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Introduction

The obstacle problem consists in finding the minimizer of a suitable energy among all
functions, with fixed boundary data, constrained to lie above a given obstacle. The
obstacle can live in the whole domain, case denoted by classical obstacle, or lives on
a surface of codimension one, case denoted by thin obstacle. In Chapters 2] and [3] we
study the classical obstacle problem, in the case of quadratic energies with coefficients
in Sobolev fractional spaces and linear term with a Dini-type continuity and nonlinear
variational energies rispectively, while in Chapter [f] we analyse a particular case of thin
obstacle i.e. the fractional obstacle problem, where the obstacle is laid in a hyperplane of
the domain and the energies are the weighted versions of Dirichlet energy. In this context
the more renowned research fields are the properties of regularity of the minimizer (see
Chapter |3| which proveides details on the condition for uniqueness of minimizer) and
the regularity of the free boundary, i.e. the boundary of the coincidence set between the
minimizer and the obstacle.

The motivation for studying obstacle problems has roots in many applications for
example in physics and in mechanics; some prime examples can be found in [24,40,63},65|
87].

In order to introduce the subject of thesis we briefly analyse a relevant example: the
behaviour of elastic membrane. Let us suppose that the membrane is stretched such that
it takes the fixed position on the boundary and at the same time does not penetrate
the solid obstacle. In the absence of external forces, the energy of the membrane is in
its deformation energy, i.e. the energy of the membrane is proportional to its surface
area; thus for the “Principle of least action” the problem consists in minimizing the area

functional
/ V14 |Vol2de.
Q

Taking small deformations into account, we can approximate the area functional with
its linearization, so it is possible to analyse the Dirichlet energy in order to simplify the
problem (in Chapter [3[ we analyse the case of area functional without this simplification).
Therefore, we can reduce it to the following formulation:

min / \Vo|? de, (0.1)
Q

’UE]Kw’g

in a domain Q C R", where Ky, := {v € g+ WH2(Q) : v > ¢}, ¢ is the obstacle and
the function g satisfies the condition g > .



In the '60s the obstacle problem was introduced within the study of variational
inequalities (see [65]); in fact it is possible to give a further interpretation of the problem.
It is easy to prove that the minimizer u of problem ((0.1)) satisfies the following condition:

/ VuV(v —u)dz >0 Vo € Ky g- (0.2)
Q

Such inequalities are called wvariational inequalities and they are the inequalities that
involve the first variation of some convex functionals (see in Chapter . Variational
inequalities are a classical topic in partial differential equations starting with the seminal
works of Fichera and Stampacchia in the early '60s. This were motivated by a wide
variety of applications in mechanics and other applied sciences. This subject has been
developed over the last 50 years by the works of many authors; it is not realistic to
give here a complete account: rather we refer the readers to the relevant books and
surveys [5,20%[27,40, 65, 85}(87,/91, /92| for a fairly vast bibliography and its historical
developments.

Standard variational methods prove that a unique minimizer exists which that we
denote as u. The minimizer u, that represents the profile of the membrane in an equilibrium
condition, is a solution of the partial differential equation (see Proposition in

Chapter [2| and Corollary in Chapter |3)):
—Au = (=A%) X{u=y}- (0.3)

Taking the regularity of the minimizer profile into account, the equation provides
the hint to deduce that the function u is at most C!; in fact if we consider the obstacle
¥ = 1—|z|? in By and g = 1/2, then the —Awu jumps from the value 0, when the membrane
does not touch the obstacle, to the value —2 when the membrane coincides with the
obstacle. So it is natural to suppose 1 € C1:!. Furthermore Brezis and Kinderlehrer [12],
Caffarelli and Kinderlehrer [18] and Frehse [38], proved (also in more general framwork)
that the solution u is really C'™!.

The issue about the regularity of the free boundary I'(u) = d{u = ¥} N Q is usually
considered very hard. Note that I'(u) is, a priori, an unknown datum and is a part of the
problem. In the last fifty years much effort has been put into the understanding of the
problem. A wide variety of issues have been analysed and new mathematical ideas have
been introduced. Caffarelli in [15] introduced the so-called method of blow up, inspired by
De Giorgi’s work, in the geometric measure theory for the study of minimal surfaces, in
order to prove some local properties of solutions. This method consists in the introduction
of a sequence of rescaled functions of the solution

(to ) = (W)

r2

and in the study of the limit as r — 0T, where xy € I'(u). This heuristically corresponds
to “zooming” the profile of the function with the factor 1/r near the point xg. The idea
is to analyze the limit when » — 0T, which would correspond to the idea of “infinite



zoom”. The factor of scaling r2, is not randomly choosen, instead with this scaling factor
the function ug, , = W satisfies the same condition of u, in B, instead of By. The
exponent 2 is the Almegren frequency of solution of classical obstacle problem (cf. in
Chapter . The same rescaling factor is used in Chapter [2|in order to study the classical
obstacle problem with more general energies. In Chapter [ we also introduce a sequence
of rescaled functions of the solution to study the properties of a suitable subset of the
free boundary for the fractional obstacle problem. However this rescaling factor has a
different exponent which is still the Almegren frequency of the points of the subset (cf.
section in Chapter .

In order to give some results, related to the regularity of the free boundary, some
assumptions on the obstacle are needed: based on the work of Caffarelli and Riviére [19]
we suppose that the obstacle is concave and considering Blank [6] we assume that 1) is
sufficiently smooth so as to avoid that I'(u) is Reifenberg flat and not smooth. Thanks to
the blow up method Caffarelli distinguished the points of I'(u) in regular and singular
points, respectively denoted by Reg(u) and Sing(u) (cf. Definition in Chapter .
Caffarelli proved that the set of the regular points is locally the graph of a regular function,
and the set of the singular points is locally contained in a C' manifold of lesser dimension.
In Chapters [2| and [3] Theorems [2.7.1] [2.7.3] and [3.1.8| respectively, we prove the results
of regularity for quadratic energies (with the coefficients in Sobolev fractional spaces
and linear term with a Dini-type continuity) and nonlinear variational energies. In the
Theorem in Chapter [] we show a result of regularity of suitable subset of free
boundary for the fractional obstacle problem (see |21, Theorem 7.1] for the regularity
result in the case of nonzero obstacles). Moreover in the recent years Alt, Caffarelli and
Friedman [1], Weiss [95] and Monneau |77] introduced monotonicity formulas that turn
out to be a really good tool to show the blow up property and to obtain the free boundary
regularity in various problems (see [141|20,40.,/65]85,87] for more detailed references and
historical developments).

Recently many authors have improved classical results by replacing the Dirichlet
energy with a more general variational functional and weakening the regularity of the
obstacle (see [23}}30,32-34}75,/78.93,94]). Similar to the aforementioned work in our thesis
we study the classical obstacle problem with quadratic energies and linear terms (that play
the role of “—A4”) with a Dini-type continuity. We prove the regularity of minimizers
and, following the approach of Weiss and Monneau, we establish the quas-imonotonicity
formulas for the adjusted boundary energies. By following Caffarelli’s method of blow up,
and using the quasi-monotonicity formulas as well as the epiperimetric formula of Weiss,
we establish the regularity of free boundary.

This regularity results is the starting point for a further generalizations. In the case
of nonlinear variational energies we extend the previous regularity results thanks to a
suitable linearization argument along with the regularity of free boundary (for quadratic
energies with Lipschitz coefficients). To this aim we establish the optimal regularity of
solutions to nonlinear, nondegenerate variational inequalities.

Finally, we study the regularity of the free boundary for the fractional obstacle



problem. We prove an epiperimetric inequality and deduce the regularity of a suit-
able subset of the free boundary as a consequence of a decay estimate of a boundary
adjusted energy “a la Weiss”, the non degeneracy of solution and the uniqueness of blow up.

What has been touched upon above will be now discussed in more detail in the
following compendia. Each compendium sums up the contents of a corresponding paper
annexed to this thesis. The contents of Chapter 2,3 and 4 respectively are the argument
of papers [48], [35] and [49], and are the result of a research activity over three years of a
PhD, supported by Universita di Firenze, Universita di Perugia, INdAAM consortium in
the CIAFM, in collaboration with Matteo Focardi and Emanuele Spadaro.

Compendium of Chapter 2

In this chapter we study the problem of regularity of minimizers and of the related free
boundary of the following energy

£(v) = /Q ((A(2)Vo(z), Vo(a)) + 2f (@)o(z)) dx, (0.4)

for all positive functions with fixed boundary data, where 2 C R” is a smooth, bounded
and open set, n > 2, A : Q — R™*™ is a matrix-valued field and f :  — R is a function
satisfying:

(I1) A € WHsP(Q; R"*") with s > % and p > #ﬁ)fl Anors=0and p = +oo,
where the symbol A indicate the minimum of the surrounded quantities;

(12) A(z) = (aij(x))ijzl _,, is symmetric, continuous and coercive, that is a;; = aj; L"
a.e. Q and for some A > 1 i.e.

ATHEP < (A(m)€, €) < AJ¢)? L ae. Q, VE€RY (0.5)

(I3) f is Dini-continuous, namely if w(t) = sup|,_, <, |f(z) — f(y)| is the modulus of
continuity of f, w satisfies the following integrability condition

/01 “’f)dt < o0 (0.6)

(I4) there exists ¢p > 0 such that f > ¢o.

In Remark we will justify the choice of p in hypothesis (I1). We note that we are
reduced to the 0 obstacle case, so f = div(AV7)).

Later in this chapter we prove that the unique minimizer, indicated below by wu, is
the solution of an elliptic differential equation in divergence form, and with the classical
PDE’s regularity method, we deduce that u is Holder continuous and D?u has opportune
sommability. To prove the regularity of the free boundary I'), = 0{u = 0} N Q, we



apply the method of blow up introduced by Caffarelli [15|. For all 2y points of the free
boundary T',, = 9{u = 0} N Q we introduce a sequence of rescaled functions and, through
a O estimate of rescaled function (for a suitable v € (0, 1)), we prove the existence of
sequence limits; these limits are called blow ups. To classify the blow ups and to prove
the uniqueness of the sequence limit for all points of I', we introduce a technical tool:
the quasi-monotonicity formulas. To simplify the notation we introduce, for all zg € 'y, a
suitable change of variable for which, without loss of generality, we can assume:

zo=0€ly, A(Q)=1I, f(0)=1 (0.7)

As in |34] we introduce the auxiliary energy “a la Weiss”

O(r) = /B(<A(Tx)Vur, Vu,) + 2f(rz)u,) de + 2/

0By

LT\ 2 gm—1
<A(T‘l‘)|x|, 2] > us dH

and prove the main results of this chapter:

Theorem 0.0.1 (Weiss’ quasi-monotonicity formula). Assuming that (I1)-(14) and (0.7))
hold. There exist nonnegative constants Cs and Cy, independent from r, such that the
function

_ _n T n t - 1_n
r— O(r) eCor' O | Cy / <t_® + wi)) eCat' O gy
0

with the constant © given in equation (2.64)), is nondecreasing on the interval (0, 3dist(0, Q) A 1).
More precisely, the following estimate holds true for L'-a.e. r in such an interval:

d <<I>(7’) 6637“17% + Cy / (t_g + w(t)) e(jﬁk% dt>
d?" 0 t

- 1_n
266’37’1 [S)

, (0.8)
-1 u n—1
> o /88Tu<<,u Av,Vu) 27‘) dH" .

In particular, the limit ®(07) := lim,_,o+ ®(r) exists and it is finite and there exists a
constant ¢ > 0 such that

B(r) — (07)
> ®(r) 60_3T1_% + Cy /07“ (t_g + wfﬁt)) €é3t1_% dt — ®(07) — ¢ (Tl_% —i—w(r)) :
(0.9)

Theorem 0.0.2 (Monneau’s quasi-monotonicity formula). Assume (I1)-(13) and (0.7).
Let w be the minimizer of € on K, with 0 € Sing(u) (i.e. holds), and v be a
2-homogeneous, positive, polynomial function, solution of Av =1 on R™. Then, there
exists a positive constant Cs = Cy(A, ||Al|ws») such that

r— (uy —v)* dH" 1 + Cs (7“(17%) + w(r)) (0.10)
0B1



is nondecreasing on (0, 3dist(0, 02) A 1). More precisely, L*-a.e. on such an interval

CZ(/BBI(U )H”1+C5(18+/ ))
e e [ (42 o)

where W, (1) := [z (IVo]* +20) dz = 2 [,p v* dH" 1.

Weiss’” quasi-monotonicity formula allows us firstly, to deduce the 2-homogeneity of
blow ups and together with the nondegeneracy of the solution, proven by Blank and
Hao [8] in a more general setting and secondly, to determine that the blow ups are not
null. Thanks to a I'-convergence argument and according to Caffarelli’s classification of
blow up, in the classical case (see [14}|15}/17]), we can classify the blow up types and so
distinguish the points in I'(u) as regular and singular (respectively Reg(u) and Sing(u),
see Definition .

Following the energetic approach by Focardi, Gelli and Spadaro |34] we prove the
uniqueness of blow ups for both the regular and the singular cases. In the classical
framework, the uniqueness of the blow-ups can be derived, a posteriori, from the regularity
properties of the free boundary (see Caffarelli [15]). In our setting we distinguish two cases:
xo € Sing(u) and xg € Reg(u). In the first case, through the two quasi-monotonicity
formulas and an “absurdum” argument, we prove the uniqueness of blow-ups providing a
uniform decay estimate for all points in a compact subset of Sing(u). In the second case,
we need to introduce an assumption, probably of a technical nature, on the modulus of
continuity of f (more restrictive than double Dini continuity, see |78, Definition 1.1]):

(13)" Let w(t) = supj,_y<; | f(z) — f(y)| be the modulus of continuity of f and set a > 2
the following condition of integrability is valid

1
/ wir) |logr|* dr < oc. (0.12)
0

So, thanks to the epiperimetric inequality of Weiss [95] we obtain a uniform decay estimate
for the convergence of the rescaled functions with respect to their blow up limits. We recall
that Weiss |95| proved the uniqueness for regular points in A = I, and f = 1. Focardi,
Gelli and Spadaro [34] also had proved our same result for A Lipschitz continuous and
f Holder continuous. Monneau |78| proved the uniqueness of blow-ups both for regular
points and for singular points with A = I, and f with Dini continuous modulus of mean
oscillation in LP. Therefore, without further hypotheses, in the regular case and adding
double Dini continuity condition on the modulus of the mean oscillation, Monneau gave a
very accurate pointwise decay estimate, providing an explicit modulus of continuity for
the solution.
These results allow us to prove the regularity of the free boundary:



Theorem 0.0.3. We assume the hypothesis (I1)-(13). The free boundary decomposes as
'y = Reg(u) U Sing(u) with Reg(u) N Sing(u) = 0.

(i) Assume (I3). Reg(u) is relatively open in 0{u = 0} and for every point xg € Reg(u).
there exists r = r(xg) > 0 such that T, N B,(z0) is a C* hypersurface with normal
versor  is absolutely continuous with a modulus of continuity depending on p defined

in [@.118).

In particular if f is Holder continuous there exists r = r(xg) > 0 such that T',N B, (z)
is CYP hypersurface for some universal exponent B € (0,1).

(ii) Sing(u) = UZ;éSk (see Deﬁm'tion and for all x € Sy, there exists r such that

Sk N By(z) is contained in a regular k-dimensional submanifold of R™.

The natural sequel of these results is the study of the obstacle problem for nonlinear
energies. The aims for future developments are presented in Chapter [3] and contained
in [35] where the author, Focardi and Spadaro prove an exhaustive analysis of the free
boundary for nonlinear variational energies as the outcome of analogous results for the
classical obstacle problem for quadratic energies with Lipschitz coefficients.

This chapter is organized as follows: in Section [2.I] we prove the existence, the
uniqueness and regularity of minimizer u. In Section [2.2] we introduce the sequence of
rescaled functions, prove the existence of blow-ups and state a property of non degeneracy
of solution of obstacle problem. In Sections and respectively we prove the quasi-
monotonicity formulas of Weiss and Monneau. In Section [2.4] we prove the 2-homogeneity
and the non zero value property of blow ups, we classify the blow ups and distinguish
the point of the free-boundary in regular and singular. In Section [2.6fwe deduce the
uniqueness of blow ups in case of regular and singular points. In Section [2.7] we state the
the properties of regularity of free boundary.

Compendium of Chapter 3

Chapter 3 is devoted to the analysis of nonlinear energies. In order to introduce the
problem, let ¢ and g be given functions in W1P(Q), p € (1, 00), with g > 1 L™ a.e. on Q
and set

Kyg:={veg+ Wol’p(Q) v > L"ae. on Q}. (0.13)

Consider a smooth coercive vector field (ag,a) : @ x R x R® — R x R™ according
to |65, Definition 3.1 of Chapter IV] and |91, Chapter 4] (cf. Section for the precise
definitions and the necessary assumptions). The existence of a solution u € Ky, 4 of the
problem

/ a(z,u,Vu) - V(v —u)dx +/ aop(z,u, Vu)(v — u)dz > 0 for all v € Ky 4, (0.14)
Q Q

is well-known (cf. |65}, Section 4 of Chapter III] if p = 2 and [91, Chapter 4] otherwise) and
shortly recalled in Section [3.1] below. Under suitable hypotheses on the fields, classical



results ensure optimal regularity for u, i.e. u € C’llo’cl(ﬂ), as long as ¢ € Cllg’cl (Q) (cf. for
instance |91, Sections 4.5-4.6| in the quadratic case, and |92 in general).

The prototype example we have in mind is that of nonlinear variational problems

min /F(:E,U,Vv)dx (0.15)
vEKy . ¢ JO

which leads to a variational inequality of the form with a = V¢F and ag = 0. F),
under suitable assumptions on F' = F(x, z, ) such as global smoothness, convexity and
p-growth in the last variable (cf. Theorem below for the precise assumptions on F).

The aim of this chapter is to perform an exhaustive analysis of the free boundary,
i.e. the set d{u = ¢}, for the broad class of obstacle problems introduced in (0.15)), and
to establish a parallel with the known results in the quadratic case as developed by
Caffarelli [17], Weiss [95] and Monneau [77] (cf. Theorem for the statement).

The sharp analysis and stratification of the free boundary we provide is an outcome of
a suitable linearization argument (cf. Lemma below) and of the analogous results,
for the classical obstacle problem, for quadratic energies with Lipschitz coefficients. This
was recently proven in |34] and improved in the case of coefficients, in fractional Sobolev
spaces which we prove in Chapter [2[ and state in Theorem m (cf. Theorems and
. It corresponds to the case F(z,§) = A(x)¢ - € in (0.15)), with A € Lip(Q,R™*")
which defines a continuous and coercive quadratic form.

As a direct outcome of Theorem [0.0.3| we shall deduce the analogous result for solutions
of (cf. Theorem . Furthermore, adding suitable assumptions on the data of
the problem, we can provide similar conclusions in case of the vector field V¢ F which is
more generally locally coercive, thus including in our analysis, the important case of the
area functional.

Non-optimal regularity for solutions is a classical topic well-known in literature, at
least in the quadratic case p = 2, which has been established in several ways such
as: by penalization methods (cf. [70], [13], [11]), by Lewy-Stampacchia inequalities
(cf. [81], [80], [60], [39], [91]), by local comparison methods (cf. [52]), by introducing a
substitute variational inequality (cf. [57]), and by the linearization method (see [41,/42]).
By following the streamline of ideas of the latter technique introduced in [41], we provide
an elementary variational proof valid in the general framework of nonlinear variational
inequalities under investigation. In particular, we show that solutions of satisfy a
nonlinear elliptic PDE in divergence form and in turn, from this, suboptimal regularity
can be established (for further comments cf. Section in Chapter [3)). Finally, we are
able to establish optimal regularity following Gerhardt [50| (see [12,/18}38] for the classical
results). In addition, we remark that solutions to are actually Q-minima of a
related functional according to Giaquinta and Giusti [53}54].

Furthermore, in the case of the area functional, we can prove that solutions to the
obstacle problem are actually almost minimizers of the perimeter, thus leading by a
well-known theory of minimal surfaces (cf. [90]) to estimates on the gradient of the
solutions which bypass the global approach by Hartman and Stampacchia [61] exploiting
the bounded slope condition and the construction of barriers.



A short summary of the contents of the chapter is resumed in what follows: in
Section [3.I] we introduce the necessary definitions to state the main result of the paper,
Theorem [3.1.8] and show how the latter follows directly from Theorem [0.0.3] In doing this,
we shall first review almost optimal and then optimal regularity in the broader setting
of solutions to variational inequalities driven by coercive vector fields as in (0.14]) (cf.
Theorems and , and then develop in details the analysis of the free boundary
in the variational case in . Finally, in Section we highlight the required changes
to deduce similar conclusions for the case of locally coercive vector fields, and also analyse
the case of the area functional in a Riemannian manifold.

Compendium of Chapter 4

In this Chapter we study the fractional obstacle problem. It consists in the minimizing of
energy

E(v) ::/ |Vo|? 2 dz, (0.16)
B

among all functions in the class of admissible functions
A, :={ve H (B ,a) : v>00nB},v=gon(dB;)"}, (0.17)

where H'(A, 1) is the weighted Sobolev Space and i, is the measure p, 1= |7,|* L By
with a € (—1,1).

Let u € argming &; we denote by I'(u) := 9{(Z,0) € By : u(#,0) = 0} N By its free
boundary. Caffarelli and Silvestre in [22] showed that the minimum wu is the solution of

u(f, 0) >0 T € B

u(Z, zy) = u(Z, —xy)

div(|an|* Vu(Z,2,)) =0  x € B\ {(Z,0) : u(z,0) =0}
div(|z,|® Vu(Z,x,)) <0 € By in distributional sense.

(0.18)

and this problem is equivalent to the study of the classical obstacle problem in R*~! for
fractional Laplacian (A)® with s € (0,1), a = 1 —2s. Silvestre in [88] proved the existence
and uniqueness of the solution. Caffarelli, Silvestre and Salsa in |21]| proved the regularity
of a suitable subset of the free boundary. In this Chapter we give an alternative proof of
their result.

In order to establish the regularity of free boundary we recall a Almgren frequency
type function for all points (see |4] for s =1/2). zp € T'(u)

7 Sy (o) [Vl |2
= faBr(m) u? || dH 1

NI (r,u) : (0.19)

Caffarelli and Silvestre [22] proved the monotonicity of function r — NZO(r,u) and
some of its properties such as, the property of being constant oevr all homogeneous
functions; the two authors and Salsa [21]| established the property of the frequency

10



function of being bigger than 1 + s. Thus it is possible to define the frequency of u
in zg as N2(0", u) := lim,_,o+ N2 (r,u) and denote by I'1;s(u) the points of the free
boundary with less frequency i.e. 14 s. In order to prove the regularity of the set I';4¢(u),
proceeding as in classical obstacle problem we introduce a sequence of rescaled functions

ulxT T 1. N .
Up pg = % and an auxiliary energy “a la Weiss”

1 1+ s

x N 2 a 2 a n—1
Wits(ru) == 7"”“/3,«(950) V[ |2,|* do — ?m—H/(9Br($O) |ur | |2a|* dH™ ™, (0.20)

that is the sum of a volume energy and a boundary energy. We note that, as in Chapter [2]
the frequency of points of the free boundary examined (1 + s in this case and 2 in the
classical obstacle problem) is the exponent of the rescaled factor of sequence uy, , and
the coeflicient of boundary energy. The existence of blow ups is a consequence of a
gradient estimate of rescaled function in L?(Bj, g ); reasoning by contradiction, thanks
to properties of the frequency and the optimal regularity of the solution we prove the
(1 + s)-homogeneity of blow ups. So, according to a result of classification of Caffarelli,
Salsa and Silvestre [21] we state the result of the clasification of (1 + s)-homogeneous
global solutions of the fractional obstacle, which constitute the following closed cone

H1rs:={A\he 1 €S2 N €[0,4+00)} C HL(R™, ua),

with

he(z) = <5_1§~ e— V@ er+al) (V@ er+al+7 e)s .

The key result presented in this chapter is a Weiss’ epiperimetric inequality for
fractional obstacle problem (cf. [95, Theorem 1] and Theorem in Chapter [2)).

Theorem 0.0.4 (Epiperimetric inequalities). Let 0 € I'14s(u). There ezists a dimensional
constant k € (0,1) such that if c € H(B1,pa) is a function (1 + s)-homogeneous for
which ¢ > 0 on Bj then

jnf W (1,0) < (1 —r)WE,(1,0).

We follow the variational approach of Focardi and Spadaro |36], for the case a = 0.
The two authors outline the presence in their proof of two competing variational principles
that contribute to the achievement of proof.

Thanks to an homogeneous argument we can reduce Theorem to prove the result
with an extra condition of nearness between the function ¢ and the cone of global solution
H14s- By contradicting the nearness assumption we obtain a quasi minimality condition
for a sequence of auxiliary functionals. With an argument of I'-convergence we inspect the
I'-limits of the sequnce of auxiliary energies and analyse their minimizer that represents
the directions along which the epiperimetric inequality may fail. With variational method
we obtain that such minimizers show in the same time contradictory relationship with
the cone $14s.
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The epiperimetric inequality is a key ingredient to deduce the following decay estimate
of energy:
Wit (ru) < Cr7, (0.21)

where C' and v are positive constants. Thanks to the decay estimate we prove a
property of nondegeneration of solutions, from which we deduce that the blow ups are not
null. Proceeding as in Chapter [2] we prove the uniqueness of blow ups and the regularity
of T'14s(u).

What follows is a summary of the structure of this chapter: in section introducing
the frequency and its properties we define I'145(u) the subset of free boundary with
low frequency. In section prove the existence and (1 + s)-homogeneity of blow ups
in the points in I'14s(u) and in section [4.3] thanks a result by [21], we characterize
the (1 + s)-homogeneous global solution of fractional obstacle problem. Scetion is
devoted to establish the epiperimetric inequality and its consequences in the framework
of regularity of free boundary, a decay estimate of an auxiliary energy, the nondegeneracy
of the solution and the uniqueness of the blow ups. In sectionfd.5 we prove the regularity
of T144(u).

Comparisons with existing literature

Theorems [0.0.1] and [0.0.2] generalize the results of Weiss [95] and Monneau |77]. Weiss’
monotonicity formula which was proven by Weiss |95] for A = I, and f = 1; in the same
paper he proved the celebrated epiperimetric inequality (see Theorem and gave
a new way of approaching the problem of the regularity for the free boundary. In [84]
Petrosyan and Shahgholian proved the monotonicity formula for A = I, and f double Dini
modulus of continuity (but for obstacle problems with no sign condition on the solution).
Lederman and Wolanski [68| provided a local monotonicity formula for the perturbated
problem to achieve the regularity of Bernoulli and Stefan free boundary problem, while
Ma, Song and Zhao [72| showed the formula for elliptic and parabolic systems in the
case in which A = I,, and the equations present a first order nonlinear term. Garofalo
and Petrosyan in [45] proved the formula for the thin obstacle problem with a smooth
obstacle. The two authors together with Smith Vega Garcia in [46] proved the result for
Signorini’s problem under the hypotheses A € W1 and f € L. Focardi, Gelli and
Spadaro in [34] proved the formula for the classical obstacle problem for A € W1 and
f e C% for a € (0,1). In the same paper (under the same hypotheses of coefficients)
the three authors proved a generalization of the monotonicity formula introduced by
Monneau [77] to analyse the regularity singular point (see Definition [2.4.6). Monneau
in [78] improved his result; he showed that his monotonicity formula holds under the
hypotheses that A = I,, and f with Dini continuous modulus of continuity (in average
LP). In [45] Garofalo and Petrosyan showed the formula of Monneau for the thin obstacle
with a regular obstacle. In our work (inspired by [34]) we prove the quasi-monotonicity
formulas under the hypotheses, (11)-(/4) improving the results with respect to current
literature. As we will see in Corollary if ps > n the immersion W1TsP s Wi
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holds true. Consequently, we assume sp < n and we obtain an original result not covered
by [34] if p > 71(%‘29)—1 An (we can observe that (#i)_l An) < 2 for all s € R).

In order to justify the choice of regularity of the coefficients of A and f we discuss the
hypotheses (I1) and (I3).

The hypothesis (I3) turns out to be the best condition to obtain the uniqueness of
blow up. In fact when condition is not satisfied, Blank gave in [6] an example of
non uniqueness of the blow up limit in a regular point. Monneau observed in [77] that
using the symmetry = — —x, it is easy to transform the result of Blank in an example
of non uniqueness of the blow up limit in a singular point when condition is not
satisfied. Therefore, in the same paper Monneau asked if is a sufficient condition to
ensure the uniqueness of the blow up limit in singular points (in case in which A = I,,):
with Proposition [2.6.1] we answer positively to his question, not only in the Laplacian
case, but also when the matrix of coefficients A satisfies the hypotheses (I1) and (12).

Before taking into account hypothesis (/1) we need to clarify the relationship between
the regularity of coefficients A, f and the regularity of the free boundary. Caffarelli [14]
and Kinderlehrer and Nirenberg [64] proved that for smooth coefficients of A and for
f € C*' the regular points are a C'»*-manifold for all a € (0,1), for f € O™ Reg(u) is a
C™ e manifold with « € (0,1) and if f is analytic so is Reg(u). In [6] Blank proved
that, in Laplacian case with f Dini continuous, the set of regular points is a C''-manifold,
but if £ is C°, but is not Dini continuous, then Reg(u) is Reifenberg vanishing but not
smooth. In [34] Focardi, Gelli and Spadaro proved that if A € W and f € C%* with
a € (0,1) Reg(u) is a CYP-manifold with 8 € (0,«). A careful inspection of the proof
of [34, Theorem 4.12] shows that in the case of A € W1 and f =1 the regular set turns
out to be a CY#"-manifold with 8’ € (0, %), so, despite the linear term being constant, the
regularity improves slightly but remains in the same class. Blank and Hao in |7| proved
that if a;;, f € VMO, any compact set K CC Reg(u) N B% is relatively Reifenberg
vanishing with respect to Reg(u) N B 1. So the regularity of the regular part of the free
boundary turns out to be strictly related to regularity of coefficients of matrix A and the
linear term f. In Chapter [2| we suppose the matrix A € WP if f is Holder continuous
we obtain that the regular part of the free boundary is a C'#-manifold for some £, while
if f satisfies hypothesis (I3) we prove that Reg(u) is a C'-manifold.

So the process of weakening the regularity of coefficients goes along two directions:
to obtain a strong or a weak regularity of the regular part of the free boundary. Our
work forms part of the first way and with the technical hypothesis (I3)" for f, which
is better than Holder continuity, and by hypothesis (1) of matrix A, we improve the
current literature. The best regularity for A that allows us to have a strong regularity of
Reg(u) still remains, to our knowledge, an open problem. Regarding the best regularity
for f, from 6] we know that it is the Dini continuity; we do not reach it but we improve
the already investigated condition of Holder continuity.

Taking the epiperimetric inequality into account, Weiss proved this result in [95] in
the classical obstacle case. With a similar proof Garofalo, Petrosyan and Smith Vega
Garcia |46] proved the epiperimetric inequality for the Signorini’s problem with variable
coefficients. Independently Focardi and Spadaro [36] proved the same result for the
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Signorini’s problem with a variational approach; by following the approach of [36] we
prove the inequality in the case of the fractional obstacle problem. Recently Garofalo,
Petrosyan, Pop and Smith Vega Garcia [44] proved an epiperimetric inequality for the
fractional obstacle problem with drift in the case of s € (1/2,1). In the case whitout drift
we prove the inequality for all s € (0,1) and moreover our result is stronger as we do not
need any closeness assumption to the cone of blow ups. Instead, Garofalo et al. prove
that there exists k € (0,1) sucht that, if v is a blow up and w is a (1 4 s)-homogeneous
function near v in H'(Bjy, j1)-norm for which w > 0 on Bj, there exists a function w,

W = w on 0By, for which (cf. [2.102in Chapter

Wik (1,@) < (1= 1) W (1,0). (0.22)
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Chapter 1

Preliminaries

1.1 Fractional Sobolev spaces

In order to fix the notation we recall the definition of fractional Sobolev spaces. See [26,[71]
for more detailed references.

Definition 1.1.1. For any real A € (0,1) and for all p € [0,00) we define the space

Wwﬂﬂy:{veLWQy“f)yvgﬂeLWQxQ%, (1.1)

i.e, an intermediary Banach space between LP(Q) and W1P(Q), endowed with the norm

1
W) v
||'U||W>\p(Q) (/ |v|pdx+//QXQ |$_y‘n+>\p dedy | .

If A > 1 and not integer we indicate with |\] its integer part and with o = A — [A] its
fractional part. In this case the space WP consists of functions u € WIN» such that
the distributional derivatives D% € WP with |a| = |A]

D“()\

WAP(Q) = %GWWH) [D%v(@) =

" ’ € LP(Q2 x Q), Yo such that || = L/\J} .
-y

WAP(Q) is a Banach space with the norm

[ollwany = [ 118y + 3o 1D%0len)
la|=[A]

As in the classical case with A being an integer, the space WP is continuously
embedded in W*? when X < \; the next proposition sums up |26, Propositions 2.1, 2.2
and Corollary 2.3]
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Proposition 1.1.2. Let p € [1,00) and 0 < X < A\. Let  an open set in R™ and v a
measurable function. Then

||’UHW>\’»p(Q) < Cllollwar () (1.2)
for some suitable positive constant C' = C(n,p,\) > 1. In particular
WAP(Q) € WYP(Q). (1.3)

Di Nezza, Palatucci and Valdinoci in [26] gave a proof of a fractional version of classical
extension and immersion theorem.

Theorem 1.1.3 ( [26, Theorem 5.4]). Letp > 1, A € (0,1) and Q@ C R™ an open set of
class C%' with bounded boundary. Then W P(Q) is continuously embedded in WHP(R™),
namely for all v € WAP(Q) there exists a © € WP(R") such that v = U)o and

10][wrr@ny < Cllollwarqy, (1.4)
where C' = C(n,p, A\, Q).

Theorem 1.1.4 ( |26, Theorems 6.7, 6.10 and 8.2|). Let A € (0,1) and Q@ C R™ an open
set of class CO1 with bounded boundary. Then we can distinguish three cases:

(i) if Ap < n there exists a positive constant C = C(n,p,\,Q) such that for all
v € WMP(Q) we have
[vllza) < Cllvliwrray), (1.5)
for any q € [p,p*], with p* := p*(n,p,\) = nfl;\p; i.e. WM(Q) is continuously
embedded in L1(QY) for any q € [p, p*].

(ii) if A\p = n there exists a positive constant C = C(n,p,\,Q) such that for all
v € WAP(Q) we have

[vllLa@) < Cllvllwrr (o) (1.6)
for any q € [p,00); i.e. WM(Q) is continuously embedded in Li(Q)) for any
q € [p,00).
(i4i) if \p > n there exists a positive constant C = C(n,p, Q) such that for allv € WP(Q)
we have
[vllcoa@) < Cllvllwreg), (1.7)
. . Ap—n
with a = =

The following proposition is proved by Leoni [69] in the framework of Besov space;
according to Theorem we can extend [69, Theorems 14.22 and 14.32| to the case in
which €2 is enough regular.
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Proposition 1.1.5 ( [69, Theorems 14.22 and 14.32]). Let v € WAP(Q) with A € (0,1),
1 <p<oo, ph <n and Q C R™ be an open set of class CO' with bounded boundary.
Then for all 0 < t < X there exists a constant C = C(n, A\, p,t,2) for which
ot g < C Nl (18)
ot g < € oo (19)
We state three results on the Sobolev fractional spaces useful for what follows. Theo-
rems [1.1.6| and [1.1.8] are proved, respectively in [82] and [89], for Besov spaces; thanks
to [89, Remark 3.6] and [69, Theorem 14.40| we can reformulate these results in our
notations. Theorem is obtained combining classical Morrey theorem, [26, Theorem
8.3] and Theorem [L.1.6]

Theorem 1.1.6 ( [82, Theorem 9] and [26, Theorem 6.5]). Let v € WAP(Q) with A > 0,
1 <p<oo, ph <n and Q C R™ be an open set of class CO' with bounded boundary.
Then for all 0 < t < X there exists a constant C = C(n, A\, p,t,Q) for which

ol s 50 < Cvllwrr -

Ift = 0 there exists a constant C' = C(n, \,p, Q) for which

o S Clvllwrr -
Proof. Let now A = |A| + 0 and t = |t] + 7 be. We analyze the various cases:
e if [A\| = [¢] and 7 > 0 we have the thesis for (L.§);
e if [\ =[¢t] and 7 = 0 just apply to D% with |a| = [A];
e if [A\| > |t] since p(A —t) < n also po < n, then applying the first item of
Theorem to D%u with |a| = |\] we have
wAr(Q) o W ().
Now we have two cases:
—if [t] = [A] = 1 by (L9)
WAP(Q) s W (Q) o Whoomr (),

np
n—op

P n— (A0

n—op

np
because D)

— if [t] < |A| —1 applying the classical immersion theorem to D%u wiht |a| = |¢]
we have - -
WwAe(Q) — WM () o witth=osto=m

TLT)

(=]~ 1)n"’;p
are in the previous case with |A| = [t| + 1.

because O = To conclude just observe that we
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O

Theorem 1.1.7. Let p € [1,00) such that pA > n and Q C R™ be an extension domain
for WAP_ Then, there exists a positive constant C = C(n,p, \,Q), for which

[vllona < Cllvllwre gy, (1.10)

for allv € LP(Q) with o € (0,1) and some h integer with h < |\].

Proof. (i) If op > n, from the third item in Theorem LMf € % wiht o = ot
and holds
I9 o < IV fllwos < Cllfllyns.

In the same way for all k < [A] it holds f € W*+oP g0

IV flcon < Cllfllwrtar < Cllfllwrsan

Whence, up to a product by constant
Ifllctane < ClIfllwas-
(ii) If op < n then |A| > 1. For Corollary

1Al 0,22 < Clf s (1.11)

n—op

We observe that pA > n then also % > n, so for Morrey theorem

A

71 oy 22 1.0 < IS

P
Then by (1.11)) we have

171 s 5] 0 < Ol wnre

(iii) If op = n then [A] > 1. For all ¢/ < o, due to definition of fractional space and
thanks to Corollary

71 oz < IF aor 2 < Cllf s (112

n—a'p T —o'p T

Then since o’p < n, for (ii) we have

1oy 5ot -1 S CllF s

We shall state a trace result for fractional Sobolev spaces. (see [71]).
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Theorem 1.1.8 ( [89, Theorem 3.16]). Letn >2, 0 <p < oo, A > 1% and U a bounded
C* domain, k > X in R™. Then there exists a bounded operator

o WANP(U) — WA P(9U; H™ ), (1.13)
such that 7o(v) = vjgy for all functions v € WP (U) N C(U).

Remark 1.1.9. Let p, A\ be exponents as in theorem [1.1.8) pA < n and o := X — |A]. If
U = B,, we see how the constant of the trace operator changes when the radius r changes.
By taking into account Theorems [I.1.8 and [I.1.6] we have the following embeddings

WAP(B,) s W2 (8B,; H* 1) < LYOB,; H" ).

Then, setting v,(y) = v(ry)

/ o (w) (@) dH™ V2L gt / o (vr) (y)] dE
OB,

0B1

1
p D
TL 1 E de+// |UT ( )| dde)
o < |<|_>\ /B ’ leBl |y_z|n+0'p

EOarI Y D@ do v o) = vl 547
- B.xB, \w—w\”+"p

la[<[A]

< Cr" T ol s,)-

Hence ;
Y0 L1 @B, mn-1) < Cr" " e w |[vllyasp,)- (1.14)
pr<nletw<t<)\ie n- t < A, of note that A > =3 if and only
if A > . We infer by T heorems n and n the following

n—(A—t

Ap (e ¢ vy -2t —np . pn—1 1 . n—1
WAP(B,) < WhnGoms (B,) s W w0008 (9B,; H' 1) < LY(9B,; H™ V).

Applying the same reasoning to deduce (1.14)), in particular we achieve

7o)l 1 @By Hn-1y < C 1" wh =B (5, (1.15)
1.2 Theory of elliptic PDEs
We consider the operators L of the forms
L(v) = div(A(z)Vv) 4+ b(z) - Vv + ¢(x)v, (1.16)

where the coefficients of matrix A = (a¥/), the coefficients of the vector b = (b’) and c are
assumed measurable functions on a domain 2 C R™.
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The function v satisfies in weak or in generalized sense the equation L(v) =0 (< 0,> 0)
respectively in € if

L(v,p) = /Q ((A(:E)Vv) Vi — (b(z) - Vv + c(:n)v)gp) dr =0 (<0,>0)  (1.17)

for all non negative functions ¢ € C3(Q). Let h: @ — R™, [ : Q — R be locally integrable
function on 2. The function v is called a weak or generalized solution of inhomogeneous
equation Lv = D;h? + 1 if

L(v,p) = /Q (h(m) -V — l(x)cp) dx, Yo € CL(Q). (1.18)

We state a result on the generalized Dirichlet problem. We shall assume that L is strictly
elliptic, or rather there exists A > 0 such that

(A(2)€,€) > NEI?, VzeQ, £eR™ (1.19)
We also assume that the coefficients are bounded: there exist A, > 0 such that

Z la¥ (x)]? < A%, A QZ b(z) 2+ [e(2)|?) + A d(z)] < v?, Vo e Q. (1.20)

A function v € W2(Q) will be called solution of generalized Dirichlet problem

{ Lv =div(h) +1 in Q (1.21)

v=¢ on 0X)

if v is solution of (1.18) and v — ¢ € Wol’Q(Q).
In what follows we will request a weak condition of non-positivity of ¢; we assume

/ codr <0 Yo >0,0e Wy (Q). (1.22)
Q

We state a classical uniqueness result of the weak solution.

Theorem 1.2.1 ( |55, Theorem 8.3]). Let the operator L satisfy the condition (1.19),
(T.20) and (1.22). Then for ¢ € WL2(Q) and div(h),l € L*(Q) the generalized Dirichlet
problem, Lv =1+ div(h) in Q, v = ¢ on IQ is uniquely solvable.

The following two Theorems are a local a priori boundness and a weak Harnack
wnequality for supersolution.

Theorem 1.2.2 ( [55, Theorems 8.17|). Let the operator L satisfy the condition (1.19)),
([.20) and suppose that h € LY(Q;R™) and 1 € L2 for some ¢ > n. Then if v is a W12
subsolution (supersolution) of equation (1.18)) in 2, we have, for any ball Bag(y) C Q2
and p > 1

sup () <O (B o ) lnBanoy + A (B hlla+ B2 4) ) (1.23)
R\Y

where C = C(n, %, vR,q,p).
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Theorem 1.2.3 ( [55, Theorems 8.18|). Let the operator L satisfy the condition (|1.19)),
(1.20) and suppose that h € L1(Q;R™) and | € L3® for some ¢ > n. Then if v is a W]L 2
supersolution of equation (L.18)) in Q, non-negative in a ball Byr(y) C Q and 1 < p < 15,
we have

R_;HUHLP(BQR(?;)) < C, (Biél(fy)v + )\_ ( 1_*HhHLq + R 1—7)HZH q)> (1.24)

where C' = C(n, %, vR,p,q).
The next two Theorems are the Holder regularity results of the gradient of the solution.

Theorem 1.2.4 ( [59, Theorem 3.13]). Let v € W12(Q) solve (1.18)) with b =c = h = 0.

Assume there exist A and A for which

gl < (A(@)8,€) < AP, Vo e, E€R, (1.25)
and A € C¥%(By;R™ ™), d,l € LY(By) for some ¢ >n and a = 1 — 7 €(0,1). Then
Vo € 0176*(31,]1@”)
Theorem 1.2.5 ( |55, Theorem 8.32]). Let v € C*(2) a solution of (1.18)) in a bounded
domain Q C R™. Then for any subdomain Q' CC Q we have

[vllere@y < C(HUHCM(Q) + |l o) + HZHCO»Q(Q)>7 (1.26)

for C = C(n,\, K,dist(Q,09)), where K > maXi7j:17'._7n{|’ai‘j||CO,O¢(Q), l|b?, cllcoy}
We state a result of comparable of solution:

Proposition 1.2.6 ( |8, Lemma 3.4]). Let L and L be divergence form elliptic operators
withb=d =0, c =0 and A € L (By;R" ") that satisfy (1.25) with their

constants of ellipticity all contained in the interval of positive numbers [)\ A] If

Lw=Lw=1 m By

1.27
on 0B1 ( )

S
Sz
Il
o

Then there exists a positive constant Co = Coy(n, \, ), such that for all x € By )y we
obtain
Cytw(z) < @ < Cow(z). (1.28)

We now state a result related to operator in general form (not in divergence form).
Let L' be the operator

L'v = Tr(A(z) V) 4 b(z) - Vv + c(x)v, (1.29)
where A, ¢ and d are defined as above. If [ as before is a strong solution of
L'v=1 (1.30)
is a twice differentiable function on €2 satisfying the equation almost everywhere
in Q.
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Theorem 1.2.7 ( [55, Theorem 9.11|). Let Q be an open set in R™ and v € Wfof(Q) N
LP(Q), 1 < p < oo, a strong solution of L'v =1 where the coefficients of L' satisfy

A€ COULR™™), ce L®(Q;R™), de L™(Q), e LP(Q),

(A(z)€,€) > Al¢]?, VzeQ, EeR”, (1.31)
|A[, 0], |e] < A"
Then for any domain ' CC Q
lellwesry < € (Iollzey + 1o ) (1.32)

where C depends on n,p, \, ', ', Q and the moduli of continuity of the coefficients of
matriz A.

Corollary 1.2.8 ( |55, Corollary 9.18]). Let Q be a Ct! domain in R™, and let the
operator L' be strictly elliptic in Q with coefficients A € CO(Q; R™ ™), b € L¥(Q;R"),
ce L*(Q) and ¢ <0. Then if | € LP(Q) withp > 5, ¢ € C°(09), the Dirichlet problem
L'v=1inQ, v=¢ on 0N has a unique solution v € W’if(Q) NnCo(Q).

1.3 Coercive vector fields

Let V be a closed subspace of WP(Q) with p > 1. We introduce a non linear operator
A:WHP(Q) — V' by setting

(Av,w) = /Q (A(z,v(z), Vo(x)) - Vw + A (2, v(z), Vo(z))w) dz, (1.33)

for v € WHP(Q) and w € V, where A: Q x R x R — R" and A% : Q x R x R® — R" are
supposed to be the Carathéodory function of x € Q and (,&) € R x R™ with

|[A(z,7,€)) V1A% (z,1,))| < C(InlP~" + €F7) + h(2), (1.34)

for a.e. € Q, any (n,€) € R x R” and with h € L (Q).

We analyse a variational inequality that is an inequality that involves a functional
that has to satisfy for all functions in a suitable set. We look for v € K, with K a non
empty, convex subset of V' such that

(A(v) — F,w —v) >0 for we K, (1.35)

where A(v), hence A(v) — F, is the Gateaux derivative at v of some convex functional in
V.
In order to study this context very generally we introduce the following definitions.

Definition 1.3.1. We say that a nonlinear operator A : V — V' is
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hemicontinuous if each real function
A= (AL =N+ dw),w —v) (1.36)
with v,w € V, is continuous in R;

monotone if
A= (A(v) — A(w)),v —w) >0 Yo, w e V; (1.37)

strictly monotone if the requirement
A= (A(v) —A(w)),v—w)=0 = v=w (1.38)
is added to monotonicity.

pseudomonotone if it is bounded and satisfies

lim inf(A(vy,), v, — w) > (A(v),v — w) forweV (1.39)

n—oo

whenever the sequence v, — v in V with

lim sup(A(vy,), v, — w) < 0. (1.40)

n—oo

Definition 1.3.2. A nonlinear operator A : V. — V' is a Leray-Lions operator if it is
bounded and satisfies

A(v) = A(u,u) forveV, (1.41)

where A : V x V — V' has the following properties:

(i)

(i)

(iii)

(iv)

whenever v € V| the mapping w — A(v,w) is bounded and hemicontinuous from
V to V’, with

(A(v,v) — A(v,w),v —w) >0  for weV, (1.42)

whenever w € V| the mapping v — A(v,w) is bounded and hemicontinuous from
V to V/;

whenever w € V' A(v,, w) converges weakly to A(v,w) in V' if (v,) C V is such
that v, = v in V and

(A(vp,vn) — A(vp,v), v, —v) = 0; (1.43)

whenever w € V' (A(vy,, w), vy,) converges to (F,v) if (v,) C V is such that v, — v
inV, A(vy,w) = F in V'

Lemma 1.3.3 ( [91, Lemmas 4.12 and 4.13]). Let A: V — V' be a nonlinear operator:

(i) If A is bounded, hemicontinuous and monotone then A is pseudomonotone.
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(ii) If A is Leray-Lions operator then A is pseudomonotone.

Theorem 1.3.4 ( |91, Theorem 4.17]). Let A:V — V' be a pseudomonotone satisfying
the following growth condition

JR € (0,00),v9 € K, ||uo]ly < R : (A(v) — Fyug—v) <0 for |lv|lv = R, (1.44)

where K # () is a closed and convex subset of V.. Then for any choice of F € V' ((1.35))
admits at least one solution.

In the sequel we shall call A : W1P(Q) — V' bounded, or hemicontinuous, or monotone
if the restriction of A to V is such.

Definition 1.3.5. A nonlinear operator A : WhP(Q) — V' is

o T-monotone if
A (A(w) — A(w)), (v —w)T)y >0 for v,w € WP with (v —w)" € V; (1.45)
o strictly T-monotone if the equality sign in the above inequality can only hold when
v < win €.

Proposition 1.3.6 ( [91] p. 231). T-monotonicity implies monotonicity and the unique-

ness of the solution of (1.35)).x

Proposition 1.3.7. If the requirement
(A%C,m &) = A°Con', €)) (n—1) + (AC,m, ) — A(, 1, €)) - (=€) >0 (1.46)
a.e. in 2, forn,n € R and £,& € R", is added to then A is T-monotone.
If is weakened into
(AC,m,8) = A(n, &) - (=€) =0 (1.47)

a.e. in £, for n € R and &, £ € R™, monotonicity can no longer be claimed. However we
have the following theorem.

Theorem 1.3.8 ( |91, Theorem 4.21]). Let V' be compactly embedded into LP(§2) and A
be defined by (1.33)) under assumption (1.34). Suppose that (1.47) holds, with the strict

inequality sign for & # &'. Then A is a Leray-Lions operator, hence a pseudomonotone
operator, when restricted to V.
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1.3.1 Regularity theory for nonlinear operator

In this paragraph we state two results of regularity for nonlinear equation in divergence
form.

Theorem 1.3.9 ( |74, Theorem 6]). Let v € WLHP(Q) N L>®() a solution of
divA(z,v, Vv) = B(z,v, Vv), (1.48)

i an open set Q CR™, n>2, where A: QXRXR* >R and B: Q xRxR" >R
satisfy the following condition:

A is differentiable with respect to h € R™ and for all h,§ € R",z € R and a.e. x € Q

yole+ B2 e Y€ < VyA(m, 2, h)E - €.
(1.49)

For all h e R™, all z € R and a.e. © €€}

IVhA(z, 2, h)| < m(e+ |h|?)27L, (1.50)
ViA(x, z,h) - h > ya(e + |h]?)E — p, (1.51)
|A(z, 2, h)| < y3(1 + |h[2)" T, (1.52)
Bz, 2, )| < (1 + [h])E, (1.53)

where p > 1, 0<e <1 and p,v,71, 72,73 and y4 are positive constants.
There exists a bounded continuous increasing function o(t) with o(0) = 0 such that
forallz,2' € Q, 2,2 € R and h € R" we have

A(z, 2,h) — A(a, 2\ B)| < ol — /| + |z — Z|) (1 + [n[*) "7 (1.54)
If there exists a § > 0 for which o(t) < C't°, then
(1) there exists a number Ao, 0 < Ao < p such that

|Vu| € LP o), (1.55)

A
(ii) v e OV ().

Here \o depends only on the data. The norm |[Vul| go.ntro (o) depends also on dist(§2', 052)
and [[v|lw1p()-

Theorem 1.3.10 ( |67, Theorem 5.2, Chapter 4]). Let v a bounded generalized solution
of (1.48) with supg, |v| = M, and suppose that A(x,z, h) = (A¥(z, z,h)), B(z, z, h) with
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i=1,...,n are differentiable and that they satisfy the following conditions

" 0A! h
vy 1+ e < 30 PR M g e <y (14 a2l
i,j=1 J
’ (1.56)

S (1P ) D [P b)) a4

i=1 ij=1

(1.57)

> \M( (1+ [1]) +Z(aB o0, h)‘(1+]h\) (158)

7‘77

|G Y !a%h)\ <o)L+ P,

0z
(1.59)
with p > 1, for x € Q, |v| < M and for arbitrary h. Then v € Wlif(ﬂ)
1.4 Quasi-minima
We consider the functional F : W1P(Q) — R
F(v;Q) = /Qf(a:,v(x),Vv(:c))dx. (1.60)

Let us also suppose
€P = bl=]Y = 0(@) < F(w,2,€) < plél? + blz] +V(a), (161)

with 9 a given nonnegative function and b, 4 and + nonnegative constant staifying

pn

" 1§7§{”‘p p<m (1.62)

+00 p>n.

Definition 1.4.1. Let Q be a constant Q > 1. A function v € W1(Q) is a Q-minimum
for F if and only if for every function ¢ € WP (Q) with supp(¢) = K C  we have
Fv,K)<QFw+ o, K). (1.63)

Theorem 1.4.2 ( |54, Theorem 4 1]). Let v € WHP(Q) be a quasi-minimum for the
functional F with condition and - Let us suppose ¥ € L7 () for some
o> %. Then v is locally bounded in €.

Theorem 1.4.3 ( |54, Theorem 4.2]). Let the function f(x,z,&) satisfy the growth
condition

P =9z, M) < f(z,2,€) < p(M)[E[P + I(z, M), (1.64)
for every x € Q, £ € R" and z € R with |z2| < M. Letv € Wl’p(Q) be a bounded
quasi-minimum for F, and suppose that for every M, g(-,M) € L  for some o > z
Then v is Hélder continuous in ).

loc
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1.5 TI'-convergence

We recall the definition of the I'-convergence introduced by De Giorgi in a generic metric
space (X, d) endowed with the topology induced by the distance d (see the books [9}25]).

Definition 1.5.1. We say that a sequence of functionals F; : X — R I'-converges in X
to a functional F: X — R in z € X, and we write F(z) = I'-lim; F}(z) if the following
two condition hold:

a) [-liminf inequality: for every sequence (x;) converging to x we have
J

F(z) < limjian(xj); (1.65)

(b) I'-limsup inequality: there exists a sequence (T;) converging to x we have

F(z) > limsup F(Z;); (1.66)
j

We say that Fj I'-converges to F', and write F' = I'-lim; F}, if F(z) = I'-lim; F}j(x) for
all z € X. The functional F' is called the I'-limit of (F}).

We can also define a notion of lower and upper I'-limit:

Definition 1.5.2. The I'-lower limit and the I'-upper limit of a sequence of functionals
Fj: X — R are the functionals from X into R defined by

I'-lim inf Fj(z) := inf{liminf F}(z;) : z; — z},
J J

1.67
I'-limsup Fj(z) := inf{limsup Fj(z;) : z; = x} (167)
J J

respectively. There exists a functional F : X — R for which I-liminf; F; = F =
[-limsup; Fj if and only if I satisfies the above condition (i) and (ii) and F' = I'-lim(F}).

One of the main reasons for the introduction of this notion is the following fundamental
theorem:

Theorem 1.5.3 ( |25, Theorem 7.8|). Let F' = I'-lim; Fj, and assume there exists a
compact set K C X such that inf x F; = infi F} for all j. Then there exists the minimum
of F
min ' = liminf Fj. (1.68)
X 7 X
Moreover, given (z;)jen a converging sequence x; — x in X. Iflim; Fj(x;) = lim; inf x F
then x is a minimum point for F
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Chapter 2

The classical obstacle problem for
quadratic energies

2.1 The classical obstacle problem

In this section we prove the existence, the uniqueness and regularity of minimizer w.

Let © C R" be a smooth, bounded and open set, n > 2, let A :  — R"*" be a
symmetric matrix-valued field and f : £ — R be a function satisfying the following
hypotheses:

(I1) A € WsP(Q; R"*") with s > % and p > ﬁz)il Anors=0and p = +oo,
where the symbol A indicates the minimum of the surrounded quantities;

(12) A(z) = (ai(2)); j—y ., symmetric, continuous and coercive, that is a;; = a;; L"
a.e. Q and for some A > 1 i.e.

ATHEP < (A(x)€,€) < Al¢f L7 ae. Q, V€€ R, (2.1)

(I3) f Dini-continuous, that is w(t) = supj,_y<; |f(z) — f(y)| modulus of continuity f
satisfying the following integrability condition:

/01 wl(f)dt < 00; (2.2)

(I4) there exists a positive constant ¢y > 0 such that f > co.

Remark 2.1.1. As we will see in Corollary if ps > n it holds that W1TsP — oo,
Consequently, in view of |34] we assume sp < n and we obtain an original result if

P> ﬁi)_l An (we can observe that (ﬁi)—l An) <2 for all s € R).
Remark 2.1.2. By (2.1), we immediately deduce that A is bounded. In particular,
A oo (rmy < A
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We define, for every open A C © and for each function v € H'(Q), the following
energy:

Elv, A] = / (A@@) Vo), V(@) + 2f (@)o()) da, (2.3)
A
with E[v, Q] := E[v].
Proposition 2.1.3. We consider the followinging minimum problem with obstacle:

inf &[], (2.4)

where K C H'(Q) is the weakly closed convex set given by
K:={ve H (Q)|v>0L"aec onQ, y(v)=gon N}, (2.5)

with g € H%(aﬂ) being a nonnegative function.
Then there exists a unique solution for the minimum problem (2.4)).

Proof. The hypotheses (I1)-(13) imply that the energy £ is coercive and strictly convex
in K, therefore £ is lower semicontinuous for the weak topology in H'(Q2), then there
exists a unique minimizer that, as we stated in the introduction, will be indicated by

U. O

Now, we can fix the notation for the coincidence set, non-coincidence set and the free
boundary by defining the following:

We consider the functional
Glv] := /Q ((A(az)Vu(az),Vu(a}» + 2f(a:)v+(x)) dz, (2.7)

defined on H!(Q) and prove the following:

Proposition 2.1.4. The problem

i 1, 2.8
358 1 =

where v0(g§) =g € H%(GQ), has a unique solution. Therefore,

min €[] = gfﬁfﬁm gl (2.9)

Proof. In order to prove the first part of the statement, it is enough to prove that
fQ 2fvt dr is H' weakly continuous.

Therefore, let vy—v in H(), up to subsequences we can assume v — v in L(£2)
and a.e. in 2. So the inequality

2T —y T < |z —y|
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allows us to conclude. To prove the second part of the statement we observe that
K C g+ H'(Q) and we note that E[v] = G[v] for v € K. So

min G <miné€.
g+Hg () K

Instead, if v € (§+ H}(Q)) \ K then v € K and E[v"] = Glv"] < G[v]. Thus

min€ < min G.
K g+Hg ()

O]

Since the function w is the minimum of £ it is also the solution of a variational
inequality (see also ([1.35])). If we consider the functional

(E(u), @) Z/Q(<A(~’C)Vv($),vsﬂ($)> +2 f(z)p(z)) d, (2.10)
that is the Gateaux derivative of £ in u we have
(E(u),p—u) >0 Vo € K. (2.11)

Actually the minimum u satisfies the partial differential equation both in the distribu-
tional sense and a.e. on §2. Therefore it shows good properties of regularity:

Proposition 2.1.5. Let u be the minimum of £ in K. Then
div(A(z)Vu(r)) = f(2)x{u>0}(7) a.e. on Q and in D' (). (2.12)

Therefore,

(1) if ps < n, called p*(s,p) := p* = 2L, we have u € W2r" N C'l’lfpl*(Q);

(ii) if ps = n we have u € W4 N C’l’l_%(Q) forall1 < q < 0.

Proof. We can split the proof of the proposition into three steps:
E| Step 1: Preliminary equation. Let ¢ € H& N C%Q) and € > 0, and we consider
u + €p, a competitor for G. Since u > 0

0 <e Y (Glu+ep] —Glu)

=< (/«‘w(“ +e9), V(utep)) +2f(utep)T) do— /((Axvu, V) +2 fu) dx)
“ Q

= / (e(AV @, V) + 2(AVu,Vp)) dx + 25_1/ f((u+ep)™ —u) da.
? ? (2.13)

'For the first part of the proof we refer to |34, Proposition 2.2].
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We observe that

+t_ dr = dr — d .14
/Qf((u+5<p) u) z 6/{u+w20} fodz /{u+€(p<0} fudz (2.14)

0< / fudx < —5/ fodr = o(e). (2.15)
{u+ep<0} {u+ep<0}

Fixing the set A, := {u =0} N {p > 0},

and

1
X{u+ep>0} — XA,U{u>0} Jore—0, (2'16)

in fact, since ¢ is bounded,
/Q |X{u+z—:<p20} - XAgoﬂ{u>0}’ dx = /Q ‘X{quasz}\ALp - X{u>0}‘ dx
= /Q ‘X{uz—acp}ﬂ{u>0} - X{u>0}’d90

0
= /QX{M}\{uz—w} dr = /Q X{o<u<—epy d == 0.

Passing to the limit as ¢ — 0 on ([2.13)), thanks to (2.14]), (2.15), (2.16) and applying the
Lebesgue’s dominated convergence Theorem we obtain

/Q<AVU> V) dz + /Q e fX{u>0pua, dz > 0,
thus
| evuvedns [ orao [ efxuonis< do (217)
Therefore, the distributional divergence div(A(-)Vu) of A(-)Vu satisfies
(—=div(A(-)Vu) + fFL" Q) >0 forall p € C(Q), ¢ >0, (2.18)

in turn implying that p := —div(A(-)Vu) + fL".Q is a non-negative Radon measure.
Employing the condition (2.17) with +¢ we obtain

/ efdo< [ pin< [ of de. (2.19)
{u=0}N{p<0} Q {u=0}N{p>0}

In turn, the latter inequalities imply that p << L% Q. Thus, if p = (L., with
¢ € LY(), we infer that 0 < ¢ < I Xgu=0y L™ a.e. Q, such that ¢ € L5 (2) by (13). So,

by definition p = —div(A(-)Vu) + fL".Q, the following equation holds

div(A(z)Vu(z)) = f(z) — ((z) a.e. on Q and in D'(Q). (2.20)
Step 2: Regularity. Now, based on the previous step, we can prove (i), the regularity

of u if ps < n. From Theorem WHsP(Q) — WP (Q) with p* = "2 We also

n—sp’
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note that by the hypothesis (I1) p* > n, so by Morrey theorem A < c” 1_7(9). Since u

is the solution of (2.12)), and thanks to Theorem [1.2.4} u € Cloc ”7(9) We consider the
equation

Tr(AV?v) = f — ¢ — Zdiv(aj)% =: ¢, (2.21)

where the symbol Tr is the trace of the matrix AV?v and a/ denotes the j- column of
A. Since Vu € L (Q2) and div(a/) € LP"(Q) for all j € {1,...,n} then ¢ € LlOC(Q). So,
from Corollary there exists a unique v € I/Vl2 c*(Q) solutlon of - We observe
that the identity Tr(AV?v) = div(AVv) — > dlv(aj)%“j is verified. So, if we rewrite

(2.21)) as follows
div(AVwv) Zdlv (a?) Oxj = ¢, (2.22)

we have that v and v are two solutions, then by Theorem [1.2.1| we obtain u = v and
the thesis follows. Instead, if ps = n from item (ii) of Theorem € Wh4 and so
u e Win Cl’l_%(Q) for all 1 < ¢ < co. Applying the same reasoning to deduce the
item (i) we obtain the item (ii) of the thesis.

Step 3: Conclusion. By the regularity W29 of u we can compute the divergence in
the definition of the measure p and thanks to the unilateral obstacle condition using

the locality of weak derivatives we have (=0} = f; 50 ( = fX{u=0} and we conclude
(12.12)). O

We note that thanks to the continuity of u the sets defined in (2.6) are pointwise
defined and we can also write I'y, = ON,, N Q.

Remark 2.1.6. The assumption (I4) is not necessary in order to prove the regularity of u
and that the minimum w satisfies the equation ([2.12)) (cf. Proposition Theorem
and Corollary in Chapter [3).

2.2 The blow up method: Existence of blow ups and nonde-
generation of the solutions

In this section we shall investigate the existence of blow ups. In this connection, we need
to introduce for any point xy € I';, a sequence of rescaled functions:

(Uag,r)r = <U(‘TO+T‘T)> (2.23)

r2

We want to prove the existence of limits (in a strong sense) of this sequence as r — 0T
and define these blow ups.

We start observing that the rescaled function satisfies an appropriate PDE and satisfies
a uniform W?2P" estimate. We can prove this thanks to the regularity theory for elliptic
equations.

32



Proposition 2.2.1. Let u be the solution to the obstacle problem (2.4) and xo € T'y,.

Then, for every R > 0 there exists a constant C' > 0 such that, for every r € (0, %ﬁ’am)

[tao,r lw2r™ (Br(wo)) < C- (2.24)
In particular, the functions ug, , are equibounded in CY fory <~:i=1- 1%'
Proof. From (2.23)) and Proposition it holds
div(A(zo + rz) Vi, »(2)) = (20 + r2)X{u,, >0} () (2.25)

a.e. on B4R($0) and on D,(B4R(.T0)), and Ugy,r € W2r" N 01’7(B4R(330)). We have
xo € I'y, then ug, »(0) = 0. Since ug, , > 0, by Theorems and we have

tzo,rll oo (Bag(z0)) < C(R, 20) | fll Lo (Byn(wo))- (2.26)

Thanks to Theorem [1.2.5{and ([2.26)) we obtain

[tz llcrr (Banwo)) < C (tagrllLoo(Ban(zo)) + 1 1L (Ban(zo))) < C'lIF1 oo (Ban(zo))-
(2.27)

We observe that, as in Proposition 2.1.5] s, is the solution to

Tr(A(zo+rz)Viu,.(z)) = f($0+7"30)X{uzo,,.>0} —r Z div(aj(xo+rx))auxo,r (@) = (),

; axj
(2.28)
with ¢, € LP" (Bag(x0)), then according to Theorem m
oz (Bro)) < © (eor I uneoy + 16: 0 Banen) - (2:29)

We define div(A) := (div(a’));, namely the vector of divergence of the vector column of

A. Then by (2.27))

10 oy = [ 10100y = (v G), T ()] d

2r(%0)

< O Buntoon (1 + /B [(divA(y)[”” dy)
QTR(xO)

* dist (zg, 0Q)\P*—n .
< ClS Iz (Banoo) <1 () A, m))'

S0 ||tzgr|lyw2.p* (Br(zo)) < C, where C does not depend on 7. O

Corollary 2.2.2 (Existence of blow ups). Let xog € T'y, with u the solution of (2.4]). Then
for every sequence 1y | O there exists a subsequence (ry;); C (7k)x such that the rescaled
functions (ugyr, ); converge in CY7. We define these limits as blow ups.

J
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Proof. The proof is an easy consequence of Proposition [2.:2.1] and the Ascoli-Arzela
Theorem. O

Remark 2.2.3. Recalling z¢ € T',, we have u(zp) = 0 and Vu(zg) = 0 so
HUHLOO(Br)(zo) < Cr’ and ||VUHL°°(B7~(JIO)) <Cr. (2'30)

We note that the constant in (2.30) only depends on the constant C' in (2.24) and is
therefore uniformly bounded for points zg € I';, N K for each compact set K C 2.

As in the classical case, the solution u has a quadratic growth. The lack of regularity
of the problem does not allow us to use the classic approach by Caffarelli [17] also used
by Focardi, Gelli and Spadaro in |34, Lemma 4.3]. The main problem is that div(a’),
that is a W1P" function, is not a priori pointwise defined, so the classical argument fails.
We use a more general result of Blank and Hao in [8, Chapter 3] which we will prove
explicitly for the convenience of readers.

Proposition 2.2.4 ( |8, Theorem 3.9|). Let o € I'y, and u be the minimum of (2.4).
Then, there exists a constant 8 > 0 such that

sup u > 072 (2.31)
OBr(x0)

Proof. We divide this proof into five steps.
Step 1 Let us suppose that W satisfies the condition
A< LW)<A in By, (2.32)
where W > 0. Then there exists a positive constant C such that

supW > W(0) 4 C'r2. (2.33)
0B

Let v1 be the solution of

L(v1)=0 in B,
v=W on 0B,

then according to the Weak Maximum Principle we obtain

supv; > sup vy > v1(0). (2.34)

T T

Let vy be the solution of

L(ve) = L(W) in B,
vo =0 on 0B,.
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Step 2

Step 8

_ lz[P—r? :
Moreover, let vg = “=5— be the solution of
A(vg) =1 su B,
v9=0 su 0B,.

Due to Proposition there exist two constants ¢1, co for which
c1vo(x) < wva(x) < cqup(x);

in particular
2

r
—UQ(Q) Z Co % (235)

On the other hand from definition of v1 and vy we know that W = v1 + v9, so due
to conditions (2.34]) and (2.35)) we deduce

2
sup W = sup vy > 01(0) = W(0) — v2(0) > c5 —.
OB, OB, 2n

Let w be the solution of equation (2.12) in By, and assume that w(0) =€ > 0. Then
w > 0 in a ball Bs, with §o = Cyy/e.

According to Remark if w(yo) = 0, we have
e = w(yo) — w(0)| < Clyol?, (2.36)
for which |yo| > C'v/e.

Let w be the solution of the equation (2.12) in Ba, and assume that w(0) =& >0
with € << 1. Then there exists a constant C' > 0 such that

supw(x) > C +e. (2.37)
B

Without loss of generality, we can suppose that there exists a point y € By /3 such
that w(y) = 0. If this does not hold true from the maximum principle and Step 1
we have

supw > supw = sup w > € + C, (2.38)
B By s 9By 3

which is ([2.37)).
According to Step 1 and Step 2 there exists a point y; € 9B, such that

w(yr) > w(0)+C ;Si =(1+Ch)e. (2.39)

In the same way we can apply the result of Step 2 to y; and Bs,, so we obtain a
point y2 € 0Bs, (y1) for which

w(ye) > (14 Cw(zy) > (14 Cp)%e. (2.40)
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Step 4

Step 5

Repeating this argument a finite number of times we can get finite sequences {y;}
and {9;} with yo = 0 such that

w(y;) > (14 Cy)'e and 6 = |xip1 — x| = Co/w(x;). (2.41)

We observe that as long as y; € By the radii §; < 2/3, due to the starting
assumption of the existence of y € By/3; thus x;11 still belongs to By. Choose N as
the smallest integer that satisfies the inequality

N N o
D 6= Cove(l+Cr)t > .. (2.42)
. . 3
=0 =0
Then )
oln [FCV2-1 4y
N > [ 3Cove } 1. (2.43)

In(1+ C4)
By putting together the inequalities (2.41) and (2.43]), we deduce

1
> [%H] )
Ve 2 —
-1 e ((14+Cp)2—1 2
> 1 C In(1+C7) frd < 1)
w(yn) >e(1 4 C1) 1 e 3CovE + (2.44)

=(Co + C1ve) > Ca(1 + ),
where the last inequality is guaranteed by the hypothesis on ¢ for which ¢ << 1.

Let w be a function as in Step 3 and 0 € {w > 0}. Then

supw > 0. (2.45)
0By

Let (z;); € N be a sequence in {w > 0} such that z; — x¢ for i — oo, and let
g; = w(x;). From result of Step 3 for all i € N it holds that

sup w > C + ¢, (2.46)
Bi(z;)

where C' is a positive constant that depends on the constant of Remark [2.2.3
Passing to the limit as i — oo in the inequality (2.46) and from the maximum

principle we verify ([2.46)).

Conclusion.
Let us suppose by contradiction that there exists some rg < 1, such that
sup u(x) = 0118 < 0. (2.47)
BTO (IO)
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We note that for r <1 ug, () = u(x(;;rm) is the solution of equation (2.25) and we
observe that the ellipticity of the differential operator in (2.25)) is the same as in

(2.12). So in particular, for wg, ,,(z) = U(a:origrom) we have that for all x € By

u(xg + rox 1
u%muaz(igO)sg;¥3w=el<a (2.13)
TO:BO

and this contradicts the result in Step 4.

O]

To proceed in the analysis of the blow ups we shall prove a monotonicity formula.
This will be a key ingredient to prove the 2-homogeneity of blow ups and that blow ups
are non zero. Therefore it allows us to classify blow ups. This result will be the focus of
Section [2:4] while the quasi-monotonicity formula will be the topic of Section [2.3]

2.3 Weiss’ quasi-monotonicity formula

In this section we show that the monotonicity formula established by Weiss [95] in the
Laplacian case (A = I,,) and by Focardi, Gelli and Spadaro [34] in the A Lipschitz
continuous and f Hélder continuous case, holds in our case as well.

As in [34] we proceed by fixing the coordinates system: let xy € I';, be any point of
free boundary, then the affine change of variables

T —> 20+ f(acg)_%A%(xo)x = z0 + L(zo)z (2.49)

leads to
Elu, Q) = 7% (20) det(A2 (20)) Exag) [t (o). e an))
with the following notations:
SL(ZO)[U, A] = /A
W (z0) = ]L(a:o)fl(Q — x0),
uL(xO)(x) = u(zo + L(zo)x),

JL(z0)
f(zo0)

((CIOVU, Vu) +2 v> dx VA C Qg

(2.50)
fL(zo) = f(x0 + L(z0)z),
Cay := A2 (20) A (20 + L(0)2) A2 (20),
u(zo + rL(zo)y)
UL (z0),r (y) = r2 .
We observe that the image of the free boundary in the new coordinates is:
iy ey = L(x0) ™ (Tu — o) (2.51)
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and we see how energy & is minimized by w, if and only if, the energy & () is minimized
by ug(z)-

Therefore, for a fixed base point xg € I'y,, we change the coordinates system and as
we stated before

0e FUL(zO) (Cxo (Q) =1, f]L(a:o)(Q) = f(l‘o)

The point of the choice of this change of variable is that, in a neighborhood of 0, the
functional &;,(,,)[v, Q] is a perturbation of [,,(]Vv|?* + 2v)dxz, which is the functional
associated with the classical Laplacian case. We identify the two spaces in this section to
simplify the ensuing calculations, then with a slight abuse of notation we reduce to :

We note that with this convention 0 € €2. In the new coordinates system we define

{ (@), v(@)  ifx#0
1 otherwise.
(2.52)

v(z) = ’% per x # 0, w(zx) =

We note that u € C°(Q) by (I1) and (0.7). We prove the following result:

Lemma 2.3.1. Let A be a matriz-valued field. Assume that (I11), (I2) and (0.7) hold,
then .
pewhin o (Q) Vg < p*, (2.53)

and
At < p(z) <A Va € (. (2.54)

We prove a preliminary Lemma.
Lemma 2.3.2. Let x € R" and h € R™ \ {—z}. Then it holds

||

|z + h|

(x + h) — x| < 2|h|.

Proof. We observe that (z + h)lwl%‘h € Sjg). If |h] > |z the thesis easily follows because
for all y € S
|y — x| < 2[x] < 2|h].

Instead, if |h| < |z|, we note that (z + h) |w|fh| is the projection of z + h on Sp;. So,

(x +h) |z|flh‘ — x‘ takes on its maximum value if 2 4 h lies on S, where by S we mean the

(n — 1)-sphere consisting of points for which there exists a line passing through 0 which is
a tangent to Si|(y). If (z + h)
obtain

||

otk € Sn=1 for an easy calculus of geometrical nature we

2

= = e - 2P AP

|x + h|

(x+ h)
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We want to prove that if |h| < |z| then

2lal? = 2lz]/[2f? — [A]? < 4]h]*.

Or rather, set f(t) := 2|z|? — 2|x|\/|7|? — t — 4t we want to prove that f(t) < 0ift < |x|2.
Since f(0) =0, f(|z|?) = —2|z|?> < 0 and, on (0, |z|?),

15
") >0 <— ¢—4>0 — t> |z
fi(t) = N > _16”

O

Proof of Lemma[2.3.1. We prove that u € W4 for any ¢ < p*.

We use a characterization of the Sobolev spaces (see [10, Proposition 1X.3]): pu €
Wh4(Q) if and only if there exists a constant C' > 0 such that for every open w CC
and for any h € R™ with |h| < dist(w, 092) it holds

Tt — ptll Lagy < C'|A].

For the convexity of the function |- |7, remembering that A is (1 — ;% )-Holder continuous
and by Lemma | we have

x+h xz4+h z x|
IThi =1l T ) = /‘ ‘th’yﬁhﬁ_m(x)m’l?!) e
:/ <(A(x+h)—A(x)>,iiZ|,éizp
s+h oz R ANE
+ () - a0) (o + ) (g = o )| e

Az) — AQ) |

|z]

|z|
h _
(x + )\x+h] x

§2q1</w]A(x+h)—A(m)|qu+/w2q

1
< 2q—1<cth+4Q\h\Q/ o dx) = C |h|Y,
x p

where in the last equality, we rely on ]w\ o bemg 1ntegrable if and only if ¢ < p*. By

)

the Sobolev embedding Theorem, we have p € C"=4 for any g < p*.
Thanks to the structure of y we can earn more regularity. In particular ;¢ € C%Y with
y=1-— 1%' We start off proving the inequality when one of the two points is 0:

T x

() — ()] = \<A<x>

x| J|

) 1| = [ 5 - o
- | - a)

T €T
>\ — [lgon [2]".

=] ||
Let us assume now that x,y # 0 and prove the inequality in the remaining case. Let
z= |y[ﬁ then

u(x) — p(y)] < |p(z) — p(2)] + |p(z) — ply)l-
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< [looals = o1 +[{(a0) — 80) T 220

A

— ylt=
Y
< oo 1z = o1 + 2528 s )

< [Aloon <|z g 2 e - .w) < ClAlonlz — [,

Therefore, since |z — z| = ||z| — |y|| < |z —y| and |z —y| < |z — x| + |z — y| < 2|z —y| we
have
(@) = p(y)| < ClAlcoq |z =yl

We introduce rescaled volume and boundary energies

&) = Elu B = [ (@) Va(e), Vu(o) + 2f(@)u(w)) do
" (2.55)
_ 2 / (A (r2) V. (), Vi (2)) + 2f (r2)un (2)) da
B

= 2)ul(x n—l _ pn+3 rae)ul(x n=l )
%(’")“/agr“” () dH + /BBIM Y () dH (2.56)

We now introduce an energy “a la Weiss” combining and rescaling the terms above:
O(r) == r"2E(r) — 20 "3 A(r). (2.57)
Remark 2.3.3. By (0.7), (2.55)), (2-56) and Proposition we have
E(r) = / (Ve 2 + 2u) das + O+ 2+miner)y B g2y
By

(2.58)
A= [ ity o) B o),
0B

Hence, the choice of the renormalizing factors in (2.57)).
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To complete the notation in (2.50) we show the trasformed version of (2.52) and

HL(zo) () =(Cay (v (y),v(y))  y#0, UL () (0) =1,
fi(zo) (1Y)
(I)L(IO)(T) = /B1 (<(C:vo (Ty)vu]L(xo),r<y)a vu]L(xo),r(y» +2 WUL(CL‘O),T) dy (2.59)

—2/ s (T ud oy (y) dH™M
o, 1 o) (TY) UL (30) .+ (¥)

Remark 2.3.4. We can note by the definition above and in view of Lemma, A2 <
Ii(z0) (y) < A% and py, ) € C¥7(Q).

2.3.1 Estimate of derivatives of £ and 7

To estimate the derivative of ausiliary energy ® we estimate the derivative of addends £
and 7. Starting with &, for this purpose, following Focardi, Gelli and Spadaro [34], we
use a generalization of Rellich-Necas’ identity due to Payne-Weinberger [34, Lemma 3.4]
in order to calculate the derivative.

Lemma 2.3.5 (|34, Lemma 3.4]). Let F € Wl %' "5 (B,,R"), A € WP (Q) with
1<qg<p*eweW?P" . Then it holds

/8& <<Avw’ V) (F,v) = 2(Av, Vw)(F, Vw>> dH" !

_ / <<AVU}, Vw)divF — 2(F, Vw)div(AVw)) dz (2.60)

(o

- / (VA ' F®Vuw® Vuw — 2(AVw, VTFVw>> dx.

Proof. We note that the terms VA : F ® Vw ® Vw and div(AVw) = (divA)Vw + AVZw
are functions in L?" (B,) and the terms (AVw, Vw)divF e (AVw, VI FVw) are in L(B,);
so the equation is well defined. In order to conclude, it is enough to apply the
Divergence Theorem to the expression

div((AVw, Vw)F — 2(F, Vw)AVw).
U

Proposition 2.3.6 ( |34, Proposition 3.5|). There exists a constant C; > 0, C1 =
C1(\, G, |Allwi+sp(q)), such that for L'-a.e. r € (0,dist(0,80)),

E'(r)= 2/ N Ay, Vu)2dH L + i/ (AVu, Vu) div(p~tAz) dz
0By

r

2 2
- flp YAz, Vu) do — r/ (AVu, VI (1 Az)Vu) dz
B

T

+2 fudH ™ +(r),
OBy

41



with e(r) < C1&(r) P
Proof. We consider the vector field

Alz)z
ru(z)

F(x) =

Thanks to (I1) and Lemma Fewbtanc™ 5@ for all ¢ < p*. We observe that
(F,vy=1 and (F,Vu) = A, Vu), on O0B,.
For the Coarea Formula

E'(r)= / ((AVu, Vu) + 2fu) dH™ 1, L'-a.e. onr € (0,dist(0,00)).
0B
According to the choice of F'; Lemma and equation ([2.12)) gives us

E'r) = / ((AVu, Vu) + 2fu) dH" ! = 2/ (Av, Vu)* =t dH" !
OB 9B,
i1 / <<Avu, Vau)div(p ' Az) — 2 (Av, Vu>div(AVu)) dx

r

T

+ % / (M—l VA : Ar ® Vu® Vu — 2(AVu, vT(M—le)vw) dx + / 2fudH"!
r aB’V‘

1
=2 / (Av, Vu)?p=tdnn=t + = / (AVu, Vu)div(u~tAz)
9B, " JB,

2 1
_r/ M_I<A1/,Vu)fd:v—|—r/ p~ (VA : Az ® Vu ® Vu) dx

T T

—2/ <AVU,VT(M_1A.’E)VU>) ala:—|—/8 2fudH™ L.

T JB, By
Then it is enough to prove that

1 _n
e(r) = 7“/ p! (VA : Az @ Vu @ Vu)dr < CyE(r)r »".

T

In effect

1 A
e(r) = 7’/B p Y (VA : Az ® Vu ® Vu) de < 7"/3 IVA||A(2)||]|Vul® da

1
1

VA3 dx < C’r2</ VAP daz)p (wnr™) 5"
By

< C sup A

B
< O || Al s,y < CLE()rT .
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The next step is to estimate the derivative of .7 (r). By definition .7 (r) is a boundary
integral; we follow the strategy of |34, Proposition 3.6] that consists in bringing us back
to a volume integral using the divergence theorem and deriving through Coarea formula.
The difficulty is that we have to integrate the function divA on dB,, but by (I1) divA
is a function in W*P(Q) with s > %, and it is not, a priori, well defined on 0B,.. Then,
taking into account the concept of trace we prove a corollary of the Coarea formula.

Proposition 2.3.7. Let ¢ € WM (By) with A > %. Then for L'-a.e. v € (0,1) it holds

that g
< / ¢da:) = [ @)an, (2.61)
dr \ /B, 0B,

where 7y is the trace operator given in Theorem[I.1.§ of Chapter 1]

Proof. Let (¢;); C C*=(By) such that ¢; — ¢ in W*P(B;). For each function g;, by the
Coarea formula for £!-a.e. 7 € (0,1) it holds that

d
dr(/B b; da;) =/ pjdH" L. (2.62)

By the continuity of trace and Lebesgue’s dominated convergence Theorem we have

lim qud?-("‘l:/ Yo(¢) dH" 1. (2.63)
J JoB: 8B,

Let us now prove that lim; j?q(fBr ¢jdr ) = tflv"(fBr ¢dx ).

In this connection we define the function G(r) := [ ¢ dx and the sequence G;(r) :=
[ ®j dx; we prove that G; — G in WH((0,1)).

We recall that by a well-know characterization, the functions in W! on an interval
are absolutely continuous functions. In order to deduce that G,G; € Whl we have to
prove that for any € > 0 there exists a § > 0 such that for any finite sequence of disjoint
intervals (ax, bx) C (0,1) the condition )", |G;(bg) —Gj(ax)| < € holds if Y, |by —ax| < 4.

Therefore, we estimate as follows

> 1G;(bk) = Gilar) =)
k

k

/ gbjd:z,‘ S/ |¢j|dl‘<€,
Bbk\Bak Uk(Bbk\Bak)

where in the last inequality, we use the absolute continuity of the integral and

1
rldr < nwn/ r L dr < nwpd.

L"(Uk(By, \ Ba,) = nwn/ .
1—

U (br,ak)

The previous argument holds for G' as well. Thus G and G are differentiable Ll-ae.
on (0,1). On the other hand by the Coarea formula, we can represent the weak derivative
of G in the following way:

G(r) = pjdH™ ", G'(r)= pdH™ ! L-a.e. re(0,1).
OB, OBy
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Thus

dr < ”¢3 ¢HL1(31) ‘H_OO> Oa

165~ Gllzsoy /\/ 8) da

16}~ & lusoy /\/ aH" | dr < ¢~ bllua ) 275 0,

therefore up to subsequence G; — G’ L'-a.e. (0,1); then by combining together this,
(2.62) and (2.63)) we have the thesis. O]

We estimate the derivative of J2(r).
We define an exponent © = O(s,p,n, tg), with ¢y € (%, 3) as in Remark [1.1.9] for

which the term r~© is integrable. For this purpose we define:

ifp>n

£p<m (2.64)

@ = @(s,p,n,to) = { P np
—(s—to)p
Remark 2.3.8. If p > n the condition is trivial. If instead p < n, the condition % >

n is equivalent to o < s+1— 2. Now such that ?o exists if and only if p?n_f’f) <s+1-73

that is equivalent to demand that p > ﬁz)_l This explains the choice of condition
(11).

Proposition 2.3.9. There exists a positive constant Co = Co(||Allyy1+s.0) such that for
Ll-a.e. v € (0,dist(0,09)) it holds that
n—1

20 ="ty + 2 / w(hv, Vu dH" 4 h(r), (2.65)

r OB,

with |h(r)| < Co(r)r~ &, © defined in (2.64).
Proof. From the Divergence Theorem we write J#(r) as volume integral

H(r) = 71"/83 u?(z)(A(z)z, v) dH" ! = i/ div (u?(z)A(2)7) dz

T

2 1 1
= 7’/ uVu - A(x)x dx + 7“/ u?(z) TrA dz + r/ u?(z)divA(z) - z de.
By taking Coarea formula and Proposition [2.3.7] into account, we have

H() = — %%(r) + 2/ u(Av, Vu) dH" !
9B,

1 1
+ / w? TrA dH" ™ + / u?yo (divA(z)) -z dH™ !
" JoB, rJo

B
n—1

L) 42 / ulhv, V) dH™ + h(r),

r 8B,
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with

1 1
h(r) = - /83 u? (TrA — np) dH" ! + . /83 u?yo (divA(z)) -z dH" = T + 11

We estimate separately the two terms.
For the first term let us recall that the Holder continuity of A and pu, the condition
(2.30) and the fact that A(0) = I, and ©(0) = 1 hold, we have:

’I’:* 22 am _ )d’H”l
< - /83 Z laii(z) — ai; (0)] + |(0) — M($)|) dH" 1 (2.66)
<O <O )

where in the last inequality we use (2.58)).
For the second term from Holder inequality, by (2.30) and recalling Remark

according to which vo(divA) € L'(0B,) we have:
1 . . .
11| < 7“/8 u2‘fyo(d1VA)(x)| lz| dH™ ! < C'T4H”yo(d1VA)HL1(aBT). (2.67)
B,

Now we analyse separately the two cases p > n and p < n.
We start off with the case p > n. We use (1.14]), (2.58)) in (2.67) to obtain

(1| < C||divAllys»B,) Pt Ty < C ||divA|lyp.s o) H(r) e < C H(r) rp. (2.68)

If p > n by (1.15) we have

70(divA) | 18, 0m-1) < Cr" ™

Hence, recalling (2.67)) and -
n—(s—tg)p

[II| < C|divAl| ,, = RALEE S
w ’"*(S*to)P(BT)

)
C | divA| . ne .
w n*(S*to)p(BT)

n—(s—tq)
< C diva] Ay (2.69)
(S to) P ()

n—(s—tg)p n—(s—tg)p

< ClldivA|wsw H(r)r~ » < CH(r)r  »

So, assuming the notation introduced in (2.64)), by combining together (2.66)), (2.69)) and
(2.68), and recalling that © < p*, we have

\h(r)| < C' A (r)r v + CH(r) 16 < Codt(r)r 6.
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2.3.2 Proof of Weiss’s quasi-monotonicity formula

In this section we prove Weiss’ quasi-monotonicity formula that is one of the main results
of the chapter. The plan of proof is the same as [34, Theorem 3.7|. The difference, due to
regularity of coefficients, con51sts in the presence of additional unbounded factors and
terms produced in Proposition 6, Proposition and from freezing argument: r P

r=6 and 27, The key observatlon is that, for our hypotheses these terms are mtegrable
SO we are able to obtain the formula alike. For completeness we report the proof with all

the details.

Theorem 2.3.10 (Weiss’ quasi-monotonicity formula). Assume that (11)-(I4) and (0.7)
hold. There exist nonnegative constants Cs and Cy independent from r such that the

function
~ - r n t ~, -=
e d(r) e 0 40y / <t—@ + wi )> OO gy
0

with the constant © given in equation (2.64)), is nondecreasing on (0, %dist(g, 00) N 1).
More precisely, the following estimate holds true for L'-a.e. v in such an interval:

4 (@(r) G o / <t<3 + w(t)) eCat' ™5 dt>
dr 0 t

i
2eCsm © 1 u\ 2

> ~1Av, V) — 27) dH™

- rn+2 /8BT:U“<<:UJ v u> r

In particular, the limit ®(07) := lim,_,o+ ®(r) exists and it is finite and there exists a
constant ¢ > 0 such that

(2.70)

o(r) — 2(07)
> a(r) el 1y / <t8 + “’i”) Ot g (0t) — e (rlf% +w(r)) .
0
(2.71)
Proof. Assume the definition of ®(r) by -
O(r) :=r "2E(r) = 20 V3 (r).
Then for L'-a.e. r € dist(0,0€2) we have
g'(r) Er) (1) A (r)
(I),(T) = rn+2 o ( 2) rn+3 -2 rn+3 + 2(’1’L+ 3) pntd (2'72)
By Proposition we have
/ 2 1
gn(;) —(n 2)% > ) /85_1(&1/, Vau)? dH" + — (AVU Vu) div(p = Az) do

2 _
3 / flu Az, Vu) do — 73 / (AVu, VT (= Az)Vu) dz

2 _ Cq 5(7“) n—|—2/ 2(n+2)
dH" ! — - AVu, Vu)de — —— de.
+rn+2 0B, fu g2 o T pnt3 T< u, Vu) dx s [y fudz
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Then, integrating by parts and given ([2.12]):

/ (AVu, Vu) dx—f—/ fudx:/ (AVu, Vu) dm—f—/ udiv(AVu) dx
r T r T (273)

:/ u(Av, Vu) dH" L.
0B,

Thus, applying (2.73)) in four occurrences, we deduce

E'(r) E(r) Gy -4 2 -1 2 19/m—1
2 —(n +2) i > rn+25(r)r P +r”+2 /a&H (Av, Vu)* dH
1
+ / ((Aw, V) div(u~tAz) — 2(AVu, VI (" Az)Vu) — (n — 2)(AVu, vu>) dx
By

2 _ 2 e
_7’”+3/Bf<'u 1Aa:,Vu>da:+n+2/ fud?-l !

4 n—1 _
_M/aBrMAy,Vw dH n+3/ fudx.

(2.74)
Instead the Proposition leads to
%’ FC(r
2 (r )+2( +3) 54) >
20, .8 4 (2.75)

_ eva -= = A n—l'
Tn+3%”(r)r S —I—rn+4<%”('r) i3 /anf( v,Vu) dH

By combining together (2.74]) and (2.75)) and since p* > © we finally infer that

(1) 4 (C1 V Co)®(r)r~s >

-1 2 gq/n—1
w(Av, Vu)“ dH
2 /83T < )

1 S B
+ /B(mw, Vu) div(p~ ' Az) — 2(AVu, V7 (1" Az)Vu) — (n — 2)(AVu, vu>) dx
2 _1A Vu)d 2 d’}-[n_l 4 Av. Vu) d n—1

B W Tl e, Ve 42 Jop, fu St fop ulhe, Vu) dH
4 —
- Tn+3 / fUd:E + ( ) - ’I“n+3‘/aB U<AI/, VU) dH™ 1
= 2 /BB ( “HAv, Vu)? +42 2,u I <Ay, Vu)) dH" !
1 S B
+ /B(@wu, Vu) div(p~tAz) — 2(AVu, VT (n~1Az)Vu) — (n — 2)(AVu, vu>) dx

_n2+3</ f(W*lAa:,Vw—nu) da:—r/ fudx) =: R1 + Ry + R3.
" Br dB,
(2.76)
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We estimate separately three addenda.

2 2
Ri=— / (12 (A, V) 4+ 455 — 457 2 (A, V) ) am !
rnt+2 oB, r2 r (2 77)
2 1 u\ 2 —1 .
- A ") gyt
s /c’?BT ,u,<<u v, Vu) r> H

Since n = div(z) by (2.30) we have

1

[Rol = | o5

/B<<AVU, V) div(p = Az — z) — 2(AVu, VT (™ Az — x)Vu)) dx

CZA [/ ) o' A )
< W/BT(’dIV(M LAz — 2) + 2|V (u 1Ax_a;)\) dr < W/Bg\v(u 1Ax—a;)|> dz,

We estimate |V(u~tAz — z)|:

V(p Az — )| = |V (0 A= L)z)| = V(A — L)z + (u'A - 1,)|
= Vg HY®Ar+p'VAz + (A - I,)|
< Ar(|VA| + |Vu|) + Cr' 75",

where in the last inequality, we use the v-Holder continuity of A — pl,. Thus, from
Lemma [2.3.1]

CA _ C _n
Rol < 5 /B (It ae —a)l) do < — /B (75 +7(IVAl + V) dz

<o # + S((favaryan) = + ([ i)

B B

Q=

(wnr")l_Q> <Cr o,

for each n < © < ¢ < p*, whence

E(r) _n
|Ra| < ¢ oaral O
Moreover, from (2.56) and ([2.54])
I
0< (r) < cllur]}x <,

= 7"n+3 =

with a certain constant ¢ independent from 7, then

e (8 p70) 3 70

T”+2 T”+3 Tn+3

Q3
ol

< e®(r)r e +cr7e. (2.78)

Finally, assuming that n = dive and using the following identity, consequence of the
divergence theorem

/ ((x, Vu) + udive) doz = r/ wdH" ™, (2.79)
T 0By
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we have

< f 1Az, Vu) — nu) de —1r fu d?—["‘l)
B

0B,

(/B Az, Vu) + f(0 )/BT ((p~ Az, Vu) — udivz) dz

/ (f(z) — f(0)udx —r f(O )/(wrud:z:)
_ 2

i3 </Br(f(x) — FO)((p Az, V) + £(0) /B ((u Az — 2, Vu)) dx

- @) - f(O))ud%"‘1>-

Thus

2
rn+3

|Rs| =

f(O)/B (p'Az — 2, Vu)) dz
+/ (f(x) —f(O)(< 1Az, Vu) —7”/ (f(z) — f(0))udH™ 1

OBy
_ n—1
<ot ([ tnnlaes [ 15— r@laser [ 150 - slane)
Srn%(rnﬂ P w(r ))Sc(r P +w§ﬂr)>

(2.80)

Now by combining together (2.76)), (2.77), (2.78) and (2.80)we have

r

, _n _n W(T) 2 -1 _pU 2 n—1
D'(r) 4+ Cs®(r)r o +Cy <7“ e + ) > RS> /8& ,u((u Av, Vu) 27“) dH" L.
(2.81)

Multiplying the inequality by the integral factor «5’@”1_?—j with Cy = 193£

(20 e ‘5) +C ( +W<T>> Car =B

r

26637‘17% 1 w\ 2 1l
2" 7 - B 27) _
rnt2 /<9BT. M(<N Av, Vu) ., dH

whence

di (@(r) '8 sz/ (t‘g - wit)> (Cat' 8 dt)
.
" 1B (2.82)



In particular, the quantity under the sign of the derivative, bounded by construction, is
also monotonic, therefore its limit exists as 7 — 0. It follows that ®(0") := lim,_,o+ ®(7)
exists and is bounded.

Finally,

B(r) — B(07) > —|@(r) e O — a(r)| + B(r) O
+Cy / (tg + wfp) e o(0%) - Cy / <t8 N w}(gt)) ot
’ 0

n . -2 r n t - =
> ’@(T)‘Cl’rl_@ +¢)(r) ngrl 5] +C4 / <t_® + (,U( )> ngtl 5] dt
0

— 30t — ¢ (rl-% —i—w(r))

~, - 7_1 r n t
>a() e oy [ (t‘@ e )) OBt 3(0%) — e (r' 8 +uln).,
0
(2.83)
where in the last inequality, we use the boundedness of ®(r). O

Remark 2.3.11. We note that from Proposition the uniform boundedness of the
sequence (g, )y in C%7(R™) follows. Moreover, for the base points x( in a compact
set of Q, the C% norms, and thus the constants in the monotonicity formulae, are

uniformly bounded. Indeed, as pointed out in the corresponding statements they depend
on [|A|lwsr(2) and dist(xg, 092).

2.4 The blow up method: Classification of blow ups

In this section we proceed with the analysis of the blow ups showing the consequence of
Theorem

The first consequence is that the blow ups are 2-homogeneous, i.e. v(tx) = t?v(z) for
all ¢ > 0 and for all x € R", as it is possible to deduce from the second member of 2.70]
where, according to Euler’s homogeneous function Theoremﬂ7 the integral represents a
distance to a 2-homogeneous function set.

Proposition 2.4.1 (2-homogeneity of blow ups |34, Proposition 4.2]). Let 29 € T, and
(Ugyr)r be as in . Then, for every sequence (rj); | O there exists a subsequence
(rje)ik C (1) such that the sequence (g, )k converges in C17(R™) to a function
v(y) = w(L™"Y(zg)y), where w is 2-homogeneous.

Proof. We apply the Weiss quasi-monotonicity formula (2.70) to ®y,,,) on the interval

2Let v : R® — R a differentiable function, then v is k-homogeneous with & > 0 if and only if
ko(z) = (To(e), )
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(rjr,r;R) with r € (0, R) and we obtain

[OF]
o5

(I)]L(aco)(’f’jR) GCS(TJR)P Ca(rym)'~

ik _n t 51—
- q)]L(IEO) (TjT)IL(:pO) & -+ 04/ (t pF +a}_(t)> BCStl © dt
rjr

rif 9eCst’© _ UL (20) \ 2 _
2/ W/@ ML(I0)<<ML(1350)C$0V7 V@)’ —2%> dH" " dt
t

TiT

ter/R 26@3(7‘3'9)17% nl/ ri9)
= —T L DK
r (Tjg)n+2 J B (o)1

o
(C:BO (ij)y 9 UL(a:O)(r]y)
. N Vu 2o (75 _ o ML@o)\"3Y)
( U]L(xo)(rjy) IL( o)( gy)> -

R 266‘3(rjg)17%
_/T Q"+2/BQ :U']L(:ro)(rjy)'

. << Cy, (r5y)v
(2o (T59)

R 9,Cs(rj0)' =
:/T W/BQ ,UlL(a:o)(ij)'

Cao (rj)y N 2
A\ ) : —2 , n
( /’LL(:EO) (rjy) ’ V'LL]L(JEO)J‘] (y)> U]L(xo),rj (y)) dH d@

2 1
) dH T () do

UL(z0) 7 2
L( 0),J(y)) J

VU]L(:L’()),’I’]‘ (y)>2 -2 Hn_ld@

(2.84)

Since the functions wuy ), satisfy a uniform estimate on C;;Z(R”), for all sequences

(Uzg,r;)r; We can extract a subsequence (UIO’Tjk )Tjk that converges in Cllo’z to some function
w. Then, remembering that C(0) = I,, and ji,(5,)(0) = 1, thanks to Lebesgue’s dominate
convergence Theorem we obtain

R 2 2 n—1
OZ/T W/BQ <<y,V’w(y)) —2w(y)> dH"™ "do.
Thus, it holds
2
/ ((y,Vw(y)) — 2w(y)> dH" 1 =0 Llae o€ (r,R),
BQ
and

(Vw(y),y) —2w(y) =0 H" a.e. y € OB,. (2.85)

Due to the continuity of w the condition ([2.85)) holds for all y € Br \ B;, so for Euler’s
Homogeneous Function Theorem we deduce the 2-homogeneity property. Going back
with respect to the change of coordinates we find the thesis. O

As a second consequence, remembering Proposition we can obtain that the blow
ups are non zero.
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Corollary 2.4.2. Let v(y) = w(L"Y(z0)y) be a limit of C*Y a converging sequence of
rescalings (Ugyr;); in a free boundary point vg € Iy, then 0 € T'y, i.e. w # 0 in any
neighborhood 0.

Proof. Due to Proposition for any j € N there exists a v; € S~ such that
Ugy,r; (V) > 0. By the compactness of S"! we can extract a subsequence (v, )i such
that vj, — v € S""L. By the convergence in C17 we have that v(v) > 0, if we define
¢ := L™ (zo)v, we get w(€) > 6. As noticed in Proposition w is 2-homogeneous,
then in any neighborhood 0 there exists a point on the direction & on which w is strictly
positive, so for any § > 0 we have w(56¢) = §%w(&) > 626, and thus this Corollary is
verified. O

Finally, it is possible to give a classification of blow ups. We begin by recalling the
result in the classical case established by Caffarelli [14,[15,/17].

Definition 2.4.3. A global solution to the obstacle problem is a positive function w €
CHY(R™) solving (2.12) in the case A = I,, and f = 1.

loc

The following result occurs:

Theorem 2.4.4. FEvery global solution w is convex. Moreover, if w Z 0 and 2-homogeneous,
then one of the following two cases occurs:

(A) w(y) = %((y, V)V 0)2 for some v € S*™1, where the symbol V denote the mazimum
of the surrounded quantities;
(B) w(y) = (By,y) with B being a symmetric, positive semidefinite matriz such that
TrB = 1.
2

Having this result at hand, a complete classification of the blow up limits, for the
obstacle problem ([2.4)), follows as in the classical context. The ingredient of the proof is
the quasi-monotonicity formula by Weiss and a I'-convergence argument:

Proposition 2.4.5 (Classification of blow ups [34, Proposition 4.2 and 4.5]). Every blow
up vy, at a free boundary point xg € Ty is of the form vy, = w(L™(z0)y), with w a
non-trivial, 2-homogeneous global solution.

Proof. We indicate by w the limit of (uy(z),;); for some 7; 0 in C’llo’z and we consider
the following energy defined on H'(B1) by

fi T (r'y) .
]:]('l)) — fBl (<(C]L(:1:0)(rjy)vv<y)7 Vv(y)) + 2%”) dy va € Vj (286)
00 otherwise.
with V; = {v € H'(B;y) : v>0 L"-a.e. on By, V9B, = UL(zo),r; 831}' By definition the
function ug,(zy),,, is the minimum of F;. Remembering from (2.50) that Cp,,)(0) = In,
and fi,(4,,)(0) = f(z0), we prove that F = I'(H")-lim; F;, with
fB1 (|Vu(y)]2+21j) dy ifoey

o0 otherwise,

Fv) = { (2.87)

where V:= {v € H'(By) : v>0 L"-q.0. in By, vjgp, = w9, }-
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(i)

T'-liminf inequality.

Let v € H'(B;), we prove that for all v; — v in H'(B;) the inequality F(v) <
lim inf; F;(v;) holds.

Without loss of generality we can suppose lim inf; F;(v;) < 0o, so from the definition

of Fj(vj) we have v > 0 L-a.e. in By and vjpp, = UL(20).r5|93, and from convergence

of v; in H' we have v > 0 L"-a.e. and VjpB, = WjpB,- Then remembering the
continuity of Cp,,,) and fi,(4,) and its modulus of continuity we obtain

fL@o) (T5Y)

Fla) )

Fi0) = [ (Coten(ri)Ves(a). Vo)) + 2
By
- /B ({(Coien) (r59) — Ciisn) (0)V0;(5), Vo (4)
fr@o) (1Y) = L@@ 2 4 9
e v;(y)) der/B1 (Vv ()] + 2v;(y)) dy
> —C’(r} /31’VUj(y)|2 dy + w(ry) /BlZUj(y) dy) +/Bl(|Vv(y)|2+2v(y)) dy

+2

- /B (IV0; — Vo) + 2Jv; — v]) dy
1
> — (5 + )Wl + Wellircan) — (s = 0By + 1oy — vllagan)
+ F(v).

By passing to the limit as j — co and to the lower limit on every sequence (v;) we
find the inequality.

I'-lim sup inequality.
Step 1: v —w has compact support in Bj.

We want to build a recovery sequence. Let 5 \, 0 and (pp), be a sequence of the
function for which

c
enp ., =1 enp =0 e  [Vpp|< -
We consider the sequence (v,’i) hi; defined as

U}Ii = PpU + (1 — ‘ph)ul(zo),rk'

93



So we have

< /B (Vo) + 205 ) dy + C (1] + () (02 3y + ol 1))
1

Fi(oh) = /B ((Ca.any (1) Ve (), Vb () + 2

< [ (IR + (1= 0PIV usany P+ V0P (0 =~ ng00),))
1
+2 /B (pnv + (1 = @n)urieg).r,) dy + C (1] + @) (1013 gy + [0l L1(s,))-
1
By passing to the upper limit as £ we obtain

lim sup F,(vF) g/ (IVv]? + 2v) dy
k

B

1
+/ (\Vw|2+2w) dy + — lv — w|? dy.
Bi\Bi_¢, €h JB1\B1 ¢,

For h — 0 according to the absolute continuity of the integral and v —w € H}(B)
we deduce
li;bn lim sup F,(vF) < F(v),
k

With a diagonal argument we extract the recovery sequence and we conclude Step 1.
Step 2: General case.

Let v € w + HE(B) and we extend it to w on BS. We define v°(x) = p%(%) for

p /1, p < 1and we prove that v — v in H'(B;) and v” —w have compact support
n Bl.

. . 2

Since v € L? there exists a sequence v/ € C.(B) such that v/ EaN v, then

[o =\l L2(my) < llo = v |2z, + 107 = ()Pl 2y + 1) = 0P|l L2(sy)-
Due to continuity and uniform boundedness of ||[v;|[2(p,)
7 = (@)°ll2(my) < 107 (2) = p*07 (@)l 1208y + 1P%07 () = p*07 (= ) llz2(sy)
p
. 1 .
< U= Ay + s (5 1) < O )

with w; modulus of continuity of v; and @’ (t) = t + w’(t), while with a change of
variable

1(w7)? = Il 125,y = P10 (px) — v (p)| 12(3)

. p—1 .
= p? o (2) — v(@)| 2,y > [0 = 0]l L2(8y):
P
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where from the absolute convergence of integral we obtain the convergence. So

limsup |lv — Up”L2(Bl) <2fv— UjHL2(Bl)'
p—1

By passing to the lower limit as j we have the convergence in L?. In the same way
we deduce the convergences for the gradient; so we obtain the convergence in H!.

In order to prove that v” —w have compact support in By, we use the 2-homogeneity
of w and the fact that v = w on Bf; for all x € By we have

= () +(3)) o
> 1 andv(%) :w(%>.

Therefore from Step 1 for all p 1 we have

z

in fact )

I'-limsup F;(v”) < F(v). (2.88)
J

We observe that

f(vp):/ (|va|2—|—2vp)dy:p/ |va]2dx—{—/ 20° dx
B1 B1 B

1 1
Iz Iz

§/ (Vo> +2v) da:—i—/ ([Vw|* + 2w) dy,
B Bi\B

so from absolute continuity of the integral

liminf F(v”) < F(v). (2.89)

p—1
According to semicontinuity of I'-lim sup, (2.88]) and (2.89) we conclude

I'-limsup Fj(v) < liminf (I'-limsup F(v”)) < liminf F(v”) < F(v).
j p—1 p—1

From Theorem we have the convergence of minima, so if ¥ = miny F then
UL(zg),r; — U 0 H!(Bj). Due to Proposition , up to subsequence, (UL (z),r;)
converge in C17 to some 2-homogeneous function v/, and from the uniqueness of
minimum we obtain 7 = v’. We extend w and @ for 2-homogeneity on Bj. Since
Vo, = Wjpp, we have v = w. Then w is a global, 2-homogeneous solution, and
from Corollary w # 0. Finally we have g, (2) = up(zy) (L (z0)z) —
w(L™(zo)z), for which ug, ,(z) — vy (x) in C with vy, () = w(L ™Y (xg)x).

O
According to Theorem we shall call a global solution of type (A) or of type (B).

The above proposition allows us to formulate a simple criterion to distinguish between
regular and singular free boundary points.
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Definition 2.4.6. A point zg € I'y, is a regular free boundary point, and we write
xo € Reg(u) if there exists a blow up of u at xg of type (A). Otherwise, we say that x¢ is
singular and write xo € Sing(u).

Remark 2.4.7. Simple calculations show that W,,(1) = @ for every global solution of type
(A) and ¥, (1) = 26 for every global solution of type (B), where ¥,, is the energy defined
in (2.91) and 6 is a dimensional constant.

Remark 2.4.8. We observe that for every sequence rj N, 0 for which uy,yy),, — w in
C17(By) with w being a 2-homogeneous global solution then

it @y (15) = ()
From Weiss’” quasi-monotonicity the uniqueness of the limit follows, so ®r,;)(0) = ¥,(1)
for every w that is the limit of the sequence (ug(g),)r- It follows that if 29 € Ty is a
regular point then ®p,,:)(0) = ¢ or, equivalently every blow up at g is of type (A).

2.5 Monneau’s quasi-monotonicity formula

In this section we prove a Monneau’s type quasi-monotonicity formula (see |77]) for

singular free boundary points. The plan of proof follows [34, Theorem 3.8]. The additional

difficulty is the same as Theorem so for completeness we report the whole proof.
Let v be a 2-homogeneous positive polynomial, solving

Av =1 on R". (2.90)

Let
1

\Ijv (7") = m

2
/B (IVol* + 20) dz — sl v? dH" L (2.91)

We note that the expression of W, (r) is analogous to those of ® with coefficients frozen in
0 (recalling (2.57)). An integration by parts, (2.91]) and the 2-homogeneity of v yields

1 , 1 .
dr = d —vAv)d
) /BT |Vou|* dx T”+2/B ( iv(vVo) — v v) 0

T

1 1
—_— d n—1 _ d
o /BBT<VU,$> H S /Tv T
1 1
= n+3/ vV dH — n+2/ vdx:/ v2d7-["_1—/ vdx
r 9B, r B, OB B

and therefore
U, (r) =¥,(1) = / vdz. (2.92)
By

In the next theorem we give a monotonicity formula for solutions of the obstacle problem
such that 0 is a point of the free boundary and

®(0%) = ¥,(1) for somew 2-homogeneous solution of ([2.90). (2.93)
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As explained in Definition formula (2.93) characterizes the singular part of the free
boundary.

Theorem 2.5.1 (Monneau’s quasi-monotonicity formula). Assume (I1)-(14) and (0.7)).
Let u be the minimizer of £ on K, with 0 € Sing(u) (i.e. (2.93)) holds), and v be as above.
Then, there exists a positive constant Cs = Cs(\, ||A|lwsr) such that

r— (uy — v)> dH" ' + C5 (T(l_%) + w(r)) (2.94)
dB1

is nondecreasing on (0, 3dist(0, Q) A 1). More precisely, L'-a.e. on such an interval

da 02 gn—1 -z /Tw(t)
d7"</831(ur V)*dH" + Cs (r e + Tt dt
%

> 2<ec?»7“1 O(r) + Cy /O eest © <tg + °"it)> dt — qfv(1)>.
(2.95)

3

Proof. Set w, = u, —v. As v is 2-homogeneous we have that w,(z) = @ Assuming

that from (0.7) A(0) = I,,, due to the Divergence Theorem and Euler’s homogeneous
function Theorem we find

i 2 n—1 _/ i ’U)(T'.CC) n—1
ar Jop, w, dH" ™ = o wy dr( 2 )dH
—2/ w,((Vwy, z) — 2w,) dH" ! = 2/ w,((Vuy, ) — 2u,) dH" !
T JoB, T JoB,
2 2
:/ wy((A(r2)Vu,, ) — 2u,) dH" ! + / w, (A0 — A(rz)))Vuy, z) dH"
T JoB, T JoB,
2 . w
22 [ (00T ur,2) = 200) 41 = C IVl oy o Loy o 7
1
thus by (2:30)
2 _n
i wz AH™ > = / wyr((A(rax)Vu,, ) — 2u,) dH ™ — Cr . (2.96)
dr Jop, r Jop,

o7



Using an integration by parts, and (2.90)) we can rewrite the first term on the right as

/ w,((A(rz)Vu,, ©) — 2u,) dH" !
0B

/ 2w, uy dH?

0B1

/ 2u dH" !
oB

— / ((A(rz)Vu,, Vo) + v f(rz) X qu, >0y (%)) dz +/ 20 u, dH" !
B

5 (<A(T1’)VUT, vwr> + wy f(rx)X{u,«>0} €x
1

( )) dr —
—/B ((A(ras)VuT, Vur) +up f(re)X {u, >0} (:1:)) dr —
)

[t

0B1

=®(r)— [ f(re)(ur + v xqu,>0y(2)) dz + 2 / (u(rz) — p(0))uZ dH" !
B1 0B1

- / (A(rx)Vu,, Vv) dx + 2/ v, dH
B 0B,

2@(r)+/B (ur—i-v)dx—/B <Vur,Vv>dx—/B (f(rz) — £(0))(ur + v) da

- /< (A(rz) — A0)) Vuy, Vu) dz + 2/ (u(rz) — p(0))uZ dH" ' + 2/ v, dH" L
B1 0By 0B1 (2 97>

Recalling the y-Holder continuity of A and u, from the Divergence Theorem, we obtain
/ w,((A(rz)Vu,, ) — 2u,) dH" !
0B1
> O(r) + / (up +v)dx — / (Vu,, Vv) dz + 2/ v, dH — ¢ (17 + w(r))
B1 B

0B
B(r) — W, (1) +/B(ur Av) dz —/

(Vu,, Vv) dz + 2/ vup dH™ ™ — ¢ (17 + w(r))
1 By

0B1

= B(r) — Ty(1) + /

(div(u, Vv) dx + 2/ vy dH N — & (17 +w(r))
By

0B1

=®(r) — Uy(1) + /aBuT(<Vv,:r) dz +2v) dH" ' — ¢ (17 + w(r))
=®&(r) —U,(1) = (r" +w(r)).
(2.98)

. ~ —1_n
So, by combining together (2.96]) and (2.98)), and assuming that v := 1 e we deduce

4 w2 dH" ! > 2
dr Jop, T

(B(r) — T, (1)) — ¢ (mﬁ + “’(7’)> .

r
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from inequality (2.71) we deduce

d 2 5., 1-5 r n t S 1-n
/wf dH™ ! 27(<I>(r)ec3’"1 °+0y /(t@ + w()) eCat' O gt
dr Jop, r 0 t

—e (M8 uln) - ) - ¢ ()
22 (o v (8 R SF - w)
e <7«—g G

)

/

and then set C5 = 15

d(/w%d?{”1+c5 <r15+/ w(t)dt>>
d’l“ OB1 0 t

> 2(¢(r)eésr1’% e /(t—g n W(t)> Cst' T8 gy \llv(l)>.

r 0 t

@3

2.6 Blow up method: Uniqueness of the blow ups

The last remarks show that the blow up limits at the free boundary points must be of a
unique type: nevertheless, this does not imply the uniqueness of the limit itself. In this
section we prove the property of uniqueness of blow ups.

In view of Proposition 2.4.5] if z € I';, the blow up in z is unique with form

valy) = { L(L ' (@)s(2).y) vO)® € Reg(u)
) (L (2)B, L~ )y, y) x € Sing(u).

where ¢(x) € S"~! is the blow up direction at z € Reg(u) and B, is a symmetric matrix
such that TrB, = %

We start with the case of the singular points. Therefore, from Weiss’ and Monneau’s
quasi-monotonicity formulae it follows that:

Proposition 2.6.1 ( [34, Proposition 4.11]). For every point x € Sing(u) there exists a
unique blow up limit v, (y) = w(L.™!(x)y). Moreover, if K C Sing(u) is a compact subset,
then, for every point x € K

HU]L(I)J“ - chl(Bl) <og(r) vr e (0,rk), (2.99)

or some modulus of continuity o : RT — RT and a radius rg > 0.
Y
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Proof. Without loss of generality we show the uniqueness in the case in which the
base point x € Sing(u) is 0 and the condition holds. We use Monneau’s quasi
monotonicity formula.

Suppose u,; — v in C17(Byr) with v being a 2-homogeneous, polynomial and
quadratic function such that Tr(D?v) = 1. From uniform convergence

lim/ |, — v]2dH" = 0.
0B1

According to (2.95))

r— (uy —v)> dH" ' + C5 (rl 505 + w(r))
0B1

is monotonic and infinitesimal if r \, 0. In particular (up,); — v in C7 for all sequences
hj (0, so from Uryshon’s property the whole sequence converges to v. This implies the
uniqueness of blow ups.

We fix a compact set K and we prove the uniform convergence in K. Let’s suppose by
contradiction that there exist z; € K and r; — 0 such that the rescaled function uy,
and w;(-) = vg; (L(z;)-), where v, is the blow up of u in the point z;, satisfy

Zj),T;

> Ve > 0. (2.100)
C1(By)

HUL(%)M - wj)

Due to Proposition luL(z;)r;lorvsyy < €, for all j € N From Ascoli-Arzela’s
Theorem, up to extract a subsequence (that we do not relabel), (up(g;)r;); converges
to some function w in C17. Since z € K, according to Remark , the constants in
Weiss’ quasi monotonicity formula are bounded, so reasoning as in Proposition
we achieve the 2-homogeneity property for w. Proceeding as in Proposition

we define the functional

f T (T'y) .
F () ::{ Jor (Coiap (rm) Vo), To(y) + 2720y dy - ifo e,

s} otherwise,

with V; as in (2.86]), we prove that ]?] I-converges to F defined in (2.87)) and so we obtain
that (ur(,)r); = w and w is a 2-homogeneous, global solution.
Then according to (2.59)), (2.91) and (2.93)) we have

j—00
) J

R) 2% W, (R) = U,(1) VR > 0. (2.101)

uL(zj),rj (
From Weiss’ formula and remembering that ; € Sing(u) for all j € N it holds

r—0

Dy, ), (1) — D, (07) =26

and the function




is not decreasing. Therefore

ul _ 1—_n_
29 — C4 fOT <t_m + @) eC3t O(s) dt

(b T > n )
u]L(IJ) ( ) - ec—arl—m
and if » << 1 we deduce 3
(Dul(zj) (7’) Z 5 0.

Then for j >> 1

and from ([2.101])
Dy (1) >

N W

0.

Remembering that by Corollary w # 0, we deduce that w is a non trivial, 2-
homogeneous, global solution with W, (1) > %6, so according to Theorem and
Rermark w(y) = (By,y) with B symmetric matrix and Tr(B) = 3.

In order to conclude, since all norms evaluated on polynomials are equivalent, from
and Monneau’s quasi monotonicity formula (that holds with the same constants
because the points z; are contained in a compact set) we deduce that

0 <e <limsup HUL(%)% — wj’ < limsup [|w — wj”cl(Bl)

j C1(B1) ;
<Cli fheorenBED 0
11m su w — Wy 111 su w—Uu ) = U.

< Climsup v = vl 20m) = L Ut [

O

Next, we proceed with the case of the regular points.
We extend the energy defined in (2.91) from 2-homogeneous functions to each function
£ € WH2(By) by

\115(1):/3 (V€ +2¢) da — - a1

We state Weiss’ celebrated epiperimetric inequality |95, Theorem 1] (recently a variational
proof for the thin obstacle problem has been given in |36| and with the same approach
as [49] and Chapter 3 for the fractional Laplacian):

Theorem 2.6.2 (Weiss’ epiperimetric inequality). There exist 6 > 0 and k € (0,1) such
that, for every ¢ € H'(By), 2-homogeneous function, with

o —wllmip) <0 (2.102)

for some global solution w of type (A), there exists a function & € H'(By) such that
oB, = Plop, € =0 and
Tell) =0 <1 =R (T,(1) =0), (2.103)

where 0 = W,,(1) is the energy of any global solution of type (A).
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For the reader’s convenience we recall the definition (I3’) seen in the introduction

(13)" Let w(t) = supj,_y<¢ |f(x) — f(y)| be the modulus of continuity of f and set a > 2
the following condition of integrability holds

1
/ WY) |log r|* dr < occ. (2.104)
0

As in |34] we prove a technical lemma that will be the key ingredient in the proof of
uniqueness. With respect to |34, Lemma 4.8| the lack of regularity of A and f in (I1)-(I3)
does not allow to use the final diadic argument; for this reason we introduce a technical
hypothesis (I3)’. For a clearer comprehension on behalf of the reader, we report the
whole proof:

Lemma 2.6.3. Let u be solution of (2.4) and we assume (13°) and (0.7). If there exist
radii 0 < gg < rg < 1 such that

inf ||urop, —wlm@p,) <6 Y 0o < 7 <o, (2.105)

where the infimum is taken on all global solutions w of type (A) and § > 0 is the constant
of Theorem [2.6.3, then for each pair of rays o,t such that oo < o < t < ro we have

/ g — | dHY < Oy p(t), (2.106)
0B1

with Cy positive constants independent of r and o, while p(t) a growing function vanishing
i 0.

Proof. From the Divergence Theorem, (2.58) and (2.75) we can compute the derivative
of ®'(r) in the following way:

¥() = S - 0+ 20 200 o+ 5y 220
> /8 AV Vo) 2 fuy ™ = (n ) S
- w% /8Br w(Av, Vu)ydH" ™t — Cr~o
—,,m1+2 /aBT(WuF +2u) dH" ! — (”:f2)<1>(m — W /6& u? dH" !
- T% /{jBT wl, V) dH"' — C <r—8 + ”Ej"))
__ [ ;f 2)q>(r) + % /aB ((<u, V) —2u,)? + [8,u,]? + 2u, — 2n u$> dH"
1

—C(r—8+wg)>,
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where we denote by J,u,, the tangential derivative of w, along dB;. Let w, be the
2-homogeneous extension of u,gp,. We note that if ¢ is a 2-homogeneous function it
holds

1 1
$(z) de = / o) dH" (y) dt = / e[ ) aHn ()
B 0 OBy 0 0B1

1

_ n—1
e B(y) dH" (y).

(2.107)

Then a simple integration in polar coordinates, thanks to Euler’s homogeneous function

Theorem functions and (2.107]) which give

/ (|0-ur)® + 2u, — 2nul) dH" ' = / (|0-we|? + 2w, + 4w? — 2(n +2) w?) dH"
831 631

:/ (IVw,|* + 2w;,) —2(n—|—2)/ w? dH" !
831 aBl

:(n—|—2)/ (|Vwr|2—|—2wr)d7-[”_1—2(n+2)/ W2 M = (n+ 2) Ty (1),
B1 0B1

Therefore, we conclude that

'(r) > (”:2) (‘Ile(l)_(I)(T))+71“/aB ((<V’ VUT>—2UT)2dH"71—C’ (rg N wfﬂr)) '
1 (2.108)

We can also note that, being w; the 2-homogeneous extension of u,|pp1, thanks to (2.107)
and ([2.105)), there exists a global solution w of type (A) such that

1

lwr = wll g (m,) < ﬁ”wra& —w| g1 9B, < 6.

Hence, we can apply the epiperimetric inequality (2.103) to w, and find a function
¢ € w, + H(By) such that
We(1) =0 < (1—k)(¥y, (1) —0). (2.109)

Moreover, we can assume without loss of generality (otherwise we substitute & with w,.)
that We(1) < W, (1). Then, by the minimality of u, in £ with respect to its boundary

conditions (0.7, (I1)-(14) and lemma we have

o[ (vi s [ e
Z/B (<A(m;)V§,V§) + 2f(m:)§) dr — /{)B pu(r) €2 gyt

0 (P re) [ (VP ae-cr [ @awt @a0)

>0(r) — C (r' 7 +w(r) / (IVER +28) do— CrY [ €2dnm
B1 0B,
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From (2.109) and (2.110f) we get

W, ()= 0(r) > 2 (B()—0-C 1) 40-B(r) = 2 (@(r)~0)~C ("5 + ().
Then from and i
¥ 2 "2 @) -0 -0 (84 20 (2112)
Let now Cg € (0, (1 — &) A (n+2)15;), then
((@(r) ) 7"_56>/ > _C (r—8—56 + ;‘1’523) . (2.113)
Indeed, by taking into account 2.112
(@) ~6)r ) = @/(r)rC — G ((r) — ) r O
z(”flf,{:@(r)e)c(r 5yt )) (@(r) - 6) 0o~
> (0(r) — O)r—Co ((n + 2)7 = 06> c < m) r=Co
> _C (r_g_66 + :gﬁ) .

By integrating (2.113)) in (¢,7¢) with t € (sg,79) and multiplying by #Cs we finally get
~ ~ 170 ~ 70 W(T)
£Co [(cp(r) —0) rcﬂ] > (% / ( —6=C 4 ) dr
t

‘ rl-‘rCG

whence

T0 n & ~
O(t)—0 < C(/ <r_®_06 + W(T) ) dr + 1)7506
¢ r1+Cs

T ) 0wl (2.114)
< C(rl_g 4 ¢Cs +tc6/ widr) < % (/ AT dr+1> .
¢ p1+Co ¢ p1+Cs
Consider now gg < ¢ < rg and estimate as follows
td
/ |Ut —Ug|d7‘[n_1 :/ / a <u(7’2$)> d’l"‘ dHn—l
0B, aBy [Jo dr \ T
t
S/ 7’2/ (Vu(rz),z) —ZU(MC) dH™ L dr
aB1 r
(2.115)

/ _1/ (V. (z), x) — 2u,(z)| dH" L dr
0B

gm/g rz (N/E)Bl |V (2), 2) — 2, (2))? d’;’-l”1>% dr.
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Combining (2.71)), (2.108]), (2.111)), (2.114) and Holder inequality we have

[l < [ (w0 w0 (8 +40) ),
=¢ <10g Z)) <<1><t> ~®(0) +C <t1—g o 4+ / (7 d))
<C <log t) :

0

1 1
t 2 ~ ~ T0 t 2
<C <10g ) (tcﬁ + ¢ / LTN) dr + w(t) + / w(r) dr) .
0 ¢ 7«1-0—06 0 r

Now thanks to the hypothesis (I3)’, if ro << 1 for every 0 < ¢t < ry we can apply the

N

N

[V
7N
~—~~
&
=
S~—
|
D
SN—
+
—~
>
I
iy
Us)
=
+
Q
7N
o~
T
ol
+
v‘o\ﬁ_
£
E
S~—
=N
=
~_
~~_
NI

(2.116)

inequality w(t) < |logt|~%, the infinitesimal function t©¢ |logt|® which is growing, the
inequality (2.116]) and decreasing of |logt|* we have

1 1
t\?2 o T0 1 a 5
/ lus — u| dHP < © (log> log t|~% (1 +/ w(r) [logr|* dr)
831 Q ¢ r

) (2.117)
t\2 a
<C <logg> |logt|™ 2.

A simple dyadic decomposition argument then leads to the conclusion. If o € [27F 27F+1)
and t € [277, 271 with h < k, applying (2.117)

k 00
/ lug — u| dH" 1 < C Zlog(?)*% < Cy Z i =: C7 p(t),
0B1 :

j=h =2
with
=1
p(t) =Y — if te[27h 27, (2.118)
P
j=h

By taking (0.12)) into account we have a > 2, therefore, the function p(t) is growing and
infinitesimal in 0, from which the conclusion of the lemma follows. O

Checking the hypothesis of Lemma [2.6.3] it is possible to prove the uniqueness of the
blow ups at regular points of the free boundary:

Proposition 2.6.4 ( |34, Proposition 4.10]). Let u be a solution to the obstacle problem
(2.12) with f that satisfies (I3)" and xo € Reg(u). Then, there exist constants ro =
ro(20), M0 = no(xo) such that every x € I'y N By, (z0) is a regular point and, denoting by
vy = w(L™Y(x)y) any blow up of u in x we have

/ uneyy — w| dH M (y) < Crplr) ¥ € (0,r0), (2.119)
0B1
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where C7 is an independent constant from r and p(r) a growing, infinitesimal function
i 0. In particular, the blow up limit v, is unique.

Proof. We indicate by ®(x,r) the energy in (2.57) where we modify the base point from
0 to x, or rather we assume B, (z) as the integration domain. Due to continuity of the
translation in LP, the function I'y, 3 z — ®(z,r) is continuous, and since, from Theorem
we have ®(z,0") = inf, ®(x,r), we find that the function I';, 3 z — ®(z,0") is
upper semicontinuous. So Reg(u) C Iy, is relatively open in Fuﬂ

By Proposition [2.2.1] given 77 > 0 such that Bj(z9) CcC Q and T'y N By(zo) =
Reg(u) N By(xo), then

Cs = sup L (z)rllcrv@m) < oo
x€lwNBj(xo), r<q
Let 0 > 0 be the constant in Theorem [2.6.2] Due to a compactness argument if ¢ is a
function C17(9B;) that satisfies l¢llcir@m,) < Cs, then there exists an € > 0 for which

1)
lellLion) <¢ = el By < 1 (2.120)

On the other hand, if the condition does not hold we have that for all ¢ > 0
there exists a . € C17(9B) such that |o:|lc1y9p,) < Cs, for which [l¢c||r1op,) < €
but (el g10m,) > % According to Ascoli-Arzela’s Theorem it is possible to extract
a subsequence ¢.; — ¢ in C(9By), with ¢ € C'(9By), for which [¢|l1198,) =
0, so ¢igp, = 0 H" a.e.; but leell oy = limy (o || ar@amy) > g, and this is a
contradiction.

We now fix 7p > 0 such that C7 p(79) < ¢ and

wH <2 (2.121)

nt |
vl | L H'(9By) ~ 4

%0),70|9B;
where the infimum is taken on all (A)-type solutions w. In order to prove the existence of
threshold 7y we resort to a reductio ad absurdum: if a similar threshold does not exists we
could find a sequence r; — 0 such that HUL(W)H\E)BI — w1 oB,) = g for every (A)-type
solution w; but on the other hand zy € Reg(u), so (up to subsequence that we do not
relabel) (up(g,),r;); converges to type (A) blow up v of u in z¢ in Cllo’;’ and this is the
absurdum.

From continuity of A and f, and thus of IL, there exists 0 < 1y < 77 such that for all

x € Reg(u) N By, (o)

. 0
Hz};f HUL(‘”)’FO\aBl B wHHl(aBl) = 2’ (2.122)

where the infimum is taken on the same class as above. We prove that this implies that
for all x € Reg(u) N By, (z0) and 0 < r < 7

inf HUL(’”)’TlaBl - wHHl(aB1) = (2.123)

3in fact if y — = we have ®(y,0") < ®(x,0") = 6, so for o << 1 we achieve the thesis.
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For this purpose we fix x € Reg(u) N By,(xo) and let g9 < 7o be the minimum radius
such that the condition (2.123)) holds for all radii gy < r < rg. Let us assume gg > 0 and
we note that according to continuity of u, A and f we deduce

(2.124)

inf HUL(:::)700|831 B wHHl(aBl) -

Then, remembering that from Remark 2.3.T1] since B, CC €, the constants are uniform
in 'y N By, (x0), due to Lemma we obtain

< T o).
sy = O p(fo) Vot € [oo,7o]

inf HUJL(OU),QWB1 ~ UL(@)t 9B,

Since the functions uy ), are equibounded in C17(8By) by Cs, the condition

gives us

J _

oy = 1 Vo, € [0, To].

In particular from and triangle inequality we contradict the condition (2.124)).
In order to conclude we observe that thanks to (2.123]) we obtain and deduce

for every p,t € (0,79). Moreover by passing to the limit as o \, 0 in we

find

inf Huux),gwgl ~ UL(@).t|pp,

/ up(z).e — w| dH" 1 < C7 p(2),
0B,
and we achieve the uniqueness of the blow ups. O

Remark 2.6.5. If f is a-Holder we can prove Lemma [2.6.3] and Proposition [2.6.4] with

_ +C . CsN
p(t) =t~ where Cq := ~55%.

2.7 Regularity of the free boundary

In this last section we state some regularity results of the free boundary of u, the solution
of (2.4). If the matrix A satisfies the hypotheses (I1)-(I2) and the linear term f satisfies
the hypothesis (I3)" we obtain differentiability of the free boundary in a neighborhood
of any point & € Reg(u). In particular if f is Holder we establish the C1# regularity as
in [34] where A is Lipschitz continuous.

Theorem 2.7.1 ( [34, Theorem 4.12]). Assume hypotheses (I1), (12), (I3)" and (I4)
hold. Let x € Reg(u). Then, there exists v > 0 such that Ty N B.(x) is hypersurface C*
and n its normal versor is absolutely continuous with modulus of continuity depending on
p defined in . In particular if f is Holder continuous there exists r > 0 such that
T N B, (z) is hypersurface CYP for some universal exponent 3 € (0,1).

Proof. Let ng = np(0) and 79 = r9(0) be the radii provided by Proposition We can
prove that there exist two constants C' > 0 and 3 € (0, 1)E| such that

‘L_l(x)n(x) - ]L_l(z)n(z)‘ <Clz—2zP, Va,z € Reg(u) N Bug. (2.125)

2

48 is computable.
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For this aim let p € (0,7), then changing Coordinate system in (2.119)) we have

v — UZHLl(aBl) < vz — Ux,g”Ll(aBl) + [tz — UZ,QHLl(aBl) + [Juz,o — UZHLl(aBl)

< Cp(o) + |luz,e — uz,@HLl(aBly
(2.126)

The map y — L(y) is absolutely continuous with p(r) + r? its modulus of continuity :

Af(y) - Af(z) A%<y>f%gz> - zfx%(z)fa(y)
f2ly)  f2(2)| f2(y)f2(z)
< C' Az 1f2(y) — [2(2)] + F2(y) |AZ(y) — A2 (2)]

<C(p(ly —=]) + ly — z|").

Then thanks to (2.30) we estimate the following term
Vau(t(z + oy) + (1 = t)(z + 0y))

1
|, — Uz,0ll L1 (8B S/ /
we “e (9B1) 8B1J0 Q2

Co*(Jz—a|+0)z—2| < Clz—al,

|z — x| dt dH" " (y)

(2.127)

1
if o = |z —2/'77 and C = C(n). Moreover, observing that Hvail( ) is a norm for

0B1
the vector L™ (x)n(z), and remembering that all norms in a finite vectorial space are

equivalent, we obtain

L @) — L~ (2)n(=)] < C llos — 021 o, (2.128)

)
We achieve the condition (2.125)) by putting together (2.126]), (2.127))) and (2.128):
1
L @)n(@) ~ L @n(=)] < Cllvs — valli o, < C Vol — 27, (2.129)

We now consider the cones CF(x,¢), with x € Reg(u), given by

AT (@)n(@) \ _i}_
A <x>n<x>r>‘5"y |

l=[ M=

C*(z,e) := {y eR" : :|:<y—:c,

We prove that for all € > 0 there exists 6 > 0 such that for all z € Reg(u) N B

w‘g

Y

Ct(z,e)NBs(z) C N, and  C (z,¢) N Bs(x) C Ay. (2.130)

Let us suppose by contradiction that there exists a sequence (z;); C Reg(u) N B 0 such
that z; — « € Reg(u) HE%O and a sequence (y;); for which y; € C*(zj,¢), z; —y; = 0
and u(y;) = 0.
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The rescaled function u, ,, with 7; = [(y; —2;)|, uniformly converges to v,. Changing

the coordinate system in (2.119) and from ([2.129))

||ij,rj - U:L‘HLl(aBl) < ||ij,rj - UIjHLl(aBl) + Hvxj - U:cHLl(aBl)

< C(p(rj) + 4/ p(|z = z4['=7)),

thus ug, r;, — v in L'(0B;). Changing the coordinate system in Proposition
and since, from Remark [2.3.11} the constant in (2.24)) is uniformly bounded, because
(x5); C B%o, we have that the sequence (ug;,,); is bounded in C*7. Then for all

sequences we can extract a convergent subsequence in C'7 that, for uniqueness of the
limit, converges to v,. So for Uryshon’s property the whole sequence uniformly converges
to vg.
We define the sequence z; = r; '(y; — ;) and we observe that z; € (CF(zj,¢) —
T; ) NS™ L. Up to subsequence (that we do not relabel) we can suppose that z; — 2z €
( (x,€) —x)ﬁS”l Thus
0a(2) = lim g, 1, (27) = lim uggj) =0, (2.131)
J

but on the other hand there exists a y € C*(x, ) for which 2 = y — z, so from definition
of vy and C*(x,¢), according to (I2) and (I4)

va(2) = va(y — 2) = 5 ((y — 2, L7 (2)n(n)) v 0)
> (ely — oL @) > 22 ey —af > 0

N

(2.132)

that gives a contradiction. Reasoning in the same way it is possible to prove that
C~(z,e) N Bs(x) C Ay.
We show now that A, N B, is the subgraph of a function g for a suitable constant
. . “L(zo)n(zo A_% z)n(x
p1 > 0. We fix 9 € Reg(u) and indicate by v(zg) = UL E ;nExo;\ = |A7%Ez;nix;| the
generating line of cones CF(z,¢). Let ¢ : R"™! = {xg + v(xg)*} — R be a function
defined by

(') :=max {t € R : (2/,1) € Ay}, Va' € {xo+v(zg)t} : |2/ — zo] < 6V1 — €2
We note that according to (4.106]) the maximum exists in [—ed, £d], and

(2',t) € Ay = —ed6 <t < (),
(z',t) € N, = o(z") <t <éd.

L~ (z)n(x)

Therefore ¢ is differentiable and its normal vector v(z) = =T (@)n(z)] is absolutely
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continuous, in fact

L' (y)n(y) ‘
| LY y)n(y)l

Ll()()Ll(y)() - 1 1
= ‘ e |+ om0 [
c — |IL (@)n(@)] - L n)l| _ 2C -
< %) Vollz —y['=7) + IL~1(z)n(z)] = Ve p(lz —ylt=7),
so ¢ € C! and this prove the theorem. O

We are able to say less on the set of singular points. We know that below the hypotheses
(I1)-(I4), the set Sing(u) is contained in the countable union of C'! submanifold.

Definition 2.7.2. The singular stratum Sy of dimension k for £k =0,1,...,n — 1 is the
subset of points x € Sing(u) for which Ker(B;) = k.

In the following theorem we show that the set Sing(u) has a stronger regularity
property than rectifiabilty: we show that the singular stratum Sy, is locally contained in a
single submanifold. Moreover that UZ;}Sk is a closed set for every [ =0,1,...,n— 1.

Theorem 2.7.3 ( |34, Theorem 4.14|). Assume hypotheses (I11)-(I4). Let x € Sk. Then
there exists v such that Sy N By.(z) is contained in reqular k-dimensional submanifold of
R™.

Proof. We divide the proof into two steps.
Step 1: The map Sing(u) > x + L~ (2)B,L~!(z) is continuous.
We proceed as in Theorem [2.7.1| observing that ||M|| = [;5 [(My,y)|dy is a norm on
2

R, m; thus we obtain

L7 (2)B, L () = L7 (2)B.L 7 (2)| < Cl|lvz — vill 108, )- (2.133)
2
Let us fix a compact set K C Sing(u), and let ok be the modulus of continuity found

in Proposfmon Then for all 7,z € K let s = |z — 2|'™7 € (0,7) and C' > 0 be a
suitable dlmensmnal constant. According to (2.99) and (2.127)) we have

vz — UZHLl(BBl) <lvs — U:I:,S”Ll(BBl) + [Jug,s — UZ,S”Ll(BBl) + [Juz,s — UzHLl(aBl)
< C(ox(|z—2"77) + |z — 2]
(2.134)

According to (2.133)) and (2.134) we deduce the continuity.
Step 2: There exists a function ¢ € C?(R™), extension of the null function on K, such
that for all z € K

p(y) —valy — 2) = o(ly — 2[) for y — . (2.135)
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We prove that the family of translations of the blow-ups {v,(- — z)}.ck satisfies the
hypotheses of Whitney’s extension Theorem [98, Theorem 3.5.7]. Precisely we show that
the family of polynomials p,(y) := v, (x — y) on varying of x € K satisfies the following
conditions:

(1) pz(z) =0, for all z € K N Sk,
(ii) DY(pr —p.)(z) = o(|z — 2|*>7") for all 7,2 € KN Sk, el =0,1,2.

The condition (i) is trivial. Instead, in order to prove the condition (ii), due to (2.99) and
the uniform ellipticity of L., we obtain

lu = pzllcos, @y < 7° ok (), IVu = Vp:lcop, 2y <rox(r)  Vre(0,rk),
(2.136)
with 7k that depends on rx and A. In fact by (2.99)), for all r € (0,rx)

ok (r) > sup |up)r(y) — wa(y)| = sup |uz,(L(2)y) — w.(y)|
yEB yeB1

/ /
u\ry vy (ry
= sup }uz,r(y/) _Uz(y/)l > sup z(2 ) _ z(2 )
y'EL(z)(By) W .

A A p /
= —5 sup [u(z+y)—v:(y)| = -5 sup |uly)—p(y)|,
7 s fule+0) vl = 55 sup [uls) = p:(0)

with ' € (0,vArg); proceeding in the same way for the gradient, we deduce (2.136).
Then, since u(0) = 0 and Vu(0) = 0 it holds that:

Pe(z) = pz(2)| = |u(z) —p-(x)]  and  [Vps(2) = Vp.(2)| = [Vu(z) = Vp:(2)],

that implies the condition (ii) in the case in which { = 0,1. The condition (ii) in the case
[ = 2 is limited to continuity of L=!(z)B,L~!(x) proved in Step 1.
The condition (2.135)) proves that K C {V¢ = 0}, in fact for all z € K and y — x

—vz(y — )

i |P(2) — ¢ ()
[z —y

~ualy—2) | olly ~af?)
v oyl

=0.
|z — | lz —yl

= lim

—0} = lim

- y—T

Given z € K, since Rk(B,) = k, and for Whitney’s Theorem VZp(r) = L~} (2)B,L~(x),
with a change of variable in R™ we can reduce to the case in which the first k vector
of canonical basis, e; with i = 1,...,k, are the eigenvalue of V2¢(0). Thus the minor
(n — k) x (n— k) of V2¢(0) in new basis, composed by the first (n — k) rows and the first
(n — k) columns is null. Then according to implicit function Theorem we obtain that
ﬂ?;lk{ﬁigp = 0} is a C! submanifold in a neighborhood of z. We conclude observing that
KNSy C{V% =0} cni=f{o;0 =0} O
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Chapter 3

The classical obstacle problem for
non linear variational energies

3.1 Coercive vector fields

Let © C R™ be a smooth, bounded and open set. Consider (ag,a) : 2 x R x R” — R x R"
a smooth vector field satisfying (cf. |91, Section 4.3.2])

(H1) ag is Carathéodory, a € Cllo’cl(Q x R x R™ R™) and there is p € (1, 00), for which

(i) (a(z,2,8) - &) A (ao(,2,£)z) > MEP + Mi[2]P — ¢1(z) for L ae. z € Q, and
for all z € R, £ € R", with ¢; € LI(Q), A>0and A\ > 0;

(ii) |ao(z, 2,€)| V |a(x, 2, )| < A(|z[P~L +|€[P71) + ¢a(z) for L™ ae. z € Q and for
all (z,€) € R x R™, with A > 0 and ¢y € L>=(Q);

(iii) there is a constant © > 0 such that for all z € Q, z, ( € R, and £ € R”
la(z, 2,€) —a(x, ¢, )] < Oz = ¢|(1+ [¢P7);
(H2) for £™ a.e. z € Q, and for all z € R, £, n € R”

0 < (a(x,z,f) - a(xazvn)) : (f - 77)7 (31)

with strict inequality sign for & # 7.

Note that strongly coercive vector fields as defined in |65 Definition 3.1 of Chapter IV]
satisfy the assumptions above.
Let ¢ and g be given functions in WP (Q), p € (1,00), with g > v L™ a.e. on Q and
set
Kyg:={veg+ Wol’p(Q) v > L"ae. on Q}. (3.2)

We consider the following variational inequality

/ a(z,u,Vu) - V(v —u)dr + / ap(z,u, Vu)(v —u)dz >0 for all v € Ky 4. (3.3)
Q Q
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Under conditions (H1)-(H2) and supposing the obstacle ¢ and the boundary datum g
in WP(Q) and satisfying the compatibility condition g > v L" a.e. on 2, the existence
of solutions to is a consequence of classical results. Indeed, consider the nonlinear
operator & : WhP(Q) — WL (Q) defined by

(o (w),v) := /Q (a(z, w, Vw) - Vv + ag(z, w, Vw) v) dx (3.4)

for w € W1P(Q) and v € Wol’p(Q), where for all (z,2,£) € @ x R xR"

5(1‘,2’,§) = a(xv z+ g(x)’§+ Vg(a:)), EO(xa Z7§) = CLo(LU, z+ g(x)7§+ Vg(x))

Note that a and ag are Carathéodory functions on account of the regularity of a and ag.
Then, items (i) and (ii) in (H1) yield that < is coercive relative to the closed (in the
norm topology of W!?) convex subset Ky_, 0 of W& P(Q) given by

Ky—go:={ve Wol’p(ﬂ) cv>Y—g L"ae on Q}.
More precisely, for some wy € Ky_g0 (actually for any wy in this case)

lim ||wH;V11 oy (@ (w), w — wg) = +00.
'LUGW(}’P(Q),H'LUHWLP(Q)—)OO P

Remark 3.1.1. Coercivity is clearly ensured under weaker conditions than those in item
(i) of (H1) in view of Sobolev embedding theorems (cf. [56, Theorems 3.7 and 3.8])

In particular, [91} condition (4.26)] is fulfilled for any wo € Ky_g40 and for any R > 0.
Since the injection WP(Q) < LP(Q) is compact, assumption (H2) gives that .27 is a
Leray-Lions operator (cf. [91, Theorem 4.21]). Existence of a solution u € Ky_4 o for

/ Az, @, VD) - V(v — i) do + / do(2,@, Vi)(v—@)de > 0 for all v € Ky_y0
Q Q
follows at once from |91 Lemma 4.13 and Theorem 4.17]. Therefore, u := u + g is a
solution to (3.3)).

Finally, uniqueness of solutions to (3.3) is guaranteed in case the ensuing more stringent
monotonicity condition is satisfied

0< (a(x,z,f) - a(%@ﬁ)) : (g - 77) + (CL()(CC,Z,S) - ao(fUaCﬂ?))(Z - C)v (35)

for L™ a.e. x € Q, for all z, ( € R and £, n € R", with strict inequality sign in (3.5)) if
& # n. Disregarding the characterization of the equality case in , the latter condition
yields that the nonlinear operator <7 defined in is monotone, actually T-monotone
(cf. Theorem in Chapter [).

In the variational case in which a = V¢F and ag = 0.F, (H2) follows from the
convexity of the Lagrangian F' in the gradient variable &, while from the joint
convexity of F in (z,¢&).
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3.1.1 Regularity of solutions

In what follows we consider variational inequalities as in (3.3)) for vector fields (ag,a)
satisfying (H1)-(H2) and further assuming the following conditions on the obstacle
function:

(H3) ¢ € CLH(Q).

loc

Note then that
h = —div(a(z, ¥, V) + ao(z, ¥, Vi) € L. (). (3.6)

The key to establish optimal regularity is contained in Proposition [3.1.2| in which we
switch from a variational inequality to a nonlinear elliptic PDE in divergence form. Indeed,
on account of Proposition [3.1.2] in Theorem we establish almost optimal regularity
of solutions through classical elliptic regularity results and finally optimal regularity is
achieved in Theorem by means of Gerhardt’s approach (cf. [50]).

Despite almost optimal regularity of solutions is a well-studied subject, we provide in
Proposition [3.1.2] and Theorem below a different proof that departs from the classical
ones known in literature ( |11}13}39,52,57,/60%|70,81,91]) by extending the linearization
method to the general setting studied here (cf. [41,|42]). The idea is to reduce regularity
for variational inequalities of the sort in to the more standard setting of nonlinear
elliptic PDEs. In the case of quadratic forms a similar argument has been established
in |34], inspired by the case discussed in [95] for the Laplacian (see Theorems and

in Chapter .

Proposition 3.1.2. Let (H1)-(H8) hold true. Then, a solution u € Ky, 4 to problem ([3.3)
solves

—div(a(z,u, Vu)) + ag(x, u, Vu) = {(x) (3.7)

L" a.e. in Q and in D'(Q), for some function { € L (Q) such that, for h defined in

loc
(3-6),
0<(¢<ht X{u=yp) L" a.e. in .

Proof. Let ¢ € CZ°(Q2) and for all € > 0 take ve := (u+¢ep) V1 € Ky 4 as test function
in (3.3). Note that in case ¢ is a non-negative function we obtain

/ a(z,u,Vu) - Veodr + / ap(z,u, Vu)p dr > 0. (3.8)
Q Q

Therefore, the distributional divergence div(a(-, u, Vu)) of a(-, u, Vu) satisfies
(—div(a(-,u, Vu)) + ao(-,u, Vu) L' Q) >0 for all ¢ € C°(Q), ¢ >0,

in turn implying that p := —div(a(-, u, Vu)) + ag(-, u, Vu)L" Q is a non-negative Radon
measure.
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Next, consider v. as above with no sign assumptions on ¢, set Q. := {u +ep < ¥},
and rewrite the two addends in (3.3)) respectively as follows

/a(a:,u,Vu)~V(v€—u)dx:e/ a(x,u, Vu)-VgodaH—/ a(x,u, Vu)-V (¢p—(utep))dz,
Q Q e
and

/an(ac, u, Vu)(ve — u)de = 6/an(x,u, Vu)pdx + / ao(z,u, Vu) (¢ — (u+ eyp))dz.

Qe
Thus, on account of the definition of the measure p we conclude that

5/Q<PdMZ —/Ea(x,u,Vu)-V(w—(u—i—ecp))dx—/ ao(z,u, Vu) (¥ — (u+ £p))da.

€

By the monotonicity hypothesis on the field a in (H2) we have that

5/Qg0d,u2 —/an(:v,u,V@ZJ)-V(l/)—u)dm

+ 5/ a(z,u,Vu) - Vodr — / ao(z, u, Vu) (v — (u+ep))dx

Qe

and therefore we infer that

[ oz [ (aw 0. 90)- V(0 (0-+2) + aule v, O~ (4 <) )

/

::Iél)

+ e/ (a(z,u, Vu) — a(z,v¥, V) - Vo dz + E/ (ao(z,u, Vu) — ag(x, v, Vip)) ¢ dx

€

:515(2)

+/ (a(z, v, VY) — a(z,u, Vi)V (¢ — u)da:—i—/ (ao(z, v, V) — ag(z,u, Vu)) (¢ — u))dz.
Qe Q

£

=:I§3)
(3.9)

We deal with the three terms above separately. We start off with the first term that we
rewrite as

e __/Q (e, 0, Vo) - V(1 — (u+ ) V 0) + aoa, 1, V) (¥ = (u+£9)) V0) ) da.

Being u > 9 L™ a.e. in Q and ¢ € C2°(Q2), we have Q. & Q, so that (¢p — (u+¢ep)) V0 €
Wol’p(Q). By taking this into account, together with the condition v € Cllo’cl(Q) (cf. (H3)),
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item (ii) in (H1) and an integration by parts yield, recalling that h = —div(a(z, ¥, Vi)) +
ao (337 d}v V¢)7

M = /ﬂ (div(a(z, ¥, Vi) — ao(z, ¢, Vi) (¥ — (u+ep)) V 0)dz
= —/ h((v— (u+ep))ds > —/ Y (¢ — (u+ep)) de Zs/ htpdr (3.10)

€ € €

where in the last but one equality we have used that ¢ — (u +e¢) > 0 L™ a.e. on Q. and
in the last one that v > ¢ L™ a.e. on (). In turn, the latter condition implies that

L (({u=v}n{p <0})\ Q) =L (2% \ ({0 < u—9 <ef@llr=@} N{p <0})) =0,

so that xa. — X{u=y¢}n{p<o} i LY(Q), for every p € C°(2). Therefore, from (3.10) we
infer

lim inf 57118(1) >

n / ht @ dx. (3.11)
e=0 {u=9}N{0<0}

In addition, by the Dominated convergence theorem and by the locality of the weak
gradient, we conclude that for every ¢ € C°(Q)

lim 5_118(2) =

o0t /{uw}ﬂ{wd}}

+ / (ao(z, u, Vu) — ag(z, v, Vo)) dz = 0. (3.12)
{u=y}n{p<0}

(a(:z:, u, Vu) — a(z, v, V@ZJ)) -Vodz

Finally, to deal with 1) we use item (iii) in (H1) to deduce that

¥ > - s@\wllw(m/ (L+ VeIV - u)| da

€

el /Q lao(z, w4, V) — ao(, $, V)| da.

Therefore, by the quoted convergence of yqo. and by the locality of the weak gradient, as

in (3.11)) and (3.12)), we conclude that
liminfe 178 > 0. (3.13)

€
e—0t

Resuming, by (3.11]), (3.12) and (3.13)), passing to the limit as e | 0" in (3.9) divided by

€ > 0, we infer that
/ pdu > / ht pdz.
Q {u=v}n{p<0}

By approximation (and by applying the argument above to —¢) we infer that for every

p € QY
/ h+90dm§/g0d,u§/ ht pd.
{u=¢}n{p<0} Q {u=y}n{p>0}
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In turn, the latter inequalities imply that p << £7.Q. Thus, if p = (L™ 2, with
¢ € LY(Q), we infer that 0 < ¢ < W X qu=ypy L a.e. Q, so that ¢ € LjS () by (3.6).
In conclusion, as by definition pu = —div(a(-,u, Vu)) + ao(-, u, Vu) L"), equation

(3.7) follows at once. O

Remark 3.1.3. One can prove that a solution u of (3.3) is a @-minimum of a lower order
perturbation of the p-Dirichlet energy from the conclusions of Proposition [3.1.2] as argued
in [54] (cf. also |56, Chapter 6]). More precisely, let ¢ : B(Q) x WP(Q2) — [0, 00) be

G(w,A) = /AG(az,w(x),Vw(ac)) dz,

where A € B(Q), the class of Borel subsets of 2, and G : 2 x R x R™ — [0,00) is the
Carathéodory integrand defined by

G2 €) i= [P + |27+ [V0(@) + 0@ T +161(0)] + lao(a, u(a), Vu(@)|77.
Then, there is a constant @ = Q(p, A, A) > 1 such that
G (u, K) < Q9 (w, K) (3.14)

for all w € g—I—WOI’p(Q) such that K := spt(w—u) Q. Note that |ag(-, u(-), Vu())|1’%1 €
LY(Q) by item (ii) in (H1). The direct methods for regularity introduced by Giaquinta
and Giusti |53,54] imply that u € Cl%ca (Q) for some « € (0, 1] under suitable assumptions
on ¢1, ¢2, ag and p (cf. [42] and Section in Chapter [1)).

Actually, we can establish a priori, directly from by taking the family of
test functions v = w V ¢ with w as above by means of items (i) and (ii) in (H1).

Finally, we recall that under the standing assumptions on (a, ag) upper semicontinuity
and approximate continuity of 1 suffice to establish continuity of solutions (cf. [76]). In
particular, this shows that the sets {u > ¥} and €., € > 0 suitable, in the proof of
Proposition |3.1.2] are actually open.

We are now ready to deduce almost optimal regularity for solutions to (3.3 from
standard elliptic regularity provided item (iii) in (H1) and (H2) are substituted by the
more restrictive

(iii)’ there is a constant © > 0 such that for all z, y € 2, z, ( € R and £ € R"
la(z, 2,6) —a(y, ¢, )| < Oz —y| + |z = (N1 + ¢]77)
(H2)" there is v > 0 such that for L™ a.e. 2 € Q, and for all z € R, £, n € R™

v P2 [e=nl? < (alz, 2, ) —ale, 2,19))-(E—n) < v(I+[El+H)P 2 1E—nl
(3.15)

On account of (3.7)) in Proposition suboptimal regularity follows.
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Theorem 3.1.4 (Almost optimal regularity). Let (H1) (with (i) in place of (iii)), (H2)
and (H3) hold true. Let u € Ky 4 be a solution to problem (3.3), then u € VVZ?)(? N Cllof(Q)
for all g € [1,00) and all a € (0,1).

Proof. By taking into account that u solves (cf. Proposition , classical elliptic
regularity for nonlinear elliptic equations in divergence form yield that u € C’llog(Q) for
some « € (0,1) (cf. |73 Section 3], |74, Chapter 5]).

It is also classical to prove that u € VVi)f(Q) (cf. |67, Chapter 4, Theorem 5.2])
and by differentiation, on account of the Cllo’ca regularity already established and (H1)-
(H2)', that the weak derivatives of u satisfy a linear uniformly elliptic PDE with Holder
coefficients and right hand side being the divergence of a field in Lj? (€2, R™). Therefore,
we may apply standard L?-regularity estimates (cf. |56, Theorem 10.15]) to conclude that
u € I/Vlzo’g N Cllo’?(Q) for all ¢ € [1,00) and all « € (0,1). O

Corollary 3.1.5. Under the assumptions of Theorem the function ¢ in (3.7) of
Proposition actually equals h*x{u:w} L™ a.e. on .

Proof. By the W24 regularity of u and the C’llo’i regularity of a, one can compute the
divergence in the definition of the measure p and use the locality of weak derivatives to
conclude. O

Optimal Cllo’i regularity of solutions follows at once from Gerhardt’s result [50] provided
ag is locally Lipschitz continuous.

Theorem 3.1.6 (Optimal regularity). Let (H1) (with (iii) in place of (iii)), (H2) and
(H3) hold true, and assume g € C?() with 1 < g on 0, and ag € CIOO’CI(Q x R x R"R).
If uw € Ky 4 is a solution to problem (3.3), then u € Cllocl(Q)

Proof. The proof is essentially that of [50] despite the forcing term, i.e. ag(-, uw, Vu) in our
case, is not in C%! as required in the statement there. Nevertheless, a careful inspection
of that proof shows that the slightly weaker assumption ag(-,u, Vu) € VV;E(Q) for all

q € [1,00) actually suffices (cf. formula (16) there). In our setting this property is an
immediate outcome of the regularity hypothesis on a¢p and Theorem above. ]

Remark 3.1.7. We point out that for p # 2 the study of degenerate fields a deserves
additional efforts. Optimal regularity of solutions to with a(¢) = |¢P~2¢ and
aop(z,z) = f(x)z, f € L>®(Q), has been established only recently in |2| (cf. the bibliography
there for more detailed references, and also the results in [41]). That paper also deals
with the case ¢ € C1P(Q), B € (0,1), that is not covered by our methods. More precisely,
it is established there that solutions are C’llo’fm/(p (), B e (0, 1], and actually Cllo’f in
the homogeneous setting f = 0.

Building upon Proposition and a careful analysis of the estimates in |74, Chap-
ter 5] one can actually show that u € Clla’?(Q), for all a € (0, ]ﬁ] N (0,1) for fields
satisfying (H1) and the degenerate analogue of (H2)'.
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We end this subsection pointing out that the conclusions of Proposition [3.1.2] and
Theorems and extend to the more general setting of fields ag satisfying the so
called unnatural growth conditions following the terminology of Giusti [56] (cf. formula
(6.15) there), of which item (ii) in (H1) is a simple instance.

This claim is also true in case ag satisfies the natural growth conditions (cf. |56, formula
(6.18)]) provided bounded solutions are taken into account. Existence of such solutions is
guaranteed for bounded obstacles and bounded boundary data, for instance.

3.1.2 Free boundary regularity in the variational case

We are now ready to state and prove the main result of the paper. From now on we
restrict to the variational case, in which a = V¢F and ag = 0. F for suitable integrands F'.
In this framework the problem ([3.3]) is equivalent to

min / F(z,v,Vv)dz. (3.16)
veky g JQ

We need to rephrase assumptions (H1), and (H2)’ terms of the energy density F itself. In
passing we note that item (i) in (H1) is not needed provided F satisfies suitable convexity

and growth conditions in view of the Direct Method of the Calculus of Variations. Indeed,
item (i) in (H1) has been used only in the proof of existence of solutions to ([3.3).

Theorem 3.1.8. Let Q C R™ be smooth, bounded and open, and p € (1,00). Assume
(H3) for v, and g € C*(Q) with ¢ < g on Of).
Let F € C2’I(Q x R x R™) be satisfying

loc

alélP — o) < Fz,2,6) < cal€P + calz"” + d(x) (3.17)

forall z € R, £ €R", for L™ a.e. x € Q, where ¢ € LY(Q), c1, ca > 0 and c3 > 0, and p*
is the Sobolev exponent of p (thus p* is any exponent if p > n).

Suppose that items (i), (i1) in (H1) are satisfied by a = V¢F and ag = 0,F, and in
addition assume F(x,z,-) to be uniformly convex in (x,z) w.r.to &, i.e. there exists v > 1
such that for allx € Q, z € R and £, n € R”

v L+ n))P2IEP? < VEF (2, 2,m)E - € < w1+ |n)P 3¢ (3.18)

Then, the minimum problem in (3.16) has (at least) a solution u € Ky 4, and, moreover,
every solution belongs to CIIOCI(Q)
Let u € Ky 4 be a solution. If, moreover, v satisfies

(H4) for some constant co > 0 we have for L™ a.e. on §)

h = —div(VeF (2,9, V) + 0, F(x,9, Vi) > ¢o > 0;

(H5) for some o € (0,1)
div(VeF (- u, Vib)) € CL2 (),

loc
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then the free boundary decomposes as O{u = 1} N Q = Reg(u) U Sing(u), where
Reg(u) and Sing(u) are called its regular and singular part, respectively. Moreover,
Reg(u) N Sing(u) = 0 and

(1) Reg(u) is relatively open in 0{u = ¥} and, for every point xo € Reg(u), there
exist 1 = r(xg) > 0 and B = B(xo) € (0,1) such that Reg(u) N B,.(xg) is a C19
submanifold of dimension n — 1;

(ii) Sing(u) = U}_3Sk, with S contained in the union of at most countably many
submanifolds of dimension k and class C'.

Remark 3.1.9. In case F = F(x,&) the structural conditions imposed on F', i.e. convexity
and (3.17), imply item (i) in (H1) (cf. [56, Lemma 5.2]). Therefore, besides uniform
convexity, the only nontrivial assumption on F' is (iii)’ in (H1). In turn, the latter is
clearly satisfied in the autonomous case F' = F(§).

Remark 3.1.10. Assumption (H4) corresponds to the well-known concavity assumption
on the obstacle function ¢ in the case of the Laplacian, or better to the localized form
of such a condition introduced in [19]. Simple examples show that (H4) is a necessary
request to expect regular free boundaries.

Remark 3.1.11. In view of the regularity assumptions on F' and the optimal regularity of
u, assumption (H5) is basically a hypothesis on the obstacle ¢ that can be enforced by
assuming more regularity on ¢ itself. For instance, it is implied by taking ¢ € Clzog(Q)

Finally, non trivial examples show that a qualified continuity hypothesis on the relevant
operator calculated on the obstacle function, weaker than Hoélder continuity imposed in
(H5), is actually necessary to conclude free boundary regularity already in the classical
case of the Laplacian (cf. [6,[77]).

To establish Theorem |3.1.8| we introduce the ensuing linearization; in this way we
rewrite the PDE in as a locally uniform elliptic equation with suitable locally
Lipschitz continuous matrix coefficients in case the gradient of the solution itself shares
such a regularity.

Lemma 3.1.12. Let (H1)-(H4) hold true, and let u € C’lloi(Q) be a solution of ({3.16)).
Then, there exists a symmetric matriz field A : Q — R™ ™ such that

div(A(2)V(u—v)) = (= div(VeF (2, u, V) + 8. F (z,u, Vu)) X{u>) (3.19)
L" a.e. in Q and in D'(Q); with A satisfying
(i) A€ Cll(QR™™),

(i) for all K C ) there is A\ > 1 for which

MNP < A@)E-€ < Akl€* for allx € K and for all € € R™, (3.20)
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Proof. We start off rewriting the Euler-Lagrange equation (3.7)) as follows

div(VeF (z,u, Vu) = VeF(x,u, Vip)) = (= div(VeF (z,u, Vi) + 0. F (x,u, V) X {usp}-

(3.21)
In claiming the last equality we have used Corollary [3.1.5 assumption (H4) and the
inclusion

{u=1v} C{Vu=Vy},

consequence of the unilateral obstacle condition u > v on €2 and the regularity of both u
and 1. Then set w := u — %, and note that for all z in

VeF(x,u(x), Vu(z)) — VeF (x,u(z), Vip(x))
= VeF (z,u(x), Vw(z) + Vip(x)) — VeF(x,u(x), Vip(z))

1
= (/0 VEF(:JJ, u(z), Vip(x) + ti(x))dt) Vw(z) =: A(z)Vw(z). (3.22)

rom (|3. an .22)), we conclude that w satisfies (3.19). Moreover, being u,y €
F (13.21)) and (|3.22)) lude th isfies (3.19). M bei

C’llo’c1 (2) and F € C}. (2 x R x R"™), we deduce that item (i) in the statement is satisfied,
as well. Moreover, for all x € Q2 and for all £ € K, K C R"™ a compact set, we have

1
v(2P2 A 1)y§|2/0 (1+|Vy(z) + ti(x)|)p_2 dt < A(z)€-€

1
= | VR (@ ula). Vota) + 9@ €t < IVEF it o 6T

with rx 1= supg(|Ju] + |V¥| + |Vw|). The inequality on the left hand side above is an
easy consequence of the coercivity condition in . Ellipticity then easily follows if
p > 2, for p € (1,2) instead we use that u,¢ € C; . (2). Finally, the upper bound in
follows easily in both cases. The conclusion then follows. O

We are ready to prove Theorem [3.1.8] as a direct consequence of Lemma [3.1.12]
Theorems and in Chapter

Proof of Theorem[3.1.8 Existence of solutions to follows from |56, Theorem 4.5]
thanks to the convexity of £ — F(z,z,£) and the growth conditions . The former
guarantees lower semicontinuity of the associated functional in the weak WP topology,
the latter ensures its coercivity over Ky, ;. Therefore, the Direct Method of the Calculus
of Variations applies.

Moreover, any minimizer v is C’llo’g (€2). To this aim, it suffices to note that u satisfies
the PDE in (3.7), since the derivation of the latter is independent from item (i) in (H1).
Note that assumption (H2)’ corresponds to (3.18).

Hence, in view of Lemma to conclude the free boundary analysis we only need
to check that, locally in €2, we may apply Theorems [2.7.1] and 2.7.3with matrix field A as
above, with

f=—div(V¢F(x,u, V) + 0. F(x,u, Vu),
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with 0 obstacle and with boundary datum g — . Indeed, thanks to (3.19)), w = u — 1 is
the minimizer of the quadratic energy

o] = /Q (A@)Vo() - Vo(z) + 2/ (x) v()) dz

over Ky_y 0. In addition, note that 0{w = 0} NQ = 0{u =} N Q.

With the aim of applying Theorems [2.7.1 and [2.7.3| we first recall that {u = ¢} C
{Vu =V}, being u > 1 on Q. Thus, given Q' @ Q and any € > 0, the set QL := {0 <
u—1 <elnN{|V(u—1)| <e}NQ is open and such that {u =1} NQ C QL in view of
the remark above. Moreover, as h = —div(V¢F(x, ¢, V) + 0. F (z,9, V1)) > ¢g > 0 (cf.
(H4)), we have on QL

f2h—|h—=fllre@)
> co— 0. F (4, Vi) =0, F (-, u, V) || Lo (or) = |div (Ve F (-, ¥, Vb)) =div(Ve F (- u, ViP)) || Lo 1)
> co — wo,r(2€) — wVi&F(S) - HVUHLOO(Q{S,R”)WvgéF(g)

— || V2 F (0, V) |l oo () — HV21/1||Loo(9;,Ran)wng(€),

denoting with wy a modulus of continuity of the relevant function ¢ on €’ (recall that
Fe C’foi) Therefore, we can choose € > 0 sufficiently small in order to accomplish the
condition f > ¢/2 > 0 on QL. In addition, f € C&?(Q) by hypotheses (H3), (H5) and by
Theorem [3.1.4] Hence, all the conditions in the statement of Theorems [2.7.1] and [2.7.3]
are satisfied on the open set Q, thus the conclusions follow straightforwardly. O

3.2 Locally coercive vector fields

The analysis in Section does not cover many cases of interest, most relevantly that of
the area functional where

F&) = VIT R, a(6) = VF() = wiT

The latter vector field clearly does not fulfill in (H2)" being F strictly but not
uniformly convex. Moreover, for such a vector field also the existence of solutions to the
corresponding variational inequality is not guaranteed in general and requires additional
conditions on the set 2, on the obstacle 1) and on the boundary datum g (cf. [65, Section 4
of Chapter IV]), |56, Chapter 1] and the references therein). The same considerations
hold more generally for locally coercive vector fields a (cf. [65, Section 4 of Chapter IV] in
the autonomous case and Theorem below).

Assuming a priori the existence of a solution and its global Lipschitz continuity, the
next result due to Gerhardt implies its global C! regularity.

Theorem 3.2.1 (Theorem 0.1 [51]). Let Q be of class C><, for some a € (0,1), g €
C*Y(Q) and ¢ € CH(Q). Let ap € CHH(Q x R x R"), and assume that a(-,-,§) is
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CHH(Q x R,R") for all ¢ € R™, that a(z, 2,-) is C*H(R™,R") for all (z,2) € Q x R, and
that for all (x,z,m) € & x R x R"

Oea(x, z,m)E- € >0 for all £ # 0.
If u € C%1(Q) is a solution of the variational inequality in over the set
fveC™™Q):v>¢ onQ, v=g ondN}
then u € CH1(9).

Therefore, with Theorem at hand, if a locally coercive vector field corresponds
to an integrand F' satisfying hypothesis (H5) of Theorem we can argue as in
Lemma [3.1.12] and in the second part of the proof of Theorem [3.1.§] itself to conclude the
same stratification result for the free boundary of a solution u. Note that, in particular,
this claim holds for the area functional in the Euclidean space (cf. |65, Section 5 of
Chapter V| for the two dimensional case, and [14]).

3.2.1 The area functional in a Riemannian manifold

Similarly, we would like to discuss here the case of the obstacle problem for the area
functional in a Riemannian manifold, that naturally enters several geometric applications
(cf., e.g., |79]). Indeed, to the best of our knowledge a comprehensive stratification result
of the free boundary points in this case has not appeared elsewhere. Since we aim here at
a local regularity result, we assume that

(M1) our manifold is parametrized by a single chart ¥ := B]} x (—rg,70) C R" x R, for
some 1o > 0;

(M2) the metric tensor g satisfies g(0) = I and Vg(0) = 0 (where V denotes the Levi-
Civita connection);

(M3) the obstacle ¢ € C1(B2 , (—rg,70)) with 1(0) = |V(0)| = 0;

TO?

We consider the following obstacle problem:

in vol h(v)), 3.23
uglKlf,g Vog(grap (v)) (3.23)

where Ky 4 := {v € COY(B, (=ro,70)) : v > 1, v|aB77}O = g} for some g € C%*(0B})
with g > 1/1]33;}0, graph(v) := {(z,v(z)) : © € B} } C R" x R and voly(graph(v)) is the
area (n-dimensional measure) of the Lipschitz submanifold associated to the graph of
v. In local coordinates, one can express the area of graph(u) in the following way: let

G : B) — X be given by G(z) = (z,u(z)) and

JG(x) = \Jdet(DG(2)Tg(G(2)) DG(a);
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then

voly (graph(u)) = /B JG(x)dz.

n
70

More explicitly, the matrix M (z) := DG(x)T g(G(z))DG(z) has entries for i, =1,...,n

M;j(z) :=gij(z,u(x)) + gj(n+1)(a:,u(:z‘)) Oiu(x)
+ Gitn+1) (x, u(:c)) 0ju(T) + g(nt1)(nt+1)iu(x) Oju(x).

As for the case of a flat metric, the existence of solutions to is not always guaranteed
and several conditions for it should be verified. However we do not investigate this problem
in the present note, but we assume that we are given a solution u € C%*(BZ, (—ro,79))
and moreover we assume that

(M4) u e CH(B, (—rg,r0)) for some o > 0, and u(0) = |Vu(0)| = 0.

Remark 3.2.2. A comment regarding the assumption (M4) is necessary. The natural
setting for the study of obstacle problems in Riemannian manifolds is that of the so
called “parametric minimal surfaces” theory, i.e. the theory of Caccioppoli sets minimizing
the perimeter among all sets which contain (or are contained in) a given obstacle. In
this setting the existence issue for the obstacle problem is a simple consequence of the
compactness property of Caccioppoli sets, although in general the graphical property
would not be ensured.

On the other hand, around points of the free boundary of the solutions it is simple to
check that one can choose normal coordinates in such a way that hypotheses (M1)—(M4)
are matched. In particular, the hypothesis (M4) is a consequence of the almost minimizing
property of the solutions to the parametric obstacle problem and of a Bernstein theorem
(cf. |79, Section 6.1.2] and [90]), and therefore it is not restrictive to assume it.

In order to better understand the structure of the area functional, we can follow the
strategy in 79| and look at the first variations of the functional

d
de

for every ¢ € C°(B}.) such that ¢|y, > 0 where A, := {u = ¢}. By following the
computations in |79] we infer that the inequality (3.24)) reads as

o voly (graph(u + £¢)) > 0, (3.24)

¢Ludr <0 Y¢eCPB), dla, >0, (3.25)

By,
where

Lu(x) := div(A(x,u(m),Vu(x))Vu(x) + b(w,u(:L‘),Vu(x))) — f (@, u(z), Vu(z)),

and A, b and f are given by the following formulas (the Einstein convention of repeated
indices is consistently employed in the sequel):
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(1) A= (a’;j)i7j:17,__,n : B:“Lo X (—To,To) x R™ — R**" ig given by

aij($7 Zs 5) = 9(n+1)(n+1) (l’, Z)hij(xa 2, 5)7

and (h*); j_1. n is the inverse of the matrix (h;j); j—1,.. ., with

hij(z,2,€) = gij(w, 2) + & Gj(nt1) (¥ 2) + & Gnt1)i (T, 2)
+§’L§] g(n+1)(n+1)(I,2) \V/Z)] = 17"'5”7

(note that (hsj)i j=1,. n is non-singular for small enough |z|, |z|, |£]);

(2) b= (b")iz1,...n : B x (=70,70) x R" — R™ is given by
bi(J,‘,Z’f) = gj(n+1)(xaz)hji(x7z7§);
(3) f: B x(=ro,m0) x R" — R is given by

f (@, 2,€) = W & 41y ) ik + hY &5 € Ty i) Gens)
+ hY Ff(nﬂ) gk + h7E; Ff(nﬂ) Ik(n+1)»

where to simplify the notation we have written A = h% (33, z,f), 9ij = Gij (:c, z)
and I‘fj = Ffj (x, z) denote the Christoffel symbols.

Note that (3.25) reads as a differential inequality of the form (3.3|) where

a($aza§):A(x7zag)§+b(xvz>§) and ao(x,z,f):f(x,z,f).

We now verify that there exists sg < rg such that a and ag above satisfy the conditions of
Theorem [3.1.6] as long as |z| + [2] + [£] < so, i.e. (H1) with (iii)" replacing (iii) and p = 2,
(H2)' for p = 2.

For what concerns (H1), we note that a and ag are smooth functions in their domains
and therefore (i), (ii) and (iii)" clearly follows for |z| + |z| + |£] < s¢ after choosing ¢; and
¢9 suitable constants.

Similarly, the upper bound of (H2)’ follows from the regularity of a. For what concerns
the coercivity condition we start estimating as follows (we write h~! for the inverse of
the matrix h = (hyj)):

(alz,2,8) —a(z,z,n)) - (€ —n) = (Alz, 2,§)§ — Az, 2,m)n) - (€ —n)
+ (b(z, 2,€) = blz, 2,m)) - (€ —n)
= 9ni1)nt) (@, 2) (W (@, 2,€)E — h™ (@, 2,m)n) - (€ —n)
+ gj(n+1)(a:, 2) (hji(a:, z,€) — hji(x, z,n)) (& —mi).  (3.26)

Next note that, since g(0) = I, then for every x > 0 one can find sg sufficiently small such
that

|9jn1) (@, 2) (W' (2, 2,€) = W' (2, 2,m)) - (& —mi)| < K[€ —nl*. (3.27)
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On the other hand, we can estimate the first addendum in (3.26) in the following way:

(h_l(l‘,,z,f)f - h_l(%fzvﬁ)ﬁ) : (é - 77) = h_l(l‘,z7§)(£ - 77) ’ (5 - 77)

+ (hil(x,z,f) - hfl(w, 2’777)) n-(&—mn).
(3.28)

We can use the fact that h=1(0,0,0) = I and the regularity of h~! to get that, if
|z| + |2] + |€] < so for some suitably small sg, then

(™ (w, 2,)€ = h™"(z, 2,m)m) - (€ = 1)
|€ - 77|2 - ‘h_l(l‘,z,f) - h_l(%zﬂm |77| |€ - 77‘
1

5~ Lin(h™") s0) € — P (3:29)

>

A/~ N =

>

Using the fact that g(,11)(n+1)(0,0) = 1, we then conclude the lower bound in (H2)" by
choosing a suitable sq fulfilling all the requests above. Note also that is also satisfied
because ag does not depend on z.

Therefore, if we assume that (H3) is satisfied, in view of (M4) we can apply The-
orem to ul B and deduce that our solution wu| B, has the optimal regularity
CI(BL).

Finally, we can consider the regularity of the free boundary of u in B, which can be
now obtained by the use of classical arguments. Indeed, since now u has second derivatives
almost everywhere, we can also rewrite the operator in the following form (the convention
of summation over repeated indices is used):

Lu = ¥ (z,u(x), Vu(z)) O5u + d(z, u(z), Vu(z)), (3.30)

where -
c(x,2,§) = Oga;(x, 2,£)

and
d(z, 2,§) = divea(z, 2,§) + 0.a(x, 2,§) - £ — ao(x, 2,§).

By a simple manipulation of the equation it follows then that
—c (2, 9(x), Vip(x)) 035 (u(z) — ¢(x)) (3.31)
= (Lv(@) +d(o,u(@), Vu(e)) - d(z,%(2), V¥(@)) )Xy

+ (cij (a:, u(x), Vu(a:)) — Y (:1;, ¥(x), V¢(w)))8iju(x) X{u>o}-
(3.32)

Moreover, we also deduce from the regularity of a and ag that, up to reducing eventually
S0, the function w := u — v satisfies the following obstacle problem

A”(x>aljw(‘r) = Q(x)X{w>0}7 (3.33)
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where the matrix field A (z) = ¢ (z, ¢ (z), Vi(z)) is uniformly elliptic, and

a(@) = ~Lo(@) — (d(e, u(@), Vu(@)) - d(@,0(2), VE@)) ) o)
— (¢ u(@), Vulw)) — ¢ (2, 6(@), V(@) ) 0u(z) Xgus -

By additionally assuming (H4), we have that —Ly(x) > ¢y > 0 and ¢ > </2 > 0.
Furthermore, if the obstacle ¢ € C>® for some a > 0 then ¢ € C%® (where, for the
last claim, the Schauder estimates for the second derivatives of w in {w > 0} are used
(cf. |55, Theorem 6.2]), and the regularity of v which implies that |Vu(z) — Vi (z)| <
C dist(z, {u = })).

Now, by using the regularity results for such obstacle problem in [14,/77] we can easily
conclude the following final result.

Theorem 3.2.3. Let (X, g) be a Riemannian manifold satisfying conditions (M1) and
(M2), and let u be satisfying (M4) and be a solution to the obstacle problem for the area
functional with respect to an obstacle ¢ € CQ’O‘(B?O, (=ro,70)) satisfying (M3) and such
that —Lp(z) > ¢o > 0.

Then, there exists so > 0 such that w € CY1 (B, (=ro,70)) and the free boundary
decomposes as O{u = ¢} N By = Reg(u) U Sing(u), where Reg(u) and Sing(u) are called

its reqular and singular part, respectively. Moreover, Reg(u) N Sing(u) = () and

(1) Reg(u) is relatively open in 0{u = v} and, for every point o € Reg(u), there
exist 1 = r(xg) > 0 and B = B(xo) € (0,1) such that Reg(u) N B,.(xg) is a C19
submanifold of dimension n — 1;

(i) Sing(u) = UZ;éSk, with Sk contained in the union of at most countably many
submanifolds of dimension k and class C'.

Remark 3.2.4. Recalling that the operator L is the first variation of the area functional,
the condition (H4) can be read as the geometric property of the obstacle v of having the
mean curvature vector “pointing downward”, i.e. on the opposite side with respect to the
graph of wu.
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Chapter 4

An epiperimetric inequality for the
fractional obstacle problem

We consider the minimum of

E(v) ::/ |Vo|? 22 da, (4.1)
Bt

1

among all functions in the class of admissible functions

A, :={ve H' (B ,pa) : v>00nB),v=gon(dB;)"}, (4.2)

where Hl(A7Ma) — Coo(A)H'“Hl(A,ua) with ”UHHI(A,MQ) — (fA 2 dfia + fA |VU‘2 d,U/a)%a
to = |zp|* L B and a € (—1,1).

Let u € argming &; we denote by A(u) its coincidence set, A(u) := {Z € By :
u(Z,0) = 0}, and by I'(u) its free boundary I'(u) := dA(u) in B topology.

Caffarelli and Silvestre in |22] showed that the minimum wu is the solution of

u(Z,0) >0 ze (BT
div(z? Vu(z, zy,)) =0 xp >0 (4.3)
lim, o+ 280,u(Z,2,) =0  u(Z,0) >0 '

lim, o+ 2%0,u(Z,z,) <0 T € (BT,

and this problem is related to the study of the classical obstacle problem in R*~! for
fractional Laplacian (A)® with s € (0,1), a = 1 — 2s. In particular, for all v solution of
div(z% Vo(Z,2,)) = 0 on B, with an appropriate extension to whole R™, there exists
the limit lim, .o+ 280,v(Z, ) and lim, g+ 250,v(Z, z,) = C(—A)®f(Z) with f the
trace of v on B} and C a constant depending on n and s (cf. [22]).

For =, > 0, u(Z, x,,) is smooth so the second condition in holds in the classical
sense, while the third and fourth condition in hold in the weak sense. By Silvestre [88]
u(z,0) € CY with a < s, in particular if a < o < s the limit lim, _,o+ 220,u(ZT, z,)
can be considered in the classical sense. By [88] we also know that Oe.cu > 0 for all
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e € S"=2 C R"! x {0}, or rather u is semiconvex in the variable Z; in the case in which
the obstacle ¢ # 0, Silvestre shows that decu > — sup |D?¢p|.

The function u, the solution of , can be extended by simmetrization u(Z, z,) =
u(T, —xy). So, as shown in [22| we can rewrite the problem (4.3]) as

u(iv\, 0) >0 T € B
u(ﬁc\, xn) = u(-/fv _xn) (4 4)
div(lzn|* Vu(Z,z,)) =0 € By \ {(Z,0) : u(z,0) =0} '
div(|x,|* Vu(Z,z,)) <0 x € By in distributional sense.
In order to simplify the notation, we introduce the following symbol:
R,(¢) := lim *0,9(7,¢) (4.5)

e—0t

for all functions ¥ which are solutions for

(.le xn) = ( Z’n)
L et ootz ony = £ 0}, (4.6

Silvestre in |88] proved the existence and the uniqueness of the solution. Caffarelli,
Silvestre and Salsa in |21] proved the regularity of a part of the free boundary. In what
follows, we shall state a uniform estimate on the solution u, so we report a quantitative
result stated in |37, Theorem 2.1|

Theorem 4.0.5. For every boundary datum g € H'(B1, pta) that respects the condition
of compatibility with the problem, i.e. g(Z,x,) = g(Z, —xy,) and g(Z,0) > 0, there exists a
unique solution u to the fractional obstacle problem . Moreover, 0,,u € C*(By) for
i=1,...,n—1 and |2,|*0z,u € C*(B{"), and

[l = [ull + [ Vaull + ln|* O, ull < Cllull 25 -

(4.7)

01+S(Bl+/2) Co( B+ 5) CS(131+ Cs B* )~

In this Chapter we prove Weiss’ epiperimetric inequality for the fractional obstacle
problem (cf. [95, Theorem 1] and Theoremin Chapter and its main consequence in
the framework of the regularity of the free boundary. A similar result was recently proved
by Garofalo, Petrosyan, Pop and Smith Vega Garcia [44] in the case of the fractional
obstacle problem with drift for s € (1/2,1). Their statement requires an extra hypotesis
of closeness (cf. conditon in Chapter . We bypass this hypotesis with an argument
of homogeneity (cf. Section .

In particular, by introducing a frequency formula it is possible to identify the set
of points with low frequency that we denote by I'1s(u). According to a classification
result of Caffarelli, Salsa and Silvestre [21] we classify the global solutions. Following the
approach of [34] we set a sequence of rescaled functions in a point with lower frequency
(with rescaled factor 7175 where 1 + s is the Almegren frequency) and an auxiliary energy
(cf. in Chapter , and we prove a decay estimate of the energy through the
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epiperimetric inequalitiy. The epiperimetric inequality, together with the deacy estimate,
provide a non degeneracy of the solution and a rate of convergence of the rescaled functions.
We prove the uniqueness of the blow up for all points in I';4(u) and finally we obtain
the regularity of I'145(u).

4.1 Frequency formula
Let zp € T'(u) and r € (0,1 — |xg|); let N*0(r,u) be the frequency function defined by

. TfBr(xo) |Vu|? ditg
Ng*(ryu) = 2 (e a1
faBr(m)u |z |® dH

(4.8)

if u|pB, (z9) Z 0. We recall the monotonicity result due to Caffarelli and Silvestre |22].

Theorem 4.1.1. (i) The frequency function NI°(r,u) is monotone non decreasing in
the variable r for all v € (0,1 — |xo]).

(ii) For all points xog € I'(u) the function N*(r,u) = A for all v € (0,1 — |xo|) if and
only if u(xo + -) is A-homogeneous.

(iii) If u(xo + -) is A\-homogeneous then X > 1+ s.
(iv) NFo(r,u) > 14 s for allzg € Ty, and r € (0,1 — |xo]).

Proof. As far as the proof of (i) and (ii) is concerned, we refer to |22, Theorem 6.1].

(iii) Suppose by contradiction that v is A-homogeneous with 1 < A <1+ s (if A <1 then
u ¢ C1(By)). By Theorem Oz, u is s-Holder continuous for every ¢ =1,...,n — 1,
and by Euler’s Theorem, 0, u(xo + -) is (A — 1)-homogeneous. Let x € 9B; and let i be
an index such that 0, u(xo + ) # 0. Then x and 7 exist, otherwise the function u(zg + -)
would be constantly 0 on Bj. So ¢ is an internal point of the conicidence set A(u) and
this is a contradiction. Then thanks to the (A — 1)-homogeneity

sup |8xzu(x0 + y) - 621u($0 + Z)| > lim |6:rzu(x0 + 2533) — amu(ﬂ?o + EJ?)|

y,2€81 |y - z|s =0 €8

= (227 — 1] |8, u(wo + )| lim 71 7% = 400
e—0

but this is in contradiction with s-Holder continuity of 0y, u.
(iv) As regards the proof of (iv), see Remark O

Thanks to Theorem item (i) in it is possible to define the limit N0 (0%, u) :=
lim, _,o+ NZ°(r,u). We denote by I'14s(u) the subset of points of free boundary with
frequency 1 + s:

Tiis(u) :i={zo €Ty : N0, u) =1+ s} (4.9)

Note that from the monotonicity of the frequency and by the upper semicontinuity of the
function z — NZ(0",u) (in fact it is the infimum of continuous functions N¥(r,u)) the
set I'14+s C 'y is open in the relative topology.
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Next, we prove a fractional version of the Divergence Theorem that will be used much
time in the chapter.

Theorem 4.1.2 (Divergence Theorem). Let o € H(By, p1q) and v be a solution of (4.6),
then

Vi - Vedu, = / OV - x|z, |  dH ! — 2/ ORu (V) dH" (4.10)
B OB, B,

Proof. Let ¢ € H'(By, j1s) and 1) be a solution of (4.6)), integrating by parts, we obtain

VY - Vidpia + / Vi Veodua
Bl\{|xn|§€}

Vi Vodpg = /

Bin{|zn|<e}

_ / Vi Ve dpg + / div(oVi|an|®) da — / odiv(Viblan|®) da
B B B

1N{lzn|<e} \{|zn]<e} 1\{|zn|<e}

:/ Vw-deuaJr/ olzn|* Vi - v,
Bin{|zn|<e} O(Bi\{|zn|<e})

By

where in the last equation we used the classical Divergence Theorem and the third
condition in (4.6) that hold in the classical sense far off the hyper-plane {x,, = 0}. Then,
by computing further, we obtain

/ Vo Vedu+ | pleal Vo - v d
Bin{|z,|<e} O(B1\{|zn|<e})

_ / Vb Vo dyg + / Pln|t Vi) - 2 dH !
Bin{|zn|<c} 0B1\{|zn|<e}

- / e D) (T, €) dH™ 1
Bi\{|zn|=¢}

Passing to limit as € — 0, since V¥ - V is locally integrable with respect to the measure
liq, the first integral goes to 0 for absolute continuity of measure, instead |z, |* Vi - =
and |e? Bgn (Z,e)| < C(1+ |z|) are integrable respect to the Lebesgue measure. So by

Lebesgue’s dominated convergence Theorem we obtain what follows:

Vi - Vedpta = / oV -z |ea] dHTT 2 / oRa(1)) dH"!
B 0B, B,

We introduce the notation:
D)= [ |Vuldu, HE0) = [ e
By (o) 0By (z0)
and we omit to write the point zg if zg = 0.
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All functions HZo(-), DXo(-) and N¥°(-) are absolutely continuous functions of the
radius, so they are differentiable a.e..
We prove two properties of HX(r) (see |1, Lemma 2|, [36, A.2.Lemma]| for the case

a=0).

(i) The function
A (r) (4.11)

a

(0,1 —|zo|) 27— 2

Lemma 4.1.3.

is nondecreasing and in particular
Hgo(1 — |zol)
T a n+2
Hao(r)gwr A 0<7’<17|$0| (412)
(ii) Let o € I'145. For all € > 0 there exists an ro(g) such that
(4.13)

o
Hg(r) = ZJFEZOE) prtate V0<r<ry.
o

H,O(r)

rn—2s *

Proof. (i) We proceed along a two-step argument. Let zp € I'145(u), we remember that

xg = (7g,0). We can compute the derivative of

d 1 d 1
< Hf%r)) =— | =% / u? x| ¢ dH L
d?“ rn—2s 8Br($o)

(20 + 1) lyn* d%"—l)

% rn—QS
T=x0+71Y d Tnil 2 a n—1 d /
= —_— n d = —
ar <Tn_25 /6 s (zo + 1Y) [rynl® dH ) ar \
a n— -4'10 a
:/ 2u(xo + ry)(Vu(zo + ry), y) |yn|* dH ! 2r/ ]Vu(xo+ry)]2\yn| dy
0B1 B
TYy=x0+ 1—n 2 | Tn|® . 2 2
= " 2r Vu(@)]® |—| dy = ——; |Vu(z)|” dug,
Br(z0) r By (z0)
(4.14)

where in the third line we have used the Divergence Theorem and the third conditon of
Hq" (r)
rn+2

(4.3) for which uR,(u) = 0 in Bf. Next we compute the derivative of
d (H(r)\ _ d (Hg*(r) 1
dr \ 2 ) dr \ rn=2s p2(1+s)
(=2)(1 +5) / 2 -1
u” |z, | dH"
9B (z0) (4.15)

2 2
= on—2s+2(1+s) / (o) [Vu(z)[” dpa + yn—25+2(148)+1

=27 "3 / \Vu(z)|? dptg — (1 + ) / u? |z, | dH
By (zo) OBr(x0)

then, according to item (i) in Theorem and recalling that z¢ € I'145(u) we can

deduce that #—(*+2) H?0(r) is nondecreasing.
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In particular

Hyo(r) _ HZo (1~ o)

2 S 0 gt VO<r<l-—]zgl

(ii) Let 7o = ro(e) be a radius such that for all < rq it holds that N7°(u) < (1+4s)+¢/2.
Then, thanks to (4.14]), we obtain

Nfo(nu) =

Tn—2s

N3

di‘img <H§O(r)> <(1+45)+¢/2,

So, integrating on (r,rg) we have

Zo (1, r\ "2 T
log <I]§Igo((7?)) (m> > <(2(1+s)+¢e)log 70

and

r n+2+¢
Hﬁovzfﬁ%m><> | .

7o

We now prove a generalization (in the fractional setting) of the Rellich formula (cf.

Lemma [2.3.5)):
Proposition 4.1.4 (Rellich formula). Let v be a solution of (4.4). Then it holds that:

_9 2
/ |w2|xn\ad7{"—1:"“‘/ \Vv]Qdua+2/ (0. 5))" feal amn .
8Br r Br 8B7“ r

Proof. We apply the Divergence Theorem and the third conditon of (4.3 for which
uRg(u) = 0 in Bj and develop

div (|vu|2§ |2,|% — 2 (Vo §>vu \xnya) : O

Similarly as Propositions [2.3.6] and [2.3.9) we compute the derivative of the volume and
boundary energies.

Lemma 4.1.5. The following formulas hold:
(i) (HZ*) (r) = "2 H(r) +2 [pp uVu-v|og|* dH
(i) (Do) (r) = "=29D(r) + 2 [op (V- v)? Jan|* dH

(i1i) DEo(r) = faBT uVu - vz, |* dH™
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Proof. (i) By changing variables and recalling that a = 1 — 2s, we obtain

r(z0) By

n — 2s
= P28 / u?(zo 4 7y) |yn|* dH T + 27771 / 2u(wo + ry)Vu(zo + ry) - y|ryn|* dH™ "
r 9B 0By

d _ a=zo+ry d n— a n—
<H§°>'<r>:d(/ o2 " ) w2 ([ )l )
r \JoB r d

=B 42t [ 2uTuteg )yl
r OBy (x0)

-2
_n SH(fO —1-2/ uNVu - vz, | dH !
r aBr(aJ())

(ii) From Coarea and Rellich Formulas we obtain

T d CoareaFormula
) = ([ v ) CE [ (g g,
dr \ JB,(z0) 8By (z0)

TO0; - 2
PropflIAN = 2H 4 pao(yy 4 2/ (V- ) |2, dH" .
r 8B (z0)

(iii) In order to prove the formula, it is enough to apply the the Divergence Theorem and

the third conditon of (4.3)) for which uR,(u) = 0 in Bj. O

4.2 The blow up method: existence and (1+ s)-homogeneity
of blow ups
In order to study the properties of the free boundary, we investigate the properties of

the blow up limits. Proceeding as in Chapter [2| we shall consider a suitable sequence of
rescaled functions of the solution u. Let z¢ € I'144(u), we set

Ugg,r () = @;(17:1;)7 (4.16)

if 9 = 0 we denote u,(x) in the place of ug,(z). Note that in the choice of the rescaling
factor in we follow the same approach as in [36] and [44], which is different with
respect to the previous approach used in |4] to analyse the fractional Laplacian obstacle
problem.

The first step in the analysis of blow ups is to prove the existence of the limits of
the sequence (uy, ), for all g € I'115(u). In order to prove their existence, we state the
equiboundedness of (g, ), With respect to the weighted Dirichlet energy.

Proposition 4.2.1 (Existence of blow ups). Let u € H'(By, ) be the solution of
(4.4) and let zg € T'145(u). Then for every sequence 1y | O there exists a subsequence
(7k;)j C (rk)k such that the rescaled functions (U:to,rkj )j converge in L?(B_ |y, ta)-
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Proof. According to Theorem and Lemma we obtain the following:

/ |VU |2 d/,t fEOJr;x:nyr(xo) |Vu(y)|21"—28 |yn|ar—a dz _ fBr(:Eo) |Vu(y)|2 |yn|a dx
B o ¢ T rntl
_7’ fBr(ivO) \Vu(y)\Q ’yn‘a dz fBBr(wo) uz‘yn‘a d/Hnil
f@Br(:vo) u?|y,|* dH" ! rnt2
< NGO (ru)Hy" (1 — o) < Ng°(1,u)Hg (1 — |zol),
(4.17)

where in the last inequalitiy we have used the first item of Theorem [£.1.1] Therefore,

thanks to |62, Theorem 1.31| for every subsequence of radii ry \, 0, there exists an

extracted subsequence Tk; N\ 0 such that ug,,, — upin Lz(Bl_|z0|,,ua) as j — +oo. [
J

Remark 4.2.2. In view of (4.17)), the Theorem of convergence of traces and the estimate
(4.7)), similarly to Remark of Chapter 2| we deduce

1+s

[ull oo,y < Cr IVull oo (ymm) < C° (4.18)

Similarly to in Chapter [2] we consider an energy “a la Weiss” introduced in [95],
used in [45] and [36] for fractional Laplacian (see [44] for a version in the fractional
Laplacian problem with drift and [34,/48| for a version in the classical obstacle problem
with quadratic energies with variable coefficients):

1 1+s
W (r,u) = / Vul? [2,]* do — / W || T dHP T (4.19)
e 41 By (x0) ! ot 8By (z0) "
We note that 1o (r)
”
Wi (r,u) = ri”FQ (NZo(ryu) — (14 9)),
thus if 9 € I'i4s(u) by (4.9) and Lemma (which guarantees the boundedness of

H0
;;j;" ) ) we have

lim V%0 =
rl{%WHs(r,u) 0

and due to Theorem we obtain

Wity (r,u) > 0

Moreover, the function Wi (-, u) satisfies a monotonicity formula in the same essence
as Weiss’ monotonicity formula proved in [95] (cf. Theorem [2.3.10|in Chapter [2)). For a
similar proof see |44, Theorem 3.5].

Proposition 4.2.3 (Weiss’ monotonicity formula). Let xg € I'145(z0) and u be a solution
of Problem (4.3)); then the function r — W{9 (r,u) is nondecreasing. In particular, the
following formula holds:
d 2
— Wi (ru) = / (Vg - v — (14 s)up)? |zt dH" 1
0B,

dr r
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Proof. Similarly to Teorem [2.3.10 in Chapter [2, thanks to Lemma [£.1.5] we compute the
derivative of W77 (7, u)

d . . d 1 . 1+s ..
it = 4 () - L))

rt 41
= Doy + oy + LD gy LS oy

4(1 2
= _A+s) 1:;28) / uNVu - vz, | dH L + —3 / (Vu - v)? |z, dH 1
r aBr(mo) r OBy (o)

2(1 2 2 1 2
t (—:18)/ u? |z |* dH = = / (Vu ‘v — (—i_s)u) |2 |* dH™ L.
" OB ( L JoB. (z0) ’

x0)

We conclude the thesis with a change of variable. O

Next, we prove the homogeneity property of blow ups. Unlike Proposition [2.4.1]in
Chapter [2] where we prove the homogeneity of blow ups thanks to Weiss’ monotonicity
formula, here we prove the result through properties of the frequency function and the
optimal regularity of the solution.

Proposition 4.2.4 ((1 + s)-homogeneity of blow ups). Let u € H' (B, piq) be a solution
of Problem ({4.4). Let xg € I'14s(u) and (ugyr)r be a sequence of rescaled functions. Then,
for every sequence (r;j); | 0 there exists a subsequence (r;, ), C (r;); such that the sequence
gcuxo’rj’“)k converges in C*T(R™) (see [4.7)) for all a < s to ug, a (1 + s)-homogeneous
unction.

Proof. According to the quantitative estimate (4.7)) and Poincaré inequality we have

Slép Hurro,chHs(Bl/Q) < Sl}ip Huﬂﬁoﬂ“kHL%Bl,ua)

<C (SI;P %o, | L2(8By o) T Sup [Vt ry ||L2(Bl,|xn|a;]R“))

Due to Lemma [4.1.3(i), we have

|| ||2 o Hgo(rk) Hgo(l - |$0’)
Uzo,rp I L2(0By ,|Jan|*) = TZ+2 = (1= [zo|)n2”

while, since zg € I'115(u),

||VU H2 _ D(fo(rk) " Hgo(rk’) < Hgo(l - ’x0|)
2 a.Rpn) — - =
20Tk | L2 (B1,|zn|%;R™) TZ—H Ngo(rk) TZ+2 (1 + 8) (1 - |l‘0|)n+2

where in the last inequality we used the inequality (4.12) and the Theorem [£.1.1fi). Thus

H,(1) 1
2 2 a
SUD [Vt 223y fon o) S0P iz 201 o) S 5072 (1 s T 1> =
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Then thanks to the Ascoli-Arzela Theorem there exists a subsequence (that we do not
relabel) gy, and ug, € C'75(Byy) such that [Jug,,, — uonCHa(Bl/Q) converge to 0 for
all o < s.

Using a I'-convergence argument we deduce that ugz, is a solution of Problem (4.4)).
For all k € N, uy, , is the minimizer (with respect to its boundary data) of

Fulv) = / Vol [yl dy.
Bi_ |z (z0)

Let
Fo(v) = / IVof? [yal® dy
Bi_|zg)(z0)

and let w be its minimum with respect to the boundary data of u,,. We observe that F},
[(H!(By, j1a))- converge to Fy, then by Theorem Ugo ., — W, DUt Uz rp — Uz, in
CM8 50 W = 1uy,.

In order to conclude the proof, we show that wy is (1 + s)-homogeneous.
We note that for every 6 > 0 we can fix p > 0 such that N7(p,u) < (1 +s)+ 6. So for
k >> 1, for every t € (0,1) (such that try < p)

Na(tsttzg) =NE"(6n) = N () = N o) + N (pr) < (L4 9) 40, o0
NZo(t,up,) = NJ°(trg,u) > 1+ s '

where we resort to Theorem Now, from the convergence of g, », to u;, and thanks
to the arbitrariness of §, we obtain N, (¢, uy,) = 1 + s; then, by Theorem [4.1.1{(ii), u,, is
(1 + s)-homogeneous. O

Remark 4.2.5. Proceeding as in Proposition in Chapter [2] and thanks to Proposi-
tion 4.2.3] we can obtain the same result.

Remark 4.2.6. By proceeding in the same way, we can prove Theorem [4.1.1(iv) as well:

Proof of Theorem[{.1.1(iv). Let xzp € I'(u) and A = N2(0",u). Then, if rp \, 0 is a
suitable sequence of radii, for all § > 0 we can fix p > 0 such that N7°(p,u) < XA+ 9. So,
proceeding in much the same way as in (4.20)), we deduce

A S Na(t7u.1‘07 'f’k) S A + 67
thus, by the strong convergence of uy, ,,, to its blow up wg and by the arbitrariness of 4,
we have N, (t,wp) = A. So, by the second item of Theorem wp is A-homogeneous
and by Theorem [4.1.1{iii) A > 1+ s. O]
4.3 Classification of the (1+s)-homogeneous global solutions
Let h. be the function defined by
he(x) :== (s_lfv\- e— /(T e)?+ x%) (\/(55 e+ +7- e)s . (4.21)

Then the following properties hold:
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(i) he(Z,2n) = he(Z, —n);
(i1) he(z) > 0on {x, =0} and he =0 on {z, =0, T -e < 0};
(if) Dehe(x) = =2 (V@E- e +al +7-e)
(1) Buhe() = ~(L+ s)ao (VE P T2 +50¢)
(V) he is solution of ([4.6));
(vi)

~ 0 T-¢e>0
= ~ _ ~ 4.22
Rahe(2) { (1 +5)@2]F-¢)F Fee<o. (422)
In particular, we obtain a complementarity property
he(Z,zp,) Rohe(Z) =0 on {z, =0} (4.23)

Proof. Properties (i) and (ii) are straightforward.
(iii) Let e = (A1,...,An_1,0), e € S 2 := S"" ' N {x, = 0} C R™. In order to semplify

the notation we introuce the function pe : R" — R defined by pe(z) := /(T - €)* + 23.
We observe that d.pe(z) = (Vpe(x),€) = pf—é), so
Oche(z) = <31 —H> pe(x) +7-€)°
@ =) (el +3-0)
+ s (s_lfﬁ e — pe(x)) (pe(z) + 77 - 6)8_1 <1 + T-e )
pe(x)

—(pe(a) +3-¢) (s = 5) (ped - 0) = (57 — 8) (peB-e)’

(iv) With the same notation as above, we calculate Oy he:

X X ~ _
. (pe(l‘) +T- e)s !
e

Ophe(z) = _m (pe(@) +T-€)° +s (S_I/f' €— pe) P

=—(14+s)xy (pe(z)+ - e)s_l )

(v) In order to calculate div(|z,|* Vu(Z, x,)), we use the same notation as in item (iii)
and, by resorting to the same calculus, we obtain

Oihe(@) = Ni(s™" = 5) (pe(x) + T - €)°,

and, in turn,

)\1 86]1@(1’)
Vhe(z) = :
@=1, " Ouhe ()
Onhe(x)
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Next, we calculate the second derivative of he(z) in the variable z; with i =1,...,n —

1
ihe(z) = Ni(s™! — 5)0; 2)+7-e))=Ns(s 1 —s ) L7 e)5 ! T-e
Diihe(x) = Ai( )0i ((pe() +3 - €)*) = N s ( ) (pel@) +2-¢) <1+p4m>

and subsequently, in order to calculate the derivative in the variable x,, we write

72
O (2% Ophe(x)) = —(1 — s2)2' 72 (pe(a) + T - €)* 2 <2,oe(w) +27-e— —" ) :

so, on {z, # 0} we obtain

n—1 ~
div (] Vhe(z)) = 3 N (1 = 6) (pe(a) + 7€) <1 + p“”” ; ) 2|7
=1

2
— (1= )|z (pel) + T - €)*2 <2pe(ac) y2F.e— 2n > =0.
(vi) By property (iv) and recalling that a = 1 — 2s we have

s—1
lim z00phe(T,2n) = lim —(14 s)z, <\/ (ZT-e)?+a22+7- e) 172

T, —07F Tp—0T

9 1-s
= lim —(1+s) — o — .
o, VG Priie
Using the Taylor expansion of the second order of \/(Z - €)? + 22 + T - e we have

. 0
&“@:{—u+$@@ews

In view of properties above, h,. is a solution of problem (4.3)), so by [88] O;+he > 0 for
any vector 7 € S® C R"! x {0}. So, thanks to its (1 + s)-homogeneity, h, is a solution
of

-e>0

e < 0. =

z
z

v(Z,0) >0 zeRv!

(T, xy) = (T, —xp)

div(|x,|* Vo(Z,2,)) =0 e R"\ {(z,0) : u(z,0) =0} (4.24)
div(|z,|* Vo(Z,z,)) <0 z € R™ in distributional sense

070 >0 for any vector 7 € 0B].

According to |21, Proposition 5.5|, the function h, is, up to a rotation and the product
by scalar, the unique (1 + s)-homogeneous, global solution of (4.24)).
We consider the closed convex cone of (1 + s)-homogeneous global solutions :

Nesi={Nhe 1 €S2 N €[0,400)} C HL.(R™, ta). (4.25)

Caffarelli, Salsa and Sivestre [21] proved that 145\ 0 is the set of blow-ups in the regular
points of the free-boundary with lower frequency.
We note that 1, is a closed cone in H} _(R™, u,). The restriction

Diyslp = {vlB 1 vENIsHC Hl(BlaNa)
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is a closed set, and 9145 \ {0} is parameterized by a (n — 1)-manifold by the map

S"2 x (0,00) 25 H145 \ {0}
(e,\)  —  Ahe.

Next we can introduce the tangent plane to space $145 in every point A k. as

Tan s :=A{den®(&a) : §-en=E§-e=0,a0€R} (4.26)
We compute the derivative of the map ® in a point of S*~2 x (0, 00):
d
d(e ) P(E, @) = — To(n)li=0 (4.27)
with o(t) = ﬁ, a curve on S"~2 such that o(0) = e and ¢/(0) = £. By (4.21)) we have

S

hoge) () = (5*15 o(t) = /G- o(D)) 1 x%) (\/(55. s +a2+7- a(t)) .

In order to compute (4.27)), we start by noting that

To simplify the notation we denote p,(t) :== \/(Z - 0(t))? + 22, so we obtain

d d

TN (7T 0(t) = pa(t) (pa(t) +T - 0())") g

Then, we can rewrite (4.26)) as
TanHivs ={ahe +vee : {-en=E-e=0,a € R}

where the function v, ¢ is defined as follows:
veg =7 € (V@ e)? +xg+§-e)s.

We highlight some properties of function ¢ € 1. For all o € H'(By, j14), integrating
by parts, according to Theorem [£.1.2] and Euler’s homogeneous function Theorem we
obtain

/ vw-wdua:/ cpvw-x\xn\“d’;’-[”_l—2/ OR.(Y) dH™ 1
B o5 b (4.28)
= (1+s)/ O |z |* dH —2/ OR, (V) dH™ L.
9By B
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Remark 4.3.1. The first variation of functional W%S(l, -) in a point ¢ € $H14s along a
direction ¢ € H (B, i) is

5W19+s(17 ¥)[p] :=lim

t—0

<W10+s(17 —HL’SO) - ng-i—s(l? Tﬂ))
t

=2 [ V¢ -Veodu, —2(1+s) / Vo |a,|* dH L
B, 0B1

Then, by (28)

WA = =4 [ pRu(w)(@) dr (129
by (4.23)
SWL (L)) =0, (4.30)
so we can infer that
1
W1Q+s(17¢> = 55W1Q+5(17¢)W] =0 Y € D14s- (4.31)

4.4 The epiperimetric inequality and its consequences

In this section we prove an epiperimetric inequalitiy for the points in I'14s(u), and its main
consequences in the framework of the regularity of the free boundary. In Paragraph
we prove the epiperimetric inequality. In Paragraph [£.4.2] we establish a decay estimate
for adjusted boundary energy. In Paragraphs and we prove the nondegeneracy
of the solution and the uniqueness of the blow ups in I'144(u) respectively.

4.4.1 Epiperimetric inequality

We now state the main result of this chapter: the epiperimetric inequality “a la Weiss” for
the thin obstacle in the case of the fractional Laplacian. This result is a key ingredient
in our approach to the decay of the boundary adjusted energy and to the uniqueness of
blow ups (see 36| for the classical case of Laplacian s = 1/2).

Garofalo, Petrosyan, Pop and Smith Vega Garcia [44] proved a similar epiperimetric
inequality for the fractional obstacle problem with drift in the case of s € (1/2,1). Their
statement requires an extra hypotesis of closeness between the function ¢ and a blow up
limit (cf. the conditon in Chapter . We bypass this hypotesis with an argument
of homogeneity (cf. Theorem ?? and the comment write before).

In this paragraph we state and prove the epiperimetric inequality. For the convenience
of readers, the proof will be split into several steps.

Theorem 4.4.1 (Epiperimetric inequality). There exists a dimensional constant k € (0,1)
such that if ¢ € HY(By, u,) is a (1 + s)-homogeneous function with ¢ > 0 on B} and
c(Z,zp) = (T, —xy) then

nf W () < (1 — k)W (o). (4.32)
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Proof. Without loss of generality it is possible to suppose that the function c satisfies the
follows condition
diStHl(Bl,ua)(c7y)1+S) < 0. (433)

In fact, according to the (1 4 s)-homogeneity of ¢ and recalling that £ is a cone, for
all 6 > 0 there exists a constant v > 0 such that

dist 1(By pug) (V6 H145) < 0.

We can observe that if v € 2. then y~*v € 2. So, if we prove inequality (¢.32)) for the
function e, or rather

inf Wi (1) < (1 m)Wi (1 ye),
ve yc

then, thanks to W19+s(17 ve) = 72W19+S(1, c) we infer

. 0 0
wlgﬁflc Wf+s<17w) < (1 - ﬁ)Wf+s(17c)'

To simplify the notation we denote the functional WIQJFS(L ) by G(+).

We argue by contradiction. Let us suppose the existence of sequences of positive numbers
k4,0; 4 0 and a sequence of (1 + s)-homogeneous functions ¢; € H' (B, pq) with ¢; >0
on Bj such that

diStHl(Bl,ua)(cjval-i-s) =0, (4.34)
(1-k)G(c) < 1&1;[‘ G(v). (4.35)

In particular, fixing h := h,,,, up to change of coordinate depending on j, we assume that
there exists A; > 0 for which 1; := A;h is the point satisfiying the minimum distance
between c¢; and §)14, or rather

105 = cill o (B1 pa) = diSta1(By pua) (€ D145) =I5 VjeN. (4.36)

We split the proof into some intermediate steps.

Step 1: Auxiliary functionals. We can rewrite (4.35)) and interpret this inequality
as a condition of quasi-minimality for a sequence of new functionals. Setting j € N, let
v € A, we use (4.29)) (applied twice to ¢; with test functions ¢; —1; and v — ;) and

(4.31)); we can rewrite (4.35)):

!
1

(1—kj) <Q(Cj) —G(¥5) — 0G(¥;)[e; — ¥5] — 4/ (¢j — ¥j)Ra(¥;) dHT”)

(4.37)
< G(v) - G(;) — 6G(0;)lv — 5] — 4 /B (v — ) Ra(aly) dH" 1

/
1
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We can observe that G(v1) — G(v2) — 6G(v2)[v1 — v2] = G(v1 — v2), then for all v € 2,
(4.37) can be rewritten as

(1= rj) <g(0j — ;) — 4/3/ (cj — wj)Ra(?ﬁj)dﬂ"_l)

1 (4.38)
<Gv—1y) - 4/3/ (v — ;) Ra(t;) dH" .
1
Next we define new sequences of functions
= LY gj%’ (4.39)

(recalling that ¢; = A\jh), positive numbers 6; := ;‘—; and sets B; := {2 € zj+ H}(B1, fta) :
(2+0;h)|p; > 0}. Now we introduce a sequence of auxiliary functionals G; : L?(By, j1a) —
(*OO, JVOO]
/ V22 2] da — (14 s)/ 22 ||t dH ! — 4@-/ Ro(h) dH
g(Z) — B1 0By B
J ' if 2z € B;

+o00 otherwise.
(4.40)
We can observe that the second term in the formula above does not depend on z but only
on its boundary datum z|pp, = zj|aB, -
We can rewrite with the new notation and obtain

(1 — Kj) (g(éjzj) — 4(5]' /B/ ZjRa()\jh) d’Hn1>

< G(\j2) — 46, / 2Ra(A\jh) dH"
B

and dividing by 6]2 we obtain the condition of quasi-minimality for z; with respect to G;:
(1—r;)Gj(2) < G;(2) Vz € L*(Bu, fta)- (4.41)

Therefore we note that by the very definitions of z; and J; we have
1Zill i1 (10 = 1- (4.42)

So, by the compactness of Sobolev embedding from H'(By, u1,) into the space L?(Bi, jiq)
|62, Theorem 1.31], the trace operator from H' (B, j1,) into the space L?(B}) |31, Theorem
3.4], and the trace operator from H!(By, o) into L?(0By, |z,|H™ 1) [86, Lemma 2], we
may extract a subsequence (that we do not rename) such that

(a) (zj)jen converges weakly in H'(B1, pg) to some zeo;
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(b) the sequences of traces zj|p; and zj|pp, converge respectively in L*(B}) and
L2(0By, |za|“H"™);

(c) 6; has a limit 6 € [0, o0].

Step 2: First property of (G;) en. In this step we establish the equi-coercivity
and some other properties of the family (G;);en.
We observe that for all w € Bj, since w|gp, = zjlop, and hRq(h)(Z) = 0, it holds that

),

where we used (4.22) for which R,(h)(Z) < 0 and the condition w € B; for which
(w+0jh)p; > 0. Then from the definition of (4.40) we have

WR,(h)(T) dH" = — /B (w+0;h)Ra(h)(Z) dH"~" +6; B/h Ro(W)(@) dH™ ' > 0

(4.43)

/ \Vw|? du, — (1+ s)/ 2]2 2| dH™ T < Gj(w). (4.44)
Bi 1o}

By

This establishes the equi-coercivity of the sequence G;, in fact from (4.42)), thanks to
strong convergence of traces, we obtain

liminf G;(z;) > —(1 + s) / 22 x| da — 49/ ZooRa(h) dH™ L
JEN 0B1 Bi

while if § = 400 from (4.42) and (4.44]) we conclude that

liminf G;(z;) > —(1+ S)/ zgo |20 |® d.
jEN 9B,

Note that it is not restrictive (up to subsequence) to assume that G;(z;) has a limit in
(—00, +00]. Finally we can observe that

lim G;(z;) = +o0 = lim 9]-/ 2jRo(h) dH" ™ = +o0. (4.45)
Jj—o0 j—00 B,
Step 3: Asymptotic analysis of (G;);en. In this step we prove a result of I'-convergence
for the family of functionals (G;);en.

We can distinguish three cases:

(1) If 6 € [0, +00), then (2o + 0h)|5; > 0 and T(L*(By, p))-lim G; = G&) with

/ (V2|2 |z, dz — (1 + s) / 22 x| P dH™ T — 40 | 2R, (h)dH™?
B1 831

D)5 — B
Goo'(2) : ifz € Bé?
—+00 otherwise,
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where B := {2 € 200 + HY (B, pta) : (2 + Oh)|p; = 0}.
(2) If = +o00 and lim; G;(z;) < oo, then ZOO|B1,_ = 0 (where B;’f = B' Nn{z,—1 <0})

and I'(L?(By, pg))-lim G; = ¢{? with

V2|2 z,|¢de — (1 + s / zgo T |PdH ! iszB(()%)
) /Bl| e = (14 5) [ el
—+00 otherwise,

where B = {2 € 200 + HY(B1, pta) - Z|Bi,— = 0}. We note that the third addendum

of G; is identically zero in Bg), while if z € B; \ BY the sequence G;(z) diverges; this
heuristically justifies the choice of Qc@(z) and B,
(3) If = 400 and lim; G;(z;) = +o0, then T'(L?(Bi, ita))-lim G; = 68 with

G3(2) = +o00 on L*(B1, pta).

For the reader’s convenience we recall the Definition of I'-limit (see Definition [1.5.1));
the equality I'(L?(B1, f1q))-lim G; = gfjo) with ¢ = 1,2, 3 is satisfied if the two following
conditions hold:

(a) for all sequences (w;); C L*(Bi, ptq) and w € L*(Bi, ug) such that w; — w in
L?(B1, 1q) it holds
lim inf G;(w;) > G\ (w) (4.46)
J

(b) for all w € L?(By, j14) there exists a sequence (w;); C L?(B1, i) such that w; — w
in L?(By, j1) and

lim sup G;(w;) < gj(.“ (w). (4.47)
j

Proof of the T'-convergence: case (1).
(a) Without loss of generality we may suppose liminf; Gj(w;) = lim; G;(w;) < 4oo0.
Taking (4.44)) into account, we deduce

[ Vs dua < G+ () [ ko,

Bl aBl

then, since w; — w in L*(B, ptq) we have sup; [|w;||3;(B1, ta) < 400, so from [62, Theo-
rem 1.31] Vw; — Vw in L?(By, f14). Then the respective traces converge in L?(0B1, )
[86, Lemma 2] and L?(B}) [31, Theorem 3.4]. Hence, we obtain (w + 0h)|p; > 0 and,
in particular, since wj|p; = zj|p; then w|p = 200|p; and so 2o € BY. At this point
thanks to the convergence of traces of w; and weak semicontinuity of the norm of the
gradient in L?(By, i) we have (4.46)).
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(b) We observe that it is sufficient to prove the inequality for w € Bc()? with
supp(w — z) C B, for some p € (0,1). (4.48)

If we want to deal with the general case, we consider the function

wy(z) = {1ts <u) (%) X By (%) + Zoo (%) XB,,\Bi (%)) with ¢t < 1.

It is easy to prove that wy € H'(B1, itq) and supp(w; — zso) C Bg; moreover, w; — w in

HY (B, j1g) (for a similar procedure see Proposition in Chapter [2). If (4.47) holds
for all wy, resorting to a diagonalization argument we obtain (4.47)) for w. Therefore for a

Uryshon’s type property it is sufficient to prove the following property: fixing w as in
(4.48), for all sub sequences jj T +oo there exists an extract subsequence ji, T +o00 and
there exists w; — w in L?(By, ua) such thatE|

limlsup Gjy, (wr) < G (w).
Setting 7 € (p,1) let R := 14~ and let ¢ € C}(B1) be a cut-off function such that

4
els. =1, elpner =0, Vel < T

We define
wh = (w+ (0 0;)h) + (1 - 9)2, (4.49)

and we verify that wy € Bj,. In fact w € Bg})), zj, € Bj, and

wy, +0;,.h = p(w+ 0h) + (1 — ) (2, +05,h) > 0.

Therefore, since 0, — 6 € [0,+00) we have w] — pw + (1 — ¢)2zoo in L?(Bi, ftg). Thanks
to the convergence of traces of z;, in L?(BY) it is enough to prove the upper bound

inequality for the first addendum of G; and gc(,}) respectively. From (4.49), we can infer
| Vi < [ (9w 60,0 dug
B B
+/ VP dpe +/ V2, P da. (4.50)
B B

r\Br 1\Br

=1

1Let us suppose by contradiction that there exists w such that

I'—limsup G;(w) > G (w),
J

if (wj)jen is a sequence that achieves the T'-limsup, i.e. limsup; G;(w;) = I-limsup; G;(w;), and jy is a
subsequence for which limsup; G;(w;) = lim sup;, G;, (w;, ), by assumption then there exists ji, such that

lilrn gjkl (wjkl) < g<g<1>> (w),

leading to a contradiction.
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Since r > p, from assumption (4.48)), we estimate the term I}, as followsﬂ
P §3/ O |Vw + (0 — 0;,)Vh|* dpa
Br\B;

43 [ 1PVt 3 [ VePla - 2,4 (0 6, VAP du,
BR\BT

BR\BT‘

So

limsup/ |Vwy |? dig
BB (4.51)

S/ !Vw|2dua+3/ IVw|2dua+4limsup/ V2P due
B, BR\BT k Bl\Br

By the (1 + s)-homogeneity of zj,, we deduce

/ V2, |2 d,ua—/ / IVzj, | |2n|* dH™ 1t dt
B1\B-
n+1
/ t"/ V2, |2 2| dH™ ™ dt = / V2, |? | dH™
0B1

which leads us to

n+1 (4.42)
V2, |* |2n|® dH 1 = / Vzj P dpa < 2(n+1)
/631 L — (/2" Jpnm
in turn implying
/ Ve Pdpa < 2(1 =) (n + 1), (4.52)
B1\Br
We apply this construction to a subsequence r; 71 and R; := % and with a diagonal

argument we obtain a subsequence w; — w in L?(By, iq). Thanks to ([4.51)) and (4.52)

limsup/ \Vwy|? dpuq
! By

g/ ]Vw|2dpa+3limsup/ |Vw|2dua+4limsup/ |Vz P dpg
B l Bg,\B, l Bi\By,

/ ]Vw|2dpa—|—hm8(1—rl)(n+1) / \Vwl|? disg,
Bl Bl

and this provides the conclusion.
Proof of the T'-convergence: case (2).
(a) Without loss of generality we assume that

liminf G;(w;) = lim Gj(w;) < +o0. (4.53)
j j

2a4+b+c)? <3(a? +b*+ )
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Let wj — w in L?*(Bi, lq), since w; € B and ([4.53), then w > 0 on Bi’_. From (4.43]),

we obtain

0< —ej/ w; Ry (h) dH"™ < Gj(w;) + (1+s)/ 25 | dH
Bi 0B,

< sup (gj(wj) +(1+ s)/ z? |2, | dH”_1> < 400.
J 0

B

Then dividing by 6, the convergence of traces leads us to

/ wRe(h)dH™ ™t =lim [ wjR.(h)dH" ™t =0
B

1 7By

From (4.22)) we deduce that w| g =0, or rather w € Bg). In particular also zo, € Bg)
1

because sup; G;(z;) < +00. Then, according to the semicontinuity of the norm H*(By, ja)
with respect to weak convergence of gradient, the convergence of w; in L?(Bu, jtq) and the
convergence of traces in L?(0By, |z,|*H" 1) we obtain the I-liminf inequality (4.46)).

(b) Now we prove the inequality (4.47). With the same argument used in case (1) we can

consider the case of w € BY) for which (4.48) holds and for which for all jx 1 400 we find
a subsequence ji, T 400 and a sequence w; — w in L?(By, j1g) such that

limsup G, (w;) < G, (4.54)
l
We introduce the positive Radon measures
v == |V |? x| LBy — 40;, (2, + 0;,h) Ro(R)H" ' By ™.

Assuming that £ >> 1, we obtain

vi(B1) = Gj,. (25,) + (1 + ) /BB zjzk |z, [T dH T < sup Gi(z) + C'sup 12|l 51 (By o) < 00
1 J J

which leads us to
sup vg(B1) = Ay < +o0.
k

In order to prove vy (B,) = p"Tv(B;) we observe that setting p € (0,1) by (1 + s)-
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homogeneity of z;, we obtain

p
[ Vs = [P [ 192 e e
Bp 0 0B

=t P n— a n—
:y/ ’ 1/ V25, (t9)12 tynl® A\ (y) dt
n+1

= [ [ s e = L [ 9, @R ke e )i

ot [ [ @ il e ) a
0 0B,
1
= [ /@ 19, 00) Pyl )

y=x p a n— n
= +1// V25, () aa | dH (y >dt=p+1/B Vel dia
1

and

/ Z]kR ( Hn 1 / / Z]k )d’]—[ﬂ—Q
/ aB/

0B/

o 50

0B,

/ "2 dt

/tn2+1+s+125+sdt/ 25, (7, 0) Ra(h) (9)dH" ()
B,

n+1

n+1

. . o Oh , 2/~
2, (19, 0) lim (te)" 7= (¢, te)d# ()

[ 50 R @
o8,

_ ot / 2, Bo()(@)dH"!
1

where in the last equality we did the previous calculus again in reverse order. Since
vi(B1) < oo then v (0B,) = 0 with p € (0,1) \ I where [ is a set at the most countable.
Thus

V(Bpy \ Bpy) < Aolpit = pi1) < e, Ao) (p1 — po). (4.55)
for all 0 < p; < pa < 1 such that p1,ps € (0,1) \ I. Repeating the argument in we
prove the I'-lim sup inequality for function w € Bg) for which there exists some p € (0,1)
such that {w # 2o} CC B,. We extend w on R" as 2o, in Bj and we indicate the
extension by w again. We fix € > 0 and introduce the following auxiliary tools.
Due to the definition of H'(Bi,u,) as C>(B )H i1 (1 00 (cf. |62, Section 1.9 and
Lemma 1.15]) there exists a function vy € C°°(B7) such that

v — W[ g1 (By ) < 0(€) with 6(g) = o(e). (4.56)
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Let w®(z) := w(x — 3cep—1) be the translated function along the direction e,_;. Since
2

w € By, we observe that
w(z) =0 <= x-3cep_1 €{(7,0) : 2,1 <0} <= ze€{(7,0) : zp_1 <3}
Let I, be the set defined as

I,={ze B : dist(x,B;") <o} (4.57)

Let ¢. and x. be two cut-off functions such that

¢€ € Cgo(l?ﬁ): ¢€ [T2: = 17 HV(b&HLOO(Bl) <
(4.58)

"1 Qoo

Xe €CZ(Bi-¢), Xe|Bio. =1, IVXellzoo(m)) <
For all 0 < € << 1 we build the sequence of functions

w/E;E) 1= Xe(dew® + (1 — Qba)vé) + (1 = Xe)2j,-

Then we can at once infer
wy € 2, + WA (By)

and since we can write
W + 05,0 = X (6o (vs + 03.h) + (1 — ¢2) (W™ + 0;,0)) + (1 — x2) (25, + 05, ),

we prove that w,(f) € Bj,: w,(f) is a convex combination of functions vs, w™ and z;, with

boundary data as z;, and every addendum is bigger than —;, h restricted to Bj. In fact
(i) by definition z;, + 60, h > 0 in B;

(ii) if z € supp(¢e)NB] then z,_1 < 3e. Thus w(x) = 0 then ¢.(z)(w™ (z)+0;,h(z)) =
¢e(2)0j, h(x) = 0;

(iii) if € supp(l — ¢.) N B} then z,_; > 2¢, so h(z,0) > 0 and as 0;, — +oo
v (x) + 05, h(w) > —|vsl|Loo(By) + 05 h(x) > 0 for k > ks.

So w® € By, for k> ks.

Next, consider,
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(€)

respectively the trace term and the volume term of the energy of w; . By definition we
have

JE < —40;, / (g + (1 — ¢ )v")Ro(h) dH" ' — 46, / 2, Ra(h)aH" " = gV 4 g
Bi_s B’\B’

1-2¢

According to (i), (4.23) and (4.55)) we deduce
0 <sup J,gQ) <supvg(By \ Bi—2:) < C2e. (4.59)
k k

Instead, due to (ii), the function waimG% = 0 and from definitions of Is. and h we have
Ra(h)B;_\p,. = 0. From this we infer

0< IV < —40;, / W Rg(h)dH"™ " + / v Ra(h)dH"' | =0. (4.60)
B cN3e Bi_s\fgs

Putting (4.59) and (4.60) together yields

limsup J; < Ce. (4.61)

k—o0

In order to estimate the functional Iy we observe that

mg/ w@w+u—wmeﬁw/ V(ews + (1 — 62)o)|? dua
31,25 3175\31725

c
+ C/ |vzjk|2 dpta + 2/ [(pew® + (1 — ¢5)U6 - ij|2 dfiq
B1\B1-2¢ €% JB1_\B1-2
— 141 1P 4 1.
We estimate the four addenda separately. From condition (4.55)), we can infer

sup I,SS) < supvg(By \ Bi—2:)Ce. (4.62)
k k

We now estimate the first term; recalling that ¢ 5= 0

I,gl) —/ (V0|2 dpig +/
Bl—25\[35 By—2:NI3e

<[ vPdue | Vo P dag
B1_2:\I3¢ B1_2eNI3e

C
+ / IV (w® — 0)|? dpg + - / |00 — w|? dpig (4.63)
Bi-_2:NI3e €% JB1_2.NIse

v (qﬁs(wa - v‘s)) V’U(S‘Z dpig

g/ (V0| dpug + c/ IV(v? — Vw)? dpa
B1_2:\I3: B1_2.NI3:

C
+c/ |Vw|2d,ua~|—2/ (J0° = w|? + |w — w®|?) dpq.
By _2:NI3 €% JBy_a.nIse
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Taking the last addendum above into account, we notice that for all ¢ smooth functions
and 7 >0

1
oz — Ten1) — (@) < 7 / Vol (x — Tten_1) dt.
0

Then, by a simple application of Fubini’s theorem we deduce

2

C T
< / o — ren_1) — ol@)|? djta < ¢
Bi_2:NI3¢ €

22 |Vg0|2 dita

/(31250135)-&-[0,7']6711

where (B1_2: N I3:) + [0, 7]e,—1 denotes the Minkowski sum between sets. So, thanks to
a density argument and for 7 = 3¢ we infer

c

- lw — w | dug < c/ (Vw|? dtg.

&g Ga:\G3e (B1—2¢NI3:)+[0,7]en—1

So, from (#.63)), according to (4.56)), the continuity of translation in L? and the absolute
continuity of the integral, and observing that £™((Bi—2: N I3:) + [0, T]en—1) = O(e) we
obtain

V< / Vel dpia + O(e). (4.64)
B1—25\13E

Reasoning in the same way as in the estimate of 1 ,51) we obtain
2
1Y <0(e) (4.65)

Since suppg. C Go. and recalling that by condition (4.48)), if we choose e sufficiently
small such that p < 1 — 5e, supp(w3® — 23) C B1_a., we obtain

4 & C
I]g ) < o) |¢€(w€_vé)|2d/‘a+7g |U6_ij|2d,ua
€% JB1_\Bi-2¢ € JB1_\Bi-2
C
<5/ (= wf? + Jw = o2+ fw — 25, 12) dp
€% JB1_\Bi—2¢

So, proceeding as in estimate of [ ,gl) and recalling that supp(w—z2«) C B, for € sufficiently
small we deduce

lim sup I,g4) < lim sup 62/ 200 — 2j,|* dpiq + O(g) < O(e). (4.66)
Bi_\Bi-2¢

k—o0 k—oo €

Then putting together the estimates in (4.62), (4.64)), (4.65) and (4.66|) leads to

limsup I < / Ve |? dpg + O(e).
Bi1-2¢\13e

k—o0
So, since

() k—oo

wy B > Xz—:((bsvég + (Cbz-:)wga) + (1 - Xs)zoo = w(e) mn LQ(BlaMa)
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and

w® =29 in L*(By, tta),

we conclude by the lower semicontinuity of the I'-lim sup

I'—limsup G, (w) < liminf (Flim sup Gj,. (w(s))>

k—o0 e—0 k—o0

< lim sup <lim sup(I; + J}i)) < / \Vwl|? ditg,
By

e—0 k—o0

that provides the thesis.

Proof of the T'-convergence: case (3).
(a) From (4.41)), we immediately have

lim inf G;(w;) > liminf(1 — k;)G;(zj) = 400 = G&).
J j

(b) This is trivial, in fact liminf; Gj(w;) < 400 = gl

Step 4: Improving the convergence of (z;); € N) if lim; G;(z;) < +o00. Using a
standard result of I'-convergence we show that z; — 2o in H 1(B1, fa)-
For equi-coercivity of G; seen in , [21, Lemma 2.10] (a version of Poincaré inequality

for weighted Sobolev spaces) and ||z g1 (B, u,) = 1 We have

HwHHl(Bl,p,a) < C\/ g](w) + 17

so every minimizing sequence converges weakly in H'(Bj, ii,) and thanks to [58, The-
orem 8.1] converges strongly in L?(Bi, i,). Since G; is semicontinuous with respect
to weak topology of H'(By, ii4) there exists ¢; minimizer of G;. Taking into account
Theorem with i = 1,2 there exists (s € H*(B1, ftq) such that

C] — COO7 m Lz(Bla ,ua) (467)
G;(¢5) = G (Coo)s (4.68)
(s is the unique minimizer of ggi), (4.69)

where due to (4.69) we have used the strict convexity of Qé?. Therefore using the strong
convergence of traces in L?(0B1, |7,|*H" 1) and L?(BY), then from the estimates

G;(G) < Gj(z5) < supGj(z;) < oo, (4.70)
J

and (4.69) we obtain
/ |v<j‘2dﬂa — / |VC00]2d,ua,
B1 Bl
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which implies ¢; — (oo in HY(Bi, f1a). According to (#.41)) and ([.70)), z; is an almost
minimizer of G; in the following sense

0 < Gj(z) — G;(G) < r;G;(z)) < rjsupG;(z).
J

Since £ | 0 and 2; — 200 in HY(B1, a), (4.68) and Step 3 yield that

G () < liminf G (z5) = lin G5(4)) = G2 (Go), (4.71)
with ¢ = 1,2. From (4.41)), we infer
1
Gj(zj) < 7—-G;(G);
i (25) 1—k; (G5)

from this, by (4.71]) and by strong convergence of traces we obtain

lim.inf/ \sz|2d,ua:/ |V 200 |? dita,
J B1 B1

that with the weak convergence of in H'(B1, j1,) proves the convergence
Zj = Zoo m Hl(Bl,,ua).

In particular
200l 11 (B pa) = 1- (4.72)

Step 5: Case (1) cannot occur. We recall the properties of zo:
(1) [l2oollEt(By ey = 15
(ii) 2zso is (1 + s)-homogeneous and even with respect to {x,, = 0};
(ili) 2zeo is the unique minimizer of ¢\ with respect to its boundary data;

(iv) 2o € BY = {2 € 2o + HY(B1, pta) : (2 + 0h)| g > 0}

These properties imply that
Woo := Zoo + Oh

is the minimizer of [ |V |2 du, among all functions w € we + HE (B, p1a) and w|p >0
in the sense of the trace. So, ws is the solution of the fractional obstacle problem. To
prove this claim, for all z € Bg)) we consider w := z + 0h and, recalling (4.29)), we have

ggg,)(z):/ \vwdua—e?/ ’Vh‘Qd,ua—(l-i—S)/ 22 || dH)
Bq B1 By

—20 | Vw-Vhdug — 40/ z lim <5a ﬁ(d’?, 8)> dH™ !

B Bi e—0 a;vn
Vol o =6 [ (ThP dy — (14 5) [l e
Bq B1 By

—2(1+s)/ Zoo B || dH L
0B1
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Since géé)(zoo) < gé})(z) for all z € BY then
/ |Vwoo|? dptg < / |Vwl|? duq Yw € weo + Hy (B, fla)-
Bl Bl

Using the (1 + s)-homogeneity and |21, Proposition 5.5|, the result of classification of the
global solutions, we deduce that we = Asohu,, € H14s for some Ao > 0 and vy, € SP72,

Thanks to (4.36) we have the contradiction: from z; = 2o, in H'(Bj, ) and (4.39)
we have

c; .
5—; =0jh+ 2zj = 0h + 200 € Hi4s in Hl(Bl,,ua), (4.73)

so for j >>1

dist g1(B, ua)(Cr H145) < ||Cj*5j)\oohuoo\|H1(Bl,uu) 0(5;) < 6j = dist g1, u.) (¢, H1+s)

where we have used that d;Aschy, € H14s-

Step 6: Case (3) cannot occur. To prove that case (3) cannot occur, we conve-
niently scale the energies so as to get a non trivial I'-limit for the rescaled functionals
ultimately leading to a contradiction.

By means (4.45)), since lim; G;(z;) = 400, we have

N} / 25 Ra(h)(®) dH™ 1 +oc. (4.74)
B/

1

Moreover zj — 2o in L?(Bf) and ([£.43) give us

lim 4 — = —41lim zj Ra(h) dH™ ™ —4/ Zoo Ra(h) dH" " € [0, 00)

Je J JB] 1

SO
0;7; % 1 +oo. (4.75)

Then we rescale the functional G; dividing by ;. For all z € B; we consider yj—lgj (2)
and we note that

— 5 —1/2
171Gi(2) = G(v; %) (4.76)
with
_ /\Vw\Qd,ua—(l—i—s)/ 2 o | ! — 4 /wRa(h)d”H"_l weB,
Gij(w) =4 /B 9B or 4
400 otherwise,
where

Bj = {w e~ ? 2+ Hi(Bi,na) = (w+ 057, %0)| g > 0}
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Setting z; := 7;1/22]-, due to ([£.42) and 7; 1 +oo, we have z; — 0 in H(By, ug).
Moreover the condition (4.76]) and the definition of ~; (4.74) yield

- fBl [Vwl? dpg — (14 s) f&Bl w? [z |* dH"

G;(Z) - +1=1+0(;". (477
j
Thanks to (4.76|) we can rewrite the inequalities (4.41)) as
(1= 5))G;(3) < G(3) vZeB;.

In particular, by taking into consideration ([4.75), zZ; — 0 in H*(Bi, iq), and (£77) (in
other words lim; G;(Z;) < 0o) we proceed as in case (2) of Step 3 establishing that

P(L? (B, pa))-lim G; = G,

with

N V212 dug w € By
Goo(2) = /Bl| du

400 otherwise,

where By, = {Z € HYN(By, j1a) Z|p; = 0}. From Step 4 and the convergence z; — 0

in H'(By, j14), the null function turns out to be the unique minimizer of Go, and
lim; G;(%;) = Goo(0) = 0; this is in contradiction with (4.77).

To prove the theorem we have only to exclude case (2) of Step 3. In what follows,
we suppose the hypothesis of case (2) of Step 3: § = 400 and lim; G;(z;) < +o00. In the
following steps we exhibit further properties of the limit z.

Step 7: An orthogonality condition. By evaluating that 1; is a point of minimal
distance between c; and 144, we prove that 2., is orthogonal to the tangent space 13,1 .

From the hypothesis § = +oo we deduce that A; > 0 for j >> 1. Therefore, by the
condition of minimal distance ({.36)), we deduce that for all v € S*~2 and A > 0,

e — Uil By pa) S = Al (By pa) s

and thanks to definition of z; in (4.39) it holds

Oillzill e By o) < 105 — Ao + 0251l 51(By 0

or in the same way

—l195 = APull3 gy ) < 205025505 — M) 51 (B, ) (4.78)
Now we suppose (A, v) # (\j, en—1) and renormalizing (4.78) we obtain
¢j — Ay,

=¥ = Al 1By pa) < 265(25, ) H(B1 p1a)

5 = Aol e (By )
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and by passing to the limit (A, ) = (A}, en—1), reminding the definition of tangent space

T$H14s in (4.26), we deduce
(25,() >0 C €Ty HNts = ThH1+s, (4.79)
where we used A\; > 0 in the computation of the tangent vector. By choosing the sequence

' ] : b —Ahy _ . ‘
(A, v) = (Aj, en—1) such that lim ||’¢’J'—”iv|\H1(31,ua) = —( we obtain (zj,() < 0 thus

(2j,() =0 ¢ € ThH1ys. (4.80)

So, taking the limit j — 400 we conclude

(200,¢) =0 C € Th$+s- (4.81)

Step 8: Identification of z, in case (2). There exist real constants ag, ..., a,—2
such that

n—2 S
Zoo = aph + (Z aixi) (1/.17%1 + 22 + xnl) ) (4.82)
i=1

or rather zo, € Tp9145. For its proof we follow an argument given in [44, Lemma A.3|
that we recall below for the reader’s convenience.

The minimum 2z, is the solution of

Lazeo =0 By \ By~
Zoo =0 By,

We note that for all multi-indices & € N*~2 the derivative 0,20 is the solution of

— 1
{ Laﬁazoo =0 B1 \ B 1 (483)

OnZoo =0 B,

According to |29, Lemma 2.4.1] and |21, Proposition 2.3] the derivative Jq 200 are bounded
in By /o, thanks to [29, Theorems 2.3.12 and 2.4.6] they are also continuous in By o \{7n-1 =
xn, = 0}. We consider the second derivative Oij2oo With 4,5 = 1,...,n — 2: since zy is
(14 s)-homogeneous, the function 0;j2z is (s — 1)-homogeneous; as 0 < s < 1 from the
boundedness of the derivative we deduce

8,-ij0 =0 m Bl Vi,j = 1,...,n—2. (4.84)

The solution zs, is a smooth function in B;F/Q and Bj,, because the coefficients of the
strictly elliptic operator L, are smooth in these domains. Thus, fixed z,_1 and x,, we
can write the first order Taylor polynomial of zeo(+, Zn—1, %) in (0, Zp—1, )

n—2

Zoo (xly Tn—1, xn) = CO(xn—la xn) + Z ci(xn—ly $n)$i,
=1
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with co(zn—1,2n) = 200(0, Tp—1,2,) and ¢;(Tp—1,2n) = 0i200(0, 2p—1,x,). By defini-
tion the function co(zp—1,y) is (1 + s)-homogeneous and the functions c¢;(x,—1, %)
are s-homogeneous. Since zy and 0;z« are continuous in By \ {zn-1 = z, = 0}
the function co(zn—1,2,) and ¢;(xn_1,2,) are continuous in Byjs \ {z,—1 = 0} with
Byjs := {(zn-1,2n) € R* : x2_; + 12 < 1/4}. Thanks to homogeneity with positive
degree co(7p—1,7n) and c;(zn—1,2y,) are continuous in By /a.

Taking into account (4.84)), for all i =1,...,n — 2 we obtain

&) (xn—la xn) = aiZoo (-T/a Tn—1, xn)

CO(xn—l , xn) = 200 (-73/7 Tn—1, !Tn)y

thus ¢;,¢o € Hl(Bli/Q, |z,|* £2) and are solutions of on Bli/z' Since ¢;(Tp—1,%y) is
s-homogeneous there exist some constants (@;)i=1,...n—2 such that ¢;(x,—1,0) = a;x]_,
when x,_; > 0 and similarly since c¢o(z,—1,2,) is (1 + s)-homogeneous, there exists a
constant ag such that co(zp—1,0) = apxs_; when z,_1 > 0.

We show that

ci(Tn_1,2n) = % (mn+1 +4/22_ + x%) : (4.85)

Passing to polar coordinates we can write ¢;(x,—1,x,) = d;(r,0) = r°¢;(6). From Lyc; =0
we deduce that the function ¢; is the solution of the following second order ordinary
differential equation

sin @pgg + acosOpg + (a(l + s)z + (1 + 5)%)sinfp =0  in (0,7)
p(0) = 3t
p(m) =0,

and so it has a unique solution. Resorting to a direct calculation, we can verify that the
function

wi(0) = %(COS@ +1)°

is solution for all # € [0, 7]. So the function ¢;(x,—1,zy) satisfies (4.85)).

By proceeding in the same way we prove that the function co(zp—1,2,) can be written

~ S
ao / /
Co(ﬂjnfl, .'En) = m <$n+1 + l’%{il + CL‘%) <$n+1 - x%{,l + CI;%) 5

and this provides the conclusion to the proof of the step.
Step 9: Case (2) cannot occur. We use the result of Step 4, 7 and 8 to deduce
the contradiction.

From (4.82)) we deduce that zoo € T$1+5, by using it as a test function in (4.81)), the
condition of orthogonality of Step 7 implies

(#00,C) = 0 CETpH14s-

as

118



Then we have zo, = 0 but this is in contradiction with (4.72]).
In this way we exclude the occurrence of case (2) of Step 3, thus providing the
conclusion of the proof of the theorem. O

In what follows we show some important consequences of epiperimetric inequality.

4.4.2 Decay of the boundary adjusted energy

The following proposition establishes a decay estimate for the boundary adjusted energy.
In this connection the epiperimetric inequality allows us to estimate from below, up to
a constant, the difference between the energy ngﬂ,(l, -) evaluated respectively in the
(14 s)-homogeneous extension of u,|pp, and in u, with W19+S(1, uy); in this way we obtain
a differential inequality from which we deduce the decay estimate.

Proposition 4.4.2 (Decay of the boundary adjusted energy). Let xg € T'145(u). There
exists a constant v > 0 for which the following property holds:
for every compact set K C By there exists a positive constant C > 0 such that

Wi (r,u) < Cr7, (4.86)

for all radii 0 < r < dist(K,0B1) and for all xg € T'145(u) N K.

Proof. Let us assume xg = 0 € I'145(u). In the same way as in the proof of Theorem [2.3.10)
in Chapter [2 and thanks to Lemma [£.1.5] we calculate the derivative of the boundary
adjusted energy Wiys(+, u)

d -0 d 1 (1+5s)
k) = 4 (Sput) - L)

n+1 1 1+s) , 1+s)(n+2
- _(rer_rQ )D“(T) + ptl Dy (r) — (rq;‘;z)Ha(T) + %Ha(r)
n+1 , 1+s)(n—2s
_(7’”4—2 )DQ(T’) + yntl Dy(r) = (7?71(-53)1—[&(74)
) Dy 4 L) (457
- _nTHW19+s(T7 u) - wHa(r) + ,,«n1+1 D;(T‘)
- 2(:711_28)1%(7“) + WHQ(T)
- =W - . +2(f§+ Dty 41
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According to Lemma and to the definition of rescaled functions (4.16[), we can write

1 2(1 2
I :/ Vuf? o apnt 4 2SS / u? [z, | dH" !
0B, OB,

rn+2 T3
2(1
_ ( nj_;s) / UVU . f |xn|a d,Hn_l
" 8B, r
r=r 1 a e 2(1 + s 2 ) .
=2 IVu(ry)|? [ryn|® dH" ! + (4)/ u? (ry) |ryn|® dH" !
T 0B T 0B1 (488)
2(1+s -
_ ( 3 ) / u(ry)Vu(ry) -y |ryn|* dH 1
r dB1
1
1
1

[ (Vv = (1 ) Vw1492 [y
0B1

where by Vgu, we denote the differential of u, in the tangent direction to dB;. Let ¢, be
the (1 + s)-homogeneous extension of u,|9p,

() o= 210, (é,) |

Thus, according to (1 4 s)-homogeneity and by Euler’s homogeneous function Theorem
and recalling that H,(r) = r"*2H,(1) and W1Q+s(1v Up) = W19+S(r, u), by putting together
the equations (4.87) and (4.88)), we deduce

d 1 1)(1
—Wl%rs(r, u) = —L: W (ryu) — —(n +1)(L+5) / u? |z, dH™ !
0B,

dr I+s r
1

+ - / (Vu, -v— (14 s)ur)2 |, | dH 1
0B,

1
41 / (IVourl® + (14 8)%2) || dH™"
T JoB;

1 1
-2 W1+s(7" w) + = / (Var v = (14 s)uy)? || dH*
r 0B

1
+ / (IVacr > = (1 + 8)(n — s)c2) |ap|* dH™ !
0By

1 1
—_ ot W1+s(7“ w) + ~ / (Vg v = (1+ s)up)” |wn|* dH" !
r 8B

1
‘- / (Ve = (L+ 5)(n+1)c2) [oal* arn=
0B,

- n+1 n+1 1 _
PR e = W L) [ (Fu = (U s e
0B,
So, by Proposition [4.2.3] we have

d__o n+1

%Wf+s(r’ U) 2T (W1+s(1 C"’) ng—l-s(l’ uT)) .
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Then, according to the epiperimetric inequality stated in Theorem [.4.1] with the same
argument used in Lemma of Chapter [2| we obtain

Dy, oy » D

(n+ e o
0 > T W

0
Wf+s(17ur) = m 1+8(r7 'LL),
and integrating this inequality in (0,79) we have
0 0
Wf—i—s (T, u) < Wf+s(17 u) 7477

_ (n+D)k
— r(l-k)- ]

with  :
Remark 4.4.3. In order to prove the Poposition [1.4.2] the Weiss’ monotonicity formula is
not necessary.

4.4.3 Nondegeneracy of the solution

In order to deduce the non degeneracy property of the solution we note that the inequality
(4.13) is not enough. We show an improved version of (4.13) as a consequence of
epiperimetric inequality and decay estimate of energy above.

Proposition 4.4.4 (Nondegeneracy). Let u € H' (B, j14) be a solution of Problem (4.4).
Let’s assume that 0 € T'145(u) . Then there exists a constant Hy > 0 for which

H,(r) > Hor"t? Yo <7< 1. (4.89)
Proof. Taking (4.15) into account, we obtain

d Ha(r "2 rDa(r) — (14 s)H(r 2 pntl
% (10g ( ,r.nJ(rQ)>> - Ha(,,«) 2 ( ) T1(1+3 ) ( ) = H(T’) Wl%rs(r, U)

(4.90)

Let v be the constant of Proposition [4.4.2| and let € = % be the exponent in the second

item in Lemma [4.1.3] Then by means of (4.86)), (4.13)) and (4.90) we infer that there

exists a positive constant C' = C(y) > 0 such that for all 0 < r < rg, where ¢ is given in
the second item in Lemma it holds

d H 9 pntl 9 pntl
— | log a(r) =27 IQ+ rou) < "o
dr 2 He(r) B He(r) 4.91
2r”+10r7rg+2+7/2 /21 (491
< .
~ ,),,n—|-2+’y/2 Ha(TO) >~ CT
By integrating the differential inequality above, we obtain that the function
H
poy —Halr) (4.92)
mt2e 3
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is nonincreasing. In fact integrating (4.91)) on (to,?;) we obtain

H,(t2) H,(ty) 2C (472 42
_ < 2 _
1°g< 0+ > bg( )= (% -4")

2

o) (07 _ () 4

Hy(t1) \t2 - '

H,(t2) < H,(t1)
X 2Cc 1 -
tht2e tz 1P t]
In particular we conclude that
H, H,
lim ai(;;) = lim a(r) =: Hy,

2C  ~ n-—+2
r—0 2 e p3 r—0 r

and if r << 1, according to nonincreasing and with inequality 1 — z < e™® (true if
0 <z << 1), we can deduce

H

Y

H H, 2C
alr) 5 “g) <1 = r3> > 0. (4.94)
rt2 0y ’I”% rr Y

Then thanks to the monotonicity of function I;’::i’;) proved in the first item in Lemma
we provide the thesis

Ha(r)
iy 2 . O

By means of the nondegeneracy condition (4.89)), for all zyg € T'145(u), we deduce
/ uio,r |z, |* dx > Hy,
0By

and if (ug, r, )ken 18 a sequence that converges to ug in L2(Bl, ), & blow up function in
x0, due to estimate (4.17) and the convergence of the traces in |86, Lemma 2|, we obtain
the convergence of the traces of u,, ,, on 0Bj; thus

/ uo |zn|*dx > Hy > 0.
0B1

So we infer ug # 0 for all ug blow up functions in a point of I'y 45 (u).
So, in view of Propositions and |21, Proposition 5.5] we can deduce the

following result of the classification of blow ups.

Proposition 4.4.5 (Classification of blow ups). Let u be a solution of problem (4.4)).
Let ug be a blow up of w in point xo € I'145(u). Then there exist a constant A > 0 and a
vector e € S*2 such that ug = \ he.
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4.4.4 The blow up method: Uniqueness of blow ups

By summarizing what we have been showing so far, due to estimate and to |62}
Theorem 1.31], for all g € I'145(u) and for all sequences 7, — 0 there exists at least a
subsequence (that we do not relabel in what follows) such that s, », — Uz, in H'(B1, ta)
for some non trivial functions u,, € H'(B1, u,). It is easy to prove that u,, is a solution
of Problem ([(£.4). Furthermore uy, is (1 4+ s)-homogeneous. According to Proposition
[A.4.5] the result of the classification of blow ups, we obtain uz, € H14s.

With the next Proposition we prove that the blow up is unique, i.e. for all g € I'14s(u)
there exists a function w,, such that for all , — 0 the sequence (ug,,r, )ken converges to
Uy, in L?(B1, ie). This is again a consequence of epiperimetric inequality. In particular,
the epiperimetric inequality provides an explicit rate of convergence of the rescaled
function ug, ..

Proposition 4.4.6. Let u be a solution of Problem (4.4) and let K CC Bj. Then there
exists a positive constant C' > 0 such that for all zg € T'145(u) N K the following inequality
holds:

/ |tz r — Ugp| |:tsn|acl7-l"71 < CT‘%,
0B

where v > 0 is the constant defined in Proposition [{.4.4 In particular the blow up is
UnIque.

Proof. Let 0 < p < r < 1o be positive radii. By proceeding as in (2.115)) and (2.110]) in
Lemma [2.6.3] of Chapter [2] we obtain

| o = g o
0B1

=

r 2
< c/ b <t—1/ Ve, -x—(1+s)ut,xo|2|xn|adﬂn—1> dt.
P 0B

By means of formula (4.1.4), the Cauchy-Schwartz inequality and decay estimate (|4.86]),

we infer

. T (d 3
/ |Ugr — u$07p| |zn|* dH" < C/ tz (Wlo—f—s(t’ u)>
6B, p dT’

p
1
([-306) -3
p

Let h,k € N be such that 27% < p < r < 271 with the same dyadic argument as in

(4.95)
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Lemma applying (4.95) to p = § = 27 we have

k
s = sl ol a1 =3 gy =ty o
1 i=h 1

k

<C > (Viog2)2tti < Y 27ir < 027"

i=h i=h+1

R
R

<(Cr2.

Passing to limit as p — 0 and eventually changing the value of constant C, we provide
the conclusion of the thesis. O

4.5 The regularity of the free boundary

Thanks to the uniqueness of blow ups we can give a proof of the C1< regularity of I'1; (u)
the subset of the free boundary with lower frequency (cf. Theorem in Chapter [2).

Theorem 4.5.1. Let u € H' (B, u,) be a solution of Problem . Then, there ezists a
constant o > 0 such that for all zg € T'145(u) there exists a radius r = r(xg) for which
Ti4s(w) N Bl(wg) is a CY regular (n — 2)-submanifold in BY.

Proof. Without loss of generality we can suppose that 0 € I';4 4(u) and prove the regularity
of I'14s(u) in a neighborhood of 0. According to the openness of I'1;s(u) there exists a
radius p > 0 such that I'(u) N B, = T'145(u) N B,. By means of the uniqueness of blow
ups proved in Proposition and the blow up classification result stated in Proposition
we infer that for every zp € I'i44(u) N B; the blow up in ¢ has the following form

Uzy = )\xo he(xo) € le-i—s (496)

for some Az, > 0 and e(zg) € S"~2, where he(zy) and $14s are defined respectively in
(4.21) and (4.25)).
The first step consists in the proof of the Hélder continuity of the function xg — Az,.

By improving the inequalities (4.91)), taking Proposition and Proposition into
account, we obtain

— 2 < o < = _Oorr<or!
dr rnt2 Hy(r) 1% n = H,(r) = Hyrnt2 rEvr
(4.97)

for all » € (0,1). Due to strong convergence of rescaled functions in L?(0By, |z,|* H" 1),
we have

d<1 <Ha(r))> 2t {@S6) 9+l @) opntl
— (1o _

Hgo(r)

Azg = Co l{% nt2
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with c¢g > 0 being a dimensional constant. In fact

2 -1
lim H3*(r) = lim faBT(IO) Sl A =Y i
\0 pnt2 r\0 rnt2 \0

—/ gy [yl dH" " (y) = Azo/ h2 o) [yn|* dH" " (y)
0B 0B1

1

/ w2, [ynl® dH T (y)
0B,

=Xz, / B2 [yn|® dH™ 1 (y) = Appey -
0By
By the integration of differential inequality (4.97)) and proceeding as in (4.93) and (4.94))
in Proposition [£.:4.4) we obtain

H°(r)
rn+2

o —Ago < C 17, Vr e (0,1).

Moreover, for zg,y0 € T'145(u) N B), and r = |zg — yo|'~? with 0 := ﬁ we have

/ ’uIOvT - uy077“| ’xn’a dHn_l
0B,

1
< 7'_(1+S)/ / [Vu(t(zo + ) + (1= )(yo + 1)) |z — yol [zal* dt dH" !
0B1 J0

< Cr g — yo| < Clzo — wol’,
(4.98)

where in the first inequality of the last line we used the condition of growth (4.18). So we
can conclude that for 7 = |zg — yo|' ¢ with 6 := ﬁ it yields as follows:

HZo(r) HZo(r) H (r) HI (r)
Az = Ao < Az — o 7’%” T ril+2 - 7'(;+2 €0 ;zﬁ — Ayo
ol 2 2 a n—1
<Cr7+ C/ Uy — Uy | [Tn|* dH
By
<O 4C / thag . — tigy ]| [ty + 1y | 0] AHP
By
<Cr'+C / Uz, r — Uyyr| |Tn|* dH" P < C |20 — yo!9
By
(4.99)

where, thanks to (4.18)), we could use the uniform equiboundedness of w. ,.
The second step consists in the proof of Holder continuity of the function xg — e(xg).
We can observe that by definition (4.21)), if o, yo are as above, we infer

le(zo) — e(yo) <C/BB/ 1y - €(0) X {y-e(0)>0} — ¥ * €(Y0) X {y-e(yo)>0}] AH"
1
—C/ ’he(mo) - he(y0)| dH™ 2.
B,
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In fact, let 8 be the angle between e(x) and e(yo); by Chord Theorem |e(xg) — e(yo)| =
2 sin g, thus if 0 < 8 < § by resorting to geometric reasoning, we have

/83/ 1y - €(0) X {y-e(0)>0} — ¥ * €(Y0) X {y-e(yo)>03 | AH™
1

[y - (e(x0) — e(yo))| dH"

/E)B;m{y-e(a:o)>0,y-6(yo)>0}
+H"2 (0B N {y - e(x0) > 0,y - e(yo) < 0}) U (B] N {y - e(w0) < 0,y - e(yo) > 0}))
B

cos g[(e(xo) —e(y0))| dH" 2 + C'sin 5

>

/BBiﬁ{y-e(a:o)>07y'€(y0)>0}
> C|(e(z0) — e(y0))l,

and for § < B < 7 the argument is similar. In order to prove a Holder estimate
for the map = — e(x) we study the quantity faBi [Pe(zo) = Pe(yo)l dH"2. By Trace

Theorem |31, Theorem 3.4] we have

/B’ Uy — Uy |2 dH" ™ < O (/B |ty — Uy |* dpta + /B |Vug, — Vuy0|2dua> . (4.100)
1 1

1

Since ug, and uy, are solutions of Problem (4.4), we have

/ Lo(ug) tgydx =0 with x = xg or x = Yo,
By
/ Lo (tgg) uy, do <0,

By

/ Lo (tyqy) g, dz <0,
uB1

so we obtain

/ Lo (tgy — Uy ) (Ugy — Uy,y) dz > 0.
B1

Integrating by parts, we infer
[ Vit = VP it < [ (T~ ) ) (i~ )
B3 0B1

and recalling that the blow ups are (1 + s)-homogeneous, due to Euler’s homogeneous
Theorem, iy yields:

/ |V (g — uyo)‘2 dpa < / (tUzy — Uyo)2 dpe < C (Uzy — Uyo)2 dtq- (4.101)
B1 0B B1

Next, by conditions (4.100)) and (4.101)) we obtain

/ Uy — Uyo‘2 dH" < C [ (ugy — Uyo)2 dptq
P b (4.102)

<C |tag — gy, dpta,
0B;
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where in the last inequality we have used the (1 4 s)-homogeneity and the uniform
boundedness of ug . Thus, thanks to Proposition 4.4.6| and (4.98) we have

/ ’uwo - uyo’ dpig

OB1

< / ’U:C() - Uxo,r| d,Uza, + / |Ux077- — Uy(),r’ dua —+ / ’uyo,r _ uyo| d,U,a (4103)
0B1 9B, o8,

0
< Or? + Clao — yol® < |zo — wol2.

Finally, since

Uzg _ Uyo Uzg _ Uzg Uzg _ Uyo

A«TO )\y() )\TO )\yO AyO )\yO
<C (|)‘6(10) - )‘e(yo)| + gy — uyo‘) )

according to (4.99)), (4.102)) and (4.103) we infer

le(xo) — e(yo)| < C/HB’ |Pe(zo) = Pe(yo)l dH" 2 < C'|zo — yol’. (4.104)
1

Ugy Uy

|h€(ﬂ»‘o) - he(yo)‘ = +

In what follows we show that, as in Theorem in Chapter [2| the vector e(z) plays
the role of “normal vector to surface”. In this connection we introduce the cones centred
in zp € I'145(u) given by

CE(wo,€) := {x € R" 1 x {0} : £(z — z0, e(w0)) > elz — 20|} - (4.105)
We prove that for all € > 0 there exists § > 0 such that for all g € I'145(u) N By,
C™*(z0,€) N Bs(z) C Ny and  C™ (zo,e) N Bs(x) C Ay, (4.106)

Let us suppose by contradiction that there exists a sequence (x;);jen C I'i4s(u) N Bg such
that ; — 2 € T'14(u) ﬁ?g and a sequence (y;)jen C CT(x;,¢), for which z; — y; — 0
and u(y;) = 0.

According to optimal regularity of solution (4.7) and (4.103) the rescaled function
Uy, z; With r; = |y; — ], converges uniformly to .

We define the sequence z; = r;l(yj — z;) and we observe that z; € (CT(zj,¢) —
a:j) NS™~1. Up to subsequence (that we do not relabel) we can suppose that Zj =z €
(C*(z,) — wo) NS™L. Thus

Uz (2) = hjm Ur; o;(25) = h]m Egﬂ) =0,
J

but on the other hand there exists a y € C*(x,¢) for which z = y — g, so by definition of
Uzgs Ne(zy) and Ct(z,¢€) to be found in ([4.96)), (4.21)) and (4.105) respectively we deduce

Uag (2) = Aaohe(ag) (Y = 0) = Aag 2°(s71 = 1){z — @0, e(w0))' ™ = C' o — ao|"+* > 0,
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which gives a contradiction. Reasoning in the same way, it is possible to prove that
C~(z,e) N Bs(x) C Ay. We now conclude showing that I'14s(u) N B, is the subgraph of
a function ¢ for a suitable constant p; > 0. Fixing z¢ € I'14s(u), we recall that e(zg) is
the generating line of cones CF(x,¢). Let ¢ : R* 2 = {29 + e(20)*} — R be a function
defined by

p(z') :=max {t € R : (2/,1,0) € Ay}, Va' € {xo+ e(xo)t} 1 |a’ — xo| < V1 — 2.
We note that according to (4.105) the maximum exists in [—&d,€d], and

(2',t,0) € Ay = —e6 <t < p(a'),
(2/,t,0) € N, = o(z) <t < &b

Therefore ¢ is differentiable and due to (4.104)) its normal vector e(xz() is Holder continuous;
so ¢ € C and in this way we have provided the conclusion to the proof of the
theorem. O
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