) :=
|ω|∑
i=2

[
�(ωi−1, ωi ) − �(ωi , ωi−1)

]
(5.93)

and we set Wω(x̄) := 0.
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Proposition 5.27 Given x ∈ X and x 
= x̄ , the quantity Wω(x) defined by (5.93) does
not depend on the particular choice of the path ω ∈ �x̄,x , and hence it defines a function
W : X → R. The function W (·) − minX W coincides with the virtual energy H.

In general, the virtual energymight have an expression too involved for practical purposes.
Equation (5.93) provides a constructive way to compute explicitly H step by step just from
the knowledge of the rates of the dynamics.

Proof For any x, y ∈ X and x 
= y, we consider ω,ω′ ∈ �x,y and show that

|ω|∑
i=2

[
�(ωi−1, ωi ) − �(ωi , ωi−1)

] =
|ω′|∑
i=2

[
�(ω′

i−1, ω
′
i ) − �(ω′

i , ω
′
i−1)

]
. (5.94)

Indeed, using telescoping sums in the right hand side above, we can assume that all the
ω′
i ’s are distinct (and in particular |ω′| ≤ |X |).
By (5.91), we get the inequality

∣∣∣∣Gβ(x) − β

|ω|∑
i=2

[�(ωi−1, ωi ) − �(ωi , ωi−1)]
∣∣∣∣

=
∣∣∣∣

|ω|∑
i=2

[Gβ(ωi ) − Gβ(ωi−1)] − β

|ω|∑
i=2

[�(ωi−1, ωi ) − �(ωi , ωi−1)]
∣∣∣∣ ≤ |X |βρ(β).

By triangular inequality, we then deduce that

∣∣∣∣β
|ω|∑
i=2

[�(ωi−1, ωi ) − �(ωi , ωi−1)] − β

|ω′|∑
i=2

[�(ω′
i−1, ω

′
i ) − �(ω′

i , ω
′
i−1)]

∣∣∣∣

=
∣∣∣∣Gβ(x) − β

|ω|∑
i=2

[�(ωi−1, ωi ) − �(ωi , ωi−1)]
∣∣∣∣

+
∣∣∣∣Gβ(x) − β

|ω′|∑
i=2

[�(ω′
i−1, ω

′
i ) − �(ω′

i , ω
′
i−1)]

∣∣∣∣
≤ 2|X |βρ(β).

Now we divide both sides by β and we let β → ∞ to deduce (5.94). ��

Appendix 2: Explicit Expression of the Virtual Energy

As noted in Sect. 2.3, the virtual energy H(x), for x ∈ X , has an explicit expression in terms
of a specific graph construction. The same holds for the functions 
D(x) and�D(x, y), with
D ⊂ X , x ∈ D, and y ∈ X\D, introduced in Proposition 2.5. These explicit expressionswere
not necessary for our purposes, but for the sake of completeness, we choose to summarize
these formulas in this appendix.

We use the notations of [10], but since we do not want to develop the full theory here, we
try to keep it as minimal as possible.

Definition 6.7 Given A ⊂ X nonempty, let G(A) be the set of oriented graphs g ∈ X × X
verifying the following properties:
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– for any x ∈ X\A, there exists a unique y ∈ X such that (x, y) ∈ g (namely for any point
in X\A, there exists a unique arrow of the graph g exiting from such a point);

– for any edge (x, y) ∈ g, x ∈ X\A (no arrow of the graph g exits from A);
– for any x ∈ X , n ∈ N, (x, x1), (x1, x2), . . . , (xn−1, xn) ∈ g one has that x 
= xi for

i = 1, . . . , n (the graph g is without loops).

Since X is finite, from this definition it follows that for x ∈ X\A, there exists a sequence
of arrows connecting x to A. We borrow (and adapt to our notation) a beautiful description
of the set G(A) from [35, below Definition 3.1]: G(A) is a forest of trees with roots in A and
with branches given by arrows directed towards the root.

Definition 6.8 Given A ⊂ X nonempty, x ∈ X\A, and y ∈ A, let Gx,y(A) be the col-
lection of graphs g ∈ G(A) such that there exist n ∈ N and x1, . . . , xn ∈ X such that
(x, x1), (x1, x2) . . . , (xn, y) ∈ g.

In words, Gx,y(A) is the set of graphs in G(A) connecting the point x to the point y.
For any x ∈ X , the virtual energy H(x) is given by (see [10, Proposition 4.1])

H(x) = min
g∈G({x})

∑
(w,z)∈g

�(w, z) − min
x ′∈X

min
g∈G({x ′})

∑
(w,z)∈g

�(w, z).

Moreover (see [10, Proposition 4.2]), for any D ⊂ X nonempty, x ∈ D, and y ∈ X\D,
one has the following equality:


D(x) = min
g∈G(X\D)

∑
(w,z)∈g

�(w, z) − min
x ′∈X\D

min
g∈Gx,x ′ ((X\D)∪{x ′})

∑
(w,z)∈g

�(w, z),

and similarly

�D(x, y) = min
g∈Gx,y(X\D)

∑
(w,z)∈g

�(w, z) − min
g∈G(X\D)

∑
(w,z)∈g

�(w, z).
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