


MY soul is an entangled knot,
Upon a liquid vortex wrought

By Intellect, in the Unseen residing,
And thine cloth like a convict sit,

With marlinspike untwisting it,
Only to find its knottiness abiding;

Since all the tools for its untying
In four-dimensioned space are lying

Extract from “A Paradoxical Ode“
by James Clerk Maxwell
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Introduction

The aim of this thesis is the study of transverse link invariants coming from
Khovanov sl2- and sl3-homologies and from their deformations. As a by-product
of our work we get computable estimates on some concordance invariants com-
ing from Khovanov sl2-homologies. In order to explain the meaning of the the
previous sentences it is necessary to give some definitions.

1. Links in contact manifolds and effective invariants

A contact manifold (Definition 3.1) is an odd-dimensional manifold M en-
dowed with a totally non-integrable hyperplane field x – intuitively speaking,
a plane field which twists too much to allow the existence of a co-dimension
one local sub-manifold of M admitting x as tangent space. The simplest con-
tact manifold is probably R3 endowed with the symmetric contact structure xsym
(see Chapter 3, Section 1, for the definition). Despite its simplicity, the study of
the contact manifold (R3, xsym) is fundamental to understand the “zoology” of
the contact structures over any 3-manifold. In fact, on the one hand (R3, xsym)
provides a local model for all contact 3-manifolds (cf. Darboux’s theorem [16,
Theorem 2.5.1] and [14, Example 2.1]). On the other hand, any contact closed
3-manifold can be obtained from the one point compactification of (R3, xsym),
namely (S3, xsym), via surgical constructions along links which are compatible, in
some sense, with the contact structure (cf. [16, Theorems 6.4.4 & 7.3.5]).

There are two natural ways for a link l in a 3-manifold M to be compatible
with a contact structure x on M:

. l is everywhere tangent to the contact structure;

. l is be everywhere transverse to the contact structure;
the first type of links are called Legendrian, while the second type of links are
called transverse. Two members of each of these families of links are considered
equivalent if they are ambient isotopic through links in the same family.

Legendrian and transverse links have been extensively studied, and they have
some classical invariants: the link type, the Thurston-Bennequin number and
the rotation number for Legendrian links, and the link type and the self-linking
number for transverse links. These invariants are complete invariants for some
families of links (e.g. the unknot, the torus links, the figure eight knot etc.)
but in general they are not good at distinguishing transverse or Legendrian links.
There are infinite families of links (or even knots) whose members share the same
classical invariants even though they are distinct as transverse or Legendrian links
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iv INTRODUCTION

(e.g. some cablings of torus knots). An invariant of Legendrian, or transverse,
links which can tell apart two different Legendrian, respectively transverse, links
with the same classical invariants is called effective.

The study of Legendrian and transverse links gives also information on the
topology of the contact three manifold. For instance, Rudolph in [49] used an
inequality to relate the classical invariants of Legendrian and transverse links
with the slice genus of the underlying link. Other similar inequalities, called
Bennequin-type inequalities, have been produced through the years.

For Legendrian links there are lots of well known effective invariants, for
example the Chekanov-Eliashberg DGA [12], the LOSS invariants coming from
knot Floer Homology [36], the invariants l± coming from the grid version of
knot Floer Homology [43] etc. and some of them give rise to effective transverse
invariants, e.g. the q invariant coming from grid Floer homology [43].

The work of various authors (for example [36, 43, 45, 34, 60, 59]) has estab-
lished that link homologies, such as HFK and Khovanov-Rozansky homologies,
contain not only topological but also Legendrian and transverse information. The
Legendrian and transverse information contained in Heeegaard Floer type the-
ories is, in some sense, more explicit. Perhaps this is due to the more direct
connection of the Heegaard Floer theories with the topology of three manifolds.
On the other hand, the Legendrian and transverse information in the Khovanov-
Rozansky homologies is less understood. So, in the hope of shedding new light
on this subject we investigated the presence of transverse invariants in (the de-
formations of) Khovanov sl2- and sl3-homologies.

2. Transverse invariants in Khovanov-Rozansky homologies

Let R be the ring F[U1, ..., Us], where F is a field and deg(Ui) = 2ki. A
potential w for the (equivariant) Khovanov-Rozansky sl(N)-homology is an ho-
mogeneous polynomial in the ring R[X], where deg(X) = 2, of the form

w(X, U1, ..., Us) = XN+1 + XF(X, U1, ..., Us), F(X, 0, ..., 0) = 0.

Given a oriented link diagram L, one can associate to L a bi-graded chain complex
(C•,•

w

(L), d
c

) over the ring R. Where the first grading is the homological grading
and the second grading is induced by the polynomial grading on R[X]. The
differential d

c

is homogeneous with respect to both gradings. The homology
of this complex is called the equivariant Khovanov-Rozansky sl(N)-homology
(over R with respect to w).

The chain module C•,•
w

(L) is itself obtained as the homology of another com-
plex, here denoted (M

w

(L), ∂). This complex is obtained from the diagram D by
associating to each MOY-resolution1 of L, say G, a matrix factorization (M(G), ∂G),
and to the diagram L the direct sum of these complexes. The complex M

w

(L) is

1A web resolution with markers. For the definition of web resolution the reader may consult
Chapter 5 Section 1.
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triply graded: it has a Z/2Z-degree coming from the degree of the matrix factor-
izations, an homological degree coming from the type of resolution performed,
and a polynomial grading.

The whole construction is technically quite complex. The complexity of the
theory makes it difficult to work with the chain complex. This is the main reason
why in this thesis we work with a potential w of degree either 3 or 4. In these
cases it is possible to bypass some of the technical difficulties using different
approaches. The general case will be the subject of a future work by the author.

When degX(w) = 3 we will use an approach similar to the original definition
of Khovanov homology (cf. [25, 27]). When degX(w) = 4 we use the approach
introduced by Khovanov ([26]) for w = X4, and generalized by Mackaay and Vaz
([40]) to arbitrary potentials of degree 4, which uses foams. The construction via
matrix factorizations described above will be hidden in both these approaches.
Even the choice of the potential will be partially hidden; both the constructions
we are going to describe in this thesis will depend on the choice of a polynomial,
which corresponds to the derivative (with respect to X) of the potential.

The idea of defining transverse invariants using Khovanov-Rozansky homo-
logies is not new. In 2006 Olga Plamenevskaya defined a transverse invariant
y which is an homology class in the Khovanov homology of a transverse link
(presented as a closed braid). The Plamenevskaya invariant y was generalized in
2008, by Hao Wu (see [59]). Wu defined an invariant yn which is an homology
class in the non-deformed Khovanov-Rozansky slN-homology (that is the theory
with potential w = XN).

In 2013, Robert Lipshitz, Lenhard Ng and Sucharit Sarkar ([34]) defined two
trasverse link invariants, denoted by y

±, which are classes in (a twisted version
of) Lee’s deformation of Khovanov Homology (i.e. the theory with potential
1
3 (X3 � 3X)). Moreover, Lipshitz, Ng and Sarkar defined a family of transverse
link invariants yp,q living into an appropriate quotient of the graded object (with
respect to a natural filtration) associated to Lee Homology.

All these invariant are suspected to be non-effective. However, their effect-
iveness is still unknown, also because of the lack of examples of trasverse links
with the same classical invariants and a high number of crossings. These in-
variants have been proved to be non-effective in distinguishing flype equivalent,
transversally nonequivalent, links, which were first studied by Joan Birman and
William Menasco ([8]).

3. Outline of contents and main results

Our work is divided into two main parts and some appendices. The first
part is concerned with the study of transverse invariants in the deformations
of Khovanov’s sl2-theory. The second part deals with the study of transverse
invariants in the deformations of Khovanov’s sl3-theory.
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Part I: Transverse invariants in Khovanov-type sl2-theories. In the first part
of this thesis we deal with the deformations of Khovanov sl2-homology. We intro-
duce two transverse braid invariants in the Bar-Natan deformation of Khovanov
homology, called b-invariants, and study their properties. In particular, we prove
that they are equivalent to the invariants y

±, and that they recover the Plame-
nevskaya invariant. Furthermore, using the peculiar structure of Bar-Natan ho-
mology we are able to extract from the b-invariants two numerical invariants,
which we call c-invariants. We also provide computable bounds on the value
of the c-invariants. As a by-product of these estimates we provide a new com-
putable bound for Rasmussen’s s-invariant for links. Finally, we investigate the
presence of similar transverse invariants in a general deformation of Khovanov
sl2-homology. We manage to give some sufficient conditions for the existence
of transverse invariants and to study some of their properties. We obtain a cor-
respondence between these invariants and polynomial invariants for transverse
braids.

The first part is divided into four chapters.
The first chapter reviews the construction of a Khovanov-type link homo-

logy theory (i.e. a deformation of the Khovanov sl2-homology) starting from a
Frobenius algebra. We start by introducing the notion of Frobenius algebra, in-
cluding its graded and filtered versions, and of morphism of Forbenius algebras.
Then, we describe some constructions that can be used to modify a Frobenius
algebra (namely twist, base change and dual). Finally, we define Khovanov-type
homology theories, describe how to construct a bi-graded (resp. filtered) complex
from a link diagram and a graded (resp. filtered) Frobenius algebra, and analyse
the relationship between the mirror image and the complex associated to the dual
Frobenius algebra.

The second chapter is an overview of the Bar-Natan homology theory (which
is a particular Khovanov-type homology theory). In particular, we focus on the
bi-graded structure of Bar-Natan homology and its structure of F[U]-module. We
provide a description of the structure of bi-graded F[U]-module of Bar-Natan ho-
mology in terms of known invariants. We prove that ”the free part“2 of Bar-Natan
homology is completely determined by the linking matrix and John Pardon’s con-
cordance invariants. Finally, we briefly review the definition of some concordance
invariants defined in Lee theory.

In the third chapter we deal with some transverse invariants coming from
Bar-Natan theory. After a brief review of some basic contact topology, which
occupies the first section, in the second section we define the b-cycles. These are
two distinguished elements in the Bar-Natan chain complex of a link diagram
L, and they are denoted by b(L) and b̄(L). We prove that the b-invariants are
also cycles and that their homology classes generate a rank 2 F[U]-sub-module of

2The free part of a module over a PID is not a canonically defined sub-module. However, the
isomorphism class (as a graded module) of the free part is unique.
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Bar-Natan homology. In particular, the homology classes of the b-cycles are non-
trivial. Moreover, we prove the following statement which combines Propositions
3.8, 3.12, 3.16, 3.18 and Corollary 3.17.

Theorem. Let L be a oriented link diagram. Then, the following assertions hold:
(A) if L0 is obtained by performing a positive first Reidemeister move, then

F(b(L)) = b(L0) and Y(b(L0)) = b(L);

(B) if L0 is obtained by performing a negative first Reidemeister move, then

±UF⇤([b(L)]) = [b(L0)];

(C) if L0 is obtained by performing a braid-like second or third Reidemeister move, then

F(b(L)) = b(L0) and Y(b(L0)) = b(L);

where
F : C•

BN(L) �! C•
BN(L0) and Y : C•

BN(L0) �! C•
BN(L)

are maps associated to a Reidemeister move and to its inverse, respectively. In particular,
if B is the closure of a braid diagram, the b(B) is a transverse braid invariant. Moreover,
b(B) is is flype invariant.

The previous result can be re-stated without changes replacing b(L) with b̄(L).
Furthermore, we prove the equivalence between the b-invariants and the y

±-
invariants and establish the relationship between the b-invariants and the yp,q
invariants. In the third section, we use the F[U]-module structure of Bar-Natan
homology to define two numerical invariants for transverse braids, namely the
c-invariants. The c-invariants c(L) and c̄(L) are defined as the maximal power of
U which divides the homology classes of b(L) and b̄(L), respectively. We manage
to give some estimates from below on their values. More precisely, the following
result holds.

Theorem (Corollaries 3.35, 4.4& 3.40). Let L be a link diagram. Then, the follow-
ing inequality holds

o�(L�)� `�(L�) � max{c(L), c̄(L)} � min{c(L), c̄(L)} � o�(L)� `�(L)+ d�(L),

where o�(L), `�(L) and d�(L) are combinatorial quantities which can be easily com-
puted from the diagram L. In particular, if L is negative the bound is sharp.

Then, we study the behaviour of the b-invariants under crossing changes,
obtaining the following result.

Proposition (Corollary 3.39). If L+ and L� are two oriented link diagrams, which
differ only in a crossing which is positive in L+, and negative in L�. Then,

F+!�(b(L+, R)) = b(L�, R), F�!+(b(L�, R)) = ±U2
b(L+, R),

where F+!� and F�!+ are maps between the Bar-Natan complexes associated to the
crossing changes. In particular, cR(L�) � cR(L+). ⇤
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The same result holds replacing b with b̄ and c with c̄.
We conclude the chapter with a fourth section. This section is dedicated to

the generalizations of the both the b-invariants and the c-invariants to other de-
formations of Khovanov homology. In particular, we give a sufficient condition
for the existence of transverse braid invariants in a large class of Khovanov-type
chain complexes. Furthermore, we investigate the presence of other transverse
invariants similar to the b-invariants in Bar-Natan homology. As a result we
prove that there is a bijection between the set of such invariants and the set of
polynomial invariants of transverse braids. Finally,we conclude by proving the
non-effectiveness of the c-invariants for all prime knots with less than 12 cross-
ings.

The final chapter of this part of this thesis is dedicated to a Bennequin-type
inequality arising from the estimates on the values of the c-invariants. More
precisely, we prove the following result.

Theorem (Theorem 4.2). Let L be an oriented link diagram representing the link
type l, then

(s-ineq) w + o� 2o+ + 2`+ � 2d

+ + 1 � s(l) � w� o + 2o� � 2`� + 2d

� + 1

where o�(L), o+(L), `�(L), `+(L), d�(L) and d+(L) are combinatorial quantities
which can be easily computed from the diagram L.

We provide an ample set of examples in which this bound is sufficient to
compute Rasmussen’s s-invariant for links. Moreover, we prove that (s-ineq) is
independent of any known bound.

Part II: Transverse invariants in Khovanov-type sl3-theories. The second
part of this thesis has a structure which is similar to the first part. We use
Khovanov-Mackaay-Vaz foam technology to find transverse invariants in (the
deformations of) Khovanov sl3 homology theory. We give necessary and suf-
ficient conditions for a deformation Khovanov sl3-homology to contain such an
invariant. Then, we specialize to two particular deformations, and use their struc-
ture of F[U]-modules to recover numerical transverse braid invariants. We also
prove that these two specialized invariants recover Wu’s invariant y3. Finally, we
provide some bounds on the values of the numerical invariants.

This second part of this thesis is divided into two chapters.
The first chapter is a review of the foam technology and the universal sl3-

link homology theory. We start by revising some basic material regarding foams.
Then, we describe how to obtain a link homology theory, whose chain complex is
denoted by C•

p(L, R) from a monic polynomial p(x) of degree 3 in x using foams.
In the second chapter we define a set of transverse braid invariants in C•

p(L, R),
called b3-invariants. These invariants are elements of C•

p(L, R), and they are in
bijection with the set of distinct roots of p(x). In particular, we recover Wu’s
y3-invariant.
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Theorem (Corollary 6.7). Given a polynomial p(x) 2 R[x], such that degx(p) =
3, and a root of p(x), say x1, there is an element b3(L; p, x1) 2 C•

p(L, R) such that
b3(B; p, x1) is a transverse braid invariant.

Afterward, we specialize our construction to the case p(x) = x3 � U3 and
R = C[U] and use the structure of C[U]-module of the theory to define three
numerical invariants, called c3-invariants, and give some bounds on their values.
More precisely we prove the following result.

Theorem (Corollary 6.13). Let L be an oriented link diagram. Then,

cUx

i
3
(L, C) � 2(o+(L)� `+(L))), 8i 2 {0, 1, 2},

where cUx3(L, C), cUx

2
3
(L, C) and cU(L, C) are the c3-invariants of L, and o+ and `+

are combinatorial quantities easily computable form the diagram L. In particular, if B0 is
the negative stabilization of a braid B, then cUx

i
3
(B0, C) � 2. ⇤

Similarly to the sl2-theories, the bound on the value of the c3-invariants yields
a bound on the s3-concordance invariant. However, this result will be omitted
form this thesis, due to lack of time, and will be included in a future paper by the
author.

Appendices. We conclude this thesis with three appendices. The first ap-
pendix deals with some basic algebra needed throughout the thesis, and also
contains some (fairly general) propositions which are essential for our work. The
second appendix contains various computations. More precisely, it includes the
computation of Bar-Natan homology for a few families of links, and some details
on the computations made in Chapter 3 of Part 1. To conclude, in the third and
last appendix we prove the self-duality of Bar-Natan theory.
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CHAPTER 1

Frobenius algebras and Khovanov-type homologies

In this chapter we will briefly review the construction of a link homology
theory starting from a Frobenius algebra of rank 2. This construction is originally
due to Khovanov (cf. [25, 28]). The construction presented here is slightly differ-
ent in the notation, but the approach is very similar to the original one. We will
assume some familiarity with the machinery of homological algebra, in particu-
lar with filtered and bi-graded complexes. However, the reader can find the basic
definitions, the notation, and the properties needed in Appendix A.

1. Frobenius algebras

1.1. Definitions. A Frobenius algebra F , over the ring RF , is a commutative
unitary RF -algebra AF , together with two maps

DF : AF ! AF ⌦RF AF , #F : AF ! RF ,

satisfying the following requirements
(a) AF is a finitely generated, and projective RF -module;
(b) DF is an AF -bi-module isomorphism (i.e. commutes with the left and right

action1 of AF over AF ⌦ AF );
(c) #F is RF -linear;
(d) DF is co-associative2 and co-commutative3;
(e) (idAF ⌦ #F ) � DF = idAF = (#F ⌦ idAF ) � DF .
The map DF is called co-multiplication, while #F is the co-unit relative to DF .

As we are going to deal with more than a Frobenius algebra, we will usually
keep the subscript indicating to which Frobenius algebra the maps D, #, the al-
gebra A, and the ring R belong to. Sometimes, it will be necessary to specify the
multiplicative structure on AF , so we will denote mF the (RF -linear) multiplic-
ation map from AF ⌦RF AF to AF . Finally, we will denote by iF the map that
specifies the RF -algebra structure over AF , that is: the RF -linear map from RF
to AF sending 1RF to 1AF .

Now let us give an equivalent condition for an algebra to be a Frobenius
algebra.

1The left and right actions of A on A⌦R A are given by

a.(x⌦ y) = ax⌦ y, (x⌦ y).a = x⌦ ay.

2(id⌦ D) � D = (D⌦ id) � D.
3
t � D = D, where t(a⌦ b) = b⌦ a.

1
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Proposition 1.1. Given a commutative R-algebra (R, A, m, i), and an R-linear map

# : A! R,

the following conditions are equivalent
(1) there exists a unique map D, such that (R, A, m, i, D, #) is a Frobenius algebra;
(2) the (R-)bilinear pairing (·, ·) = #(m(·, ·)) is non-degenerate, and A is a finitely

generated R-module;
⇤

For a complete proof of the previous statement the interested reader may
consult [22, Chapter 1]. However, it will be needed in the follow up to see how
the co-multiplication can be defined from the bilinear pairing (·, ·) (see also [55,
Chapter 2]). Given a commutative R-algebra (R, A, m, i), and an R-linear map

# : A! R,

such that #(m(·, ·)) = (·, ·) is non degenerate, for each x 2 A set

D(x) = Â
i

x0i ⌦ x00i ,

to be the unique element such that:

m(x, y) = Â
i
(x00i , y)x0i , 8y 2 A,

and this defines the desired co-multiplication.
For our purposes, will be useful to introduce also the graded and filtered

versions of Frobenius algebras.

Definition 1.1. A graded Frobenius algebra is a Frobenius algebra F , satis-
fying the following properties
(a) R =

L
k Rk is a graded ring;

(b) A =
L

i Ai is a graded R-module;
(c) m, i are graded maps;
(d) D, # are graded maps (where A⌦ A is given the usual tensor grading);
where m is the multiplication on A, and i : R ! A is the unique ring homo-
morphism, called unit, such that

i(r) · a = r.a, 8r 2 R, a 2 A.

Definition 1.2. A filtered Frobenius algebra is a Frobenius algebra F over
a (possibly trivially) graded ring R together with a filtration F� of A as an R-
module, for which there exists an integer d such that:

FiFj ✓ Fj+i+d

for each i and each j, and

D(Fn) ✓Â
k

Fk ⌦Fn�d�k ✓ A⌦ A,

for each n.
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Definition 1.3. Let F = (R, A, m, i, D, #), and G = (S, B, n, ‚, G, h) be two
(graded) Frobenius Algebras. A Frobenius algebra morphism is a couple of
ring homomorphisms

y : R! S, j : A! B,
such that

j � i = ‚ � y, h � j = y � #.
and

j⌦ j � D = G � j.
Given two Frobenius algebra morphisms, say (j, y) and (g, w), their composition
(j, y) � (g, w) is defined as (j �g, y �w). An isomorphism of Frobenius algebras
is a morphism (j, y) such that both j and y are ring isomorphisms.

It is not difficult to see that Definition 1.3 allows us to define a category of
Frobenius algebras. In this category the role of the identity morphism for an
object F is played by (IdAF , IdRF ).

The definition of morphism easily extends to graded and filtered Frobenius
algebras: it is sufficient to require the map on the base ring to be graded, and the
morphism of algebras to be either graded or filtered, depending on which type
of Frobenius algebra one is dealing with. Hence, we can define the categories of
graded Frobenius algebras, and the category of Filtered Frobenius algebras.

1.2. Examples. Now let us turn to some examples. These examples are cru-
cial from our view point, as we will work only with this family of Frobenius
algebras. However, this choice is not as restrictive as one may imagine. In fact,
these algebras codify all the information we are interested in (cf. [28, 41]).

Let R be a ring. Define ABIG to be the (graded) free R[U, T]-algebra

ABIG =
R[U, T][X]

(X2 �UX + T)
,

where x� := X, and x+ := 1, have degrees, respectively, �1 and +1. In order to
define the structure of Frobenius algebra, define a co-multiplication D = DBIG, as
follows

D(x+) = x+ ⌦R x� + x� ⌦R x+ �Ux+ ⌦ x+,
D(x�) = x� ⌦R x� � Tx+ ⌦ x+.

Finally, the co-unit map is defined by

# : ABIG ! R[U, T] : a(U, T)x+ + b(U, T)x� 7! b(U, T).

All the other theories, are obtained by specifying U, T or both, in elements
u or t of R (that is, applying the functor · ⌦R[U,T] R[U, T]/(U � u, T � t)). In
particular, we define

(1) Khovanov theory Kh, by setting U = 0, T = 0;
(2) the original Lee theory, denoted by OLee, is obtained by setting T = 1

and U = 0;
(3) the twisted Lee theory (also known as filtered Bar-Natan theory), de-

noted by TLee, is obtained by setting T = 0 and U = 1;
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(4) the Bar-Natan theory, denoted by BN, is obtained by setting T = 0;
(5) the T-theory, denoted by TT, is obtained by setting U = 0.

By setting
deg(U) = �2, and deg(T) = �4,

BIG becomes a graded Frobenius algebra, and hence BN, TT, and Kh, inherit this
structure; while TLee and OLee become filtered Frobenius algebras.

Another, more general example which will be of use in the second part of
this thesis, is the following. Let R be a Noetherian domain, and set

Rk = R[U1, ..., Uk],

and fix a monic polynomial of degree N � k, say p 2 Rk[X]. The Frobenius
algebra K(p, k), which will be called in this thesis Krasner algebra (with respect
to p), is defined as follows:

RK(p,k) = Rk, AK(p,k) =
Rk[X]
(p)

,

and the co-unit is defined on the generators of AK(p,k) as follows

#([Xi]) = di,N�1, 8i  N � 1.

Notice that BIG, and all the other theories, are specifications of Krasner the-
ory with N = 2, for a suitable choice of the number of variables k and of the
polynomial p.

1.3. Base change and twisting. In [28] Khovanov describes two constructions
to define a new Frobenius algebra from a given one. The first one of these con-
structions takes a Frobenius algebra F over a ring R, and a ring homomorphism

y : R! S,

and gives back a Frobenius algebra F
y

= (R
y

, A
y

, m
y

, i

y

, D
y

, #

y

). This is defined
as follows:

R
y

= R⌦R S, A
y

= A⌦R S,

where the algebra structure on A
y

is the natural one4 and

#

y

= #⌦R IdS, D
y

= D⌦ IdS.

The algebra F
y

is said to be a base change of F . Given a graded Frobenius
algebra F , one can define the graded (resp. filtered) base change of F exactly
as above, provided that S is a graded ring, y is a graded map, and all tensor
products are endowed with the induced graded (resp. filtered) structure.

Remark 1. Any (graded, resp. filtered) base change y induces a natural
(graded, resp. filtered) morphism of Frobenius algebras Y = (y, IdA ⌦ y(1)).
Moreover, if the morphism y is an isomorphism, then Y is also an isomorphism.

4For the definition of the tensor product of algebras the reader may consult [2, Chapter 2], or
[31, Chapter XIV].
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Given a Frobenius algebra F , and an invertible element u 2 A, we may
define a new Frobenius algebra Fu, by twisting the co-multiplication and co-unit
as follows

#u(·) = #(m(u, ·)), Du(·) = D(m(u�1, ·)),

where m is the multiplication on A. The result Fu = (R, A, m, i, #u, Du) is still a
Frobenius algebra, and is called twist of F (by u). Twisting is the only way to
modify co-multiplication and co-unit on a Frobenius algebra.

Proposition 1.2 ([22], Theorem 1.6). Given a Frobenius algebra (R, A, m, i, D, #),
all the other structures of Frobenius algebra on (R, A, m, i) are obtained from F via a
twist by an invertible element. ⇤

Twisting by an invertible element, gives an isomorphic Frobenius algebra.

Proposition 1.3. Let F be a Frobenius algebra, and let u 2 A be an invertible
element. Then there exists a natural Frobenius algebra isomorphism (ju, yu) between
F and Fu. Moreover, if u is an homogeneous element, and if F and Fu are graded,
then they are graded-isomorphic (up to shift). Finally, if u is an homogeneous element of
RF ✓ AF , and F , Fu are filtered, then they are filtered isomorphic (up to shift).

Proof. Because in this case the underlying structure of algebra is the same for
both AF and AFu , throughout the proof we will denote both of them simply
by A. Define y : A ! A as the (left) multiplication by u�1. This is clearly a
isomorphism of R-algebras. Moreover, y commutes with D. In fact, let x 2 A

y⌦ y � D(x) = u�1.D(x).u�1 =

by definition of Frobenius algebra D is an (A, A)-bi-module map from A to A⌦ A,

= D(m(u�1, m(x, u�1))) = Du � y(x),

where the last equality is due to the commutativity of (A, m). Finally, a simple
computation shows that

#u � y = #.

Thus, by setting Y = (IdR, y) one gets the desired isomorphism. The graded
version of the proposition follows immediately once one notice that, if u is homo-
geneous, then y is a graded map (of degree deg(u)).

Similarly, if F is filtered, the multiplication by u�1 respects the filtration on
A (shifting it by �deg(u), while its inverse shifts the filtration by deg(u)). So,
the map y is a filtered isomorphism between AF and AFu (the latter shifted by
deg(u)).

Q.E.D.

1.4. Dual Frobenius algebras. Let F be a Frobenius algebra, and set

RF ⇤ = RF , AF ⇤ = A⇤F (= HomR(AF , RF )) .
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Because A is a projective R-module, and R is a Noetherian domain, there is a
canonical isomorphism (A ⌦ A)⇤ ' A⇤ ⌦ A⇤ (cf. Section 1 in Appendix A).
Hence, is it possible to define the maps

D⇤F : A⇤F ⌦RF A⇤F ! A⇤F , #

⇤
F : R⇤F (= RF )! A⇤F ,

and

m⇤F : A⇤F ! A⇤F ⌦RF A⇤F , i

⇤
F : A⇤F ! R⇤F (= RF ),

as the duals of the corresponding maps in F . Finally, set

DF ⇤ = m⇤F , mF ⇤ = D⇤F , #F ⇤ = i

⇤
F , iF ⇤ = #

⇤
F .

Direct computations show that F ⇤ is a Frobenius algebra, and is called dual
Frobenius algebra of F (cf. [28, Subsection: The dual system]).

By Proposition 1.1, we have a natural, non degenerate pairing given by the
Frobenius algebra structure, defined as follows

(·, ·)F = #F (mF (·, ·)).

This pairing defines an isomorphism of RF -modules

F : AF �! A⇤F : a 7! (a, ·).

Definition 1.4. A Frobenius algebra F is called strongly self-dual if the ca-
nonical isomorphism5 is an isomorphism of Frobenius algebra between F and
F ⇤. A Frobenius algebra is self-dual if (id, F) is an isomorphism of Frobenius
algebras. Finally, F is weakly self-dual if is isomorphic to its dual.

Remark 2. Direct computations show that the Frobenius algebras Kh, OLee
and TT are strongly self dual. On the other hand, BN and TLee are not strongly
self-dual (unless, 2 = 0 in RF ), even though they are self-dual (cf. Appendix C).

Remark 3. Any base change preserve strong self-duality, while twisting in
general does not (e.g. OLee and TLee are twist-equivalent if RF is a ring where 2
is invertible, see [39, Proposition 3.1]).

The dual Frobenius algebra of a graded (resp. filtered) Frobenius algebra F ,
is still graded (resp. filtered) in a natural way. The algebra AF is a projective
RF -module of finite type, hence has a dual basis {(xi, ji)}, set deg(ji) as their
degree as maps from AF to RF (which means that deg(ji) = �deg(xi)). Being
the co-multiplication, the multiplication, unit and co-unit of AF graded (resp.
filtered) maps, the same holds for the multiplication, co-multiplication, co-unit
and unit of AF ⇤ . Self-duality, of any type, in the graded (resp. filtered) case will
be assumed to be graded (resp. filtered) (i.e. the isomorphism is an isomorphism
of graded (resp. filtered) Frobenius algebras).

5The isomorphism sending a basis of AF to its dual (in the sense of Appendix A, Section 1)
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2. Link homology theories

2.1. Khovanov-type theories. Let L be an oriented link diagram. A local
resolution of L in a crossing is its replacement with either , a 0-resolution,
or with , a 1-resolution.

Definition 1.5. A resolution of L is the set of circles, embedded in R2, ob-
tained from L by performing a local resolution at each crossing. The total number
of 1-resolutions performed in order to obtain a resolution s will be called weight
of s, and will be denoted by |s|.

Let RL the set of all the possible resolutions of L. It is possible to define an
elementary relation on RL as follows

r � s () |r| < |s|, and r, s differ by a single local resolution.

A square [s0, s1, s2, s3] is a collection of four, different, resolutions such that:

s0 � s1, s0 � s2, s1 � s3, and s2 � s3.

Definition 1.6. A sign function is a map

S : RL ⇥RL ! {0, 1,�1},

satisfying the following two properties:
(1) S(r, s) = 0 if, and only if, r ⌃ s;
(2) for each square [s0, s1, s2, s3], we have

S(s0, s1)S(s1, s3) = �S(s0, s2)S(s2, s3).

Given a Frobenius algebra, say F = (R, A, i, D, #), define

Ci
F (L, R) =

M
|r|�n�=i

Ar, Ar =
O
g2r

A
g

,

where A
g

is just an indexed copy of A, and r ranges in RL. These are the R-
modules that are going to play the role of (co)chain groups. In order to define
a (co)chain complex, all that is left to do is to define a differential. This will be
done in two steps. Start by defining

ds
r : Ar ! As, r � s.

Consider x =
N

g2r a

g

, where r � s. By definition of �, the two resolutions r
and s differ by a single local resolution. Hence there is an identification of all
the circles in the two resolutions, except the ones involved in the change of local
resolution. There are only two cases to consider: (a) two circles of r, say g1, g2
are merged in a single circle g

0
1 in s, or (b) a circle g1 belonging to r is split in into

two circles, say g

0
1 and g

0
2, in s. Our map is defined as follows

ds
r(x) =

(N
g2r\s a

g

⌦m(a
g1 , a

g2) in case (a)N
g2r\s a

g

⌦ D(a
g1) in case (b)

Finally, fix a sign function S and define

di
F : Ci

F (L, R)! Ci+1
F (L, R) : x 2 Ar 7! Â

r�s
S(r, s)ds

r(x).
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Remark 4. Notice that ds
r is well defined because of the commutativity of m,

and of the co-commutativity of D. On the other hand, dF depends on the choice
sign function S. In particular, the existence of dF depends on the existence of
such a function.

Figure 1. A diagram of the trefoil knot, the poset of its resolu-
tions, and a sign function. The arrows represent the relation �,
the red arrows are those whose pair of start and end points has
image �1 via the sign function, and all the pairs start point-end
point of the black arrows have image 1.

Proposition 1.4 (Khovanov, [25]). There exists a sign function S such that the
complex (C•

F (L, R), d•F ) is a (co)chain complex. Moreover, the homology of this complex
does not depend, up to isomophism, on the choice of the sign function S, or on the order
of the circles in each resolution. ⇤

Remark 5. It is immediate from the definition of Khovanov-type homology
that

C•
F (L t L0, R) ' C•

F (L, R)⌦R C•
F (L0, R),

as complexes of R-modules. Moreover, if F is a graded (resp. filtered) Frobenius
algebra the above isomorphism respects the quantum grading (resp. the filtra-
tion) defined in the next subsection.

2.2. Invariance and gradings. Which are the conditions on F under which
the homology of the complex (C•

F (L, R), d•F ) is a link invariant? Or, better, which
are the ones needed to get a link homology theory (i.e. functorial in some sense)?
A simple, necessary, condition can be found by noticing that: if the homology
of (C•

F (L, R), d•F ) is a link invariant, then its Euler characteristic should also be
independent of the diagram L. In particular, the chain complexes associated to the
two diagrams of the unknot drawn below must have the same Euler characteristic.
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Figure 2. Two diagrams of the unknot.

The associated chain complexes are, respectively,

0 �! A �! 0, and 0 �! A⌦ A �! A �! 0

where the first non-trivial group is the one in (homological) degree 0, and A
indicates AF . Thus, by imposing the equality of the two characteristics, one gets
the following equation

rank(A) = �rank(A) + rank(A⌦ A) = rank(A)2 � rank(A),

which, once excluded the trivial case, implies

rank(A) = 2.

It turns out that the rank of A being 2 is the only property F must satisfy in
order to have the invariance of the homology (cf. [28, Prop. 3, Thm. 5 & 6]). So,
as we are concerned only with link invariant theories, from now on all Frobenius
algebras will be supposed of rank 2. Once a basis of A is fixed, say x+, x�, the
elements of Ci

F (L, R) of the form
N

g2r a

g

, with a

g

2 {x+, x�} and r 2 RL, will
be called states; while those of the form

N
g2r a

g

, with a

g

2 A, will be called
enhanced states. Notice that the states are an R-basis of C•

F (L, R), while the
enhanced states are a system of generators.

Remark 6. If F is a graded (resp. filtered) Frobenius algebra, then the basis
{x+, x�} will be taken to be composed of homogeneous elements (resp. to be a
filtered basis, see Appendix A). Under these conditions, it is possible to define
another grading (resp. filtration) over the complex (C•

F (L, R), d•F ), as follows

qdeg(
O
g2r

a

g

) = Â
g2r

degA(ag

)� 2n� + n+ + |r|,

for each state
N

g2r a

g

. (Then the filtration is given by considering all the elements
which can be written as combination of states of degree greater or lower than a
fixed qdeg, depending on whether the multiplication is non-decreasing or non-
increasing with respect to the qdeg.) Moreover, by definition of graded (resp.
filtered) Frobenius algebra, the differential d•F is homogeneous (resp. filtered, see
Section 5 Appendix A) with respect to the qdeg degree (resp. induced filtration),
and the resulting homology theory is hence doubly-graded (resp. filtered). Let
F be a filtered Frobenius algebra, we will denote by F�C•

F (L, R) the filtration
induced on the complex C•

F (L, R).

Theorem 1.5. Let L be an oriented link diagram. If F and G are isomorphic (graded,
resp. filtered) Frobenius algebras, then (C•

F (L, RF ), d•F ) and (C•
G(L, RG), d•G) are iso-

morphic as (doubly-graded, resp. filtered) complexes of both RF and RG modules.
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Proof. Let F = (R, A, m, i, D, #) and G = (S, B, n, ‚, G, h) be two isomorphic
(graded) Frobenius algebras, and let (j, y) the (graded, resp. filtered) isomorph-
ism between them. Then, for each resolution r we have the isomorphism6 of
(graded) R-modules O

g2r
y : Ar ! Br,

where B is seen as an R-module with the induced structure. This induces natur-
ally an isomorphism of (bi-graded, resp. filtered) chain modules that commutes
(by definition of morphism between Frobenius algebras) with the differentials.
The same reasoning works replacing R with S.

Q.E.D.

Remark 7. Until now we required the diagrams to be oriented: this is essen-
tial for the invariance. As the reader may have noticed, the orientation comes
up only in the degrees shift. The homological degree has been shifted by a the
number of negative crossings. Without this shift the homology is not invariant as
graded module (much less as bi-graded or filtered module).

2.3. Duality and mirror image. It has been shown by Khovanov (see [25,
Section 7.3]) that there is a relationship between the complex of the mirror image
and the dual complex of a link. More precisely, the following proposition holds.

Proposition 1.6 ([25], Proposition 32). Let F = (A, R, m, i, D, #) be a Frobenius
algebra, L be an oriented link diagram, and L⇤ be the mirror diagram7. Then, there is an
isomorphism of chain complexes

(CF )
⇤ (L, R) ' CF ⇤(L⇤, R).

Where the dual complex of an R-complex (C•, d•) is defined as

(C⇤)i = HomR(C�i, R), (d⇤)i = (d�i)⇤.

⇤

In particular, if a theory is (strongly) self-dual there is an isomorphism

C�•F (L, R)(=) ' C•
F (L⇤, R).

At this point a natural question is whether or not this isomorphism, in the case
F is a graded Frobenius algebra, preserves the quantum degree (i.e. the second
degree). The answer is not positive, in general we cannot say anything about
this grading. Nonetheless, in some special cases something can be said. Before
stating the result, we wish to recall some notation. Let R be a graded ring and
M•,• be a bi-graded R-module (cf. Appendix A). Fix two integers, say a and
b. The (a, b)-shift of M•,• is the graded R-module M(a, b), whose underlying

6This is injective because A, B are both flat R-modules, and is obviously surjective.
7That is the diagram whose positive crossing are replaced with negative ones, and vice-versa.
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module structure is the same as M, but whose (i, j)-th homogeneous component
is the (i + a, j + b)-th homogeneous component of M. More explicitly,

M(a, b) =
M
i,j
(M(a, b))i,j, (M(a, b))i,j = Mi+a,j+b.

More generally, if M is a C-graded R-module, with C a commutative monoid
and R a C-graded ring (see Appendix A), and c0 2 C, we will denote by M(c0)
the c0-shift of M, that is the C-graded R-module, whose c-th homogeneous com-
ponent corresponds to the (c + c0)-th homogeneous component of M, and whose
underlying module structure is the same as M.

Proposition 1.7. Let F = (R, A, m, i, D, #) be a graded Frobenius algebra, such
that:

(a) R is a principal ideal domain;
(b) R contains only homogeneous elements of non-negative (non-positive) degree;

Suppose that

(1) H•,•
F (L, R) '

sM
i=1

R
(ai)

(hi, qi)�
rM

j=1
R(kj, pj),

as bi-graded R-modules, then

(2) H•,•
F ⇤ (L⇤, R) '

sM
i=1

R
(ai)

(�hi,�qi)�
rM

j=1
R(�kj,�pj).

Where the grade structures of F ⇤ and C•,•
F ⇤ (L, R) are the natural ones (cf. Subsection

1.4).

Proof. Proposition 1.6 implies that H(C⇤F (L)) and HF ⇤(L⇤) are isomorphic as
graded R-module with respect to the homological degree; more precisely, we
have

H•,• (C⇤F (L, R)) = H•,•
F ⇤ (L⇤, R) '

sM
i=1

R
(ai)

(�hi, q⇤i )�
rM

j=1
R(�kj, p⇤j ).

Hence it is sufficient to show that

p⇤j = �pj, q⇤j = �qj.

First, notice that the isomorphism F used in Proposition 1.6 (cf. [25, Proposition
32]), and the definition of degree in the dual (graded) Frobenius algebra, are such
that: given a state s 2 CF (L, R), with respect to any fixed homogeneous basis of
A, we have

qdeg(s) = �qdeg(F(s)).

A homology class [x] 2 HF (L⇤, R) is called primitive if, and only if, do not exist
[y] 2 HF (L⇤, R) and a 2 Ri, with a non-invertible and i 6= 0, such that

[x] = a[y].
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Remark 8. Primitive elements do not necessary exist in general, even in the
case of a Khovanov-type homology over an arbitrary Frobenius algebra. How-
ever, the hypotheses (a) and (b) made ensure us that, not only we have primitive
elements, but also that any minimal set of homogeneous generators of HF (L, R)
is composed of primitive elements. In fact, pick an homogeneous class [x] gener-
ating one of the summands in (1). If [x] is not primitive there is a a 2 R+ (resp.
R�, see below for the definitions), such that:

[x] = a[y].

which is absurd, because [x] should have minimal (resp. maximal) degree (✓).

We claim that if [x] is primitive, then any decomposition as linear combina-
tion of states of any representative of [x] has at least one (non-trivial) term with
degree 0 coefficient. In fact, suppose not. Then, as R contains only homogeneous
elements of non-negative (non-positive) degree

R+ =
•M

i=1
Ri,

 
resp. R� =

�•M
i=�1

Ri,

!
is an ideal. Moreover, as R is a principal ideal domain, R+ (resp. R�) is generated
by a single element, say r+ (resp. r�). If a representative x̃ of [x], decomposes as

x̃ =
m

Â
n=1

ansn,

with an 2 R+ (resp. an 2 R�) for each n, then

x̃ = r+
m

Â
n=1

a

0
nsn,

 
resp. x̃ = r�

m

Â
n=1

a

0
nsn,

!
for some a

0
n 2 R, which is absurd because [x] was supposed to be primitive

(✓). Being the isomorphism F an homogeneous map (i.e. sends homogeneous
elements to homogeneous elements, see also Section 2 of Appendix A), and seen
that it changes the sign in the (quantum) degree of the states, for each primitive
homology class we have

qdeg([x]) = �qdeg(F⇤([x])).

Since the generator of each summand in the decomposition in (1) is necessarily a
primitive class (see the remark above), and the homology of the mirror image is
generated by the duals of the generators of HF (L, R), the claim follows.

Q.E.D.

Corollary 1.8. Let F be a field, and l be an oriented link. If

H•,•
BN(l, F[U]) =

nM
i=1

F[U]
(Uti )

(hi, qi)�
mM

j=1
F[U](kj, pj)

then

H•,•
BN(l

⇤, F[U]) =
nM

i=1

F[U]
(Uti )

(�hi,�qi)�
mM

j=1
F[U](�kj,�pj),
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where l

⇤ is the mirror image of l.

Proof. It follows from the previous proposition, and from the self-duality of
Bar-Natan theory (Appendix C).

Q.E.D.

2.4. The Saddle move, functoriality and some notation. A traced resolution
is a set of circles, and (coloured) segments between them, obtained by replacing
a crossing with either or . A coloured segment keeps trace of both the
position of a crossing split, and the type of splitting performed on that crossing
(which is encoded in the colour: red for the 1-resolution, and blue for the 0-
resolution).

 

Figure 3. A traced resolution of a trefoil knot diagram

A traced state (TS) is a traced resolution with the circles labeled with either
+ or �. The traced states are, once an R-basis for the algebra A is fixed, naturally
identified with the states. In a similar way, an enhanced traced state (ETS) is
traced resolution with the circles labeled with elements of A, and each ETS could
be naturally identified with an enhanced state (notice that no choice of a basis is
needed).

Let L be an oriented link diagram. A surgery arc on L is an embedded copy
of [0, 1] in R2, such that:
(a) the ending points of g belong to L;
(b) the interior of g does not meet L;
Once we pick a (traced) resolution r of L, g joins the circle, or circles, of r to which
its ending points belongs to. As the interior of g does not meet L, then interior of
g does not meet neither the circles, nor the traces, in r.

Consider a link diagram L, together with a surgery arc g. The saddle morph-
ism (along g) assigns to each ETS x, with underlying resolution r, a linear com-
bination of ETSs, say S(x, g), whose circles, and traces are the same as in x, except
near the surgery arc where the local picture on the left hand side of Figure 4 is
replaced with the right hand side of the same figure. The labels of the circles not
meeting g are left invariant, while those involved are replaced as follows;
(a) m(a, b) if the arcs meeting g belong to different circles;
(b) D(a) if the arcs meeting g belong to the same circle (in particular a = b);
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this assignment will be denoted, more compactly, by specifying an arc between
the two new arcs and a label s(a, b) (see the right hand side of Figure 4). Then
this map (which, as things are now, is only defined on the ETSs) extends, by
R-linearity, to C•

F .

a

b
g 7!

s(a, b)

Figure 4. The saddle morphism.

Remark 9. Even if in our notation S(x, g) is represented as a single ETS, there
is no need for S(x, g) to be such. For example, suppose F = Kh, a = b = x+, and
that the two arc joined by the surgery arc belong to the same circle, then S(a, g)
is the sum of two ETSs (see Figure 5).

x+

g 7! x�x+ + x+x�

Figure 5. The effects of the saddle morphism in the case where
F = Kh, the two arcs in the left hand side belong to the same
circle, and the circle is labelled x+.

The saddle move is a part of a more general construction that, to each generic
(oriented) cobordism S, properly embedded in R3 ⇥ [0, 1] or S3 ⇥ [0, 1], assigns a
morphism between the chain complexes of any Khovanov-type theory of the two
(oriented) links S \R3 ⇥ {0}, and S \R3 ⇥ {1} (the latter considered with the
opposite of the induced orientation). More precisely, given a movie description
of a generic cobordism S, there is a well defined R-linear map

FS : C•
F (L0, R)! C•

F (L1, R),

where L0 and L1 are the first and the last clips of the movie (see [4, Section 8] for
the details).

Theorem 1.9 (Jacobsson, [21], Bar-Natan, [4]). If S and S0 are two isotopic cobor-
disms, via an isotopy which leaves the boundary fixed, the induced map, in any Khovanov-
type homology theory, are equal up to sign. Furthermore, if the theory is graded (resp.
filtered) then the map induced by S is graded (resp. filtered) of degree c(S). ⇤
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2.5. Reduction and co-reduction. Given a link diagram L, and chosen a
number of base points, say p1, ..., pk, in distinct components, denote by Ci an
unknotted circle near pi. There is an action of

Ak = AF ⌦R ...⌦R AF| {z }
k times

,

on the complex C•
F (L, R), given by merging the circle Ci with the marked point

pi, for each marked point. This gives an R-linear map

F : C•
F (L t C1 t ...t Ck, R) = C•

F (L, R)⌦R Ak �! C•
F (L, R),

which describes the above-mentioned action. The canopoleis structure described
in [4], which is valid for any Khovanov type theory, tells us that the action is
well defined and that it is an invariant under isotopies of the link fixing the base
points.

Fix x 2 AF , and consider the polynomial ring R[X1, ..., Xk], this could be
made to act on C•

F (L, R) in the following way: the variable Xi acts on a chain
element a as F(a⌦ xi), that is

Xi.a = F(a⌦ xi),

where
xi = 1⌦ · · ·⌦ 1| {z }

i�1

⌦x⌦ 1⌦ · · ·⌦ 1| {z }
k�i�1

,

and by R-linearity the action is extended to the whole R[X1, ..., Xk]. Furthermore,
this action commutes with the differential of C•

F (L, R); this is due to the associ-
ativity of the multiplication, and to the fact that

DF �mF = IdA ⌦mF � (DF ⌦ IdA),

in any Frobenius algebra (cf. Relation (F) in [1, Section 5]).

Remark 10. In the case of Khovanov homology with R = F2, the structure of
R[X1, ..., Xk]/Ann(Ak)-module (where Xi acts on Ak as the multiplication by xi)
on H•

F (L, R) is independent of the chosen diagram, as shown by Hedden and Ni,
using an argument due to Sarkar ([19, Proposition 2.2]).

So, the image of the action of each variable defines a sub-complex. To be
precise, chosen a (non-empty) subset S ✓ {1, ..., k} and an element x, is possible
to define the (S, x)-co-reduced complex bC•

F (L, R)(S,x) as the sub-complex which
is annihilated by the ideal (Xs|s 2 S) ✓ R[X1, ..., Xk] under the action described
above. The quotient complex of C•

F (L, R) by bC•
F (L, R)(S,x) is called the (S, x)-

reduced complex, and is denoted by eC•
F (L, R)(S,x). These complexes naturally fit

in the following short exact sequence

(3) 0! bC•
F (L, R)(S,x) �! C•

F (L, R) �! eC•
F (L, R)(S,x) ! 0

Whenever clear from the context we will omit x from the notation, and if there is
no ambiguity also S will be removed from the notation. If S = {1, ..., k} we will
call it full (co-)reduction.
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When there is only one marked point (in particular, k = 1), one can also con-
sider the image of X1, and this is again sub-complex. Of course, it is isomorphic
(as an R-complex) to the reduced complex. The x-simply co-reduced complex is
the quotient of C•

F (L, R) by the x-reduced complex, and is denoted by C•
F (L, R)x.

There is a natural short exact sequence of complexes

(4) 0! eC•
F (L, R)x �! C•

F (L, R) �! C•
F (L, R)x ! 0

As said before, all the reduced an co-reduced homologies are invariants of links
with marked points (i.e. invariants of links up to isotopies fixing the base points).
However, if we are dealing with knots all isotopies of a diagram can be taken to
happen far from a given point in the diagram. This implies the following

Proposition 1.10 (Khovanov, [26]). The isomorphism class of the (co)reduced ho-
mologies is an invariant of links with a fixed component (i.e they do not depend on the
chosen diagram, or the chosen marked point on the fixed component). In particular, they
are knot invariants. ⇤

Remark 11. If the Frobenius algebra is graded (resp. filtered), and the ele-
ment x is homogeneous (resp. is an element of a filtered basis) then the resulting
(co)reduced theory will be graded (resp. filtered).



CHAPTER 2

Bar-Natan Theory

The aim of this chapter is to provide structure theorems for the Bar-Natan ho-
mology, in a sense that will be specified in the next section. The idea is to recover
”the shape“ of the Bar-Natan homology in terms of the Khovanov homology, and
(twisted) Lee homology, similarly to what has been done by Turner ([54]) over F2.
Most of the material contained here is either known or folklore; however, proofs
are supplied either if (to the author’s knowledge) no proof of the statement can
be found in literature, or if the proof of a certain fact is useful to understand the
subsequent material. Vice-versa the proof of a statement will be omitted if it is
a trivial consequence of previously stated propositions, or does not provide any
insight, or the result could be found in literature. In this last two cases the result
will be attributed to one or more authors (if possible), and a reference where to
find the proof will be given.

The chapter is divided into two sections. In the first section we will study
the free pat of Bar-Natan homology, determining its rank, and how this rank is
distributed in the quantum and homological degrees. The second second section
of this chapter will deal with the torsion sub-module of the Bar-Natan homology,
and its relationship with Khovanov homology.

1. The structure of Bar-Natan homology I: the free part

The Bar-Natan homology of an oriented link-type l is a bi-graded R[U]-
module (up to bi-graded isomorphism). In order to have a structure theorem
for modules over R[U], some conditions on the base ring R are necessary. The
simplest (and, probably, the only possible) requirement on R is to be a field. In
this case, there is a (well-known) structure theorem for graded modules, whose
proof can be found in various sources (see, for example, [61, Theorem 3.19]).

Theorem 2.1 (Structure Theorem for Graded Modules over a PID). If A is a
graded principal ideal domain, and M is a finitely generated graded module over A, then
M is graded isomorphic to the module

M
j2J

A
(dj)

(kj)�
M
i2I

A(hi)

where the djs are non-trivial homogeneous elements of A, hi, ki 2 Z, and (·) indicates
the degree-shift (see page 11). Moreover, this decomposition is unique up to permutations
of the summands. ⇤

17
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In the case of Bar-Natan theory, the variable U has bi-degree (0,�2), hence
each Hi,•

BN(L, R[U]) is both a sub-module and a direct summand of H•,•
BN(L, R[U]).

This fact, combined with the previous theorem, implies the following (rough)
description of the Bar-Natan homology of a link.

Corollary 2.2. Given an oriented link-type l, there exist hi, kj, qi, pj 2 Z, and
ti 2 N \ {0}, such that

H•,•
BN(l, F[U]) =

mM
i=1

F[U]
(Uti )

(hi, qi)�
nM

j=1
F[U](kj, pj),

for some m, n 2 N, where (a, b) indicates a bi-degree shift of a in the homological degree1

and b in the quantum degree. ⇤

Now it is possible to give a rigorous meaning to the sentence ”determine the
structure (or ”the shape“) of Bar-Natan homology“. This will simply mean to
determine the integers m, n, ti, hi, qi, kj and pj (or relations between them) in
terms of known link invariants. Notice that the free part of a module M over
a PID R is not a well defined sub-module of M, while the torsion sub-module
(or torsion part, see [31, Chapter III, §7]) is canonically defined. So the sentence:
”determine the free part of Bar-Natan homology“ is to be read as ”determine the
integers n, kj and pj”, and similarly the sentence ”determine the torsion part of
Bar-Natan homology“ will stand for ”determine integers m, ti, hi, and qi“.

Let us start by determining the rank (that is n) of Bar-Natan homology, as
well as the “distribution” of the rank in each homological degree (the kjs). It
turns out that these numbers are determined by the rank of (Twisted) Lee theory,
and hence by the linking matrix (cf. the next sub-section).

Proposition 2.3 (Turner [54]). Let F be a field, and L an oriented link diagram
with ` components. Then, we have:

rankF[U](H•,•
BN(L; F[U])) = 2`,

where all the generators lie in even (homological) degree, and if L represents a knot the
(homological) degree of the generators is 0. More precisely, we have

rankF[U](Hi,•
BN(L; F[U])) = dimF(Hi

TLee(L; F)) =

= 2 card

(
E ✓ {1, 2, · · · , `}

����� Â
l2E,m/2E

2lk(Ll , Lm) = i

)
,

where L1, ..., L` are the components of L.

Proof. Since F[U] is a PID, it is possible to apply the Künneth formula to the
complexes C•,•

BN(L; F[U]), and F(U) (the latter considered with trivial differential).
Thus, one obtains the following isomorphism

H•,•
BN(L; F[U])⌦F[U] F(U) ' H•(CBN(L, F[U])⌦ F(U)),

1All elements of ABN are taken to be homogeneous of homological degree 0.
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and the first part of the Proposition follows immediately from [39, Theorem 2.3].
Regarding the second assertion, consider F as an F[U]-module where U acts as
1. Again by the Künneth formula there is an isomorphism

Hi
TLee(L, F) ' Hi,•

BN(L; F[U])⌦F[U] F� TorF[U](Hi+1,•
BN (L, F[U]), F).

As the torsion of H•,•
BN(L; F[U]) is only of the type F[U]/(Uk) (see Corollary 2.2),

the second direct summand in the previous formula vanishes. Finally, the com-
putation of the rank in terms of the linking numbers follows from the rank con-
siderations above, and from a simple computations of the (homological) degree
of the canonical generators in H•

TLee(L, F) (see [51, Theorem 4.1.A], [32, Theorem
4.2], [54, Theorem 3.1], and also loc. cit. Propositions 2.6 and 2.7).

Q.E.D.

For the sake of completeness, we restate a version of the previous theorem
for the TT-homology.

Proposition 2.4 (Khovanov [28]). Let F be a field, and L an oriented link diagram
with ` components. Then, we have:

rankF[T](Hi,•
TT(L; F[T])) = dimF(Hi

OLee(L; F)).

In particular, if char(F) = 2, the following holds

rankF[T](H•,•
TT (L; F[T])) = dimF(H•,•

Kh (L; F)).

Furthermore, if char(F) 6= 2, we have

rankF[T](Hi,•
TT(L; F[T])) = 2 card

(
E ✓ {1, 2, · · · , `}

����� Â
l2E,m/2E

2lk(Ll , Lm) = i

)
,

where L1, ..., L` are the components of L. In particular all the generators lie in even
(homological) degree, if L represents a knot the (homological) degree of the generators is
0, and the overall rank is 2`.

Proof. The Theorem [39, Theorem 2.2] ensures that, if char(F) 6= 2, there is a
twist equivalence

H•
OLee(L; F(T)) ' H•(CTT(L, F[T])⌦ F(T));

in particular, we get:

Hi
OLee(L; F(T)) ' Hi(CTT(L, F[T])⌦ F(T)),

as F(U)-modules, for each i. And the claims follow as in Proposition 2.3. If
char(F) = 2, by (i) of [39, Theorem 2.2] there exists a twist equivalence

H•,•
Kh (L; F(T)) ' H•,•

TT (L; F(T)),

and the statement follows.

Q.E.D.
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Remark 12. Proposition 2.4 is due to Khovanov in the case F = Q, and its
proof generalizes easily to any field of odd characteristic. Similarly, Turner gives
the proof of Proposition 2.3 only in the case F = F2, but the result extends to any
field without changing the proof.

In order to completely determine the free part of Bar-Natan theory, all that is
left is to compute the pjs. This represent the most difficult part of our task, and
relies on properties of the filtered Lee theory.

1.1. Lee theory and the canonical generators. In order to understand the
structure of Bar-Natan theory it is fundamental to understand Lee theory. This
theory, introduced in the original version by Eun Soo Lee (cf. [32]), has been
thoroughly studied in the last 11 years in both its original and its twisted version.
As stated in the previous chapter, Lee theories are filtered theories. The essential
information contained in Lee theories is stored in their filtrations. In fact, as we
will see in a moment, disregarding the filtration the Lee homology of an oriented
link depends only on the linking matrix (i.e. on the number of components and
on the linking numbers between them).

Let L be an oriented link diagram, and denote by eL the underlying un-
oriented diagram. Consider the set O(eL) of all possible orientations over eL. This
set contains exactly 2` elements, where ` is the number of components of L.

Given an orientation o 2 O(eL), consider the corresponding oriented diagram
L
o

, and denote by n+(o) and n�(o) the number of positive and negative crossings
of L

o

, respectively. For each choice of an orientation o, the oriented resolution2 of
L
o

, say r
o

, can be identified with a resolution of L.
Bearing in mind this fact, is possible to define, for each orientation o 2 O(eL),

an enhanced state v�(o) 2 C•
�(L; F), where � 2 {OLee, TLee}, as follows

(1) mark a point p
g

for each circle g in r
o

;
(2) let q

g

be the point in S2 obtained by pushing p
g

slightly to the left3 with
respect to the orientation induced on r

o

by o;
(3) define the nesting number of g, denoted by N

g

, as the number of inter-
section points between the circles in r

o

and a generic segment between
q

g

and the point at the infinity in S2 = R2 [ {•}, modulo 2;
(4) label g as follows

u

�
g

=

8>><>>:
x� if N(g) ⌘ 0 mod 2 and � = TLee
x+ + x� if N(g) ⌘ 0 mod 2 and � = OLee
x+ � x� if N(g) ⌘ 1 mod 2

Finally, set v�(o) =
N

g2r
o

u

�
g

. We will call v�(L), and v�(L) = v
o

(�L) (i.e.
the v�(o) corresponding to the orientation of L and to the opposite orientation,

2The only resolution that inherits the orientation from the diagram. More precisely, its the
resolution where all negative crossing are replaced by a 1-resolution, and all the positive crossing are
replaced by a 0-resolution.

3That is, consider the normal vector field n on g, and consider a point q
g

in the half-line p
g

+

t n(p
g

), t � 0, such that the segment between q
g

and p
g

do not intersect any circle except g in p
g

.
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respectively) canonical cycles. Notice that the homological and quantum degrees
of v�(o) are, respectively,

hdeg(v�(o)) = n�(o)� n�(L)

and
qdeg(v�(o)) = �o(o) + n�(o) + n+(L)� 2n�(L).

where o(o) is the number of circles in r
o

, and we extended the qdeg as the min-
imum quantum degree of the homogeneous components. In particular,

hdeg(v�(L)) = 0, qdeg(v�(L)) = o(L) + w(L),

where o(L) denotes the number of circles in the oriented resolution of L. By
changing the orientation of a single component, say li, the number of negative
crossing in the new orientation is changed by adding twice4 the sum of the link-
ing numbers of li with all the other components (all positive crossings with the
other components become negative, hence should be added, while the previously
negative crossings become positive, and so they should be removed from the
count). From this simple consideration, and from the fact that v�(o) and v�(o)
have the same homological degree, it follows that:

(5) card{o 2 O(el) | hdeg(v�(o)) = i} = 2card

(
E ✓ {1, 2, · · · , `}

����� Â
l2E,m/2E

2lk(ll , lm) = i

)

Proposition 2.5 ([32], [47]). The enhanced state v�(o) 2 C•
�(L; F) is a cycle, for

each o 2 O(eL) and each � 2 {OLee, TLee}.

Proof. The statement follows directly from the fact that the set of circles of any
oriented resolution is bipartite (cf. [47, Lemma 2.4 & Corollary 2.5]), and from
the definitions of OLee and TLee.

Q.E.D.

Proposition 2.6 ([47], Proposition 2.3). Let L be a link diagram. The homology
class

s�(o, F) = [v�(o)] 2 H•
� (L; F), o 2 O(L),

is left invariant (up to sign) by the maps induced in homology by the Reidemeister moves,
for each � 2 {TLee, OLee}, and F such that char(F) 6= 2 if � = OLee. ⇤

Proposition 2.7 ([32], Theorem 4.2). Let L be a link diagram. The homology class

s

�
o

= [v�(o)] 2 H•
� (L; F), o 2 O(L),

are a basis for H•
� (L; F), for each � 2 {OLee, TLee}, and for each field F such that

char(F) 6= 2 if � = OLee. In particular,

rank(Hi
�(L; F)) = card{o 2 O(eL) | hdeg(v�(o)) = i}.

⇤
4Recall that the linking number is half the signed sum of the crossings between two components.
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Proofs of the Propositions 2.6 and 2.7 are split in various sources: see [51,
Theorem 4.1.A] for the case � = OLee and char(F) odd or zero, and [54, Theorem
3.1], for the case char(F) = 2 and � = TLee. Notice that, in the case char(F) 6= 2,
OLee and TLee are twist equivalent, and the equivalence (cf. [39, Proposition 3.1])
sends vOLee(o) to (a non zero multiple of) vTLee(o); hence, if � = TLee the state-
ment holds true for every field F. All the above-mentioned proofs are suitable
adaptations of the original proof by Lee (cf. [32, Theorem 4.2]). Because of Pro-
position 2.6 and Proposition 2.7, the s�(o, F) are also called canonical generators.

1.2. Concordance invariants from Lee homologies. Let l0 and l1 be two
oriented links in R3. A cobordism between l0 and l1 is a compact oriented
surface S, properly embedded in R3 ⇥ [0, 1], such that

S \R3 ⇥ {i} = li, i 2 {0, 1},

with the induced orientation on l0 and the opposite of the induced orientation
on l1.

Given a cobordism S between two links, say l and l

0, it is useful to dis-
tinguish between its connected components; a component of S is of first type
if it bounds a component of l, and is of second type otherwise. Let el be
the unoriented link underlying l. Two orientations o and o

0, on el and e
l

0, are
compatible via S if there exists an orientation of S bounding the oriented links
(el, o) and ( el0, o0). The set of pair of compatible orientations will be denoted by
OS(el, el0). Finally, the set of pair (o, o0) 2 OS(el, el0), for a fixed o, will be denoted
by OS(o, el0).

A cobordism S is a weak cobordism (or weakly connected in the language of
[47]) if all its components are of first type. While S is a strong cobordism if each
component of S bounds exactly one component of l and one component of l

0.

Remark 13. Every strong cobordism is also a weak cobordism. For each weak
cobordims between l and l

0, there is a unique orientation of el0 compatible with
the orientation of l.

Definition 2.1. A link l is strongly concordant (resp. weakly concordant) to
a link l

0 if there exists a strong (resp. weak) cobordism of genus 0 between l and
l

0. Any link which is strongly (resp. weakly) concordant to an unlink is called
strongly (resp. weakly) slice

There is a theorem due to Rasmussen ([47, Proposition 4.1]), describing the
behaviour of the canonical generators under cobordism. Below is a slight restate-
ment of the theorem, whose proof is identical to the one given by Rasmussen.

Proposition 2.8 (Rasmussen, [47]). Given a cobordism S with no closed compon-
ents between l and l

0

(FS)⇤(s�(o, F)) = ± Â
o

02OS(o, el0) a

o

0s�(o
0, F),
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where a

o

0 is different from zero for each o

0, � 2 {TLee, OLee}, and char(F) 6= 2 if
� = OLee. In particular, if S is a strong cobordism, then (FS)⇤ is a filtered isomorphism
of degree �c(S). ⇤

Corollary 2.9. The filtered isomorphism class of H•
� (l, F) is a strong concordance

invariant. ⇤

Suppose char(F) 6= 2. Following Rasmussen ([47]), Beliakova and Wehrli
([6]) introduced a family of numerical invariants for links, which are defined as
follows

s�(o, F) =
Fdeg (s�(o, F) + s�(o, F)) + Fdeg (s�(o, F)� s�(o, F))

2
.

As the two filtered degrees (see Appendix A) in the above formula differ exactly
by 2 (see [47], or [6, Section 7.1]), one can also give an alternative, equivalent,
definition

s�(o, F) = min {Fdeg (s�(o, F) + s�(o, F)) , Fdeg (s�(o, F)� s�(o, F))}+ 1.

However, the definition of the s-invariant should be modified to include the case
char(F) = 2 and � = TLee. Following Mackaay, Turner and Vaz ([39]) define

sTLee(o, F) = min {Fdeg(x) | x 2 hsTLee(o, F), sTLee(o, F)iF ✓ H•
TLee(L, F)}+ 1.

From Corollary A.6 in Appendix A follows that this definition is equivalent to
the other definitions if char(F) 6= 2.

From the basic properties of self-dual Frobenius algebras, and their relation-
ships with the homology of the mirror link, and from Proposition 2.8 the next
result follows immediately.

Proposition 2.10 (Rasmussen, [47], Beliakova-Wehrli [6]). Let l and l

0 be two
oriented links in R3, and let S be a weak cobordism between them. Then the following
inequality holds

|s�(o, F)(l)� s�(o0, F)(l0)|  �c(S), 8(o, o0) 2 OS(el, el0).
In particular, since c(S) = 0 for any strong concordance, the s�(o, F)s are strong con-
cordance invariants. ⇤

These invariants are more than just strong concordance invariants, they also
provide an obstruction to weak sliceness (as follows almost immediately from the
previous proposition).

Corollary 2.11 (Beliakova-Wehrli, [6]). If l is weakly slice, then

|s�(l, F)|  `� 1,

where ` is the number of components in l, and s�(l, F) indicates s�(o0, F), where o0 is
the orientation of l. ⇤

Finally, let us recall the other properties of the s-invariant (i.e the Rasmussen-
Beliakov-Wehrli invariant associated to the orientation of L).
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Theorem 2.12 (Rasmussen [47], Beliakova and Wehrli [6]). Let l and l

0 be two
oriented links, and let ` be the number of components of l, then

(6) s(l t l

0, F) = s(l, F) + s(l0, F)� 1

(7) s(l, F) + s(l0, F)� 2  s(l]l0, F)  s(l, F) + s(l0, F)

(8) 2� 2`  s(l, F) + s(l⇤, F)  2

where ] stands for the connected sum, and ⇤ stands for the mirror link.

Another generalization of the Rasmussen invariants for knots are Pardon’s
invariants (cf. [44]). These invariants were introduced by John Pardon, and are
strong concordance invariants generalizing the Rasmussen invariant for knots to
links. They are defined as follows

d�h,q(l, F) = dimF

 
F qHh

�(l; F)

F q+1Hh�(l; F)

!
, � 2 {OLee, TLee};

where

F qHh
�(l; F) = (ĩk)⇤

⇣
Hh(F qC�(l; F))

⌘
,

and ĩq is the inclusion of chain complexes F qC�(L, R)) ,! C�(L, R) (see Chapter
1 Subsection 2.2 for the definition of filtrations in Lee theories, and Appendix A
Section 5 for some general definitions regarding filtered chain complexes).

Thanks to [39, Theorem 2.3], there is a twist equivalence, respecting the fil-
tration, between TLee and OLee if char(F) 6= 2. This implies

dTLee
h,q (l, F) = dOLee

h,q (l, F), and sTLee(o, F) = sOLee(o, F) if char(F) 6= 2.

So we are going to omit the reference to the theory, taking s(o, F)(l) and dh,q(l, F)
to be the ones defined from twisted Lee theory.

Remark 14. The field will always appear in the notation, in fact there is a
difference between these invariants in characteristic 0 and in characteristic 2 (cf.
[35]). Whether or not there is a difference among fields with odd characteristic,
and characteristic 0 is still unknown (at least to the author’s knowledge, cf. [38]).

The original Pardon’s invariants, defined in [44], in our notation correspond
to dOLee

h,q (Q). However, the strong concordance invariance, as well as the other
properties (cf. [44, Theorem 1.2], loc. cit. Corollary 2.9), of dh,q are still valid, for
both dTLee

h,q (F) and dOLee
h,q (F), over any field F of zero or odd characteristic, or in

case char(F) = 2 for TLee (in fact, the properties listed in [44, Theorem 2.1] still
hold in these contexts).
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1.3. The quantum grading in the Free part. In order to complete the task of
determine quantum degree of the free part (i.e. the pjs of Corollary 2.2), some
preliminary definition is needed. Let L be an oriented link diagram, and l the
oriented link-type represented by L. Set

si(l, F) = max
n

k | dimF

⇣
(ĩk)⇤

⇣
H(F k

TLee(L, F))
⌘⌘
� i
o

,

where F
j
TLee(L, F) denotes the filtration in the twisted Lee complex (previously

denoted by F jC•
TLee(L, F), see Chapter 1 Subsection 2.2 for the definition), and ĩk

is the natural inclusion map F k
TLee(L, R) ,! C•

TLee(L, R). In the case k is a knot,
we have

s1(k, F) = s(k, F) + 1, s2(k, F) = s(k, F)� 1;

the above equalities can be deduced from two facts: first, the Lee homology of
a knot is bi-dimensional, and second the homology classes of the canonical gen-
erators have filtered degree s(k, F)± 1. Now it is necessary to relate the filtered
Twisted Lee theory with (a modified version of) Bar-Natan theory.

In order to “build a bridge” between the two theories is necessary to modify
slightly the complex C•,•

BN . Consider F[U1/2], with its natural structure of F[U]-
module, as a bi-graded F[U]-complex with trivial differential, whose generators
1 and U1/2 lie in bi-degree (0, 0) and (0,�1), respectively. Finally, define the total
Bar-Natan complex C•,•

BN(l, F) to be the tensor complex C•,•
BN(l, F)⌦F[U] F[U1/2].

Notice that the total Bar-Natan complex is also a bi-graded chain complex over
F[U1/2].

As a simple application of the Künneth formula, one can compute the homo-
logy of the total Bar-Natan complex from the homology of the (usual) Bar-Natan
complex. More precisely,

Hi,•
BN(l, F) ' Hi,•

BN(l, F)⌦ 1F[U1/2] � Hi,•+1
BN (l, F)⌦U1/2,

as graded F[U]-modules, where Hi,•
BN(l, F)⌦ a denotes the F[U]-sub-module of

Hi,•
BN(l, F)⌦ F[U1/2] generated by all elementary tensors of the form x⌦ a with

x 2 Hi,•
BN(l, F).

Proposition 2.13. Let F be a field, and L be an oriented link diagram. Then, the
map

pj : C•,j
BN(L, F)! F

j
TLee(L, F) : Â

r
xr ⌦ Pr(U

1
2 ) 7!Â

r
Pr(1)xr,

is an isomorphism of (F-)complexes. Moreover, the following diagram commutes

C•,j
BN(L, F[U])

pj //

U
1
2
✏✏

F
j,•
TLee(L, F)

ij
✏✏

C•,j�1
BN (L, F[U])

pj�1
// F

j�1
TLee(L, F)
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Proof. It is sufficient to observe that the maps pj are just restrictions of the
quotient map

p : C•,•
BN(L, F)! C•

TLee(L, F) =
C•,•

BN(L, F)

(U
1
2 � 1)C•,•

BN(L, F)
.

Then, the existence of the unique homogeneous lift proven in Appendix A (loc.
cit. Lemma A.10), ensures the bijectivity of pj for each j. The fact that pj is a
chain map is an immediate consequence of the definition of pj, and of the fact
that the identification of ATLee with ABN ⌦ F[U]/(U � 1) commutes with multi-
plication and co-multiplication (that is: this identification induces5 a morphism
of Frobenius Algebras). The commutativity of the diagram is trivial.

Q.E.D.

Lemma 2.14. Let M be a graded F[U]-module (deg(U) = �2). Denote by T(M)
the torsion sub-module of M (see [31, Ch. III §7]). Then

T(M) ✓ (U � 1)M,

and

Mk \ T(M) = Mk \ (U � 1)M.

Proof. Consider x 2 T(M), by theorem 2.1, then there exists a r > 0 such that
Urx = 0, hence

x = �Urx + x = �(Ur � 1)x = �(U � 1)(Ur�1 + ... + 1)x 2 (U � 1)M.

In particular, we have

Mk \ T(M) ✓ Mk \ (U � 1)M.

Consider xk 2 Mk \ (U � 1)M, by definition, there exists y 2 M such that

xk = (U � 1)y = (U � 1)

 
n

Â
i=m

yi

!
, yi 2 Mi.

Hence,

di,kxk = (Uyi+2 � yi),

where we set yj = 0, for each j > n and j < m. As a consequence yj is torsion
for each k � j � m. While, yj is trivial for each n � j � k + 2. Thus, xk is either
trivial or torsion, completing the proof.

Q.E.D.

5Recall that a morphism of Frobenius algebras is a pair (j, y), in this case it is sufficient to take
y = idF and as j the above mentioned identification.
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Lemma 2.15. Let L be an oriented link diagram. Consider the commutative diagram

H•,•
BN(L,F[U])

T((H•,•
BN(L,F[U]))

H•,k
BN(L, F[U]) //

‚

0
k

33

‚k ++

H•,•
BN(L, F[U])

p

''

p

0

77

H•,•
BN(L,F[U])

(U�1)H•,•
BN(L,F[U])

where the horizontal map is the inclusion in the direct sum, while p, p

0 are projection
onto the quotient; then

dimF(Im(‚k)) = dimF(Im(‚

0
k))

Proof. Notice that, thanks to the previous lemma, there is a well defined map p•
that makes the diagram below commute

H•,•
BN(L,F[U])

T(H•,•
BN)(L,F[U])

p•

✏✏

H•,k
BN(L, F[U]) //

‚

0
k

33

‚k ++

H•,•
BN(L, F[U])

p

''

p

0

77

H•,•
BN(L,F[U])

(U�1)H•,•
BN(L,F[U])

This map, seen as a map from Im(‚

0
k) to Im(‚k), is surjective. Moreover, because ‚

0
k

and ‚k share the same kernel (see Lemma 2.14), it is also injective, and the claims
follows.

Q.E.D.

Theorem 2.16. Let l be a link type, and ` the number of components in l. The
Bar-Natan homology of l is isomorphic, as bi-graded F[U]-module, to

nM
r=1

F[U]
(Utr )

(hr, qr)�
2`M

i=1
F[U](ki, si).

In particular, the following holds

si ⌘ ` mod 2, 8i 2 {1, ..., 2`}.

Proof. Using the notation of Corollary 2.2, fix an order on the pis in such a way
that pi � pi�1. The first part of the theorem may be re-stated as follows:

si = pi, 8i 2 {1, ..., 2`}.
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Consider the commutative square

H•,k
BN(L, F[U])

‚k+‚k+1//

pk '
✏✏

H•,•
BN(L,F[U])

(U�1)H•,•
BN(L,F[U])

p•'
✏✏

Hi(F k,•
TLee(L, F))

(ĩk)⇤
// H•

TLee(L, F)

where we have identified H•,k
BN(L, F[U]) and H•,k

BN(L, F[U])�H•,k+1
BN (L, F[U]), and

p• is the natural quotient map (cf. proof of Lemma 2.15). Being the vertical
arrows in the diagram above isomorphisms, the dimension (over F) of the image
of (ĩk)⇤ is the same as the dimension of the image of the map ‚k + ‚k+1. Thus we
get the following characterization of si.

(9) si(l, F) = max
n

k | dimF

⇣
(‚k + ‚k+1)

⇣
H•,k

BN(L, F[U])
⌘⌘
� i
o

.

In order to conclude it is necessary to find a characterization of the pis in terms
of the maps ‚k. Our claim is

(10) pi = max{k| ‚k(H•,k
BN(L, F[U])) has dimension � i}.

Assuming (10), from (9) follows that

si � pi.

The first part of Corollary 2.24 (which does not rely on any result in this section),
asserts that if r ⌘ `+ 1 modulo 2, then

H•,r
BN(L; F[U]) ⌘ 0.

It follows that one among ‚k and ‚k+1 is trivial. If ‚si+1 is trivial then it follows
that

i  dimF

⇣
(‚si + ‚si+1)(H•,si

BN(L, F[U1/2]))
⌘
= dimF

�
‚si (H•,si

BN (L, F[U]))
�

,

which implies, always assuming (10),

pi � si,

and the statement follows. Consider the following (commutative) diagram

H•,si
BN (L, F[U])� H•,si+1

BN (L, F[U])⌦U
1
2

**

OO

U
1
2

H•,•
BN(L,F[U])

(U�1)H•,•
BN(L,F[U])

H•,si+1
BN (L, F[U])� H•,si+2

BN (L, F[U])⌦U
1
2

44

and assume, by contradiction, that the modules in gray (and hence ‚si ) are trivial.
Because the multiplication by U

1
2 maps H•,si+1

BN (L, F[U]) ⌦ 1 surjectively onto
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H•,si+1
BN (L, F[U]) ⌦ U

1
2 , also the image of ‚si+1 + ‚si+2 would have dimension at

least i, which is absurd by (9) (✓).
So all is left is to prove (10). Fix an isomorphism

(11) H•,•
BN(L, F[U]) '

mM
i=1

F[U]
(Uti )

(hi, qi)�
nM

j=1
F[U](kj, pj),

which exists by Corollary 2.2. Consider the natural generators of the module on
the right hand side of (11), that is

ei = (

i�th place
#

0, ..., 0, [1], 0, ..., 0), and f j = (

(m+j)�th place
#

0, ..., 0, 1, 0, ..., 0),

where i 2 {1, ..., m} and j 2 {1, ..., n}. Denote by ẽi and f̃ j the pull-back under the
isomorphism in (11) of ei and f j, respectively. It is immediate that H•,k

BN(L, F[U]),
as an F-vector space, has a basis composed by all elements of the form Uni ẽi and
Umi f̃j such that

qdeg(ẽi)� 2ni = k = qdeg( f̃ j)� 2nj.

The homogeneous generators of H•,•
BN(L, F[U]) have quantum degree which is

congruent to ` modulo 2. This follows from the first part of Corollary 2.24 which
is independent from the results in this section. From Lemma 2.15 it follows that
the dimension of ‚k(H•,k

BN(L, F[U])) is the dimension of the (F-)vector subspace of
H•,•

BN(L, F[U]) generated by all homogeneous non-torsion elements of degree k. It
follows that the dimension of the image of ‚k is greater than or equal to i if, and
only if, at least i among the f̃ j’s have degree at least k.

Q.E.D.

Corollary 2.17. Let k be a knot type. The Bar-Natan homology of k is isomorphic,
as bi-graded F[U]-module, to

nM
i=1

F[U]
(Uti )

(hi, qi)� F[U](0, s(k, F)� 1)� F[U](0, s(k, F) + 1).

⇤

By definition of the total Bar-Natan complex, one has the following isomorph-
ism of bi-graded F[U]-modules:

Hh,q
BN(L, F[U1/2]) ' Hh,q

BN(L, F[U])� Hh,q+1
BN (L, F[U]) = Hh,k(`,q)

BN (L, F[U]),

where k(`, q) is the lowest number, which is greater than, or equal to q, such that
k(`, q) ⌘ ` mod 2. The isomorphisms (of F-complexes)

p

�1
q : F

q
TLee(L, F) �! H•,q

BN(L, F[U1/2]),

induce an isomorphism between the direct limits (which is the natural map used
also in the proof of Proposition 2.13)

p

�1
• : lim

 
F

q
TLee(L, F)(' H•

TLee(L, F)) �! lim
 

H•,q
BN(L, F[U1/2])

✓
'

H•,•
BN(L, F[U])

(U � 1)H•,•
BN(L, F[U])

◆
.
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Consider the commutative diagram

H•,q
BN(L, F[U1/2])

Jq=‚q+‚q+1//

p

�1
q '
✏✏

H•,•
BN(L,F[U1/2])

(U�1)H•,•
BN(L,F[U1/2])

p

�1
•'
✏✏

Hi(F
q
TLee(L, F))

(ıq)⇤
// H•

TLee(L, F)

Since the inclusion in the direct limit Jq, is such that

Jq

⇣
Hh,q

BN(L, F[U1/2])
⌘
=

Hh,k(`,q)
BN (L, F[U])

[(U � 1)Hh,•
BN(L, F[U])] \ Hh,k(`,q)

BN (L, F[U])

there is an isomorphism

F qHh
TLee(L, F) '

Hh,k(`,q)
BN (L, F[U])

[(U � 1)Hh,•
BN(L, F[U])] \ Hh,k(`,q)

BN (L, F[U])
'

and the latter can be identified, thanks to Lemma 2.14, with

'
Hh,k(`,q)

BN (L, F[U])

Tor Hh,•
BN(L, F[U]) \ Hh,k(`,q)

BN (L, F[U])
.

Finally, because the multiplication by U1/2 from H•,q+1
BN to H•,q

BN is surjective if
q ⌘ `+ 1 mod 2, and corresponds to the multiplication by U from H•,q+2

BN to H•,q
BN ,

if q ⌘ ` mod 2 (cf. Proposition 2.13), it follows that

F q Hh
TLee(L, F)

F q+1Hh
TLee(L, F)

'

Hh,k(`,q)
BN (L,F[U])

Tor Hh,•
BN(L,F[U])\Hh,q

BN(L,F[U])

U
k(`,q)�k(`,q+1)

2
Hh,k(`,q+1)

BN (L,F[U])

Tor Hh,•
BN(L,F[U])\Hh,k(`,q+1)

BN (L,F[U])

.

We observe that using the F[U]-module structure of Bar-Natan homology, the
above isomorphism can be interpreted as saying that the Pardon’s invariant dTLee

h,q
counts how many ”generators of the free part“ there are in bi-degree (h, q). More
formally,

Proposition 2.18. If the Bar-Natan homology of an oriented link l is

nM
r=1

F[U]
(Utr )

(hr, qr)�
2`M

i=1
F[U](ki, si),

then
dh,q(l, F) = card({i | (ki, si) = (h, q)}).

⇤

From which follows immediately

Corollary 2.19. All the sis are strong concordance invariants. ⇤



2. THE TORSION OF BAR-NATAN HOMOLOGY 31

Remark 15. In general, for any knot k we have

dh,q(k) 6= 0 () (h, q) 2 {(0, s(k)± 1)},

re-proving Corollary 2.17. In the case of links, the points where dh,q is non-trivial
do not determine the Rasmussen-Beliakova-Wehrli invariants (shifted by ±1). For
example, consider the n-components unlink Un and F = Q. Direct computations
show that

dh,q(Un) =

(
(k

n) if (h, q) 2 {(0, 2k� n)}k=0,...,n

0 otherwise
,

while, for n = 2
s
o

(U2) = �1, 8o 2 O(U2).

2. The structure of Bar-Natan homology II: torsion

To complete our description of Bar-Natan homology all that is left is to de-
termine the torsion sub-module of H•,•

BN(L, F[U]). In a similar way to how the
free part of Bar-Natan homology could be recovered from (twisted) Lee theory,
the torsion of H•,•

BN(L, F[U]) could be recovered from Khovanov homology. From
now on by ”U-torsion“ we will mean the elements of H•,•

BN(L, F[U]) which are
annihilated by the multiplication for some power of U.

2.1. Torsion and Khovanov homology.

Proposition 2.20. Let L be an oriented link diagram, and F be a field. Suppose that
the F-vector space Hi�1,j�2

Kh (L, F) is trivial. Then, the map

U· : Hi,j
BN(L, F[U])! Hi,j�2

BN (L, F[U]),

is injective. In particular, if Hi�1,•
Kh (L, F) is trivial, then Hi,•

BN(L, F) is either trivial, or a
free F[U]-module.

Proof. Consider the short exact sequence of complexes, which descends directly
from the definitions,

0! C•,j
BN(L, F[U])

U·�! C•,j�2
BN (L, F[U])

pKh�! C•,j�2
Kh (L, F)! 0.

This sequence induces a long exact sequence in homology

· · ·! Hi�1,j�2
Kh (L, F)

∂⇤�! Hi,j
BN(L, F[U])

U⇤�! Hi,j�2
BN (L, F[U])! · · ·

Thus, by exactness we have

Ker(U⇤
��Hi,j

BN
) = ∂⇤(Hi�1,j�2

Kh (L, F)),

and the first part of the claim follows. The second part of the Proposition is a
simple consequence of the first part, and of Corollary 2.2.

Q.E.D.
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Remark 16. The previous proposition holds for any ring R in place of F. This
because all we have used are the definitions of BN and Kh. In the following we
will rely on the Künneth formula, as well as on the structure theorem for graded
modules (i.e. Theorem 2.1), and both of them require R[U] to be a PID (to be
precise, the Künneth formula requires R[U] to be a hereditary domain, plus some
more hypotheses regarding the complex, see [20]). This is the main reason why
our theorems and considerations are limited to the case R = F.

Now we can state a precise relationship between Khovanov homology and
Bar-Natan homology.

Proposition 2.21. Let L be an oriented link diagram. Given a field F, there is a
short exact sequence of F[U]-modules

0! Hi,•
BN(L, F[U])⌦ F �! Hi,•

Kh(L, F) �! TorF[U](Hi+1,•
BN (L, F[U]), F)! 0,

where F has been identified with the F[U]-module F[U]/(U). Moreover, the first map is
graded of degree 0, and this sequence splits (not naturally).

Proof. The proof of the statement, descends directly from a careful inspection of
the proof of the Künneth formula. Some care should be put into checking the
degrees of the maps involved in our case. Reporting the whole proof here would
not give any insight, so we refer the reader to, for example, [20, Chapter V], or to
any basic text of Algebraic Topology.

Q.E.D.

Corollary 2.22. If L is an oriented link diagram, and F is a field, then

Hi,•
Kh(L, F) = 0

implies
Hi,•

BN(L, F[U]) = 0, TorF[U](Hi+1,•
BN (L, F[U]), F) = 0.

⇤

Corollary 2.23. If L is an oriented knot diagram with n� > 0 negative crossings,
then

H�n� ,•
Kh (L, F) ' TorF[U](H�n�+1,•

BN (L, F[U]), F);
as F[U]-modules, for any field F. ⇤

Another consequence of Proposition 2.21, which describes the shape of Bar-
Natan homology, is the following one.

Corollary 2.24. Let F be any field, and let L be an `-components link. If j ⌘ `+ 1
modulo 2, then

H•,j
BN(L, F[U]) ⌘ 0.

In particular, if L is a knot, its Bar-Natan homology is isomorphic (as bi-graded F[U]-
module) to

nM
i=1

F[U]
(Uti )

(hi, 2ki + 1)� F[U](0, s(k)� 1)� F[U](0, s(k) + 1).
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Proof. The statement holds true for Khovanov homology, see [25, Proposition 24].
If Hi,j

BN(L; F[U]) is non-zero for some i, then so is

Hi,j+2k
BN (L, F[U])⌦ F ,! Hi,j+2k

Kh (L, F),

for some k 2 N, which is absurd (✓).
Q.E.D.

2.2. Hooks, Pawns and Torsion. In order to recover also the (quantum) graded
structure of Khovanov’s homology from Bar-Natan’s, one has to investigate the
graded structure of TorF[U](Hi,•

BN(L, F[U]), F).
Let F be a graded Frobenius algebra, and M a graded RF module. There is

a graded structure on
TorRF (H•,•

F (L, R), M),

coming from the projective resolution

0! B•,•
F (L, R) �! Z•,•

F (L, R) �! H•,•
F (L, R)! 0,

where in general Z•
F (L, R) indicates the set of cycles in C•

F (L, R), B•
F (L, R) indic-

ates the set of boundaries.
First, we need to show that this structure is well-defined, that is: under a

suitable set of hypotheses the graded structure should not depend on the choice
of projective resolution (cf. [18, Chapter 3]).

Lemma 2.25. Let M•, N• be two graded R-modules. Consider two graded projective
presentations of M•, say

F : 0! F•
1

j�! F•
2 ! M• ! 0, G : 0! G•

1
g�! G•

2 ! M• ! 0.

If g and j are graded maps of degree 0 and if the projections onto M• are graded of degree
0, then

TorF (M•, N•) ' TorG(M•, N•),

as graded R-modules.

Proof. The proof is just the proof of the invariance of Tor with respect to the
change of projective resolutions (see, for example, [20]). If the hypothesis on
the gradings of j, g and the projections are satisfied, then the up-to-homotopy
isomorphism between the two complexes are also graded of degree 0 by construc-
tion.

Q.E.D.
So, coming back to the relationship between Bar-Natan and Khovanov theory,

we notice that with respect to graded structure of Tor described above the map

Hi,•
Kh(L; F) �! TorF[U](Hi+1,•

BN (L, F[U]), F),

appearing in Proposition 2.21 is graded of degree 0 (this is due to the fact that
that all the maps appearing in the proof of Proposition 2.21 are bi-graded with
bi-degree 0). Now, we are ready to prove the main result of this section.
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Proposition 2.26. Given a link L with ` connected components and Bar-Natan
homology of the form

nM
i=1

F[U]
(Uti )

(hi, qi)�
2`M

j=1
F[U](2kj, sj),

there is an isomorphism of doubly graded F[U]-modules between H•,•
Kh (L; F) and

nM
i=1

(F(hi, qi)� F(hi � 1, qi � 2ti))�
2`M

j=1
F(2kj, sj),

Proof. Consider the projective resolution of F[U]-modules

0! Uk(F[U](a))! F[U](a)! F[U]

(Uk)
(a)! 0,

this tells us that

TorF[U]

✓
F[U]

(Uk)
(a), F

◆
= F(a� 2k).

So, we have the following chain of isomorphisms of bi-graded F[U]-modules

TorF[U](H•,•
BN(L, F[U]), F) ' TorF[U](T

�
H•,•

BN(L, F[U])
�

, F) '

thanks to Lemma 2.25

' TorF[U]

0@ nM
j=1

F[U]

(Utj)
(hj, qj), F

1A '

'
nM

j=1
TorF[U]

✓
F[U]

(Utj)
(hj, qj), F

◆
'

finally,

'
nM

j=1
F(hj, qj � 2tj).

Hence, each torsion-tower in Bar-Natan’s homology contributes a hook move, i.e.
F(i � 1, j � 2k) � F(i, j), in Khovanov homology. In particular, each F[U]/(U2)
contributes with a knight move. On the other hand, by Propositions 2.20 and
2.21, each free-tower (i.e. each copy of F[U]) contributes a single copy of F in the
same bi-degree of its generator.

Q.E.D.

Corollary 2.27. If the torsion in Bar-Natan’s homology of a knot k is only of the
form F[U]/(U2), then there are only a single pawn move (in bi-degree (0, s(k) + 1)),
and some knight moves (i.e. hook moves with k = 2) in Khovanov homology. ⇤
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2.3. T-theory and knight moves. The propositions in Subsections 2.1 and
2.2 all of formal nature, hence they hold, with minor modifications, for the TT-
homology. Moreover, the proofs are the same. For the sake of completeness, we
restate below the main propositions.

Proposition 2.28. Let L be an oriented link diagram, and F be a field. Suppose that
the F-vector space Hi�1,j�4

Kh (L, F) is trivial. Then the map

T· : Hi,j
TT(L, F[T])! Hi,j�4

TT (L, F[T]),

is injective. In particular, if Hi�1,•
Kh (L, F) is trivial, then Hi,•

TT(L, F) is either trivial or a
free F[T]-module. ⇤

Proposition 2.29. Let L be an oriented link diagram. Given a field F, there is a
short exact sequence of F[T]-modules

0! Hi,•
TT(L, F[T])⌦ F �! Hi,•

Kh(L, F) �! TorF[T]

⇣
Hi+1,•

TT (L, F[T]), F
⌘
! 0,

where F = F[T]/T. Moreover, the first map is graded of degree 0, and this sequence
splits (not naturally). ⇤

Proposition 2.30. Given a link L with ` connected components and TT-homology
of the form

nM
i=1

F[T]
(Tti )

(hi, qi)�
mM

j=1
F[T](2kj, sj),

there is an isomorphism of doubly graded F[T]-modules between H•,•
Kh (L, F) and

nM
i=1

(F(hi, qi)� F(hi � 1, qi � 4ti))�
2`M

j=1
F(2kj, sj).

⇤

Proposition 2.30 gives stronger constraints on the shape of Khovanov homo-
logy than the ones given by Proposition 2.26; in fact, Proposition 2.30 asserts that
there are hooks of length multiple of 4. In order to extract information on Bar-
Natan homology from this result one should prove that the (hi, qi)s appearing in
Proposition 2.26 are the same as the ones in Proposition 2.30. In order to prove
this, one has to relate TT-homology and Bar-Natan homology. We are going to
do this by using Lee theory.

Similarly to what was done for Bar-Natan theory, we have to modify slightly
the complex C•,•

TT (L, F[T]). In particular, we need to introduce a fourth root of T.
Consider F[T1/4], with is natural structure of F[T]-module, as a bi-graded

F[T]-complex (with trivial differential) whose generators 1, and T1/4 lie in bi-
degree (0, 0) and (0,�1), respectively. Finally, define the total TT-complex as
the tensor complex C•,•

TT (L, F[T])⌦F[T] F[T1/4], and denote it by C•,•
TT(L, F[T1/2]) .

The total TT-complex is a bi-graded chain complex over F[T1/2].
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By Künneth formula,

Hi,•
TT(L, F[U]) ' Hi,•

TT(L, F[U])⌦ h1F[T1/4]iF[T] � Hi,•+1
TT (L, F[U])⌦ hT1/4iF[T]�

� Hi,•+2
TT (L, F[U])⌦ hT1/2iF[T] � Hi,•+3

TT (L, F[U])⌦ hT3/4iF[T],

as graded F[T]-modules.

Proposition 2.31. Let F be a field, and L be an oriented link diagram. Then, the
map

Fj : C•,j
TT(L, F[T1/4])! F

j,•
OLee(L, F) : Â

r
xr ⌦ Pr(T

1
4 ) 7!Â

r
Pr(1)xr,

is an isomorphism of (F-)complexes, where FOLee is the quantum filtration in the original
Lee theory. Moreover, the following diagram commutes

C•,j
TT(L, F[T1/4])

Fj //

T
1
4
✏✏

F
j,•
OLee(L, F)

‚j
✏✏

C•,j�1
TT (L, F[T1/4])

Fj�1

// F
j�1,•
OLee (L, F)

Proof. The proof is the same as the proof of Proposition 2.13.
Q.E.D.

Theorem 2.32. Let F be a field such that char(F) 6= 2, and let L be an oriented link
diagram. Then,

H•,•
TT (L, F[T]) '

nM
i=1

F[T]
(Tti )

(hi, qi)�
mM

j=1
F[T](2kj, sj),

as bi graded F[T]-modules, if and only if

H•,•
BN(L, F[U]) '

nM
i=1

F[U]
(U2ti )

(hi, qi)�
mM

j=1
F[U](2kj, sj),

as bi graded F[U]-modules.

Proof. One can relate Bar-Natan and TT-theory as follows

C•,j
TT(L, F[X])

Fj�! F
j,•
OLee(L, F)

' ! F
j,•
TLee(L, F)

pj � C•,j
BN(L, F[X]),

where char(F) 6= 2, and F[T
1
4 ], F[U

1
2 ] are (naturally) identified with F[X] as

graded rings. Moreover, we have the following commutative diagram

C•,j
TT(L, F[X])

X·
✏✏

Fj // F
j,•
OLee(L, F) oo

' //

‚j
✏✏

F
j,•
TLee(L, F)

ij
✏✏

C•,j
BN(L, F[X])

pjoo

X·
✏✏

C•,j�1
TT (L, F[X])

Fj�1 // F
j�1,•
OLee (L, F) oo

' // F
j�1,•
TLee (L, F) C•,j�1

BN (L, F[X])
pjoo
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Hence, there is an isomorphism of bi-graded F[X]-modules (to lighten the nota-
tion the link and the ring will be omitted for the rest of the proof)

H•,•
BN � H•,•+1

BN ⌦ X ' H•,•
TT � H•,•+1

TT ⌦ X� H•,•+2
TT ⌦ X2 � H•,•+3

TT ⌦ X3.

If we consider the natural F[X2]-module structure, both the right hand side and
the left hand side of the equation above, split into the direct sum of two sub-
modules: one supported in the quantum gradings which are equal to ` modulo
2, and the other supported in qdeg ⌘ ` + 1 modulo 2. Thus, thanks to this
splitting, we get the following isomorphisms of bi-graded F[X2]-modules

H•,•
BN ' H•,•

TT � H•,•+2
TT ⌦ X2, H•,•+1

BN ⌦ X ' H•,•+1
TT ⌦ X� H•,•+3

TT ⌦ X3.

Notice that the torsion sub-module of H•,•
BN is isomorphic to the module

T(H•,•
TT )� T(H•,•

TT )⌦ X2;

In particular, we have
nM

i=1

✓
F[T]
(Tti )

(hi, qi)�
F[T]
(Tti )

(hi, qi)⌦ X2
◆
'

mM
j=1

F[U]
(Urj)

(kj, pj).

By the uniqueness of the decomposition of a graded module over a PID (loc. cit.
Theorem 2.1), we have that n = m and, for each i exists j such that

F[T]
(Tti )

(hi, qi)�
F[T]
(Tti )

(hi, qi � 2) ' F[U]
(Urj)

(kj, pj),

as graded F[X2]-modules. In other words, a torsion tower in H•,•
BN(L, F[U]) corres-

ponds to two copies of a torsion tower in H•,•
TT (L, F[T]), with one of these copies

shifted by (0,�2) (see Figure 1 for a visual representation).

⌦1

⌦X2

'

·X2
·X2

Figure 1. Torsion towers

This implies that (hi, qi) = (kj, pj) and 2ti = rj. The same reasoning applies
for the free part, and the claim follows.

Q.E.D.
The previous proposition is not entirely unexpected. In fact, [41, Theorems

3 & 4] assert that the TT-theory is the universal theory over any field where 2
is invertible, while BN is universal over Z; hence, the two must hold the same
amount of information if char(F) 6= 2.
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Corollary 2.33. If char(F) 6= 2, then the torsion in H•,•
BN(L, F[U]) is of even order.

More precisely, the torsion sub-module of H•,•
BN(L, F[U]) is isomorphic to a direct sum of

F[U]-modules of the form F[U]/(U2k). ⇤
The “knight move conjecture”, known also as the Bar-Natan-Garoufalidis

conjecture (cf. [3] and [15], see also [26, Section 3.2]), which was proved by Lee,
in [32], for the homologically-thin knots (cf. [26]), could be stated as follows.

Conjecture (Bar-Natan, Garoufalidis). If F = Q, then for any link l

H•,•
Kh (l; F) =

nM
i=1

(F(hi, qi)� F(hi � 1, qi � 2))�
2`M

j=1
F(2kj, sj),

as bi-graded F-module.

In other words, there are only hooks of length 2 in the rational Khovanov
homology. It is our opinion that this kind of (conjectural) phenomenon is the
shadow of a (conjectural) phenomenon in Bar-Natan homology, which can be
stated as follows.

Conjecture. If char(F) 6= 2, then the torsion in H•,•
BN(L, F[U]) is of order 2. More

precisely, the torsion sub-module of H•,•
BN(L, F[U]) is isomorphic to a direct sum of F[U]-

modules of the form F[U]/(U2).

This conjecture implies the Bar-Natan-Garoufalidis conjecture thanks to Co-
rollary2.27.

Remark 17. It is not difficult to see that the Bar-Natan–Garoufalidis conjec-
ture is false over F with char(F) = 2.



CHAPTER 3

Transverse invariants in the sl2-theory

In this chapter we introduce two transverse braid invariants coming from
Bar-Natan theory, and study their properties. These invariants consist of a pair
of chains in C•,•

BN(B, F) (the b-invariants), and a pair of non-negative integers
(the c-invariants). Both the b-invariants and the c-invariants are proved to be
flype invariants, and closely related to another family of invariants, namely the
NLS-invariants. Moreover, the c-invariants are proved to be non-effective – in a
technical sense – on all transverse knots whose knot type is a prime knot with
crossing number lower than 12.

The chapter is structured as follows: in the first section we introduce some
basic material regarding transverse and Legendrian links, as well as some mater-
ial regarding Bennequin-type inequalities. The second section is devoted to the
study of the b-invariants and their relationship with other transverse invariants
coming from Khovanov and Lee theories. The third section is dedicated to the
c-invariants. After having defined the c-invariants we will provide some bounds
to compute them. Finally, we investigate the presence of other transverse invari-
ants in the Bar-Natan complex, and in the more general case of a Khovanov-type
homology theory.

1. Transverse knots and braiding

Let us start by reviewing some well-known facts on transverse links in the
contact manifold (R3, xsym). The material contained in this section is the bare
minimum needed to understand the subsequent material. The interested reader
may refer to [14] for the general background on transverse and Legendrian link
theories.

1.1. Transverse links and braids. As was said before, in this thesis we are
interested only in transverse links in R3 endowed with the symmetric contact
structure. In particular, we use a combinatorial description of these links given by
the Transverse Markov Theorem. Nonetheless, we introduce some more general
material on Legendrian and transverse links. This material will be necessary to
understand some aspects of the problem, and to state some results. That said, let
us start by giving the general definition of contact structure on a 3-manifold.

Definition 3.1. A contact structure x on a 3-manifold M, is a totally non-
integrable distribution of planes over M – i.e. for each point p, and each neigh-
bourhood U of p, does not exists a surface tangent to the distribution x in U .

39
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The symmetric contact structure on R3, is the distribution of planes given as
the kernel of the 1-form

xsym = dz� ydx + xdy.

This distribution is easily proved to be totally non-integrable by the Frobenius
criterion for integrability of distributions (see, for example, [30, Chapter IV]), and
hence defines a true contact structure.

Figure 1. The kernel of xsym in R3, near the z-axis.

A transverse link (respectively, Legendrian link) in (R3, xsym) is a smooth
embedding of ` disjoint copies of S1 into R3, in such a way that at each point
the tangent space is transverse (respectively, tangent) to Ker(xsym). A transverse
(respectively, Legendrian) knot is a one-component transverse (respectively, Le-
gendrian) link. Two transverse (resp. Legendrian) links, say l and l

0 are said to
be transversely (resp. Legendrian) equivalent if there exists a smooth ambient
isotopy

H : R3 ⇥ [0, 1] �! R3,

such that: H(l, 1) = l

0 and H(l, t) is a transverse (resp. Legendrian) link for
each t. If two links are equivalent are said to be of the same type.

A classic theorem by Bennequin relates transverse links and closed braids,
but first let us recall the definition of a braid.

Definition 3.2. The braid group on i strands, denoted by Bi, is the group
generated by sj, with j 2 {1, ..., i� 1}, subject to the following relations

sksj = sjsk, |k� j| > 1,

sk+1sksk+1 = sksk+1sk.

A braid B is an element of Bn, for a certain n. The integer n is called braid index
of B. The braid group admits a (more geometrical) diagrammatic representation
as shown in Figure 2.



1. TRANSVERSE KNOTS AND BRAIDING 41

i

k +2

k+ 1

k

k- 1

1

.

.

.

.

.

.

.

.

.

.

.

.

sk 2 Bi

i

k +2

k+ 1

k

k- 1

1

.

.

.

.

.

.

.

.

.

.

.

.

s

�1
k 2 Bi

T...
...i strands

(
T0

...
...

Figure 2. Diagrammatic representation of a generator of Bi,
and its inverse, together with the pictorial representation of the
product in the braid group.

The Alexander closure (see Figure 3) of a braid B represents a link embedded
in a thickened annulus A⇥ (�#, #). This thickened annulus can be naturally seen
as an embedded sub manifold of R3: it is sufficient to identify A with the annulus
on the place between the unit circle and the circle of radius 2. Up to perturbations
of B by small isotopies near the crossings, this embedding represents a transverse
link. The above-mentioned theorem by Bennequin states that the converse is also
true.

Theorem 3.1. (Bennequin ’83, [7]) Any transverse link in (R3, xsym) is transversely
isotopic to a the Alexander closure braid (embedded in R3 as described above). ⇤

T...
...

Figure 3. The Alexander closure of a braid T

T...
... T...

...

Figure 4. Positive (left) and negative (right) stabilizations of a
braid T.

A refinement of Bennequin’s theorem, called the Transverse Markov The-
orem (due to Orevkov, Shevchishin and, independently, Wrinkle) allows one to
identify (closed) braids, modulo a certain finite set of combinatorial moves, with
transverse links, up to transverse isotopy.
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Theorem 3.2. (Orevkov and Shevchishin, [42], Wrinkle, [58]) Two braids represent
the same transverse link type if and only if they are related by a finite sequence of braid
conjugations, positive stabilizations, and destabilizations1. ⇤

1.2. Classical and effective invariants. There are two classical invariants for
transverse links: the topological link-type, and the self-linking number sl. The
latter could be defined, in the case of a transverse braid B, as the difference
between the writhe2 of the braid, and the braid index. More explicitly

sl(B) = n+(B)� n�(B)� b(B) = w(B)� b(B).

Remark 18. A negative stabilization decreases the self-linking number by 2.
In particular, a negative stabilization changes the transverse type of a braid.

Both the self linking number and the link-type are not very powerful as
transverse invariants; there are ample families of transverse links (or even knots)
which could not be distinguished by the means of these invariants. Any invari-
ant which can distinguish two transverse links with the same self-linking number,
and the same link-type is called effective. A family of transverse links whose ele-
ments are told apart one from the other by the two classical invariants is called
(transversely) simple – e.g. positive torus links.

In [8], Joan Birman and William Menasco, introduced a construction to pro-
duce a family of non-simple closed 3-braids. This construction, called flype, had
been generalized to n-strands braids by the same authors (see [9]). Here, as in
[34], the world flype will refer to a special case of those in [9]. Consider two
braids, say A, B 2 Bn, and define

F±
1 (A, B; k) = As

k
nBs

⌥1
n , F±

2 (A, B; k) = As

⌥1
n Bs

k
n.

Then, we will say that F+
1 (A, B; k) (resp. F�1 (A, B; k)) is obtained from F+

2 (A, B; k)
(resp. F�1 (A, B; k)) by a positive (resp. negative) flype. It is immediate that the
two braids F±

1 (A, B; k), and F±
2 (A, B; k), have the same self linking number. Less

immediate, but nonetheless true, is that the closure of F±
1 (A, B; k) and F±

2 (A, B; k),
represent the same link type (see the end of Section 2). While two links which
are obtained one from the other by a positive flype represent the same transverse
link type, there are examples of negative flype pairs – i.e. two links related by a
negative flype – whose elements represent non-transversely isotopic link types.

Legendrian and transverse links are related. We do not wish to enter into the
details of their relationship, but there are some facts we need to state. Legendrian
links have (at least) two diagrammatic theories, both of them being similar to the
usual diagrammatic knot theory. Of course, in this case some care is needed:
not any diagram can be seen as diagram of a Legendrian link. The two main

1Let B 2 Bm�1, the positive (resp. negative) stabilization of B 2 Bm�1 is the braid Bsm 2 Bm
(resp. Bs

�1
m 2 Bm). The destabilization is just the inverse process: if one considers a braid of the form

As

±1
m B, where A, B 2 Bm�1, then its destabilization is the braid AB. See also Figure 4.

2The number of positive crossings minus the number of negative crossings in an oriented link
diagram L, usually denoted by w(L).
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ways to produce diagrams for Legendrian links are: through front projection,
and through a Lagrangian projection.

Given a front projection of a Legendrian link (which looks like a link diagram
with cusps, see [14]), there exist two ways to produce the diagram (a front projec-
tion to be precise) of a transverse link with the same link type. The two transverse
links corresponding to the diagram obtained are called transverse push-offs of
the Legendrian link (cf. [14]). There is a positive push-off and a negative push-off
and in general these are non-isotopic as transverse links.

There are also three classical Legendrian invariants: the topological link
type, the Thurston-Bennequin number tb and the rotation number r. The Thur-
ston-Bennequin and rotation numbers of a Legendrian link are related to the
self-linking number of its transverse push-offs by the equations

tb(l)⌥ r(l) = sl(l±),

where l is a Legendrian link and l+ (resp. l�) its positive (resp. negative) push-
off. In particular, given a transverse link l and a Legendrian link l

0 such that l

is a transverse push-off of l

0, then

tb(l0)� |r(l0)|  sl(l).

Hence, it follows that any bound from above on the value of the self linking
number, is also a bound on the value of difference between the Turston-Bennequin
number and the absolute value of the rotation number. Finally, notice that, for
any link l, the previous equation implies

tbmax(l)  slmax(l),

where slmax and tbmax are the maximal self-linking number, and the maximal
Thurston-Bennequin number, respectively.

1.3. Bennequin-type inequalities. Finding upper bounds for the Thurston-
Bennequin, rotation and self-linking numbers of links from link invariants ori-
ginated as a problem in contact topology, but now has become more a subject
of knot and braid theories. This is in some sense due to the fact that, while is
easy to compute the self-linking number, the rotation number, or the Thurston-
Bennequin number of a (suitable) diagram, it is often difficult to compute the
invariants estimating them. These bounds are given by numerical three dimen-
sional (e.g. the Seifert genus), four dimensional (e.g. the slice genus) or combin-
atorial link invariants (e.g. the un-knotting number), or also by quantities related
to polynomial link invariants (such as the Kauffman and HOMFLY-PT polynomi-
als) and, more recently, link homologies (such as Khovanov, Khovanov-Rozansky
and knot Floer homologies). This collection of bounds has been named, generic-
ally, Bennequin-type inequalities.

Among the earlier Bennequin-type inequalities there are: the inequality proven
by Rudolph ([49]), in terms of the slice genus, and the inequality proved by
Eliashberg ([13]), in terms of the Euler characteristic of a surface bounding a
transverse or a Legendrian link in a tight contact manifold. Then, a few years
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later, Rasmussen ([47]), Plamenevskaya ([45]), and Shumakovitch ([50]), intro-
duced similar inequalities for the s-invariant of knots (we call them Bennequin
s-inequalities). These inequalities where subsequently sharpened by Kawamura
([23]), and generalized by Wu ([59]) to the slN Khovanov-Rozansky homology.
Finally, Kawamura ([24]) and Lobb ([37]), independently, sharpened these in-
equalities further in the case of Khovanov homology. A slight improvement of
Lobb’s inequalities for a particular class of links (namely, the pseudo-thin links)
is due to Cavallo ([10]).

Let L be an oriented link diagram, and l the link-type represented by L.
Denote by o+(L), o�(L) and o0(L) the number of circles in the oriented resolution
of L which are adjacent only to positive crossing, negative crossings and both
type of crossings, respectively. These types of circles will be called, respectively,
positive circles, negative circles and neutral circles. A circle in the oriented
resolution is called strongly negative if it is a negative circle and is touched by at
least two crossings. The number of strongly negative circles in L will be denoted
by o0�(L). Let F be a field. Now that the notation is in place, we can state two of
the above-mentioned Bennequin s-inequalities.

[45, 50] Let l be an oriented knot, and L an oriented diagram representing it,
then

(P-S04) s(l, F) � w(L)� o(L) + 1.

[23] Let l be an oriented non splittable link, and L an oriented diagram
representing it. If o+(L) + o0(L) > 0, then

(Kw11) s(l, F) � w(L)� o(L) + 2o0�(L) + 1.

To state the others Bennequin s-inequalities is necessary to fix some more nota-
tion. Denote by G(L) the simplified Tait graph, that is a graph with marked
edges which has the circles of the oriented resolution as vertices, and there is
an edge between two vertices if they share at least a crossing. The markings on
the edges are either +, �, or 0, depending on the fact that two circle share only
positive crossings, only negative crossings, or both type of crossings. G±(L) is the
sub-graph of G(L) spanned by positive (resp. negative) circles. Finally, denote by
s+(L) (resp. s�(L)) the number of connected components of the graph obtained
from G(L) by removing the negative (resp. positive) edges. Finally, we can state
Lobb’s, Kawamura’s and Cavallo’s bounds on the value of the s-invariant.

[37] Let l be an oriented link, and L an oriented diagram representing l,
then

(Lb12) w(L) + o(L)� 2s�(L) + 1 � s(l, F) � w(L)� o(L) + 2s+(L)� 2`+ 1.

[24] Let l be a non-splittable oriented link, and L an oriented diagram rep-
resenting it, then

(Kw15) s(l, F) � w(L)� o(L) + 2s+(L)� 1.



1. TRANSVERSE KNOTS AND BRAIDING 45

[10] Let l be an oriented pseudo-thin link, L an oriented diagram repres-
enting l, and `s the number of its split components (i.e. connected
components of L seen as a four-valent graph), then

(Cv15) s(l, F) � w(L)� o(L) + 2s+(L)� 2`s(L) + 1.

Remark 19. The inequalities stated in this section are slight reformulations
of the original ones. In fact, we stated them for any field F. The proof of the
inequality (Kw15) uses only formal properties of the s-invariant, so (Kw15) holds
true for any field (cf. [24, Theorem 4.4]). Because the proof of (Cv15) uses only
a formal property of the s-invariants and (Lb12), the inequality (Cv15) holds
true for any field if, and only if, (Lb12) holds true for any field. Finally, the
proof of (Lb12) can be adapted without changing a single word to all fields of
characteristic different than 2. While, the case char(F) = 2 could be dealt with by
replacing original Lee theory with twisted Lee theory in the proof of (Lb12). The
inequalities (P-S04) and (Kw11) hold for any field as all the other inequalities are
strictly stronger.

Remark 20. Although Kawamura’s inequality is limited to non-splittable
links, it can be extended (thanks to property (6) in Chapter 2, Theorem 2.12)
to link diagrams whose split components are diagrams of non-splittable links.
Given such a link diagram L, Kawamura’s inequality can be re-written as follows

(Kw15) s(l, F) � w(L)� o(L) + 2s+(L)� 2`s(L) + 1.

When L is (the Alexander closure of) a braid diagram, o(L) becomes the braid
index. Thus, the above inequalities provide an upper bound for the self-linking
number of L. Of course, these inequalities can be read in the other way, and used
to estimate the value of the s-invariant (and hence the slice genus). For example,
each of the above inequalities (except (Lb12)) can be used to compute the slice-
genus of the positive torus link T(p, q), as shown in the following proposition.

Proposition 3.3 (Generalized Milnor conjecture, Cavallo [10]). The slice genus
of the positive torus link T(p, q) is

g⇤(p, q) =
(p� 1)(q� 1)� GCD(p, q) + 1

2
and

s(T(p, q), F) = (p� 1)(q� 1).

Proof. Let Bp,q be the standard braid representing the positive torus link T(p, q)
– i.e. the braid given by the word (s1s2 · · · sp�1)q. Its self-linking number is

sl(Bp,q) = (p� 1)q� p.

Any of (P-S04), (Kw11), (Kw15), (Cv15) – since the diagram Bp,q is positive, the
link is pseudo-thin – implies,

s(T(p, q), F) � sl(Bp,q)� 1 = (p� 1)(q� 1).
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As s(T(p, q), F) is a lower bound for minus the Euler characteristic of any surface
S in D4 bounding T(p, q) and the unknot, it follows that

(12) � c(S) = 2g(S)� 2 + GCD(p, q) + 1 � s(l, F) � (p� 1)(q� 1),

consequently,
2g⇤(p, q) � (p� 1)(q� 1)� GCD(p, q) + 1.

The other inequality follows from the computation of the genus of the surface
obtained, via the Seifert algorithm, from (the Alexander closure of) Bp,q – see
[48] or [33], or any other book on knot theory, for a description of the Seifert
algorithm. The statement on the s-invariant follows directly from (12).

Q.E.D.

2. Transverse invariants from Bar-Natan Homology I: the b-invariant

Let L be an oriented link diagram. In 2006, Olga Plamenevskaya introduced
the first transverse invariant in Khovanov homology.

Definition 3.3. The Plamenevskaya cycle y(L, F) of an oriented link diagram
L is the homogeneous element in C0,•

Kh (L, F) defined as the state whose underlying
resolution is the oriented resolution, and whose circles are all labeled with x�.

Given a braid diagram B, denote by y(B, F) the Plamenevskaya cycle of the
Alexander closure of B, and call it, in view of the next proposition, the Plame-
nevskaya invariant of B.

Proposition 3.4 (Plamenevskaya, [45]). The Plamenevskaya invariant is a trans-
verse braid invariant. That is, if B and B0 are two braids related by a transverse braid
move, then the map3 between the Khovanov chain complexes associated to the move sends
y(B, F) to ±y(B0, F). Moreover, qdeg(y(B, F)) = sl(B), and the homology class of
y detects negative stabilization – i.e. [y(B, F)] = 0 if B is the negative stabilization of
another braid.

In 2013, Lenhard Ng, Robert Lipshitz, and Sucharit Sarkar, noticed that the
canonical cycles y

+(L, F) = vTLee(L, F) and y

�(L, F) = vTLee(L, F), shared sim-
ilar properties:

Proposition 3.5 (Ng-Lipshitz-Sarkar, [34]). The canonical cycles are transverse
braid invariants. TThat is, if B and B0 are two braids related by a transverse braid
move, then the map between the twisted Lee chain complexes associated to the move
sends y

±(B, F) to y

±(B0, F), up to sign. While the image of y

±(B, F) under the map
induced by a negative (de)stabilization differs from y

±(B0, F) by a boundary term whose
quantum degree is sl(B, F). Moreover, qdeg(y±(B, F)) = sl(B), and their projection in
to the associated graded object to the twisted Lee complex (considered with the filtration
introduced in Chapter 1, Subsection 2.2) can be identified with y(B, F).

3These maps form a very specific set of morphisms which is used throughout the literature. This
matter will be discussed at the beginning of the next subsection.
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We will call y

±(B, F) the Ng-Lipshitz-Sarkar invariants (or NLS invariants)
of the transverse braid B. There are other transverse invariants which were in-
troduced in the same paper, namely y

±
p,q and y

diff. For the instant we will leave
these invariants aside. We will come back to them later.

Let L be an oriented link diagram, and R be a ring. The b-cycles (associated
to L over the ring R) are homogeneous cycles in C•,•

BN(L, R[U]), defined similarly
to the canonical cycles of Lee theory. Suppose that an orientation o 2 O(eL) is
fixed and define b(o, R) to be the enhanced state with underlying resolution the
oriented resolution r

o

, where each circle g has label b
g

, defined as follows

b
g

=

(
x� if N(g) ⌘ 0 mod 2
x• = x� �Ux+ if N(g) ⌘ 1 mod 2

where N(g) denotes the nesting number of g (see page 20 for the definition).
With the exact same computations done in the case of the canonical cycles, one
obtains the homological and quantum degrees of b(o, F), which are

hdeg(b(o, R)) = n�(o)� n�(L),

and
qdeg(b(o, R)) = �o(o) + n�(o) + n+(L)� 2n�(L),

where o(o) is the number of circles in r
o

.
Denote by b(L, R) the b-cycle corresponding to the orientation of L, and by

b(L, R) the b-cycle corresponding to the opposite orientation. Then,

hdeg(b(L, R)) = hdeg(b(L, R)) = 0

and

(13) qdeg(b(L, R)) = qdeg(b(L, R)) = �o(L) + w(L).

In particular, when the diagram is the Alexander closure of a braid B, then

qdeg (b(B, R)) = sl(B).

Directly from the definitions it follows that

pKh(b(L, F)) = y(L, F) = pKh(b(L, F))

and
pTLee(b(L, F)) = y

+(L, F), pTLee(b(L, F)) = y

�(L, F),

where
p� : C•,•

BN(L, R[U]) �! C•
�(L, R), � 2 {Kh, TLee},

are the quotient maps.
In order to study the properties of b(o, R), it is convenient to analyse the

behaviour of x� and x• with respect to the operations of Frobenius algebra. For
this purpose, it is useful to introduce an involution on the set {x�, x•} called
conjugation, and defined as follows:

x� = x•, x• = x�.
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Simple computations show that

(14) m(x, x) = 0, and m(x, x) = #xUx,

for each x 2 {x�, x•}, where #x� = 1, and #x• = �1. With this notation we have

(15) x = x� #xUx+
Moreover, this involution behaves well with respect to the co-multiplication, more
precisely

(16) D(x) = D(x) = x, 8 x 2 {x�, x•}.

Remark 21. Seen the formal properties shared by x� and x•, all theorem
concerning b are valid also for b̄.

Proposition 3.6. Let L be an oriented link diagram, and let o 2 O(L). Then, the
enhanced state b(o, R) 2 C•,•

BN(L, R[U]) is a cycle.

Proof. It follows directly from the fact that the set of circles in the oriented
resolution is bipartite (see [47, Lemma 2.4 & Corollary 2.5]), and from (14).

Q.E.D.
Given an oriented link diagram L, the set

BF(L) = {[b(o, F)]}
o2O(eL) ✓ H•,•

BN(L, F[U])

is a free set (i.e. all the elements are linearly independent over F[U]) as shown in
the following proposition.

Proposition 3.7. Let L be an oriented link diagram. The set BF(L) generates a free
sub-module of rank 2` in H•,•

BN(L, F[U]), where ` is the number of components of L. In
particular, each [b(o, F)] is always non trivial.

Proof. Let us suppose that

(17) Â
o2Oh(eL)

P
o

(U)[b(o, F)] = 0, P
o

2 F[U].

where Oh(eL) is the set of all orientations such that hdeg(b(o, F)) = h. Being
[b(o, F)] bi-homogeneous, we may assume that

P
o

(U) = a
o

Uk
o , a

o

2 F.

Thus, applying pTLee to both sides of the equation (17), one gets

Â
o2Oh(eL)

a

o

s

o

= 0,

which implies a

o

= 0, for each o 2 O(eL).
Q.E.D.

Remark 22. Seen that the b-cycles are defined in the same way as the canon-
ical cycles in TLee, and that they form a free set, one may expect their homology
classes to generate H•,•

BN(L, F[U])/T(H•,•
BN(L, F[U])). However this is generally

false. In fact, it may happen that the homology classes of some of the b-cycles are
multiples of other homology classes (cf. Proposition 3.8).
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Remark 23. Proposition 3.7 holds true also when R = Z. It is sufficient
to notice that the set BQ(L) ✓ H•,•

BN(L, Q[U]) = H•,•
BN(L, Z[U]) ⌦ Q generates a

Q[U]-sub-module of rank 2`.

2.1. Invariance of b. We now turn to the analysis of the behaviour of b(L, R)
under the maps induced by the Reidemeister moves. These maps are not ca-
nonical, but there is a set of maps which is conventionally used throughout the
literature. These were originally introduced by Khovanov (see [25]), and trans-
lated to a more abstract setting by Bar-Natan (cf. [4]), allowing one to work with
an arbitrary Frobenius algebra.

At the beginning of each sub-section we will recall the general (i.e. for an
arbitrary Frobenius algebra F ) definition of the map associated to the move we
are dealing with. In the subsequent propositions we are going to use the special-
ization of these maps to the case RF = F[U] and F = BN. So, for the rest of the
section we fix a Frobenius algebra F = (R, A, m, i, D, #).

2.2. First Reidemeister move. Let L be an oriented link diagram. Denote
by L0+ the oriented link diagram obtained from L via a positive first Reidemeister
move (i.e. the addition of a positive curl, see Figure 5) on an arc a. Finally, denote
by c+ the crossing appearing only in L0+.

L

a

L0+L0�

R�1↵
R+

1⌦ c+c�

Figure 5. The first Reidemeister move.

The complex CF (L0+) can be identified (as a graded R-module) with the com-
plex

(18) C•
F (L [�)� C•

F (L)(�1) ' (C•
F (L)⌦R A)� C•

F (L)(�1),

where (·) denotes the (homological) degree shift. In fact, each resolution of L0+
obtained by performing a 0-resolution in c+ can be identified with a resolution of
L[�, while each of the remaining resolutions can be identified with a resolution
of L. To turn this identification into an isomorphism of R-complexes it is sufficient
to endow the graded R-module on the left-hand side of (18) with the differential

d0F =

✓
dF ⌦R idA 0

DF dF

◆
,

where DF is the map associated to a saddle move merging the unknotted com-
ponent with the circle g

0 containing a. More explicitly,

DF : C•
F (L)⌦R A! C•

F (L) :

 O
g2r

a

g

!
⌦ a 7!

0@ O
g2r\{g

0}
a

g

1A⌦m(a
g

0 , a).
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To use a more “algebraic” turn of phrase: the complex C•
F (L0) is isomorphic to

the mapping cone of the map D. Now, we are ready to define the map associated
to the addition of the (positive) curl. This map, denoted by F+

1 (F ), is defined as
follows

F+
1 (F ) : CF (L) �! (CF (L)⌦R A)� CF (L)(�1, 0)

O
g2r

a

g

7!

0@0@ O
g2r\{g

0}
a

g

1A⌦ �a
g

0 ⌦ TF (1R)� D(a
g

0)
�1A� 0

where TF is the “de-cupped torus map”

(19) TF : R! A : x 7! m(D(i(x))).

To conclude the positive version of the first Reidemeister move, we need to define
the map associated to the removal of a positive curl. This map, denoted by Y+

1 (F )
is given by

Y+
1 (F ) : (C•

F (L)⌦R A)� C•
F (L)(�1) �! C•

F (L)  O
g2r

a

g

!
⌦ a

!
�
O
g2s

d

g

7! #(a)
O
g2r

a

g

.

Remark 24. It is not difficult to check that Y+
1 (F ) is an up-to-chain-homotopy

inverse of the map F+
1 (F ), and that both of them are chain maps.

Now, let us turn to the negative version of the first Reidemeister move. For
our scopes it is sufficient to define only the map associated to the creation of a
negative curl. Let us denote by L0� the diagram obtained from L by adding a
negative curl on the arc a (see Figure 5). Denote by c� the crossing of L0� created
by the addition of the curl. Similarly to the case of the positive Reidemeister
move, there is an identification of the resolutions of L0� where c� is replaced
with is 0-resolution and the resolutions of L. All the remaining resolutions of L0�
can be identified with the resolutions of L [�. These identifications induce the
following isomorphisms of (graded) R-modules

(20) C•
F (L0�) ' C•

F (L)(�1)� C•
F (L [�) ' C•

F (L)(�1)� (C•
F (L)⌦R A).

Remark 25. Suppose F is a graded Frobenius algebra. Then the complex
C•
F (L, R) can be endowed with a second grading (see Chapter 1 Subsection 2.2).

To turn the isomorphisms in (20) into isomorphisms of bi-graded R-modules it
is necessary to introduce an appropriate (quantum) grade shift (cf. [4, Section
6]). This shift is not necessary in the case of the positive version of the first
Reidemeister move.

As in the case of R+
1 , we wish to turn the isomorphisms in (20) into isomorph-

isms of chain complexes. In order to do so it is sufficient to endow the rightmost
R-module in (20) with the differential

d0F =

✓
dF 0
D0F dF ⌦R idA

◆
;
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where D0F is the map associated to a saddle move splitting the circle g

0 containing
the arc a. More explicitly,

D0F : C•
F (L)! C•

F (L)⌦R A :
O
g2r

a

g

7!

0@ O
g2r\{g

0}
a

g

1A⌦ D(a
g

0).

Remark 26. There is no ambiguity in the labels given by D(a
g

0) because of
the co-commutativity of D (cf. page 1).

Finally, we can define the map associated to the addition of a negative curl,
denoted by F�1 , as follows

F�1 (= F�1 (F )) : C•
F (L) �! C•

F (L)(�1)� (C•
F (L)⌦R A)

O
g2r

a

g

7�! 0�
 O

g2r
a

g

!
⌦ #(1R)

Now we are finally ready to state (and prove) a result describing the behaviour
of b(L, R) with respect to the maps associated to the first Reidemeister move(s).

Proposition 3.8. Let L be an oriented link diagram, and R be any ring. With the
above notation (cf. Figure 5) we have

(R1p) Y+
1 (b(L, R)) = b(L0+, R) and F+

1 (b(L0+, R)) = b(L, R),

and

(R1n) � #xU(F�1 )⇤([b(L, R)]) = [b(L0�, R)];

where x is the label, in b(L, R), of the circle g

0 containing the arc a.

Proof. Let us start from the addition of a positive curl. A simple computation
shows that

(21) TBN(1R[U]) = x� + x•.

Suppose a

g

0 = x 2 {x�, x•}. It follows

a

g

0 ⌦ TBN(1R[U])� DBN(a
g

0) = x⌦ (x + x)� x⌦ x = x⌦ x,

where ·̄ denotes the conjugation on the set {x�, x•} (i.e. the involution exchan-
ging x� and x•). Identify the oriented resolution of L0+ with the oriented resol-
ution of L [� as in the definition of F+

1 . From the previous considerations it
follows that the label of the un-knotted component which does not belong to L in
F+

1 (b(L, R)) is x, the label of g

0 is x, and all the other labels remain unchanged.
Thus, it is immediate that

F+
1 (b(L, R)) = b(L0+, R).

To conclude the case of the positive R1 move, we must verify that b(L, R) is
preserved by Y+

1 . This is immediate from the following considerations:

(a) if a = b
g

0 then #(a) = 1;
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(b) the direct summand in C•,•
BN(L0+, R[U]) corresponding to the oriented resolu-

tion of L0 is mapped onto the direct summand in C•,•
BN(L, R[U]) corresponding

to the oriented resolution;
(c) the labels on the circles that are not involved in the move and in the circle g

0

are left invariant by Y+
1 .

Now, let us turn to the behaviour of b with respect to the map associated to
the addition of a negative curl. Immediately from the definition it follows that

(22) F�1 (b(L, R)) =

 O
g2r

b
g

!
⌦ x+,

where r denotes the oriented resolution of L, and the oriented resolution of L0� is
identified with the oriented resolution of L [�. Consider the chain

h 2 C•,•
BN(L0�, R[U]) ' C•,•

BN(L, R[U])(�1,�2)� (C•,•
BN(L, R[U])⌦R A)(0,�1),

defined as follows

h = 0�
  O

g2r
b

g

!
⌦ x

!
= 0� (b(L, R)⌦ x),

where x = b
g

0 . By (15) we have

b(L0�, R) = 0�
  O

g2r
b

g

!
⌦ x̄

!
= h � #xUF�1 (b(L)).

Thus, if h is a boundary in C•,•
BN(L0�, R[U]), then

[b(L0�, R)] = [h � #xUF�1 (b(L, R))] = �#xU(F�1 )⇤([b(L, R)]),

and the claim follows. So, consider the chain

b(L, R)� 0 2 CF (L, R[U])(�1)� (CF (L, R[U])⌦R A),

and compute its boundary

d0BN(b(L, R)� 0) = dBN(b(L, R))�
�

D0BN(b(L, R))
�
=

= 0�

0@ O
g2r\{g

0}
b

g

⌦ DBN(b
g

0)

1A = 0�

0@ O
g2r\{g

0}
b

g

⌦ x⌦ x

1A =

= 0� (b(L, R)⌦ x) = h,

and this concludes the proof.
Q.E.D.

Thus, b(B, R) is invariant under positive stabilizations, and changes in a
somewhat controlled way under negative stabilizations.

Corollary 3.9. If B is an oriented braid, then [b(B, R)] 2 H0,sl(B)
BN (B, R[U]) is

invariant under positive stabilizations. More formally,

(Y+
1 )⇤([b(B, R)]) = [b(B0, R)],
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where B0 is the positive stabilization of B. Moreover, if B00 is an oriented braid obtained
from B via a negative stabilization, then

U(F�1 )⇤([b(B, R)]) = ±[b(B00, R)].

⇤

2.3. Second Reidemeister move. Let L be an oriented link diagram. Let a
and b be two (un-knotted) arcs of L lying in a small ball. Performing a second
Reidemeister move on these arcs inserts two adjacent crossings, say c1 and c2, of
opposite type (see Figure 6).

a

b
⌦
R2

c2c1

L00L

Figure 6. The (un-oriented) second Reidemeister move.

Denote by L00 the oriented link diagram obtained from L by performing a
second Reidemeister move on the arcs a and b. There are four possible resolutions
of the pair of crossing c1, c2. Let L00ij, with i, j 2 {0, 1}, be the link obtained from L00

by performing a i-resolution on c1 and a j-resolution on c2 (see Figure 7). Notice
that there is a natural identification of the link L0010 with L.

L00

L0000 L0001

L0010L0011

Figure 7. The possible resolutions of c1 and c2.

Remark 27. Only one among the links L0000, L0010, L0001 and L0011 inherits the
orientation from L00, and this is either L0010 or L0001.

Similarly to the case of the first Reidemeister move, there is an isomorphism
of graded R-modules

(23) C•
F (L00) ' C•

F (L0000)� C•
F (L0010)(�1)� C•

F (L0001)(�1)� C•
F (L0011)(�2).

given by the identification of each resolution of L00 with a resolution of L00ij (for a
suitable choice of i and j).
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Remark 28. Assume F to be a graded Frobenius algebra. To turn the iso-
morphism in (23) into an isomorphism of bi-graded R-modules a suitable shift of
the quantum degree has to be taken into account.

The isomorphism in (23) is not an isomorphism of R-complexes. To obtain
such an isomorphism it is necessary to modify the differential of the complex on
the right-hand-side of (23). This modified differential can be (roughly) defined as
follows

d00F =

0BBB@
d00
F 0 0 0

D0000,10 d10
F 0 0

D0000,01 0 d01
F 0

0 D0010,11 D0001,11 d11
F

1CCCA
where dij

F is the differential of the complex C•
F (L00ij), and

D00ij,hk : C•
F (L00ij) �! C•

F (L00hk)

is the map corresponding to a saddle move from L00ij to L00hk. This description, even
if it is imprecise, is more than sufficient for our scopes. The interested reader may
consult [25, Section 5] or [4, Section 4] for a more detailed description of d00F .

Now, consider the link L0001. Denote by c and d the two arcs appearing in the
local picture in Figure 7 (see also Figure 8). Fix an arc g, meeting L0001 only at the
endpoints, joining c and d. Finally, fix an arc e, meeting L only at the endpoints,
joining the arcs a and b.

L0001

g

00

g

dc

a

b

e

L = L0010

Figure 8.

Now, with the notation defined above, and using the notation introduced in
Chapter 1 Subsection 2.4, we can finally define the map associated to the second
Reidemeister move

Y2 : C•
F (L) �! C•

F (L0000)� C•
F (L0010)(�1)� C•

F (L0001)(�1)� C•
F (L0011)(�2)

as follows
Y2(x) = 0� x� (S(x, e)⌦ i(1R))� 0,

where x is an enhanced state, we have identified L and L0010, and i(1R) is the label
of g

00 (cf. Figure 8). Similarly, the up-to-chain-homotopy inverse of Y2

F2 : C•
F (L0000)� C•

F (L0010)(�1)� C•
F (L0001)(�1)� C•

F (L0011)(�2) �! C•
F (L)



2. TRANSVERSE INVARIANTS FROM BAR-NATAN HOMOLOGY I: THE b-INVARIANT 55

is given by
F2(x00 � x10 � x01 � x11) = x10 + #(x

g

00)S(x01, g),

where xij denotes a (possibly trivial) enhanced state in C•
F (L00ij), and x

g

00 denotes
the label of g

00 in x01 (cf. Figure 8).
Before stating the results concerning b(L, R) it is necessary to distinguish

between two versions of the R2 move. This distinction is made according to the
relative orientation of the arcs a and b; a R2 move is called coherent if a and b
are as in Figure 9, and non-coherent otherwise.

⌦

Figure 9. A coherent version of the second Reidemeister move.
All other coherent second Reidemeister moves can be obtained
by rotating or taking the mirror image of the one in figure.

Remark 29. Braid-like second Reidemeister moves are coherent.

Now, we can state the proposition concerning the behaviour of b under co-
herent second Reidemeister moves.

Proposition 3.10. Let L be an oriented link diagram. Let L00 be the oriented link
diagram obtained from L via a coherent second Reidemeister move. Then

(R2c) Y2(b(L, R)) = b(L00, R) and F2(b(L00, R)) = b(L, R).

Proof. Throughout this proof we will keep the notation shown in Figure 8. Let
r be the oriented resolution of L. First, let us consider the behaviour of b with
respect to the map Y2. It is easy4 to see that if the move is coherent then a and b
do not belong to the same circle in r. Let ga and gb be the circles to which a and
b, respectively, belong to. It follows directly from the definition of S that

Y2(b(L, R)) = 0� b(L, R)�

0@0@ O
g2r\{ga,gb}

b
g

1A⌦m(b
ga , b

gb)⌦ x+

1A� 0.

Because the move is coherent the labels in b(L, R) of ga and of gb are conjugate.
Thus, by (14) we have

m(b
ga , b

gb) = m(b
ga , b

ga) = 0.

Finally, again because of the move is coherent, the oriented resolution of L00 is
identified (via the isomorphism in (23)) with the oriented resolution of L0010 = L.
Thus, it follows

Y2(b(L, R)) = b(L00, R).

4It is a simple consequence of the Jordan curve theorem.
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Now, let us turn to the behaviour of b under the map F2. This is similar to
the previous case. In fact, as we argued before, the isomorphism in (23) sends
b(L00, R) to

0� b(L, R)� 0� 0.

With the same reasoning as above, from the coherence of the move it follows

ga 6= gb and b
gb = b

ga .

From (14), and from the considerations we just made, we obtain

S(b(L, R), g) = 0.

Since
F2(0� b(L, R)� 0� 0) = b(L, R) + S(b(L, R), g)

the claim follows.
Q.E.D.

Corollary 3.11. The cycles b(B, R) and b(B, R) are invariant under braid-like R2
moves. ⇤

Now let us turn to the case of non-coherent versions of the second Re-
idemeister move (see Figure 10).

⌦

Figure 10. A non-coherent version of the second Reidemeister
move. All other coherent second Reidemeister moves can be ob-
tained by rotating or taking the mirror image of the one in figure.

Proposition 3.12. Let L be an oriented link diagram and let L00 be obtained from L
by a non-coherent second Reidemeister move along the arcs a and b. Then, either

(R2n1) F2(b(L00, R)) = b(L, R)

or

(R2n2) F2(b(L00, R)) = ±Ub(L, R),

depending whether a and b belong to different circles or to the same circle in the oriented
resolution of L. In the first case (R2n1) holds, while (R2n2) holds in the latter case.
Moreover, in neither case the map Y2 does preserve the b-cycles.

Proof. First, let us fix some notation. Denote by r the oriented resolution of L and
by s the oriented resolution of L00. Since the move is non-coherent the oriented
resolution of L00 can be identified with the oriented resolution of L0001 (Figure 11).
Let a, b, c, d, e, g and g

00 be as in Figure 8. Finally, let x be one among the arcs a,
b, c and d, and denote by gx the circle in the appropriate oriented resolution to
which the arc x belongs to.
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 dc

g

00

Figure 11. The oriented resolution of L00.

Before going into the details of the proof, it is useful to notice two things.
First, it is easy to see that the circles ga in r and gc in s have the same nesting
number. In particular, the label of ga in b(L, R) and the label of gc in b(L00, R) are
equal. Second, from an easy check of the nesting numbers it follows

b
ga = b

gb and b
gc = b

gd .

We are now ready to prove the proposition. Let us start with the map F2.
With the identifications made above, we can write

F2(0� 0� b(L0001, R)� 0) = #(g00)S(b(L0001, R), g).

There are two cases:
(1) gc 6= gd
(2) gc = gd

and, since the move is not coherent, both of them are realized (see Figure 13 for
an example). In the first case, ga = gb and

S(b(L0001, R), g) =

0@ O
g2r\ga

b
g

1A⌦m(b
gc , b

gd) =

=

0@ O
g2r\ga

b
g

1A⌦Ub
gd =

0@ O
g2r\ga

b
g

1A⌦Ub
ga =

= Ub(L, R).
Thus, since #(b

g

00) = 1, (R2n2) follows. Now, let us consider case (2). In this case
ga 6= gb and the map S behaves as follows

S(b(L0001, R), g) =

0@ O
g2r\{ga,gb}

b
g

1A⌦ D(b
gc) =

thanks to (16), it follows

=

0@ O
g2r\{ga,gb}

b
g

1A⌦ b
gc ⌦ b

gc = b(L, R),

where the last equality follows from the considerations on the labels made at the
beginning of the proof. This concludes the proof of (R2n1).

Finally, the assertion about the map Y2 is almost immediate in case (1); in
fact, Y2 is the up-to-homotopy inverse of F2, and hence it does not preserve the
homology class of the b-cycles (much less the b-cycles). In case (2) the assertion
follows from two simple observations. On one hand, b(L00, R) belongs to the
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direct summand CF (L0001, R) appearing in the decomposition (23). On the other
hand, the image of b(L, R) via Y2 has a non-trivial component in the summand
CF (L0010, R) appearing in the same decomposition.

Q.E.D.
There is also another way to represent transverse links: through front projec-

tions. These are ordinary link diagrams where none of the local configurations
in Figure 12 appears (see [14, Section 2]). As in the case of transverse braid dia-
grams, there is a set of combinatorial moves which encodes transverse isotopy
between front projections. This set is given by all second and third Reidemeister
moves such that the condition of being a front projection is preserved on both
sides.

Proposition 3.13. The b-cycles are not invariants of transverse front projections.
More precisely, there exists a Reidemeister move of the second type which preserves the
transverse type of front projections but whose induced map does not preserve the b-cycles.

Proof. First, notice that there is a non-coherent version of the second Reidemeister
move which preserves the transverse type: the mirror of the one in Figure 10 (see
also Figure 13). In Proposition 3.12 it has been shown that the b-cycles are not
invariant under (the chain maps induced by) non-coherent second Reidemeister
moves, and the claim follows.

Q.E.D.
Two examples of pairs of transverse front projections which are related by a

non-coherent transverse second Reidemeister move are shown in Figure 13.

Figure 12. Local configurations excluded from front projections
of transverse links.

2.4. Third Reidemeister move. Finally, we arrived to the case of the third
Reidemeister move. This move is the hardest to deal with mainly because it
involves the highest number of crossings among the Reidemeister moves. This
fact has two main consequences. First, there are several versions of the third
Reidemeister move. Second, the higher the number of crossings is the more com-
plicated the splittings of the chain complexes are. Finally, the number of crossings
is equal on both sides of the move, and hence there is no loss of complexity from
one side to the other.

This complexity reflects into the chain homotopies associated to R3. For this
reason,we will avoid to give an explicit description of these maps. We will resort
to the categorified Kauffman trick, which is due to Bar-Natan, to deduce the
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Figure 13. The two cases in Proposition 3.12 realized by front projections.

maps associated to the various versions of the third Reidmeister move. Thanks to
this trick we are able to prove the invariance of the b-invariants without needing
the explicit computation of these maps.

The original Kauffman trick is a smart way to deduce the invariance of the
Jones polynomial with respect to the third Reidemeister move from the invariance
with respect to the second move. Similarly, the categorified Kauffman trick allows
one to deduce the invariance of Khovanov homology with respect to the third
Reidemeister move from its invariance with respect to the second Reidemeister
move. More precisely, it allows one to define the chain homotopy equivalences
associated to the third Reidemeister moves from the chain homotopy equivalences
associated to the second Reidemeister move. Of course, everything comes with
a price: in our case we need to use some well-known constructions and results
from homological algebra.

Definition 3.4. Let (C•
1 , d1) and (C•

2 , d2) be two chain complexes. Given a
chain map

F : (C•
1 , d1) �! (C•

2 , d2)

the (mapping) cone of F is the chain group

C• = C•+1
1 � C•

2

endowed with the differential

d =

✓
�d1 0

F d2

◆
The mapping cone of F will be denoted by G(F).

Definition 3.5. Let (C•
1 , d1) and (C•

2 , d2) be two chain complexes a chain map

y : (C•
1 , d1) �! (C•

2 , d2)
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is an inclusion in a deformation retract if there exists

j : (C•
2 , d2) �! (C•

1 , d1)

such that

j � y = IdC•
1
, y � j = IdC•

2
+ d1 � h ± h � d2,

and

h � j = 0, y � h = 0,

for some chain-homotopy h. The map y is called strong deformation retract
(associated to j).

Notice that both inclusion in deformation retracts and strong deformation
retracts are homotopy equivalence. Moreover, a strong deformation retract is an
up-to-homotopy inverse of an inclusion in a deformation retract (the converse is
not true in general).

Remark 30. It is easy to see that the maps Y2 and F2 are, respectively, an
inclusion in a deformation retract and a strong deformation retract.

The categorified Kauffman trick is based on the behaviour of cones under
retract. Let C•

1 , C•
2 , D•

1 and D•
2 be chain complexes and let

F : C•
1 �! C•

2

be a chain map. Consider the following diagram of complexes and chain maps

C•
1

C•
2

D•
1

D•
2

j1

y2

y1

j2

F

where j1 and j2 are inclusions in a deformation retract and y1 and y2 are the
corresponding strong deformation retracts. Finally, let h1 and h2 be the two chain-
homotopies such that

ji � yi = idDi + ∂ � hi ± hi � ∂, i 2 {1, 2}.

It turns out that the three cones G(F), G(F � j1) and G(y2 � F) are homotopy
equivalent. Moreover, it is possible to explicitly write the homotopy equivalences.
This is precisely the content of the following lemma.

Lemma 3.14 ([4], Lemma 4.5). With the above notation, define the maps appearing
in the following (not-necessarily-commutative) diagram
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G(F � y1)

G(F)

G(y2 � F)

:

:

:

D•+1
1 � C•

2

C•+1
1 � C•

2

C•+1
1 � D•

2

D•+2
1 � C•+1

2

C•+2
1 � C•+1

2

C•+2
1 � D•+1

2

H1, H2

∂G(F�y1)

∂G(F)

∂G(y2�F)

eY1

eF2

eF1

eY2

eY1

eF2

eF1

eY2

as follows eF1 =

✓
y1 0

F � h1 IdC2

◆
, eY1 =

✓
j1 0
0 idC2

◆
,

eF2 =

✓
IdC1 0

h2 � F j2

◆
, eY2 =

✓
idC2 0

0 y2

◆
H1 =

✓
�h1 0

0 0

◆
H2 =

✓
0 0
0 �h2

◆
.

Then, we haveeYi � eFi = Id, eFi � eYi = Id + ∂ � Hi ± Hi � ∂, eYi � Hi = 0, Hi � eFi = 0,

for each i 2 {1, 2}. In particular, the cones G(F), G(F � j1) and G(j2 � F) are homotopy
equivalent. ⇤

Remark 31. Lemma 3.14 still holds if the maps y1 and y2 are inclusion in
strong deformation retract and the maps j1 and j2 the corresponding retracts.

The following proposition is now immediate.

Proposition 3.15. With the same notation as in Lemma 3.14, let xi 2 Ci and
yi 2 Di, i 2 {1, 2}, be such that:

y1(x1) = y1, j1(y1) = x1, y2(y2) = x2, j2(x2) = y2.

Then eY1(x1 � 0) = y1 � 0, eF1(y1 � 0) = x1 � 0,
and eY2(0� y2) = 0� x2, eF2(0� x2) = 0� y2.

⇤

Now we are ready to start the description of the categorified Kauffman trick.
Let L and L0 be the links on the LHS and RHS of a third Reidemeister move as in
Figure 14. The categorified Kauffman trick consist of three main steps.

Step 1 Write the complexes associated to L and L0 as cones, say G(F1) and G(F2),
where

F1 : C1 ! C2, F2 : D1 ! D2,
and either C1 = D1 or C2 = D2.
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Step 2 Show that there exists a complex C and either y1, y2, strong deformation
retracts, such that

y1 : D2 ! C, y2 : C2 ! C, and y1 � F1 = y2 � F2,

if C1 = D1, or j1 and j2, inclusions in deformation retracts, such that

j1 : C ! D1, j2 : C ! C1 and F1 � j1 = F2 � j2,

if C2 = D2.
Step 3 Use Lemma 3.14 to write the mapseY : CF (L, R) = G(F1)! G(y1 � F1) eF : G(y2 � F2)! CF (L0, R) = G(F2)

in the case C1 = D1, or the mapseY : CF (L, R) = G(F1)! G(F1 � j1) eF : G(F2 � j2)! CF (L0, R) = G(F2)

in the case C2 = D2. Finally, define the chain map Y3 associated to the
third Reidemeister move as the composition eF � eY.

The same reasoning can be adapted to find the map F3, which is the map associ-
ated to the other direction of the third Reidemeister move.

We can now proceed to the first step. Denote by c1, c2 and c3 the crossings of
L involved into the move, and denote by c01, c02 and c03 the corresponding crossings
in L0, as in Figure 14.

e
g

a

c1

c2 c3

e0
g0

a0

c01

c02c03

L L0

⌦
R3

Figure 14. Naming arcs and crossings on both sides of a third
Reidemeister move. The type of crossings is omitted as we will
make use of the same notation for all cases. However, it is im-
plicitly assumed that the strand of the link containing the arc a
(resp. a0) either underpasses in both c2 and c3 (resp. c02 and c03),
or overpasses in both c2 and c3 (resp. c02 and c03).

Let L1, L01, L2 and L02 be oriented link diagram which differ only in a small
ball as shown in Figure 15. There is a natural identification of the resolutions of L
(resp. L0) where c1 (resp. c01) is replaced by the resolution with the resolutions
of L1 (resp. L01). Similarly, there is an identification of the resolutions of L2 (resp.
L02) with the resolution of L (resp. L0) where c1 (resp. c01) has been replaced with
the resolution . These identifications allow us to see the complex associated to
L (resp. L0) as the cone over a saddle map.
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To be precise there are two cases depending on whether the crossing c1 (and
hence c01) is or is . In the first case, the complexes associated to L and L0

are, respectively, the cones over the maps

(24) S(·, g) : C•
F (L1, R)! C•

F (L2, R), S(·, g0) : C•
F (L01, R)! C•

F (L02, R),

which are the maps associated to the saddle moves along g and g0, respectively.
Similarly, in the case c1 is the crossing the complexes associated to L and L0

are the cones over the maps

(25) S(·, e) : C•
F (L2, R)! C•

F (L1, R), S(·, e0) : C•
F (L02, R)! C•

F (L01, R).

Thus, having completed Step 1 we can now proceed to Step 2.

L

g

L1

e

L2

L0

g0

L01 L02

e0

Figure 15. Resolution of a crossing on both sides of a third Re-
idemeister move.

Let us start by noticing that the diagrams L2 and L02 can be identified. Thus
C•
F (L1, R) = C•

F (L01, R). Recall that the crossings c2 and c3 have opposite type,
and that c02 and c03 are of the same type as c3 and c2, respectively. So, the links
L1 and L01 are related by two second Reidemeister moves. Denote by L001 the link
which differs from L1 and L01 as shown in Figure 16, then the maps

F2 : C•
F (L1) �! C•

F (L001 ), F02 : C•
F (L01) �! C•

F (L001 )

induced by the second Reidemeister moves, are strong deformation retracts, and
the maps

Y2 : C•
F (L001 ) �! C•

F (L1), Y02 : C•
F (L001 ) �! C•

F (L01)

induced by the inverse move, are the corresponding inclusions.



64 3. TRANSVERSE INVARIANTS IN THE sl2-THEORY

L001 L1 L01

Figure 16. The links L001 , L1 and L01.

Then, to complete Step 2 all that is left is to verify that either

S(·, g) �Y2 = S(·, g0) �Y02
or

F2 � S(·, e) = F02 � S(·, e0),
depending on whether c1 is or , respectively. However, this is a simple
verification and hence left to the reader.

Now, we could proceed to Step 3 and write down explicitly the maps associ-
ated to the third Reidemeister moves. However, we are going to take a shortcut,
and turn directly to the proof of the invariance of the b-invariants. To do so we
must restrict ourselves to a sub-set of all possible (oriented) third Reidmeister
moves: the set of coherent third Reidemeister moves. This set is composed by
all the versions in Figure 17 and their mirror images.

R+
3⌦

R�3⌦

Figure 17. Basic versions of the coherent third Reidemeister moves.

Denote by Y3 the chain map associated to the third Reidemeister move (the
ones going left to right in Figure 17) and by F3 the map associated to the inverse
move. In particular,

Y3 : C•
F (L, R) �! C•

F (L0, R),
and

F3 : C•
F (L0, R) �! C•

F (L, R).
With this notation we can state the main result of this section.

Proposition 3.16. Let L and L0 be two oriented link diagrams related by a coherent
third Reidemeister move as in Figure 14. Then

(R3c) Y3(b(L, R)) = b(L0, R) and F3(b(L0, R)) = b(L, R).

Proof. Because the move is coherent the second Reidemeister move used in Step
2 of the categorified Kauffman trick is coherent. Hence the claim is an immediate
consequence of Propositions 3.15 and 3.10.
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Q.E.D.

Corollary 3.17. The cycles b(B, R) and b(B, R) are transverse braid invariants. In
particular, the homology classes [b(B, R)] are invariants for transverse braids. Finally,
the above mentioned invariants are sensible to negative stabilizations and destabilizations.

⇤

Given a braid diagram B, the cycles b(B, R) are called b-invariants of B.
Notice that all the proofs in this section do not rely on the specific base ring, and
hence they are valid in general.

2.5. Flype invariance and relationship with the y

± and y

±
p,q invariants. To

conclude the section, we wish to spend some words on the flype invariance of
b(B, R) and b(B, R), and on their relation ship with the y

± and y

±
p,q invariants.

Consider the sequence of moves codifying a flype given in [34, Section 2.1]. which
we report below for the sake of completeness.

As

k
mBs

�1
m

II↵ As

�1
m s

k+1
m Bs

�1
m

I�↵ As

�1
m s

�1
m+1s

k+1
m Bs

�1
m

III↵
III↵ As

k+1
m+1s

�1
m s

�1
m+1Bs

�1
m

BR↵ s

k+1
m+1 As

�1
m Bs

�1
m+1s

�1
m

BR↵
BR↵ As

�1
m Bs

�1
m+1s

�1
m s

k+1
m+1

III↵ As

�1
m Bs

k+1
m s

�1
m+1s

�1
m

I�1
�↵

I�1
�↵ As

�1
m Bs

k+1
m s

�1
m

II↵ As

�1
m Bs

k
m.

It could be easily checked directly, once completed Step 3 of the categorified
Kauffman trick, that b(B, R) and b(B, R) are invariant up to sign under this move.
Moreover, can be noticed that the change in sign is the same for b(B, R) and
b(B, R). Thus any linear combination of the two is left invariant by the flype
move. In particular, so does their difference, and hence y

diff(B, R) = y

+(B, R)�
y

�(B, R). That is, the following result holds.

Proposition 3.18. The b-invariants are flype invariants. More precisely, let L and
L0 be two links related by a negative flype. Then, there is a sequence of Reidemeister moves
S from L to L0 such that

FS(b(L, R)) = #b(L0, R) FS(b̄(L, R)) = #b̄(L0, R),

and that
YS(b(L0, R)) = #

0
b(L, R) YS(b̄(L0, R)) = #

0
b̄(L, R),

where #, #

0 2 {±1}, FS is the map induced by the sequence S, and YS is the map induced
by the inverse sequence5. ⇤

There is an immediate corollary to Proposition 3.18.

Corollary 3.19. All the F[U]-linear combinations of the b-invariants are flype in-
variant in the sense of Proposition 3.18. ⇤

5By inverse sequence we mean the sequence of Reidemeister moves from L0 to L obtained by
reading S backwards.
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Taking into account that the projection to the quotient

pTLee : C•
BN(L, R[U]) �! C•

TLee(L, R) =
C•

BN(L, R[U])

(U � 1)C•
BN(L, R[U])

maps b(L, R) to y

+(L, R) and b̄(L, R) to y

�(L, R), the following result is imme-
diate.

Corollary 3.20. All the F-linear combinations of the NLS-invariants are flype in-
variant in the sense of Proposition 3.18. In particular, y

diff is flype invariant. ⇤
However, flypes pairs are pretty difficult to distinguish, even with other ef-

fective invariants, so the question about the efficiency of the b-invariants is still
open. The lack of examples of transverse braids with same classical invariants
and an high number of crossing does not help any attempt to prove the efficiency
of the b-invariants (cf. [34, Section 4]).

A less direct proof of both the transverse and the flype invariance of the
b-invariants can be obtained by studying the relationship between the b and
the NLS-invariants. To achieve this goal we resort to the following result. Let
R = F[U], a 2 R \ {U} and M be an R-module. Denote by M

a

the quotient
module M/(U � a).

Proposition. A.11. Let M and M0 be two graded, free R-modules, and let a 2 R be
such that deg(a) 6= deg(U), and a /2 Div0(R). Given two R[U]-linear maps

F : M �! M0, F
a

: M
a

�! M0
a

,

which commute with the projections (i.e. p

0
a

� F = F
a

� p

a

), with F homogeneous
of degree 0. If x 2 M, x0 2 M0 are two homogeneous lifts of, respectively, y 2 M

a

,
y0 2 M0

a

, such that deg(x) = deg(x0). Then,

F
a

(y) = y0 () F(x) = x0.

⇤
The proof of Proposition A.11 can be found in Appendix A. Let B and B0 be

two braids, and S a sequence of Reidemeister moves from B to B0. Let R = F[U],
and consider the two free R-modules

M = C0,•
BN(B, F[U]) M0 = C0,•

BN(B0, F[U]).

Taking a = 1 it follows

M
a

= C0
TLee(B, F[U]) M0

a

= C0
TLee(B0, F[U]).

The sequence S induce two maps

F : M �! M0, F
a

: M
a

�! M0
a

,

which commute with the projections. Moreover, the map F is graded of degree 0.
The b-cycles are nothing but a homogeneous lifts (with respect to the map pTLee)
of the NLS-invariants. Moreover, the degree of the b invariants is the self-linking
number. So, if the self-linking number of B and B0 is the same, then

F(b(B, F)) = b(B0, F)() F
a

(y+(B, F)) = y

+(B0, F),
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and
F(b̄(B, F)) = b̄(B0, F)() F

a

(y�(B, F)) = y

�(B0, F).
So, from Proposition A.11 we get the following result.

Theorem 3.21. The b-invariants are equivalent to the NLS-invariants. ⇤

From the results of [34] it is immediate the following corollary.

Corollary 3.22. The b-invariants are transverse braid invariants. Moreover, the
b-invariants are flype invariants. ⇤

The reader may wonder why we went to great length to prove directly the
invariance of the b-invariants instead of proving Corollary 3.22. The main reason
is that Corollary 3.22 works only in the case of Bar-Natan theory, whereas the
proof of the invariance presented generalise to other Khovanov type homologies
(as we will see in Section 4).

Remark 32. Notice that the information regarding the flype invariance provided
by Corollary 3.22 is slightly less than the information provided by Proposition
3.18.

As we just observed, the information given by the b-invariants is exactly the
same as the one given by the NLS-invariants. However, there is another family of
transverse invariants introduced by Ng, Lipshitz, and Sarkar in [34], namely the
yp,q-invariants.

Definition 3.6. The invariant yp,q-invariants of B are defined as the image of
y

±(B, R) under the quotient map

pp,q : Fsl(B)C
0
TLee(B, R) �!

Fsl(B)�2p(C0
TLee(B, R))

Fsl(B)+2q(C0
TLee(B, R))

,

where p + 1, q > 0.

Let us fix a field F, and consider the (non-exact) sequence of chain complexes

Fsl(B)(C
•
TLee(B)) �! Fsl(B)�2p(C

•
TLee(B)) �! F•

p,q(B) :=
Fsl(B)�2p(C•

TLee(B))
Fsl(B)+2q(C•

TLee(B))
,

where the first map is an inclusion (hence injective) and the second map is the
projection onto the quotient (hence surjective). Set

C•,•
p,q(B) =

C•,•�2p
BN (B)

Up+qC•,•+2q
BN (B)

,

We have the following commutative diagram,

Fsl(B)(C•
TLee(B)) �

� // Fsl(B)�2p(C•
TLee(B)) // // F•

p,q(B)

C•,sl(B)
BN (B)

psl(B)

OO

� �

Up
// C•,sl(B)�2p

BN (B)

psl(B)�2p

OO

f
// // C•,sl(B)

p,q (B)

eP
OO
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where the vertical arrows are isomorphisms of F-chain complexes, and

psl(B)(b(B, F)⌦ 1) = y

+(B, F), psl(B)(b(B, F)⌦ 1) = y

�(B, F).

Since these isomorphisms are functorial – i.e. they commute with the maps
induced by a sequence of Reidemeister moves) – we obtain the following theorem

Theorem 3.23. For each transverse braid B the invariants yp,q(B, F) are totally
determined (and totally determine) by the image of b(B, F) under the map Up f above.

⇤

Corollary 3.24. The homology class [yp,q(B, F)] 2 H0(F•
p,q(B)) is trivial if, and

only if Up+q divides Up[b(B, F)] – i.e. 9 d 2 H0,•
BN(B, F[U]) such that Up+q

d =
Up[b(B, F)]). ⇤

3. Transverse invariants from Bar-Natan Homology II: the invariant c

Both the b-invariants and the NLS-invariants are not practical to distinguish
transverse links: one should verify that no map induced by a sequence of Re-
idemeister moves keeps the b-invariants (or the NLS-invariants) fixed. The idea
we want to explore is to use the F[U]-module structure of Bar-Natan homology
to distinguish transverse links.

3.1. Definition and first properties. Let L be an oriented link diagram, and
x 2 H•,•

BN(L, R[U]) be a non-zero homogeneous homology class. Then, the number

cR(x, L) = max
n

k 2 N

��� 9y 2 H•,•
BN(L, R) : Uky = x

o
,

is well-defined, and finite. The following proposition is immediate

Proposition 3.25. Denote by cR(L) (resp. c̄R(L)) the number cR([b(L)], L) (resp.
cR([b(L)], L)), and let B be a braid diagram. Then, cR(B) and c̄R(B) are transverse braid
invariants. ⇤

The numbers cR(B) and c̄R(B) are called c-invariants of B. Now, let us state
some propositions regarding the c-invariants. The first one is trivial consequence
of the flype invariance of the b-invariants.

Proposition 3.26. The c-invariants are flype invariant. ⇤

The second proposition relates the c-invariants of a braid with the c-invariants
of its negative stabilizations, and is a trivial consquence of Proposition 3.8.

Proposition 3.27. Let B be an oriented braid, and R a commutative integral domain.
If B0, with the inherited orientation, is obtained from B by k negative stabilizations, then

0  k  cR(B0)� cR(B), 0  k  c̄R(B0)� c̄R(B).

⇤

Finally, to conclude this section let us show the relationship between the c-
invariants and the Plamenevskaya invariant y.
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Proposition 3.28. Let B be an oriented braid. The following conditions are equival-
ent

(1) [y(B, R)] is trivial;
(2) cR(B) > 0;
(3) cR(B) > 0.

Proof. Consider the short exact sequence of complexes

0! Ci,•
BN(B, R[U])

U·�! Ci,•�2
BN (B, R[U])

pKh�! Ci,•�2
Kh (B, R)! 0;

this induces a long exact sequence

· · · ∂⇤�! Hi,j+2
BN (B, R[U])

U⇤�! Hi,j
BN(B, R[U])

p⇤�! Hi,j
Kh(B, R)! · · ·

Since pKh(b(B, R)) = pKh(b(B, R)) = y(B, R), then [y(B, R)] is trivial if and only
if

(pKh)⇤([b(B, R)]) = 0,
which is equivalent to

(pKh)⇤([b(B, R)]) = 0.
By the exactness of the long sequence, the previous equalities are equivalent to
[b(B, R)] 2 Im(U⇤) and [b(B, R)] 2 Im(U⇤), respectively.

Q.E.D.
From a non-vanishing result for the Plamenevskaya invariant of quasi-positive

braids and from the previous proposition it follows

Corollary 3.29. If B is a quasi-positive braid – i.e. the product of conjugates of
positive braids – then cR(B) = 0.

Proof. It follows from the fact that [y(B)] 6= 0 for quasi-positive braids (see [45,
Corollary 1]).

Q.E.D.
In light of the previous proposition, and of the fact that y0,1(B, R) = y(B, R),

one does wonder if the vanishing of the homology class of the yp,q-invariants is
somehow related to the c-invariants (or some deformation of them). It turns out
that this fact is an immediate consequence of Theorem 3.23. In fact, denote by
cR(B, p) the integer

cR(B, p) = max {k | Uk
d = Up[b] d 2 H0,•

BN(B, R[U])},

and call it the p-th c-invariant. The following result describes the relationship
between the yp,q and the c-invariants.

Proposition 3.30. Let B be an oriented braid and R be any ring. Then

cR(B, p) = max{q | [y+
p,q(B, R)] = 0} = min{q | [y+

p,q(B, R)] 6= 0}.

In particular,

cR(B) = cR(B, 0) = max{q | [y+
0,q(B, R)] = 0} = min{q | [y+

0,q(B, R)] 6= 0}.

⇤
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3.2. Estimates on the values of c-invariants. In the previous subsection we
introduced the c-invariants and showed some relationships with other transverse
invariants. Now, we wish to give some bounds on the value of the c-invariants.
In order to do so we make an heavy use of the notation in Subsection 1.3.

Let L be an oriented link diagram, and let G0 be a full sub-graph of G� =
G�(L) – i.e. if there is an edge in G� between two vertices of G0, then there
is a edge between those vertices also in G0. Define a(G0) to be the enhanced
state whose underlying resolution is the oriented resolution, and whose labels
coincide with those in b(L, R) except on the circles corresponding to the vertices
of G� \ G0, where the label is x+. Let v be a vertex of G0, set a(G0, v) the enhanced
cycle which is identical to a(G0) except on the circle corresponding to v, where
the label is the conjugate of the corresponding label in b(L, R) – i.e. the label is
x� if the corresponding label in b(L, R) is x•, and vice versa.

Lemma 3.31. Let L be an oriented link diagram. If G0 is a (non-empty) full sub-
graph of G�(L), and v 2 V(G0), then

(1) #vUa(G0 \ {v}) = a(G0)� a(G0, v);
(2) if v 2 V(G0) is a non-pure6 or a non-isolated (in G0) vertex, then a(G0, v) is a

boundary.

Proof. The claim (1) is immediate from the definitions (cf. the equation (16), at
page 48).

Now let us turn to claim (2). Since v 2 V(G0) is a non-isolated (in G0) or
non-pure vertex there exists v0, which is either in G0 or neutral, connected to v.
Moreover, since G0 ✓ G�, it follows that v0 is connected to v by a negative edge.

Choose a negative crossing, say c, joining the circles gv and gv0 representing
v and v0, respectively. Then, consider the resolution s with all crossings but c
resolved as in the oriented resolution. Finally, denote by g the circle in s obtained
by merging the circles associated to v and v0 along c (see Figure 18).

With this notation, define the enhanced state q(G0, v) with underlying resol-
ution s as follows: label the circle g by bv0 , and label all the other circles as in7

a(G0).
Let us compute ∂q(G0, v). By definition, ∂q(G0, v) can be written as R-linear

combination of enhanced states whose underlying resolution differ from s by
a local resolution which is a 0-resolution in s. Since in the oriented resolution
the local resolution of each negative crossing is a 1-resolution, it follows that all
contributions come from enhanced states obtained by either (Type A) merging
two circles of s along a positive crossing or (Type B) splitting g along c. Notice
that we can take the expression of ∂q(G0, v) as sum of enhanced states in such a
way that there is a unique enhanced state of Type B.

6A vertex in the simplified Tait graph is called pure if it is connected only with vertices of the
same type.

7Here we are using the natural identification of all circles of the oriented resolution which do
not meet c with the circles in s different from g.
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All the contributions coming from Type A enhanced states are trivial. In
fact, either they merge two circles which have the same labels as in b(L, R), or
they merge g with a circle which was connected by a positive crossing with gv0

(because v is negative, there are no positive crossing connecting gv to any other
circle). In this latter case the contribute is trivial. In fact, g has the same label as
gv0 in b(L, R) and all non negative circles in a(G0) are labeled as in b(L, R).

So, the only non trivial contribution to ∂q(G0, v) comes from the unique Type B
enhanced state. It is immediate from the definition that the underlying resolution
of the Type B enhanced state is the oriented resolution of L. Moreover, the labels
of this enhanced state are easily computed: all circle different from gv are labeled
as in a(G0) and gv is labeled by bv0 = bv. So, by definition of a(G0, v), the claim
follows.

Q.E.D.

Proposition 3.32. Let L be an oriented link diagram, and R be a ring. Denote by
`� be the number of split components of L (i.e. connected components of L seen as a
four-valent graph) which have only negative crossings. Then

b(L) = Uo�(L)�`�
a({v01, ..., v0`�}) + ∂t,

for some t 2 C•,•
BN(L, R[U]).

Proof. Our scope is to define a sequence of vertices, say vi 2 G�, such that if we
define (by induction)

Gi = Gi�1 \ {vi} and G0 = G�,

the vertex vi is either non-isolated in Gi�1 or non-pure.
In this way, by applying (1) of Lemma 3.31 several times, we obtain

b = a(G0) = ±Ua(G1) + a(G0, v1) = · · · =

= ±Uo�(L)�`�
a({v01, ..., v0`�}) +

o�(L)�`�
Â
i=1

#iUi
a(Gi�1, vi).

The last summand is a boundary thanks to (2) of Lemma 3.31, and the claim
follows.

To define the sequence of vertices vi 2 V(G�) \ {v01, ..., v0`�}, one can start
by fixing an order of the connected components of G�, say G1, ..., Gk. For each
component consider a spanning tree. There is way to define a total order on each
spanning tree once one fixes a root: first consider the distance from the root,
and then choose an arbitrary order on the nodes which are at the same distance
from the root. The choice of the root can be almost arbitrary: one just have to
pay attention to avoid pure vertices whenever possible. The only spanning trees
having all pure vertices are those spanning connected components of G� which
are also connected components of G. These connected components of G are exactly
those corresponding to negative split components of L. Now, fix a root on each
spanning tree and an order on its vertices, as described above.
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Denote by v01, ..., v0`� the roots of the spanning trees spanning connected com-
ponents of G� which are also connected components of G. Order all the vertices of
G�, except v01, ..., v0`� , in the following way: first look at the order of the connected
components to which they belong. Then, if they belong to the same component,
use the order on the spanning tree. Finally, define vi to be the i-th vertex with
respect to this total order. Notice that each vi is a non-isolated or non-pure vertex
in Gi�1 by definition, and this concludes the proof.

Q.E.D.

Corollary 3.33. For each oriented link diagram L, we have

cR(L) � o�(L)� `�(L)

⇤
The estimate given in Corollary 3.33 can be sharpened a bit.

Proposition 3.34. Let L be an oriented link diagram, and let v01, ..., v0`� as in Pro-
position 3.32. If there is a negative edge between two neutral circles in G(L), then

a({v01, ..., v0`�}) = Uh + ∂q,

for some h, q 2 C•,•
BN(L, R[U]).

Proof. Let v and v0 two neutral vertices connected by a negative edge in G(L).
Denote by gv and gv0 the circles corresponding to v and v0, respectively, in the
oriented resolution r = r(L). Choose a crossing c connecting the two circles gv
and gv0 . Denote by s = s(c) the resolution in which every crossing, with the sole
exception of c, is resolved as in the oriented resolution. Finally, denote by g

0 the
circle in s obtained by merging gv and gv0 along c (see Figure 18).

...

gv gv0

c

r

...

g

0

c

s

Figure 18. The circles gv and gv0 , associated to v and v0 respect-
ively, in the oriented resolution r, the crossing c and the circle g

0

in the resolution s = s(c).

Define q to be the enhanced state whose underlying resolution in s, and
whose labels are as in a({v01, ..., v0`�}) for all the circles but g

0, whose label is
b

gv .
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Remark 33. There is no special reason to use b
gv instead of b

gv0 . In fact, the
roles of v and v0 can be exchanged and without affecting the proof.

The only 0-resolution which is not the resolution of a positive crossing in
s is the resolution of c. Moreover, gv and gv0 are connected only by negative
crossings. So, there exists an expression of ∂q as sum of enhanced states whose
underlying resolution is the oriented resolution (Type A), is by merging a circle
with g

0 along a positive crossing (Type B), is obtained by merging two circles
(different from g

0) along a positive crossing (Type C).
The contribution of Type A enhanced states amount to a single enhanced

state a

0 whose labels are exactly those of a({v01, ..., v0`�}), except in gv0 , where the
label is bv = bv0 . Thus

a({v01, ..., v0`�})� a

0 = ±U
O

g2r\gv0

a
g

⌦ x+,

where a
g

is the label of g in a({v01, ..., v0`�}).
Each contribution coming from Type B enhanced states is either a multiple of

U or trivial. In fact, consider a circle g

00 connected with a positive crossing to g

0.
This circle, say g

00, in the oriented resolution either shares a crossing with gv or
shares a crossing with gv0 . In the first case the label of g

00 is b
gv . In the second

case the label of g

00 is b
gv . So, when we merge g

00 with g

0 we get a circle whose
label is either

mBN(bgv , b
gv) = 0

or
mBN(bgv , b

gv) = ±Ub
gv .

Finally, contributions of Type C are trivial. In fact, all non-negative circles
different from g

0 in a({v01, ..., v0`�}) have the same labels as in b(L, R). Hence, it
follows

a({v01, ..., v0`�})� ∂q = Uh

Q.E.D.

Corollary 3.35. For each oriented link diagram L, we have

c(L) � o�(L)� `�(L) + d

�
L ,

where d

⌥
L is 1 if there is a negative (positive) edge between two neutral circles in GL, and

0 otherwise. ⇤

Remark 34. If L is a negative diagram, there are no non-negative vertices. So,
the bound in Corollary 3.33 could be sharp for negative diagrams.

3.3. Crossing changes and an upper bound. Now we wish to give an upper
bound to the value of the c-invariants. In order to obtain this estimate we shall
analyse the behaviour of the b-invariants under crossing changes, obtaining a
result of of independent interest.

First, we need to give a meaning to the expression ”crossing change“. To
do so we need to define the crossing removal and the crossing creation moves.
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Roughly speaking, we define crossing removal and crossing creation moves as
the sequences of moves shown in Figure 19. More formally, let L be an oriented
link diagram and let the crossing c and the arcs a, b, e and g be as in Figure
19. The removal of the crossing c is the composition of the saddle move along
g with the first Reidemeister move which removes the curl created as a result
of the saddle move. While the creation of a crossing c is the composition of a
first Reidemeister move on the arc b with the saddle move along the arc e. A
crossing creation (resp. removal) move is called positive if the crossing created
(resp. removed) is positive, otherwise it will be called negative.

A crossing change move is a crossing removal move, followed by a crossing
creation move of different type.

Remark 35. The crossing removal and the crossing creation moves are ori-
ented moves, which means that one starts with an oriented link and ends up
with an oriented link. This is basically because these moves represent a weak
cobordism between two oriented links.

crossing creation

crossing removal

c

g a

b

e

crossing creation

crossing removal

c

g a

b

e

Figure 19. Positive (left) and negative (right) crossing removal
and creation moves.

Given two links L and L0 related by a crossing removal (resp. creation), and
a Frobenius algebra F , there is a natural induced map

r� (resp. µ�) : C•
F (L, R) �! C•

F (L0, R),

where � is either + or �, depending on the type of crossing removed (resp.
created). These maps are the composition of a saddle map and a map associated
to a first type Reidemeister move, in the order and of the type prescribed by the
movie in Figure 19.

Proposition 3.36. Let L be an oriented link diagram and let c be a positive crossing
in L. Denote by L0 the diagram obtained from L by removing c. Then

r+(b(L, R)) = b(L0, R), µ+(b(L0, R)) = ±Ub(L, R).

In particular, cR(L0) � cR(L).

Remark 36. Notice that we cannot extract any direct information on the c-
invariants from

µ+(b(L0, R)) = ±Ub(L, R).
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In fact, from the above equality we get

cR(U[b(L, R)]) � cR(L0);

however, the only obvious relation between cR(Ub(L, R)) and cR(L) is

cR(U[b(L, R)]) � cR(L) + 1.

Proof. Let r denote the oriented resolution of L. This can be identified with the
oriented resolution r0 of L0, and the maps r+ and µ+ map Ar to Ar0 , and vice versa.
In order to prove the proposition is useful to split the maps into the composition
of a saddle map, and the map associated to a Reidemeister move, in the due
order.

L L00

saddle

saddle

ga
S

S0

g

0
a

g

00
a

Figure 20. The saddle moves in the first clip of the crossing re-
moval move, and in the last clip of the crossing creation move.

First, let us deal with the removal move. Let ga be the circle in r where the
endpoints of the surgery arc g lie, this is split in two circles, say g

0
a and g

00
a , by the

saddle move (see Figure 20). The saddle map S behaves as follows:

S(b(L, R)) = S

0@ O
g2r\ga

b
g

⌦ b
ga

1A =
O

g2r\ga

b
g

⌦ D(b
ga)

so, being b
ga either x� or x•, the result is a single enhanced state, and (by (16))

labels of g

0
a and g

00
a in this enhanced state are both b

ga . To complete the removal
move, the saddle map should be composed with the map Y+

1 , and this acts as
follows

Y+
1 (S(b(L, R))) = Y+

1

0@ O
g2r\ga

b
g

⌦ D(b
ga)

1A = #(b
g

00
a
)
O

g2r0\g

0
a

b
g

⌦ b
g

0
a
,

which is exactly b(L0, R) (recall that #(x•) = #(x�) = 1).
In the case of the positive crossing creation move, one has first to perform a

positive first Reidemeister move, which has already been proved to preserve the
b-cycles, so the labels of g

0
a and g

00
a in F+

1 (b(L0, R)) are exactly b
g

0
a

and b
g

00
a
. Then,

to conclude, one must perform a saddle move. This has the effect of multiplying
the labels of g

0
a and of g

00
a . From a simple consideration on the nesting numbers

of g

0
a and g

00
a it follows b

g

0
a
= b

g

00
a
. Now the claim follows immediately from

Equation (14) at page 48.

Q.E.D.
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Remark 37. Denote by L an oriented link diagram, and by L00 the oriented
link diagram in the intermediate passage of the crossing removal move (i.e. the
oriented link diagram obtained from L by a saddle move as in the right hand side
of Figure 20). In the proof of the previous proposition we have shown that the
saddle move S sends b(L, R) to b(L00, R).

In particular, we can re-prove the following

Corollary 3.37. If B is a quasi-positive braid, then cR(B) = 0.

Proof. Since B is quasi-positive, it can be written as

B =
k

’
i=1

wiB+
i w�1

i ,

where B+
i are positive braids. By eliminating all the crossings in B+

i , for each i,
and performing a sequence of coherent Reidemeister moves, one ends up with
the crossingless diagram of the l-components unlink Ul . By Proposition 3.36, it
follows

0 = cR(Ul) � cR(B) � 0,
and this concludes the proof.

Q.E.D.

Proposition 3.38. Let L be an oriented link diagram and let c be a negative crossing
in L. Denote by L0 the oriented link diagram obtained from L by removing c. Then

r�(b(L, R)) = ±Ub(L0, R), µ�(b(L0, R)) = b(L, R).

In particular, cR(L) � cR(L0).

Proof. The claim about the crossing removal map follows immediately from
Remark 37 and from the behaviour of the b-cycles under a negative Reidemeister
move. Let us turn to the case of the creation of a negative crossing. It follows
immediately from the definition of F�1 that

(22) F�1 (b(L0, R)) =
O

g2r0\g

00
a

b
g

⌦ x+,

where we are using the same notation used in the proof of Proposition 3.36 (cf. the
proof of Proposition 3.8 Equation (22)). The saddle map assigns to F�1 (b(L0, R))
the state whose underlying resolution is the oriented resolution of L, and all the
labels are an in F�1 (b(L0, R)), except the label of ga which is the product of the
labels of g

0
a and of g

00
a . From a simple check on the nesting numbers it follows

that b
g

0
a
= b

ga . Taking into account that the label of g

00
a is x+ the claim follows.

Q.E.D.

Corollary 3.39. If L+ and L� are two oriented link diagrams, which differ only in
a crossing c. Suppose that c is positive in L+, and negative in L�, then

µ� � r+(b(L+, R)) = b(L�, R), µ+ � r�(b(L�, R)) = ±U2
b(L+, R)

In particular, cR(L�) � cR(L+). ⇤



4. SOME PHILOSOPHICAL REMARKS 77

The following will be an immediate consequence of Proposition 3.36 and of
Corollary 4.4.

Corollary 3.40. Let L be an oriented link diagram, and let L� be the diagram ob-
tained from L by removing all positive crossings. Then,

o�(L�)� `�(L�) � cR(L).

⇤

4. Some philosophical remarks

Thus far we have introduced two (pairs of) transverse braid invariants, namely
the b-invariants and the c-invariants, proved some of their properties. Moreover,
we proved in Theorem 3.23 that the b-invariants are equivalent to the NLS-
invariants. As a consequence the c-invariants can be recovered from the y

±
0,q

invariants (see Section 3). So one may wonder if there is some more transverse
information coming from Khovanov-type theories.

4.1. The b-invariants. The first question we wish to address is whether or
not is possible to find other transverse invariants in Bar-Natan theory.

Question 1. Let t be a transverse link and let T be a diagram representing t

(either a front projection or a braid diagram). Is there an element of C•,•
BN(T, F[U]),

different from b(T) and b̄(T) in the case when T is a braid diagram, which is a
both a cycle and a transverse invariant8?

This question, as stated, is quite general and hard to answer. Of course one
may try to write a generic element of C•,•

BN(T, F[U]), and impose the invariance
under the desired set of Reidemeister moves and the condition of being a cycle,
getting some equations. Even though the transverse invariance can be reduced
to some local relations, the structure of a generic element x of C•,•

BN(T, F[U]), and
hence the number and the type of equations one gets by imposing dBN x = 0,
heavily depends on the diagram.

So, it is better to strengthen our requests in order to narrow the possible
answers. For example, we can limit ourselves to the enhanced states with under-
lying resolution the oriented resolution.

Question 2. Let t be a transverse link and let T be a diagram representing t

(either a front projection or a braid diagram). Is there x 2 C•,•
BN(T, F[U]) such that

x is an enhanced state with underlying resolution the oriented resolution, and x
is a both a cycle and a transverse invariant?

Surprisingly enough we can give a complete answer to Question 2 in the
case of transverse braids (cf. Corollary 3.44) and a partial answer in the case of
transverse front projections (cf. Corollary 3.45).

8In the same sense as b, which means is preserved by the maps induced by a set of Reidedmeister
moves codifying the transverse isotopy.
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Suppose that we have a way to assign to each oriented link diagram L an
enhanced state x(L) 2 C•,•

BN(L, F[U]). Furthermore, suppose that the underlying
resolution of x(L) is the oriented resolution of L. The key to answer Question 2
is to analyse the behaviour of x under coherent second Reidemeister moves.

Lemma 3.41. Let L be an oriented link diagram. Denote by a and b two unknotted
arcs of L as9 in Figure 21, and by L0 the link diagram obtained by performing a coherent
second Reidemeister move along a and b. Finally, denote by g

a

and g

b

are the circles int
the oriented resolution of L containing a and b, respectively. Suppose that

F2(x(L)) = x(L0) and Y2(x(L0)) = x(L),

where Y2 and F2 are the maps associated to the second Reidemeister move and its inverse,
respectively. Then the labels of g

a

and g

b

in x(L) are, respectively, polynomial multiples
of either b

g

a

and b
g

b

, or b̄
g

a

and b̄
g

b

.

a b

Figure 21. Two coherently oriented arcs.

Proof. Denote by r and r0 the oriented resolutions of L and L0, respectively.
Finally, denote by s the oriented resolution of L0 where all crossings but the two
added by the second Reidemeister move are resolved as in the oriented resolution.
First, let us recall the behaviour of the maps

F2 : CBN(L, R) �! CBN(L0, R) and Y2 : CBN(L0, R) �! CBN(L, R),

associated to the second Reidemeister move, when restricted to Ar
10 and Ar0 ,

respectively (cf. Subsection 2.3). The map F2 sends Ar to Ar0 . By identifying the
two resolutions r and r0 we can identify Ar and Ar0 . With these identifications the
map F2 can be seen as the identity map. In particular, it preserves all states with
underlying resolution the oriented resolution.

On the other hand, the map Y2 sends Ar into Ar0 � As and behaves on all the
enhanced states in Ar as shown in Figure 22.

9More precisely, there exists a small ball intersecting L precisely in a and b which is ambient
isotopic in R2 to the ball in Figure 21.

10Recall that, given a link diagram L and a resolution t of L, At is the F[U] sub-module of
CBN(L; F[U]) generated by all states whose underlying resolution is t.
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a

b

7�! +

a

b m(a, b)

x+

Figure 22. The behaviour of the map Y2 on enhanced states with
underlying resolution the oriented resolution.

Let a and b the labels of the circles ga and gb in x(L). Since Y2(x(L)) =
x(L0) 2 Ar0 , it follows that m(a, b) = 0. Thus, a and b must be zero divisors in
ABN . It follows that a and b belong to either the ideal generated by x� or to the
ideal generated by x• in ABN . Moreover, the two labels should belong to different
ideals. Since b

ga is either x� or x• and b
gb = b̄

ga the claim follows.
Q.E.D.

Lemma 3.42. Let L be a non-split oriented link diagram (i.e. L is connected as
a planar graph), and let x 2 C•,•

BN(L, F[U]) be an enhanced state. If x is invariant
under coherent Reidemeister moves of the second type, then either x = P(U)b(L, F) or
x = P(U)b̄(L, F), for some P 2 F[U].

Proof. If two circles in the oriented resolution share a crossing it is possible to
perform a coherent R2 involving those circles. Thus, by Lemma 3.41 each pair
of circles sharing a crossing should be labeled either as in b or b̄, up to the
multiplication by an element of F[U]. Since L has only one split component, the
Tait graph is connected. So, once the label of a single circle is chosen, all the other
labels are determined up to multiplication by an element of F[U], and the claim
follows.

Q.E.D.
Let L be an oriented link diagram, and let L1, ..., Lk be its split components.

We will say that Li and Lj have compatible orientations if there exists ball B inter-
secting L in two unknotted arcs a and b, with a belonging to Li and b belonging
to Lj, which is ambient isotopic in R2 to the ball in Figure 21.

The diagram L is said to be coherently oriented if for each pair of split com-
ponents of L, say L1 and L2, there exists a sequence L1 = Li1 , ..., Lik = L2 of
split components of L such that the components Lij and Lij+1 have compatible
orientations for each j 2 {1, ..., k� 1}.

Proposition 3.43. Let L be a coherently oriented diagram, let x 2 C•,•
BN(L, F[U]) be

an enhanced state whose underlying resolution is the oriented resolution, and let F be a
field. If x is invariant under coherent Reidemeister moves of the second type, then x is a
F[U]-multiple of either b(L, F) or b̄(L, F).

Proof. Let L be a coherently oriented diagram and L1,...,Lk be its split com-
ponents. By Lemma 3.41 the labels of x(L) on the components of the oriented
resolution of a split component are exactly as in b or as in b̄, up to multiplication
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by an element of F[U]. By definition of coherently oriented link diagram, given
two split component, say Li and Lj, there exists a sequence L1 = Li1 , ..., Lik = L2
of split components of L such that the components Lij and Lij+1 have compatible
orientations for each j 2 {1, ..., k� 1}. By definition of compatible orientation it
is possible to perform a second type coherent Reidemeister move using an arc of
Lij and and arc of Lij+1 . Thus, again by Lemma 3.41, if the labels of the circles
corresponding to Lij in x(L) are as in b (up to multiplication by an element of
F[U]), then also the labels of the circles corresponding to Lij+1 in x(L) are as in
b. Similarly, if the the labels of the circles corresponding to Lij in x(L) are as in
b̄ then also the labels of the circles corresponding to Lij+1 in x(L) are as in b̄. So,
once the label of a circle g in x(L) is a F[U]-multiple of b

g

(resp. b̄
g

), then x(L) is
an F[U]-multiple of b(L, F) (resp. b̄(L, F)).

Q.E.D.

Remark 38. Link diagrams obtained as the Alexander closure of an oriented
braid diagram are coherently oriented. Moreover, is always possible to perform a
braid-like coherent second Reidemeister move between two coherently oriented
the split components of the diagram.

From the previous remark and Proposition 3.43 it follows

Corollary 3.44. All enhanced states, with underlying resolution equal to the ori-
ented resolution, which are transverse braid invariants in C•,•

BN are multiples of one of the
b-invariants. In particular, there is a bijection between such transverse invariants and
polynomial transverse braid invariants. ⇤

The previous corollary settles the case of transverse braid invariants. Now,
let us turn to the case of transverse front projections.

Suppose to have a way to assign to each transverse front projection T an
element x 2 Ar(T) ✓ C•,•

BN(T, F[U]), where r(T) denotes the oriented resolution of
T. We say that x is a transverse invariant for front projections if given a sequence
S of transverse Reidemeister moves from T to T0 then the induced map

FS : C•,•
BN(T, F[U]) �! C•,•

BN(T
0, F[U])

is such that
FS(x(T)) = x(T0).

Corollary 3.45. If x is an invariant for transverse front projections and T is a
coherently oriented front projection, then x(T) is an F[U]-multiple of one of the b-
invariants. ⇤

After having dealt with Question 2, another natural question comes into
mind, that is: what happens if we change the Frobenius algebra? More form-
ally, we pose the following question.

Question 3. Given a transverse knot t, a diagram T for t (either a front
projection or a braid diagram), and a rank 2 Frobenius algebra F , is there a chain
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in C•,•
F (T, F[U]) which is a transverse invariant? Are there conditions on F which

ensure the existence of such an element?

We would like to address Question 3 in the case

AF =
F[U, T][X]

(X2 + PX + Q)
,

with P = P(U, T) and Q = Q(U, T), where U and T are formal variables. The
general case will be left for future work.

Remark 39. Our reasoning works in the slightly more general case

AF =
RF [X]

(X2 + PX + Q)
RF =

F[U, T]
(p(U, T), q(U, T))

with p and q such that (p, q) is a (possibly trivial) prime ideal in F[U, T].

Up to twist equivalence (cf. Proposition 1.1 & Proposition 1.2) we may as-
sume

#F (X) = 1F[U,T], #F (1AF ) = 0.

As in the case of Bar-Natan theory, we will avoid the full generality of the problem
and limit ourselves to enhanced states with underlying resolution the oriented
resolution. Again, as before, in order to get a cycle is necessary to have some zero
divisors in AF , which implies that X2 + PX + Q factors over F[U, T]. Thus, we
may write

(X2 + PX + Q) = (X� x1)(X� x1),

where x1 = x1(U, T), and x2 = x2(U, T).

Remark 40. We are not excluding the case x1 = x2

Denote by
x� = (X� x1),

and
x• = (X� x2).

These two elements have the same formal properties of x� and x•. More precisely,

(26) mF (x�, x�) = �(x1 � x2)x�, mF (x•, x•) = (x1 � x2)x•,

(27) mF (x�, x•) = 0,

and

(28) #F (x�) = #F (x•) = 1F[U,T].

Furthermore, by setting

#x⇤ =

(
1 ⇤ = �
�1 ⇤ = •

,

and
x� = x•, x• = x�,
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one can recover the analogue of Equation (15), more precisely

(29) x = x� #x(x2 � x1)1AF , x 2 {x�, x•}.

Moreover, one has to check also the behaviour of x� and x• with respect to the
co-multiplication DF . In order to do so we will make use of the relation at page 2
(just after Proposition 1.1, see also [55, Chapter 2]) which relates the co-unit, the
multiplication and the co-multiplication in a Frobenius algebra. For the sake of
clarity we will recall it here. Let (A, m, i, D, #) be a Frobenius algebra. For each
x 2 A we have

(30) D(x) = Â
i

x0i ⌦ x00i ,

where the elementary tensors x0i ⌦ x00i are totally determined by the equations:

(31) m(x, y) = Â
i
(x00i , y)x0i , 8y 2 A;

where (·, ·) indicates the (non-degenerate) bi-linear pairing #(m(·, ·)).
Using Equations (26) and (27) and the description of the co-multiplication in

Equations (30) and (31), one gets

(32) DF (x•) = x• ⌦ x•, DF (x�) = x� ⌦ x�.

We will verify Equation (32) only for x�, the other is formally identical and hence
left to the reader. First notice that:

mF (X, x�) = mF (x•, x�) + mF (x2, x�) = x2x�,

so it follows that
(X, x�)F = #F (mF (X, x�)) = x2.

Set
DF (x�) = aX⌦ X + bX⌦ 1 + c1⌦ X + d1⌦ 1.

By the above-mentioned relation between the co-unit, the multiplication and the
co-multiplication, we have that

(x2a + b)X + (x2c + d) = mF (x�, x�) = �(x1 � x2)x�,

and
(x1a + b)X + (x1c + d) = mF (x�, x•) = 0 = 0X + 0.

Thus, we get
a = 1, b = �x1, c = �x1, d = x2

1,

and the second part of Equation (32) follows.
Finally, to complete our set of formal properties, we need to check the effect

of the “de-cupped torus” map (cf. Equation (19)). Simple computations show
that

DF (1) = x� ⌦ 1AF + 1AF ⌦ x• = x• ⌦ 1AF + 1AF ⌦ x�,

from which it follows

TF (1F[U,T]) = mF (DF (1AF )) = x• + x�.
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Let L be an oriented link diagram. Define bF -invariants as follows: bF (L) 2
C•,•
F (L, F[U, T]) is the enhanced state with underlying resolution the oriented

resolution, where each circle g has label bF (g), defined as follows

bF (g) =

(
x� if N(g) ⌘ 0 mod 2
x• if N(g) ⌘ 1 mod 2

Let b̄F (L) be defined as bF (L), but with the roles of x� and x• exchanged.

Remark 41. If x1 = x2 then bF = b̄F .

Taking into account that all the formal properties of x� and x• one can repeat
all the proofs in this chapter. In particular, we get the following results.

Proposition 3.46. Both bF (L, F[U, T]) and b̄F (L, F[U, T]) are (possibly non dis-
tinct) cycles in C•

F (L, F[U, T]). ⇤

Proposition 3.47. Let L be an oriented link diagram. If L0 is the diagram obtained
from L by a first Reidemeister move (with the induced orientation), then

(R1p) Y+
1 (F )(bF (L, R)) = bF (L0, R), and F+

1 (F )(bF (L0, R)) = bF (L, R),

and

(R1n) (x1 � x2)(Y�1 )⇤(F )([bF (L)]) = �#x[bF (L0)];

where x is the label of the circle containing the arc where the first move is performed in
bF (L, R). ⇤

Proposition 3.48. Let L be an oriented link diagram. Let L00 be the oriented link
diagram obtained from L via a coherent second Reidemeister move. Then

(R2c) Y2(bF (L)) = bF (L00) and F2(bF (L00)) = bF (L).

⇤

Proposition 3.49. Let L be an oriented link diagram and let L00 be obtained from L
by a non-coherent second Reidemeister move along the arcs a and b. Then, either

(R2n1) F2(bF (L00)) = bF (L)

or

(R2n2) F2(bF (L00)) = ±(x1 � x2)bF (L),

depending whether a and b belong to the same or to different circles in the oriented
resolution of L. In the first case (R2n1) holds, while (R2n2) holds in the latter case.
Moreover, in neither case the map Y2 does preserve the bF -cycles. ⇤

Proposition 3.50. Let L and L0 be two oriented link diagrams related by a coherent
third Reidemeister move as in Figure 14. Then

(R3c) Y3(bF (L)) = bF (L0) and F3(bF (L0)) = bF (L).

⇤
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Suppose to have a way to assign to each oriented link diagram L an element
x 2 Ar(L) ✓ C•

F (L, RF ), where r(L) denotes the oriented resolution of L. We say
that x is a invariant under a sequence S of Reidemeister moves from L to L0 if
the induced map

FS : C•
F (L, RF ) �! C•

F (L0, RF )

is such that
FS(x(T)) = x(T0).

Finally, x is a transverse invariant for front projection ( resp. for transverse
braids) if is invariant under sequence of transverse Reidemeister moves of front
projections (resp. transverse braid moves).

Proposition 3.51. Let L be a coherently oriented diagram. If x is invariant under co-
herent Reidemeister moves of the second type, then x is a RF -multiple of either bF (L, F)
or b̄F (L, F). ⇤

Corollary 3.52. If x is a transverse braid invariant, then x is an RF -multiple of one
of the bF -invariants. ⇤

Corollary 3.53. If x is an invariant for transverse front projections and T is a
coherently oriented front projection, then x(T) is an RF -multiple of one of the bF -
invariants. ⇤

Finally, we address the question regarding the flype invariance of the bF -
invariants.

Question 4. Given a Frobenius algebra F such that

AF =
F[U, T][X]

(X2 + P(U, T)X + Q(U, T))

are there conditions on F such that at least one among bF and b̄F is not flype
invariant?

The answer is easy in this case. In fact using the sequence of moves codifying
a flype given in [34], it is easy to see that both bF and b̄F are flype invariant.

4.2. The c-invariants. The usage of the b-invariants to distinguish transverse
links is quite far from being practical. In fact, one should verify that all the
homotopy equivalences induced by a sequence of Reidemeister moves do not
preserve the b-invariants. Since the b-invariants are elements in C0,•

BN , which is a
(graded) free F[U]-module, it is difficult to prove algebraically that they are not
left invariant by such maps.

So, in order to overcame this difficulty, we made use of the structure of F[U]-
module of Bar-Natan homology and defined the c-invariants. The c-invariants are
completely determined by the homology classes of the b-invariants. Thus, they
provide the same or less amount of transverse information as the b-invariants. For
example, since the b-invariants are flype invariant also the c-invariants cannot be
used to distinguish flypes.
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Definition 3.7. An oriented link type l is called c-simple if each pair of
distinct transverse braids representatives of l having the same classical invariants
have also the same c-invariants.

The non-effectiveness of the c-invariants is equivalent to all links being c-
simple. Now we wish to address the following question

Question 5. Let l be an oriented link type. Which are the homological con-
ditions which l should satisfy to be c-simple?

This question as stated is intentionally vague. For example we did not spe-
cified which homology one should consider, or which type of condition one
should look for. However, we manage to give some sufficient conditions for a
knot type to be c-simple.

First, we need to make some preliminary consideration on the b-invariants.
Let K be an oriented knot diagram representing the knot type k. Fix an isomorph-
ism of bi-graded F[U]-modules

(33) j : H•,•
BN(L, F[U])!

mM
i=1

F[U]
(Uti )

(hi, qi)�F[U](0, s(k) + 1)�F[U](0, s(k)� 1),

which exists by Corollary 2.17. Consider the natural generators of the module on
the right hand side of (33), that is

ei = (

i�th place
#

0, ..., 0, [1], 0, ..., 0) f2 = (0, ..., 1, 0) and f2 = (0, ..., 0, 1),

where i 2 {1, ..., m}, and set

ẽi = j

�1(ei) and f̃ j = j

�1( f j).

Notice that for each i we have

(hdeg(ẽi), qdeg(ẽi)) = (hi, qi).

Denote by I0 the set of all i 2 {1, ..., m} such that hi = 0. From the definitions of
the ẽi’s, f̃1, f̃2 and cF(K) it follows immediately that

(34) [b(K, F)] = UcF(K)

 
a1Ur1 f̃1 + a2Ur2 f̃2 + Â

i2I0

giUki ẽi

!
,

where at least one among r1, r2, and the ki’s such that giUki ẽi 6= 0, is zero.
Moreover, as the homology classes of the b-invariants generate a rank 2 F[U]-
sub-module of H•,•

BN(k, F[U]), it follows that at least one among a1 and a2 is non
trivial. Let B

k

be a braid representing k. From the homogeneity of the b-invariants
and from Equation (13) it follows that

qi � 2ki = s(k)� 1� 2r1 = s(k) + 1� 2r2 = sl(B
k

) + 2cF(B
k

).

In particular, we get that
r1 = r2 + 1.
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If r1 equals 0 then we get

s(k)� 1 = sl(B
k

) + 2cF(B
k

).

Thus, cF would be (half of) the difference between a knot invariant and the self
linking, and hence non-effective. A similar reasoning applies to c̄F. Making use
of these considerations we can prove the following proposition.

Proposition 3.54. Let k be an oriented knot type. If qi is greater than or equal to
s(k)� 1 for each i 2 I0, then k is c-simple.

Proof. If qi � s(k)� 1 for all i 2 I0, then the ki’s are greater than or equal to r1.
Thus, if r2 > 0, then the ki’s are also strictly greater than 0. It follows that r2 must
be equal to 0 and the claim follows.

Q.E.D.

Remark 42. Proposition 3.54 holds also in the case k is a link is such that
H0,•(k, F[U])/T

�
H0,•(k, F[U])

�
is supported in two quantum degrees.

The following corollary is an immediate consequence of Propositions 2.26
and 3.54.

Corollary 3.55. Let k be an oriented knot type. If k satisfies one of the following
conditions

(1) k is Kh-pseudo-thin (i.e. H0,•
Kh (k, F) is supported in two quantum degrees);

(2) H�1,j
Kh (k, F) ⌘ 0 for each j strictly lower than s(k)� 3;

then k is c-simple. In particular, all Kh-thin11 knots are c-simple. ⇤

Another immediate consequence of the Propositions 2.26 and 3.54 is the fol-
lowing.

Corollary 3.56. Let k be an oriented knot type. Suppose that the torsion sub-module
of H0,•

BN(k, F[U]) is isomorphic to the F[U]-module

M =
mM

i=1

F[U]

(U2ki )
,

for some m, k1, ..., km 2 N \ {0}. Then, if H�1,j
Kh (k, F) ⌘ 0 for each j strictly lower than

s(k)� 5, then k is c-simple. ⇤

Let F be a field such that char(F) 6= 2. From the analysis of the Bar-Natan
and Khovanov homologies of all prime knots with less than 12 crossings it follows

Corollary 3.57. All prime knots with less than 12 crossings and their mirror images
are c-simple over F.

11An oriented link-type l is Kh-thin (over F) if its Khovanov homology is supported in two
diagonals, that is

Hi,j
Kh(l, F)⇢⌘ 0 ) i + j = s(l)± 1.
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Proof. For the computation of integral Khovanov homology the reader may refer
to the KnotAtlas ([5]). Since there is only 2-torsion in the integral Khovanov ho-
mology of the prime knots with less than 12 crossings, their Khovanov homology
over F is concentrated in the same bi-degrees as their rational Khovanov homo-
logy.

A well-known theorem due to Lee ([32]) states that alternating knots are Kh-
thin. As a consequence of Corollary 3.55, all alternating knots are c-simple. So
we may restrict our attention to the non-alternating knots. According to Knot-
Info ([11]), among the 249 prime knots with less than 11 crossings the only non-
alternating knots are the following

819 820 821 942 943 944 945 946 947 948
949 10124 10125 10126 10127 10128 10129 10130 10131 10132

10133 10134 10135 10136 10137 10138 10139 10140 10141 10142
10143 10144 10145 10146 10147 10148 10149 10150 10151 10152
10153 10154 10155 10156 10157 10158 10159 10160 10161 10162
10163 10164 10165

The ones marked in red are the Kh-thin knots, while those in blue are the non-
Kh-thin but pseudo-thin knots. If a knot is Kh-thin or Kh-pseudo-thin, then also
its mirror image is Kh-thin or Kh-pseudo-thin (cf. Proposition 1.6). Thus, by
Corollary 3.55 all coloured prime knots in the list above, and also their mirrors,
are c-simple. The only prime knots with less than 11 crossing left are 942 and
10136 (and their mirrors). These knots satisfy condition (2) of Corollary 3.55 and
hence they are c-simple.

Finally, among the non-alternating prime knots with 11 crossings and their
mirrors the ones which are neither pseudo-thin nor satisfy the condition (2) of
Corollary 3.55 are

m(11n12) m(11n24) 11n34 m(11n34) 11n42
m(11n42) m(11n70) m(11n79) 11n92 m(11n96)

However, since by hypothesis char(F) 6= 2 by Corollary 2.33 the torsion sub-
module of H•,•

BN(k, F[U]) is isomorphic to the F[U]-module

M =
mM

i=1

F[U]

(U2ki )
,

for some m, k1, ..., km 2 N \ {0}. Moreover, the links listed above satisfy the
hypotheses of Corollary 3.56. Hence they are c-simple and the claim follows.

Q.E.D.

However, the reader should take into account that knots with less than 13 cross-
ings seem to have pretty a simple Khovanov homology. For example, the first
knot known to have different values of s(·, Q) and s(·, F2) is the knot 14n192465
(see [35, Section 5]), and the first prime knot to have Khovanov homology sup-
ported in more than three diagonals, which is also the first with thick torsion, is
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the knot 13n3663 (see [51, Appendix A.4]). Nonetheless there is a lack of know-
ledge of examples of transverse non-simple knots with high crossing number, so
the question about the effectiveness of the c-invariants remains open.



CHAPTER 4

A Bennequin s-inequality from Bar-Natan homology

Let F be a field. Notice that the bounds for cF(L) given in the previous
chapter (Sections 3.2 and 3.3) are independent of the characteristic of F (actually
they are independent of the ring used). The aim of this chapter is to give a new
Bennequin s-inequality, and discuss its relationship with the other Bennequin
s-inequalities.

1. A Bennequin s-inequality from the c-invariants

Before stating our Benenquin s-inequality it will be useful to recall some
notation introduced in Chapter 3 Section 1.

Let L be an oriented link diagram of an `-component link l. Denote by `s the
number of split-components of L (i.e. the connected components of L as planar
graph). Define o+(L), o�(L) and o0(L) to be the number of circles in the oriented
resolution of L which are touched only by positive crossing, negative crossings
and by both type of crossings, respectively. The corresponding types of circles
will be called positive, negative and neutral circles, respectively. By G(L) we
denote the simplified Tait graph. That is the graph whose vertices are the circles
of the oriented resolution and two vertices are connected by an edge if they share
at least a crossing. The edges of the simplified Tait graph are marked with either
+, �, or 0, depending on the fact that two circle share only positive crossings,
only negative crossings, or both type of crossings. Finally, G+(L) (resp. G�(L)) is
the sub-graph of G(L) spanned by all positive (resp. negative) circles and s+(L)
(resp. s�(L)) denotes the number of connected components of the graph obtained
from G(L) by removing the negative (resp. positive) edges. Finally, we recall the
Bennequin s-inequalities we are going to compare with our bound. Let start with
Lobb’s inequalities

(Lb12) w(L) + o(L)� 2s�(L) + 1 � s(l, F) � w(L)� o(L) + 2s+(L)� 2`+ 1.

Another inequality we are going to use is Kawamura’s inequality, which is the
following

(Kw15) s(l, F) � w(L)� o(L) + 2s+(L)� 2`s(L) + 1.

The inequality (Kw15) holds with the hypothesis that all the split components of
L are non splittable. Finally, we recall Cavallo’s inequality

(Cv15) s(l, F) � w(L)� o(L) + 2s+(L)� 2`s(L) + 1,

which holds for pseudo-thin links. Now, we are ready to state the main lemma.

89
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Lemma 4.1. Let L be an oriented link diagram representing the link type l. Then,

s(l, F) � w(L) + o(L) + 2cF(L) + 1

Proof. Let us recall (cf. [39]) that the filtered degree can be also defined as

Fdeg([x]) = max{qdeg(x0) | x0 2 [x]}

where the qdeg has been extended as the minimal degree of all the homogeneous
components. Notice that, given x 2 C•,•

BN(L, F), then qdeg(x)  qdeg (pTLee(x)).
Thanks to Corollary A.6, s(l, F)� 1 can be seen as the minimum among filtered
degrees of

[vTLee(L, F)] = (pTLee)⇤([b(L, F)]) and [vTLee(L, F)] = (pTLee)⇤([b̄(L, F)]).

Since

pTLee(Ukx) = pTLee(x),

the result follows immediately from Equation (13).

Q.E.D.

Theorem 4.2 (Bennequin s-inequality). Let L be an oriented link diagram repres-
enting the link type l, then

(s-ineq) w + o� 2o+ + 2`+ � 2d

+ + 1 � s(l, F) � w� o + 2o� � 2`� + 2d

� + 1

Proof. The lower bound is an immediate consequence of Corollary 3.35, and
Lemma 4.1. The upper bound is obtained by duality, which means that it fol-
lows from the lower bound on the mirror diagram L⇤ and from Equation (8) in
Theorem 2.12.

Q.E.D.

The following corollary is an immediate consequence of Theorem 4.2 and
Lemma 4.1.

Corollary 4.3. Let L be an oriented link diagram. Then,

o(L)� o+(L) + `+(L)� d

+
L � cF(L).

⇤

To conclude this section we state a corollary which follows immediately from
the upper bound in Equation (Lb12) and the lower bound in Equation (s-ineq).

Corollary 4.4. Let L be an oriented link diagram with only negative (resp. positive)
crossings, and l be the link type of L. Then,

s(l, F) = w(L) + o(L)� 2`s(L) + 1 (resp. s(l, F) = w(L)� o(L) + 1),

where `s indicates the number of split components of the diagram. In particular, the
bound on cF(L) given in Corollary 3.33 is sharp. ⇤
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2. Comparisons and examples

Taking aside the case of negative and positive links, where the bound is sharp,
one wishes to understand how good are the estimates given by (s-ineq) on the
value of the s-invariant. In particular, one wishes to compare the bounds given
in (s-ineq) with similar bounds.

The upper bound in (s-ineq) is not as good as the one in (Lb12). In fact, it is
easy to see that for any oriented link diagram L the following inequality holds

s�(L) � o+(L).

Moreover, we have the equality if, and only if, the link is positive. In fact, if we
remove the positive edges from the simplified Tait graph all the positive vertices
become connected components, and there are no other connected components if
and only if L is a positive diagram. Thus, if L is not a positive diagram we have

s�(L) � o+(L) + 1 � o+(L) + d

+
L � o+(L) + d

+
L � `+(L).

If L is a positive diagram, then d

+
L = 0. Thus, if L is a positive diagram we get

s�(L) = o+(L) = o+(L) + d

+
L > o+(L) + d

+
L � `+(L).

It follows immediately that

w(L) + o(L)� 2o+(L) + 2`+(L)� 2d

+
L + 1 � w(L) + o(L)� 2s�(L) + 1,

So, we have proved that the upper bound provided by (Lb12) is at least as good
as the upper bound provided by (s-ineq).

However, a similar reasoning cannot be applied to the lower bounds. The
lower bound given by Lobb depends linearly on the number of components of
the link. Hence, it becomes gradually less efficient as the number of (linked)
components grows. Thus, for links with an high number of components and
a low number of split components (i.e. the components of the diagram as a
planar graph) one expects the lower bound given in (s-ineq) to be better than the
corresponding bound in (Lb12).

The lower bound given by Kawamura – meaning (Kw15) – is strictly better
than the one given by Lobb. Nevertheless, is not always usable. In order for
(Kw15) to be true the split components of the diagram should be non-splittable.
In general it is extremely difficult to check whether or not a link is split. Moreover,
if one has a splittable link diagram, it can be arbitrarily difficult to turn it into a
disjoint union of non-splittable link diagrams.

Finally, Cavallo’s bound (Cv15) works in a very limited setting, and in in
which it provides a good bound; in the case of non-split pseudo-thin links the
bound is as good as Kawamura’s. The main drawback is that to be pseudo-thin is
still quite a restrictive condition, especially when one deals with multi-component
links.

We will show that the bound given by (s-ineq) is not comparable with the
one given by (Kw15). More precisely, we will give an infinite family of examples
where the lower bound in (s-ineq) is sharp, while Kawamura’s is not.
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We can start testing the Bennequin s-inequality (s-ineq) in some examples.
The first example will be a family of non-split pseudo thin link with a large
number of components. In this case Lobb’s lower bound is extremely inefficient,
while Kawamura’s and Cavallo’s give the same bound as (s-ineq), which is sharp.

2.1. The links l(k). The first family of links, see Figure 1 for the diagram
L(k), is obtained from the negative Trefoil knot (l(0)) by taking consecutive con-
nected sums with the positive Hopf link. The bounds on the s-invariant derived
from the diagram L(K) by using (Lb12) and (s-ineq) are easily computed and the
results are displayed in Table 1.

(Lb12) upper (s-ineq) upper (Lb12) lower (s-ineq) lower (Cv15) (Kw15)
k-2 k -k k-2 k-2 k-2

Table 1. Lower and upper bounds on the value of s(l(k), F).

The (absolute value of the) difference between the lower bound provided by
(s-ineq) and the one provided by (Lb12) increases linearly with the number of
components. Notice that the link l(k) is pseudo-thin – the number of canonical
cycles in homological degree 0 can be computed by means of Equation (5) (see
Section 2 of Chapter 2) and it is exactly two. Moreover, l(k) is clearly non-
splittable. Thus, we can also compute the bounds from Kawamura’s and Cavallo’s
(which of course are equal). Putting together the upper bound given by (Lb12)
and the lower bound given by (s-ineq) we obtain the following result.

Proposition 4.5. The s-invariant s(l(k), F) of the link l(k) is k� 2. ⇤

k

...

...
k

Figure 1. The diagram L(k) representing the link lk, and the cor-
responding simplified Tait graph G(L(k)). The red vertices and
edges are the positive ones, the blue vertices and edges are the
negative ones, and the green vertices and edges are the neutral
ones.

2.2. The links l

0(h, k, p, r, t). The second family of links we are going to test
(s-ineq) on is the family l

0(h, k, p, r, t). This family of links depends on five in-
teger parameters. The diagram L0(h, k, p, r, t) representing the link l

0(h, k, p, r, t)
is drawn in Figure 2.
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2p2k 2h

2r

2t

...

...

...

2t-1

2r-1

2p-1

Figure 2. The diagram L0(h, k, p, r, t) (on the left) representing
the link l

0(h, k, p, r, t), and its oriented resolution (on the right).
Notice that the oriented resolution does not depend on the signs
of the parameters.

During our computations we make use of symmetries to rule out some cases.
For example, the cases h < 0, k, t, r, p > 0 and k < 0, h, t, r, p > 0 are symmetric
(it is sufficient to rotate the diagram) so we will compute the bounds in one
of the two cases. It is not difficult, albeit tedious, to compute in all the cases
the bounds given by Inequalities (Lb12) and (s-ineq). The red entries in Table 1
are those for which the lower bound and the upper bound, given by either of
the inequalities, disagree. The computations and all the simplified Tait graphs
(whose unlabeled version is shown in Figure 3) in the various cases are reported
in Section 5 of Appendix B. In all the cases were the two bounds disagree the
links are not pseudo-thin, but it is more difficult to prove they are non-split. At
any rate, the bound provided by Kawamura in these cases is equals to the one
provided by (s-ineq). We can summarize the results of our computations in the
following propositions. The values of the s-invariant listed in Proposition 4.6
are computed using the upper bound of Equation (Lb12) and the lower bound
provided by (s-ineq).
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2|r|� 12|t|� 1

2|p|� 1

Figure 3. The simplified Tait graph for the diagram L0(h, k, p, r, t).

Proposition 4.6. The value of s-invariant of the link l

0(h, k, p, r, t), for all cases,
is listed in Table 2. The cases with two values, are those where the lower and the upper
bounds given by Inequalities (Lb12), (s-ineq) and (Kw15) do not agree. ⇤

< 0 > 0 value of s < 0 > 0 value of s

h, k, p, r, t —- 2(h + k� 1) h, k p, r, t 2(h + k + 2)
h, k, p, r t 2(h + k) t, k h, p, r 2(h + k) + 1 ± 1
h, k, p, t r 2(h + k) t, h k, p, r 2(h + k) + 1 ± 1
h, k, r, t p 2(h + k) r, t h, k, p 2(h + k� 1)
h, p, r, t k 2(h + k)� 3 ± 1 r, h k, p, t 2(h + k) + 1 ± 1
k, p, r, t h 2(h + k)� 3 ± 1 r, k h, p, t 2(h + k) + 1 ± 1
k, r, t p, h 2(h + k� 1) p, t h, k, r 2(h + k� 1)
h, r, t p, k 2(h + k� 1) p, r h, k, t 2(h + k� 1)
h, k, t p, r 2(h + k + 1) p, k h, r, t 2(h + k) + 1 ± 1
h, k, r p, t 2(h + k + 1) p, h k, r, t 2(h + k) + 1 ± 1
h, p, t r, k 2(h + k)� 1 ± 1 h k, p, r, t 2(h + k) + 1 ± 1
k, p, t r, h 2(h + k)� 1 ± 1 k h, p, r, t 2(h + k) + 1 ± 1
h, k, p r, t 2(h + k + 1) p h, k, r, t 2(h + k)
k, p, r t, h 2(h + k)� 1 ± 1 r h, k, p, t 2(h + k)
h, p, r t, k 2(h + k)� 1 ± 1 t h, k, p, r 2(h + k)
p, r, t h, k 2(h + k� 2) —- h, k, p, r, t 2(h + k + 1)

Table 2. The value of the s-invariant for the link l(h, k, p, r, t).

2.3. The links t

0(3, 3k). In the previous example there were some cases in
which the bound in (s-ineq) was not sharp. In this third example we wish to show
how much the bounds given by (s-ineq) may depend on the chosen diagram.

Consider the 3-component oriented link t

0(3, 3k) obtained from the positive
(3, 3k)-torus link by reversing the orientation of a single component. This is a
thick non-split link which is not pseudo-thin. The diagrams in Figure 4 and in
Figure 5 represent the link T0(3, 3k). In Figures 4 and 5 the orange strand goes in
the opposite direction with respect to the black strands.

To see the equivalence of the diagrams T0k and T00k , one has to deal first with
the case k = 1. The sequence of Reidemeister moves in this case is shown in
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T0

T0 T0 T0

k

Figure 4. The tangle T0 and the diagram T0k representing the link T0(3, 3k).

T00

B2,2k T00 T00

k

Figure 5. The tangle T00 and the diagram T00k representing the
link T0(3, 3k).

Figure 6. When k > 1 it is possible to perform the sequence of Reidemeister
moves in Figure 6 on each copy of the tangle T0. Then, it is easy to see that we
can slide the copies of the tangle T00 past each copy of the tangle B2,2, getting the
desired diagram.

T0

T00B2,2

R3()

R3()

R3m

Figure 6. The equivalence between the tangle T01 and the tangle T001 .

It is not difficult to compute the quantities needed to obtain the bounds given
in Equations (Lb12), (Kw15) and (s-ineq). We listed them and the values of the
bounds given by the above-mentioned equations in Table 3 below.
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Quantities T0k T00k
w �2k �2k
o 2k + 1 2k + 1
o� 0 2k� 1
o+ 0 0
s+ 1 2k
s� 1 1
`s 1 1
`� 0 0
d� 0 0

(Lb12) upper 0 0
(s-ineq) lower �2k �2
(Kw15) lower �2k �2

Table 3. Comparing the bounds on s(T0(3, 3k), F).

Notice that the difference between the upper bound given by (Lb12) and
lower bound provided by either (Kw15) or (s-ineq) using the diagram T0k increases
linearly with k. On the other hand, the bounds obtained from the diagram T00k
are independent from k. As a result of our computations we obtain the following
proposition.

Proposition 4.7. For each field F, the value s-invariant of the link T0(3, 3k) with
respect to that field is either 0 or �2. ⇤

2.4. The links t

(h)(m, mk). The fourth family of links is a generalization of
the family of links in the previous subsection. Denote by t

(h)(m, mk) the ori-
ented link obtained from the (m, mk)-torus link by reversing the orientation of
h strands. Notice that the link is independent of the chosen strands and that is
non-splittable. Exactly as in the previous case, there are efficient and inefficient
diagrams. We will compute the bound directly using the most efficient diagram
we can provide, that is the diagram shown in Figure 7.

To compute the bounds provided by Inequalities (Lb12), (Kw15) and (s-ineq)
it is first necessary to describe the oriented resolution of the tangle T(h)(m) in
Figure 7. For this purpose, a simple analysis shows that if h > m� h the oriented
resolution of T(h)(m) is the one shown in Figure 8. If h  m � h the oriented
resolution of T(h)(m) is obtained by reflecting the picture in Figure 8 with respect
to the dashed line and exchange the labels h and m� h. Our computations will
be performed in the case h � m� h. The other case is dealt with similarly.



2. COMPARISONS AND EXAMPLES 97

...

...

...

...

...

...

T(h)(m)

B(m�h),k(m�h)

�Bh,kh

T(h)(m) T(h)(m)· · ·

T(h)
k (m)

m� h

h

Figure 7. The tangle T(h)(m), and the diagram T(h)
k (m).

...
...

...
...

...
...

...

m� h

h m� h
...

Figure 8. The oriented resolution of the tangle T(h)(m) in the
case 2h � m, all circles (and lines) in figure are connected by
negative traces.

Now it is easy to count the circles in the oriented resolution of T(h)
k (m). The

results of this computation, as well as the bounds given by (Lb12), (s-ineq), and
(Kw15), are listed in Table 4.
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Quantities T(h)
k (m)

w k[(m� 2h)2 �m]
o 2k(m� h) + 2h�m
o� 2k(m� h)�m + h
o+ 0
s+ 2k(m� h)�m + h + 1
s� 1
`s 1
`� 0
d� 0

(Lb12) upper k(2h�m)2 � k(2h�m) + 2h�m� 1
(s-ineq) lower k(2h�m)2 � k(2h�m)�m� 1
(Kw15) lower k(2h�m)2 � k(2h�m)�m� 1

Table 4.

The difference between the upper bound given by Lobb’s inequality, and the
lower bound given by (s-ineq), is exactly 2h. So the difference between the bounds
does not depend on k or m, and is zero if, and only if, h = 0. The case h = 0
is precisely the case of positive torus links. The case m� h � h yields a similar
result, and the difference between the upper and the lower bounds is 0 if and
only if m = h, which is the case of negative torus links. We can summarize our
computations in the following proposition.

Proposition 4.8. Let F be a field and let h, m, k 2 N. If 2h � m, then

0  s(t(h)(m, km), F)�
⇣

k(2h�m)2 � k(2h�m)�m� 1
⌘
 2h.

⇤

2.5. The links l

00(h, k, t, r). The last example is a the family of oriented links
l

00(h, k, t, r) which depends on four parameters h, k, t, and r. As long as three
out of the four parameters are non trivial the link is non split. For our purpose
we will assume the value of each of them to be non-zero. The diagrams we are
going to use for our computations are depicted, together with their simplified
Tait graphs, in Figure 9.

Due to the simple nature of the Tait graph of the diagram L00(k, h, t, r), it is
not important which parameters are positive or negative. The only thing that
matters as far as our computations are concerned is how many parameters are
positive. In Table 5 we list the values of the quantities needed to compute the
bounds given by (s-ineq) and (Lb12).

That said, it is pretty easy to compute the lower bounds given by (Kw15) and
(s-ineq) and the upper bound given by (Lb12). Their values, for each case, are
listed in Table 6.
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h

k

t r

L00(k, h, t, r)

Figure 9. The oriented diagram L00(k, h, t, r) and its Tait graph.

Case < 0 > 0 o o� s� s+ `s `� d

�

a. h, k, t, r —— 4 4 1 4 1 1 0
b. h, k, t r 4 2 1 3 1 0 1
c. h, t, r k 4 2 1 3 1 0 1
d. h, k t, r 4 0 2 2 1 0 1
e. h, t k, r 4 1 2 2 1 0 0
f. r h, k, t 4 0 3 1 1 0 0
g. k h, t, r 4 0 3 1 1 0 0
h. —— h, k, t, r 4 0 4 1 1 0 0

Table 5.

] edges > 0 ] edges < 0 (Lb12) (Kw15) (s-ineq)

4 0 h + k + t + r + 3 h + k + t + r + 3 h + k + t + r + 3
3 1 h + k + t + r + 1 h + k + t + r + 1 h + k + t + r + 1
2 2 h + k + t + r� 1 h + k + t + r� 1 h + k + t + r� 1
1 3 h + k + t + r� 1 h + k + t + r� 3 h + k + t + r� 1
0 4 h + k + t + r� 3 h + k + t + r� 3 h + k + t + r� 3

Table 6.

The first consequence of our computations is the following proposition.

Proposition 4.9. Let F be any field. Given h, h, r, t 2 Z \ {0} we have

s(l00(k, h, t, r), F) =

8>>>><>>>>:
h + k + t + r + 3 if h, k, r, t > 0

h + k + t + r� 3 if h, k, r, t < 0

h + k + t + r + 1 if only one among h, h, r, t is lower than 0

h + k + t + r� 1 otherwise

⇤
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Another consequence of the results listed in Table 6 is independence of the
bounds given by (s-ineq) and (Kw15).

Proposition 4.10. The lower bounds for the value of the s-invariant given by (Kw15)
and by (s-ineq) are independent. ⇤

3. Final remarks

To conclude this chapter we wish to investigate a bit more the sharpness of
the lower bound provided by (s-ineq). The first thing to notice is that our bound
is a consequence of an estimate of the value of the c-invariants. More precisely,
we have

s(l, F) � qdeg(b(L, F)) + 2cF(L) + 1 � w� o + 2o� � 2`� + 2d

� + 1| {z }
lb(L)

So, a necessary condition for lb(L) to provide a sharp bound on the s-invariant is
to have the equality

s(l, F) = qdeg(b(L, F)) + 2cF(L) + 1.

Thus for links which are not c-simple there are diagrams such that, even if the
bound on the c-invariants given in Corollary 4.3 is sharp, lb(L) is not sharp.

However, the previous statement does not exclude the possibility that for
some diagram L the bound lb(L) is sharp.

Question 6. For each link l there always exists a diagram L such that either
(s-ineq) is an equality?

Surprisingly enough, it is easy to answer this question, and the answer is
negative. In fact, the bound lb(L) does not depend on the characteristic of the
field F. On the other hand, the s depends on char(F). For example sF2(14n1336) <
sQ(14n1336) (see [51]), thus for each diagram L of the knot 14n1336 the bound lb(L)
may be sharp over F2 = Z/(2) but is not sharp over Q. This reasoning leads us
to the following question, which still remains open.

Question 7. Is it possible to find a version of (s-ineq), depending on the
characteristic of the field, such that each link admits a diagram for which the
new inequality is sharp? More generally, fixed a field F is it possible to find a
Bennequin s-inequality, depending only on combinatorial data of the diagram,
such that each link l has a diagram for which the bound on s(l, F) is sharp?

Now, let us turn to the last question. In the examples shown in the previous
section the bound lb(L) was not sharp for Kh-non-pseudo thin links. This is not
a general behaviour. Consider the diagram L of the knot 942 in Figure 10. This
knot is not Kh-pseudo-thin. The bound lb(L) is easily computed and is 0, which
is also the value of s(942, Q) (see [5]).
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Figure 10. A diagram of the knot 942

However, the knot 942 (being a knot) has rank 2 in H0,•
BN(942, F[U]). Thus, the

thickness of the 942 is due to a torsion group in bi-degree (0, 3). So, what happens
if the thickness in Khovanov homology is not due to the presence of torsion in
Bar-Natan homology? More formally, we call a link l strongly BN-thick (over
F) if H0,•

BN(l, F[U])/T(H0,•
BN(l, F[U])) is supported in more than two quantum

degrees. Note that all the thick links used as examples in Section 2 are strongly
BN-thick.

Question 8. Is there an oriented link diagram L, representing a strongly BN-
thick link, such that (s-ineq) is sharp?

Our experiments seem to lead to a negative answers. However, links with low
crossing number (i.e. less than 13 crossings) are far from being representative.
Moreover, for each link we tested (s-ineq) on a finite number of diagrams, but it
may exist another diagram on which (s-ineq) is sharp. Thus, Question 8 remains
open.





Part 2

Transverse invariants in
sl3-homologies





CHAPTER 5

The universal sl3-link homology via foams

Let L be an oriented link diagram corresponding to a link l in S3, and let R
be a ring. In his paper [27], Mikhail Khovanov constructed a bi-graded complex
C•,•

x3 (L, R), whose graded Euler-Poincaré characteristic is (a normalization of) the
sl3-Jones polynomial, which is an up-to-homotopy invariant of l.

The chain complex C•,•
x3 (L, R) was defined starting from a ”geometric com-

plex“ whose ”chain groups“ are (formal direct sums of) webs and whose ”differ-
ential“ is the (formal) sum of decorated ”cobordisms“ between webs, namely the
foams. The algebraic chain complex is obtained from the geometric one via an
appropriate functor.

A few years later, Marco Mackaay and Pedro Vaz, in [40], generalized the geo-
metric approach via webs and foams to encompass the deformations of Khovanov
sl3-theory. These deformations, analogues to the Lee deformation of the original
Khovanov homology, were introduced by Gornik in the more general case of
Khovanov and Rozansky’s sln-homology, using different techniques.

Mackaay and Vaz defined, in the spirit of Bar-Natan’s geometric construction
(cf. [4, 41]), a ”geometric complex“ in an appropriate category. This category is
(the category of complexes over matrices over the abelianized category of) the
category of webs and foams, modulo a certain set of relations. These relations
depend on the choice of a polynomial p(x) 2 R[x] whose degree in the variable
x is 3. This geometric complex can be transformed into an (honest) algebraic
complex using the so called tautological functors (cf. [4, 40]).

In this section we will revise briefly the construction of the universal sl3-
homology. Even though this thesis is meant to be as much self-contained as
possible, some familiarity with the articles [27, 4, 41, 40] will be helpful.

1. Webs and Foams

Webs were originally introduced by Greg Kuperberg in [29] as a tool to study
the representation theory of rank 2 Lie algebras.

Definition 5.1. A web G is a directed trivalent embedded planar graph with
a finite number of components without vertices, called loops, satisfying the fol-
lowing properties:

(a) G has a finite number of vertices and a finite number of loops;
(b) there are two types of edges in G, called thin and thick edges, and for each

vertex v 2 V(G) there is a unique thick edge incident in v;

105
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(c) each vertex of G is either a source1 or a sink2.

For technical reasons, which will be clear afterwards, also the empty set is con-
sidered a web and called the empty web. A trivalent directed (abstract) graph
satisfying (a) and (c) will be called abstract web.

Notice that for us the webs are closed, that is: there are no vertices with
less than three incident edges. Moreover, note that from (c) it follows that all
abstract webs are bi-partite graphs. Whenever it will be necessary we will mark
the thick edges by making them thicker than the normal edges and by changing
their colour.

= [2]

= [3] ∆

= +

Figure 1. Kuperberg’s local relations on webs.

To each closed web G is it possible to associate a Laurent polynomial hGi3
called the Kuperberg bracket of G. The Kuperberg bracket of a web is obtained
from G via the Kuperberg relations3 in Figure 1, where

[n] =
qn � q�n

q� q�1 = qn�1 + qn�2 + · · ·+ q�(n�1) + q�(n�2),

and the Kuperberg bracket of the empty web is defined to be h∆i3 = 1.
Using the Kuperberg bracket it is possible to associate to an oriented link

diagram L a Laurent polynomial V3(L) 2 Z[q, q�1]. Choose an ordering of the
crossings in L, say c1, ..., ck. For each v 2 {0, 1}k define a web Gv(L) by replacing
the i-th crossing with its vi-web resolution according to the rule in Figure 2.

1A vertex v of a directed graph is a source if all edges incident in v are directed outwards from
v.

2A vertex v of a directed graph is a sink if all edges incident in v are directed towards v.
3For a proof of the consistency of the Kuperberg relations see [29].
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0

1

1

0

Figure 2. Web resolutions.

Finally, set

V3(L) = Â
v2{0,1}k

(�1)|v|qbvhGv(L)i3,

where |v| is the weight of v (i.e. the sum of its entries) and

bv =
k

Â
i=1

sign(ci)5 + (�1)vi

2
.

It is not difficult to prove that V3(L) is a link invariant. To be precise V3 is a
normalization of the Jones sl3-polynomial. In the sl2 setting, the Khovanov sl2-
homology categorifies (a normalization of) the Jones polynomial V2(L). Similarly,
the (non-deformed) Khovanov sl3-homology categorifies the polynomial V3(L).

To define the universal (geometric) sl3-theory we need another ingredient:
the foams. Roughly speaking, foams are decorated branched surfaces which are
singular along a smooth 1-dimensional manifold of triple points. Let us put aside
the decorations and let us start by defining the underlying topological structure
of a foam.

A (topological) pre-foam S is a compact topological space such that each
point has a neighbourhood homeomorphic to one of the four local models in
Figure 3.

Remark 43. A topological pre-foam is a finite CW-complex.

A point p 2 S is regular if it has a neighbourhood which is homeomorphic to
either (C) or (D). A non-regular point of S is called singular and the set of singular
point is denoted by Sing(S). The connected components of S \ Sing(S) ✓ S are
called regular regions of S. Finally, a boundary point for S is a point which
does not have a neighbourhood homeomorphic to either (A) or (C). A topological
pre-foam with empty boundary is called closed.
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singular points

(A) (B)

(C) (D)

Figure 3. Local models for a pre-foam.

Remark 44. The singular locus of pre-foam is the disjoint union of circles and
arcs, which are called singular circles and singular arcs. The singular boundary
points correspond to the boundary points of the singular arcs.

The choice of a topological atlas4 on a pre-foam determines a topological atlas
on each regular region and also on Sing(S). These atlases endow the closures
of the regular regions and the singular locus (i.e. Sing(S)) with the structure
of topological manifolds. A smooth pre-foam is a topological pre-foam with a
chosen topological atlas such that the induced atlases on the regular regions and
on the singular locus are smooth atlases.

Finally, an orientable pre-foam is a smooth pre-foam such that the closure of
each regular region is an orientable (topological) manifold. Given an orientable
pre-foam S, an orientation on S is the choice of an orientation of the closure of
each regular region in such a way that the orientation induced in the intersection
of two closed regions agrees.

Remark 45. If we choose an orientation on a orientable pre-foam this induces
an orientation on the singular locus.

Remark 46. The boundary of a topological pre-foam is a (possibly empty)
finite trivalent graph whose vertices correspond to singular boundary points. If
the pre-foam is oriented its boundary is an directed graph. Moreover, each vertex
of the boundary graph of an oriented pre-foam is either a sink or a source. In
other words, the boundary of an oriented pre-foam is an abstract web.

Definition 5.2. A decorated pre-foam is an oriented pre-foam S together
with the following data:
(a) a finite number (possibly zero) of marked points, called dots, in the interior

of each regular region of S;

4By topological atlas on a pre-foam S we mean an open cover of S together with a homeomorph-
ism of each element of the cover with one of the local models in Figure 3.
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(b) a specified order on the regular regions incident on a singular arc or circle.

It is possible to define a category PreFoam whose objects are abstract webs
and whose morphisms are formal R-linear combinations of the triples (S, ∂0S, ∂1S)
satisfying the following properties

. S is a decorated pre-foam;

. ∂0S, ∂1S 2 Obj(PreFoam), ∂0S is the source object and ∂1S the target
object of the morphism;

. ∂S = ∂0S t �∂1S, where the minus sign denotes the reversal of the
orientation;

. the triple is seen up to boundary fixing isotopies which do not change
the regular regions of the dots and preserve the ordering of the compon-
ents near each singular arc.

Finally, the composition of two triples (S, ∂0S, ∂1S) and (S0, ∂1S, ∂1S0) is defined
as the triple (S00, ∂0S, ∂1S0), where S00 is obtained by glueing S and S0 along ∂1S.

Definition 5.3. A foam is a decorated pre-foam properly and smoothly5 em-
bedded in R2⇥ I. Moreover, we ask the cyclic order of the regular regions at each
singular arc or circle to coincide with the cyclic order induced by rotating clock-
wise6 around a singular arc or circle. Foams will be considered up to ambient
isotopies of R2 ⇥ I which fix the boundary of the foam and does not change the
regular regions of the dots.

Remark 47. The boundary of a foam is the disjoint union of two webs.

Given two webs W0 and W1, a foam between W0 and W1 is a foam S such
that

S \R2 ⇥ {0} = W0 and S \R2 ⇥ {1} = �W1.

The category Foam is the category whose objects are webs, whose morphisms
are a R-linear combinations of foams between two webs, and whose compos-
ition is defined as the glueing of two foams along the shared boundary. For
technical reasons also the empty foam is included in Foam as an element of
HomFoam(∆, ∆).

Remark 48. There is a forgetful functor from Foam to PreFoam. Which sends
the foam S to the triple (S, S \R2 ⇥ {0},�S \R2 ⇥ {1})

The category Foam will be the geometric object underlying the construction
of the universal sl3-link homology theory. However, to obtain a true link invariant
it is necessary to mod out Foam by a set of local relations.

5That is in such a way that the restriction of the embedding to each regular region and to the
singular locus is smooth.

6We suppose fixed an orientation of R2 ⇥ I.
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2. Foams and Local relations

Local relations are equalities among (linear combinations of) foams which are
identical except inside a small ball. The relations we are concerned with can be
divided into two types:

reduction relations (c.f. Figure 4),
evaluation relations (c.f. Figure 5).

The reduction relations depend on the choice of a polynomial p(x) 2 R[x] of the
form

p(x) = x3 + a2x2 + a1x + a0.
Thus, we will hereby suppose p fixed. In the case R is a graded ring, one should
require the coefficients a2, a1 and a0 and the polynomial p to be homogeneous in
order to obtain a graded theory. That said, let us leave aside the matter of the
gradings, at least for the moment.

The reduction relations, as their name implies, allow us to “reduce” in some
sense our foam. There are two types of reductions which can be performed: the
”genus” reduction and the dot reduction. The genus reduction relation (GR)
reduces the number of ”handles” in a foam in exchange for adding dots and
transforming a single foam into a linear combination of foams. While the dot
reduction relation (DR) allows us to delete dots, if they are more than a cer-
tain number, in exchange to do so a single foam has to be traded with a linear
combination of foams.

(GR) =� + + + a2 + + a1

= a2 + a1 + a0�(DR)

Figure 4. Reduction relations.

Given a closed foam S by using the genus reduction relation it is possible to
express S as a linear combination of (disjoint unions of) spheres and theta foams
(i.e. a sphere with a disk glued along the equator). Moreover, thanks to the dot
reduction relations we can have less than three dots on each component.

The evaluation relations allow us to associate to each closed foam a multiple
of the empty foam. In fact, we reduced our foam to a R-linear combination of
spheres and theta foams with less than three dot each. The evaluation relations
express the sphere and the theta foams with less than three dots as multiples of
empty foam. There are two types of evaluation relations: the relations (S) (sphere
relations) and the relations (Q) (theta foam relations) and they are depicted in
Figure 5.
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= = 0 = -1(S)

(Q) = � =

8>><>>:
1 (n1, n2, n3) = (1, 2, 0) or a cyclic permutation,

�1 (n1, n2, n3) = (2, 1, 0) or a cyclic permutation,

0 n1, n2, n3  2, and not in the previous cases

n1
n2

n3

n1
n2

n3

Figure 5. Evaluation relations. The numbers n1, n2 and n3 on
the theta foam indicate the number of dots in the corresponding
region.

Since every closed foam evaluates to a polynomial (multiple of the empty
foam), for each pair of webs W0 and W1, and each foam F 2 HomFoam(W0, W1),
there is a well defined R-bi-linear pairing

h·|·iF : HomFoam(∆, W0)⌦ HomFoam(W1, ∆) �! R

given by ”capping off“ F with an element of HomFoam(∆, W0), and closing the
result by glueing an element of HomFoam(W1, ∆).

The category Foam/` has the same objects as foams, but the morphisms are
considered up to the relation

Â
i

Pi(U, V, W)Fi = 0, Fi 2 HomFoam(W0, W1),

in the case

Â
i

PihF0|F00iFi = 0, 8F0 2 HomFoam(∆, W0), F00 2 HomFoam(W1, ∆).

In other words, a R-linear combination of foams is trivial if the associated bi-
linear form is trivial. Using the local relations it is possible to prove the following
result, due to Khovanov in the case p(x) = x3 and to Mackaay and Vaz when p is
a general polynomial, and whose proof will be omitted. The reader may consult
[40] for a proof.

Proposition 5.1 (Mackaay-Vaz, [40]). The following local relations hold in Foam/`
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+ + = �a2

+ + = a1

= �a0

(DP1)

(DP2)

(DP3)

where (DP1), (DP2) and (DP3) are also called dot permutation relations. ⇤

3. The sl3-link homologies via Foams

In this section we will review the construction of a link homology theory via
webs and foams. This construction consists of three steps. First we need some
machinery coming from category theory, namely cube and abstract complexes.
Then, we will describe how to build a cube from a link diagram, and apply the
machinery developed to get a formal ”geometric“ complex of foams and webs.
Finally, we make use of Bar-Natan’s tautological functors to obtain an honest
chain complex and an homology theory.

3.1. Cubes in categories and abstract complexes. Let us review the construc-
tion of the abstract complex associated to a link diagram. To define this complex,
which is a ”complex of web and foams“ associated to an oriented link diagram,
it is necessary a bit of abstract nonsense. We will try to keep the technicalities to
a minimum while we try to be precise.

Denote by Qn the standard n-dimensional cube [0, 1]n. Orient the edges of
Qn from the vertex with lower 1-norm to the vertex with greater 1-norm, where
the 1-norm of a vector v 2 Rn is defined as kvk1 = Ân

i=1 |vi|.
A square in Qn is an ordered collection of four distinct vertices (v1, v2, v3, v4)

such that there are two edges from v1 to v2 and v3, respectively, and two edges
from v2 and v3 to v4.
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Definition 5.4. A n-cube in a category C is the assignment of an object Ov
for each vertex v of Qn and of a morphism F(v, v0) 2 HomC(Ov, Ov0) for each
oriented edge from v to v0.

Let R be a ring. An R-linear category is a (small) category C such that, for
each pair of objects A, B, the set of morphisms HomC(A, B) has a structure of R-
module and the composition is bilinear with respect to this structure. A Z-linear
category is often called a pre-additive category.

Definition 5.5. A n-cube in a category C is commutative if for each square
(v1, v2, v3, v4) in Qn we have

F(v2, v4) � F(v1, v2) = F(v3, v4) � F(v1, v3).

Similarly, a n-cube in a R-linear category C is skew commutative if for each
square (v1, v2, v3, v4) in Qn we have

F(v2, v4) � F(v1, v2) = �F(v3, v4) � F(v1, v3).

Is an easy exercise in combinatorics to prove that there always exists a sign
assignment (cf. Section 2 of Chapter 1) that turns a commutative cube into a skew
commutative cube. More precisely, the following result holds. The reader may
consult, for example, [25] for a description of such a sign assignment.

Lemma 5.2. Let C be an R-linear category. Then, there exists a map # from the set
of edges of Qn to {±1} such that for each commutative n-cube Q = {Ov, F(v, v0)} in C
the n-cube Q0 = {Ov, #(v! v0)F(v, v0)} is skew commutative. ⇤

Now, we wish to assign to a skew-commutative cube a formal chain complex.
To do so one must first give a meaning to a complex over a category.

Definition 5.6. Let C be a R-linear category. The category Com(C) of com-
plexes over C is the category defined as follows

(1) the objects of Com(C) are ordered collections of pairs (Ci, di)i2Z where
Ci 2 Obj(C) and di 2 HomC(Ci, Ci+1) such that

di+1 � di = 0HomC(Ci ,Ci+2);

(2) the morphisms between two objects (Ci, di) and (Di, ∂i) of Com(C) are
collection of maps (Fi)i2Z such that

8 i 2 Z : Fi 2 HomC(Ci, Di+k) and Fi+1 � di = ∂i+k � Fi,

for a fixed k 2 Z called degree of (Fi)i2Z;
(3) the composition of two morphisms (Fi)i2Z and (Gj)j2Z is the morphisms

defined as (Gi+k � Fi)i2Z, where k is the degree of (Fi)i2Z.

In general an R-linear category does not have kernels and co-kernels. So,
even though we can define chain complexes we cannot define the homology over
an R-linear category. However, it is possible to define when two chain complexes
over an R-linear category are homotopy equivalent.
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Definition 5.7. Two morphisms F and G between two objects in Com(C),
say C• = (Ci, di) and D• = (Di, ∂i), are homotopy equivalent if there exists a
morphism H 2 HomCom(C)(D•, C•) such that

F� G = d � H ± H � ∂.

Two objects C•, D• 2 Obj(Com(C)) are homotopy equivalent if there exists two
morphisms

F 2 HomCom(C)(D•, C•) and G 2 HCom(C)(C•, D•)

such that the compositions F � G and G � F are homotopy equivalent to the iden-
tity morphism of D• and C•, respectively. We will denote by Com/h(C) the
category of complexes over C and morphisms of Com(C) up to homotopy equi-
valence.

To conclude the abstract construction of a complex from a skew commutative
cube we need another definition.

Definition 5.8. Given an R-linear category C, the matrix category over C
is the category whose objects are formal direct sums of objects in C and whose
morphisms are matrices with entries in the morphism of C. The composition
of two morphisms in the matrix category over C is given by the usual matrix
multiplication rule.

Denote by Kom(C) the category of complexes over the matrix category over
C, where C is an arbitrary R-linear category. Given a skew commutative n-cube
Q in C, define

CQ
i =

M
|v|=i

Qv dQ
i = Â

|v|=i

M
v0

F(v, v0),

where F(v, v0) is taken to be zero if there is no edge from v to v0. It is an easy
verification that (CQ

i , dQ
i ) is an object in Kom(C).

3.2. The Khovanov-Kuperberg bracket and the geometric complex. Now
we are ready to define a complex from a oriented link diagram. Fix a monic
polynomial p(x) 2 R[x] such that degx(p) = 3. We can define Foam/`. Let
us assign a cube in Foam/` to each oriented link diagram. Given an oriented
link diagram L, fix an order of the crossings, say {c1, ..., ck}. Each crossing has
two possible web resolutions, see Figure 2. These resolutions come with an
integer depending on the crossing and the type of resolution performed. Define
a natural bijection between the vertices of a k-dimensional cube [0, 1]k and the
web resolutions of the diagram7 L as follows: to each v 2 {0, 1}n associate the
web W(L, v) obtained by replacing the crossing ci with its vi-web resolution.

To each oriented edge v ! v0 of Qk is a associated a foam F(v, v0) between
the webs W(L, v) and W(L, v0). The foam F(v, v0) is everywhere a cylinder, except
in a disk where the two webs differ, where the cobordism looks like one of the
two elementary web cobordisms (see Figure 6).

7That is the web obtained by replacing each crossing with a web resolutions.
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Figure 6. Elementary web cobordisms. The arc in red is a singu-
lar arc.

The cube we defined depends on the choice of an ordering of the crossings
of L. Moreover, it is easy to see that, by a ”Morse-theoretic“ argument, the cube
associated to an oriented link diagram is commutative. Thanks to Lemma 5.2
we can turn this commutative cube into a skew commutative cube Q(L). Finally,
using the abstract construction described in Subsection 3.1 we can associate to the
skew commutative cube Q(L) a complex hL, pi in Kom(Foam/`).

Remark 49. The dependence on p of hL, pi is quite subtle: what really de-
pends on p is the category Foam/`. Of course complex could have defined a
complex over the category Foam eliminating the dependence on p. However, the
local relations will be necessary to have invariance under the Reidemeister moves.

The complex hL, pi will be called Khovanov-Kuperberg bracket of L (with
respect to p). Whenever p is fixed or clear from the context we will remove it
from the notation. With some standard machinery of homological algebra is easy
to show the following proposition.

Proposition 5.3. The Khovanov-Kuperberg bracket of an oriented link diagram L
does not depend (up to homotopy equivalence) on the sign assignment and on the order of
the crossings used to obtain the cube Q(L). ⇤

The Khovanov-Kuperberg bracket is the analogue of the Khovanov bracket
introduced by Bar-Natan in [4]. In terms of Knots polynomials it would be the
Kauffman bracket. Exactly as in the case of the Kauffman bracket, to turn the
Khovanov-Kuperberg bracket into an invariant we need a shift.

Definition 5.9. Given an R-linear category C and C• = (Ci, di)i2Z 2 Com(C),
the shift of C• by k 2 Z is the object C•(k) in Com(C) defined as follows:

C•(k) = (Ci+k, di+k)i2Z.

Finally, we can define the the geometric sl3-complex of L (with respect to p)
as follows eC•

p(L, R) = hL, pi(�n+).

This is a link invariant in the sense of the following proposition.

Theorem 5.4. (Mackaay-Vaz, [40]) Let p be monic polynomial in R[x] of degree 3
in x. If L and L0 are oriented link diagram representing the same link, then eC•

p(L, R) andeC•
p(L0, R) are homotopy equivalent.
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Furthermore, we have a functoreC•
p : Link �! Kom/±h(Foam/`),

where Link is the category of links in R3 and properly embedded surfaces in R3 ⇥ [0, 1]
(up-to-boundary fixing isotopies), and Kom/±h(Foam/`) is the category Komh(Foam/`)
whose morphism are considered up to sign. ⇤

3.3. Tautological functors and the sl3-homology. The category Mat(Foam/`)
is not an Abelian category. Thus, it is not possible to define the homology ofeC•

p(L, R). There are different ways to turn the geometric complex into something
more computable. Out of the different possibilities, following [40], we chose the
approach via tautological functors.

Definition 5.10. The tautological functor is the functor

T : Foam/` �! R�Mod

defined on an object W 0 2 Obj(Foam/`) by

T(W 0) = HomFoam/`(∆, W 0)

and on morphisms by composition on the left, that is

T(F) : T(W 0) �! T(W 00)

G 7�! F � G

for each F 2 HomFoam/`(W
0, W 00) and W 0, W 00 2 Obj(Foam/`).

Note that, if we have a disjoint union of the webs W 0 and W 00, then

T(W 0 tW 00) ' T(W 0)⌦R T(W 00)

as R-modules. Before proceeding further let us show in an example how the
functor T works. This example will be useful in the next chapter.

Example 1. Let us compute T(�), i.e. find its isomorphism class as an R-module.
We first wish to find a system of generators for T(�) as an R-module. Recall that
T(W 0) = HomFoam/`(∆, W 0) is the R-module generated by all foams bounding W 0

modulo local relations.
All closed components of a foam bounding the circle� evaluates via local relations to

elements of R. Thus, T(�) is generated (as R-module) by the connected foams bounding
the circle �. The latter is made of regular boundary points and hence admits a closed
neighbourhood diffeomorphic to a cylinder S1 ⇥ [0, 1]. Thus we can use the genus reduc-
tion relation, and write any connected foam bounding� as an R-linear combinations of
disks with at most two dots disjoint union a closed foam. Since closed foams evaluates to
an element of R, it follows that T(�) is generated by dotted disks.

Now, consider the epimorphism of R-modules

F : R[x] �! HomFoam/` (∆,�)

mapping xk to the disk with k-dots. The kernel of this epimorphism is the ideal generated
by p(x). In fact, the dot reduction relation tells us that p(x) is in the kernel. On the
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other hand, the disk with two dots, the disk with a single dot and the disk with no dots
are linearly independent over R. Thus there is no polynomial with degree less than three
in the kernel of F. Consider s(x) 2 Ker(F). Since p(x) is monic it follows from the
Euclidean division algorithm (see [31, Theorem 1.1 Chapter IV]) that there exists a
unique pair of polynomials q, r 2 R[x] such that

s(x) = q(x)p(x) + r(x),

and degx(r) < degx(p). Thus, r is forced to be 0 by our previous considerations. It
follows that

T(�) ' R[x]
(p(x))

Moreover, there are analogues of the Kuperberg local relations on webs. More
precisely, the following proposition holds.

Proposition 5.5. (Khovanov-Kuperberg relations, [26, 40]) We have the following
isomorphisms of R-modules.

(circle removal) T(W 0 t�) ' T(�)⌦ T(W 0)
(digon removal) T(W1) ' T(W2)� T(W2)
(square removal) T(W 01) ' T(W 02)� T(W 03)

where W1 and W2 (resp. W 01, W 02 and W 03) are two (resp. three) webs which are identical
but for a small ball where they look as depicted in Figure 7. ⇤

W2W1

W 01 W 02 W 03

Figure 7. Webs involved in the Khovanov-Kuperberg relations.

For a proof of Proposition 5.5 the reader may consult [27, Subsection 3.4] and
[39, Lemma 2.9]. Before, going back to the definition of the sl3-homology theory,
to make another example which will be useful in the follow up.

q

Figure 8. The q-web as the closure of a digon.
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Example 2. Consider the q-web depicted in Figure 8. It is easy to see that this web is
a closed digon. Hence, by the digon removal relation and thanks to Example 1 we obtain

T(q) ' R[x]
(x)
� R[x]

(x)

Now, let us get back to the definition of the sl3-homology theory. There is a
natural way to extend the tautological functor first to the category Mat(Foam/`),
and then to Kom(Foam/`). With an abuse of notation denote this extended
functor by T.

Definition 5.11. The sl3-complex (with respect to p) of an oriented link dia-
gram L is

C•
p(L, R) = T

⇣ eC•
p(L, R)

⌘
2 Obj(Kom(R�Mod)).

The homology of the sl3-complex will be called sl3-homology of L (with respect
to p) and denoted by H•

p(L, R).

The following proposition is an immediate consequence of Theorem 5.4.

Proposition 5.6. The isomorphism class (as R-module) of H•
p(L, R) is a link in-

variant. Moreover, H•
p defines a functor between the category Link and the category

R-Modgr of graded R-modules. ⇤

4. Grading and filtration

In this final section we wish to define a second grading or a filtration on the
sl3-complex. This can be done under some mild hypotheses on p(x) 2 R[x]. But
first one has to turn the category Foam into a graded category, in the following
sense.

Definition 5.12. Let C be a commutative monoid and let R be a C-graded
ring. A C-graded category is an R-linear category C together with

1. a structure of C-graded R-module on HomC(O, O0), for each pair of ob-
jects O, O0 2 Obj(C);

2. a C-action on Obj(C) called shift – i.e. an identification of C with a
subset of HomSet(Obj(C)) such that: c1(c2(O)) = (c1 + c2)(O) and 0C =
IdObj(C);

3. a family of isomorphisms of graded R-modules

Fc1,c2(O, O0) : HomC(O, O0) �! HomC(c1(O), c2(O0))

of degree c1 � c2;

If the monoid C is not specified we implicitly assume C = Z. An n-graded
category is a Zn-graded category.

Remark 50. The category Com(C) is always graded. In particular, the cat-
egory Kom(Foam/`) is graded.
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Not every pre-additive category can be graded. However, there exists a ”C-
graded closure“ CC-gr of an R-linear category C satisfying Property (1) of the
previous definition. This is the category is obtained by adding ”artificial objects“.
More precisely, the objects of CC-gr are pairs (O, c) where O 2 Obj(C) and c 2 C.
The morphisms between (O, c1) and (O, c2) are defined as follows

HomC((O, c1), (O0, c2)) = HomC(O, O0)(c1 � c2),

where (·) denotes the shift as a C-graded R-module (that is M(k)h = Mh+k).
Now, the shift in Property (2) and the identifications in Property (3) of Definition
5.12 can be defined as the natural ones.

We note that if C is a C-graded category, then also Mat(C) can be considered
as a graded category; in fact, define a matrix to be homogeneous of degree d if all
its entries are homogeneous of degree d. Similarly, the categories Com(C) and
Kom(C) inherit a graded structure from C making them bi-graded categories.

Let R be a graded ring and k 2 Z \ {0}. Define a grading on R[x] by setting
deg(x) = k (see Appendix A). Suppose that p(x) 2 R[x] is an homogeneous
monic polynomial of degree 3 in x. We are ready to define a bi- grading on the
geometric sl3-complex.

First, we need to define a graded structure on HomFoam(W 0, W 00). Given a
foam S, define

deg(S) = �kc(S) + c(∂S) + kd,

where d is the number of dots on S. It is easy to verify that deg is addit-
ive under composition of foams and defines a graded R-module structure on
HomFoam(W 0, W 00).

Since p(x) is homogeneous also the reduction relation are homogeneous,
while the evaluation relations are always homogeneous. Thus, the graded struc-
ture on Foam induces a graded structure on Foam/`. In turn, this structure
induces a second graded structure over Kom(Foam/`) and hence a bi-grading
on the Khovanov-Kuperberg bracket. Finally, given an oriented link diagram L
define eC•,•

p (L, R) = hL, pi(�n+, 2w(L)).

It is possible to check that the differential is homogeneous of degree 0 with re-
spect to the second grading. The first grading on eC•,•

p (L, R) is the homological
grading (denoted by hdeg) and the second grading is called quantum grading
and denoted by qdeg. With these definitions of grading the tautological functor

T : Foam/` �! R-Modgr

becomes a graded functor (i.e. it respects the gradings). Thus, the sl3-complex
becomes bi-graded. Moreover, we have the following theorem whose proof can
be found in [40].

Theorem 5.7 (Mackaay-Vaz, [40]). Let R be a graded ring and p(x) 2 R[x] be an
homogeneous monic polynomial of degree 3k, where deg(x) = k. We have a functor

H•,•
p : Link �! R-Modbi-gr
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such that
H•,•

p (l, R) ' H•,•
p (l0, R)

if l and l

0 are isotopic, and given a surface S, properly embedded in R3⇥ [0, 1], between
two links qdeg(H•,•

p (S)) = �2c(S).

Finally, we wish to conclude this section with the case where p(x) is not an
homogeneous polynomial. In this case, suppose

deg(p(x)� x3) < 3deg(x).

Then, we can still define a grading on Foam as above, although the category
Foam/` does not inherit a structure of graded category. This is due to the fact
that the reduction relations are not homogeneous. However, Foam/` becomes a
category with a filtered structure in the following sense.

Definition 5.13. Let R be a graded ring. A category with a filtered structure
is a R-linear category C together with

1. a structure of filtered R-module on HomC(O, O0), for each pair of objects
O, O0 2 Obj(C);

2. a Z-action on Obj(C) called filtration shift;
3. a family of isomorphism of filtered R-modules

Fc1,c2(O, O0) : HomC(O, O0) �! HomC(c1(O), c2(O0))

of filtered degree c1 � c2;

More explicitly, we can define the filtered degree of [F] 2 HomFoam/`(W
0, W 00)

(recall that [F] is an equivalence class of linear combinations of foams) by setting

Fdeg([F]) = min{deg(x) | x 2 [F]}

where the degree of a foam is defined as in the graded case, and

deg

 
k

Â
i=1

aiFi

!
= max

i
(deg(ai) + deg(Fi))

where ai 2 R and Fi is a foam, for each i 2 {1, ..., k}. One can define a increasing
filtration on HomFoam/`(W

0, W 00) by setting

Fi HomFoam/`(W
0, W 00) = h[F]|Fdeg([F])  iiR0 .

Similarly to the graded case we can extend the definition to the matrix category
and then to the complex category. This filtered structure on Kom(Foam/`) in-
duces a filtration cF on the Khovanov-Kuperberg bracket. We can define a filtra-
tion on the geometric complex by setting

Fi eC•
p(L, R) = cFi+2w(L)hL, pi.

By direct inspection of the differential of eC•
p(L, R), it is immediate that the dif-

ferential is a filtered map of filtered degree 0. Moreover, notice that the tauto-
logical funtor defines a functor from Kom(Foam/`) to the category of filtered
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R-modules. Thus, the sl3-complex becomes a filtered complex. Finally, by check-
ing the chain homotopies used to prove Theorem 5.4 in [40] it is easy to prove the
following theorem.

Theorem 5.8. Let R be a graded ring and p(x) 2 R[x] be a monic polynomial of
degree 3k, where deg(x) = k. If

deg(p(x)� x3) < 3deg(x),

then the filtered homotopy type of C•
p(L, R) is a link invariant. Moreover, the maps

induced by a cobordism S between two links is filtered of filtered degree �2c(S).

Theorem 5.8 has been proved, using different techniques, in the more general
case of Krasner’s deformations of the Khovanov-Rozansky sln-homologies, by
Wu in [60].

Now, we wish to discuss the graded (resp. filtered) version of the Khovanov-
Kupeberg relations. We just state the result without proving it. The reader may
consult [27] for a proof of the Khovanov-Kuperberg relations. The following res-
ult is then an immediate consequence of the definition of grading (resp. filtration)
in the category Foam/`.

Proposition 5.9. (Khovanov-Kuperberg relations, [26, 40]) Let R be a graded ring.
Set deg(x) = k 2 N \ 0 and let p(x) 2 R[x] be an homogeneous polynomial (resp. a
polynomial satisfying deg(p(x)� x3) < 3deg(x) and) such that degx(p) = 3.

Then, the tautological functor becomes a functor between the category Foam/` and
the category of graded (resp. filtered) R-modules. Moreover, we have the following iso-
morphisms of graded (resp. filtered) R-modules.

(circle removal) T(W 0 t�) ' T(�)⌦ T(W 0)
(digon removal) T(W1) ' T(W2)(�1)� T(W2)(1)
(square removal) T(W 01) ' T(W 02)� T(W 03)

where W1 and W2 (resp. W 01, W 02 and W 03) are two (resp. three) webs which are identical
but for a small ball where they look as depicted in Figure 7, and (·) indicates the degree
(resp. filtration) shift. ⇤





CHAPTER 6

Transverse invariants in the universal sl3-theory

Let R be a ring. Fix a monic polynomial p(x) 2 R[x] of degree 3 in x. In
this chapter we define a family of transverse braid invariants in C•

p(B, R), where
B is a closed braid diagram. The elements of this family are in bijection with
the (distinct) roots of p in R. From now on, unless otherwise stated, all tensor
products are assumed to be taken over R and all the isomorphisms are assumed
to be isomorphisms of R-modules.

1. The b-chains

The aim of this section is to define, given a root of p(x), a cycle in C•
p(L, R).

This cycle will give raise to a transverse braid invariant, as we will see in the next
section.

Assume that p(x) has a root x1 in R. Then, p(x) is a multiple of (x � x1).
More precisely, we have the following decomposition

p(x) = x3 + a2x2 + a1x + a0 = (x� x1)(x2 + a01x + a00),

from which it follows

(35) a2 = a01 � x1 a1 = a00 � x1a01 a0 = �x1a00.

Let L be an oriented link diagram. Define the oriented web resolution wL to be
the web resolution where each positive crossing is replaced by its 1-web resolu-
tion and every negative crossing is resolved with its 0-resolution. In other words,
the oriented web resolution is the web resolution where both and are re-
placed by . In particular, the oriented web resolution is a collection of oriented
circles.

Definition 6.1. Let L be a oriented link diagram. The oriented web resolution
wL is a collection of circles in R2 ⇥ {0} ✓ R3. Consider a family of disjoint
unknotted disks {D

g

}
g2wL properly embedded in (R2 ⇥ {0}) ⇥ [0, 1] ✓ R3 ⇥

[0, 1], obtained by pushing the Jordan disks bounding the circles of wL in R2 ⇥
{0}. Denote by Dk

g

the disk D
g

with k dots on it. The b3-chain (with respect to
p) associated to the root x1 is the element b3(L; p, x1) 2 T(wL) defined as follows

Â
S✓wL

Â
S0✓wL\S

(a01)
card(S0)(a00)

card(S)

0@ G
g2wL\(S[S0)

D2
g

t
G

g2S0
D1

g

t
G

g2S
D0

g

1A .

123
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By definition of the sl3-complex, to each web resolution w of L corresponds a
direct summand T(w) in C•

p(L, R) in homological degree

�n�(L) + |v(w)| = �n�(L) +
n(L)

Â
i=1

vi

where v(w) is the vertex of the standard n-cube associated to the web resolution
w. In particular, we have

T(wL) ✓ C0
p(L, R).

From the Khovanov-Kuperberg relations and from Example 1 in Chapter 5 it
follows that

(36) T(wL) '
O

g2wL

R[x
g

]

(p(x
g

))
' R[x

g

| g 2 wL]

(p(x
g

))
g2wL

where g 2 wL should be read as ”g is a circle in wL”. It is easy to see that the
isomorphism in (36) maps b3(L; p, x1) to

’
g2wL

[x2
g

+ a01x
g

+ a00] 2 T(wL) ✓ C0
p(L, R)

Moreover, it is also easy to notice that the multiplication of b3(L; p, x1) by x
g

,
which is an algebraic operation, corresponds “geometrically“ to the addition on a
dot on the disk D

g

in each summand of the “geometric expression” of b3(L; p, x1).
This interplay between algebraic and geometric operations will be used through-

out this chapter.

Figure 1. The foam F.

Lemma 6.1. Let F be the foam in Figure 1, and consider the morphism of R-modules

T(F) : T(�t�) �! T(q).

If we consider

b = (x2 + a01x + a00)(y
2 + a01y + a00) 2

R[x, y]
(p(y), p(x))

' T(�t�),

then
T(F)(b) = 0.

Proof. Our aim to prove that T(F)(b) is trivial. In order to do so, we will write
T(F)(b) as a linear combination of foams

T(F)(b) =
k

Â
j=1

cj(Fj + a2F0j + a1F00j + a0F000j ), cj 2 R
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where Fj, F0j , F00j , F000j are identical except in a small region where they differ as
shown in Figure 2.

F000jF00jF0jFj

Figure 2. The local difference between the foams Fj, F0j , F00j , F000j .

Since (Fj + a2F0j + a1F00j + a0F000j ) is trivial for each j by the dot reduction rela-
tion (DR), the claim will follow.

To avoid graphical calculus we use polynomials. So, let us denote by the
monomial ArBsCt the foam (in (R2 ⇥ {0})⇥ [0, 1]) shown in Figure 3, where s,
r and t indicate the number of dots in the regions A, B and C respectively. By
definition T(F)(b) can be written as follows:

T(F)(b) = A2B2 + a01(A2B + AB2) + (a01 + 1)2 AB + a00(A2 + B2) + a01a00(A + B) + (a00)
2.

With this notation we can write the dot permutation relations (DP1), (DP2) and
(DP3) described in Proposition 5.1 as follows:

(DP1) A + B + C = �a2

(DP2) AC + BC + AB = a1

(DP3) ABC = �a0

Since all foam relations are local, and since we are allowed to move the dots inside
regions, the formal products above satisfy associativity. Using Relations (DP1),
(DP2) and (DP3) we obtain

T(F)(b) = B(A3 + a2 A2 + a1 A + a0)(A� a01 + 1) =

=
⇣
(BA)A3 + a2(BA)A2 + a1(BA)A + a0(BA)

⌘
+ (�a01 + 1)(A3 + a2 A2 + a1 A + a0),

which is the desired decomposition of T(F)(b).
Q.E.D.

BA

C• ... •| {z }
r

• ... •| {z }
s• ... •| {z }

t

Figure 3. The foam ArBsCt.

Now, we are ready to prove that each b-chain is a cycle.

Proposition 6.2. If L is an oriented link diagram, then bx1(L, R) is a cycle.
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Proof. The first thing to notice is that the oriented web resolution is bi-partite
exactly as the oriented resolution; this means that if two arcs of a circle in wL
were connected by a crossing in L, then they belong to different circles in wL.

Let w be a web resolution which is obtained from wL by replacing a 0-web
resolution with a -1-resolution, and denote by W the set of such resolutions.
Notice that each w 2W is the disjoint union of circles and a q-web. In particular,

T(w) '
O

g2wL\{g1,g2}

R[x
g

]

(p(x
g

))
⌦
✓

R[y]
(p(y))

� R[x]
(p(x))

◆
,

where g1 and g2 are the two circles which are merged into a q-web, and the circles
of g different from g1 and g2 are identified with the circles of w.

By definition, the differential dgeo of the geometric complex is such that

dgeo | wL
= Â

w2W
Fi,

where the Fis are disjoint unions of cylinders and a copy of the foam F drawn in
Figure 1. Applying the tautological functor T, we get

d(T(wL)) ✓
M
w2V

0@✓ R[y]
(p(y))

� R[x]
(p(x))

◆
⌦

O
g2wL\{g1(w),g2(w)}

R[x
g

]

(p(x
g

))

1A ,

and

d| wL
=
M

w2W

0@T(F)⌦
O

g2wL\{g1(w),g2(w)}
Id

g

1A .

Now, the statement follows immediately from Lemma 6.1.
Q.E.D.

2. The transverse invariance of the b-chains

In this section we define a family of transverse invariants from the b-chains.
This section is devided into three sub-sections, one for each Reidemeister move.
In each subsection we will describe the map associated to the corresponding
Reidemeister move, and study its behaviour on bx1 .

2.1. First negative Reidemeister move. Let L be an oriented link diagram.
Denote by L0� the oriented link diagram obtained from L via a positive (resp.
negative) first Reidemeister move – i.e. the addition of a negative curl, see Figure
4 – on an arc a. Finally, denote by c� the crossing created with the curl in L0�.

L

a

L0�

R�1↵c�

Figure 4. The negative version of the first Reidemeister move.
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We wish to describe how the map associated to a negative Reidemeister move
behaves at the level of geometric complexes. This is done in Figure 5. The picture
should be read as follows: the foams are all embedded in (R2 ⇥ {0})⇥ [0, 1] and
are cylinders except in a small region containing the arc a, where they look like
the ones depicted in Figure 5. Before proceeding we need the following lemma.

0

a1��a2 Â1
i=0F = Â2

i=0

i

2� i

i

1� i

hL0�, pi :

hL, pi :

= G

Figure 5. Schematic description of the maps encoding a negative
first Reidemeister move. The numbers next to the foams (which
are drawn in (R2 ⇥ {0})⇥ [0, 1] and should be read top to bot-
tom) indicate the number of dots. The horizontal maps are the
differential.

Lemma 6.3. Let p0(x) 2 R[x] be the polynomial x2 + a01x + a00. Then,

[x2 p0(x)]⌦ [1] + [xp0(x)]⌦ [y] + a2[xp0(x)]⌦ [1]� x1[p0(x)]⌦ [y]� x1a1[p0(x)]⌦ [1]

is trivial in
R[x]
(p(x))

⌦ R[y]
(p(y))

Proof. First, let us point out that

(37) xp0(x) = x1 p0(x) mod p(x).

Using a2 = a01 � x1 we get

[x2 p0(x)]⌦ [1] + [xp0(x)]⌦ [y] + a2[xp0(x)]⌦ [1] =

= [x2 p0(x)]⌦ [1] + [xp0(x)]⌦ [y] + a01[xp0(x)]⌦ [1]� x1[xp0(x)]⌦ [1]
which, thanks to Equation (37), is equal to

(((((((
x1[xp0(x)]⌦ [1] + x1[p0(x)]⌦ [y] + a01x1[p0(x)]⌦ [1]((((((((

�x1[xp0(x)]⌦ [1].

Q.E.D.
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Denote by
F1 : C•

p(L, R) �! C•
p(L0�, R)

the map associated to the foam denoted by G in Figure 5, and by

Y1 : C•
p(L0�, R) �! C•

p(L, R),

the map associated to the (linear combination of) foam(s) F.

Proposition 6.4. Let L be an oriented link diagram. Then,

F1(bx1(L, R)) = bx1(L0�, R) Y1(bx1(L0�, R)) = bx1(L, R).

Proof. Notice that wL is mapped to wL0� by F1 and that wL0� can be identified
with wL t�. Thus, by the Khovanov-Kuperberg circle removal relation, Example
1 and the sphere relation we can identify F1 |wL

with the map

R[x
g

0 ]

(p(x0
g

))
⌦
O

g2wL

R[x
g

]

(p(x
g

))
�!

O
g2wL

R[x
g

]

(p(x
g

))

given by

q
g

0(x
g0)⌦

O
g2wL

q
g

(x
g

) 7�! #(q0(x
g

0))
O

g2wL

q
g

(x
g

),

where g

0 indicates the circle in wL0� \ wL and

# :
R[x]
(p(x))

�! R : [ax2 + bx + c] 7! a.

Since in the case of bx1 we have q
g

(x) = q
g

0(x) = [p0(x)] = [x2 + a01x + a00] the
first part of the statement follows.

Similarly to what has been done with F1, we can identify Y1 with the map

O
g2wL

R[x
g

]

(p(x
g

))
�!

R[x
g

0 ]

(p(x0
g

))
⌦
O

g2wL

R[x
g

]

(p(x
g

))

mapping
N

g2wL
q

g

(x
g

) to

�
 

2

Â
i=0

(x2�i
ga

q
ga ⌦ xi

g

0 ) + a2

1

Â
i=0

(x1�i
ga

q
ga ⌦ xi

g

0 ) + a1(qga ⌦ 1)

!
⌦

O
g2wL\{ga}

q
g

(x
g

),

where ga is the circle in wL containing the arc a of Figure 5 and q
ga is evaluated

in x
ga . It is easy to see that

Y1(bx1 (L, R)) =
⇣
[x2

ga
p0(x

ga )]⌦ [1] + [x
ga p0(x

ga )]⌦ [x
g

0 ] + a2[xga p0(x
ga )]⌦ [1]+

�x1[p0(x
ga )]⌦ [x

g

0 ]� x1a1[p0(x
ga )]⌦ [1]

�
⌦

O
g2wL\{ga}

p0
g

(x
g

) + bx1 (L0�, R) =

=bx1 (L0�, R)

where the last equality holds thanks to Lemma 6.3.

Q.E.D.
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Remark 51. The reader may have noticed a similarity between the map # in
the proof of Proposition 6.4 and the co-unit of a Frobenius algebra defined in
Chapter 1. Indeed # is the co-unit of the Krasner Frobenius algebra relative to p
defined in Subsection 1.2 of Chapter 1.

2.2. Second Reidemeister move. Now, let us turn to the second coherent
Reidemeister move. Let L be an oriented link diagram. Let a and b be two (un-
knotted) arcs of L lying in a small ball. Performing a second Reidemeister move
on these arcs inserts two adjacent crossings, say c1 and c2, of opposite types.

Recall that a Reidemeister move is coherent if it can be obtained by rotating
or taking the mirror image of the one in Figure 6. Denote by L00 the link obtained
from L by performing a coherent second Reidemeister move. Finally, denote by
w0L00 . the web resolution of L00 where all crossings but c1 and c2 are resolved as in
the oriented web resolution.

⌦

LL00

c1 c2 a

b

Figure 6. A coherent version of the second Reidemeister move.
All other coherent second Reidemeister moves are obtained by
rotating or taking the mirror image of the one in figure.

The map associated to the second Reidemeister move at the level of geometric
complexes was defined by Mackaay and Vaz as in Figure 7. Denote by F2 and Y2
the two maps

F2 : C•
p(L, R) �! C•

p(L00, R) Y2 : C•
p(L00, R) �! C•

p(L, R)

associated to the second coherent Reidemeister move.

Figure 7.
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Proposition 6.5. Let L be an oriented link diagram and let L00 be the diagram ob-
tained from L by performing a second coherent second Reidemeister move. Then,

F2(b3(L; p, x1)) = b3(L00; p, x1) Y2(b3(L00; p, x1)) = b3(L; p, x1)

Proof. First notice that wL can be easily identified with wL00 . With this identific-
ation we have that Y2 |T(wL)

behaves as the identity map (cf. Figure 7), and the
second part of the statement follows.

Let us turn to the first part of our statement. The map F2 |T(wL)
sends T(wL)

to T(wL)� T(w0L00). More precisely, we have

F2 |wL
= IdwL � T(F0),

where F0 is the foam drawn in Figure 8. To conclude is sufficient to prove that:

T(F0)(b3(L; p, x1)) = 0.

This is immediate from Lemma 6.1 once one notices that the foam F0 is the com-
position of the foam F in Figure 1 and a foam G (see Figure 8).

(R2 ⇥ {0})⇥ {1}

(R2 ⇥ {0})⇥ { 1
2}

(R2 ⇥ {0})⇥ {0}

G

F

Figure 8. The cobordism F0 as a composition of the cobordism F
(on the bottom) and the cobordism G (on the top).

Q.E.D.

2.3. Third Reidemeister move. Finally, we have to prove the invariance of
the b3�chains under coherent (i.e. braid-like) versions of the third Reidemeister
moves. Differently from the sl2�case, it is not possible to apply the categorified
Kauffman trick or some trivial modification of it. So, we will proceed in a more
direct way.

Consider the version R�3 of the third Reidemeister move in Figure 9.
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R�3
↵

L1 L2

Figure 9. A version of the Third Reidemeister move.

All the coherent versions of the third Reidemeister move can be deduced,
using two coherent second Reidemeister moves, from R�3 (cf. [46]). For example,
R+

3 (see Figure 17 in Chapter 3) can be deduced from the R�3 via a sequence of
coherent versions of R2 (as shown in Figure 10). The case of R�3 is dealt with
similarly (as for the other coherent versions of R3 see [46, Lemma 2.6], and take
into account that R�3 corresponds to W3b in Polyak’s notation).

⇡�

↵

↵

⇡�

Figure 10. How to recover R+
3 from R�3 via coherent second Re-

idemeister moves.

Chain maps between the geometric complexes associated to R�3 have been
described explicitly by Khovanov (in the case p(x) = x3) and by Mackaay and
Vaz (in the general case). Each of these maps is defined as the composition of
two maps. First, one defines an element Q 2 Kom(Foam/`) which is not the
geometric complex associated to a link. Then, one defines chain maps

Fi : hLii �! Q Gi : Q �! hLii,
where i 2 {1, 2}, and L1 and L2 are the links on each side of the R�3 move (as in
Figure 9), such that Fi is the up-to-homotopy inverse of Gi. For a description of
such maps the reader may refer to [40] or to Figure 11.

The important thing that the reader should keep in mind is that for each
web resolution w of Li such that the crossings involved in R�3 are resolved as
in the oriented resolution, there is the same direct summand in Q, and that the
restriction of either Gi or Fi to w is minus the identity cobordism.
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Finally, the maps associated to each direction of R�3 (between the Kuperberg
brackets) eY3 : hL1, pi �! hL2, pi eF3 : hL2, pi �! hL1, pi

are defined as follows

eY3 = G2 � F1 eF3 = G1 � F2.

It is immediate that these two maps, when restricted to the oriented web resol-
utions, are cylinders. Denote by Y3 and F3 the maps between sl3�complexes
associated to eY3 and eF3, respectively. Then, maps Y3 and F3 behave as the iden-
tity maps between the summands associated to the oriented web resolutions. So
the following proposition is immediate.

Proposition 6.6. Let L and L0 be two oriented link diagrams related by a coherent
third Reidemeister move. Then,

Y3(b3(L; p, x1)) = b3(L0; p, x1) and F3(b3(L0; p, x1)) = b3(L; p, x1).

⇤

Directly from the behaviour of b3(L; p, x1) under the maps induced by coher-
ent Reidemeister moves, we get the following corollary.

Corollary 6.7. Let B be a transverse braid. For each root x1 of p(x), the cycle
b3(B; p, x1) is a transverse braid invariant, where the over-line indicates the mirror braid.

⇤

We will call b3(B; p, x1) the b3-invariant of B associated to x1.

Remark 52. The y3-invariants introduced by Wu in [59] are a special case of
our construction, more precisely the case p(x) = x3 and x1 = 0.

3. The c3-invariants

In this final section we wish to introduce some numerical transverse invari-
ants, similar in the spirit to the c-invariants introduced in the first part of this
thesis. In order to do so we must fix a ring R and a polynomial p. From now
on let us fix R = C[U], the univariate polynomial ring over the field of complex
numbers, and p(x) = x3 �U3.

The theory C•
p(x)(L, R) is bi-graded (cf. Chapter 5) once we set

deg(x) = 2 and deg(U) = 2.

In this case we have three roots of p(x) in R. To be precise, the roots of p(x) are
xi = Ux

i
3, i 2 {1, 2, 3}, where x3 is a primitive third root of the unit. This theory

is, in some sense, the analogue of the Bar-Natan theory in the sl3-case.
Now, consider the theory C•

GLee(L, C) defined as Cx3�1(L, C). This theory is
no longer bi-graded but it is filtered, and is called the Gornik-Lee theory. The



134 6. TRANSVERSE INVARIANTS IN THE UNIVERSAL sl3-THEORY

name itself indicates that this is the analogue of the Twisted Lee theory. It is
immediate that there is an identification

C•
GLee(L, R) '

C•,•
x3�U3(L, R)

(U � 1)C•,•
x3�U3(L, R)

and a surjective C-linear map

p1 : C•,•
x3�U3(L, R) �! C•

GLee(L, R)

Exactly as in the case of the Twisted Lee theory, in the case of knots the b-
chains play the role of the canonical generators. These were introduced originally
by Gornik and are called Gornik generators ([17]). The next proposition follows
immediately from the definitions and the considerations above.

Proposition 6.8. Let R be the ring C[U] and the polynomial p(x) be x3 �U3. For
each oriented link diagram L the homology classes of the b3-chains generate a F[U]-sub-
module of Hp(x)(L, R) of rank 3.

Proof. Any linear combination of the homology classes of the b-chains is mapped
by (p1)⇤ into a linear combination of the Gornik generators. Since the Gornik
generators are linearly independent ([17]) the claim follows.

Q.E.D.
In particular, the homology classes of the b-chains are always non-torsion in

the C[U]-module Hx3�U3(L, C[U]). Thus, it make sense to define

cUx

i
3
(L, C) = max{k | 9d 2 Hx3�U3(L, C[U]) : Uk

d = [b3(L; x3 �U3, Ux

i
3)}

The integers cUx3(B, C), cUx

2
3
(B, C) and cU(B, C) are called the c3-invariants of

the braid B. The name is motivated by the following corollary of the invariance
of the b3-invariants.

Proposition 6.9. The c3-invariants are transverse braid invariants. ⇤

We can now proceed exactly as in the case of the c-invariants and get some
estimates on the value of the c-invariants. Let us recall first some notation.

Let L be an oriented link diagram of an `-component link l. Denote by `s the
number of split-components of L (i.e. the connected components of L as planar
graph). Define o+(L), o�(L) and o0(L) to be the number of circles in the oriented
resolution of L which are touched only by positive crossing, negative crossings
and by both type of crossings, respectively. The corresponding types of circles
will be called positive, negative and neutral circles, respectively. By G(L) we
denote the simplified Tait graph. That is the graph whose vertices are the circles
of the oriented resolution, with two vertices connected by an edge whenever the
two corresponding circles share at least a crossing. The edges of the simplified
Tait graph are marked with either +, �, or 0, depending on whether the two
corresponding circles share only positive crossings, only negative crossings, or
both type of crossings. A vertex of the simplified graph is called pure if it is
connected with only vertices of the same type. Finally, G+(L) (resp. G�(L)) is the
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sub-graph of G(L) spanned by all positive (resp. negative) circles and s+(L) (resp.
s�(L)) be the number of connected components of the graph obtained from G(L)
by removing the negative (resp. positive) edges.

Consider the foam ArBsCt shown in Figure 12 the foam obtained by adding
a dots in the region A, b dots in the region B and c dots in the region C.

BA

C• ... •| {z }
r

• ... •| {z }
s• ... •| {z }

t

Figure 12. The foam ArBsCt.

Then consider the foam F0 obtained by reading the foam F in Figure 1 from
the bottom to the top. We have the following result.

Lemma 6.10. Consider the web�t�, and the map

T(F0) : T(q)! T(�t�) ' R[x]
(p(x))

⌦ R[y]
(p(y))

where the variable x is relative to the circle on the left. Then, we have

T(F0)(A2B + UAB + U2B) = [x2 + Ux + U2]⌦ [y2 + Uy]

Proof. The claim is a simple consequence of the fact that [x3] = U3[1] in R[x]
(p(x)) ,

and of the second relation from the top in Proposition 5.1.
Q.E.D.

Fix an oriented link diagram L. Consider G0 ✓ G+ = G+(L). Denote by a(G0)
the element of T(wL) defined as follows

a(G0) =

0@ ’
g2wL\V(G+\G0)

[x2
g

+ Ux
g

+ U2]

1A0@ ’
g2V(G+\G0)

[1]

1A .

Pick a non-isolated or non-pure vertex v in G0, and consider a positive crossing
c touching v. Denote by w(c) the web resolution obtained from the oriented
resolution by replacing the 1-web resolution of c with its 0-web resolution. It is
immediate that w(c) is the disjoint union of a q-web, obtained merging the circle
corresponding to v with the other circle touched by c, and some circles. Finally,
define a(G0, v, c) 2 T(w(c)) as follows

(A2B+UAB+U2B)⌦

0@ O
g2wL\V(G+\G0)

[x2
g

+ Ux
g

+ U2]

1A⌦
0@ O

g2V(G+\G0)\w(c)
[1]

1A ,

where we have identified the circles of w(c) with the corresponding circles in wL.
The following lemma is an immediate consequence of Lemma 6.10 and of the
definition of the differential, and it is left as an exercise to be done along the lines
of the proof of Lemma 3.31.
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Lemma 6.11. d(a(G0, v, c)) = a(G0) + U2
a(G0 \ {v}) ⇤

Replacing Lemma 3.31 with Lemma 6.11 in the proof of Proposition 3.32 we
obtain the following result.

Proposition 6.12. Let L be an oriented link diagram, and R be a ring. Denote by
`+ be the number of split components of L (i.e. the connected components of L seen as a
four-valent graph) which have only positive crossings. Then

b3(L; x3 �U3, U) = U2(o+(L)�`+)
a({v01, ..., v0`+}) + dt,

for some t 2 C�1,•
x3�U3(L, C[U]), where o+ denotes the number of positive circles in G. ⇤

A similar result can be produced for b3(L; x3�U3, Ux3) and b3(L; x3�U3, Ux

2
3).

An immediate consequence of Proposition 6.12 is the following corollary.

Corollary 6.13. Let L be an oriented link diagram. Then,

cUx

i
3
(L, C) � 2(o+(L)� `+(L))), 8i 2 {0, 1, 2}.

In particular, if B0 is the negative stabilization of a braid B, then cUx

i
3
(B0, C) � 2. ⇤
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APPENDIX A

Algebra

In this section we collect all the basics of the algebraic objects we are going
to use in this thesis. Throughout this appendix the word “ring” will stand for
“commutative ring with unit element”.

1. Duality and modules

Let R be a ring and M an R-module. In this section we will be concerned
with some properties of the dual module, denoted by M⇤ = HomR(M, R). Even
without any hypotheses on either M or R, there is a natural map

F : M⇤ ⌦R M⇤ �! (M⌦R M)⇤,

defined by

(38) F

 
Â

i
ji ⌦R yi

!
: M⌦R M! R : m⌦ n 7!Â

i
ji(m)yi(n).

In general, this map is neither injective, nor surjective. Nonetheless, in some
special cases something more can be said.

Proposition A.1 ([31], Corollary 5.6, Chapter XVI). If M is a finitely generated
free R-module, then F is an isomorphism.

The hypothesis that M is finitely generated is necessary, as shown by the
following example.

Example A.1. Let M be a non-finitely generated free R-module. Consider a
basis {en}n2N, for M, and set

z : M⌦M! R : ei ⌦ ej 7! di,j1R,

where di,j is Kronecker’s delta. If z = F(Âs
j=1 jj ⌦ yj), then the matrix (z(ei ⌦

ej))
k
i,j=0 has rank at most s for all k, which is absurd (✓).

For our scopes, is needed a somewhat weaker hypothesis: M should be pro-
jective of finite type. A finitely generated module M is said to be projective of
finite type if there exists a dual basis for M, that is

(ji, xi) 2 M⇤ ⇥M, i = 1, ..., k,

such that
k

Â
i=1

ji(m)xi = m, 8 m 2 M.

145
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Remark 53. From the definition of dual basis, it is immediate that the xis
form a system of generators for M. Similarly, the jis form a system of generators
for M⇤; in fact, given y 2 M⇤, we have

Â
i

y(xi)ji = y.

Remark 54. Any projective module of finite type is projective (i.e. is a direct
summand of a free module). Consider the free module F generated by x̃1, ..., x̃k,
and the map

p : F ! M : x̃i 7! xi.
There is a map s : M! F, defined as follows

s(x) = Â
i

ji(x)x̃i,

such that
p � s(x) = Â

i
ji(x)xi = x.

Hence, the exact sequence

0! ker(p) �! F p�! M! 0

splits, and consequently F = ker(p) � M. In particular, a projective module of
finite type is torsion-free. Moreover, we have that

(39) ji(xj) = di,j1R

Remark 55. If F is a Frobenius algebra, then AF is a projective RF -module
of finite type.

Proposition A.2. If M is a projective R-module of finite type, then

Y : M⇤ ⌦ N ! HomR(M, N) : Â
j

yj ⌦ yj 7!Â
j

yj(·)yj,

is an isomorphism, for each R-module N.

Proof. Consider f 2 HomR(M, N), and a dual basis for M, say (ji, xi)i=1,...,k, then
set

yj(= yj( f )) = f (xj).
With this notations

Y

 
Â

j
jj ⌦ yj

!
(m) = Â

j
jj(m)yj =

= Â
j

jj(m) f (xj) = Â
j

f (jj(m)xj) =

= f (Â
j

jj(m)xj) = f (m).

This proves the surjectivity of Y. Now, let us turn to the injectivity, and suppose

Y

 
Â

j
yj ⌦ yj

!
= 0,
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this implies

Y

 
Â

j
yj ⌦ yj

!
(a) = 0, 8a 2 M.

Being the ji generators of M⇤, without loss of generality we may assume yj = jj.
Rewriting the previous equality one obtains

Â
j

jj(a)yj = 0,

which implies,

0 = Â
j

jj(xh)yj = yh, 8h = 1, ..., k.

And the claim follows by Equation (39).

Q.E.D.

Corollary A.3. If M is a projective R-module of finite type, then the map F defined
in Equation (38) is an isomorphism.

Proof. Consider the (canonical) isomorphism (cf. [2, Chapter 2])

X : HomR(M, HomR(N, P)) �! HomR(M⌦ N, P),

defined as follows

X(y)(m⌦ n) = y(m)(n).

Then by Proposition A.2, the composition

M⇤ ⌦R M⇤ Y�! HomR(M, M⇤) = HomR(M, HomR(M, R)) X�! (M⌦R M)⇤,

is an isomorphism. Moreover, we have that

X(Y(j⌦ y))(m⌦ n) = (Y(j⌦ y)(m))(n) = j(m)y(n),

which is precisely F.

Q.E.D.

2. Grading and Filtration

Definition A.1. Let R be a ring, and C be a commutative monoid. A C-
grading on R is a decomposition of R as direct sum of Abelian subgroups

R =
M
c2C

Rc,

such that: RcRc0 ✓ Rc+c0 . Whenever the monoid C is not specified will be either
clear from the context or equals to Z. Finally, a C-grading is trivial if R = R0C .
The sub-group Rc is called homogeneous component of degree c. A element
x 2 M homogeneous if x 2 Rc, for some c 2 C, and c is called the degree of x
(usually, we will write deg(x) = c).
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A C-graded ring is a ring R together with a fixed C-grading. Notice that
every ring admits a trivial C-grading, and hence every ring can be considered
trivially C-graded. So, whenever the grading is not specified we will assume our
ring trivially graded, unless otherwise stated. Notice that R0C is a sub-ring of R,
and every C-graded ring is an R0C (graded) algebra.

Definition A.2. A C-graded module M, over a C-graded ring R, is an R-
module M together with a decomposition

M =
M
c2C

Mc,

into abelian subgroups, called homogeneous components, such that:

Rc Mc0 ✓ Mc+c0 .

An element x 2 M is said to be homogeneous of degree c if x 2 Mc.

Remark 56. There are few remarks concerning the previous definition

(1) if M is a C-graded module over a C-graded ring R, each homogeneous
component Mc of M is an R0C sub-module of M.

(2) If R is G-graded, where G is an abelian group, and H is a sub-group of
G, then R is also naturally G/H-graded

R =
M

[g]2G/H
R[g], R[g] =

M
h2H

Rg+h

(3) If R is G-graded and we say that M is G/H-graded, we are considering
R with the natural G/H-grading.

(4) The bi-grading (in general any multi-grading) is a particular case of the
grading we defined: it is sufficient to take C = Z2 (in general, C =
C1⇥ ....⇥Ck where the product of monoids is endowed with the natural
operation).

Given a C-graded ring (possibly trivially graded) R, there exists a (natural)
polynomial grading on R[U1, ..., Uk], for any choice of degrees d1, ..., dk 2 C for
the variables U1, ..., Uk, just set

deg(aUt1
1 · · · · · Utk

k ) = degR(a) + Â
i

ti · di,

where a 2 R is homogeneous, and

ti · di = di + · · ·+ di| {z }
ti

,

and define R[U1, ..., Uk]d to be the subgroup of R[U1, ..., Uk] generated by the ho-
mogeneous elements (with respect to deg) of degree d. Notice that in this way
R[U1, ..., Uk] becomes both a C-graded R-module, and a C-graded ring.

Remark 57. The above construction extends naturally to R[U±1
1 , ..., U±1

k ] if
the monoid C is an abelian group.
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Given two C-graded modules M and N, over a C-graded ring R, the modules

M� N, M⌦R N, HomR(M, N),

are also naturally graded, and their homogeneous components are defined as
follows

(M� N)i = Mi � Ni,

(M⌦ N)i =
M

h+k=i
Mh ⌦R Nk,

HomR(M, N)i = { f 2 HomR(M, N) | f (Mk) ✓ Nk+i, 8k} .

In particular, a R-linear map f : M ! N is called homogeneous of degree d if
f 2 HomR(M, N)d.

Definition A.3. A filtered module M over a (Z-)graded ring R, is a module M
together with a family F = {Fj M}j2Z of sub-groups, called ascending filtration
(resp. descending filtration), such that

Fj M ✓ Fj+1M (resp. Fj M ✓ Fj�1M), aFj M ✓ Fj+d M, 8a 2 Rd, d 2 Z

for each j 2 Z. A filtration (either increasing or decreasing) is convergent if[
j

Fj M = M,
\

j
Fj M = (0).

Finally, a filtration is bounded if

9i0, i1, : Fi0 M = (0), Fi1 M = M.

Remark 58. In particular, for each j 2 Z, Fj M is an R0 sub-module of M.

Given a filtered module (M, F ) (over a graded ring R), and x 2 M, the
filtered degree of x, denoted by Fdeg(x), is the integer k such that either x 2
Fk M \Fk+1M, if F is descending, or x 2 Fk M \Fk�1M, if F is ascending.

Let (M, F ) be a finitely generated, filtered R-module, and assume R to be a
Noetherian domain. The filtered dimension of M is the graded dimension (over
R) of its associated graded object Gr•F (M), which is defined as follows

Gr•F (M) =
M

i
Gri

F (M), Gri
F (M) =

F i M
F i�1M

.

More explicitly,

FdimR(M, F ) = Â
i

rankR(Gri
F (M))qi 2 N[[q, q�1]],

where Fdim indicates the filtered dimension and rankR(M) denotes the dimen-
sion of M⌦ Q(R) as Q(R)-vector space, where Q(R) is the field of quotients of
R. Sometimes, we will be interested in the filtered dimension of M as an R0-
module, that is the reason why we will specify the ring with respect to which we
are computing the filtered dimension.

Remark 59. If the filtration is bounded, then the filtered dimension is a poly-
nomial.
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Given two filtered modules M and N, over a graded ring R, the modules

M� N, M⌦R N, HomR(M, N),

are also filtered with filtrations given by

Fi(M� N) = Fi M�Fi N,

Fi(M⌦ N) = Â
h+k=i

Fh M⌦R Fk N,

Fi HomR(M, N) = { f 2 HomR(M, N) | f (Fk M) ✓ Fk+i N, 8k}
In particular, the filtered degree of a map f between filtered modules, say M and
N, is its filtered degree as an element of HomR(M, N).

3. Filtered degree and bases

In this section we wish to study the behaviour of a basis for a free filtered
module with respect to the filtration.

Definition A.4. A filtered basis B for a free filtered R-module, say M, is a
basis for M (as an R-module), such that the canonical isomorphism

M '
M
b2B

R · b,

is an isomorphism of filtered modules with respect to the direct sum filtration,
where each R · b is endowed with the filtration

Fi(R · b) = R · b \Fi M.

Not every basis is a filtered basis as shown by the following example.

Example. Consider the R module space Vk = R[X]/(Xk + 1), with the filtra-
tion induced by the polynomial grading, namely

FiV =

8>><>>:
(0) i < 0,
h[1], ..., [Xi]i 0  i  k� 1,
Vk k� 1 < i

Then, the basis
[X + 1], [X], [X2], ..., [Xk�1],

is not a filtered basis. In fact, [1] is sent, by the canonical isomorphism, to
(1,�1, 0, ..., 0). Thus, the filtered degree of [1] with respect to the direct sum
filtration is 1, while its filtered degree as an element of Vk is 0.

Filtered bases have a nice behaviour with respect to the filtered degree, and
also with respect to direct sum and tensor product of filtered modules. The fol-
lowing proposition, whose proof is straightforward, summarize the main prop-
erties of filtered bases.

Proposition A.4. Let R be a graded ring with degree bounded from above or below.
Let M be a finitely generated, free, filtered R-module and let {m1, ..., mk} be a filtered
R-basis for M. Then, the following results hold
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(1) for any i 2 Z, and for any a1, ..., ak 2 R,

k

Â
s=1

asms 2 Fi M () asms 2 Fi M, 8s

(2) for each j 2 HomR(M, R)

Fdeg(j) = max{Fdeg(j(ms))� Fdeg(ms) | s = 1, ..., k};

(3) if N is also a finitely generated, free, filtered R-module, and {n1, ..., nh} is a
filtered basis for N, then {m1, ..., mk, n1, ..., nh} is a filtered basis for M � N,
and the set {ms ⌦ nt}s,t is a filtered basis for M⌦R N.

⇤

We conclude this section with a result concerning the filtered degree of the
elements of an arbitrary basis of a filtered free module.

Proposition A.5. Let R be a graded ring with only non-negative degrees. Let M be
a finitely generated free R-module endowed with a descending filtration F . Given a basis
B for M define the integer m(B) as follows

m(B) = min{Fdeg(bi)|bi 2 B}.

Then m(B) does not depend on the choice of B.

Proof. Since R is supported in non-negative degrees, and since the filtration F is
descending, Fi M is an R-sub-module of M for each i 2 Z. From the definitions
of filtered degree and of m(B) it follows that

b 2 Fm(B)M, 8b 2 B.

Let B0 be another basis. Since B is a basis it follows that

b0 = Â
b2B

a

b0
b b 2 Fm(B)M,

for each b0 2 B0. Thus, it follows

Fdeg(b0) � m(B),

which implies m(B0) � m(B). By exchanging the roles of B and B0 we obtain the
equality.

Q.E.D.

Corollary A.6. Let F be a (trivially graded) field and let V be a filtered F-vector
space. If the filtration on V is descending, then the minimum filtered degree of the ele-
ments of a basis does not depend on the chosen basis. ⇤
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4. Homogeneous lifts

Given a graded (commutative unital) ring R, consider the polynomial ring
R[U], where deg(U) > 0. Let M be a graded R[U]-module, and set

deg (a) = max{deg(ai)},

where ai are the homogeneous components of a, for each a 2 M. This is an
extension of the degree which we are going to use in the follow up.

Lemma A.7. Let M be a graded R[U]-module, a 2 R, and Mk be the k-th homo-
geneous component of M. If U, a /2 Ann(x) for each x 2 M and deg(a) 6= deg(U),
then

Mk \ (U � a)M = {0}.

Proof. Let x 6= 0 be an element of M, and x1,..., xk be its homogeneous
components. Suppose that deg(xi) > deg(xi�1), and that deg(a) < deg(U) (the
same proof works also for deg(a) > deg(U), up to exchanging the role of a and
U). Then Uxk and ax1 are non trivial, and their degrees are, respectively, higher
and lower than any other homogeneous component of (U� a)x. Hence, (U� a)x
cannot be homogeneous. ⇤

Corollary A.8. If R is an integral domain, and M a free graded R[U]-module, then

(U � a)M \Mk = {0}

for each a 2 R such that deg(a) 6= deg(U) and for each k 2 Z. ⇤

Assume that the degree in R[U] is bounded from below. If a and U are
homogeneous of different (positive) degrees, then the R[U] quotient module
M

a

= M/(U � a)M is not (in general) graded, but it is filtered

Fs M
a

= h[x] | x 2 Mk, k � si ,

in this case, we may define in M
a

a filtered degree as follows

Fdeg([x]) = in f {deg(y) : y 2 [x]} = sup{s | [x] 2 Fs M
a

}.

Remark 60. The filtered degree defined above is the filtered degree induced
by the filtration.

Remark 61. If x 2 Mk, and x 6= Uy, then Fdeg([x]) = k. Moreover, the whole
construction can be duplicated in case the degree of R is bounded from above:
it is sufficient to reverse the inequality in the definition of the filtration and to
exchange the infimum with the supremum (and vice-versa) in all the definitions
above.

In the special case M = R[U], where R is a graded ring satisfying some
mild hypotheses, the quotient module M/(U � a) has a natural filtered basis.
More formally the following proposition (whose proof is just a simple verifica-
tion) holds.
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Proposition A.9. Let R be a graded Noetherian domain, with degrees bounded from
either above or below, and let U be a formal variable graded consistently1. Given a non-
homogeneous polynomial P 2 R[U], denote by F the induced filtration on the quotient
R[U]/(P). The basis [1], ..., [Udeg(P)] is a filtered R-basis for R[U]/P. ⇤

Now, we wish to relate homogeneous elements of a graded module M with
elements in a naturally filtered quotient of M. In particular, we wish to prove a
uniqueness criteria for homogeneous lifts.

Lemma A.10. Let M be a finitely generated, free, graded R[U]-module, with R =
R0. Suppose that deg(U) = 1, and consider an invertible element a 2 R.

Given y 2 M
a

there exists a unique homogeneous lift xt (i.e. [xt] = y), for each
t 2 N, such that deg(xt) = Fdeg(y) + t.

Proof. The uniqueness follows from Corollary A.8. More precisely, given
two homogeneous lifts of the same degree, say y and y0, their difference y � y0

is still homogeneous of the same degree. On the other hand, if p

a

(y) = p

a

(y0),
then y� y0 2 (U � a)M. Which implies y = y0, by Corollary A.8.

For the existence of xt it is sufficient, thanks to the above argument, to show
the existence of x = x0, and set xt = (a�1U)tx.

Let us start with x̃ = Âi aiUki xji 2 y realizing the minimum degree (since
M is finitely generated and R[U] has only elements of non-negative degree, the
minimum is attained). Then notice that

(1) deg(x̃) = Fdeg(y);
(2) the leading term of x̃ is not a multiple of U (otherwise, evaluating U at

a we get an element in y of lower degree);
(3) any other homogeneous term of x̃ has lower degree;

So, it is well defined

x = Â
i

aia
ki (a�1U)deg(x̃)�deg(xji )xji

is an homogeneous element of degree deg(x̃) = Fdeg(y) whose projection onto
M

a

is y. ⇤
The previous lemma generalizes to the case deg(U) = n, and M =

L
k2Z Mnk;

the only change to make in the proof is the definition of x, where the exponent of
U has to be replaced by:

ti =
deg(x̃)� deg(xji )

n
.

Furthermore, we may also drop the hypothesis R = R0. It is sufficient to assume
the degree in R to be bounded by either above or below.

Remark 62. The uniqueness argument is unchanged even if we have no fur-
ther hypothesis on the grading in R, or the degree of U, with the sole exception

1That is: the variable U has positive degree if R has degrees bounded from below, and negative
degree if R has degrees bounded from above. In this way the degrees in the polynomial ring R[U] are
bounded.
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of deg(U) 6= deg(a). Under these hypothesis (M being a free R-module, and a

not a zero divisor for M) once the homogeneous lift exists is unique (in a fixed
degree).

An immediate consequence of Lemma A.10 is the following proposition.

Proposition A.11. Let M and M0 be two graded, free R-modules, and let a 2 R be
such that deg(a) 6= deg(U), and a /2 Div0(R). Given two R[U]-linear maps

F : M �! M0, F
a

: M
a

�! M0
a

,

which commute with the projections (i.e. p

0
a

� F = F
a

� p

a

), with F homogeneous
of degree 0. If x 2 M, x0 2 M0 are two homogeneous lifts of, respectively, y 2 M

a

,
y0 2 M0

a

, such that deg(x) = deg(x0). Then,

F
a

(y) = y0 () F(x) = x0.

Proof. It is sufficient to notice that, for the assumptions on F and F
a

, F(x) is an
homogeneous lift of y0 of degree deg(x0).

Q.E.D.

Lemma A.12. Let M be a finitely generated, free, graded R[U]-modules, with R
a graded integral domain with degrees bounded from above or below, and deg(U) 6= 0.
Given a unit a 2 R, denote by M

a

the quotient of M by the sub-module (U � a)M.
Denoted by p the projection to the quotient, if x and y are homogeneous elements, and
x + y 2 Ker(p), then

deg(x) ⌘ deg(y) mod deg(U).

Proof. We will deal with the case deg(U) > 0, but the case deg(U) < 0 is
dealt with in the same way. Because x + y belongs to Ker(p), there exists z such
that x + y = (U � a)z. Decompose z into homogeneous components

z =
M

Â
i=m

zi,

where
deg(zm) < · · · < deg(zM).

Both UzM and azm do not vanish, and they have degrees different from all the
other terms in the sum ÂM�1

i=m+1(U � a)zi � azM + Uzm. Thus, either deg(x) =
deg(zm), and deg(y) = deg(zM) + deg(U), or vice-versa. Up to exchange the roles
of x and y, we may assume deg(x) = deg(zm). As x + y is concentrated only in
these degrees,

M�1

Â
i=m+1

(U � a)zi � azM + Uzm = 0.

Thus, we get
azi = Uzi�1, 8i 2 {m + 1, ..., M}.

In particular

deg(zi) = deg(zi�1) + deg(U), 8i 2 {m + 1, ..., M}.

And the claim follows. ⇤
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Remark 63. Lemma A.10 works for a polynomial P in place of (U � a), in
which case we have

deg(x) ⌘ deg(y), mod GCD(deg(Pi) | Pi 6= 0),

where the Pi’s are the homogeneous components of P.

Corollary A.13. Under the hypotheses of Lemma A.12, the quotient module M
a

is
Z/deg(U)Z-graded. ⇤

Proposition A.14. Let M, M0 be two finitely generated, free, graded R[U]-modules,
with R an integral domain. Assume that deg(q) � 0, for each q 2 R, and deg(U) > 0.
Given an homogeneous unit a 2 R, denote by M

a

, and M0
a

the quotients of M, and M0

by the ideal (U � a), respectively. Then, given a degree 0 homogeneous map

F : M �! M0,

denote by F the induced map on the quotients. Let s 2 M
a

. If

min{Fdeg(s0) | F(s0) = s}  k

and if s 2 Im(F), then for each s̃ 2 M0k such that p(s̃) = s we have

s̃ 2 Im(F)

⇤

5. Spectral sequences

Let R be a Noetherian domain; during this section we will suppose all mod-
ules to be R-modules, and all maps to be R-linear, unless otherwise explicitly
stated. The general references for this section are: [52, Chapter 9], [31, Chapter
XX, §9], [57, Chapter 5] and [20, Chapter VIII].

Definition A.5. A spectral sequence E is a sequence {(Er, dr, yr)}r2N of bi-
graded R-modules Er, and maps dr : Er ! Er satisfying the following properties:

(1) dr � dr = 0;
(2) dr is (bi-)homogeneous of bi-degree (r,�r + 1), that is to say:

dr(Ep,q
r ) ✓ Ep+r,q�r+1

r ,

for each r 2 N, and p, q 2 Z;
(3) for any r 2 N is given an isomorphism of bi-graded modules

yr : E•,•
r+1 ! H•,•(Er),

for each r 2 N.
The module Er is the r-Th page , and the map dr is the r-Th differential of the
spectral sequence E.

Given two spectral sequences E and E0, a morphism (of spectral sequences)
between them is a family of bi-homogeneous maps

jr : Er ! E0r,
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which commute with the differentials (i.e. jr � dr = d0r � jr), and such that

y

0
r � (jr)⇤ � y

�1
r = jr+1.

In a similar fashion one defines ephimorphisms, monomorphisms and isomorph-
isms.

In order to define the limit of a spectral sequence, consider the identification

Ep,q
r+1 '

Zp,q(Er)
Bp,q(Er)

=
Ker(dp,q

r : Ep,q
r ! Ep+r,q�r+1

r+1 )

Im(dp�r,q+r�1
r : Ep�r,q+r�1

r ! Ep,q
r+1)

,

performed by the means of yr. Thanks to Noether isomorphism theorem (a.k.a.
second isomorphism theorem for modules, see either [52], or [31] for the state-
ment), there exist2 bi-graded sub-modules Zp,q

r+1, and Bp,q
r contained in Zp,q(Er)

and containing Bp,q(Er), such that

Zp,q(Er+1) =
Zp,q

r+1
Bp,q(Er)

, Bp,q(Er+1) =
Bp,q

r+1
Bp,q(Er)

.

It follows that
Bp,q(Er) ✓ Bp,q

r+1 ✓ Zp,q
r+1 ✓ Zp,q(Er).

By induction, one obtains a sequence

Bp,q(E0) = Bp,q
0 ✓ ... ✓ Bp,q

r ✓ Bp,q
r+1 ✓ ... ✓ Zp,q

r+1 ✓ Zp,q
r ✓ ... ✓ Zp,q

0 = Zp,q(E0)

for each p, q 2 Z. Moreover, we have

Ep,q
r =

Zp,q(Er)
Bp,q(Er)

=

Zp,q
r

Bp,q(Er�1)

Bp,q
r

Bp,q(Er�1)

=
Zp,q

r

Bp,q
r

.

Finally, if we define Zp,q
• =

T
r Zp,q

r and Bp,q
• =

S
r Bp,q

r , then the bi-graded module

E• =
Z•,•

•
B•,•

•

is called limit of the spectral sequence E.

Definition A.6. The spectral sequence E is said to converge if for every p, q 2
Z, there exists an integer rp,q such that dp,q

r ⌘ 0, for each r > rp,q.

If a spectral sequence converges then Ep,q
r+1 is isomorphic to a quotient of Ep,q

r

(because Ep,q
r = Ker(dp,q

r )), for each r > Rp,q. Moreover, the (p, q)-component
of the limit of the spectral sequence E• is isomorphic to the direct limit of the
system

pr : Ep,q
r ! Ep,q

r+1, r > Rp,q,
where pr is the projection onto the quotient module.

These considerations (and the properties of direct limits) imply that: if E and
E0 are converging spectral sequences, then any morphism F = {jr} induces a
morphism j• between the limits E• and E0•. Furthermore, with a little bit of
(basic) homological algebra one may deduce the following Proposition.

2Remember that Zp,q(Er+1) is a sub-module of Er+1, and hence a sub-module of the quotient
Zp,q(Er)/Bp,q(Er).
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Proposition A.15. Let F : E! E0 be a morphism of spectral sequences. If jr is an
isomorphism for a certain r, then js is an isomorphism for each s > r. Moreover, in this
case also the map j• is an isomorphism. ⇤

In most of the cases, e.g. if p, q are bounded and E is a converging spectral
sequence, there exists an R 2 Z such that dr ⌘ 0 for each r > R; in this case, the
sequence E is said to converge at page R + 1. In such a situation the maps pr are
isomorphisms and E• ' Er ' ER+1.

Given a (co)chain complex (C•, d) over R, and a filtration F over C•, F is
compatible with the differential if d(FjC•) ✓ FjC•, for every j. In other words,
a filtration is compatible with the differential if each level is a sub-complex of
(C•, d). Any time there is a filtered complex (i.e. a complex with a filtration),
the filtration will be assumed, unless otherwise stated, to be compatible with the
differential.

Given a filtered complex (C•, d, F ), the filtration F induces a filtration in
homology. More precisely, the inclusions

i : FjC• ! C• = F•C•,

induce a morphism in homology

i⇤ : H(FjC•)! H(C•),

whose image defines a filtration Fj H(C•) = i⇤(H(FjC•)). The next theorem
relates this filtration (to be precise its associated graded object), the filtration on
the complex, and their respective homology via a spectral sequence. For a proof
of the following result the reader may consult, for example, [31, Chapter XX,
Propositions 9.1, 9.2 & 9.3].

Theorem A.16. Let F be a convergent filtration, bounded from below, over a com-
plex (C•, d). There exists a convergent (graded) spectral sequence E, such that

Ep,q
0 = Grp,q(C•) =

FpCp+q

Fp+1Cp+q , Ep,q
1 ' Hp+q(E0

p,•) = H

 
FpCp+q

Fp+1Cp+q

!
,

and
Ep,q

• ' Grp,q(H(C•)).
Moreover, the differential d1 : E1

p,• ! E1
p+1,• is, up to conjugation by the isomorphism

Ep,q
1 ' Hp+q(Ep,•

0 ), the connecting morphism on the long exact sequence arising from
the sequence

0!
Fp+1C•

Fp+2C• !
FpC•

Fp+2C• !
FpC•

Fp+1C• ! 0

⇤





APPENDIX B

Computations

Corollary 2.33 can be used to compute Bar-Natan homology from Khovanov
homology, if char(F) 6= 2, in the case of knots. It suffices to start with the group in
Khovanov homology that has the lowest quantum and homological degree, and
to pair up the heads and the tails of the hooks (paying attention to the groups
which are due to the free part of Bar-Natan homology, and which lay in bi degrees
(0, s � 1), and (0, s + 1)). There are some ambiguous configurations that may
come up, as shown in Figure 1, but they are excluded by Corollary 2.33. Other
ambiguous configurations (cf. Figure 1), that cannot be excluded, do not come up
in the rational Khovanov homology of any knot with 12 crossings or less. Notice
that the configuration in Khovanov homology shown in Figure 2, still satisfies the
Bar-Natan-Goroufalidis conjecture.

Remark 64. The figures are meant to be read as follows: each row and each
column correspond, respectively, to half of the quantum degree minus one, and
to the homological degree; the 1 indicates the generator of a free summand, while
Uk indicates the generator of a summand of the form F[U]/(Uk), in the corres-
ponding bi-degree.

Kh
1

1
1

1

BN
U

U

BN
U2

U2

Figure 1. A possibly ambiguous configuration, and the corres-
ponding possible configurations in Bar-Natan homology; the
configuration in the middle is excluded by Corollary 2.33.

1. The knot 13n1336

The knot 13n1336 is the first knot which is torsion rich (i.e. the torsion in the
rational Khovanov homology is not contained in two diagonals, cf. [51, Section
A.4]), is a non alternating, and is also the first knot whose Khovanov homology
is supported in 4 diagonals. We report its Khovanov homology, over a field of
characteristic different than 2, below (cf. [51, Section A.4]). As an example we
compute the Bar-Natan homology of this knot. Start to pair up the groups in the

159
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Kh
1

1

1

1

BN
U2

U2

BN
U4

U4

Figure 2. An ambiguous configuration, and the corresponding
possible configurations in Bar-Natan homology; neither of them
can be excluded using only Corollary 2.33.

lowest homological and quantum degrees. Whenever an apparently ambiguos
configuration comes up, re-start with the groups of highest possible bi-degree.
Moreover, take into account that we know exactly what is the rank of HBN in
each homological degree (cf. loc. cit. Proposition 2.3).

Kh -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
13 1
11
9 1 1
7 1 1
5 1 1
3 2 1
1 2 1
-1 1 1 1 1
-3 1
-5 1 1
-7 1
-9

-11 1



2. BAR-NATAN HOMOLOGY OF T(2, n) TORUS LINKS 161

BN -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
13 U2

11
9 U2

7 U2 U2

5 U2

3 U2

1 1+U2 U2

-1 U2 U2 1
-3
-5
-7 U2

-9
-11

2. Bar-Natan homology of T(2, n) torus links

In [25, Section 6.2], Khovanov computed the integral Khovanov homology of
the T(2, n) torus links. The result, for a field F of characteristic different than 2,
is

H�2j,4j�2+n
Kh (T(2, n); F) = F = H�2j�1,4j+2+n

Kh (T(2, n); F),

with 1  j  b(n� 1)/2c,

H0,n�2
Kh (T(2, n); F) = F = H0,n

Kh (T(2, n); F),

and all the other groups are trivial, for n > 0 odd and char F 6= 2. Thus, since
we have no ambiguity in identifying the hooks (knight moves, to be precise, cf.
Figure 1), in this case

H�2j�1,•
BN (T(2, n); F[U]) =

F[U]

(U2)
{(0, 4j + n)},

with 1  j  (n� 1)/2, and

H0,•
BN(T(2, n); F[U]) = F[U]{(0,�n)}� F[U]{(0,�n + 2)}.

If n is even, then there are two more Khovanov homology groups which are non-
trivial, more precisely

H�n,�3n
Kh (T(2, n); F) = F = H�n,�3n+2

Kh (T(2, n); F),

also in this case no ambiguous configurations (cf. Figure 2) come up, hence

H�2j,•
BN (T(2, n); F[U]) =

F[U]

(U2)
{(0,�4j� n + 2)},

with 1  j  b(n� 1)/2c, and

H0,•
BN(T(2, n); F[U]) = F[U]{(0,�n)}� F[U]{(0,�n + 2)},

H�n,•
BN (T(2, n); F[U]) = F[U]{(0,�3n)}� F[U]{(0,�3n + 2)},
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for n even. Thus, we may compute directly both the Ramussen-Beliakova-Wehrli
invariants and Pardon’s invariants. The result is the following:

dh,q(T(2, n)) =

(
1 (h, q) 2 {(0, -n + 2), (0, -n), (-n, -3n), (-n, -3n + 2)}
0 otherwise

,

RBW(T(2, n)) = {-n + 1, -3n + 1},
if n is even, and

RBW(T(2, n)) = {n + 1}, dh,q(T(2, n)) =

(
1 (h, q) 2 {(0, -n + 2), (0, -n)}
0 otherwise

,

if n is odd; where RBW(l) denotes the set of the Ramussen-Beliakova-Wehrli
invariants. These results are consistent with the known facts on the Rasmussen-
Beliakova-Wehrli invariants for alternating links.

In the case F = Z/2Z, things do not change that much. In this case, it is
immediate to isolate the two groups in bi-degrees (0, -n+2), (0, -n). This amounts
to the whole free part in the case n odd. Proposition 2.3 tells us that the remaining
generators of the free part, in the case n even, are located in homological degree
�n. Therefore, we obtain the same result as above. The remaining groups could
be paired up into hooks as follows. Let us start from the lowest homological
degree. Here we have a tetris piece (see Figure 3).

Kh �2j� 1 �2j
...

�4j + 2� n 1 · · ·
�4j� n 1 1 · · ·
�4j� 2� n 1 · · ·

BN �2j� 1 �2j
...

�4j + 2� n U · · ·
�4j� n U · · ·
�4j� 2� n · · ·

Figure 3. A tetris piece and the corresponding figure in Bar-
Natan homology.

If we couple the group in the lowest quantum degree with the ones in the
highest quantum degree, then the two groups in the middle cannot be paired up,
which is absurd. Hence, there is only a possible way to pair them up. Notice
that there is no ambiguity because the dimension of Hh,•

Kh is either 2 or 0, for each
homological degree h.

3. Bar-Natan homology of the links T(3, k)

Let us turn to a more interesting example, the case of T(3, k). These links are
neither alternating (in general), nor Kh-thin. Their rational Khovanov homology
has been computed by M. Stošić (cf. [53]).

Theorem B.1 (Stošić). The Khovanov polynomial, defined by

PKh[l](t, q) = Â
h,i

dimF(Hh,i
BN)t

hqi,
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in the case l = T(3, k) is given by

PKh[T(3, k)](t, q) = q�2k
✓

q3 + q + t�2q�1 + t�3q�5 +
h
t�4(q�3 + q�5)+

+t�5(q�7 + q�9) + t�6q�7 + t�7q�11
i n�2

Â
i=0

t�4iq�6i+

+Qk(t, q)
◆

where n = bk/3c, and

Qk(t, q) =

8>><>>:
t�4n(q�6n+3 + 3q�6n+1 + 2q�6n�1) k ⌘ 0 mod 3
t�4n+2q�6n+5 + t�4n+1q�6n+1 k ⌘ 1 mod 3
0 k ⌘ 2 mod 3

Now we have to isolate the terms which cannot be paired up in any hook.The
terms of t-degree 0, cannot be paired up (as there are not other groups in neigh-
bouring columns). Hence, two direct summands of the free part in H•,•

BN are in
bi-degrees (0,�2k + 3), and (0,�2k + 1). In the cases k ⌘ 1 and k ⌘ 2 mod 3, this
represent the whole free part. So, we get

dh,q(T(3, k)) =

(
1 (h, q) 2 {(0, -2k + 3), (0, -2k + 1))}
0 otherwise

and
RBW(T(3, k)) = {�2k + 2}.

In accordance with the facts

dh,q(k) 6= 0 () dh,q(k) = 1 () (h, q) 2 {(0, s(k)± 1)}.

which hold for any knot k (cf. [44]), and

s(T(p, q)) = �(p� 1)(q� 1),

for each p, q 2 N, with gcd(p, q) = 1, (cf. [47]). All the other terms can easily
(and uniquely) be paired up into hooks.

So, it remains the case k ⌘ 0 mod 3, or equivalently k = 3n. The total rank
of H•,•

BN is, in this case, 23 = 8. Two free summands are located, as in the pre-
vious cases, in bi-degrees (0,�2k + 3), and (0,�2k + 1). Consider the terms of
the Khovanov polynomial representing the homology groups of the lowest ho-
mological degree, namely t�4nq�2k(q�2k+3 + 3q�2k+1 + 2q�2k�1). Only one of the
corresponding groups can be paired up with another group to get an hook, as
dimF(H�4n+1,•

Kh (T(3, 3n)) = 1. In the case one of the above mentioned terms is
part of an hook, there would be five free summand in homological degree �4n,
and one in another degree. But this is absurd (✓) because there is always an even
number of canonical generator within the same homological degree. This implies
that H-4n,•

BN (T(3, k)), is isomorphic to the bi-graded Q[U]-module

Q[U]{(-4n, -4k� 1)}� (Q[U]{(-4n, -4k+1)})�3 � (Q[U]{(-4n, -4k+3)})�2
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Remark 65. We could have used Proposition 2.3. This proposition implies
that the Bar-Natan homology of the link T(3, 3n) has rank 6 in homological degree
�12n.

The remaining terms must be paired up into hooks, and there is only one
possible way to do so. Thus, the Bar-Natan homology of T(3, 3n) is isomorphic
to

H•,•
BN(T(3, 3n)) =

n�2M
i=0

✓
Q[U]
(U2)

{(�4i� 4,�3)}� Q[U]
(U2)

{(�4i� 4,�5)}�

�Q[U]
(U2)

{(�4i� 6,�7)}
◆
� Q[U]

(U2)
{(�2,�6n + 1)}�

�Q[U]{(0,�6n + 1)}�Q[U]{(0,�6n + 3)}�

�Q[U]{(-4n, -12n+3)}� (Q[U]{(-4n, -12n+1)})�3�

� (Q[U]{(-4n, -12n-1)})�2 .

As a corollary, we obtain

dh,q(T(3, 3n)) =

8>>>><>>>>:
1 (h, q) 2 {(0, -6n+3), (0, -6n+1), (-4n, -12n+3)}
2 (h, q) = (-4n, -12n-1)
3 (h, q) = (-4n, -12n+1)
0 otherwise

,

hence, we may conclude that

{-6n+2, -12n} ✓ RBW(T(3, 3n)) ✓ {-6n+2, -12n, -12n+2}.

Since there are only two semi-orientations of T(3, 3n), it follows that there are
only two Rassmussen-Beliakova-Wehrli invariants. Thus, we obtain either

RBW(T(3, 3n)) = {-6n+2, -12n} or RBW(T(3, 3n)) = {-6n+2, -12n + 2}

Remark 66. Turner [56] states that the Khovanov homology of the (3, k) torus
links is the same in all the fields of characteristic which is not 2. Thus, our results
extend to these fields as well.

From the computations above it follows that if T0(3, 3n) is the link obtained
from T(3, 3n) by reversing the orientation of a single strand, then its Rasmussen
Beliakova-Werhli invariants are either

RBW(T0(3, 3n)) = {0, 6n + 2} or RBW(T0(3, 3n)) = {2, 6n + 2}.

Which is in accordance with the computations made in Section 2. Moreover,
we can deduce the Pardon’s invariants of the link T0(3, 3n). These are easily
computed and are

dh,q(T(3, 3n)) =

8>>>><>>>>:
1 (h, q) 2 {(4n, 3), (4n, 6n+1), (0, +3)}
2 (h, q) = (0, -1)
3 (h, q) = (0, 1)
0 otherwise

,
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4. The rational Bar-Natan homology of the prime knot with less than 12
crossing

In this section we list the Hilbert-Poincaré polynomials of the rational Bar-
Natan homology of all prime knots with less than 12 crossings. THis polynomials
have been computed as described at the beginning of the chapter. The Khovanov
homologies of the knots are taken from KnotInfo [?]. In fact, we noticed that
no-ambiguous configurations (cf. Figure 2) that could not be taken care of appear
in these knots and paired up all the hooks with the help of a computer program
(developed by Francesco di Baldassarre, to whom many thanks are due).

Before listing (the quite long) the sequence of all Hilbert-Poicaré polynomials,
let us fix the notations. The polynomial BN should be read as follows: the term
cu2kqitj, with k > 0, corresponds to a copy of the Q[U]-module

⇣
Q[U]/(U2k)

⌘c

in homological degree j and quantum degree i, and the term cqitj corresponds to
a copy of Q[U]c in homological degree j and quantum degree i.

The reader may notice that only U2-torsion appears and that all the knots
satisfy the hypothesis of Proposition 3.54. In particular, they are c-simple over Q

(cf. Corollary 3.57 in Chapter 3).
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Name BN

31 q�1 + q�3 + u2�q�5t�2�
41 q1 + q�1 + u2�q�1t�1 + q5t2�
51 q�3 + q�5 + u2�q�11t�4 + q�7t�2�
52 q�1 + q�3 + u2�q�9t�4 + q�5t�2 + q�3t�1�
61 q1 + q�1 + u2�q�5t�3 + q�1t�1 + q1 + q5t2�
62 q�1 + q�3 + u2�q�7t�3 + q�5t�2 + q�3t�1 + q�1 + q3t2�
63 q1 + q�1 + u2�q�3t�2 + q�1t�1 + q1 + q3t1 + q5t2 + q7t3�
71 q�5 + q�7 + u2�q�17t�6 + q�13t�4 + q�9t�2�
72 q�1 + q�3 + u2�q�13t�6 + q�9t�4 + q�7t�3 + q�5t�2 + q�3t�1�
73 q5 + q3 + u2�q9t2 + q11t3 + q13t4 + 2q15t5 + q19t7�
74 q3 + q1 + u2�2q7t2 + q9t3 + q11t4 + 2q13t5 + q17t7�
75

q�3 + q�5 + u2�q�15t�6 + q�13t�5 + 2q�11t�4+

+ q�9t�3 + 2q�7t�2 + q�5t�1�
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Name BN

76
q�1 + q�3 + u2�q�9t�4 + q�7t�3 + 2q�5t�2+

+ 2q�3t�1 + q�1 + q1t1 + q3t2�
77

q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + q1 + 2q3t1+

+ 2q5t2 + q7t3 + q9t4�
81 q1 + q�1 + u2�q�9t�5 + q�5t�3 + q�3t�2 + q�1t�1 + q1 + q5t2�
82

q�3 + q�5 + u2�q�13t�5 + q�11t�4 + q�9t�3+

+ 2q�7t�2 + q�5t�1 + q�3 + q1t2�
83 q1 + q�1 + u2�q�5t�3 + 2q�1t�1 + q1 + q3t1 + 2q5t2 + q9t4�
84

q�1 + q�3 + u2�q�7t�3 + q�5t�2 + 2q�3t�1+

+ q�1 + q1t1 + 2q3t2 + q7t4�
85

q5 + q3 + u2�q3t�1 + 2q7t1 + q9t2 + 2q11t3+

+ 2q13t4 + q15t5 + q17t6�
86

q�1 + q�3 + u2�q�11t�5 + q�9t�4 + 2q�7t�3+

+ 2q�5t�2 + 2q�3t�1 + 2q�1 + q3t2�
87

q3 + q1 + u2�q�1t�2 + q1t�1 + q3 + 2q5t1+

+ 2q7t2 + 2q9t3 + q11t4 + q13t5�
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Name BN

88
q1 + q�1 + u2�q�3t�2 + q�1t�1 + 2q1 + 2q3t1+

+ 2q5t2 + 2q7t3 + q9t4 + q11t5�
89

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 2q�1t�1 + 2q1+

+ 2q3t1 + 2q5t2 + q7t3 + q9t4�
810

q3 + q1 + u2�q�1t�2 + q1t�1 + 2q3 + 2q5t1+

+ 2q7t2 + 3q9t3 + q11t4 + q13t5�
811

q�1 + q�3 + u2�q�11t�5 + q�9t�4 + 2q�7t�3+

+ 3q�5t�2 + 2q�3t�1 + 2q�1 + q1t1 + q3t2�
812

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 3q�1t�1 + 2q1+

+ 2q3t1 + 3q5t2 + q7t3 + q9t4�
813

q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 2q1 + 2q3t1+

+ 3q5t2 + 2q7t3 + q9t4 + q11t5�
814

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 2q�7t�3+

+ 3q�5t�2 + 3q�3t�1 + 2q�1 + q1t1 + q3t2�
815

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 2q�13t�5+

+ 4q�11t�4 + 2q�9t�3 + 3q�7t�2 + 2q�5t�1�
816

q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 3q�5t�2+

+ 3q�3t�1 + 3q�1 + 2q1t1 + 2q3t2 + q5t3�
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Name BN

817
q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 3q�1t�1+

+ 3q1 + 3q3t1 + 3q5t2 + 2q7t3 + q9t4�
818

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 3q�1t�1+

+ 4q1 + 4q3t1 + 3q5t2 + 3q7t3 + q9t4�
819 q7 + q5 + u2�q13t3 + q15 + q17t5�
820 q1 + q�1 + u2�q�7t�4 + q�3t�2 + q�1t�1 + q3t1�
821

q�1 + q�3 + u2�q�11t�5 + q�9t�4 + q�7t�3+

+ 2q�5t�2 + q�3t�1 + q�1�
91 q�7 + q�9 + u2�q�23t�8 + q�19t�6 + q�15t�4 + q�11t�2�
92

q�1 + q�3 + u2�q�17t�8 + q�13t�6 + q�11t�5+

+ q�9t�4 + q�7t�3 + q�5t�2 + q�3t�1�
93

q7 + q5 + u2�q11t2 + q13t3 + q15t4 + 2q17t5+

+ q19t6 + 2q21t7 + q25t9�
94

q�3 + q�5 + u2�q�19t�8 + 2q�15t�6 + q�13t�5+

+ 2q�11t�4 + 2q�9t�3 + q�7t�2 + q�5t�1�
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Name BN

95
q3 + q1 + u2�2q7t2 + q9t3 + 2q11t4 + 2q13t5+

+ q15t6 + 2q17t7 + q21t9�
96

q�5 + q�7 + u2�q�21t�8 + q�19t�7 + 2q�17t�6+

+ 2q�15t�5 + 3q�13t�4 + q�11t�3 + 2q�9t�2 + q�7t�1�
97

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 2q�15t�6+

+ 2q�13t�5 + 3q�11t�4 + 2q�9t�3 + 2q�7t�2 + q�5t�1�
98

q�1 + q�3 + u2�q�9t�4 + q�7t�3 + 2q�5t�2+

+ 3q�3t�1 + 2q�1 + 2q1t1 + 2q3t2 + q5t3 + q7t4�
99

q�5 + q�7 + u2�q�21t�8 + q�19t�7 + 3q�17t�6+

+ 2q�15t�5 + 3q�13t�4 + 2q�11t�3 + 2q�9t�2 + q�7t�1�
910

q5 + q3 + u2�2q9t2 + 2q11t3 + 3q13t4 + 3q15t5+

+ 2q17t6 + 3q19t7 + q23t9�
911

q5 + q3 + u2�q3t�1 + q5 + q7t1 + 3q9t2+

+ 3q11t3 + 2q13t4 + 3q15t5 + q17t6 + q19t7�
912

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 2q�9t�4+

+ 3q�7t�3 + 3q�5t�2 + 3q�3t�1 + 2q�1 + q1t1 + q3t2�
913

q5 + q3 + u2�2q9t2 + 2q11t3 + 3q13t4 + 4q15t5+

+ 2q17t6 + 3q19t7 + q21t8 + q23t9�
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Name BN

914
q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 2q1 + 3q3t1+

+ 3q5t2 + 3q7t3 + 2q9t4 + q11t5 + q13t6�
915

q3 + q1 + u2�q1t�1 + q3 + 2q5t1 + 4q7t2+

+ 3q9t3 + 3q11t4 + 3q13t5 + q15t6 + q17t7�
916

q7 + q5 + u2�q11t2 + 3q13t3 + 2q15t4 + 4q17t5+

+ 3q19t6 + 3q21t7 + 2q23t8 + q25t9�
917

q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 2q�5t�2+

+ 4q�3t�1 + 3q�1 + 2q1t1 + 3q3t2 + q5t3 + q7t4�
918

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 3q�15t�6+

+ 3q�13t�5 + 4q�11t�4 + 3q�9t�3 + 3q�7t�2 + 2q�5t�1�
919

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 2q�3t�2+

+ 4q�1t�1 + 3q1 + 3q3t1 + 3q5t2 + q7t3 + q9t4�
920

q�3 + q�5 + u2�q�15t�6 + 2q�13t�5 + 3q�11t�4+

+ 3q�9t�3 + 4q�7t�2 + 3q�5t�1 + 2q�3 + q�1t1 + q1t2�
921

q3 + q1 + u2�q1t�1 + 2q3 + 2q5t1 + 4q7t2+

+ 4q9t3 + 3q11t4 + 3q13t5 + q15t6 + q17t7�
922

q3 + q1 + u2�q�3t�3 + q�1t�2 + 3q1t�1 + 3q3+

+ 3q5t1 + 4q7t2 + 3q9t3 + 2q11t4 + q13t5�
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Name BN

923
q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 3q�15t�6+

+ 3q�13t�5 + 5q�11t�4 + 3q�9t�3 + 3q�7t�2 + 2q�5t�1�
924

q1 + q�1 + u2�q�7t�4 + q�5t�3 + 3q�3t�2 + 4q�1t�1+

+ 3q1 + 4q3t1 + 3q5t2 + 2q7t3 + q9t4�
925

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 3q�9t�4+

+ 4q�7t�3 + 4q�5t�2 + 4q�3t�1 + 3q�1 + q1t1 + q3t2�
926

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 2q3 + 4q5t1+

+ 4q7t2 + 4q9t3 + 3q11t4 + 2q13t5 + q15t6�
927

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 4q�1t�1 + 4q1 + 4q3t1 + 3q5t2 + 2q7t3 + q9t4�
928

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 3q�7t�3+

+ 5q�5t�2 + 4q�3t�1 + 4q�1 + 3q1t1 + 2q3t2 + q5t3�
929

q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 4q�5t�2+

+ 4q�3t�1 + 4q�1 + 4q1t1 + 3q3t2 + 2q5t3 + q7t4�
930

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 5q�1t�1 + 4q1 + 4q3t1 + 4q5t2 + 2q7t3 + q9t4�
931

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 3q�7t�3+

+ 5q�5t�2 + 5q�3t�1 + 4q�1 + 3q1t1 + 2q3t2 + q5t3�
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Name BN

932
q3 + q1 + u2�q�1t�2 + 3q1t�1 + 3q3 + 5q5t1+

+ 5q7t2 + 5q9t3 + 4q11t4 + 2q13t5 + q15t6�
933

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 5q�1t�1 + 5q1 + 5q3t1 + 4q5t2 + 3q7t3 + q9t4�
934

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 6q1 + 5q3t1 + 5q5t2 + 3q7t3 + q9t4�
935

q�1 + q�3 + u2�q�17t�8 + 3q�13t�6 + q�11t�5+

+ 2q�9t�4 + 3q�7t�3 + q�5t�2 + 2q�3t�1�
936

q5 + q3 + u2�q3t�1 + q5 + 2q7t1 + 3q9t2+

+ 3q11t3 + 3q13t4 + 3q15t5 + q17t6 + q19t7�
937

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 2q�3t�2+

+ 5q�1t�1 + 3q1 + 3q3t1 + 4q5t2 + q7t3 + q9t4�
938

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 4q�15t�6+

+ 4q�13t�5 + 6q�11t�4 + 4q�9t�3 + 4q�7t�2 + 3q�5t�1�
939

q3 + q1 + u2�q1t�1 + 2q3 + 3q5t1 + 5q7t2+

+ 5q9t3 + 4q11t4 + 4q13t5 + 2q15t6 + q17t7�
940

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 5q�7t�3+

+ 6q�5t�2 + 7q�3t�1 + 6q�1 + 4q1t1 + 4q3t2 + q5t3�
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Name BN

941
q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 3q�5t�3+

+ 4q�3t�2 + 4q�1t�1 + 4q1 + 3q3t1 + 2q5t2 + q7t3�
942 q1 + q�1 + u2�q�3t�3 + q1t�1 + q3 + q7t2�
943 q5 + q3 + u2�q3t�1 + q7t1 + q9t2 + q11t3 + q13t4 + q15t5�
944

q1 + q�1 + u2�q�7t�4 + q�5t�3 + q�3t�2 + 2q�1t�1+

+ q1 + q3t1 + q5t2�
945

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 2q�9t�4+

+ 2q�7t�3 + 2q�5t�2 + 2q�3t�1 + q�1�
946 q1 + q�1 + u2�q�9t�5 + q�5t�3 + q�3t�2 + q1�
947

q3 + q1 + u2�q�1t�2 + 2q1t�1 + q3 + 3q5t1+

+ 2q7t2 + 2q9t3 + 2q11t4�
948

q3 + q1 + u2�q1t�1 + 2q3 + q5t1 + 3q7t2+

+ 3q9t3 + q11t4 + 2q13t5�
949

q5 + q3 + u2�2q9t2 + 2q11t3 + 2q13t4 + 3q15t5+

+ q17t6 + 2q19t7�
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Name BN

101
q1 + q�1 + u2�q�13t�7 + q�9t�5 + q�7t�4 + q�5t�3+

+ q�3t�2 + q�1t�1 + q1 + q5t2�
102

q�5 + q�7 + u2�q�19t�7 + q�17t�6 + q�15t�5+

+ 2q�13t�4 + q�11t�3 + 2q�9t�2 + q�7t�1 + q�5 + q�1t2�
103

q1 + q�1 + u2�q�9t�5 + 2q�5t�3 + q�3t�2 + 2q�1t�1+

+ 2q1 + q3t1 + 2q5t2 + q9t4�
104

q3 + q1 + u2�q�7t�5 + 2q�3t�3 + q�1t�2 + 2q1t�1+

+ 2q3 + q5t1 + 2q7t2 + q9t3 + q11t4�
105

q5 + q3 + u2�q1t�2 + q3t�1 + q5 + 2q7t1+

+ 2q9t2 + 3q11t3 + 2q13t4 + 2q15t5 + q17t6 + q19t7�
106

q�3 + q�5 + u2�q�17t�7 + q�15t�6 + 2q�13t�5+

+ 3q�11t�4 + 3q�9t�3 + 3q�7t�2 + 2q�5t�1 + 2q�3 + q1t2�
107

q�1 + q�3 + u2�q�15t�7 + q�13t�6 + 2q�11t�5+

+ 3q�9t�4 + 3q�7t�3 + 4q�5t�2 + 3q�3t�1 + 2q�1 + q1t1 + q3t2�
108

q�3 + q�5 + u2�q�13t�5 + q�11t�4 + 2q�9t�3+

+ 2q�7t�2 + 2q�5t�1 + 2q�3 + q�1t1 + 2q1t2 + q5t4�
109

q3 + q1 + u2�q�3t�3 + q�1t�2 + 2q1t�1 + 2q3+

+ 3q5t1 + 3q7t2 + 3q9t3 + 2q11t4 + q13t5 + q15t6�
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Name BN

1010
q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 2q1 + 3q3t1+

+ 4q5t2 + 3q7t3 + 3q9t4 + 2q11t5 + q13t6 + q15t7�
1011

q�1 + q�3 + u2�q�11t�5 + q�9t�4 + 3q�7t�3+

+ 3q�5t�2 + 4q�3t�1 + 3q�1 + 2q1t1 + 3q3t2 + q7t4�
1012

q3 + q1 + u2�q�1t�2 + q1t�1 + 2q3 + 3q5t1+

+ 4q7t2 + 4q9t3 + 3q11t4 + 3q13t5 + q15t6 + q17t7�
1013

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 3q�5t�3 + 3q�3t�2+

+ 5q�1t�1 + 4q1 + 3q3t1 + 4q5t2 + q7t3 + q9t4�
1014

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 3q�13t�5+

+ 5q�11t�4 + 4q�9t�3 + 5q�7t�2 + 4q�5t�1 + 2q�3 + q�1t1 + q1t2�
1015

q3 + q1 + u2�q�5t�4 + q�3t�3 + 2q�1t�2 + 3q1t�1+

+ 3q3 + 3q5t1 + 3q7t2 + 3q9t3 + q11t4 + q13t5�
1016

q3 + q1 + u2�q�3t�3 + q�1t�2 + 3q1t�1 + 2q3+

+ 4q5t1 + 4q7t2 + 3q9t3 + 3q11t4 + q13t5 + q15t6�
1017

q1 + q�1 + u2�q�7t�4 + q�5t�3 + 2q�3t�2 + 3q�1t�1+

+ 3q1 + 3q3t1 + 3q5t2 + 2q7t3 + q9t4 + q11t5�
1018

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 3q�7t�3+

+ 4q�5t�2 + 5q�3t�1 + 4q�1 + 3q1t1 + 3q3t2 + q5t3 + q7t4�
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Name BN

1019
q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 3q�5t�2+

+ 4q�3t�1 + 4q�1 + 3q1t1 + 4q3t2 + 2q5t3 + q7t4 + q9t5�
1020

q�1 + q�3 + u2�q�15t�7 + q�13t�6 + 2q�11t�5+

+ 2q�9t�4 + 3q�7t�3 + 3q�5t�2 + 2q�3t�1 + 2q�1 + q3t2�
1021

q�3 + q�5 + u2�q�17t�7 + q�15t�6 + 2q�13t�5+

+ 4q�11t�4 + 3q�9t�3 + 4q�7t�2 + 3q�5t�1 + 2q�3 + q�1t1 + q1t2�
1022

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 3q�1t�1 + 3q1+

+ 4q3t1 + 4q5t2 + 3q7t3 + 3q9t4 + q11t5 + q13t6�
1023

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 3q3 + 4q5t1+

+ 5q7t2 + 5q9t3 + 4q11t4 + 3q13t5 + q15t6 + q17t7�
1024

q�1 + q�3 + u2�q�15t�7 + q�13t�6 + 3q�11t�5+

+ 4q�9t�4 + 4q�7t�3 + 5q�5t�2 + 4q�3t�1 + 3q�1 + q1t1 + q3t2�
1025

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 4q�13t�5+

+ 5q�11t�4 + 5q�9t�3 + 6q�7t�2 + 4q�5t�1 + 3q�3 + q�1t1 + q1t2�
1026

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 4q1 + 5q3t1 + 5q5t2 + 4q7t3 + 3q9t4 + q11t5 + q13t6�
1027

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 4q�9t�4+

+ 5q�7t�3 + 6q�5t�2 + 6q�3t�1 + 5q�1 + 3q1t1 + 2q3t2 + q5t3�
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Name BN

1028
q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 3q1 + 3q3t1+

+ 5q5t2 + 4q7t3 + 3q9t4 + 3q11t5 + q13t6 + q15t7�
1029

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 4q�5t�2 + 6q�3t�1 + 5q�1 + 3q1t1 + 4q3t2 + q5t3 + q7t4�
1030

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 5q�9t�4 + 5q�7t�3 + 6q�5t�2 + 5q�3t�1 + 3q�1 + 2q1t1 + q3t2�
1031

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 4q�1t�1 + 5q1 + 4q3t1 + 4q5t2 + 3q7t3 + q9t4 + q11t5�
1032

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 3q�5t�3+

+ 5q�3t�2 + 6q�1t�1 + 5q1 + 5q3t1 + 4q5t2 + 2q7t3 + q9t4�
1033

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 5q�1t�1 + 5q1 + 5q3t1 + 5q5t2 + 3q7t3 + 2q9t4 + q11t5�
1034

q1 + q�1 + u2�q�3t�2 + q�1t�1 + 2q1 + 2q3t1+

+ 3q5t2 + 3q7t3 + 2q9t4 + 2q11t5 + q13t6 + q15t7�
1035

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 3q�1t�1 + 3q1+

+ 4q3t1 + 4q5t2 + 3q7t3 + 3q9t4 + q11t5 + q13t6�
1036

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 2q�11t�5+

+ 4q�9t�4 + 4q�7t�3 + 4q�5t�2 + 4q�3t�1 + 2q�1 + q1t1 + q3t2�
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Name BN

1037
q1 + q�1 + u2�q�7t�4 + q�5t�3 + 3q�3t�2 + 4q�1t�1+

+ 4q1 + 4q3t1 + 4q5t2 + 3q7t3 + q9t4 + q11t5�
1038

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 4q�9t�4 + 5q�7t�3 + 5q�5t�2 + 4q�3t�1 + 3q�1 + q1t1 + q3t2�
1039

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 3q�13t�5+

+ 5q�11t�4 + 5q�9t�3 + 5q�7t�2 + 4q�5t�1 + 3q�3 + q�1t1 + q1t2�
1040

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 4q3 + 5q5t1+

+ 6q7t2 + 7q9t3 + 5q11t4 + 4q13t5 + 2q15t6 + q17t7�
1041

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 5q�5t�2 + 6q�3t�1 + 6q�1 + 4q1t1 + 4q3t2 + 2q5t3 + q7t4�
1042

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 7q1 + 6q3t1 + 6q5t2 + 4q7t3 + 2q9t4 + q11t5�
1043

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 5q�1t�1 + 6q1 + 6q3t1 + 5q5t2 + 4q7t3 + 2q9t4 + q11t5�
1044

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 4q�7t�3+

+ 6q�5t�2 + 7q�3t�1 + 6q�1 + 5q1t1 + 4q3t2 + 2q5t3 + q7t4�
1045

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 4q�3t�2+

+ 7q�1t�1 + 7q1 + 7q3t1 + 7q5t2 + 4q7t3 + 3q9t4 + q11t5�
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Name BN

1046
q7 + q5 + u2�q5t�1 + 2q9t1 + q11t2 + 3q13t3+

+ 2q15t4 + 2q17t5 + 2q19t6 + q21t7 + q23t8�
1047

q5 + q3 + u2�q1t�2 + q3t�1 + 2q5 + 2q7t1+

+ 3q9t2 + 4q11t3 + 2q13t4 + 3q15t5 + q17t6 + q19t7�
1048

q1 + q�1 + u2�q�7t�4 + q�5t�3 + 3q�3t�2 + 3q�1t�1+

+ 4q1 + 4q3t1 + 3q5t2 + 3q7t3 + q9t4 + q11t5�
1049

q�5 + q�7 + u2�q�23t�9 + 2q�21t�8 + 3q�19t�7+

+ 5q�17t�6 + 4q�15t�5 + 6q�13t�4 + 3q�11t�3 + 3q�9t�2 + 2q�7t�1�
1050

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 3q9t2+

+ 5q11t3 + 4q13t4 + 4q15t5 + 3q17t6 + q19t7 + q21t8�
1051

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 4q3 + 4q5t1+

+ 6q7t2 + 6q9t3 + 4q11t4 + 4q13t5 + q15t6 + q17t7�
1052

q3 + q1 + u2�q�5t�4 + q�3t�3 + 3q�1t�2 + 4q1t�1+

+ 4q3 + 5q5t1 + 4q7t2 + 4q9t3 + 2q11t4 + q13t5�
1053

q�3 + q�5 + u2�q�21t�9 + 2q�19t�8 + 3q�17t�7+

+ 6q�15t�6 + 5q�13t�5 + 7q�11t�4 + 5q�9t�3 + 4q�7t�2 + 3q�5t�1�
1054

q3 + q1 + u2�q�5t�4 + q�3t�3 + 3q�1t�2 + 3q1t�1+

+ 3q3 + 4q5t1 + 3q7t2 + 3q9t3 + q11t4 + q13t5�
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Name BN

1055
q�3 + q�5 + u2�q�21t�9 + 2q�19t�8 + 3q�17t�7+

+ 5q�15t�6 + 4q�13t�5 + 6q�11t�4 + 4q�9t�3 + 3q�7t�2 + 2q�5t�1�
1056

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 4q9t2+

+ 6q11t3 + 5q13t4 + 5q15t5 + 4q17t6 + 2q19t7 + q21t8�
1057

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 4q3 + 5q5t1+

+ 7q7t2 + 7q9t3 + 5q11t4 + 5q13t5 + 2q15t6 + q17t7�
1058

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 4q�3t�2 + 6q�1t�1 + 5q1 + 4q3t1 + 4q5t2 + q7t3 + q9t4�
1059

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 5q3+

+ 6q5t1 + 6q7t2 + 6q9t3 + 4q11t4 + 2q13t5 + q15t6�
1060

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 6q�3t�2 + 7q�1t�1 + 7q1 + 6q3t1 + 5q5t2 + 3q7t3 + q9t4�
1061

q5 + q3 + u2�q�1t�3 + 3q3t�1 + q5 + 2q7t1+

+ 3q9t2 + 2q11t3 + 2q13t4 + q15t5 + q17t6�
1062

q5 + q3 + u2�q1t�2 + q3t�1 + 2q5 + 3q7t1+

+ 3q9t2 + 4q11t3 + 3q13t4 + 3q15t5 + q17t6 + q19t7�
1063

q�3 + q�5 + u2�q�21t�9 + 2q�19t�8 + 2q�17t�7+

+ 5q�15t�6 + 4q�13t�5 + 5q�11t�4 + 4q�9t�3 + 3q�7t�2 + 2q�5t�1�
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Name BN

1064
q3 + q1 + u2�q�3t�3 + q�1t�2 + 3q1t�1 + 3q3+

+ 4q5t1 + 4q7t2 + 4q9t3 + 3q11t4 + q13t5 + q15t6�
1065

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 3q3 + 4q5t1+

+ 6q7t2 + 5q9t3 + 4q11t4 + 4q13t5 + q15t6 + q17t7�
1066

q�5 + q�7 + u2�q�23t�9 + 3q�21t�8 + 4q�19t�7+

+ 6q�17t�6 + 6q�15t�5 + 7q�13t�4 + 4q�11t�3 + 4q�9t�2 + 2q�7t�1�
1067

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 5q�9t�4 + 5q�7t�3 + 5q�5t�2 + 5q�3t�1 + 3q�1 + q1t1 + q3t2�
1068

q1 + q�1 + u2�q�11t�6 + q�9t�5 + 3q�7t�4+

+ 4q�5t�3 + 4q�3t�2 + 5q�1t�1 + 4q1 + 3q3t1 + 2q5t2 + q7t3�
1069

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 4q3 + 6q5t1+

+ 8q7t2 + 7q9t3 + 6q11t4 + 5q13t5 + 2q15t6 + q17t7�
1070

q3 + q1 + u2�q�3t�3 + q�1t�2 + 4q1t�1 + 4q3+

+ 5q5t1 + 6q7t2 + 5q9t3 + 4q11t4 + 2q13t5 + q15t6�
1071

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 6q1 + 6q3t1 + 6q5t2 + 4q7t3 + 2q9t4 + q11t5�
1072

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 5q9t2+

+ 6q11t3 + 6q13t4 + 6q15t5 + 4q17t6 + 3q19t7 + q21t8�
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Name BN

1073
q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 4q�9t�4+

+ 6q�7t�3 + 7q�5t�2 + 7q�3t�1 + 6q�1 + 4q1t1 + 3q3t2 + q5t3�
1074

q�1 + q�3 + u2�q�15t�7 + q�13t�6 + 3q�11t�5+

+ 5q�9t�4 + 4q�7t�3 + 6q�5t�2 + 5q�3t�1 + 3q�1 + 2q1t1 + q3t2�
1075

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 4q�1t�1+

+ 6q1 + 7q3t1 + 6q5t2 + 6q7t3 + 4q9t4 + 2q11t5 + q13t6�
1076

q5 + q3 + u2�q3t�1 + 3q7t1 + 3q9t2 + 5q11t3+

+ 5q13t4 + 4q15t5 + 4q17t6 + 2q19t7 + q21t8�
1077

q3 + q1 + u2�q�1t�2 + q1t�1 + 3q3 + 4q5t1+

+ 5q7t2 + 6q9t3 + 4q11t4 + 4q13t5 + 2q15t6 + q17t7�
1078

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 3q�13t�5+

+ 6q�11t�4 + 5q�9t�3 + 6q�7t�2 + 5q�5t�1 + 3q�3 + 2q�1t1 + q1t2�
1079

q1 + q�1 + u2�q�7t�4 + q�5t�3 + 4q�3t�2 + 4q�1t�1+

+ 5q1 + 5q3t1 + 4q5t2 + 4q7t3 + q9t4 + q11t5�
1080

q�5 + q�7 + u2�q�23t�9 + 2q�21t�8 + 4q�19t�7+

+ 6q�17t�6 + 5q�15t�5 + 7q�13t�4 + 4q�11t�3 + 4q�9t�2 + 2q�7t�1�
1081

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 6q�1t�1 + 7q1 + 7q3t1 + 6q5t2 + 5q7t3 + 2q9t4 + q11t5�
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Name BN

1082
q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 3q�7t�3+

+ 5q�5t�2 + 5q�3t�1 + 5q�1 + 4q1t1 + 3q3t2 + 2q5t3 + q7t4�
1083

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 4q3 + 6q5t1+

+ 7q7t2 + 7q9t3 + 6q11t4 + 4q13t5 + 2q15t6 + q17t7�
1084

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 4q3 + 6q5t1+

+ 7q7t2 + 8q9t3 + 6q11t4 + 5q13t5 + 3q15t6 + q17t7�
1085

q�3 + q�5 + u2�q�15t�6 + 2q�13t�5 + 3q�11t�4+

+ 4q�9t�3 + 5q�7t�2 + 4q�5t�1 + 4q�3 + 2q�1t1 + 2q1t2 + q3t3�
1086

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 5q�1t�1+

+ 6q1 + 7q3t1 + 7q5t2 + 6q7t3 + 4q9t4 + 2q11t5 + q13t6�
1087

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 6q1 + 6q3t1 + 7q5t2 + 6q7t3 + 4q9t4 + 3q11t5 + q13t6�
1088

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 5q�3t�2+

+ 8q�1t�1 + 8q1 + 8q3t1 + 8q5t2 + 5q7t3 + 3q9t4 + q11t5�
1089

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 8q�5t�2 + 9q�3t�1 + 7q�1 + 5q1t1 + 4q3t2 + q5t3�
1090

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 5q�1t�1+

+ 5q1 + 6q3t1 + 7q5t2 + 5q7t3 + 4q9t4 + 2q11t5 + q13t6�
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1091
q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 5q�1t�1 + 6q1 + 6q3t1 + 5q5t2 + 4q7t3 + 2q9t4 + q11t5�
1092

q5 + q3 + u2�q3t�1 + 2q5 + 4q7t1 + 6q9t2+

+ 8q11t3 + 7q13t4 + 7q15t5 + 5q17t6 + 3q19t7 + q21t8�
1093

q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 4q�5t�2+

+ 5q�3t�1 + 5q�1 + 5q1t1 + 5q3t2 + 3q5t3 + 2q7t4 + q9t5�
1094

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 4q3+

+ 6q5t1 + 6q7t2 + 5q9t3 + 4q11t4 + 2q13t5 + q15t6�
1095

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 5q3 + 6q5t1+

+ 8q7t2 + 8q9t3 + 6q11t4 + 5q13t5 + 2q15t6 + q17t7�
1096

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 6q�1t�1+

+ 6q1 + 8q3t1 + 8q5t2 + 6q7t3 + 5q9t4 + 2q11t5 + q13t6�
1097

q3 + q1 + u2�q1t�1 + 2q3 + 4q5t1 + 7q7t2+

+ 7q9t3 + 7q11t4 + 7q13t5 + 4q15t6 + 3q17t7 + q19t8�
1098

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 5q�13t�5+

+ 6q�11t�4 + 6q�9t�3 + 8q�7t�2 + 5q�5t�1 + 4q�3 + 2q�1t1 + q1t2�
1099

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 5q�1t�1 + 7q1 + 7q3t1 + 5q5t2 + 5q7t3 + 2q9t4 + q11t5�
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Name BN

10100
q�3 + q�5 + u2�q�15t�6 + 2q�13t�5 + 4q�11t�4+

+ 4q�9t�3 + 6q�7t�2 + 5q�5t�1 + 4q�3 + 3q�1t1 + 2q1t2 + q3t3�
10101

q5 + q3 + u2�3q9t2 + 4q11t3 + 6q13t4 + 8q15t5+

+ 6q17t6 + 7q19t7 + 4q21t8 + 3q23t9 + q25t10�
10102

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 5q1 + 6q3t1 + 6q5t2 + 5q7t3 + 4q9t4 + 2q11t5 + q13t6�
10103

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 4q�9t�4+

+ 5q�7t�3 + 7q�5t�2 + 6q�3t�1 + 5q�1 + 4q1t1 + 2q3t2 + q5t3�
10104

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 6q1 + 6q3t1 + 6q5t2 + 4q7t3 + 2q9t4 + q11t5�
10105

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 6q3+

+ 7q5t1 + 8q7t2 + 7q9t3 + 5q11t4 + 3q13t5 + q15t6�
10106

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 5q3+

+ 6q5t1 + 6q7t2 + 6q9t3 + 4q11t4 + 2q13t5 + q15t6�
10107

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 5q�3t�2+

+ 7q�1t�1 + 8q1 + 7q3t1 + 7q5t2 + 5q7t3 + 2q9t4 + q11t5�
10108

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 3q�1t�2 + 5q1t�1+

+ 4q3 + 5q5t1 + 5q7t2 + 3q9t3 + 2q11t4 + q13t5�
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Name BN

10109
q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 6q�1t�1 + 7q1 + 7q3t1 + 6q5t2 + 5q7t3 + 2q9t4 + q11t5�
10110

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 6q�5t�2 + 7q�3t�1 + 7q�1 + 5q1t1 + 5q3t2 + 2q5t3 + q7t4�
10111

q5 + q3 + u2�q3t�1 + 2q5 + 4q7t1 + 5q9t2+

+ 7q11t3 + 6q13t4 + 6q15t5 + 4q17t6 + 2q19t7 + q21t8�
10112

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 4q�7t�3+

+ 7q�5t�2 + 7q�3t�1 + 7q�1 + 6q1t1 + 4q3t2 + 3q5t3 + q7t4�
10113

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 5q3 + 8q5t1+

+ 9q7t2 + 10q9t3 + 8q11t4 + 6q13t5 + 4q15t6 + q17t7�
10114

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 4q�5t�3+

+ 7q�3t�2 + 8q�1t�1 + 7q1 + 7q3t1 + 5q5t2 + 3q7t3 + q9t4�
10115

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 8q�1t�1 + 9q1 + 9q3t1 + 8q5t2 + 6q7t3 + 3q9t4 + q11t5�
10116

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 5q�7t�3+

+ 7q�5t�2 + 8q�3t�1 + 8q�1 + 6q1t1 + 5q3t2 + 3q5t3 + q7t4�
10117

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 5q3 + 7q5t1+

+ 9q7t2 + 9q9t3 + 7q11t4 + 6q13t5 + 3q15t6 + q17t7�
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Name BN

10118
q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 5q�3t�2+

+ 7q�1t�1 + 8q1 + 8q3t1 + 7q5t2 + 5q7t3 + 3q9t4 + q11t5�
10119

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 6q�1t�1+

+ 7q1 + 8q3t1 + 9q5t2 + 7q7t3 + 5q9t4 + 3q11t5 + q13t6�
10120

q�3 + q�5 + u2�q�21t�9 + 3q�19t�8 + 5q�17t�7+

+ 8q�15t�6 + 8q�13t�5 + 10q�11t�4 + 7q�9t�3 + 6q�7t�2 + 4q�5t�1�
10121

q�1 + q�3 + u2�q�13t�6 + 3q�11t�5 + 6q�9t�4+

+ 8q�7t�3 + 10q�5t�2 + 10q�3t�1 + 8q�1 + 6q1t1 + 4q3t2 + q5t3�
10122

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 5q�1t�1+

+ 8q1 + 8q3t1 + 9q5t2 + 8q7t3 + 5q9t4 + 4q11t5 + q13t6�
10123

q1 + q�1 + u2�q�7t�4 + 4q�5t�3 + 6q�3t�2+

+ 9q�1t�1 + 10q1 + 10q3t1 + 9q5t2 + 6q7t3 + 4q9t4 + q11t5�
10124 q9 + q7 + u2�q15t3 + q17 + q19t5 + q21t7�
10125 q3 + q1 + u2�q�5t�4 + q�1t�2 + q1t�1 + q5t1 + q9t3�
10126

q�1 + q�3 + u2�q�13t�6 + 2q�9t�4 + q�7t�3+

+ 2q�5t�2 + 2q�3t�1 + q1t1�
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Name BN

10127
q�3 + q�5 + u2�q�17t�7 + q�15t�6 + 2q�13t�5+

+ 3q�11t�4 + 2q�9t�3 + 3q�7t�2 + q�5t�1 + q�3�
10128 q7 + q5 + u2�q11t2 + q13t3 + q15t4 + q15 + 2q17t5 + q21t7�
10129

q1 + q�1 + u2�q�7t�4 + q�5t�3 + 2q�3t�2 + 2q�1t�1+

+ 2q1 + 2q3t1 + q5t2 + q7t3�
10130

q1 + q�1 + u2�q�11t�6 + 2q�7t�4 + q�5t�3+

+ q�3t�2 + 2q�1t�1 + q3t1�
10131

q�1 + q�3 + u2�q�15t�7 + q�13t�6 + 2q�11t�5+

+ 3q�9t�4 + 2q�7t�3 + 3q�5t�2 + 2q�3t�1 + q�1�
10132 q�1 + q�3 + u2�q�11t�6 + q�7t�4 + q�5t�3 + q�5t�2 + q�1t�1�
10133

q�1 + q�3 + u2�q�15t�7 + q�13t�6 + q�11t�5+

+ 2q�9t�4 + q�7t�3 + 2q�5t�2 + q�3t�1�
10134

q7 + q5 + u2�q11t2 + 2q13t3 + q15t4 + 3q17t5+

+ q19t6 + 2q21t7 + q23t8�
10135

q1 + q�1 + u2�q�7t�4 + q�5t�3 + 3q�3t�2 + 3q�1t�1+

+ 3q1 + 3q3t1 + 2q5t2 + 2q7t3�
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Name BN

10136
q1 + q�1 + u2�q�3t�3 + q�1t�2 + q1t�1 + 2q3+

+ q5t1 + q7t2 + q9t3�
10137

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 2q�5t�3 + 2q�3t�2+

+ 2q�1t�1 + 2q1 + q3t1 + q5t2�
10138

q3 + q1 + u2�q�3t�3 + q�1t�2 + 3q1t�1 + 2q3+

+ 3q5t1 + 3q7t2 + 2q9t3 + 2q11t4�
10139 q9 + q7 + u2�q15t3 + q17 + q19t5 + q19t6 + q21t7 + q25t9�
10140 q1 + q�1 + u2�q�11t�6 + q�7t�4 + q�5t�3 + q�1t�1�
10141

q1 + q�1 + u2�q�9t�5 + q�7t�4 + q�5t�3 + 2q�3t�2+

+ 2q�1t�1 + q1 + q3t1 + q5t2�
10142 q7 + q5 + u2�q11t2 + q13t3 + q15t4 + 2q17t5 + 2q21t7�
10143

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 2q�9t�4+

+ 2q�7t�3 + 3q�5t�2 + 2q�3t�1 + q�1 + q1t1�
10144

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 3q�7t�3+

+ 3q�5t�2 + 4q�3t�1 + 3q�1 + q1t1 + 2q3t2�
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Name BN

10145
q�3 + q�5 + u2�q�17t�8 + q�13t�6 + q�11t�5+

+ q�11t�4 + q�7t�3 + q�7t�2�
10146

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 2q�3t�2+

+ 3q�1t�1 + 3q1 + 2q3t1 + 2q5t2 + q7t3�
10147

q3 + q1 + u2�q�3t�3 + q�1t�2 + 2q1t�1 + 2q3+

+ 2q5t1 + 2q7t2 + 2q9t3 + q11t4�
10148

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 3q�9t�4+

+ 2q�7t�3 + 3q�5t�2 + 3q�3t�1 + q�1 + q1t1�
10149

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 3q�13t�5+

+ 4q�11t�4 + 3q�9t�3 + 4q�7t�2 + 2q�5t�1 + q�3�
10150

q5 + q3 + u2�q3t�1 + q5 + 2q7t1 + 2q9t2+

+ 3q11t3 + 2q13t4 + 2q15t5 + q17t6�
10151

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 3q3 + 3q5t1+

+ 4q7t2 + 4q9t3 + 2q11t4 + 2q13t5�
10152

q�7 + q�9 + u2�q�23t�9 + q�21t�8 + q�19t�7+

+ 2q�17t�6 + q�15t�5 + q�15 + 2q�13t�4 + q�11t�2�
10153

q1 + q�1 + u2�q�7t�4 + q�3t�2 + q�1t�1 + q�1+

+ q3t1 + q3t2 + q5t3 + q9t5�
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Name BN

10154
q7 + q5 + u2�q13t3 + q13t4 + 2q15 + q17t5+

+ q17t6 + 2q19t7 + q21t8 + q23t9 + q25t10�
10155

q1 + q�1 + u2�q�1t�1 + q1 + 2q3t1 + 2q5t2+

+ 2q7t3 + 2q9t4 + q11t5 + q13t6�
10156

q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 3q�5t�2+

+ 3q�3t�1 + 3q�1 + 2q1t1 + 2q3t2 + q5t3�
10157

q5 + q3 + u2�q7t1 + 3q9t2 + 4q11t3 + 4q13t4+

+ 5q15t5 + 3q17t6 + 3q19t7 + q21t8�
10158

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 3q1 + 4q3t1 + 4q5t2 + 2q7t3 + 2q9t4�
10159

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 3q�9t�4+

+ 3q�7t�3 + 4q�5t�2 + 3q�3t�1 + 2q�1 + q1t1�
10160

q5 + q3 + u2�q3t�1 + q5 + q7t1 + 2q9t2+

+ 2q11t3 + q13t4 + 2q15t5�
10161

q�5 + q�7 + u2�q�19t�8 + q�15t�6 + q�13t�5+

+ q�13 + q�11t�4 + q�9t�3 + q�9t�2�
10162

q�1 + q�3 + u2�q�11t�5 + q�9t�4 + 3q�7t�3+

+ 3q�5t�2 + 3q�3t�1 + 3q�1 + q1t1 + 2q3t2�
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Name BN

10163
q3 + q1 + u2�q�1t�2 + 3q1t�1 + 3q3 + 4q5t1+

+ 5q7t2 + 4q9t3 + 3q11t4 + 2q13t5�
10164

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 4q�1t�1 + 4q1 + 3q3t1 + 3q5t2 + 2q7t3�
10165

q3 + q1 + u2�q5t1 + 3q7t2 + 3q9t3 + 3q11t4+

+ 4q13t5 + 2q15t6 + 2q17t7 + q19t8�
11a1

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 7q3+

+ 9q5t1 + 11q7t2 + 10q9t3 + 8q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a2

q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 8q9t2+

+ 11q11t3 + 11q13t4 + 11q15t5 + 9q17t6 + 6q19t7 + 3q21t8 + q23t9�
11a3

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 9q�5t�2 + 10q�3t�1 + 8q�1 + 7q1t1 + 5q3t2 + 2q5t3 + q7t4�
11a4

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 4q�7t�4+

+ 6q�5t�3 + 7q�3t�2 + 8q�1t�1 + 7q1 + 6q3t1 + 4q5t2 + 2q7t3 + q9t4�
11a5

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 7q�3t�2 + 10q�1t�1 + 10q1 + 9q3t1 + 9q5t2 + 5q7t3 + 3q9t4 + q11t5�
11a6

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 7q3+

+ 10q5t1 + 11q7t2 + 11q9t3 + 9q11t4 + 6q13t5 + 4q15t6 + q17t7�
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Name BN

11a7
q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 4q�9t�4+

+ 6q�7t�3 + 7q�5t�2 + 8q�3t�1 + 7q�1 + 5q1t1 + 4q3t2 + 2q5t3 + q7t4�
11a8

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 4q�7t�4+

+ 7q�5t�3 + 8q�3t�2 + 10q�1t�1 + 9q1 + 7q3t1 + 6q5t2 + 3q7t3 + q9t4�
11a9

q5 + q3 + u2�q�1t�3 + q1t�2 + 3q3t�1 + 3q5+

+ 4q7t1 + 5q9t2 + 5q11t3 + 4q13t4 + 3q15t5 + 2q17t6 + q19t7�
11a10

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 6q3+

+ 8q5t1 + 9q7t2 + 8q9t3 + 7q11t4 + 4q13t5 + 2q15t6 + q17t7�
11a11

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 7q�1t�1 + 8q1 + 9q3t1 + 9q5t2 + 7q7t3 + 5q9t4 + 3q11t5 + q13t6�
11a12

q3 + q1 + u2�q�3t�3 + q�1t�2 + 4q1t�1 + 5q3+

+ 7q5t1 + 9q7t2 + 8q9t3 + 7q11t4 + 5q13t5 + 3q15t6 + q17t7�
11a13

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 3q�1t�1 + 3q1+

+ 4q3t1 + 5q5t2 + 4q7t3 + 4q9t4 + 2q11t5 + 2q13t6 + q15t7�
11a14

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 6q�3t�2+

+ 8q�1t�1 + 10q1 + 11q3t1 + 10q5t2 + 9q7t3 + 5q9t4 + 3q11t5 + q13t6�
11a15

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 7q�5t�2 + 8q�3t�1 + 9q�1 + 7q1t1 + 7q3t2 + 4q5t3 + 2q7t4 + q9t5�
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Name BN

11a16
q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 6q�3t�2 + 8q�1t�1 + 9q1 + 7q3t1 + 7q5t2 + 4q7t3 + 2q9t4 + q11t5�
11a17

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 6q1t�1 + 7q3+

+ 9q5t1 + 11q7t2 + 9q9t3 + 8q11t4 + 5q13t5 + 2q15t6 + q17t7�
11a18

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 5q3 + 7q5t1+

+ 10q7t2 + 11q9t3 + 9q11t4 + 9q13t5 + 5q15t6 + 3q17t7 + q19t8�
11a19

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 7q1t�1 + 9q3+

+ 12q5t1 + 13q7t2 + 12q9t3 + 10q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a20

q5 + q3 + u2�q3t�1 + q5 + 4q7t1 + 6q9t2+

+ 9q11t3 + 9q13t4 + 9q15t5 + 8q17t6 + 5q19t7 + 3q21t8 + q23t9�
11a21

q3 + q1 + u2�q1t�1 + q3 + 3q5t1 + 4q7t2+

+ 6q9t3 + 6q11t4 + 5q13t5 + 5q15t6 + 3q17t7 + 2q19t8 + q21t9�
11a22

q5 + q3 + u2�q1t�2 + 2q3t�1 + 4q5 + 6q7t1+

+ 7q9t2 + 9q11t3 + 7q13t4 + 7q15t5 + 4q17t6 + 2q19t7 + q21t8�
11a23

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 4q3 + 6q5t1+

+ 8q7t2 + 9q9t3 + 7q11t4 + 7q13t5 + 4q15t6 + 2q17t7 + q19t8�
11a24

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 7q�3t�2+

+ 10q�1t�1 + 12q1 + 13q3t1 + 12q5t2 + 10q7t3 + 6q9t4 + 3q11t5 + q13t6�



196 B. COMPUTATIONS

Name BN

11a25
q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 7q1t�1 + 9q3+

+ 12q5t1 + 13q7t2 + 12q9t3 + 10q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a26

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 7q�3t�2+

+ 10q�1t�1 + 12q1 + 13q3t1 + 12q5t2 + 10q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a27

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 6q�11t�5+

+ 9q�9t�4 + 11q�7t�3 + 12q�5t�2 + 11q�3t�1 + 9q�1 + 5q1t1 + 3q3t2 + q5t3�
11a28

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 7q�3t�2 + 9q�1t�1 + 10q1 + 9q3t1 + 8q5t2 + 5q7t3 + 3q9t4 + q11t5�
11a29

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 7q�5t�2 + 9q�3t�1 + 9q�1 + 8q1t1 + 8q3t2 + 4q5t3 + 3q7t4 + q9t5�
11a30

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 10q�1t�1 + 11q1 + 12q3t1 + 12q5t2 + 9q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a31

q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 7q9t2+

+ 10q11t3 + 10q13t4 + 10q15t5 + 8q17t6 + 5q19t7 + 3q21t8 + q23t9�
11a32

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 6q3 + 8q5t1+

+ 11q7t2 + 12q9t3 + 10q11t4 + 9q13t5 + 5q15t6 + 3q17t7 + q19t8�
11a33

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 6q�5t�2 + 7q�3t�1 + 8q�1 + 6q1t1 + 6q3t2 + 4q5t3 + 2q7t4 + q9t5�
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Name BN

11a34
q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 6q3+

+ 9q5t1 + 10q7t2 + 9q9t3 + 8q11t4 + 5q13t5 + 3q15t6 + q17t7�
11a35

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 7q�1t�1 + 9q1 + 10q3t1 + 9q5t2 + 8q7t3 + 5q9t4 + 3q11t5 + q13t6�
11a36

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 5q�5t�3+

+ 8q�3t�2 + 9q�1t�1 + 10q1 + 9q3t1 + 7q5t2 + 5q7t3 + 2q9t4 + q11t5�
11a37

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 5q�1t�1+

+ 5q1 + 7q3t1 + 8q5t2 + 6q7t3 + 6q9t4 + 3q11t5 + 2q13t6 + q15t7�
11a38

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 7q�3t�2 + 9q�1t�1 + 10q1 + 8q3t1 + 8q5t2 + 5q7t3 + 2q9t4 + q11t5�
11a39

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 5q�1t�1+

+ 6q1 + 7q3t1 + 9q5t2 + 7q7t3 + 6q9t4 + 4q11t5 + 2q13t6 + q15t7�
11a40

q5 + q3 + u2�q1t�2 + 2q3t�1 + 3q5 + 5q7t1+

+ 6q9t2 + 8q11t3 + 6q13t4 + 6q15t5 + 4q17t6 + 2q19t7 + q21t8�
11a41

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 5q3 + 7q5t1+

+ 9q7t2 + 10q9t3 + 8q11t4 + 7q13t5 + 4q15t6 + 2q17t7 + q19t8�
11a42

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 6q3+

+ 8q5t1 + 9q7t2 + 8q9t3 + 7q11t4 + 4q13t5 + 2q15t6 + q17t7�
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Name BN

11a43
q7 + q5 + u2�3q11t2 + 6q13t3 + 7q15t4 + 12q17t5+

+ 10q19t6 + 11q21t7 + 9q23t8 + 5q25t9 + 3q27t10 + q29t11�
11a44

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 6q�3t�2+

+ 7q�1t�1 + 9q1 + 10q3t1 + 8q5t2 + 8q7t3 + 4q9t4 + 2q11t5 + q13t6�
11a45

q3 + q1 + u2�q�3t�3 + q�1t�2 + 4q1t�1 + 4q3+

+ 6q5t1 + 8q7t2 + 6q9t3 + 6q11t4 + 4q13t5 + 2q15t6 + q17t7�
11a46

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 4q�1t�2 + 5q1t�1+

+ 6q3 + 7q5t1 + 6q7t2 + 6q9t3 + 3q11t4 + 2q13t5 + q15t6�
11a47

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 6q�3t�2+

+ 7q�1t�1 + 9q1 + 10q3t1 + 8q5t2 + 8q7t3 + 4q9t4 + 2q11t5 + q13t6�
11a48

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 5q�15t�6+

+ 7q�13t�5 + 9q�11t�4 + 9q�9t�3 + 9q�7t�2 + 7q�5t�1 + 4q�3 + 2q�1t1 + q1t2�
11a49

q5 + q3 + u2�q3t�1 + q5 + 4q7t1 + 6q9t2+

+ 8q11t3 + 9q13t4 + 8q15t5 + 7q17t6 + 5q19t7 + 2q21t8 + q23t9�
11a50

q3 + q1 + u2�q1t�1 + q3 + 3q5t1 + 5q7t2+

+ 6q9t3 + 7q11t4 + 6q13t5 + 5q15t6 + 4q17t7 + 2q19t8 + q21t9�
11a51

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 9q�5t�2 + 10q�3t�1 + 8q�1 + 7q1t1 + 5q3t2 + 2q5t3 + q7t4�
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Name BN

11a52
q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 8q�1t�1 + 10q1 + 11q3t1 + 11q5t2 + 9q7t3 + 6q9t4 + 4q11t5 + q13t6�
11a53

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 4q�13t�5+

+ 6q�11t�4 + 7q�9t�3 + 8q�7t�2 + 7q�5t�1 + 6q�3 + 3q�1t1 + 3q1t2 + q3t3�
11a54

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 5q�11t�5+

+ 8q�9t�4 + 10q�7t�3 + 12q�5t�2 + 11q�3t�1 + 9q�1 + 6q1t1 + 4q3t2 + q5t3�
11a55

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 3q�7t�3+

+ 5q�5t�2 + 5q�3t�1 + 6q�1 + 4q1t1 + 4q3t2 + 3q5t3 + q7t4 + q9t5�
11a56

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 7q�3t�2 + 8q�1t�1 + 9q1 + 8q3t1 + 7q5t2 + 5q7t3 + 2q9t4 + q11t5�
11a57

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 7q�5t�2 + 7q�3t�1 + 9q�1 + 6q1t1 + 6q3t2 + 4q5t3 + q7t4 + q9t5�
11a58

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 5q�3t�2 + 6q�1t�1 + 7q1 + 5q3t1 + 5q5t2 + 3q7t3 + q9t4 + q11t5�
11a59

q3 + q1 + u2�q�7t�5 + q�5t�4 + 2q�3t�3 + 2q�1t�2+

+ 3q1t�1 + 3q3 + 2q5t1 + 3q7t2 + 2q9t3 + q11t4 + q13t5�
11a60

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 5q9t2+

+ 6q11t3 + 7q13t4 + 7q15t5 + 5q17t6 + 4q19t7 + 2q21t8 + q23t9�
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Name BN

11a61
q3 + q1 + u2�q1t�1 + 2q3 + 4q5t1 + 7q7t2+

+ 8q9t3 + 8q11t4 + 8q13t5 + 6q15t6 + 4q17t7 + 2q19t8 + q21t9�
11a62

q�5 + q�7 + u2�q�21t�8 + q�19t�7 + 3q�17t�6+

+ 3q�15t�5 + 4q�13t�4 + 4q�11t�3 + 4q�9t�2 + 3q�7t�1 + 2q�5 + q�3t1 + q�1t2�
11a63

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 4q�15t�6+

+ 5q�13t�5 + 7q�11t�4 + 8q�9t�3 + 7q�7t�2 + 6q�5t�1 + 4q�3 + 2q�1t1 + q1t2�
11a64

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 5q�15t�6+

+ 6q�13t�5 + 8q�11t�4 + 8q�9t�3 + 7q�7t�2 + 6q�5t�1 + 3q�3 + q�1t1 + q1t2�
11a65

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 3q�13t�6+

+ 3q�11t�5 + 4q�9t�4 + 5q�7t�3 + 4q�5t�2 + 4q�3t�1 + 2q�1 + q1t1 + q3t2�
11a66

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 9q�5t�2 + 10q�3t�1 + 9q�1 + 7q1t1 + 5q3t2 + 3q5t3 + q7t4�
11a67

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 5q�7t�4+

+ 7q�5t�3 + 9q�3t�2 + 11q�1t�1 + 9q1 + 8q3t1 + 6q5t2 + 3q7t3 + q9t4�
11a68

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 4q�1t�2 + 6q1t�1+

+ 7q3 + 8q5t1 + 8q7t2 + 7q9t3 + 4q11t4 + 3q13t5 + q15t6�
11a69

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 9q�1t�1 + 11q1 + 11q3t1 + 11q5t2 + 9q7t3 + 5q9t4 + 3q11t5 + q13t6�
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Name BN

11a70
q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 6q1t�1 + 8q3+

+ 11q5t1 + 13q7t2 + 12q9t3 + 10q11t4 + 7q13t5 + 4q15t6 + q17t7�
11a71

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 6q1t�1 + 9q3+

+ 12q5t1 + 13q7t2 + 13q9t3 + 10q11t4 + 7q13t5 + 4q15t6 + q17t7�
11a72

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 9q�1t�1 + 12q1 + 12q3t1 + 12q5t2 + 10q7t3 + 6q9t4 + 4q11t5 + q13t6�
11a73

q1 + q�1 + u2�q�9t�5 + 4q�7t�4 + 7q�5t�3+

+ 11q�3t�2 + 14q�1t�1 + 14q1 + 14q3t1 + 11q5t2 + 7q7t3 + 4q9t4 + q11t5�
11a74

q5 + q3 + u2�q�1t�3 + q1t�2 + 4q3t�1 + 3q5+

+ 5q7t1 + 6q9t2 + 5q11t3 + 5q13t4 + 3q15t5 + 2q17t6 + q19t7�
11a75

q3 + q1 + u2�q�3t�3 + q�1t�2 + 4q1t�1 + 4q3+

+ 6q5t1 + 7q7t2 + 6q9t3 + 6q11t4 + 3q13t5 + 2q15t6 + q17t7�
11a76

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 6q�5t�3+

+ 9q�3t�2 + 11q�1t�1 + 12q1 + 11q3t1 + 9q5t2 + 6q7t3 + 3q9t4 + q11t5�
11a77

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 5q�11t�5+

+ 8q�9t�4 + 10q�7t�3 + 11q�5t�2 + 10q�3t�1 + 8q�1 + 5q1t1 + 3q3t2 + q5t3�
11a78

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 7q3+

+ 9q5t1 + 10q7t2 + 10q9t3 + 8q11t4 + 5q13t5 + 3q15t6 + q17t7�
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Name BN

11a79
q�1 + q�3 + u2�q�13t�6 + 3q�11t�5 + 6q�9t�4+

+ 9q�7t�3 + 11q�5t�2 + 12q�3t�1 + 11q�1 + 8q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a80

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 6q�5t�3+

+ 8q�3t�2 + 11q�1t�1 + 11q1 + 10q3t1 + 9q5t2 + 5q7t3 + 3q9t4 + q11t5�
11a81

q3 + q1 + u2�q�5t�4 + 3q�3t�3 + 5q�1t�2 + 8q1t�1+

+ 9q3 + 10q5t1 + 10q7t2 + 8q9t3 + 5q11t4 + 3q13t5 + q15t6�
11a82

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 6q�5t�2 + 7q�3t�1 + 8q�1 + 6q1t1 + 6q3t2 + 4q5t3 + 2q7t4 + q9t5�
11a83

q5 + q3 + u2�q1t�2 + 2q3t�1 + 4q5 + 6q7t1+

+ 8q9t2 + 10q11t3 + 8q13t4 + 8q15t5 + 5q17t6 + 3q19t7 + q21t8�
11a84

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 6q�3t�2 + 8q�1t�1 + 8q1 + 7q3t1 + 7q5t2 + 4q7t3 + 2q9t4 + q11t5�
11a85

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 4q3 + 6q5t1+

+ 8q7t2 + 9q9t3 + 8q11t4 + 7q13t5 + 4q15t6 + 3q17t7 + q19t8�
11a86

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 3q�1t�2 + 6q1t�1+

+ 6q3 + 7q5t1 + 7q7t2 + 6q9t3 + 4q11t4 + 2q13t5 + q15t6�
11a87

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 5q�3t�2+

+ 8q�1t�1 + 9q1 + 10q3t1 + 9q5t2 + 7q7t3 + 5q9t4 + 2q11t5 + q13t6�
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Name BN

11a88
q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 6q�3t�2 + 8q�1t�1 + 8q1 + 7q3t1 + 7q5t2 + 4q7t3 + 2q9t4 + q11t5�
11a89

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 6q3+

+ 9q5t1 + 10q7t2 + 9q9t3 + 8q11t4 + 5q13t5 + 3q15t6 + q17t7�
11a90

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 5q�5t�2 + 7q�3t�1 + 7q�1 + 5q1t1 + 6q3t2 + 3q5t3 + 2q7t4 + q9t5�
11a91

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 5q�3t�2+

+ 8q�1t�1 + 10q1 + 10q3t1 + 10q5t2 + 8q7t3 + 5q9t4 + 3q11t5 + q13t6�
11a92

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 6q�7t�3 + 8q�5t�2 + 9q�3t�1 + 7q�1 + 6q1t1 + 4q3t2 + 2q5t3 + q7t4�
11a93

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 4q�7t�4+

+ 5q�5t�3 + 7q�3t�2 + 8q�1t�1 + 6q1 + 6q3t1 + 4q5t2 + 2q7t3 + q9t4�
11a94

q7 + q5 + u2�2q11t2 + 4q13t3 + 5q15t4 + 9q17t5+

+ 8q19t6 + 9q21t7 + 7q23t8 + 5q25t9 + 3q27t10 + q29t11�
11a95

q5 + q3 + u2�2q9t2 + 3q11t3 + 4q13t4 + 6q15t5+

+ 5q17t6 + 6q19t7 + 4q21t8 + 3q23t9 + 2q25t10 + q27t11�
11a96

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 7q�3t�2 + 9q�1t�1 + 10q1 + 9q3t1 + 8q5t2 + 5q7t3 + 3q9t4 + q11t5�



204 B. COMPUTATIONS

Name BN

11a97
q3 + q1 + u2�q�7t�5 + q�5t�4 + 3q�3t�3 + 4q�1t�2+

+ 5q1t�1 + 5q3 + 5q5t1 + 5q7t2 + 3q9t3 + 2q11t4 + q13t5�
11a98

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 3q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 6q1 + 5q3t1 + 6q5t2 + 3q7t3 + 2q9t4 + q11t5�
11a99

q3 + q1 + u2�q�5t�4 + 3q�3t�3 + 5q�1t�2 + 9q1t�1+

+ 9q3 + 11q5t1 + 11q7t2 + 8q9t3 + 6q11t4 + 3q13t5 + q15t6�
11a100

q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 8q9t2+

+ 11q11t3 + 11q13t4 + 12q15t5 + 9q17t6 + 6q19t7 + 4q21t8 + q23t9�
11a101

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 6q3 + 10q5t1+

+ 13q7t2 + 14q9t3 + 13q11t4 + 11q13t5 + 7q15t6 + 4q17t7 + q19t8�
11a102

q3 + q1 + u2�q�3t�3 + q�1t�2 + 5q1t�1 + 5q3+

+ 7q5t1 + 9q7t2 + 7q9t3 + 7q11t4 + 4q13t5 + 2q15t6 + q17t7�
11a103

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 4q�1t�1 + 4q1+

+ 6q3t1 + 7q5t2 + 5q7t3 + 6q9t4 + 3q11t5 + 2q13t6 + q15t7�
11a104

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 8q�1t�1 + 9q1 + 10q3t1 + 10q5t2 + 8q7t3 + 5q9t4 + 3q11t5 + q13t6�
11a105

q5 + q3 + u2�q3t�1 + q5 + 4q7t1 + 6q9t2+

+ 8q11t3 + 9q13t4 + 9q15t5 + 7q17t6 + 5q19t7 + 3q21t8 + q23t9�
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Name BN

11a106
q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 7q1 + 7q3t1 + 7q5t2 + 6q7t3 + 3q9t4 + 2q11t5 + q13t6�
11a107

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 4q�1t�2 + 7q1t�1+

+ 7q3 + 9q5t1 + 9q7t2 + 7q9t3 + 5q11t4 + 3q13t5 + q15t6�
11a108

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 7q�5t�2 + 7q�3t�1 + 8q�1 + 7q1t1 + 6q3t2 + 4q5t3 + 2q7t4 + q9t5�
11a109

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 7q�1t�1 + 9q1 + 9q3t1 + 9q5t2 + 8q7t3 + 4q9t4 + 3q11t5 + q13t6�
11a110

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 6q�3t�2 + 7q�1t�1 + 8q1 + 7q3t1 + 6q5t2 + 4q7t3 + 2q9t4 + q11t5�
11a111

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 4q�1t�2 + 6q1t�1+

+ 7q3 + 8q5t1 + 8q7t2 + 7q9t3 + 4q11t4 + 3q13t5 + q15t6�
11a112

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 7q�3t�2 + 10q�1t�1 + 10q1 + 9q3t1 + 9q5t2 + 5q7t3 + 3q9t4 + q11t5�
11a113

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 4q�13t�5+

+ 7q�11t�4 + 8q�9t�3 + 9q�7t�2 + 8q�5t�1 + 7q�3 + 4q�1t1 + 3q1t2 + q3t3�
11a114

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 6q3 + 9q5t1+

+ 12q7t2 + 13q9t3 + 11q11t4 + 10q13t5 + 6q15t6 + 3q17t7 + q19t8�
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Name BN

11a115
q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 5q�1t�1+

+ 7q1 + 9q3t1 + 10q5t2 + 9q7t3 + 8q9t4 + 5q11t5 + 3q13t6 + q15t7�
11a116

q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 8q9t2+

+ 11q11t3 + 11q13t4 + 11q15t5 + 9q17t6 + 6q19t7 + 3q21t8 + q23t9�
11a117

q5 + q3 + u2�q3t�1 + 2q5 + 4q7t1 + 7q9t2+

+ 9q11t3 + 9q13t4 + 10q15t5 + 7q17t6 + 5q19t7 + 3q21t8 + q23t9�
11a118

q3 + q1 + u2�q�3t�3 + q�1t�2 + 4q1t�1 + 4q3+

+ 6q5t1 + 8q7t2 + 6q9t3 + 6q11t4 + 4q13t5 + 2q15t6 + q17t7�
11a119

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 4q�1t�1 + 4q1+

+ 5q3t1 + 7q5t2 + 5q7t3 + 5q9t4 + 3q11t5 + 2q13t6 + q15t7�
11a120

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 5q�15t�6+

+ 6q�13t�5 + 9q�11t�4 + 9q�9t�3 + 8q�7t�2 + 7q�5t�1 + 4q�3 + 2q�1t1 + q1t2�
11a121

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 9q�5t�2 + 10q�3t�1 + 9q�1 + 7q1t1 + 5q3t2 + 3q5t3 + q7t4�
11a122

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 5q�11t�5+

+ 8q�9t�4 + 9q�7t�3 + 11q�5t�2 + 10q�3t�1 + 8q�1 + 5q1t1 + 3q3t2 + q5t3�
11a123

q5 + q3 + u2�3q9t2 + 4q11t3 + 7q13t4 + 10q15t5+

+ 8q17t6 + 10q19t7 + 7q21t8 + 5q23t9 + 3q25t10 + q27t11�
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Name BN

11a124
q7 + q5 + u2�3q11t2 + 6q13t3 + 8q15t4 + 13q17t5+

+ 12q19t6 + 13q21t7 + 10q23t8 + 7q25t9 + 4q27t10 + q29t11�
11a125

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 7q1t�1 + 10q3+

+ 13q5t1 + 15q7t2 + 14q9t3 + 11q11t4 + 8q13t5 + 4q15t6 + q17t7�
11a126

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 6q�3t�2+

+ 8q�1t�1 + 11q1 + 12q3t1 + 11q5t2 + 10q7t3 + 6q9t4 + 4q11t5 + q13t6�
11a127

q5 + q3 + u2�q1t�2 + 3q3t�1 + 5q5 + 8q7t1+

+ 10q9t2 + 12q11t3 + 10q13t4 + 9q15t5 + 6q17t6 + 3q19t7 + q21t8�
11a128

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 6q�5t�3+

+ 7q�3t�2 + 10q�1t�1 + 11q1 + 9q3t1 + 9q5t2 + 5q7t3 + 3q9t4 + q11t5�
11a129

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 5q�13t�5+

+ 7q�11t�4 + 8q�9t�3 + 10q�7t�2 + 8q�5t�1 + 7q�3 + 4q�1t1 + 3q1t2 + q3t3�
11a130

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 5q�11t�5+

+ 7q�9t�4 + 9q�7t�3 + 11q�5t�2 + 9q�3t�1 + 8q�1 + 5q1t1 + 3q3t2 + q5t3�
11a131

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 8q�7t�3 + 10q�5t�2 + 11q�3t�1 + 10q�1 + 8q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a132

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 6q1t�1 + 7q3+

+ 10q5t1 + 12q7t2 + 10q9t3 + 9q11t4 + 6q13t5 + 3q15t6 + q17t7�
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Name BN

11a133
q3 + q1 + u2�q1t�1 + q3 + 3q5t1 + 5q7t2+

+ 6q9t3 + 6q11t4 + 6q13t5 + 5q15t6 + 3q17t7 + 2q19t8 + q21t9�
11a134

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 5q3 + 7q5t1+

+ 9q7t2 + 11q9t3 + 9q11t4 + 8q13t5 + 5q15t6 + 3q17t7 + q19t8�
11a135

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 5q�3t�2+

+ 10q�1t�1 + 11q1 + 12q3t1 + 13q5t2 + 9q7t3 + 7q9t4 + 4q11t5 + q13t6�
11a136

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 6q�11t�5+

+ 10q�9t�4 + 12q�7t�3 + 14q�5t�2 + 13q�3t�1 + 10q�1 + 7q1t1 + 4q3t2 + q5t3�
11a137

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 6q�5t�2 + 9q�3t�1 + 9q�1 + 7q1t1 + 8q3t2 + 4q5t3 + 3q7t4 + q9t5�
11a138

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 10q�1t�1 + 12q1 + 13q3t1 + 13q5t2 + 10q7t3 + 7q9t4 + 4q11t5 + q13t6�
11a139

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 6q3+

+ 7q5t1 + 8q7t2 + 8q9t3 + 6q11t4 + 4q13t5 + 2q15t6 + q17t7�
11a140

q5 + q3 + u2�q�1t�3 + q1t�2 + 3q3t�1 + 3q5+

+ 4q7t1 + 5q9t2 + 5q11t3 + 4q13t4 + 3q15t5 + 2q17t6 + q19t7�
11a141

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 6q�5t�2 + 8q�3t�1 + 8q�1 + 7q1t1 + 7q3t2 + 4q5t3 + 3q7t4 + q9t5�
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Name BN

11a142
q�5 + q�7 + u2�q�21t�8 + q�19t�7 + 3q�17t�6+

+ 3q�15t�5 + 5q�13t�4 + 4q�11t�3 + 4q�9t�2 + 4q�7t�1 + 2q�5 + q�3t1 + q�1t2�
11a143

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 4q�15t�6+

+ 5q�13t�5 + 7q�11t�4 + 7q�9t�3 + 7q�7t�2 + 6q�5t�1 + 3q�3 + 2q�1t1 + q1t2�
11a144

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 4q�15t�6+

+ 4q�13t�5 + 6q�11t�4 + 6q�9t�3 + 5q�7t�2 + 5q�5t�1 + 2q�3 + q�1t1 + q1t2�
11a145

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 4q�13t�6+

+ 4q�11t�5 + 6q�9t�4 + 7q�7t�3 + 6q�5t�2 + 6q�3t�1 + 3q�1 + 2q1t1 + q3t2�
11a146

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 10q�5t�2 + 10q�3t�1 + 9q�1 + 8q1t1 + 5q3t2 + 3q5t3 + q7t4�
11a147

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 6q1t�1 + 9q3+

+ 11q5t1 + 13q7t2 + 12q9t3 + 9q11t4 + 7q13t5 + 3q15t6 + q17t7�
11a148

q3 + q1 + u2�q1t�1 + 2q3 + 4q5t1 + 7q7t2+

+ 9q9t3 + 9q11t4 + 9q13t5 + 7q15t6 + 5q17t7 + 3q19t8 + q21t9�
11a149

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 7q3+

+ 9q5t1 + 11q7t2 + 10q9t3 + 8q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a150

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 5q�15t�6+

+ 7q�13t�5 + 10q�11t�4 + 10q�9t�3 + 10q�7t�2 + 8q�5t�1 + 5q�3 + 3q�1t1 + q1t2�
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Name BN

11a151
q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 6q�9t�4+

+ 7q�7t�3 + 10q�5t�2 + 11q�3t�1 + 9q�1 + 8q1t1 + 5q3t2 + 3q5t3 + q7t4�
11a152

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 5q�7t�4+

+ 6q�5t�3 + 9q�3t�2 + 10q�1t�1 + 8q1 + 8q3t1 + 5q5t2 + 3q7t3 + q9t4�
11a153

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 6q1 + 6q3t1 + 8q5t2 + 6q7t3 + 5q9t4 + 4q11t5 + q13t6 + q15t7�
11a154

q3 + q1 + u2�q�3t�3 + q�1t�2 + 3q1t�1 + 4q3+

+ 4q5t1 + 6q7t2 + 5q9t3 + 4q11t4 + 3q13t5 + q15t6 + q17t7�
11a155

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 6q�11t�5+

+ 11q�9t�4 + 12q�7t�3 + 15q�5t�2 + 14q�3t�1 + 10q�1 + 8q1t1 + 4q3t2 + q5t3�
11a156

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 4q�9t�4+

+ 5q�7t�3 + 7q�5t�2 + 8q�3t�1 + 6q�1 + 6q1t1 + 4q3t2 + 2q5t3 + q7t4�
11a157

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 6q�9t�4+

+ 8q�7t�3 + 10q�5t�2 + 12q�3t�1 + 10q�1 + 8q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a158

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 7q�5t�2 + 9q�3t�1 + 10q�1 + 8q1t1 + 8q3t2 + 5q5t3 + 3q7t4 + q9t5�
11a159

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 6q3+

+ 8q5t1 + 10q7t2 + 8q9t3 + 7q11t4 + 5q13t5 + 2q15t6 + q17t7�
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Name BN

11a160
q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 9q�1t�1 + 11q1 + 12q3t1 + 11q5t2 + 9q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a161

q�3 + q�5 + u2�q�15t�6 + q�13t�5 + 3q�11t�4+

+ 3q�9t�3 + 4q�7t�2 + 5q�5t�1 + 3q�3 + 3q�1t1 + 3q1t2 + q3t3 + q5t4�
11a162

q�1 + q�3 + u2�q�13t�6 + 3q�11t�5 + 7q�9t�4+

+ 10q�7t�3 + 13q�5t�2 + 14q�3t�1 + 13q�1 + 10q1t1 + 7q3t2 + 4q5t3 + q7t4�
11a163

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 5q�1t�2 + 7q1t�1+

+ 8q3 + 10q5t1 + 9q7t2 + 8q9t3 + 5q11t4 + 3q13t5 + q15t6�
11a164

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 7q�5t�3+

+ 10q�3t�2 + 13q�1t�1 + 14q1 + 13q3t1 + 11q5t2 + 7q7t3 + 4q9t4 + q11t5�
11a165

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 5q1 + 6q3t1 + 7q5t2 + 5q7t3 + 5q9t4 + 3q11t5 + q13t6 + q15t7�
11a166

q3 + q1 + u2�q�3t�3 + q�1t�2 + 3q1t�1 + 3q3+

+ 4q5t1 + 5q7t2 + 4q9t3 + 4q11t4 + 2q13t5 + q15t6 + q17t7�
11a167

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 7q�1t�1 + 8q1 + 9q3t1 + 9q5t2 + 7q7t3 + 5q9t4 + 3q11t5 + q13t6�
11a168

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 8q�1t�1 + 9q1 + 10q3t1 + 10q5t2 + 8q7t3 + 5q9t4 + 3q11t5 + q13t6�
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Name BN

11a169
q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 5q�7t�4+

+ 7q�5t�3 + 9q�3t�2 + 10q�1t�1 + 9q1 + 8q3t1 + 5q5t2 + 3q7t3 + q9t4�
11a170

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 7q�3t�2+

+ 11q�1t�1 + 14q1 + 15q3t1 + 15q5t2 + 12q7t3 + 8q9t4 + 5q11t5 + q13t6�
11a171

q3 + q1 + u2�q�3t�3 + 4q�1t�2 + 7q1t�1 + 11q3+

+ 14q5t1 + 15q7t2 + 15q9t3 + 11q11t4 + 8q13t5 + 4q15t6 + q17t7�
11a172

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 6q1t�1 + 8q3+

+ 10q5t1 + 12q7t2 + 11q9t3 + 9q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a173

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 8q3+

+ 9q5t1 + 12q7t2 + 11q9t3 + 8q11t4 + 7q13t5 + 3q15t6 + q17t7�
11a174

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 3q�7t�3+

+ 5q�5t�2 + 6q�3t�1 + 6q�1 + 5q1t1 + 5q3t2 + 3q5t3 + 2q7t4 + q9t5�
11a175

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 8q1 + 8q3t1 + 8q5t2 + 7q7t3 + 4q9t4 + 3q11t5 + q13t6�
11a176

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 6q3+

+ 8q5t1 + 9q7t2 + 9q9t3 + 7q11t4 + 5q13t5 + 3q15t6 + q17t7�
11a177

q5 + q3 + u2�q1t�2 + 2q3t�1 + 3q5 + 5q7t1+

+ 7q9t2 + 8q11t3 + 7q13t4 + 7q15t5 + 4q17t6 + 3q19t7 + q21t8�
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Name BN

11a178
q3 + q1 + u2�q�1t�2 + 3q1t�1 + 5q3 + 7q5t1+

+ 10q7t2 + 10q9t3 + 9q11t4 + 8q13t5 + 4q15t6 + 3q17t7 + q19t8�
11a179

q5 + q3 + u2�q�1t�3 + q1t�2 + 3q3t�1 + 2q5+

+ 4q7t1 + 4q9t2 + 4q11t3 + 4q13t4 + 2q15t5 + 2q17t6 + q19t7�
11a180

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 5q�3t�2 + 7q�1t�1 + 7q1 + 6q3t1 + 6q5t2 + 3q7t3 + 2q9t4 + q11t5�
11a181

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 5q3+

+ 8q5t1 + 8q7t2 + 7q9t3 + 7q11t4 + 3q13t5 + 2q15t6 + q17t7�
11a182

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 3q�13t�5+

+ 5q�11t�4 + 5q�9t�3 + 6q�7t�2 + 5q�5t�1 + 4q�3 + 2q�1t1 + 2q1t2 + q3t3�
11a183

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 4q�11t�5+

+ 7q�9t�4 + 8q�7t�3 + 10q�5t�2 + 9q�3t�1 + 7q�1 + 5q1t1 + 3q3t2 + q5t3�
11a184

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 4q�9t�4+

+ 5q�7t�3 + 7q�5t�2 + 7q�3t�1 + 6q�1 + 5q1t1 + 3q3t2 + 2q5t3 + q7t4�
11a185

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 4q�7t�4+

+ 6q�5t�3 + 8q�3t�2 + 9q�1t�1 + 8q1 + 7q3t1 + 5q5t2 + 3q7t3 + q9t4�
11a186

q7 + q5 + u2�2q11t2 + 4q13t3 + 5q15t4 + 8q17t5+

+ 7q19t6 + 8q21t7 + 6q23t8 + 4q25t9 + 2q27t10 + q29t11�
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Name BN

11a187
q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 7q�3t�2 + 9q�1t�1 + 9q1 + 9q3t1 + 8q5t2 + 5q7t3 + 3q9t4 + q11t5�
11a188

q3 + q1 + u2�q�7t�5 + q�5t�4 + 3q�3t�3 + 3q�1t�2+

+ 5q1t�1 + 5q3 + 4q5t1 + 5q7t2 + 3q9t3 + 2q11t4 + q13t5�
11a189

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 6q�5t�3+

+ 9q�3t�2 + 12q�1t�1 + 12q1 + 11q3t1 + 10q5t2 + 6q7t3 + 3q9t4 + q11t5�
11a190

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 5q1 + 6q3t1 + 7q5t2 + 6q7t3 + 5q9t4 + 3q11t5 + 2q13t6 + q15t7�
11a191

q7 + q5 + u2�2q11t2 + 3q13t3 + 4q15t4 + 7q17t5+

+ 6q19t6 + 7q21t7 + 5q23t8 + 4q25t9 + 2q27t10 + q29t11�
11a192

q5 + q3 + u2�3q9t2 + 4q11t3 + 6q13t4 + 8q15t5+

+ 7q17t6 + 8q19t7 + 5q21t8 + 4q23t9 + 2q25t10 + q27t11�
11a193

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 4q�11t�5+

+ 6q�9t�4 + 7q�7t�3 + 8q�5t�2 + 7q�3t�1 + 6q�1 + 3q1t1 + 2q3t2 + q5t3�
11a194

q�3 + q�5 + u2�q�17t�7 + 2q�15t�6 + 4q�13t�5+

+ 6q�11t�4 + 7q�9t�3 + 8q�7t�2 + 6q�5t�1 + 6q�3 + 3q�1t1 + 2q1t2 + q3t3�
11a195

q1 + q�1 + u2�q�13t�7 + q�11t�6 + 2q�9t�5+

+ 3q�7t�4 + 3q�5t�3 + 4q�3t�2 + 4q�1t�1 + 3q1 + 2q3t1 + 2q5t2 + q7t3�
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Name BN

11a196
q�1 + q�3 + u2�q�13t�6 + 3q�11t�5 + 6q�9t�4+

+ 9q�7t�3 + 12q�5t�2 + 12q�3t�1 + 11q�1 + 9q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a197

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 5q3 + 8q5t1+

+ 11q7t2 + 12q9t3 + 11q11t4 + 10q13t5 + 6q15t6 + 4q17t7 + q19t8�
11a198

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 4q�1t�2 + 7q1t�1+

+ 8q3 + 9q5t1 + 9q7t2 + 8q9t3 + 5q11t4 + 3q13t5 + q15t6�
11a199

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 6q�5t�2 + 8q�3t�1 + 8q�1 + 6q1t1 + 7q3t2 + 3q5t3 + 2q7t4 + q9t5�
11a200

q5 + q3 + u2�2q9t2 + 3q11t3 + 5q13t4 + 7q15t5+

+ 6q17t6 + 7q19t7 + 5q21t8 + 4q23t9 + 2q25t10 + q27t11�
11a201

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 4q�5t�3 + 4q�3t�2+

+ 6q�1t�1 + 7q1 + 5q3t1 + 6q5t2 + 3q7t3 + 2q9t4 + q11t5�
11a202

q3 + q1 + u2�q�3t�3 + q�1t�2 + 5q1t�1 + 5q3+

+ 8q5t1 + 10q7t2 + 8q9t3 + 8q11t4 + 5q13t5 + 3q15t6 + q17t7�
11a203

q7 + q5 + u2�q5t�1 + q7 + 2q9t1 + 3q11t2+

+ 5q13t3 + 4q15t4 + 5q17t5 + 4q19t6 + 3q21t7 + 2q23t8 + q25t9�
11a204

q5 + q3 + u2�q3t�1 + 2q5 + 4q7t1 + 6q9t2+

+ 8q11t3 + 8q13t4 + 8q15t5 + 6q17t6 + 4q19t7 + 2q21t8 + q23t9�
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Name BN

11a205
q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 4q�7t�3+

+ 6q�5t�2 + 7q�3t�1 + 7q�1 + 6q1t1 + 6q3t2 + 3q5t3 + 2q7t4 + q9t5�
11a206

q�5 + q�7 + u2�q�21t�8 + q�19t�7 + 3q�17t�6+

+ 2q�15t�5 + 4q�13t�4 + 3q�11t�3 + 3q�9t�2 + 3q�7t�1 + q�5 + q�3t1 + q�1t2�
11a207

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 4q�15t�6+

+ 4q�13t�5 + 7q�11t�4 + 7q�9t�3 + 6q�7t�2 + 6q�5t�1 + 3q�3 + 2q�1t1 + q1t2�
11a208

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 5q�15t�6+

+ 6q�13t�5 + 9q�11t�4 + 8q�9t�3 + 8q�7t�2 + 7q�5t�1 + 3q�3 + 2q�1t1 + q1t2�
11a209

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 6q�5t�3+

+ 8q�3t�2 + 11q�1t�1 + 12q1 + 10q3t1 + 10q5t2 + 6q7t3 + 3q9t4 + q11t5�
11a210

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 3q�5t�3 + 4q�3t�2+

+ 5q�1t�1 + 6q1 + 5q3t1 + 5q5t2 + 3q7t3 + 2q9t4 + q11t5�
11a211

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 3q�13t�6+

+ 3q�11t�5 + 5q�9t�4 + 5q�7t�3 + 5q�5t�2 + 5q�3t�1 + 2q�1 + 2q1t1 + q3t2�
11a212

q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 9q9t2+

+ 12q11t3 + 12q13t4 + 13q15t5 + 10q17t6 + 7q19t7 + 4q21t8 + q23t9�
11a213

q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 9q9t2+

+ 11q11t3 + 12q13t4 + 12q15t5 + 9q17t6 + 7q19t7 + 3q21t8 + q23t9�



4. THE RATIONAL BAR-NATAN HOMOLOGY OF THE PRIME KNOT WITH LESS THAN 12 CROSSING217

Name BN

11a214
q1 + q�1 + u2�q�5t�3 + q�3t�2 + 4q�1t�1 + 3q1+

+ 5q3t1 + 6q5t2 + 4q7t3 + 5q9t4 + 2q11t5 + 2q13t6 + q15t7�
11a215

q5 + q3 + u2�q1t�2 + 3q3t�1 + 5q5 + 8q7t1+

+ 10q9t2 + 11q11t3 + 10q13t4 + 9q15t5 + 5q17t6 + 3q19t7 + q21t8�
11a216

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 6q1t�1 + 9q3+

+ 11q5t1 + 12q7t2 + 12q9t3 + 9q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a217

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 6q�9t�4+

+ 8q�7t�3 + 11q�5t�2 + 12q�3t�1 + 10q�1 + 9q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a218

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 8q�7t�3 + 10q�5t�2 + 11q�3t�1 + 10q�1 + 8q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a219

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 4q�13t�6+

+ 4q�11t�5 + 7q�9t�4 + 7q�7t�3 + 6q�5t�2 + 7q�3t�1 + 3q�1 + 2q1t1 + q3t2�
11a220

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 5q9t2+

+ 6q11t3 + 7q13t4 + 7q15t5 + 5q17t6 + 4q19t7 + 2q21t8 + q23t9�
11a221

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 4q�9t�4+

+ 4q�7t�3 + 6q�5t�2 + 7q�3t�1 + 5q�1 + 5q1t1 + 3q3t2 + 2q5t3 + q7t4�
11a222

q1 + q�1 + u2�q�11t�6 + q�9t�5 + 4q�7t�4+

+ 5q�5t�3 + 7q�3t�2 + 9q�1t�1 + 7q1 + 7q3t1 + 5q5t2 + 3q7t3 + q9t4�
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Name BN

11a223
q7 + q5 + u2�q5t�1 + q7 + 3q9t1 + 4q11t2+

+ 6q13t3 + 5q15t4 + 6q17t5 + 5q19t6 + 3q21t7 + 2q23t8 + q25t9�
11a224

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 5q9t2+

+ 7q11t3 + 7q13t4 + 7q15t5 + 6q17t6 + 4q19t7 + 2q21t8 + q23t9�
11a225

q�3 + q�5 + u2�q�15t�6 + q�13t�5 + 3q�11t�4+

+ 3q�9t�3 + 4q�7t�2 + 4q�5t�1 + 3q�3 + 3q�1t1 + 2q1t2 + q3t3 + q5t4�
11a226

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 3q�9t�4+

+ 4q�7t�3 + 5q�5t�2 + 6q�3t�1 + 5q�1 + 4q1t1 + 3q3t2 + 2q5t3 + q7t4�
11a227

q7 + q5 + u2�3q11t2 + 6q13t3 + 8q15t4 + 12q17t5+

+ 11q19t6 + 12q21t7 + 9q23t8 + 6q25t9 + 3q27t10 + q29t11�
11a228

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 8q�3t�2 + 10q�1t�1 + 11q1 + 10q3t1 + 9q5t2 + 6q7t3 + 3q9t4 + q11t5�
11a229

q3 + q1 + u2�q1t�1 + q3 + 3q5t1 + 5q7t2+

+ 5q9t3 + 6q11t4 + 5q13t5 + 4q15t6 + 3q17t7 + q19t8 + q21t9�
11a230

q3 + q1 + u2�q1t�1 + q3 + 2q5t1 + 3q7t2+

+ 4q9t3 + 4q11t4 + 3q13t5 + 3q15t6 + 2q17t7 + q19t8 + q21t9�
11a231

q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 7q�5t�2 + 7q�3t�1 + 9q�1 + 6q1t1 + 6q3t2 + 4q5t3 + q7t4 + q9t5�
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Name BN

11a232
q�1 + q�3 + u2�q�11t�5 + 2q�9t�4 + 5q�7t�3+

+ 8q�5t�2 + 9q�3t�1 + 10q�1 + 9q1t1 + 8q3t2 + 5q5t3 + 3q7t4 + q9t5�
11a233

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 7q�3t�2+

+ 11q�1t�1 + 13q1 + 14q3t1 + 14q5t2 + 11q7t3 + 7q9t4 + 4q11t5 + q13t6�
11a234

q9 + q7 + u2�q13t2 + 2q15t3 + q17t4 + 3q19t5+

+ 2q21t6 + 3q23t7 + 2q25t8 + 2q27t9 + q29t10 + q31t11�
11a235

q7 + q5 + u2�2q11t2 + 3q13t3 + 4q15t4 + 6q17t5+

+ 5q19t6 + 6q21t7 + 4q23t8 + 3q25t9 + q27t10 + q29t11�
11a236

q7 + q5 + u2�2q11t2 + 4q13t3 + 5q15t4 + 8q17t5+

+ 8q19t6 + 8q21t7 + 6q23t8 + 5q25t9 + 2q27t10 + q29t11�
11a237

q5 + q3 + u2�3q9t2 + 4q11t3 + 6q13t4 + 8q15t5+

+ 7q17t6 + 7q19t7 + 5q21t8 + 4q23t9 + q25t10 + q27t11�
11a238

q5 + q3 + u2�2q9t2 + 3q11t3 + 4q13t4 + 5q15t5+

+ 5q17t6 + 5q19t7 + 3q21t8 + 3q23t9 + q25t10 + q27t11�
11a239

q3 + q1 + u2�q�3t�3 + 4q�1t�2 + 8q1t�1 + 12q3+

+ 15q5t1 + 16q7t2 + 16q9t3 + 12q11t4 + 8q13t5 + 4q15t6 + q17t7�
11a240

q9 + q7 + u2�q13t2 + 3q15t3 + 2q17t4 + 5q19t5+

+ 4q21t6 + 5q23t7 + 4q25t8 + 3q27t9 + 2q29t10 + q31t11�



220 B. COMPUTATIONS

Name BN

11a241
q7 + q5 + u2�2q11t2 + 4q13t3 + 5q15t4 + 8q17t5+

+ 7q19t6 + 8q21t7 + 6q23t8 + 4q25t9 + 2q27t10 + q29t11�
11a242

q7 + q5 + u2�q11t2 + 2q13t3 + 2q15t4 + 4q17t5+

+ 3q19t6 + 4q21t7 + 3q23t8 + 2q25t9 + q27t10 + q29t11�
11a243

q5 + q3 + u2�2q9t2 + 3q11t3 + 4q13t4 + 6q15t5+

+ 5q17t6 + 5q19t7 + 4q21t8 + 3q23t9 + q25t10 + q27t11�
11a244

q7 + q5 + u2�3q11t2 + 6q13t3 + 8q15t4 + 12q17t5+

+ 12q19t6 + 12q21t7 + 9q23t8 + 7q25t9 + 3q27t10 + q29t11�
11a245

q7 + q5 + u2�q11t2 + 3q13t3 + 3q15t4 + 6q17t5+

+ 6q19t6 + 6q21t7 + 5q23t8 + 4q25t9 + 2q27t10 + q29t11�
11a246

q5 + q3 + u2�q9t2 + 2q11t3 + 2q13t4 + 3q15t5+

+ 3q17t6 + 3q19t7 + 2q21t8 + 2q23t9 + q25t10 + q27t11�
11a247

q3 + q1 + u2�q7t2 + q9t3 + q11t4 + q13t5+

+ q15t6 + q17t7 + q19t8 + q21t9 + q25t11�
11a248

q�1 + q�3 + u2�q�13t�6 + 4q�11t�5 + 7q�9t�4+

+ 10q�7t�3 + 13q�5t�2 + 13q�3t�1 + 12q�1 + 9q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a249

q1 + q�1 + u2�q�11t�6 + 3q�9t�5 + 4q�7t�4+

+ 7q�5t�3 + 9q�3t�2 + 9q�1t�1 + 9q1 + 7q3t1 + 5q5t2 + 3q7t3 + q9t4�
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Name BN

11a250
q5 + q3 + u2�q�1t�3 + q1t�2 + 4q3t�1 + 4q5+

+ 6q7t1 + 7q9t2 + 6q11t3 + 6q13t4 + 4q15t5 + 2q17t6 + q19t7�
11a251

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 8q�3t�2 + 10q�1t�1 + 11q1 + 10q3t1 + 9q5t2 + 6q7t3 + 3q9t4 + q11t5�
11a252

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 5q�1t�2 + 8q1t�1+

+ 9q3 + 11q5t1 + 10q7t2 + 9q9t3 + 6q11t4 + 3q13t5 + q15t6�
11a253

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 8q�3t�2 + 10q�1t�1 + 11q1 + 10q3t1 + 9q5t2 + 6q7t3 + 3q9t4 + q11t5�
11a254

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 5q�1t�2 + 8q1t�1+

+ 9q3 + 11q5t1 + 10q7t2 + 9q9t3 + 6q11t4 + 3q13t5 + q15t6�
11a255

q�1 + q�3 + u2�q�13t�6 + 3q�11t�5 + 6q�9t�4+

+ 9q�7t�3 + 11q�5t�2 + 12q�3t�1 + 11q�1 + 8q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a256

q1 + q�1 + u2�q�11t�6 + 3q�9t�5 + 5q�7t�4+

+ 8q�5t�3 + 10q�3t�2 + 11q�1t�1 + 10q1 + 8q3t1 + 6q5t2 + 3q7t3 + q9t4�
11a257

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 6q�3t�2 + 7q�1t�1 + 8q1 + 7q3t1 + 6q5t2 + 4q7t3 + 2q9t4 + q11t5�
11a258

q3 + q1 + u2�q�7t�5 + q�5t�4 + 3q�3t�3 + 4q�1t�2+

+ 5q1t�1 + 6q3 + 5q5t1 + 5q7t2 + 4q9t3 + 2q11t4 + q13t5�



222 B. COMPUTATIONS

Name BN

11a259
q7 + q5 + u2�q5t�1 + q7 + 3q9t1 + 4q11t2+

+ 6q13t3 + 6q15t4 + 6q17t5 + 5q19t6 + 4q21t7 + 2q23t8 + q25t9�
11a260

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 4q9t2+

+ 5q11t3 + 6q13t4 + 5q15t5 + 4q17t6 + 3q19t7 + q21t8 + q23t9�
11a261

q�3 + q�5 + u2�q�17t�7 + 3q�15t�6 + 6q�13t�5+

+ 8q�11t�4 + 10q�9t�3 + 11q�7t�2 + 9q�5t�1 + 8q�3 + 4q�1t1 + 3q1t2 + q3t3�
11a262

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 4q�11t�5+

+ 6q�9t�4 + 8q�7t�3 + 9q�5t�2 + 8q�3t�1 + 7q�1 + 4q1t1 + 3q3t2 + q5t3�
11a263

q9 + q7 + u2�q13t2 + 4q15t3 + 3q17t4 + 7q19t5+

+ 6q21t6 + 6q23t7 + 6q25t8 + 4q27t9 + 2q29t10 + q31t11�
11a264

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 5q1t�1 + 8q3+

+ 10q5t1 + 11q7t2 + 11q9t3 + 8q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a265

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 5q�1t�1+

+ 7q1 + 8q3t1 + 9q5t2 + 8q7t3 + 6q9t4 + 4q11t5 + 2q13t6 + q15t7�
11a266

q1 + q�1 + u2�q�9t�5 + 5q�7t�4 + 9q�5t�3+

+ 13q�3t�2 + 17q�1t�1 + 17q1 + 16q3t1 + 13q5t2 + 8q7t3 + 4q9t4 + q11t5�
11a267

q�1 + q�3 + u2�q�13t�6 + 4q�11t�5 + 8q�9t�4+

+ 12q�7t�3 + 15q�5t�2 + 16q�3t�1 + 15q�1 + 11q1t1 + 8q3t2 + 4q5t3 + q7t4�
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Name BN

11a268
q3 + q1 + u2�q�5t�4 + 3q�3t�3 + 5q�1t�2 + 9q1t�1+

+ 10q3 + 11q5t1 + 11q7t2 + 9q9t3 + 6q11t4 + 3q13t5 + q15t6�
11a269

q3 + q1 + u2�q�5t�4 + 4q�3t�3 + 6q�1t�2 + 10q1t�1+

+ 11q3 + 12q5t1 + 12q7t2 + 9q9t3 + 6q11t4 + 3q13t5 + q15t6�
11a270

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 5q�3t�2+

+ 9q�1t�1 + 10q1 + 11q3t1 + 11q5t2 + 8q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a271

q3 + q1 + u2�q�1t�2 + 4q1t�1 + 7q3 + 11q5t1+

+ 13q7t2 + 15q9t3 + 13q11t4 + 10q13t5 + 7q15t6 + 3q17t7 + q19t8�
11a272

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 10q�1t�1 + 11q1 + 12q3t1 + 12q5t2 + 9q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a273

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 7q�11t�5+

+ 10q�9t�4 + 12q�7t�3 + 14q�5t�2 + 12q�3t�1 + 10q�1 + 6q1t1 + 3q3t2 + q5t3�
11a274

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 7q�5t�3+

+ 10q�3t�2 + 13q�1t�1 + 14q1 + 12q3t1 + 11q5t2 + 7q7t3 + 3q9t4 + q11t5�
11a275

q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 8q9t2+

+ 10q11t3 + 11q13t4 + 10q15t5 + 8q17t6 + 6q19t7 + 2q21t8 + q23t9�
11a276

q5 + q3 + u2�q3t�1 + 3q5 + 6q7t1 + 10q9t2+

+ 13q11t3 + 13q13t4 + 13q15t5 + 10q17t6 + 7q19t7 + 3q21t8 + q23t9�
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Name BN

11a277
q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 6q1t�1 + 7q3+

+ 11q5t1 + 11q7t2 + 10q9t3 + 9q11t4 + 5q13t5 + 3q15t6 + q17t7�
11a278

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 7q�1t�1+

+ 8q1 + 11q3t1 + 12q5t2 + 10q7t3 + 9q9t4 + 5q11t5 + 3q13t6 + q15t7�
11a279

q3 + q1 + u2�q�7t�5 + 2q�5t�4 + 4q�3t�3 + 5q�1t�2+

+ 7q1t�1 + 7q3 + 6q5t1 + 6q7t2 + 4q9t3 + 2q11t4 + q13t5�
11a280

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 5q�5t�3+

+ 6q�3t�2 + 8q�1t�1 + 9q1 + 7q3t1 + 7q5t2 + 4q7t3 + 2q9t4 + q11t5�
11a281

q3 + q1 + u2�q�5t�4 + 3q�3t�3 + 6q�1t�2 + 10q1t�1+

+ 11q3 + 13q5t1 + 12q7t2 + 10q9t3 + 7q11t4 + 3q13t5 + q15t6�
11a282

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 5q�7t�3+

+ 8q�5t�2 + 10q�3t�1 + 10q�1 + 9q1t1 + 8q3t2 + 5q5t3 + 3q7t4 + q9t5�
11a283

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 6q�11t�5+

+ 9q�9t�4 + 11q�7t�3 + 13q�5t�2 + 11q�3t�1 + 9q�1 + 6q1t1 + 3q3t2 + q5t3�
11a284

q3 + q1 + u2�q�3t�3 + 4q�1t�2 + 8q1t�1 + 11q3+

+ 14q5t1 + 15q7t2 + 14q9t3 + 11q11t4 + 7q13t5 + 3q15t6 + q17t7�
11a285

q1 + q�1 + u2�q�9t�5 + 4q�7t�4 + 7q�5t�3+

+ 10q�3t�2 + 13q�1t�1 + 13q1 + 12q3t1 + 10q5t2 + 6q7t3 + 3q9t4 + q11t5�
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Name BN

11a286
q3 + q1 + u2�q�5t�4 + 3q�3t�3 + 6q�1t�2 + 9q1t�1+

+ 11q3 + 12q5t1 + 11q7t2 + 10q9t3 + 6q11t4 + 3q13t5 + q15t6�
11a287

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 7q�5t�3+

+ 11q�3t�2 + 14q�1t�1 + 15q1 + 14q3t1 + 12q5t2 + 8q7t3 + 4q9t4 + q11t5�
11a288

q1 + q�1 + u2�q�7t�4 + 4q�5t�3 + 9q�3t�2+

+ 13q�1t�1 + 16q1 + 17q3t1 + 16q5t2 + 13q7t3 + 8q9t4 + 4q11t5 + q13t6�
11a289

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 6q�3t�2+

+ 9q�1t�1 + 11q1 + 12q3t1 + 11q5t2 + 9q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a290

q1 + q�1 + u2�q�11t�6 + 3q�9t�5 + 6q�7t�4+

+ 8q�5t�3 + 11q�3t�2 + 12q�1t�1 + 10q1 + 9q3t1 + 6q5t2 + 3q7t3 + q9t4�
11a291

q7 + q5 + u2�3q11t2 + 4q13t3 + 5q15t4 + 9q17t5+

+ 7q19t6 + 8q21t7 + 6q23t8 + 4q25t9 + 2q27t10 + q29t11�
11a292

q5 + q3 + u2�4q9t2 + 6q11t3 + 8q13t4 + 11q15t5+

+ 10q17t6 + 10q19t7 + 7q21t8 + 5q23t9 + 2q25t10 + q27t11�
11a293

q�3 + q�5 + u2�q�15t�6 + 2q�13t�5 + 4q�11t�4+

+ 4q�9t�3 + 7q�7t�2 + 6q�5t�1 + 5q�3 + 5q�1t1 + 3q1t2 + 2q3t3 + q5t4�
11a294

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 10q�5t�2 + 10q�3t�1 + 9q�1 + 8q1t1 + 5q3t2 + 3q5t3 + q7t4�



226 B. COMPUTATIONS

Name BN

11a295
q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 5q�15t�6+

+ 6q�13t�5 + 9q�11t�4 + 9q�9t�3 + 8q�7t�2 + 7q�5t�1 + 4q�3 + 2q�1t1 + q1t2�
11a296

q�1 + q�3 + u2�q�17t�8 + 2q�15t�7 + 5q�13t�6+

+ 6q�11t�5 + 9q�9t�4 + 9q�7t�3 + 8q�5t�2 + 8q�3t�1 + 4q�1 + 2q1t1 + q3t2�
11a297

q�1 + q�3 + u2�q�13t�6 + 4q�11t�5 + 8q�9t�4+

+ 11q�7t�3 + 14q�5t�2 + 15q�3t�1 + 13q�1 + 10q1t1 + 7q3t2 + 3q5t3 + q7t4�
11a298

q7 + q5 + u2�3q11t2 + 5q13t3 + 7q15t4 + 11q17t5+

+ 10q19t6 + 11q21t7 + 8q23t8 + 6q25t9 + 3q27t10 + q29t11�
11a299

q5 + q3 + u2�3q9t2 + 4q11t3 + 6q13t4 + 8q15t5+

+ 7q17t6 + 8q19t7 + 5q21t8 + 4q23t9 + 2q25t10 + q27t11�
11a300

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 7q�5t�3+

+ 9q�3t�2 + 12q�1t�1 + 13q1 + 11q3t1 + 10q5t2 + 6q7t3 + 3q9t4 + q11t5�
11a301

q�1 + q�3 + u2�q�13t�6 + 4q�11t�5 + 9q�9t�4+

+ 12q�7t�3 + 16q�5t�2 + 17q�3t�1 + 15q�1 + 12q1t1 + 8q3t2 + 4q5t3 + q7t4�
11a302

q�3 + q�5 + u2�q�17t�7 + 3q�15t�6 + 7q�13t�5+

+ 10q�11t�4 + 12q�9t�3 + 14q�7t�2 + 12q�5t�1 + 10q�3 + 6q�1t1 + 4q1t2 + q3t3�
11a303

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 7q�1t�1+

+ 9q1 + 11q3t1 + 13q5t2 + 11q7t3 + 9q9t4 + 6q11t5 + 3q13t6 + q15t7�



4. THE RATIONAL BAR-NATAN HOMOLOGY OF THE PRIME KNOT WITH LESS THAN 12 CROSSING227

Name BN

11a304
q5 + q3 + u2�q3t�1 + 2q5 + 5q7t1 + 7q9t2+

+ 9q11t3 + 10q13t4 + 9q15t5 + 7q17t6 + 5q19t7 + 2q21t8 + q23t9�
11a305

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 5q�7t�3+

+ 9q�5t�2 + 10q�3t�1 + 11q�1 + 10q1t1 + 8q3t2 + 6q5t3 + 3q7t4 + q9t5�
11a306

q�3 + q�5 + u2�q�17t�7 + 3q�15t�6 + 5q�13t�5+

+ 7q�11t�4 + 8q�9t�3 + 9q�7t�2 + 7q�5t�1 + 6q�3 + 3q�1t1 + 2q1t2 + q3t3�
11a307

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 5q�9t�4 + 6q�7t�3 + 7q�5t�2 + 6q�3t�1 + 5q�1 + 3q1t1 + 2q3t2 + q5t3�
11a308

q7 + q5 + u2�q5t�1 + q7 + 2q9t1 + 4q11t2+

+ 5q13t3 + 5q15t4 + 6q17t5 + 4q19t6 + 4q21t7 + 2q23t8 + q25t9�
11a309

q5 + q3 + u2�q3t�1 + 2q5 + 3q7t1 + 6q9t2+

+ 7q11t3 + 7q13t4 + 8q15t5 + 5q17t6 + 4q19t7 + 2q21t8 + q23t9�
11a310

q5 + q3 + u2�q3t�1 + q5 + 2q7t1 + 4q9t2+

+ 4q11t3 + 5q13t4 + 5q15t5 + 3q17t6 + 3q19t7 + q21t8 + q23t9�
11a311

q3 + q1 + u2�q1t�1 + 2q3 + 3q5t1 + 6q7t2+

+ 6q9t3 + 6q11t4 + 6q13t5 + 4q15t6 + 3q17t7 + q19t8 + q21t9�
11a312

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 5q�11t�5+

+ 8q�9t�4 + 9q�7t�3 + 10q�5t�2 + 9q�3t�1 + 7q�1 + 4q1t1 + 2q3t2 + q5t3�



228 B. COMPUTATIONS

Name BN

11a313
q1 + q�1 + u2�q�13t�7 + 2q�11t�6 + 3q�9t�5+

+ 5q�7t�4 + 5q�5t�3 + 6q�3t�2 + 6q�1t�1 + 4q1 + 3q3t1 + 2q5t2 + q7t3�
11a314

q3 + q1 + u2�q�3t�3 + 4q�1t�2 + 8q1t�1 + 10q3+

+ 14q5t1 + 14q7t2 + 13q9t3 + 11q11t4 + 6q13t5 + 3q15t6 + q17t7�
11a315

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 7q�3t�2+

+ 10q�1t�1 + 12q1 + 13q3t1 + 12q5t2 + 10q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a316

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 7q�1t�1 + 9q1 + 10q3t1 + 9q5t2 + 8q7t3 + 5q9t4 + 3q11t5 + q13t6�
11a317

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 5q�7t�4+

+ 7q�5t�3 + 9q�3t�2 + 11q�1t�1 + 9q1 + 8q3t1 + 6q5t2 + 3q7t3 + q9t4�
11a318

q7 + q5 + u2�3q11t2 + 6q13t3 + 8q15t4 + 11q17t5+

+ 11q19t6 + 11q21t7 + 8q23t8 + 6q25t9 + 2q27t10 + q29t11�
11a319

q7 + q5 + u2�3q11t2 + 5q13t3 + 7q15t4 + 10q17t5+

+ 9q19t6 + 10q21t7 + 7q23t8 + 5q25t9 + 2q27t10 + q29t11�
11a320

q5 + q3 + u2�3q9t2 + 4q11t3 + 7q13t4 + 9q15t5+

+ 8q17t6 + 9q19t7 + 6q21t8 + 5q23t9 + 2q25t10 + q27t11�
11a321

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 6q�15t�6+

+ 7q�13t�5 + 10q�11t�4 + 10q�9t�3 + 9q�7t�2 + 8q�5t�1 + 4q�3 + 2q�1t1 + q1t2�
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Name BN

11a322
q�1 + q�3 + u2�q�13t�6 + 3q�11t�5 + 7q�9t�4+

+ 9q�7t�3 + 12q�5t�2 + 13q�3t�1 + 11q�1 + 9q1t1 + 6q3t2 + 3q5t3 + q7t4�
11a323

q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 4q�5t�2+

+ 5q�3t�1 + 6q�1 + 6q1t1 + 6q3t2 + 5q5t3 + 3q7t4 + 2q9t5 + q11t6�
11a324

q�1 + q�3 + u2�q�17t�8 + 2q�15t�7 + 5q�13t�6+

+ 5q�11t�5 + 8q�9t�4 + 8q�7t�3 + 7q�5t�2 + 7q�3t�1 + 3q�1 + 2q1t1 + q3t2�
11a325

q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 4q�9t�4+

+ 6q�7t�3 + 7q�5t�2 + 8q�3t�1 + 7q�1 + 5q1t1 + 4q3t2 + 2q5t3 + q7t4�
11a326

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 7q�3t�2+

+ 10q�1t�1 + 13q1 + 14q3t1 + 13q5t2 + 11q7t3 + 7q9t4 + 4q11t5 + q13t6�
11a327

q3 + q1 + u2�q�1t�2 + 4q1t�1 + 8q3 + 11q5t1+

+ 15q7t2 + 16q9t3 + 14q11t4 + 12q13t5 + 7q15t6 + 4q17t7 + q19t8�
11a328

q5 + q3 + u2�q3t�1 + 3q5 + 6q7t1 + 9q9t2+

+ 12q11t3 + 12q13t4 + 12q15t5 + 9q17t6 + 6q19t7 + 3q21t8 + q23t9�
11a329

q5 + q3 + u2�4q9t2 + 6q11t3 + 9q13t4 + 12q15t5+

+ 11q17t6 + 12q19t7 + 8q21t8 + 6q23t9 + 3q25t10 + q27t11�
11a330

q�3 + q�5 + u2�q�15t�6 + 2q�13t�5 + 4q�11t�4+

+ 5q�9t�3 + 7q�7t�2 + 7q�5t�1 + 6q�3 + 5q�1t1 + 4q1t2 + 2q3t3 + q5t4�



230 B. COMPUTATIONS

Name BN

11a331
q�1 + q�3 + u2�q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 7q�7t�3 + 9q�5t�2 + 10q�3t�1 + 8q�1 + 7q1t1 + 5q3t2 + 2q5t3 + q7t4�
11a332

q1 + q�1 + u2�q�7t�4 + 4q�5t�3 + 9q�3t�2+

+ 12q�1t�1 + 15q1 + 16q3t1 + 14q5t2 + 12q7t3 + 7q9t4 + 3q11t5 + q13t6�
11a333

q1 + q�1 + u2�q�13t�7 + q�11t�6 + 2q�9t�5+

+ 4q�7t�4 + 4q�5t�3 + 5q�3t�2 + 5q�1t�1 + 4q1 + 3q3t1 + 2q5t2 + q7t3�
11a334

q9 + q7 + u2�q13t2 + 2q15t3 + 2q17t4 + 4q19t5+

+ 3q21t6 + 4q23t7 + 3q25t8 + 3q27t9 + q29t10 + q31t11�
11a335

q7 + q5 + u2�2q11t2 + 3q13t3 + 4q15t4 + 6q17t5+

+ 6q19t6 + 6q21t7 + 4q23t8 + 4q25t9 + q27t10 + q29t11�
11a336

q7 + q5 + u2�2q11t2 + 2q13t3 + 3q15t4 + 5q17t5+

+ 4q19t6 + 5q21t7 + 3q23t8 + 3q25t9 + q27t10 + q29t11�
11a337

q5 + q3 + u2�3q9t2 + 4q11t3 + 6q13t4 + 7q15t5+

+ 7q17t6 + 7q19t7 + 4q21t8 + 4q23t9 + q25t10 + q27t11�
11a338

q9 + q7 + u2�q13t2 + 3q15t3 + 3q17t4 + 5q19t5+

+ 5q21t6 + 6q23t7 + 4q25t8 + 4q27t9 + 2q29t10 + q31t11�
11a339

q7 + q5 + u2�q11t2 + 2q13t3 + 3q15t4 + 4q17t5+

+ 4q19t6 + 5q21t7 + 3q23t8 + 3q25t9 + q27t10 + q29t11�
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Name BN

11a340
q7 + q5 + u2�2q11t2 + 3q13t3 + 5q15t4 + 7q17t5+

+ 6q19t6 + 8q21t7 + 5q23t8 + 4q25t9 + 2q27t10 + q29t11�
11a341

q5 + q3 + u2�2q9t2 + 2q11t3 + 4q13t4 + 5q15t5+

+ 4q17t6 + 5q19t7 + 3q21t8 + 3q23t9 + q25t10 + q27t11�
11a342

q5 + q3 + u2�q9t2 + q11t3 + 2q13t4 + 2q15t5+

+ 2q17t6 + 2q19t7 + q21t8 + 2q23t9 + q27t11�
11a343

q3 + q1 + u2�2q7t2 + q9t3 + 2q11t4 + 2q13t5+

+ 2q15t6 + 2q17t7 + q19t8 + 2q21t9 + q25t11�
11a344

q5 + q3 + u2�q3t�1 + 2q5 + 4q7t1 + 8q9t2+

+ 10q11t3 + 10q13t4 + 11q15t5 + 8q17t6 + 6q19t7 + 3q21t8 + q23t9�
11a345

q3 + q1 + u2�q1t�1 + 2q3 + 3q5t1 + 6q7t2+

+ 7q9t3 + 7q11t4 + 7q13t5 + 5q15t6 + 4q17t7 + 2q19t8 + q21t9�
11a346

q5 + q3 + u2�q�1t�3 + 2q1t�2 + 4q3t�1 + 5q5+

+ 7q7t1 + 7q9t2 + 7q11t3 + 6q13t4 + 4q15t5 + 2q17t6 + q19t7�
11a347

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 5q1t�1 + 6q3+

+ 8q5t1 + 10q7t2 + 8q9t3 + 7q11t4 + 5q13t5 + 2q15t6 + q17t7�
11a348

q5 + q3 + u2�q1t�2 + 4q3t�1 + 5q5 + 9q7t1+

+ 11q9t2 + 12q11t3 + 11q13t4 + 9q15t5 + 6q17t6 + 3q19t7 + q21t8�
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Name BN

11a349
q3 + q1 + u2�q�1t�2 + 4q1t�1 + 6q3 + 10q5t1+

+ 12q7t2 + 13q9t3 + 12q11t4 + 9q13t5 + 6q15t6 + 3q17t7 + q19t8�
11a350

q1 + q�1 + u2�q�7t�4 + 4q�5t�3 + 7q�3t�2+

+ 12q�1t�1 + 14q1 + 15q3t1 + 15q5t2 + 11q7t3 + 8q9t4 + 4q11t5 + q13t6�
11a351

q1 + q�1 + u2�q�7t�4 + 4q�5t�3 + 7q�3t�2+

+ 11q�1t�1 + 13q1 + 13q3t1 + 13q5t2 + 10q7t3 + 6q9t4 + 3q11t5 + q13t6�
11a352

q3 + q1 + u2�q�5t�4 + 4q�3t�3 + 5q�1t�2 + 9q1t�1+

+ 10q3 + 10q5t1 + 11q7t2 + 8q9t3 + 5q11t4 + 3q13t5 + q15t6�
11a353

q7 + q5 + u2�3q11t2 + 5q13t3 + 7q15t4 + 10q17t5+

+ 10q19t6 + 10q21t7 + 7q23t8 + 6q25t9 + 2q27t10 + q29t11�
11a354

q5 + q3 + u2�3q9t2 + 4q11t3 + 7q13t4 + 8q15t5+

+ 8q17t6 + 9q19t7 + 5q21t8 + 5q23t9 + 2q25t10 + q27t11�
11a355

q9 + q7 + u2�q13t2 + 2q15t3 + 2q17t4 + 3q19t5+

+ 3q21t6 + 4q23t7 + 2q25t8 + 3q27t9 + q29t10 + q31t11�
11a356

q7 + q5 + u2�2q11t2 + 3q13t3 + 5q15t4 + 6q17t5+

+ 6q19t6 + 7q21t7 + 4q23t8 + 4q25t9 + q27t10 + q29t11�
11a357

q7 + q5 + u2�2q11t2 + 3q13t3 + 5q15t4 + 7q17t5+

+ 7q19t6 + 8q21t7 + 5q23t8 + 5q25t9 + 2q27t10 + q29t11�
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Name BN

11a358
q7 + q5 + u2�q11t2 + q13t3 + 2q15t4 + 2q17t5+

+ 2q19t6 + 3q21t7 + q23t8 + 2q25t9 + q29t11�
11a359

q5 + q3 + u2�2q9t2 + 2q11t3 + 4q13t4 + 4q15t5+

+ 4q17t6 + 4q19t7 + 2q21t8 + 3q23t9 + q27t11�
11a360

q5 + q3 + u2�2q9t2 + 2q11t3 + 4q13t4 + 4q15t5+

+ 4q17t6 + 5q19t7 + 2q21t8 + 3q23t9 + q25t10 + q27t11�
11a361

q5 + q3 + u2�2q9t2 + 2q11t3 + 5q13t4 + 5q15t5+

+ 5q17t6 + 6q19t7 + 3q21t8 + 4q23t9 + q25t10 + q27t11�
11a362

q3 + q1 + u2�2q7t2 + q9t3 + 3q11t4 + 2q13t5+

+ 3q15t6 + 3q17t7 + q19t8 + 3q21t9 + q25t11�
11a363

q3 + q1 + u2�2q7t2 + q9t3 + 3q11t4 + 2q13t5+

+ 2q15t6 + 3q17t7 + q19t8 + 2q21t9 + q25t11�
11a364

q9 + q7 + u2�q13t2 + q15t3 + q17t4 + 2q19t5+

+ q21t6 + 2q23t7 + q25t8 + 2q27t9 + q31t11�
11a365

q7 + q5 + u2�2q11t2 + 2q13t3 + 3q15t4 + 4q17t5+

+ 4q19t6 + 4q21t7 + 2q23t8 + 3q25t9 + q29t11�
11a366

q5 + q3 + u2�3q9t2 + 4q11t3 + 6q13t4 + 6q15t5+

+ 7q17t6 + 6q19t7 + 3q21t8 + 4q23t9 + q27t11�



234 B. COMPUTATIONS

Name BN

11a367 q11 + q9 + u2�q17t3 + q21t5 + q25t7 + q29t9 + q33t11�
11n1

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 2q�13t�6+

+ 2q�11t�5 + 2q�9t�4 + 2q�7t�3 + 2q�5t�2 + q�3t�1�
11n2

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 4q9t2+

+ 5q11t3 + 5q13t4 + 4q15t5 + 3q17t6 + 2q19t7�
11n3

q�1 + q�3 + u2�q�9t�4 + 2q�7t�3 + 3q�5t�2+

+ 4q�3t�1 + 3q�1 + 3q1t1 + 3q3t2 + q5t3 + q7t4�
11n4

q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 3q1 + 4q3t1+

+ 4q5t2 + 4q7t3 + 3q9t4 + 2q11t5 + q13t6�
11n5

q3 + q1 + u2�2q1t�1 + 2q3 + 5q5t1 + 6q7t2+

+ 6q9t3 + 6q11t4 + 4q13t5 + 3q15t6 + q17t7�
11n6

q1 + q�1 + u2�q�11t�6 + q�9t�5 + 2q�7t�4+

+ 2q�5t�3 + 2q�3t�2 + q�3 + 2q�1t�1 + q1 + q1 + q3t1 + q3t2 + q7t4�
11n7

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 5q3+

+ 5q5t1 + 6q7t2 + 5q9t3 + 3q11t4 + 2q13t5�
11n8

q�3 + q�5 + u2�q�15t�6 + 2q�13t�5 + 4q�11t�4+

+ 4q�9t�3 + 5q�7t�2 + 4q�5t�1 + 3q�3 + 2q�1t1 + q1t2�
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Name BN

11n9
q7 + q5 + u2�q5t�1 + q9t1 + q11t2 + q11+

+ q13t3 + q13 + q15t4 + 2q15 + q17t5 + 2q17t6 + q19t7 + q21t8 + q23t9�
11n10

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 4q�15t�6+

+ 5q�13t�5 + 6q�11t�4 + 5q�9t�3 + 5q�7t�2 + 3q�5t�1 + q�3�
11n11

q3 + q1 + u2�q1t�1 + 2q3 + 3q5t1 + 5q7t2+

+ 5q9t3 + 4q11t4 + 4q13t5 + 2q15t6 + q17t7�
11n12

q3 + q1 + u2�q3t1 + q5t2 + q7 + q9t3 + 2q9t4+

+ q11t5 + q13t6 + q15t7�
11n13

q7 + q5 + u2�q5t�1 + q9t1 + q11t2 + q13t3+

+ q15t4 + q17t5 + q21t7�
11n14

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 3q�15t�6+

+ 3q�13t�5 + 4q�11t�4 + 4q�9t�3 + 3q�7t�2 + 2q�5t�1 + q�3�
11n15

q3 + q1 + u2�q1t�1 + q3 + 2q5t1 + 3q7t2+

+ 3q9t3 + 3q11t4 + 2q13t5 + q15t6 + q17t7�
11n16

q5 + q3 + u2�q3t�1 + q5 + 2q7t1 + 3q9t2+

+ 3q11t3 + 3q13t4 + 3q15t5 + q17t6 + q19t7�
11n17

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 3q�13t�6+

+ 3q�11t�5 + 4q�9t�4 + 4q�7t�3 + 3q�5t�2 + 3q�3t�1 + q�1�



236 B. COMPUTATIONS

Name BN

11n18
q1 + q�1 + u2�q�1t�1 + q1 + 2q3t1 + 3q5t2+

+ 2q7t3 + 3q9t4 + 2q11t5 + q13t6 + q15t7�
11n19 q�1 + q�3 + u2�q�5t�2 + q�5t�1 + q�1t1 + q1t2 + q5t4�
11n20

q1 + q�1 + u2�q�7t�3 + q�5t�2 + 2q�3t�1 + 2q�1+

+ 2q1t1 + 2q3t2 + q5t3 + q7t4�
11n21

q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 3q1 + 4q3t1+

+ 4q5t2 + 4q7t3 + 3q9t4 + 2q11t5 + q13t6�
11n22

q3 + q1 + u2�q3 + 2q5t1 + 4q7t2 + 5q9t3+

+ 4q11t4 + 5q13t5 + 3q15t6 + 2q17t7 + q19t8�
11n23

q5 + q3 + u2�q1t�2 + q3t�1 + 2q5 + 2q7t1+

+ 2q9t2 + 3q11t3 + q13t4 + 2q15t5�
11n24

q1 + q�1 + u2�q�5t�4 + q�3t�3 + 2q�1t�2 + 2q1t�1+

+ 2q3 + 2q5t1 + q7t2 + q9t3�
11n25

q3 + q1 + u2�q1t�1 + q3 + 3q5t1 + 4q7t2+

+ 4q9t3 + 4q11t4 + 3q13t5 + 2q15t6 + q17t7�
11n26

q1 + q�1 + u2�q�1t�1 + 2q1 + 2q3t1 + 4q5t2+

+ 3q7t3 + 3q9t4 + 3q11t5 + q13t6 + q15t7�
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Name BN

11n27
q7 + q5 + u2�q5t�1 + 2q9t1 + q11t2 + 2q13t3+

+ 2q15t4 + q15 + q17t5 + q19t6�
11n28

q1 + q�1 + u2�q�1t�1 + q3t1 + 2q5t2 + q7t3+

+ 2q9t4 + q11t5 + q13t6 + q15t7�
11n29

q3 + q1 + u2�2q1t�1 + 2q3 + 3q5t1 + 5q7t2+

+ 4q9t3 + 4q11t4 + 3q13t5 + q15t6 + q17t7�
11n30

q5 + q3 + u2�q3t�1 + 2q7t1 + 2q9t2 + 3q11t3+

+ 3q13t4 + 2q15t5 + 2q17t6 + q19t7�
11n31

q5 + q3 + u2�q3t�1 + q7t1 + q9t2 + q9 + q11t3+

+ q11 + q13t4 + q13 + q15t5 + 2q15t6 + q17t7 + q19t8 + q21t9�
11n32

q1 + q�1 + u2�2q�5t�3 + 3q�3t�2 + 5q�1t�1+

+ 6q1 + 5q3t1 + 6q5t2 + 4q7t3 + 2q9t4 + q11t5�
11n33

q3 + q1 + u2�q�3t�3 + q�1t�2 + 4q1t�1 + 3q3+

+ 4q5t1 + 5q7t2 + 3q9t3 + 3q11t4 + q13t5�
11n34

q1 + q�1 + u2�q�9t�5 + q�7t�4 + q�5t�3 + 2q�3t�2+

+ q�3 + q�1t�1 + q�1 + q1 + q1 + q3t1 + 2q3t2 + q5t3 + q7t4 + q9t5�
11n35

q5 + q3 + u2�2q7t1 + 4q9t2 + 7q11t3 + 7q13t4+

+ 8q15t5 + 7q17t6 + 5q19t7 + 3q21t8 + q23t9�
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Name BN

11n36
q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 5q3+

+ 5q5t1 + 6q7t2 + 5q9t3 + 3q11t4 + 2q13t5�
11n37

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 2q�5t�3 + 2q�3t�2+

+ 2q�1t�1 + 2q1 + q3t1 + q5t2�
11n38 q1 + q�1 + u2�q�7t�5 + q�3t�3 + q�1t�2 + q�1t�1 + q3 + q5t2�
11n39

q1 + q�1 + u2�q�5t�4 + q�1t�2 + q�1 + q1t�1+

+ 2q1 + 2q3 + q5t1 + 3q5t2 + 3q7t3 + 2q9t4 + 2q11t5 + q13t6�
11n40

q3 + q1 + u2�2q3 + 3q5t1 + 6q7t2 + 7q9t3+

+ 6q11t4 + 7q13t5 + 4q15t6 + 3q17t7 + q19t8�
11n41

q5 + q3 + u2�q1t�2 + 2q3t�1 + 3q5 + 4q7t1+

+ 4q9t2 + 5q11t3 + 3q13t4 + 3q15t5 + q17t6�
11n42

q1 + q�1 + u2�q�9t�5 + q�7t�4 + q�5t�3 + 2q�3t�2+

+ q�3 + q�1t�1 + q�1 + q1 + q1 + q3t1 + 2q3t2 + q5t3 + q7t4 + q9t5�
11n43

q5 + q3 + u2�2q7t1 + 4q9t2 + 7q11t3 + 7q13t4+

+ 8q15t5 + 7q17t6 + 5q19t7 + 3q21t8 + q23t9�
11n44

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 5q3+

+ 5q5t1 + 6q7t2 + 5q9t3 + 3q11t4 + 2q13t5�
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Name BN

11n45
q1 + q�1 + u2�q�5t�4 + q�1t�2 + q�1 + q1t�1+

+ 2q1 + 2q3 + q5t1 + 3q5t2 + 3q7t3 + 2q9t4 + 2q11t5 + q13t6�
11n46

q3 + q1 + u2�2q3 + 3q5t1 + 6q7t2 + 7q9t3+

+ 6q11t4 + 7q13t5 + 4q15t6 + 3q17t7 + q19t8�
11n47

q5 + q3 + u2�q1t�2 + 2q3t�1 + 3q5 + 4q7t1+

+ 4q9t2 + 5q11t3 + 3q13t4 + 3q15t5 + q17t6�
11n48

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 2q�5t�3 + 2q�3t�2+

+ 3q�1t�1 + 2q1 + q3t1 + 2q5t2�
11n49

q1 + q�1 + u2�q�7t�5 + q�3t�3 + q�1t�2 + q�1t�1+

+ q3 + q3t1 + q5t2 + q9t4�
11n50

q1 + q�1 + u2�q�11t�6 + q�9t�5 + 2q�7t�4+

+ 2q�5t�3 + 2q�3t�2 + 2q�1t�1 + q1 + q3t1�
11n51

q1 + q�1 + u2�q�1t�1 + q1 + q3t1 + 3q5t2+

+ 2q7t3 + 2q9t4 + 2q11t5 + q13t6 + q15t7�
11n52

q3 + q1 + u2�2q1t�1 + 2q3 + 4q5t1 + 5q7t2+

+ 5q9t3 + 5q11t4 + 3q13t5 + 2q15t6 + q17t7�
11n53

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 3q�1t�1 + 3q1 + 2q3t1 + 2q5t2 + q7t3�
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Name BN

11n54
q3 + q1 + u2�q3 + q5t1 + 3q7t2 + 4q9t3+

+ 3q11t4 + 4q13t5 + 2q15t6 + 2q17t7 + q19t8�
11n55

q1 + q�1 + u2�2q�3t�2 + 3q�1t�1 + 4q1 + 5q3t1+

+ 5q5t2 + 5q7t3 + 3q9t4 + 2q11t5 + q13t6�
11n56

q3 + q1 + u2�q�5t�4 + q�3t�3 + 2q�1t�2 + 3q1t�1+

+ 2q3 + 3q5t1 + 2q7t2 + 2q9t3 + q11t4�
11n57

q7 + q5 + u2�q5t�1 + q9t1 + q11t2 + q11+

+ q13t3 + q15t4 + q15 + q17t5 + q17t6�
11n58

q�1 + q�3 + u2�q�7t�3 + 2q�5t�2 + 2q�3t�1+

+ 3q�1 + 2q1t1 + 3q3t2 + 2q5t3 + q7t4 + q9t5�
11n59

q5 + q3 + u2�q7t1 + 2q9t2 + 4q11t3 + 4q13t4+

+ 5q15t5 + 4q17t6 + 3q19t7 + 2q21t8 + q23t9�
11n60

q3 + q1 + u2�q�3t�3 + q�1t�2 + 2q1t�1 + 2q3+

+ 2q5t1 + 3q7t2 + 2q9t3 + q11t4 + q13t5�
11n61

q5 + q3 + u2�q1t�2 + q3t�1 + q5 + 2q7t1+

+ q7 + q9t2 + 2q11t3 + q13t4 + q13 + q15t5�
11n62

q1 + q�1 + u2�q�5t�3 + q�3t�2 + 2q�1t�1 + 3q1+

+ 2q3t1 + 3q5t2 + 2q7t3 + q9t4 + q11t5�
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Name BN

11n63
q3 + q1 + u2�q5t1 + 2q7t2 + 3q9t3 + 3q11t4+

+ 3q13t5 + 3q15t6 + 2q17t7 + q19t8 + q21t9�
11n64

q5 + q3 + u2�q�1t�3 + 2q3t�1 + q5 + q7t1+

+ 2q9t2 + q11t3 + q13t4 + q15t5�
11n65

q1 + q�1 + u2�q�11t�6 + q�9t�5 + 3q�7t�4+

+ 2q�5t�3 + 3q�3t�2 + 3q�1t�1 + q1 + 2q3t1�
11n66

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 4q3 + 6q5t1+

+ 6q7t2 + 7q9t3 + 5q11t4 + 3q13t5 + 2q15t6�
11n67

q1 + q�1 + u2�q�3t�3 + q1t�1 + q3 + q3t1+

+ q5 + q7t2 + q7t3 + 2q9t4 + q11t5 + q13t6 + q15t7�
11n68

q3 + q1 + u2�2q1t�1 + 2q3 + 4q5t1 + 6q7t2+

+ 5q9t3 + 5q11t4 + 4q13t5 + 2q15t6 + q17t7�
11n69

q5 + q3 + u2�q3t�1 + q5 + 3q7t1 + 3q9t2+

+ 4q11t3 + 4q13t4 + 3q15t5 + 2q17t6 + q19t7�
11n70

q3 + q1 + u2�q�1t�3 + 2q3t�1 + q5 + q7t1+

+ 2q9t2 + q9t3 + q13t4�
11n71

q3 + q1 + u2�2q3 + 2q5t1 + 5q7t2 + 6q9t3+

+ 4q11t4 + 6q13t5 + 3q15t6 + 2q17t7 + q19t8�
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Name BN

11n72
q5 + q3 + u2�2q7t1 + 3q9t2 + 7q11t3 + 6q13t4+

+ 7q15t5 + 7q17t6 + 4q19t7 + 3q21t8 + q23t9�
11n73

q1 + q�1 + u2�q�5t�4 + q�1t�2 + q1t�1 + q1+

+ q3 + q5t1 + q5t2 + 2q7t3 + q9t4 + q11t5 + q13t6�
11n74

q1 + q�1 + u2�q�5t�4 + q�1t�2 + q1t�1 + q1+

+ q3 + q5t1 + q5t2 + 2q7t3 + q9t4 + q11t5 + q13t6�
11n75

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 6q�9t�4 + 4q�7t�3 + 6q�5t�2 + 5q�3t�1 + 2q�1 + 2q1t1�
11n76

q�3 + q�5 + u2�q�13t�5 + 3q�11t�4 + 2q�9t�3+

+ 5q�7t�2 + 3q�5t�1 + 3q�3 + 3q�1t1 + q1t2 + q3t3�
11n77

q9 + q7 + u2�q15t3 + 3q17 + q19t5 + 2q19t6+

+ 3q21t7 + 3q23t8 + 2q25t9 + 2q27t10 + q29t11�
11n78

q5 + q3 + u2�q1t�2 + q3t�1 + 3q5 + 3q7t1+

+ 3q9t2 + 5q11t3 + 2q13t4 + 3q15t5 + q17t6�
11n79 q1 + q�1 + u2�q�3t�3 + 2q1t�1 + q3 + q5t1 + 2q7t2 + q11t4�
11n80

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 2q�9t�4+

+ 2q�7t�3 + 2q�5t�2 + q�5 + 2q�3t�1 + q�1 + q�1t1 + q1t2 + q5t4�
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Name BN

11n81
q7 + q5 + u2�q5t�1 + 3q9t1 + q11t2 + 3q13t3+

+ 3q15t4 + q15 + q17t5 + 2q19t6�
11n82

q3 + q1 + u2�q�5t�4 + q�3t�3 + q�1t�2 + 2q1t�1+

+ q3 + q5t1 + q7t2 + q9t3�
11n83

q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 4q�1t�1 + 4q1 + 4q3t1 + 3q5t2 + 2q7t3 + q9t4�
11n84

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 2q�11t�5+

+ 3q�9t�4 + 3q�7t�3 + 3q�5t�2 + 2q�3t�1 + q�1�
11n85

q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 3q1 + 3q3t1+

+ 4q5t2 + 4q7t3 + 2q9t4 + 2q11t5 + q13t6�
11n86

q1 + q�1 + u2�q�1t�1 + 2q1 + 2q3t1 + 3q5t2+

+ 3q7t3 + 2q9t4 + 2q11t5 + q13t6�
11n87

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 4q�9t�4 + 4q�7t�3 + 5q�5t�2 + 3q�3t�1 + 2q�1 + q1t1�
11n88

q7 + q5 + u2�q5t�1 + q9t1 + q11t2 + q13t3+

+ q15t4 + q15 + q17t5�
11n89

q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 4q�15t�6+

+ 4q�13t�5 + 6q�11t�4 + 5q�9t�3 + 4q�7t�2 + 3q�5t�1 + q�3�
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Name BN

11n90
q5 + q3 + u2�q3t�1 + q5 + 2q7t1 + 3q9t2+

+ 4q11t3 + 3q13t4 + 3q15t5 + 2q17t6 + q19t7�
11n91

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 2q�13t�6+

+ 2q�11t�5 + 3q�9t�4 + 2q�7t�3 + 2q�5t�2 + 2q�3t�1�
11n92

q1 + q�1 + u2�q�3t�1 + q�1 + q1t1 + 2q3t2+

+ q5t3 + q7t4 + q9t5�
11n93

q7 + q5 + u2�2q11t2 + 3q13t3 + 3q15t4 + 5q17t5+

+ 3q19t6 + 4q21t7 + 2q23t8 + q25t9�
11n94

q1 + q�1 + u2�q�3t�2 + 2q�1t�1 + 4q1 + 4q3t1+

+ 5q5t2 + 5q7t3 + 3q9t4 + 3q11t5 + q13t6�
11n95

q5 + q3 + u2�q7t1 + 2q9t2 + 3q11t3 + 3q13t4+

+ 3q15t5 + 2q17t6 + 2q19t7�
11n96

q1 + q�1 + u2�q�5t�4 + q�3t�3 + q�1t�2 + 2q1t�1+

+ q1 + q3 + q5t1 + q5 + q7t2 + q7t3 + q11t5�
11n97

q1 + q�1 + u2�q�7t�4 + q�5t�3 + q�3t�2 + 2q�1t�1+

+ q1 + q1 + q3t1 + q5t2 + q5t3 + q7t4 + q11t6�
11n98

q1 + q�1 + u2�2q�7t�4 + 2q�5t�3 + 5q�3t�2+

+ 6q�1t�1 + 5q1 + 6q3t1 + 4q5t2 + 3q7t3 + q9t4�
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Name BN

11n99
q�1 + q�3 + u2�q�15t�7 + q�13t�6 + 3q�11t�5+

+ 3q�9t�4 + 3q�7t�3 + 4q�5t�2 + 2q�3t�1 + 2q�1�
11n100

q1 + q�1 + u2�q�3t�2 + 3q�1t�1 + 2q1 + 4q3t1+

+ 4q5t2 + 3q7t3 + 3q9t4 + q11t5 + q13t6�
11n101

q�1 + q�3 + u2�q�9t�4 + q�7t�3 + 3q�5t�2+

+ 3q�3t�1 + 3q�1 + 3q1t1 + 2q3t2 + 2q5t3 + q7t4�
11n102

q�1 + q�3 + u2�q�13t�7 + q�9t�5 + q�7t�4+

+ q�7t�3 + q�5 + q�3t�2 + q�3t�1 + q�1 + q3t2�
11n103

q�3 + q�5 + u2�2q�15t�6 + 3q�13t�5 + 5q�11t�4+

+ 5q�9t�3 + 6q�7t�2 + 5q�5t�1 + 3q�3 + 2q�1t1 + q1t2�
11n104

q7 + q5 + u2�q5t�1 + q9t1 + q11t2 + q11+

+ q13t3 + q15t4 + 2q15 + q17t5 + q17t6 + q21t8�
11n105

q5 + q3 + u2�q7t1 + 3q9t2 + 5q11t3 + 5q13t4+

+ 7q15t5 + 5q17t6 + 4q19t7 + 3q21t8 + q23t9�
11n106

q�1 + q�3 + u2�2q�5t�2 + q�3t�1 + 2q�1 + 2q1t1+

+ 2q3t2 + 2q5t3 + q7t4 + q9t5�
11n107

q5 + q3 + u2�q1t�2 + q3t�1 + q5 + 2q7t1+

+ q9t2 + 2q11t3 + q13t4 + q15t5�
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Name BN

11n108
q�3 + q�5 + u2�q�19t�8 + 2q�17t�7 + 5q�15t�6+

+ 5q�13t�5 + 7q�11t�4 + 6q�9t�3 + 5q�7t�2 + 4q�5t�1 + q�3�
11n109

q�3 + q�5 + u2�q�19t�8 + q�17t�7 + 4q�15t�6+

+ 4q�13t�5 + 5q�11t�4 + 5q�9t�3 + 4q�7t�2 + 3q�5t�1 + q�3�
11n110

q1 + q�1 + u2�2q�1t�1 + 2q1 + 3q3t1 + 4q5t2+

+ 3q7t3 + 3q9t4 + 2q11t5 + q13t6�
11n111

q3 + q1 + u2�q�1t�3 + q3t�1 + q5 + q5t1+

+ q7 + q9t2 + 2q9t3 + q11t4 + q13t5 + q15t6�
11n112

q3 + q1 + u2�q1t�1 + 2q3 + 3q5t1 + 5q7t2+

+ 5q9t3 + 4q11t4 + 4q13t5 + 2q15t6 + q17t7�
11n113

q�1 + q�3 + u2�q�17t�8 + q�15t�7 + 3q�13t�6+

+ 2q�11t�5 + 3q�9t�4 + 3q�7t�3 + 2q�5t�2 + 2q�3t�1�
11n114

q1 + q�1 + u2�q�5t�3 + 2q�3t�2 + 4q�1t�1+

+ 4q1 + 4q3t1 + 5q5t2 + 3q7t3 + 2q9t4 + q11t5�
11n115

q1 + q�1 + u2�q�7t�4 + 3q�5t�3 + 4q�3t�2+

+ 7q�1t�1 + 6q1 + 6q3t1 + 6q5t2 + 3q7t3 + 2q9t4�
11n116

q1 + q�1 + u2�q�9t�5 + q�5t�3 + q�3t�2 + q�3t�1+

+ q1 + q1t1 + q3t2 + q7t4�
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Name BN

11n117
q3 + q1 + u2�q�3t�3 + q�1t�2 + 3q1t�1 + 2q3+

+ 3q5t1 + 3q7t2 + 2q9t3 + 2q11t4�
11n118

q5 + q3 + u2�q7t1 + q9t2 + 2q11t3 + 2q13t4+

+ 2q15t5 + q17t6 + q19t7�
11n119

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 5q�3t�2 + 6q�1t�1 + 6q1 + 4q3t1 + 4q5t2 + 2q7t3�
11n120

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 3q1t�1 + 3q3+

+ 4q5t1 + 4q7t2 + 3q9t3 + 2q11t4 + q13t5�
11n121

q�3 + q�5 + u2�q�15t�6 + q�13t�5 + 4q�11t�4+

+ 3q�9t�3 + 4q�7t�2 + 4q�5t�1 + 2q�3 + 2q�1t1 + q1t2�
11n122

q�1 + q�3 + u2�q�15t�7 + q�13t�6 + 2q�11t�5+

+ 2q�9t�4 + 2q�7t�3 + 3q�5t�2 + q�3t�1 + q�1�
11n123

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 4q�5t�3+

+ 4q�3t�2 + 5q�1t�1 + 5q1 + 3q3t1 + 3q5t2 + q7t3�
11n124

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 4q3+

+ 5q5t1 + 5q7t2 + 4q9t3 + 3q11t4 + q13t5�
11n125

q3 + q1 + u2�q1t�1 + 2q3 + 4q5t1 + 5q7t2+

+ 6q9t3 + 5q11t4 + 4q13t5 + 3q15t6 + q17t7�
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Name BN

11n126
q7 + q5 + u2�2q11t2 + 2q13t3 + 2q15t4 + q15+

+ 4q17t5 + q19t6 + 2q21t7 + q23t8�
11n127

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 5q�9t�4 + 4q�7t�3 + 5q�5t�2 + 4q�3t�1 + 2q�1 + q1t1�
11n128

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 2q�1t�2 + 4q1t�1+

+ 3q3 + 3q5t1 + 3q7t2 + 2q9t3 + q11t4�
11n129

q�1 + q�3 + u2�q�13t�6 + q�11t�5 + 3q�9t�4+

+ 3q�7t�3 + 4q�5t�2 + 4q�3t�1 + 2q�1 + 2q1t1 + q3t2�
11n130

q1 + q�1 + u2�q�9t�5 + 2q�7t�4 + 3q�5t�3+

+ 4q�3t�2 + 5q�1t�1 + 4q1 + 3q3t1 + 3q5t2 + q7t3�
11n131

q�1 + q�3 + u2�q�11t�5 + 3q�9t�4 + 4q�7t�3+

+ 6q�5t�2 + 6q�3t�1 + 5q�1 + 4q1t1 + 3q3t2 + q5t3�
11n132

q1 + q�1 + u2�q�11t�6 + q�9t�5 + 2q�7t�4+

+ 2q�5t�3 + 2q�3t�2 + 2q�1t�1 + q1 + q3t1�
11n133

q5 + q3 + u2�q1t�2 + 2q3t�1 + q5 + 3q7t1+

+ q7 + 2q9t2 + 2q11t3 + 2q13t4 + q13 + q15t5�
11n134

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 3q�11t�5+

+ 4q�9t�4 + 4q�7t�3 + 4q�5t�2 + 3q�3t�1 + 2q�1�
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Name BN

11n135
q5 + q3 + u2�q3t�1 + q7t1 + q9t2 + q9 + q11t3+

+ q13t4 + q13 + q15t5 + q15t6 + q19t8�
11n136

q7 + q5 + u2�2q11t2 + 4q13t3 + 4q15t4 + 6q17t5+

+ 5q19t6 + 5q21t7 + 3q23t8 + 2q25t9�
11n137

q�3 + q�5 + u2�2q�15t�6 + 2q�13t�5 + 5q�11t�4+

+ 4q�9t�3 + 5q�7t�2 + 5q�5t�1 + 2q�3 + 2q�1t1 + q1t2�
11n138 q1 + q�1 + u2�q�7t�5 + 2q�3t�3 + q�1t�2 + q1t�1 + 2q3 + q7t2�
11n139 q1 + q�1 + u2�q7t3 + q11t5 + q13t6 + q17t8�
11n140

q�1 + q�3 + u2�2q�13t�6 + q�11t�5 + 4q�9t�4+

+ 4q�7t�3 + 4q�5t�2 + 5q�3t�1 + 2q�1 + 2q1t1 + q3t2�
11n141

q1 + q�1 + u2�q�9t�5 + 2q�5t�3 + q�3t�2 + 2q�1t�1+

+ 2q1 + 2q5t2�
11n142

q1 + q�1 + u2�q�9t�5 + q�7t�4 + 3q�5t�3 + 2q�3t�2+

+ 3q�1t�1 + 3q1 + q3t1 + 2q5t2�
11n143

q1 + q�1 + u2�q�3t�3 + q1t�1 + q1 + q3 + q3t1+

+ q5 + q7t2 + 2q7t3 + q9t4 + q11t5 + q13t6�
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Name BN

11n144
q5 + q3 + u2�q7t1 + 3q9t2 + 5q11t3 + 5q13t4+

+ 6q15t5 + 5q17t6 + 4q19t7 + 2q21t8 + q23t9�
11n145

q1 + q�1 + u2�q�5t�4 + q�1t�2 + q�1 + q1t�1+

+ q1 + q3 + q5t1 + 2q5t2 + q7t3 + q9t4 + q11t5�
11n146

q3 + q1 + u2�q3 + 2q5t1 + 5q7t2 + 5q9t3+

+ 5q11t4 + 6q13t5 + 3q15t6 + 3q17t7 + q19t8�
11n147

q5 + q3 + u2�q1t�2 + 2q3t�1 + 2q5 + 3q7t1+

+ 3q9t2 + 3q11t3 + 2q13t4 + 2q15t5�
11n148

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 4q1t�1 + 6q3+

+ 6q5t1 + 6q7t2 + 6q9t3 + 3q11t4 + 2q13t5�
11n149

q5 + q3 + u2�q1t�2 + 2q3t�1 + q5 + 3q7t1+

+ 2q9t2 + 3q11t3 + 2q13t4 + q15t5 + q17t6�
11n150

q3 + q1 + u2�q�1t�2 + 3q1t�1 + 4q3 + 6q5t1+

+ 6q7t2 + 7q9t3 + 5q11t4 + 3q13t5 + 2q15t6�
11n151

q3 + q1 + u2�q�1t�3 + q3t�1 + q5 + 2q5t1+

+ 2q7 + q9t2 + 3q9t3 + 3q11t4 + 2q13t5 + 2q15t6 + q17t7�
11n152

q3 + q1 + u2�q�1t�3 + q3t�1 + q5 + 2q5t1+

+ 2q7 + q9t2 + 3q9t3 + 3q11t4 + 2q13t5 + 2q15t6 + q17t7�
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Name BN

11n153
q1 + q�1 + u2�q�7t�4 + 2q�5t�3 + 3q�3t�2+

+ 5q�1t�1 + 4q1 + 5q3t1 + 4q5t2 + 2q7t3 + 2q9t4�
11n154

q3 + q1 + u2�2q1t�1 + 3q3 + 5q5t1 + 7q7t2+

+ 7q9t3 + 6q11t4 + 5q13t5 + 3q15t6 + q17t7�
11n155

q3 + q1 + u2�q�5t�4 + 2q�3t�3 + 2q�1t�2 + 5q1t�1+

+ 3q3 + 4q5t1 + 4q7t2 + 2q9t3 + 2q11t4�
11n156

q1 + q�1 + u2�2q�3t�2 + 4q�1t�1 + 5q1 + 6q3t1+

+ 7q5t2 + 6q7t3 + 4q9t4 + 3q11t5 + q13t6�
11n157

q1 + q�1 + u2�q�9t�5 + 3q�7t�4 + 4q�5t�3+

+ 5q�3t�2 + 6q�1t�1 + 5q1 + 4q3t1 + 3q5t2 + q7t3�
11n158

q5 + q3 + u2�q1t�2 + 2q3t�1 + 2q5 + 4q7t1+

+ 3q9t2 + 4q11t3 + 3q13t4 + 2q15t5 + q17t6�
11n159

q�1 + q�3 + u2�q�15t�7 + 3q�13t�6 + 4q�11t�5+

+ 6q�9t�4 + 6q�7t�3 + 6q�5t�2 + 5q�3t�1 + 3q�1 + q1t1�
11n160

q3 + q1 + u2�2q1t�1 + 3q3 + 4q5t1 + 6q7t2+

+ 6q9t3 + 5q11t4 + 4q13t5 + 2q15t6 + q17t7�
11n161

q3 + q1 + u2�q�1t�2 + 2q1t�1 + 3q3 + 5q5t1+

+ 5q7t2 + 6q9t3 + 4q11t4 + 3q13t5 + 2q15t6�
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Name BN

11n162
q3 + q1 + u2�q5t1 + 3q7t2 + 4q9t3 + 4q11t4+

+ 5q13t5 + 4q15t6 + 3q17t7 + 2q19t8 + q21t9�
11n163

q3 + q1 + u2�q�1t�2 + 4q1t�1 + 5q3 + 7q5t1+

+ 8q7t2 + 8q9t3 + 6q11t4 + 4q13t5 + 2q15t6�
11n164

q5 + q3 + u2�q3t�1 + 2q5 + 3q7t1 + 3q9t2+

+ 5q11t3 + 3q13t4 + 3q15t5 + 2q17t6�
11n165

q1 + q�1 + u2�2q�5t�3 + 4q�3t�2 + 6q�1t�1+

+ 7q1 + 7q3t1 + 7q5t2 + 5q7t3 + 3q9t4 + q11t5�
11n166

q3 + q1 + u2�q�3t�3 + 2q�1t�2 + 4q1t�1 + 4q3+

+ 5q5t1 + 5q7t2 + 4q9t3 + 3q11t4 + q13t5�
11n167

q3 + q1 + u2�q1t�1 + 3q3 + 3q5t1 + 6q7t2+

+ 6q9t3 + 4q11t4 + 5q13t5 + 2q15t6 + q17t7�
11n168

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 4q1t�1 + 6q3+

+ 6q5t1 + 6q7t2 + 6q9t3 + 3q11t4 + 2q13t5�
11n169

q7 + q5 + u2�2q11t2 + 2q13t3 + 2q15t4 + 4q17t5+

+ 2q19t6 + 3q21t7 + q23t8 + q25t9�
11n170

q�1 + q�3 + u2�2q�13t�6 + 2q�11t�5 + 5q�9t�4+

+ 5q�7t�3 + 5q�5t�2 + 6q�3t�1 + 3q�1 + 2q1t1 + q3t2�
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Name BN

11n171
q5 + q3 + u2�3q9t2 + 4q11t3 + 5q13t4 + 6q15t5+

+ 5q17t6 + 5q19t7 + 2q21t8 + 2q23t9�
11n172

q1 + q�1 + u2�q�11t�6 + 2q�9t�5 + 3q�7t�4+

+ 4q�5t�3 + 4q�3t�2 + 4q�1t�1 + 3q1 + 2q3t1 + q5t2�
11n173

q5 + q3 + u2�q1t�2 + 2q3t�1 + 3q5 + 3q7t1+

+ 4q9t2 + 4q11t3 + 2q13t4 + 3q15t5�
11n174

q5 + q3 + u2�2q7t1 + 5q9t2 + 7q11t3 + 8q13t4+

+ 9q15t5 + 7q17t6 + 6q19t7 + 3q21t8 + q23t9�
11n175

q5 + q3 + u2�q3t�1 + 2q5 + 3q7t1 + 5q9t2+

+ 6q11t3 + 5q13t4 + 5q15t5 + 3q17t6 + 2q19t7�
11n176

q�1 + q�3 + u2�q�15t�7 + 2q�13t�6 + 4q�11t�5+

+ 5q�9t�4 + 5q�7t�3 + 6q�5t�2 + 4q�3t�1 + 3q�1 + q1t1�
11n177

q3 + q1 + u2�q�3t�3 + 3q�1t�2 + 5q1t�1 + 6q3+

+ 7q5t1 + 7q7t2 + 6q9t3 + 4q11t4 + 2q13t5�
11n178

q3 + q1 + u2�2q3 + 4q5t1 + 7q7t2 + 8q9t3+

+ 8q11t4 + 8q13t5 + 5q15t6 + 4q17t7 + q19t8�
11n179

q1 + q�1 + u2�q�5t�3 + 3q�3t�2 + 5q�1t�1+

+ 6q1 + 6q3t1 + 7q5t2 + 5q7t3 + 3q9t4 + 2q11t5�
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Name BN

11n180
q7 + q5 + u2�2q11t2 + 3q13t3 + 4q15t4 + 5q17t5+

+ 4q19t6 + 5q21t7 + 2q23t8 + 2q25t9�
11n181

q5 + q3 + u2�2q9t2 + 2q11t3 + 4q13t4 + 4q15t5+

+ 3q17t6 + 4q19t7 + q21t8 + 2q23t9�
11n182

q1 + q�1 + u2�3q�5t�3 + 4q�3t�2 + 7q�1t�1+

+ 8q1 + 7q3t1 + 8q5t2 + 5q7t3 + 3q9t4 + q11t5�
11n183

q7 + q5 + u2�q13t3 + 2q13t4 + 2q15 + q17t5+

+ 2q17t6 + 3q19t7 + q21t8 + 2q23t9 + q25t10�
11n184

q3 + q1 + u2�2q3 + 4q5t1 + 6q7t2 + 8q9t3+

+ 7q11t4 + 7q13t5 + 5q15t6 + 3q17t7 + q19t8�
11n185

q5 + q3 + u2�2q7t1 + 5q9t2 + 8q11t3 + 8q13t4+

+ 10q15t5 + 8q17t6 + 6q19t7 + 4q21t8 + q23t9�
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5. The computation of the s-invariant for some families of links

case < 0 > 0 (Lb12) upper (s-ineq) upper (Lb12) lower (s-ineq) lower

a. h, k, p, r, t —- 2(h + k� 1) 2(h + k) 2(h + k� 3) 2(h + k� 1)
b. h, k, p, r t 2(h + k) 2(h + k + 1) 2(h + k� 2) 2(h + k)
c. h, k, r, t p 2(h + k) 2(h + k + 1) 2(h + k� 2) 2(h + k)
d. h, p, r, t k 2(h + k� 1) 2(h + k) 2(h + k� 4) 2(h + k� 2)
e. h, k, p t, r 2(h + k + 1) 2(h + k + 2) 2(h + k� 1) 2(h + k + 1)
f. h, p, r t, k 2(h + k) 2(h + k + 1) 2(h + k� 3) 2(h + k� 1)
g. h, k, r t, p 2(h + k + 1) 2(h + k + 2) 2(h + k� 2) 2(h + k + 1)
h. k, p, r t, h 2(h + k) 2(h + k + 1) 2(h + k� 3) 2(h + k� 1)
i. p, r, t h, k 2(h + k� 2) 2(h + k� 1) 2(h + k� 4) 2(h + k� 2)
j. h, r, t p, k 2(h + k� 1) 2(h + k) 2(h + k� 3) 2(h + k� 1)
k. h, k p, r, t 2(h + k + 2) 2(h + k + 3) 2(h + k) 2(h + k + 2)
l. h, r k, p, t 2(h + k + 1) 2(h + k + 2) 2(h + k� 2) 2(h + k)

m. k, r h, p, t 2(h + k + 1) 2(h + k + 2) 2(h + k� 2) 2(h + k)
n. r, t h, k, p 2(h + k� 1) 2(h + k) 2(h + k� 3) 2(h + k� 1)
o. p, h k, t, r 2(h + k + 1) 2(h + k + 2) 2(h + k� 2) 2(h + k)
p. p, t h, k, r 2(h + k� 1) 2(h + k) 2(h + k� 3) 2(h + k� 1)
q. r h, k, p, t 2(h + k) 2(h + k + 1) 2(h + k� 2) 2(h + k)
r. h k, p, t, r 2(h + k + 2) 2(h + k + 3) 2(h + k� 1) 2(h + k + 1)
s. p h, k, r, t 2(h + k) 2(h + k + 1) 2(h + k� 2) 2(h + k)
t. —- h, k, p, r, t 2(h + k + 1) 2(h + k + 2) 2(h + k� 1) 2(h + k + 1)

Table 1. Lower and upper bounds on the s invariant of the link l(h, k, p, r, t).

Consider the oriented link diagram L(h, k, p, r, t), drawn in Figure 2. Our aim
is to compute the s-invariant, as far as possible, for this family of links. Of course
the value of s will depend on the sign of the parameters h, k, p, r, t. The writhe
and the number of circles in the oriented resolution of L(h, k, p, r, t) are easily
computed and are

w(L(h, k, r, t, p)) = 2(h + k + p + t + r), o(L(h, k, r, t, p)) = 2(|r|+ |p|+ |t|)� 1.

The other quantities appearing in the Bennequin s-inequalities are listed in Table
1, Table 2 and Table 3. Finally, we list all the simplified Tait graphs coloured in
such a way that negative edges and vertices are blue, positive edges and vertices
are red and neutral edges and vertices are green
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a. b. c.

d. e. f.

g. h. i.

j. k. l.

m. n. o.

p. q. r.

s. t.



APPENDIX C

Self-duality of the Bar-Nathan Frobenius Algebra

Let R be a field, and recall that BN is defined as

A = R[U]hx+, x�i, # : A! R : P(U)x+ + Q(U)x� 7! Q(U),

and the multiplication on A is given by

m(x+, y) = m(y, x+) = y, m(x�, x�) = Ux�,

for each y 2 A. It turns out that the co-multiplication is given by

D(x+) = x+ ⌦ x� + x� ⌦ x+ �Ux+ ⌦ x+,

and
D(x�) = x� ⌦ x�.

Finally, the unit map is defined by

i(1R[U]) = x+.

As mentioned before, we have a natural, non degenerate, pairing (cf. Propos-
ition 1.1) given by the Frobenius algebra structure, and this pairing defines an
isomorphism of RF -modules as follows

F : AF �! A⇤F : a 7! (a, ·) =: a

⇤.

Let us compute x⇤+ and x⇤�. Since AF is free1 it suffices to find their values on x+
and x�. Simple computations show that

x⇤�[x+] = #(m(x�, x+)) = 1, x⇤�[x�] = #(m(x�, x�)) = U,

and
x⇤+[x+] = #(m(x+, x+)) = 0, x⇤+[x�] = #(m(x+, x�)) = 1.

Remark 67. Notice that the canonical duals j±, defined by

j±(x±) = 1, j±(x⌥) = 0,

are such that:
j� = x⇤+, j+ = x⇤•,

where x• = x� � Ux+. In particular, deg(x⇤�) = �1, and deg(x⇤+) = 1. This
imples that BN and BN⇤ are isomorphic as graded Frobenius algebras.

It is not difficult to check that the multiplication table in ABN⇤ is the following.

1A projective module of finite type over a PID is always free, see for example [31, Chapter III
Section 7].
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mBN⇤ x⇤+ x⇤�
x⇤+ x⇤+ x⇤�
x⇤� x⇤� Ux⇤�

Remark 68. The fact that the multiplication table is as above implies that

iBN⇤(1RBN ) = x⇤+.

As an example, we will verify that mBN⇤(x⇤+, x⇤+) = x⇤+, leaving the other cases to
the reader.

mBN⇤(x⇤+, x⇤+)[x+] = (x⇤+ ⌦ x⇤+)[DBN(x+)] =
= x⇤+[x+]x

⇤
+[x�] + x⇤+[x�]x

⇤
+[x+]�Ux⇤+[x+]x

⇤
+[x+] =

= 0 · 1 + 1 · 0�U0 · 0 = 0.
mBN⇤(x⇤+, x⇤+)[x�] = (x⇤+ ⌦ x⇤+)[DBN(x�)] = x⇤+[x�]x

⇤
+[x�] = 1.

Finally, one has to show that #BN⇤(a⇤) = #BN(a), and this completes the proof of
the self-duality property.

#BN⇤(x⇤+) = x⇤+[iBN(1)] = 0, #BN⇤(x⇤�) = x⇤�[iBN(1)] = 1.
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