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Abstract
Primary myelofibrosis (PMF) is characterized by increased number of hematopoietic progenitors and a

dysmegakaryopoiesis which supports the stromal reaction defining this disease.We showed that increased ligand
(FL) levels in plasma, hematopoietic progenitors, and stromal cells from PMF patients were associated with
upregulation of the cognate Flt3 receptor on megakaryocytic (MK) cells. This connection prompted us to study a
functional role for the FL/Flt3 couple in PMF dysmegakaryopoiesis, as a route to reveal insights into pathobiology
and therapy in this disease. Analysis of PMF CD34þ and MK cell transcriptomes revealed deregulation of the
mitogen-activated protein kinase (MAPK) pathway along with Flt3 expression. In PMF patients, a higher
proportion of circulating Flt3þCD34þCD41þ cells exhibited an increased MAPK effector phosphorylation
independently of Jak2V617F mutation. Activation of FL/Flt3 axis in PMF MK cell cultures, in response to FL,
induced activation of the p38–MAPK cascade, which is known to be involved in inflammation, also increasing
expression of its target genes (NFATC4, p53, AP-1, IL-8). Inhibiting Flt3 or MAPK or especially p38 by chemical,
antibody, or silencing strategies restoredmegakaryopoiesis and reduced phosphorylation of Flt3 and p38 pathway
effectors, confirming the involvement of Flt3 in PMF dysmegakaryopoiesis via p38 activation. In addition, in
contrast to healthy donors,MK cells derived from PMFCD34þ cells exhibited an FL-inducedmigration that could
be reversed by p38 inhibition. Taken together, our results implicate the FL/Flt3 ligand–receptor complex in PMF
dysmegakaryopoiesis through persistent p38–MAPK activation, with implications for therapeutic prospects to
correct altered megakaryopoiesis in an inflammatory context. Cancer Res; 71(8); 2901–15. �2011 AACR.

Introduction

Primary myelofibrosis (PMF) is a Ph (Philadelphia)-negative
myeloproliferative neoplasm (MPN) characterized by extrame-

dullary hematopoiesis with splenomegaly, myelofibrosis, and
neoangiogenesis. The clonal myeloproliferative process is illu-
strated by an increased number and mobilization of hemato-
poietic stem cells/progenitors (HSC/HP) with a hypersensitivity
to cytokines partly resulting from Jak2V617F or MPL515L/K muta-
tions (1–6). A prominent proliferation of megakaryocytes (MK)
with a dysmegakaryopoiesis characterized by dysplastic MK
with plump lobulation of nuclei and disturbance of nuclear/
cytoplasmic maturation is observed in patients (7). Previous
studies (8–10) have suggested that bone marrow fibrosis was
secondary to fibroblast activation by inflammatory and fibro-
genic growth factors including TGF-b produced by the necrotic
and dysplastic MKs (11, 12). Recently, evidences have been
accumulating that stromal cells also contribute to the hema-
topoietic clone development through specific and mutually
dependent interactions with pathologic HSCs (13).

FL, the ligand for the tyrosine kinase receptor Flt3 (14), is
mainly expressed in stromal cells, including fibroblasts, likely
stimulated by TGF-b. FL is of paramount importance in the
proliferation of primitive hematopoietic progenitors (15–17)
as confirmed by the reduced myeloid and B-lymphoid pro-
genitor content observed in FL�/� and Flt3�/� mice (18, 19).
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However, role of FL on normal megakaryopoiesis appears
controversial because it does not stimulate, as a single agent,
MK progenitors (20), but it enhances their proliferation in
association with cytokines such as thrombopoietin (TPO; ref.
21). Its cognate receptor, Flt3, is expressed by HSC and
myeloid progenitors (22) in which it signals through several
downstream pathways including the mitogen-activated pro-
tein kinase (MAPK) pathway (16). Alterations of Flt3 are
frequently observed in leukemic cells and mutations have
been detected in about 30% of patients with acute myelogen-
ous leukemia as well as in patients with acute lymphocytic
leukemia or myelodysplastic syndrome. Mutations most often
involve small tandem duplications within the juxtamembrane
domain of the receptor (Flt3-ITD), resulting in constitutive
tyrosine kinase activity. The recent demonstration that
expression of Flt3-ITD in murine marrow cells results in a
lethal MPN (23) strengthens the role of FL/Flt3 deregulation in
leukemia and encourages us to investigate its possible con-
tribution to human MPN pathogenesis and especially in PMF,
in which a deregulation of primitive hematopoieisis is strongly
associated with profound alterations of stroma.

In this study, we evidenced that the FL plasma level is
increased in PMF patients and is overexpressed by stromal
and CD34þ hematopoietic cells. FL augmentation is asso-
ciated with an aberrant Flt3 expression in CD34þ andMK cells
and with an alteration of the MAPK pathway and especially of
p38, in patients, independently of their Jak2 mutational status.
We further showed that the persistence of Flt3 signaling,
which elicits activation of MAPK, known to be involved in
MK polyploidization (24), participates in the dysmegakaryo-
poiesis that characterizes PMF. Taken together, our results
implicate the "FL/Flt3" couple in PMF MK deregulation
through persistent p38–MAPK activation.

Materials and Methods

Patients
One hundred twenty-six PMF patients [Jak2V617F (n ¼ 51),

Jak2WT (n ¼ 45), and Jak2 status not determined (n ¼ 30)],
obtained from clinicians of the French and European net-
works, and 90 unmobilized healthy donors (HD) were enrolled.
Samples were obtained with the informed consent of subjects
according to the Helsinki declaration.

Cell selection
CD34þ cell selection was carried out on mononuclear cells

(MNC) from peripheral blood (PB) or bone marrow (BM)
samples from PMF patients and HD as previously described
(purity > 97%; ref. 25). Stromal cells obtained from osteome-
dullar biopsies or hip surgery from PMF patients and HD,
respectively, were cultivated for 3 to 4 passages in DMEM
(Dulbecco's modified Eagle's medium) þ 10% FCS (fetal calf
serum). FL plasma level was quantified using Quantikine
ELISA (R&D Systems).

Microarray analysis and quantitative RT-PCR
For microarray technique, see Supplementary Material. For

quantitative reverse transcription PCR (QRT-PCR), total RNAs

were subjected to RNase-free DNase and converted into cDNA
by using the Reverse Transcription Kit (Applied Biosystem).
cDNA (2 mL) was added to the QuantiTect SYBR Green
amplification reaction (QIAGEN) in a 20 mL final volume
and 10 pmol of each primer (Supplementary Table S1) were
added to carry out specific amplification. RPL38 was used as
housekeeping gene and relative quantification was based on
the 2DDCT method (26).

Phenotypic analysis of CD34þ cells
Cells (5 � 104) were labeled with 2 mg/mL of the following

monoclonal antibodies (mAb): CD38-fluorescein isothiocya-
nate (FITC; clone-T16) or CD41-FITC (clone-P2; Beckman
Coulter) versus IgG1-FITC isotype; Flt3-PE (CD135, clone-
4G8; BD Pharmingen) or CD41-PE (clone-5B12; Dako) versus
IgG1-PE isotype; CD34-PerCP (clone-8G12) versus IgG1-PerCP
isotype; CD41-APC (clone-386629) versus IgG1-APC isotype
(BD Pharmingen). Membrane antigen fluorescence was quan-
tified by using CellQuest software on a FACScalibur (Becton
Dickinson). Live cells (5 � 103) were analyzed.

MK derived from CD34þ cultures
CD34þ cells (5� 104/500 mL per well) were cultured for 10 to

14 days in MK differentiation medium [SYN.H serum-free
medium containing Recombinant human stem cell factor
(rhSCF): 5 ng/mL; rhIL-3: 2 ng/mL; rhIL-6: 1 ng/mL; rhIL-11:
40 ng/mL, rhTpo: 50 ng/mL; AbCys Synergie] with or without
inhibitors and viability was evaluated by trypan blue. For RNA
silencing, cells were cultured for 6 days and distributed in 24
well per plate per 250 mL with or without control or specific
siRNA (1 mg) and a vector MISSION II (1/50; Sigma). Biological
effect of siRNA was evaluated after 48-hour incubation.

Megakaryocyte ploidy measurement
DNA content was measured by incorporation of propidium

iodine (PI). Megakaryocytes obtained at day 12 (D12) of
culture were fixed with 70% ethanol (�20�C), centrifuged
and treated with RNase (500 mg/mL) and PI (50 mg/mL;
Sigma). Live cells (3 � 104) were analyzed and the percentage
of polyploid cells (8N-256N) was determined on FACScalibur
with CellQuest software. The B/S ratio (big/small MK propor-
tion) was calculated as following: S(64N þ 128N þ 256N)/
S(8N þ 16N þ 32N) � 100.

For cyclin D3 expression, MK derived from PMF CD34þ

culture (D10) were labeled with a cyclin D3-FITC mAb
(MOPC-21; BD Pharmingen) and analyzed by fluorescence
microscopy (400 �).

MAPK and effector phosphorylation analysis by flow
cytometry

Cells were fixed in PBS with formalin (2%) for 1 hour and in
70% ethanol overnight (4�C). After washes in PBS–0.5% BSA–
Triton 0.25� (PBT), cells were incubated with either anti-
MAPK mAbs [Cell Signaling; phospho-p38 Thr180/Tyr182
(clone-12F8), phospho-p42/44 Thr202/Tyr204 (clone-20G11),
phospho JNK/SAPK (c-jun N-terminal kinase/ stress-activated
protein kinase) T183/Y185 (clone-98-F2)] or rabbit IgG isotype
for 45 minutes (4�C). Cells were washed and incubated with a
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secondary anti-rabbit antibody coupled to Alexa Fluor 488 nm
(Invitrogen). Phosphorylation levels of Raf, p38 effectors, and
Flt3 on gated CD34þCD41þFLT3þ cells were determined after
labeling with rabbit mAbs included in Raf Family Antibody or
Phospho-p38 MAPK Pathway Sampler Kits (nos. 2330 and
9913, respectively) or Tyr591-Flt3 from Cell Signaling, followed
by a secondary GAR-Alexa Fluor 633 nm antibody (Invitrogen).
About 104 events were analyzed on a FACScalibur.

In vitro migration assay
Transwell migration assays were carried out on MK derived

from CD34þ cultures (D6) as previously described (27). Cells
(105) were loaded on the top chamber and rhFL (10–100 ng/
mL) was added or not to the bottom chamber, with or without
rhSDF-1 (100 ng/mL), and incubated for 48 hours at 37�C in
RPMI/0.5%BSA. In some experiments, Flt3 inhibitor IV (42
nmol/L; Calbiochem) or p38 inhibitors (SB203580, 1 mmol/L,
SB202190, 40 nmol/L; Sigma) were added to the culture. The
percentage of migrating cells was calculated after quantifica-
tion of live cells in top and bottom chambers.

Western blot
Total cell lysates (10/30 mg), obtained as previously

described (28), were subjected to SDS-PAGE, electrophoreti-
cally transferred into nitrocellulose membranes, and blotted
using primary mAbs similar to those used for cytometric
analysis or using actin antibody (Santa Cruz Biotechnology).
Membranes were revealed with anti-mouse or anti-rabbit IgG
horseradish peroxidase–linked antibodies and a chemilumi-
nescence detection kit (ECL-Plus; GE-Healthcare); signals
were quantified by using ImageJ software.

Patient group prediction model
Upstream p38 effectors and C-MYC expression modulation

in MK derived from CD34þ (D6) in response to 18-hour FL
stimulation kinetics was quantified by QRT-PCR. Ratio at each
time point of kinetics was normalized as compared with
quantification at the starting point of stimulation. Cumulative
scores of each kinetic time ratio were included in a multi-
variate model composed of a principal component analysis
associated to a hierarchical clustering in which patient clin-
icobiological information were reported.

Statistical analysis
Results were expressed as mean� SD. Statistical differences

between patients and controls were validated by unpaired t test
with a significant P < 0.05. Statistical differences between
conditions were validated by paired t test with significant P <
0.001 (***); P¼ 0.001 to 0.01 (**); and P¼ 0.01 to 0.05 (*). Fisher
ANOVA test with 2 factors (samples and time of differentiation)
was also used; a P < 0.05 was significant. NS, not significant.

Results

FL plasma level is increased in PMF patients and is
overexpressed in CD34þ hematopoietic and stromal cells
We first showed that FL plasma level was significantly

increased in PMF patients as than in HDs (Fig. 1A; 130.1 �

78.41, n ¼ 52 vs. 69.84 � 30.94, n ¼ 28; P ¼ 0.0001) with no
significant difference between PMF patients according to their
Jak2 status (181.4 � 70.8 pg/mL, n ¼ 7 vs. 128.8 � 81.9 pg/mL,
n ¼ 18 for Jak2V617F and Jak2WT, respectively). The increased
FL level appears to be restricted to PMF patients, as it was
statistically different from that of polycythemia vera (PV; n ¼
17) and essential thrombocytopenia (ET; n ¼ 17) patients.

We further analyzed the nature of FL producing cells and
showed that fibroblasts from PMF BM expressed higher FL
level than those from HD (1.17� 0.4, n¼ 8 vs. 0.56� 0.17, n¼
6, respectively; P ¼ 0.002). As CD34þ and MK cells from PMF
patients are known to produce cytokines (13, 29), we analyzed
whether they expressed FL. Whereas we did not detect FL
transcript in PMF or HD MK cells (data not shown), a 2-fold
increase in FL mRNA level was observed in PMF CD34þ cells
as compared with that in HD cells (Fig. 1A; 0.080 � 0.218, n ¼
22 vs. �0.294 � 0.242, n ¼ 6; P ¼ 0.0006).

Flt3 expression and phosphorylation are increased in
PBMNC, MK, and CD34þ cells from PMF patients

Figure 1B shows that Flt3 mRNA level was increased in
mononuclear cells from peripheral (PBMNC) from PMF
patients than in HD (0.69 � 0.96, n ¼ 11 vs. �0.06 � 0.47,
n ¼ 16, respectively; P < 0.006). Similar to FL, Flt3 over-
expression was restricted to PMF because Flt3 mRNA level
was statistically different in PMF as compared with ET and PV.
We further analyzed Flt3 expression on PBMNC by flow
cytometry and showed that the percentage of cells coexpres-
sing the CD41þ MK antigen and Flt3 was higher in PMF than
in HD (Fig. 1B). Western blot analysis confirmed the Flt3
increased expression and evidenced its phosphorylation in
PBMNC from PMF patients (Fig. 1B). As Flt3 is reported to be
expressed in HP, we analyzed its distribution on freshly
purified CD34þ cells. Figure 1C showed that the percentage
of CD34þFlt3þ cells was increased in PMF compared with that
in HD cells (17.77 � 14.98, n ¼ 11 vs. 4.72 � 7.09, n ¼ 10,
respectively; P¼ 0.01). Flt3 was mainly expressed on PMF MK
progenitors, as the proportion of CD34þFlt3þCD41þ cells was
significantly increased in Jak2WT and Jak2V617F patients than
in HD (76.11 � 14.49, n ¼ 4 and 43.37 � 23.86, n ¼ 12 vs. 9.11
� 10.97, n ¼ 11; P < 0.0001 and P ¼ 0.0001, respectively;
Fig. 1D) with a higher proportion in Jak2WT patients (P¼ 0.01).
To assess Flt3 activation on this cell subset, we quantified the
percentage of CD34þCD41þFlt3þ cells expressing phospho-
Flt3 and showed that it was increased in PMF patients (Jak2WT

and Jak2V617F) versus HD (28.21 � 22.67, n ¼ 5 and 18.35 �
24.81, n ¼ 4 vs. 0.22 � 0.34, n ¼ 10; P ¼ 0.007 and P ¼ 0.01,
respectively; Fig. 1D). In accordance with these results, Wes-
tern blot analysis also evidenced the presence of the Flt3
protein and of its phosphorylated form in freshly isolated
CD34þ cells and in MK-derived CD34þ cells from PMF
patients (Fig. 1E).

The increased percentage of PMF CD34þCD41þ MK pro-
genitors expressing Flt3 and its activated form motivated us
to analyze its expression during in vitro megakaryopoiesis.
We quantified by QRT-PCR the Flt3 transcript in MK derived
from CD34þ culture (D10) and showed that it was signi-
ficantly overexpressed in PMF patients as compared with
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Figure 1. Increased FL level, Flt3 expression, and phosphorylation in PMF patients. A, FL plasma level in HD, PMF, ET, and PV; FL mRNA expression in BM
fibroblasts and CD34þ cells from HD and PMF. B, Flt3 mRNA expression in PBMNC from HD, PMF, ET, and PV, Flt3 membrane expression in CD41þCD45þ

PBMNC and Flt3 protein expression and phosphorylation in PBMNC determined by Western blot analysis. C, percentage of circulating CD34þFlt3þ

cells and cytogram of Flt3 expression. D, CD34þCD41þFlt3þ cells and of phospho-Flt3–positive CD34þCD41þFlt3þ cells in HD and PMF, according to their
Jak2 status. E, Flt3 expression and phosphorylation in CD34þ and MK derived from CD34þ cells determined by Western blot analysis. F, Flt3 mRNA
expression in MK and modulation of its membrane expression during MK-derived CD34þ culture. *, P = 0.01 to 0.05; **, P = 0.001 to 0.01; ***, P < 0.001.
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HD (0.168 � 0.615, n ¼ 11 vs.�0.498 � 0.488, n¼ 9; P¼ 0.008;
Fig. 1F). We further analyzed the variation of Flt3 membrane
expression at different time points during in vitro MK differ-
entiation. In contrast to HD, Flt3 expression persisted in
patients throughout the culture with a maximal expression
between days 6 and 10; the ANOVA/Fisher test showed a
significant difference (P < 0.001) between HD (BM, n¼ 10; PB,
n ¼ 12) and PMF patients (n ¼ 16; Fig. 1F).
Altogether, these data indicate that Flt3 expression and

phosphorylation are increased in PMF CD34þ cells and are
maintained during MK differentiation.

MAPK phosphorylation is increased in PMF CD34þ and
MK cells and is related to cells expressing Flt3
Binding of FL to Flt3 triggers several downstream signals

mainly including PI3K and Ras/MAPK pathways. A profiling
gene expression of PMF CD34þ cells had allowed us to
generate 2 lists of differentially expressed genes (HD vs.
PMF Jak2WT and HD vs. PMF Jak2V617F; Gene Expression
Omnibus, GEO, no. GSE12234). These lists were used to carry
out a functional representation based on a pathway annota-
tion using NIH DAVID software (http://david.abcc.ncifcrf.
gov/). This analysis indicated that several genes involved in
the MAPK pathway are commonly deregulated in PMF
patients (Fig. 2A and Supplementary Table S2). We also
evidenced that MAPK pathway gene and especially p38-
dependent transcription factors involved in inflammatory
process, such as AP-1 and Fos, were altered in PMF MK cells
(Supplementary Table S3). We further investigated MAPK
pathway deregulation in CD34þ cells and during in vitro
megakaryopoiesis in PMF patients.
Figure 2B shows that p38, Jnk, and p42/p44 phosphorylation

levels were significantly increased in PMF CD34þ cells, inde-
pendently of their Jak2 status, as compared with that in HD
cells: p38 (HD: 7.74 � 3.67, n ¼ 21 vs. PMF Jak2WT: 21.08 �
12.05, n¼ 8; P < 0.0001 and vs. PMF Jak2V617F: 16.78� 8.11, n¼
12; P < 0.0001), p42/p44 (HD: 6.8 � 2.97, n ¼ 22 vs. PMF
Jak2WT: 16.58 � 9.84, n ¼ 8; P ¼ 0.0001 and vs. PMF Jak2V617F:
12.11� 11.76, n¼ 12; P¼ 0.02), and JNK (HD: 6.17 � 4.54, n¼
24 vs. PMF Jak2WT: 26.76� 19.56, n¼ 8; P < 0.0001 and vs. PMF
Jak2V617F: 13.87 � 12.15, n ¼ 12, P ¼ 0.005).
We then analyzed whether MAPK activation was main-

tained during in vitro MK differentiation and showed that,
similar to CD34þ cells, increased phosphorylation levels of p38
and Jnk were observed in D10 MK derived from PMF CD34þ

culture irrespectively of their Jak2 status (p38: 18.34 � 11.62, n
¼ 10 and 18.27 � 12.09, n ¼ 18, for PMF Jak2WT and Jak2V617F,
respectively vs. 8.99 � 5.11, n ¼ 17 for HD, P ¼ 0.0038 and P¼
0.0030, respectively; JNK: 21.95 � 20.98, n ¼ 10 and 22.76 �
25.35, n ¼ 16 for PMF Jak2WT and Jak2V617F, respectively vs.
6.91 � 3.96, n ¼ 17 for HD, P ¼ 0.0038 and P ¼ 0.0079,
respectively; Fig. 2B). A modest increased p42/p44 phosphor-
ylation was also observed in PMF MK cells.
We further studied the phosphorylation of up- and down-

stream p38, JNK, and p42/p44 effectors in PMF cells and
whether this phosphorylation was associated with Flt3
expression. Figure 2C showed that the percentage of
CD34þCD41þFlt3þ cells expressing phospho-a/b/c-Rafs or

phosphorylated forms of p38 effectors such as MKK3-6, MAP-
KAPK2, and ATF2 as well as of MSK1 and HSP27 were
significantly increased in PMF patients whatever their Jak2
status (Jak2V617F, n ¼ 4 and Jak2WT, n ¼ 5) as compared with
HD (PB, n ¼ 6 and BM, n ¼ 3).

Therefore, our data showed that MAPK phosphorylation is
increased in PMF CD34þ and MK cells and is related to Flt3
expressing cells.

Flt3-dependent p38–MAPK pathway deregulation in
PMF CD34þ and MK cells

Among MAPKs, p38 is strongly responsive to stress and
inflammatory mediators such as TNF-a, IL-1b, and IL-8
known to be highly expressed in PMF (30); so, we further
focused our study on p38–MAPK and on its main up and
downstream effectors. We confirmed that p38 was phosphory-
lated in CD34þ and MK cells from patients by Western blot
analyses (Fig. 3A), and that p38 phosphorylation was asso-
ciated with MK expressing Flt3 (Fig. 3B). p38 phophorylation
was associated with activation of its upstream MKK3-6 effec-
tor and with upregulation of downstream AP-1 target gene
expression in both CD34þ and CD41þMK derived from CD34þ

cells (Fig. 3C and D) reinforcing the notion that p38 axis is
activated in PMF cells.

To analyze the role of Flt3 in p38–MAPK pathway activation
in PMF CD41þMK derived from CD34þ culture, we quantified
the phosphorylation of p38–MAPK effectors after addition of a
neutralizing Flt3 antibody (10 mg/mL) to PMF cells from 6
patients. We showed that such treatment reduced phosphor-
ylation of up- and downstream targets of p38 (Fig. 2E). Finally,
to ascertain the implication of Flt3 in p38–MAPK activation,
we showed that silencing 50% of Flt3 protein expression
(Fig. 3F) and 80% of its transcript (data not shown) in MK
derived from CD34þ resulted in a decreased percentage of
phospho-p38þ cells (Fig. 3G).

Altogether these data showed that p38–MAPK pathway
effectors are activated in CD34þ and MK cells from patients
and that Flt3 expression/phosphorylation participates in this
activation process.

In vitro FL stimulation activates p38 and modulates
downstream regulator expression in PMF MK–derived
CD34þ cells through Flt3 axis

To further show that MAPKs and especially p38 were
activated in PMF MK–derived CD34þ cells in response to
FL, we compared the effect of 18-hour dose-dependent FL
stimulation on MAPK phosphorylation in MK precursors
obtained from PMF or HD CD34þ cultures (D6). Figure 4A
shows that no variations were observed for p42/p44 or JNK
phosphorylations either in PMF or HD cells at 50 ng/mL FL.
This result was identical whatever the dose of FL added (data
not shown). In contrast, 50 ng/mL FL stimulation induced a
progressive increase of phospho-p38 level in PMF MK as
compared with HD (ANOVA; P ¼ 0.002). This increased p38
phosphorylation level in PMF MK–derived CD34þ cells after
FL stimulation was confirmed by Western blot analysis and
implication of Flt3 activation was supported by a reduced p38
phosphorylation by addition of Flt3 inhibitor IV (Fig. 4B). To
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Figure 2. MAPK effector expression and phosphorylation in CD34þ cells and MK cells from PMF patients. A, Venn diagram showing MAPK deregulation
in PMF CD34þ cell transcriptome. Phosphorylation level (MFI) of p38, JNK/SAPK, and p42/p44 in CD34þ and MK derived from CD34þ cells (B) of Raf
(a-raf-289, b-raf-445, c-raf-289) and p38 pathway effectors (MKK3-6, MSK1, MAPKAPK2, ATF2, and HSP27) in CD34þFlt3þCD41þ MK progenitors (C) from
HD and PMF patients according to their Jak2 status. *, P = 0.01 to 0.05; **, P = 0.001 to 0.01; ***, P < 0.001.
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Figure 3. Flt3-dependent p38–MAPK effector phosphorylation in PMF megakaryopoiesis. A, phospho-p38 determined by Western blot analysis. B, p38
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Figure 4.Modulation of p38–MAPK effector phosphorylation and MAPK downstream regulator expression in PMF MK–derived CD34þ cells in response to FL
stimulation. These stimulations were carried out at 50 ng/mL. A, effect of 18-hour FL kinetic on the phosphorylation level (MFI) of p-38, JNK/SAPK, and p42/
p44 in PMF MK derived from CD34þ cells (day 6). B, phospho-p38 in HD and PMFMK derived from CD34þ cells (day 6) in response to 18-hour FL stimulation
and Flt3 inhibitor treatment determined by Western blot analysis. C, modulation of ATF2 phosphorylation in response to a time-dependent FL stimulation
determined by flow cytometric analysis. D, transcriptional regulation of MAPK effector (ATF2) and transcription factors as well as IL-8 after 18-hour FL kinetic in
HD and PMF MK derived from CD34þ cells (day 6).
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confirm the triggering effect of FL/Flt3 on p38 pathway, we
further analyzed by flow cytometry the activation of ATF2, a
key cross-talk molecule for p38 transcriptional activity, in
response to FL stimulation. Figure 4C shows that ATF2
phophorylation level is increased in MK derived from PMF
CD34þ in response to FL in a time-dependent manner. In
contrast, there is no ATF2 phosphorylation in response to FL
stimulation in HDs.
We further analyzed whether the expression of MAPK-

associated downstream transcription factors was modu-
lated in response to FL. Figure 4D shows that p38-asso-
ciated p53, NFATc4/NFAT3, AP-1, and ATF2 transcripts are
upregulated after FL stimulation in PMF but not in HD
samples. In contrast, MSK2, PARK, MK3, MNK1, MNK2, and
MSK1 transcripts that are Erk (extracellular signal–regu-
lated kinase)-dependent transcriptional factors were not
affected by FL stimulation either in HD or in PMF (Sup-
plementary Table S4). Interestingly, the transcript of IL-8,
known to be involved in PMF dysmegakaryopoiesis (30) and
to be stabilized by p38 (31), showed a rapid increase in
response to FL in PMF cells (Fig. 4D). This IL-8 overexpres-
sion was reduced after Flt3 or p38 silencing (data not
shown) strengthening the role of the Flt3/p38 signaling
in IL-8 regulation.
Altogether our data confirm that FL in vitro activates p38

cascade and increases its target gene expression through Flt3
in PMF MK–derived CD34þ cells.

Modulation of upstream MAPK linker expression in
response to FL allows definition of PMF patient group
prediction
We further searched whether p38–MAPK upstream lin-

ker expression was modified in response to FL in PMF MK–
derived CD34þ cells and whether modulation of their
expression could predict exaggerated FL/MAPK axis
response. We have principally selected upstream MAPK
linkers proximal to Flt3, minimizing the influence of other
pathways such as PI3K and JAK/STAT (Fig. 5A) and quan-
tified their mRNA expression at different time points of FL
kinetics, by QRT-PCR. Data (Supplementary Table S5) were
used to draw a gene neuronal network that shows a good
correlation between genes selected and validates their
choice for the predictive model (Fig. 5B). A three-dimen-
sional (3D) projection plot of principal component multi-
variate analysis (PCA) showed that HD samples (BM, PB)
are closely related in the centre of the plot. The PMF4
patient, who is de novo diagnosed, is close to the HD
aggregate, in contrast to the 3 other patients (PMF1,
PMF2, and PMF3) who were earlier diagnosed (Fig. 5C).
These PCA dispersion data incited us to build a hierarchical
classification plot correlating this clustering to clinicobio-
logical data (Fig. 5D). This classification allowed to distin-
guish HD and PMF groups and to identify PMF subgroups
correlated with clinical data such as Jak2 mutation status,
myeloproliferation, and Dupriez score.
This predictive model confirms the implication of Flt3/

MAPK axis activation in PMF megakaryopoiesis and estab-
lishes a link with patient clinicobiological parameters.

Flt3/MAPK axis is involved in PMF
dysmegakaryopoiesis

Our results showing that Flt3/MAPKaxis was altered in PMF
megakaryopoiesis raise the question of whether it is involved in
this pathologic process (30). Therefore, we assessed the effect
of p38, p42/p44, Jnk, and Flt3 inhibitors (refs. 32, 33; Supple-
mentary Table S6) or of anti-Flt3mAb (10mg/mL) onPMFMK–
derived CD34þ cultures. Inhibition of either MAPK or Flt3
significantly reduced the proliferation ofMKderived fromPMF
CD34þ cells (Fig. 6A), without affecting their viability (Fig. 6B).
Figure 6C showed that such treatment increased the percen-
tage of polyploidMK derived from PMF CD34þ cells, especially
of cells with a ploidy more than 64N (Supplementary Table S6)
and induced a nuclear localization of cyclin D3, known to
promote endomitosis. It also stimulated MK differentiation as
shown by an increased expression of the CD41 MK differentia-
tion marker (Fig. 6D). A similar effect on CD41 expression was
observed after p38 or Flt3 silencing, confirming their participa-
tion in the differentiation process (Fig. 6D and Supplementary
Fig. S1). Furthermore, Flt3 inhibitors restored the formation of
proplatelets (Fig. 6D). Participation of the Flt3/p38-mediated
pathway in the control of PMF megakaryopoieis was further
confirmedby results showing anupregulation ofGATA-1, FOG-
1, FLI-1, NFE2 MK transcriptional factors, of Aurora B endo-
mitotic regulator and of TGFB1, PF4, andCD9MKmarker gene
expression after Flt3 or p38 silencing (Fig. 6E).

FL has been reported to be a mobilization factor (27).
Therefore, we analyzed whether Flt3/p38 axis participates in
PMF MK migration in response to FL. We first determined FL
doses that induced amaximalMKmigration (data not shown).
In contrast to HD, in PMF patients, addition of 10 ng/mL FL
induced a significant MK precursor migration as compared
with untreated cells (46.85%� 10.09% vs. 25.88%� 5.29%; n¼
3, P ¼ 0.03; Fig. 6F). FL-mediated migration was inhibited by
addition of Flt3 inhibitor (Fig. 6F), confirming the role of Flt3 in
the PMF FL–inducedmigration. Addition of p38 inhibitors also
totally inhibited the FL-mediated migration (Fig. 6F) showing
that it was dependent on p38 activation. As expected, addition
of SDF-1 alone used as control, stimulated themigration ofMK
precursors from either PMF patients or HD (Fig. 6F). However,
when added to FL, SDF-1 did not increase the PMFFL–induced
migration (Fig. 6F), suggesting that both processes are differ-
entially regulated in patients.

Altogether, our data support the notion for a role for the
Flt3/p38-MAPK axis in PMF dysmegakaryopoiesis.

Discussion

PMF is characterized by a clonal amplification of HSC, an
increased circulating CD34þ cell number, and a prominentMK
proliferationwith alteredmaturation anddysplastic features in
the bone marrow. This myeloproliferation is associated with
marked changes in the BM stroma characterized by myelofi-
brosis, osteosclerosis, and neoangiogenesis consequent to an
overproduction of fibrogenic and inflammatory cytokines by
hematopoietic cells and especially by MKs (34). Reciprocally,
studies from our group have shown the role of stromal cells
from PMF patients in the myeloproliferation and especially in
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Figure 5. PMF patient group prediction model according to modulation of upstream MAPK linker and effector expression in response to FL stimulation.
A, scheme of genes involved in Flt3/MAPK axis drawn from www.genego.com. Red frame genes were selected for conducting a predictive model of
PMF patient groups according to FL-dependent MAPK response (B–D). Predictive model: (B) neural network with selected genes, (C) principal component
analysis, (D) hierarchical clustering with correlation of clinicobiological data.
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Figure 6. Flt3/MAPK axis is involved in PMF dysmegakaryopoiesis. Effect of Flt3 or MAPK inhibitors on proliferation (A) and viability (B) of PMF MK
derived from CD34þ culture (D10), polyploidy cell percentage, cyclin D3 expression and cytologic maturation (400�; C). D, effect of inhibitors and siRNA on
CD41 expression and proplatelet formation. E, effect of Flt3 and p38 silencing on gene expression involved in MK regulation quantified by QRT-PCR.
F, percentage of migration of MK derived from CD34þ cells purified from HD or PMF patients in response to FL (10 ng/mL) in the presence or absence
of SDF-1a (100 ng/mL) and effect of Flt3 and p38 inhibitors on PMF MK derived from CD34þ cell migration in response to FL (10 ng/mL). *, P = 0.01 to 0.05;
**, P = 0.001 to 0.01; ***, P < 0.001; ns, not signficant.
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the dysmegakaryopoiesis that characterizes the disease (35).
Among cytokines secreted by stromal cells, FL (36) has been
reported to play a role inHSCproliferation and survival (37). Its
receptor, Flt3, is frequently altered in leukemia through gene
rearrangements such as ITD that induces a myeloproliferative
syndrome in knockin mice model (23). Evidence for such a
myeloproliferative phenotype incited us to study the potential
involvement of the FL/Flt3 couple in PMF pathogenesis.

Our present data show that the FL plasma level is speci-
fically increased in PMF patients, in whom it is produced by
stromal and hematopoietic cells. Furthermore, in contrast to
HD in whom Flt3 expression is restricted to HSC/HP and
granulomacrophagic progenitors (22), in PMF patients, Flt3
expression and phosphorylation are associated with MK dif-
ferentiation, as shown by an increased percentage of circulat-
ing CD34þFlt3þ cells expressing the CD41 MK antigen as well
as by the increased Flt3 expression on CD41þMK cells. Flt3
overexpression is maintained during CD41þMK derived from
PMF CD34þ cell culture, consistent with sustained Flt3
expression along the MK lineage in patients.

Whereaswehave shown that Flt3 overexpression is Jak2V617F

independent, its mechanism is still unknown. Actually, we did
not find any mutations of the Flt3 gene sequence that could
lead to the receptor activation, being compatible with a recent
study in PMF patients (38). Among other hypotheses, muta-
tions in the c-Cbl gene, an adapter protein that regulates the
ubiquitination of receptor protein tyrosine kinases, recently
reported in PMF (39), could participate in maintaining Flt3
membrane expression. Flt3 deregulation could be also second-
ary to other signals including epigenetic modifications, as
already shown for CXCR4 in PMF CD34þ cells (40).

Evidence for specific alterations of the FL/Flt3 couple in
PMF patients encouraged us to study its potential role in the
dysmegakaryopoiesis that characterizes the disease. Among
the different mechanisms proposed to be involved, NF-kB (41)
activation and IL-8 (30) overexpression are reported to parti-
cipate in this dystrophic process. Jak2V617F and MPLW515L/K

mutations that induce enhanced STAT signaling (42), are
suggested to indirectly activate MAPK pathways, known to
be important in MK differentiation and especially in endo-
mitosis (24). Our present data, showing in PMF MK cells (i) an
increased expression of Flt3 and its phosphorylation, (ii) a
modulation of gene profiling involved in MAPK signaling, (iii)
an increased phosphorylation of p38, p42/44, and JNKMAPKs,
(iv) an increased phosphorylation of p38 pathway effectors,
and (v) an activation of Flt3/p38-MAPK axis and an increase of
p38 target genes in response to FL, establish a link between
Flt3 and MAPK activation, and especially p38, in PMF MKs.

Participation of Flt3 signaling in the PMF dysmegakaryo-
poiesis through MAPK pathways is suggested by our results
showing that treatment with MAPK inhibitors or p38 RNA
silencing reverses MAPK phosphorylation and restores MK
differentiation. Our hypothesis that a sustained MAPK path-
way activation participates in MK maturation block observed
in PMF is also supported by our data showing that FL
stimulation of PMF MK precursors provokes an increase of
p38, recently reported to play a role in PMA (phorbol-12-
myristate-13-acetate)-induced MK differentiation of K562

cells (43). The presence of phospho-p38 in the cytoplasm of
polyploid MKs (Fig. 3B) strongly suggests its activation in
those cells (44). It is also consistent with the stabilization of
transcripts with 30UTR (untranslated regions) AU-rich
element-motif (ARE-motif; ref. 31) like IL-8, shown to be
upregulated in response to FL (Fig. 4D) and to participate
in PMF dysmegakaryopoiesis (30). The p38 phosphorylation
recently reported in BM sections from MPN patients (45)
confirms our data obtained in culture and supports our
hypothesis on p38 activation in PMF.

As expected, FL-induced MAPK phosphorylation is not
observed in HD MK precursors which no longer express
membrane Flt3. In contrast, in PMF patients, we suggest that
an elevated FL level maintains MAPK activation in MK pre-
cursors which abnormally expressed Flt3. Our data, showing
that Flt3 inhibition by either antibodies or gene silencing
improves the megakaryopoiesis in PMF CD34þ cultures and
reduces the p38–MAPK effector phosphorylation, reinforce
the role of Flt3/p38 axis in PMF dysmegakaryopoiesis. As IL-8
transcripts are suggested to be upregulated by FL stimulation
via p38 activation, it can be speculated that phospho-p38 may
participate in inflammation observed in PMF by stabilizing
transcripts for cytokines/chemokines participating in this
process (31). AP-1 and NFATc4 that are upregulated during
megakaryopoiesis (46), are overexpressed in response to FL in
MK-derived PMF CD34þ cells. Being partners in transcription,
they likely cooperate to induce transcription of genes involved
in such inflammatory process (47).

In PMF,CD34þ cells egress fromthebonemarrow tocirculate
and invade spleen and liver where an extramedullary hemato-
poiesis is developing. Several mechanisms, including distur-
bance of SDF-1a-CXCR4 axis (48) and increased extracellular
matrix proteolytic activity reducing HP adhesion to BM stroma
(49), can explain this migration. Besides its role in primitive
hematopoiesis, the FL/Flt3 couple has been reported to regulate
cell migration (27). Our data showing that FL stimulates the in
vitro migration of PMF MK precursors support the hypothesis
that the FL/Flt3 couple also participates in the abnormal
migration of MKs. In our experimental conditions, the FL-
dependent migration PMF MKs is not modified by addition
of SDF-1a, suggesting that both processes are differentially
regulated in those cells. This FL-dependent migration process
is p38 dependent, leading to the assumption that targeting p38
could reduce Flt3-expressing cell mobilization in patients.

Up to now, the general concept in PMF is that stromal
changes are secondary to the proliferation of hematopoietic
cells and especially of MKs. Recently, we have proposed that
an abnormal dialogue between hematopoietic and stromal
cells, resulting from microenvironmental niche alterations,
participates in the hematopoietic deregulation that charac-
terizes PMF (13). Our present demonstration that FL, over-
produced by stromal cells, participates in the altered
megakaryopoiesis, supports this hypothesis (35).

In conclusion, our results suggest that activation of the Flt3/
MAPK pathway and especially of p38–MAPK participate in
PMF dysmegakaryopoiesis, including alterations of prolifera-
tion/differentiation andmigration processes within an inflam-
matory context (Fig. 7).
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The recent therapeutic strategies for PMF mainly target the
Jak2 kinase and some of the Jak2 inhibitors also inhibit the Flt3
kinase (50). The clinical efficacy of these inhibitors has been
ascribed to a general downregulation of inflammatory cyto-
kine production and signaling (29). Our data suggest that this
anti-inflammatory effect could be mediated, at least partially,
by the FL/Flt3/p38 axis. In this context, our patient group
predictive model, based on FL/MAPK response in MKs and
including clinicobiological data, could be powerful in the
therapeutic decision to use inhibitors also targeting the
Flt3 kinase.
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Correction

Correction: FLT3-Mediated p38–MAPK
Activation Participates in the Control of
Megakaryopoiesis in Primary Myelofibrosis

In this article (Cancer Res 2011;71:2901–15), which was published in the April 15, 2011
issue of Cancer Research (1), Figure 1E contains an error. A corrected version of
Figure 1 appears below.
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Also, the name of the 20th author appeared incorrectly on the online journal.
The correct surname of this author is Le Bousse-Kerdil�es. This error has been
corrected.
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