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Chapter 1 - Introduction 
 

 Skeletal muscles allow walking, running and breathing by converting chemical energy into 

power (force and shortening). At molecular level force and shortening are generated by cyclic 

interactions between the molecular motor myosin II, an ATP-driven mechanoenzyme, emerging from 

the thick (myosin containing) filament and organized in arrays in each half-sarcomere, and the thin 

(actin containing) filament, used as a track to move along. In each interaction the hydrolysis of one 

ATP molecule provides about 90 zJ of free energy (Pate & Cooke, 1989; Smith et al., 2008), allowing 

the motor to exert 6 pN force and/or 6-10 nm movement (the working stroke, (Rayment et al., 1993b; 

Piazzesi et al., 2002). Thousands of half-sarcomeres in series amplify the small movement, allowing 

macroscopic shortening of muscle.  

The performance of skeletal muscles contracting under isometric conditions or actively shortening 

against an external load exhibits a large variability: parameters such as speed of isometric force 

development, unloaded shortening velocity, maximum power output and ATPase activity vary from 

one muscle to the other according to their functional tasks. Muscles involved in maintenance of 

posture exhibit a low shortening speed at any given load, developing a lower power and consuming 

ATP at lower rate, with respect to muscles involved in movement that exhibit a high shortening 

velocity at any load, develop higher power and consume ATP at higher rate. At the same time the 

efficiency of energy conversion in slow muscle is similar to (Barclay et al., 1993; He et al., 2000) or 

even higher than (Woledge, 1968; Reggiani, 2007; Barclay et al., 2010b) that in fast muscle. These 

differences are believed to be related to the myosin heavy chain (MHC) isoform expressed in different 

skeletal muscles (Schiaffino & Reggiani, 2011). In fact, muscles responsible for the maintenance of 

posture contain fibres expressing mostly the slow MHC isoform while those involved in movement 

contain fibres expressing mostly the fast MHC isoform. At molecular level these differences could 

be related either to the properties of the myosin motor per se (i.e. stiffness, force, size and speed of 

the working stroke) and/or to the properties of the ensemble of motors in the half-sarcomere (i.e. the 

number of motors attached to actin during an isometric or isotonic contraction and the cooperativity 

among motors).  

In my PhD thesis high resolution mechanics has been used to investigate the differences in mechanical 

and kinetic properties of slow and fast myosin isoforms in situ during isometric and isotonic 

contractions. The study has been performed on single demembranated fibres isolated from soleus 

(containing the slow myosin isoform) and psoas (containing the fast myosin isoform) muscles of 

rabbit by determining (i) the fraction of motors attached to actin in the half-sarcomere during 
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isometric contraction (β), the stiffness (ε) and the force (F0) of the motor and (ii) the mechanical 

parameters (size and speed) of the working stroke. Results show that ε of the slow myosin isoform is 

1/3 of that of the fast myosin isoform. The average strain of the myosin motor during force generation 

(s0) is similar (≈ 3.3 nm) in the two MHC-isoforms, indicating that the slow myosin isoform bears a 

force which is 1/3 of that of the fast myosin isoform. At low load the size of the working stroke is 

similar in slow and fast myosin while at high load is smaller in the slow isoform. On the contrary, the 

speed of the working stroke is one-order of magnitude slower in slow myosin at any load. The lower 

stiffness and lower force of the slow myosin open the question on the molecular basis of the 

similar/higher efficiency of slow muscle with respect to fast muscle. 

 

In the following sections the current knowledge about the molecular mechanism of muscle 

contraction and the functional differences between slow and fast muscles will be briefly reviewed.  

 

1.1 The structure of skeletal muscle  

 

Skeletal muscle is constituted by multinucleated cells, the muscle fibres, 30-200 µm in diameter, 

running for the whole length of the muscle (Fig. 1A). 

Under the light microscope each muscle fibre appears striated because of the regular repeat of dark 

bands (A-bands, anisotropic under polarised light) and light bands (I-band, isotropic under polarised 

light) along the myofibrils, the cylindrical units of 1 µm diameter that constitute the fibre. 

Electron microscopy reveals that the bands are due to the regular repeat of two sets of interdigitating 

myofilaments (Fig. 1B and Fig. 2): the thin filament, mainly constituted by the protein actin (1-1.2 

µm long, 8 nm in diameter) and the thick filament mainly constituted by the protein myosin (1.6 µm 

long, 12 nm in diameter). The thin filament originates from the Z-line, at the centre of the I-band and 

partially overlaps to the thick filament in the A-band. The centre of the A-band contains only thick 

filaments and appears less dark (H-band). The H-band is bisected by the M-line, which contains 

proteins connecting the thick filaments together. Two consecutive Z-lines define the sarcomere, the 

structural unit of the striated muscle, that repeats thousands of times along the myofibrils. Cross 

section of skeletal muscle reveals that thin and thick filaments are disposed in a double hexagonal 

lattice: in the overlap region each thick filament is surrounded by six thin filaments, while each thin 

filament is surrounded by three thick filaments (Fig. 1 D3) so that the ratio thick/thin filament is 1:2. 

Across the Z-line, the thin filaments are arranged in a tetragonal pattern: each thin filament is 

connected with 4 thin filaments from neighbouring sarcomeres (Fig. 1 D5). 
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Figure 1. Muscle structure at different levels of organization. A. From muscle to fibres, myofibrils and sarcomere. B. 
Sarcomere structure with the interdigitation of thick (red) and thin (orange) filaments. C. The contractile, regulatory and 
structural proteins in more details. D (1-5). Cross sections showing the lattice organization corresponding to the numbers 
in B. 
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1.1.1 Contractile proteins 

 

Myosin and actin are the proteins responsible for muscle contraction. Skeletal muscle myosin belongs 

to the family of the myosin motor class II (Sellers, 1999). The myosin molecule is an examer of 520 

kDa molecular weight (Fig. 3) and consists of 

two heavy chains (220 kDa molecular weight) 

each composed of a 150 nm long ‘tail’ and a 

globular ‘head’ at one end, and two pairs of light 

chains (20 kDa molecular weight each). Partial 

digestion by trypsin splits the molecule in two 

fragments, the light meromyosin (LMM), 

constituted by the major part of the tail, and the 

heavy meromyosin (HMM) that contains the two 

heads and the rest of the tail. Further digestion 

by papain splits HMM into three sub fragments: 

two S1 portions, the heads, and a rod-like S2 

portion. The S2 portions form a coiled-coil 

structure which continues in the LMM that 

constitutes the backbone of the thick filament. 

The S1 portion of the myosin monomer consists 

of the catalytic domain (CD), or motor domain 

(MD), containing the sites for actin binding and 

for ATP hydrolysis, and the light chain domain 

(LCD), an elongated portion that has the binding sites for the light chains and is connected with its 

carboxyl terminal to the S2 rod (Fig. 4). The primary structure of the HMM contains about 1900 

amino acids of which about 840 form the S1 portion of the head. In the thick filament the myosin 

molecules are arranged in two antiparallel arrays, with the tails in each half of the thick filament 

pointing toward the centre of the sarcomere. Consequently, in the centre of the thick filaments, a 

region of ca 200 nm, called the bare zone, is free of heads (Fig. 1B). Crowns of three pairs of myosin 

heads emerge every 14.3 nm so that the headed half-thick filament, 700 nm long, carries 

(700/14.36=) 294 myosin motors. 

The actin filament (F-actin) is generated by the polimerization of G-actin monomers, a globular 

protein of 5.5 nm in diameter and 42 kDa molecular weight, in a double stranded helix so that the 

axial repeat of monomers along the actin filament is 2.75 nm. 

Figure 2.  Electron micrograph images at two different 
sarcomere lengths. The increase from 2.1 to 2.6 µm 
implies change in the extent of overlap between actin e 
myosin filaments and thus in the width of the I and H 
bands. 
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Figure 3. The myosin protein is made of two heavy chains and two pairs of light chains. Proteolytic digestion splits 
the heavy chain in a globular portion (S1) and a tail (S2 and LMM). The S2 portions and the LMMs have a coiled-coil 
structure. 

 

1.1.2 Regulatory proteins 

 

 The activation of the thin filament is controlled by the regulatory proteins, the tropomyosin 

and the troponin complex (Fig. 1B). Tropomyosin polymerizes to form a filament lying in the groove 

between the two actin strands. The troponin complex, that repeats every seven actin monomers for 

the entire length of the filament, consists of three subunits, troponin I, troponin C that binds Ca2+, and 

troponin T that binds to tropomyosin. When the myoplasmic calcium concentration increases, the 

calcium-sensitive troponin C triggers a series of structural changes that end with the movement of 

tropomyosin within the groove removing the steric inhibition of actin-myosin interaction. Myosin 

attachment to actin has been suggested to promote further movement of tropomyosin, allowing the 

full exposure of myosin binding sites on the actin filament.  

 

1.1.3 Cytoskeletal proteins 

 
 The cytoskeletal proteins accomplish the mechanical role of maintaining the cell architecture, 

preventing damages to the membrane and transmitting the force outside. At the level of the Z line the 

protein α-actinin is the main component of the filamentous structure, which forms the tetragonal 

reticulum that allows each thin filament of a sarcomere to be connected to four thin filaments in the 

next sarcomere. Titin (Fig. 1B and C), a filamentous protein with a molecular weight of 3 MDa, 

diameter about 4 nm and length 1 μm, forms a filament running from the Z line to the M line making 

contact with both myosin and actin filaments. Titin represents a scaffold for the thick filament 

assembly and constitutes an elastic element, in parallel with myosin motors, accounting for the 

passive force of the fibre at long sarcomere lengths. The dynamic interaction of titin with the actin 

filament suggests also a possible regulatory action of acto-myosin activity.  
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Nebulin (800 kDa molecular weight) forms an inextensible filament, running from the Z line to the 

end of the thin filament (Fig. 1B and C), where it binds to tropomodulin, the thin filament pointed-

end capping protein. Nebulin has an important role in modulating acto-myosin interaction (Bang et 

al., 2009). Another sarcomeric protein is the Myosin Binding Protein C, MyBP-C that is confined to 

the “C-zone” of the thick filament, from 250 nm to 510 nm from the filament midpoint in Amphibia, 

and is able to form bridges from the thick to the thin filament at rest (Luther et al., 2011).  

 

1.2 The tilting lever arm model of the myosin working stroke 

 
The description of the crystallographic structures of both actin (Kabsch et al., 1990) and myosin 

(Rayment et al., 1993b) molecules allowed to define a model for the structural working stroke in the 

motor domain responsible for the generation of force and shortening in muscle. 

 

 
Figure 4. Upper panel: Ribbon representation of the S1 crystallographic structure (Rayment et al., 1993b). The 
proteolytic fragments are colour coded: 25 kDa (N-terminal) green; 50 kDa red-grey; and 20 kDa (C-terminal) blue. 
The 50 kDa fragment spans two domains: the 50 kDa upper domain and the 50 kDa lower domain or actin binding 
domain. The actin binding site is grey. The C-terminal tail or "neck" carries two calmodulin-like light chains: the 
regulatory light chain (magenta) and the essential light chain (yellow). Lower panel: Schematic representation of the 
primary structure of complete MHC with indication of the functional relevant sequences.
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The S1 portion, crystallised either without nucleotide or with different nucleotide analogues, allowed 

the definition of the structure of different biochemical states (Rayment et al., 1993b). The first 

structure to be resolved was the nucleotide-free state of S1 from chicken skeletal muscle. S1 is made 

of three segments, previously identified by proteolysis (Fig. 4): the amino-terminal segment (25 kDa 

domain, green), the motor domain (MD) or catalytic domain (CD) (red, upper 50 kDa domain and 

light grey, lower 50 kDa domain), that has both the actin binding site and the ATP binding site, and 

the light chain binding domain (LCD) (20 kDa, blue), constituted by an -helix that connects the 

carboxyl-terminal of the head to the S2 -helix (the rod). Two light chains, the essential light chain 

(ELC, yellow) and the regulatory light chain (RLC, magenta), are associated to the 20 kDa domain. 

Between the CD and the LCD there is a small compact domain called the converter domain (Holmes, 

1997; Dominguez et al., 1998). Because of the absence of ATP, this structure was associated to the 

rigor state, attained by the muscle after death. This structure of the myosin is assumed to be that at 

the end of the working stroke (Dobbie et al., 1998). 

 

 
Figure 5. A. Arrangement of the myosin molecules in the thick filament. B. Schematic diagram of the sarcomere with 
the two arrays of myosin heads (red) protruding from the thick filament (blue) attached to the actin filament (grey) at 
the beginning of the working stroke (like during the isometric contraction, left panel) and at the end of the working 
stroke (like following shortening, right panel). In circles are the myosin heads conformations like in C. C. 
Crystallographic structure of rigor-S1 (LCD light blue) and (ADP)AlF-

4 (LCD dark blue). CD (red), RLC (magenta), 
ELC (yellow), converter region (light and dark green), actin monomers (brown and grey). 

 

A model for the state at the beginning of the working stroke has been obtained by using non 

hydrolysable analogues of the ATP, like Mg.ADP.AlF-
4 and Mg.ADP.BeFx (Fisher et al., 1995; 

Dominguez et al., 1998). The superposition of the structural model of the acto-myosin complex in 
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the two states, based on the low resolution electron density maps of the actin filaments decorated with 

myosin, shows that the working stroke consists in a 70° change in the orientation of the LCD relative 

to the CD, firmly attached to actin, as a consequence of a structural change in the converter domain 

(Fig. 5). The LCD acts as a lever arm that amplifies the movement at the level of the head-rod junction 

(tilting lever arm model), where the 70° rotation of the LCD corresponds to an axial movement of ~ 

10 nm. 

1.3 The coupling between biochemical and mechanical steps of the 
actin-myosin interaction 

 

Solution studies of the actin-myosin reaction (Lymn & Taylor, 1971) showed that myosin (M) is 

an actin activated ATPase which uses MgATP as a substrate. The myosin ATPase pathway in the 

presence of actin is shown in Scheme 1. In the absence of nucleotide the motor binds tightly to the 

actin (AM, rigor state). The binding of ATP dissociates the actomyosin complex (M.ATP + A), then 

ATP is hydrolysed to inorganic phosphate (Pi) and ADP that remain in the catalytic site of S1. Myosin 

with the hydrolysis products has a high affinity for actin and in the presence of actin binds to it 

(AM.ADP.Pi). In this state the affinity of myosin for the hydrolysis products reduces; Pi is released 

first, with a large enthalpy change, then ADP is released. Release of ADP allows a new ATP molecule 

to bind to myosin and the cycle starts again.  

 
Scheme 1 

 

The structural states of the myosin motor suggested by the crystallograhic studies (Fig. 5) are 

associated to the biochemical states of the Lymn and Taylor (1971) cycle, as summarized in Fig. 6 

(Nyitrai & Geeves, 2004; Geeves & Holmes, 2005). The transition from (a) to (b) represents the 

working stroke and is associated to Pi release, the step that is accompanied by the largest enthalpy 

change in solution (White & Taylor, 1976). In the structured system this enthalpy change shows up 

as a working stroke dependent development of strain between the two filaments, which is shown in 

state (b) as the extension of an elastic element in the S2 portion connecting the motor domain to the 

thick filament. If the load opposing to the stroke is low, the strain is prevented by the movement of 

the lever arm toward the end of the working stroke (state (c)). ADP release can occur from either state 

(b), the strained A.M#.ADP state, or state (c), A.M.ADP, the state in which the strain is relieved 

because the load is low and the relative sliding of the two filaments is allowed. 
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Recent in situ experiments suggested that the working stroke and release of hydrolysis products are 

independent processes with the rate of Pi and ADP releases increasing with the progression through 

the working stroke (Caremani et al., 2013, 2015).  

 
 

 
Figure 6. Chemo-mechanical cross-bridge cycle. The cross-bridge cycle is shown essentially as described by (Lymn 
& Taylor, 1971) but with a strain-dependent cross-bridge detachment step. (a)-(e) identify the different mechanical 
states in the structured system (cartoons, orange circles: individual actin sites, green: myosin motor domain, yellow: 
light chains, blue: adenosine attached to two or three phosphates in red or yellow after hydrolysis) and the 
corresponding biochemical states (A, actin, M, myosin; T, ATP; D, ADP).

 
The rates and the equilibrium constant of the cycle are affected by changes in amino acid sequence 

in the CD of the myosin. The whole cycle can proceed at very different overall velocities and with 

variation of the fraction of the ATPase cycle time the motor spends attached to actin (duty cycle) for 

different MHC isoforms (for a recent review, see (Walklate et al., 2016)).  

 

1.4 The kinetic and mechanical properties of the myosin motor 

 
The minimal functional unit in muscle is the array of myosin motors overlapping with the 

actin filament in each half-sarcomere. The properties of this collective motor can be understood only 

preserving the supramolecular organization represented by the half-sarcomere. Single fibres from 

frog skeletal muscle have been the most suitable preparation for investigation on the functional unit, 

because they can be isolated intact and studied with mechanical control at the level of a selected 

population of sarcomeres (Huxley & Simmons, 1971; Lombardi & Piazzesi, 1990). Under these 

conditions the action of the motors can be synchronized with step perturbations in length or load, and 

their mechanical and kinetic properties can be investigated.  
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1.4.1 Isometric force transients 

 

The response of an actively contracting fibre to a stepwise change in sarcomere length of a 

few nanometers is a force transient made of four phases (Fig. 7). Phase 1, the change in force 

simultaneous with the step, is due to the elastic properties of the half-sarcomere components, 

myofilaments and myosin motors; the extreme tension at the end of the step is called T1 and is roughly 

proportional to the step size, as expected from a linear elasticity. Phase 2, the rapid force recovery 

complete in 1-2 ms, is the mechanical manifestation of the execution of the working stroke by the 

motors attached to actin. The force attained in phase 2 is named T2. The following phases consist of 

a pause in the recovery of force, phase 3, followed by a slow return to the isometric plateau value 

(T0), phase 4, due to detachment and reattachment of myosin motors. 

 

 
 
 
Figure 7. Force transient (lower 
trace) elicited when length is 
suddenly altered (upper trace). 
Bottom trace is force baseline. 
The numbers indicate 
corresponding phases as 
described in the text (from Fig. 7 
(Huxley, 1974). 

 

The first two phases of the force transient describe the properties of the myosin motors attached to 

actin (Huxley & Simmons, 1971; Ford et al., 1977). The slope of the relation between T1, the peak 

force attained with the step, and the step amplitude (T1 relation, filled circles in Fig. 8A) estimates 

the stiffness of half-sarcomere elasticity and the intercept of the relation on the abscissa, Y0, estimates 

the strain of this elasticity at the force (T0) just before the step. The plot of the force T2, attained at 

the end of the 1-2 ms force recovery following the step, versus the step amplitude (T2 relation, open 

circles in Fig. 8A) points out the non-linearity of the quick recovery process: the tension recovery is 

almost complete for releases up to 5 nm per half-sarcomere, then decreases becoming zero for a 

release of about 11nm. The other non-linearity of this process concerns the rate at which force is 

recovered, that varies with the direction and the amplitude of the step, reducing from the largest 

releases to the largest stretches (Fig. 8B). These two non linearities exclude that the force recovery 

could be explained by passive viscoelasticity where a damped elastic element V2 is in series with an 
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undamped elastic element V1 (Voigt element, inset in Fig. 8A) and indicate that phase 2 recovery is 

due to the active properties of the myosin motor (Huxley & Simmons, 1971). Huxley and Simmons 

interpreted phase 2 recovery as due to strain dependent transition through different conformations 

(different force-generating states) of the motor. State transitions, occurring at a rate of 103 s-1, allow 

the motor to maintain the isometric force for about 5 nm of shortening and (in agreement with the 

crystallographic model) produce a maximum shortening of 11 nm, as estimated by the abscissa 

intercept of the T2 relation.  

 

 
 
Figure 8. A. Relations between T1 (filled circles) and T2 (open circles) and step amplitude. The straight line is 
interpolated through experimental T1 points for small steps. The abscissa intercept (Y0) is 3.6 nm. T2 points are joined 
by eye. The mechanical model in the inset is the Voigt element. B. Relation of rate of quick force recovery (r) and step 
amplitude. r is estimated by the reciprocal of the time necessary to attain 63% of the T2 recovery. The solid line is 
obtained by fitting r data points with a parabola(adapted from, (Piazzesi & Lombardi, 1995). 

 
 
There are evidences that the half-sarcomere compliance is constituted by myofilaments (actin and 

myosin) as well as by the attached myosin motors (Huxley et al., 1994; Wakabayashi et al., 1994). 

Myofilament compliance, being in series, makes the kinetics of force recovery following the step 

unable to correctly describe the kinetic state transition in the motors (Linari et al., 2009). The 

contribution of the myofilament compliance to the response to a step can be eliminated by imposing 

the step in force clamp on an otherwise isometric contraction (Piazzesi et al., 2002). In this case the 

elastic response is followed by a length transient that occurs under isotonic conditions and thus allows 

to obtain direct information on the kinetics of the working stroke without the influence of the length 

changes in the series compliance (Piazzesi et al., 2002; Reconditi et al., 2004; Piazzesi et al., 2007; 

Piazzesi et al., 2014). 
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1.4.2 Isotonic velocity transients 

 

When a stepwise drop in force below the isometric value (T0) is superimposed on an isometric 

contraction, the fibre undergoes a multiphase shortening response, the so called velocity transient, 

before attaining a steady shortening velocity, characteristic of the force-velocity (T-V) relation (Fig. 

9A). 

 

The shortening simultaneous with the force step (phase 1) is followed by a rapid shortening, lasting 

for a few milliseconds (phase 2); the velocity then decreases to a minimum value (phase 3), and then 

increases again to attain the steady state value (phase 4). Phase 1 is due to the elasticity of the half-

sarcomere and phase 2 is the manifestation of the working stroke in the attached motors, synchronized 

by the drop in force. Both the size and the speed of the working stroke reduce with the increase in the 

load  (Reconditi et al., 2004). Phase 3 is due to motors detaching at the end of their stroke, followed 

by reattachment farther from the centre of the sarcomere. Phase 4 is the steady shortening accounted 

for by detachment/attachment rates in asynchronously cycling motors (Piazzesi et al., 2007). 

The velocity of steady shortening has a hyperbolic dependence on the load (force-velocity relation T-

V, Fig. 10). Under unloaded conditions no force is produced and the fibre shortens at its maximum 

velocity, V0. The velocity reduces increasing the load and becomes zero when the load corresponds 

to the force the fibre develops under isometric conditions (T0). 

The T-V relation is the same, whether the independent variable is the velocity of shortening or the 

force. In Fig. 10 the conventional representation is used, with the force on the abscissa and the velocity 

on the ordinate. The relation can be described by the Hill’s hyperbolic relation (Hill, 1938): 

 

Figure 9. Isotonic velocity transient following a force step to 0.5 T0 (adapted from (Piazzesi et al., 2002). A. Force 
(upper trace) and hs length change (lower trace) on slow time scale showing all the phases of the velocity transient. 
B. Same length response as in A on a faster time scale, showing only early phases (1 and 2). 
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(T+a)·(V +b)=(T0+a)·b eqn (1) 

where a and b are constants with the dimension of force and velocity, respectively. The intercept on 

the force axis is the isometric force T0, while the intercept on the velocity axis is the maximum 

shortening velocity, V0, that is the velocity of unloaded shortening.  

 

Figure 10 Force-velocity (A) and force-power (B) relation from a single muscle fibre at 4° C (Rana temporaria, tibialis 
anterior muscle). Power is obtained by the product between force and velocity. Line in A is the hyperbolic Hill’s 
equation fit to the data.   

 

For comparison among different muscle types, it is convenient to write Hill’s equation in a form in 

which all terms are dimensionless, that is, with force and velocity expressed in relative units T/T0 and 

V/V0, respectively: 

 

(T/T0+a/T0)·(V/V0+b/V0)=(1+a/T0)·b/V0 eqn (2) 

 

The term a/T0 is a measure of the curvature of the force-velocity relation, a parameter that is related 

to the maximum mechanical power W(=TV). In fact the lower the curvature the larger the product 

TV at intermediate loads, when the power is maximum.  
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1.5 Mechanical properties of myofilaments and myosin motors 

 
If the elasticity responsible for phase 1 of the transients were fully accounted for by the motors 

and the myofilaments were infinitely stiff, the half-sarcomere stiffness would be a direct measure of 

the fraction of motors attached to actin. However, there is evidence that almost ½ of the half-

sarcomere compliance resides in the myofilaments (Huxley et al., 1994; Wakabayashi et al., 1994; 

Dobbie et al., 1998; Linari et al., 1998; Reconditi et al., 2004). The compliance of myofilaments and 

myosin motors is distributed along each half-sarcomere in a complex network of series-parallel 

springs; however it is possible to reduce the system to a simple mechanical model with three main 

compliances in series (actin and myosin filament and motor compliances) so that an equivalent 

filament compliance (Cf) can be calculated as the sum of the equivalent compliances of the actin and 

myosin filaments (Ford et al., 1981) (Fig. 11, Model 1).  

 

The half-sarcomere compliance (Chs) is thus given by: Chs=Cf+s/T where Cf is the equivalent filament 

compliance, and s/T (where s is the average strain in the attached motors and T is the force) is the 

motor compliance. In conditions in which T increases only for the increase in number of motors, s 

remains constant and the compliance of the motor array changes in an inverse proportion with T. In 

fact, it has been found in both intact fibres from frog tibialis anterior muscle (Fusi et al. 2014 and 

references therein) and skinned fibres from rabbit psoas muscle (Martyn et al., 2002; Linari et al., 

2007; Seebohm et al., 2009) that the half-sarcomere strain (Y) increases with T in proportion to the 

increase in filament strain according to Model 1 in Fig. 11, where Y is given by: 

 

 
Figure 11. Models representing the elements contributing to the half-sarcomere compliance. In Model 1, the 
myofilament compliance (Cf) is in series with an array of myosin motor (only three are shown) with a constant strain 
(s). The isometric force (T0) increases with the increase in number of attached motors. In Model 2 an elastic element 
with compliance CP (grey) is in parallel with the array of motors. As previously described (Fusi et al., 2014), the model 
can be used to determine the contribute of the various elements to the half-sarcomere compliance. 
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      Y(T) = Cf T + s                       eqn (3) 

 

During force development in an isometric tetanus of intact fibres, eqn (3) can be applied in the range 

of forces > 40 kPa to estimate Cf and s from the slope and the ordinate intercept, respectively, of the 

half-sarcomere strain-force relation (Linari et al., 2009; Brunello et al., 2014; Fusi et al., 2014) (Fig. 

12A). For forces < 40 kPa the relation shows a downward concavity indicating that the half-sarcomere 

compliance increases with the reduction of force by an amount that is less than that expected from 

the reduction of the number of myosin motors (Fig. 12B). This reveals the presence of an elastic 

element (CP) with constant stiffness in parallel with the force generating motors (Model 2 in Fig. 11, 

see also; (Colombini et al., 2010; Fusi et al., 2014). This deviation is not evident in skinned fibres 

where the lattice spacing increases following skinning (Martyn et al., 2002; Linari et al., 2007; 

Seebohm et al., 2009). According to Model 2 the half-sarcomere compliance (Chs) is given by:  

 

     Chs(T) = Cf + sCP/(s+CPT)                       eqn (4) 

 

where CP is the compliance of the elastic element in parallel with the force generating motors. In 

intact fibre, eqn (4) applied to the whole range of forces allow to estimate s, Cf and CP (Fig. 12B). It 

must be noted that CP is about 20 times larger than the compliance of the motor array at T0 and thus 

it does not affect significantly the estimate of s with Model 1 (about 1.7 nm in both cases). 

 

 
Figure 12 Mechanical parameters of the half-sarcomere during force development in isometric contraction. A, relation 
between hs strain (Y) and force. B, Half-sarcomere compliance (Chs) fit with model 2 (continuous line). Dashed line is 
the relation predicted by model 1. Adapted from Figure 3, (Fusi et al., 2014). 

 

A correct estimate of myofilament compliance is a prerequisite for extracting the compliance of the 

motor array (s/T) and thus the number of attached motors from half-sarcomere stiffness 
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measurements. In turn, knowing the number of motors working in the half-sarcomere is fundamental 

for relating the mechanical properties of the half-sarcomere to those of the motors. 

A direct estimate of myofilament compliance has been obtained with X-ray diffraction measurements 

of the changes with force of spacing of actin- and myosin-based reflections. These experiments 

provide a value of 0.23 % per T0 (T0 = 240 kPa, Rana temporaria, 4°C) for the compliance of the 

myosin filament (Reconditi et al., 2004; Huxley et al., 2006), corresponding to an equivalent 

compliance of 6.4 nm/MPa. The equivalent compliance of actin filament estimated with X-ray 

diffraction is 6.9 nm/MPa (Huxley et al., 1994; Wakabayashi et al., 1994; Dobbie et al., 1998). Thus 

the equivalent filament compliance is (6.4 nm/MPa + 6.9 nm/MPa=) 13.3 nm/MPa. The total half-

sarcomere compliance is obtained from the strain at T0, Y0 (4.9 nm from the above experiments with 

T0 = 240 kPa) and is (4.9 nm / 0.24 MPa =) 20.4 nm/MPa. Hence the filament compliance in single 

fibres from Rana temporaria at 4 °C is 65% of the total half-sarcomere compliance at the isometric 

tetanus plateau, and the compliance of the array of motors is 35%. Similar values of filament 

compliance have been found for single fast fibres from dogfish (Park-Holohan et al., 2012) and rabbit 

(Linari et al., 2007). 

Thus, in frog muscle, the compliance of the motor array at the plateau of an isometric contraction is 

(20.4 nm/MPa ∙ 0.35 =) 7.14 nm/MPa, that is (7.14 nm/MPa ∙ 0.24 MPa= ) 1.71 nm/T0 (Decostre et 

al., 2005; Piazzesi et al., 2007). The motor compliance becomes 0.5 nm/T0 in rigor, when all the 

myosin heads are attached to actin (Piazzesi et al., 2007). Since the motor compliance is inversely 

proportional to the number of attached motors, the ratio between the motor compliance in rigor and 

that in isometric contraction gives the fraction of motors in the half-sarcomere responsible for the 

isometric force, that is (0.5 nm/T0 / 1.7 nm/T0 =) 0.3 (Piazzesi et al., 2007). Knowing this parameter, 

the isometric force per cross-sectional area, the density of myosin filaments in the cell of striated 

muscle and the number of heads per thick filament, it is possible to calculate the isometric force per 

attached motor and the related energetic parameters. From the isometric force per cross sectional area 

and the density of myosin heads in the half-sarcomere of the striated muscle of the frog (294	∙

	0.51∙1015 = 15∙1016 per m2) (Barclay et al., 2010a), the force per myosin head, results to be about 

1.57 pN. If the fraction of myosin heads attached and generating force is 0.3, the average force per 

motor is (1.57 pN/0.3 =) 5.29 pN. With an average strain of 1.71 nm, the motor stiffness is about 

(5.29 pN/1.71 nm =) 3.09 pN/nm. A quite important conclusion from this bulk of mechanical data 

was that the motor stiffness is much larger than previously thought. In terms of Huxley and Simmons 

model for force generation (Huxley & Simmons, 1971) this implies that the conformation of the 

motors during isometric contraction is biased to the beginning of the working stroke and further 

progression in the stroke occurs only in contraction at lower loads.  
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1.6 Structural and functional differences between slow and fast muscle 

 
Until the end of the 1960’s the common view of the diversity in skeletal muscle was based on 

the classification of fast-twitch muscles (also called white muscles, with glycolytic metabolism and 

specialised for phasic activities) and slow muscles (also called red muscles, rich of myoglobin and 

oxidative enzymes and specialised for more continuous activity) (Needham, 1926) . The mechanical 

and biochemical aspects found their matching point in the correlation between the actin-activated 

ATPase activity of myosin and the speed of shortening (Barany, 1967).  

 

 

Figure 13. Mechanical and kinetic properties of slow 
and fast fibres. A: force-velocity (left panel) and 
force-power (right panel) relations of three skinned 
fibres from human (slow, fast 2A, and fast 2X) 
maximally activated at 12°C. B: correlation between 
sliding filament velocity of purified myosins (Vf) 
determined by in vitro motility assay at 25°C and 
unloaded shortening velocity of single skinned fibres 
(V0) maximally activated at 12°C. Fibres were 
obtained from four different species (from 
(Pellegrino et al., 2003)), correlation between V0 and 
Vf and V0 and ADP affinity (KAD) was done for 
corresponding myosin isoforms from different 
muscles and different species (Nyitrai et al., 2006). 
Modified from (Schiaffino & Reggiani, 2011). 
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Application of electron microscopy and biochemical techniques to slow and fast muscles allowed 

more information about them to be obtained. Fast twitch EDL muscle showed both small 

mitochondrial-rich and large mitochondria-poor muscle fibres, well developed sarcoplasmic 

reticulum (SR) and, in fibre containing fewer mitochondria, thin Z-line. In contrast slow-twitch soleus 

muscle showed small mitochondrial-rich, poorly developed SR and thick Z-line fibres. On these bases 

it was proposed that muscle fibre structure is an expression of two different mechanical parameters: 

speed of contraction, related with development of SR, and resistance to fatigue, correlated with 

mitochondria content and thickness of the Z-line (Schiaffino et al., 1970). Development of 

histochemical methods for myosin ATPase allowed to distinguish type 1 fibres, predominant in the 

slow-twitch muscle from two fibre populations, type 2A and 2B fibres, abundant in fast-twitch muscle 

(Guth & Samaha, 1969). In the 1990’s, the use of monoclonal antibodies against MHC led to the 

identification of fibres called 2X or 2D (Schiaffino et al., 1989; LaFramboise et al., 1990). The 

mechanical performance of muscle fibres expressing different MHC isoforms has been characterised 

in terms of power and efficiency in mammalian skinned fibres (10-20°C). Comparison of muscle 

fibres that express either slow or one of the fast myosin (2A, 2X and 2B), showed that peak power 

increases progressively from slow to fast 2A, fast 2X and fast 2B fibres (Fig. 13A), which exhibit the 

highest values in all mammalian species and all muscles examined up to now (Bottinelli et al., 1991; 

Bottinelli et al., 1996; Gilliver et al., 2009), with a range of maximum power up to 10-fold that of 

slow muscle. V0, as determined by the force-velocity relation (see Fig. 10A) and the filament sliding 

velocity (Vf) in in-vitro motility assay (IVMA), showed that the myosin isoforms determine the speed 

at which actin filament can slide under the action of myosin motors. In fact, there is a strong 

correlation between Vf and V0 determined on purified myosin isoforms and in muscle fibres 

containing the same myosin isoform (Fig. 13 B) (Pellegrino et al., 2003). In terms of kinetics of the 

acto-myosin ATPase cycle the rate of ADP dissociation may limit V0 in both slow and fast fibres (Fig. 

13C) (Nyitrai et al., 2006; Schiaffino & Reggiani, 2011). Measurements of steady state ATPase 

activity in skinned fibres have shown that ATP hydrolysis rate increases from fibres expressing slow 

myosin to fibres expressing fast 2A, 2X and 2B fibres (Potma & Stienen, 1995; He et al., 2000; Han 

et al., 2003). The ratio between power and ATPase rate at different load gives the thermodynamic 

efficiency, the maximum value of which in slow fibres is similar to (Barclay et al., 1993; He et al., 

2000) or higher than (Woledge, 1968; Barclay et al., 2010b) that in fast fibres. 
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Figure 14. Localizations of the regions where diversity between isoforms tend to cluster (black bands) in paired 
comparison between the S1 portion of MHC-1 and MHC-2X of rabbit. Amino acid sequences (89-769) from NCBI protein 
database are aligned with Clustalw 2.1 

 

How are these functional differences related to the primary structure of MHC? Comparison of the 

amino acid sequence in the S1 portion of the MHC of slow and fast (2X) isoforms (Fig. 14) shows 

that there are regions where diversity between isoforms tends to cluster.  

In slow fibres from soleus muscle of human it has been found that a single natural occurring mutation 

in the converter domain (708-780 region) of the slow β-MHC isoform is responsible for a large 

change in motor stiffness. In fact, when arginine (R) in position 719 or in position 723 is replaced 

with tryptophane (W)(R719W) or glycine (G)(R723G) respectively, the stiffness of the myosin motor 

increases by 2-3 times (Kohler et al., 2002; Seebohm et al., 2009; Brenner et al., 2014). Comparison 

of the available amino acid sequence of the converter domain between the slow and fast MHC 

isoforms of six species of mammals of different size (mouse, cattle, rabbit, pig, dog and human, Fig. 

15) shows a difference in the amino acid content of about 55% in rabbit, much larger than that found 

in the other species (16-20% difference).  

 

 
Figure 15. Amino acid sequences of the converter domain of MHC-1 and MHC-2X isoforms in six species of 
mammals. Numbers at the beginning and at the end of each sequence are the residues of start and end of the domain. 
Differences between slow and fast isoforms within a species are in bold. While the sequence of MHC-2X is similar 
among species, the sequence of MHC-1 is not. 
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The larger difference is related to the amino acid composition of the converter domain of the slow 

MHC isoform in rabbit with respect to the slow MHC isoform of the other species while the converter 

domain of the fast MHC isoform is well preserved among species. If the converter domain plays a 

major role in determining the motor stiffness, not only there should be a difference in stiffness 

between fast and slow isoforms, but also the different species should exhibit a relatively constant 

stiffness of the fast myosin isoforms and a larger variability in the stiffness of the slow isoforms. 
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Aims 
 

The work described in this thesis is aimed at investigating in situ the mechanical and kinetic bases of 

the functional diversity of the isoform of the myosin motor present in slow skeletal muscles in terms 

of both the properties of the single motor and of the motor ensemble in the half-sarcomere. For this 

the mechanical parameters of the myosin motor (force, stiffness and size and speed of the working 

stroke) and of the motor ensemble (number of motors attached to actin, kinetics of the attachment-

detachment) have been determined in demembranated fibres from a slow skeletal muscle of the rabbit, 

the soleus, and compared to those from a fast muscle, the psoas. Apart the ten times slower kinetics 

of both the working stroke and the motor attachment-detachment, the most relevant result is that the 

slow myosin isoform has a stiffness three times smaller than the fast isoform. This finding suggests 

that the stiffness of the myosin motor is a determinant of the isoform-dependent functional diversity 

between skeletal muscles and opens the question on the molecular mechanism for the high efficiency 

of the slow muscle. 
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Chapter 2 - Methods 
 

2.1 Muscle fibre preparation 

 
Experiments were done on chemically skinned fibre segments obtained from psoas and soleus 

muscles of adult male New Zealand white rabbit (weight 3-5 kg). Rabbits were killed by injection of 

an overdose of sodium pentobarbital (150 mg/Kg) in the marginal ear vein, in accordance with the 

Italian regulation on animal experimentation (Authorization 956/2015-PR in compliance with 

Decreto Legislativo 26/2014). The study was approved by the Ethical Committee for Animal 

Experiments of the University of Florence. Three rabbits were used for this work. Small bundles of 

70-150 fibres from soleus and psoas muscles were stored in skinning solution containing 50% 

glycerol (storage solution, Table 1) at -20 °C for 3-4 weeks. Just before the experiment a bundle of 

fibres was transferred to a Petri dish kept at 4-6°C and with the bottom covered by a layer of Sylgard 

(Sylgard 184, Down Corning). Single fibres were then dissected under stereomicroscope (Stemi 

SV11, Zeiss) with dark field illumination and pinned down on the Sylgard surface at both ends. Fibres 

were treated with relaxing solution (Table 1) containing Triton X-100 (1% v/v) for 1-2 minutes at 

about 1 °C to ensure the complete removal of internal membranes. A fragment of fibre, 5-6 mm long, 

was cut and aluminium T-clips were mounted at its extremities for attachment to transducer hooks. 

In all the experimental solutions (see Table 1) the increase of interfilamentary spacing following 

permeabilization was reversed by osmotic compression with the osmotic agent Dextran T-500 

(Pharmacia Biotech) (Brenner & Yu, 1991; Kawai et al., 1993; Linari et al., 2007). Based on the 

finding that resting intact slow and fast muscle fibres from mice have about the same interfilamentary 

distance (Zappe & Maeda, 1985) and assuming that the same amount of swelling occurs following 

skinning in slow as in fast rabbit muscle fibres, we added the same amount of dextran to the solution 

bathing both fibre types (4g/100ml or 4%) (Matsubara & Elliott, 1972; Maughan & Godt, 1979; 

Brenner & Yu, 1991; Kawai et al., 1993; Linari et al., 1998; Linari et al., 2007).  

 

2.2 Experimental set-up 

The fibre was mounted in a drop of relaxing solution between the lever arms of a loudspeaker 

motor and a force transducer. A rapid solution exchange system, driven by a stepper motor, allows 
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rapid change of the solution bathing the fibre; a striation follower continuously records the length 

changes of a selected population of sarcomeres (Fig. 16). 

 
 

Figure 16. Schematic drawing of the experimental mechanical set-up. Muscle fibre is mounted between the levers of 
a loudspeaker motor (left) and a capacitance force transducer (right). Half-sarcomere length is monitored by means of 
a striation follower. A He-Ne laser beam is split by the birefringent prism into two beams focused on the fibre. The 
diffraction beams are collected by the optics of the striation follower giving an image of the sarcomeres as a sinusoidal 
intensity distribution of light.

 

2.2.1 Loudspeaker motor 

 

A loudspeaker coil motor similar to that 

previously described (Lombardi & Piazzesi, 

1990) was used to impose length changes on the 

fibre (Fig. 17). The system is made of a source of 

light, two photodiodes and a modified 

loudspeaker, where the cone is substituted with a 

pyramidal structure in carbon fibre directly stuck 

to the coil. A stainless steel lever (300 µm 

diameter) is glued on the top of the pyramid at one 

extremity, whereas it has a hook at its distal end. 

The lamp and the photodiodes are mounted on two aluminium plates, placed one in front of the other 

Figure 17. Diagram of the loudspeaker motor 
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on the loudspeaker iron plate. A flag, glued between two of the pyramid pillars in front of the 

photodiodes, partially cuts off the light beam directed to the photodiodes so that the movement of the 

coil and of the pyramid produces proportional changes in their illumination. The two photodiodes are 

differentially connected in order to double the sensitivity and remove the effects of diffused light. 

The position of the motor lever is servo-controlled by a feed-back circuit in which the feed-back 

signal is the output of the photodiodes (fixed-end mode), or the output of the force transducer (load-

clamp mode). In fixed-end mode the output of the photodiodes is compared with the control signal 

which can be either zero (isometric conditions) or a step or/and ramp that change the position of the 

lever and thus the length of the fibre. In the load clamp experiments the motor is first operated in 

fixed-end mode and then, at the isometric force (T0), is switched to load-clamp mode and the force is 

brought to a value that is a fraction of T0. The maximal extent of the linear displacement of the motor 

is ± 300 µm. 

 

2.2.2 Capacitance force transducer 

 

The force developed by the fibre was measured by 

means of a capacitance force transducer similar to that 

described by (Huxley & Lombardi, 1980). The transducer 

is composed of two fused quartz plates (one fixed and one 

mobile), metallized with gold deposition on the facing 

sides that form a capacitor. Part of the metallization on 

the fixed plate is removed so as to isolate the central area 

used as the live electrode. The mobile plate is kept at 6-

10 μm from the fixed one by interposition of gold foils 

(Fig. 18), which also provide electrical connection to the 

metallization on the moving plate. The force produced by 

the muscle fibre is directly applied to the centre of the moving plate by means of a glass lever hook 

(5-7 mm of length, 100-125 μm of diameter), attached to it. The bending of the moving plate, caused 

by the applied force, changes the air gap between the conducting surfaces of the two plates and thus 

the capacitance of the transducer. Capacitance changes are detected with a phase-discriminator circuit 

(Cambridge & Haines, 1959; Cecchi, 1983). With this circuit the sensitivity of the force transducers 

ranges from 80 to 250 V/N and the noise from 2 to 10 mV peak to peak (Huxley & Lombardi, 1980). 

The resonance frequency of the force transducer used here ranged from 30 to 50 kHz. In load clamp 

Figure 17. Diagram of capacitance force 
transducer; a, fixed plate; b, moving plate with 
attached glass lever hook; c, gold foils; d, glass 
lever hook. 
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experiments, the output of the force transducer was used as the feedback signal that feeds the servo-

control system of the motor position. 

 

2.2.3 Solution exchange apparatus 

 

Fibres were activated by temperature jump using a solution exchange apparatus driven by a stepper 

motor (Linari et al., 2007), which allows rapid change of temperature of the bathing solution to 

minimize the development of sarcomere non-uniformities due to the diffusion-limited time of 

activation across the fibre. The system consists of a movable platform carrying two aluminum plates 

that can be maintained at two different temperatures by means of two separated servocontrolled 

thermoelectric modules. Each plate carries two pedestals for the drops of solution confined between 

a bottom coverglass slit, stuck to the pedestal, and a top coverglass slit, stuck to a revolving arm. 

Upper and lower coverglasses 8 mm long and 3 mm wideare separated by 3 mm to have a final drop 

volume of ~ 70 µl (Fig. 19A). 

 

 
Figure 19. A. Schematic drawing of the experimental set-up. The blue and red colours of the plates indicate the low 
(blue) and test (red) temperature. The upper coverglasses are carried on a pivoting arm and can be removed to mount 
the fibre. B. Temperature change (lower trace) measured with a miniaturized (diameter 25 µm) fast thermocouple 
mounted in place of the fibre during the transition from the low temperature (1 °C) to the high temperature drop (12 
°C). The top trace indicates stepper motor start (↓) and stop (↑), the middle trace is the force transducer signal. The 
artefacts in the force mark the start of the stepper motor motion for drop change (a) and the times when probe leaves 
the first (b) and enters the second drop (c). The time of travel in air (about 90 ms) is bounded by the vertical dashed 
lines. The temperature gradient in air is about 2.2 °C/mm, 30% of the temperature difference between the drops. The 
remaining 70% change in temperature occurs within 3-4 ms, at the interface of the high temperature drop. 

 

The pedestals on the first plate (pedestal l and 2, blue in Fig. 19A) are used to transfer the fibre from 

relaxing solution to pre-activating and then activating solution kept at ~ 1 °C. In this way calcium 
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diffusion into the sarcoplasm occurs at a temperature at which development of high force is prevented. 

The pedestals on the second plate (violet) are used to transfer the fibre from activating solution at the 

test temperature (pedestal 3) to relaxing solution at the same test temperature (pedestal 4). When the 

activated fibre is transferred from pedestal 2 to pedestal 3 (4 mm apart), temperature rapidly changes 

from 1°C to the test temperature. In this way most of the force develops following the temperature 

jump, when calcium is homogenously distributed in the sarcoplasm, and the development of 

sarcomere non-uniformities is prevented. 

 
Figure 20. Force response to activation by Ca2+ at the test temperature A and at the low temperature followed by 
temperature jump B. The arrow (↑) indicates in (A) the transition from pre-activating to activating solution, in (B) the 
transition from low temperature to high temperature activating solution. A large release (about 8% of the initial fibre 
length, applied at the time marked in both panels by the vertical bar) was used to drop the force from the isometric 
force to zero. The arrow (↓) indicates the transition from activating solution to relaxing solution. The horizontal lines 
indicate zero force. Fibre length, 3.6 mm; average sarcomere length, 2.52 µm; CSA, 5740 µm2. 

 

The velocity of the temperature change, during the transfer from pedestal 2 (low temperature) to the 

pedestal 3 (test temperature), was measured with a miniaturized, unsheathed type K thermocouple 

(40.4 µV/°C, diameter 25 µm, chal-001, Omega Engineering Limited, Manchester, UK) mounted in 

place of the fibre, while the output signal was recorded with a monolithic thermocouple amplifier 

with cold junction compensation. As shown in Fig. 19B, for a temperature-jump from 1 to 12 °C, the 

temperature gradient in air is ~2.2 °C/mm and 70% of the temperature jump occurs sharply when the 

fibre enters the drop containing the solution at the test temperature. The heat capacity of the 

thermocouple and of the layer of the surrounding water makes the temperature jump complete in 3-4 

ms. Thanks to this set-up the time needed to get half maximum force in the activating solution at the 
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test temperature is one order of magnitude faster in comparison to transferring the fibre from pre-

activating solution to activating solution at the same temperature (Fig. 20). 

 

2.2.4 Striation follower 

 
The striation follower is an optoelectronic device similar to that previously described by (Huxley et 

al., 1981) and composed of a light source (a 15 mW He-Ne laser, Melles Griot 05-LHR171, Carlsbad, 

CA, USA), a modified microscope mounted on a Zeiss ACM stand, and two photodiode arrays 

feeding analogue and digital electronics. 

 
Figure 21. Striation follower. A: Image of the sarcomeres from one of the two regions at the level of the photodiode 
array. B: System for obtaining the optic average of the intensity distribution of several sarcomeres.  

 

The instrument measures the longitudinal displacement of two separate regions of the fibre, each 

about 10 µm broad and containing six consecutive sarcomeres. A birefringent prism splits the laser 

beam in two beams that form two spots of 10 µm diameter; the rotation of the prism permits to set up 

the distance between the two regions in a range 0.5 – 3 mm. The angle of incidence of the illuminating 

beams is offset from the normal to the fibre axis so that the zero-order and only one first-order beam 

from each spot are collected by an objective (Leitz 10x, NA = 0.25) giving a simplified image of the 

sarcomeres as a sinusoidal intensity distribution of light. This distribution (magnified 2000x) is 

projected onto a plate with 6 cylindrical lenses mounted on the stage of the ACM stand, the height of 

which can be changed to have a sarcomere in each cylindrical lens. This is obtained by controlling 

the magnification with a 10x eyepiece (Zeiss, Germany), receiving part of the light distribution from 

a partially reflective prism, placed before the cylindrical lenses, that projects the image on a calibrated 

grid placed at the same distance as the lenses. The light distributions of the sarcomeres produced by 

the cylindrical lenses are superposed with a convergent lens forming a single light distribution 

representing the optical mean of the images of the six sarcomeres. This distribution is projected onto 

an array of five photodiodes, ranging from half the first to half the fifth (Fig. 21). The current signals 
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from the 5 photodiodes (I1-I5) are combined to give two output signals (x = I1+I5-I3 and y = I2-I4) 

sensitive to the sinusoidal intensity distribution of the light due to sarcomeres and not to the intensity 

of the diffused light. The longitudinal movement of the fibre produces a variation of the intensity 

distribution expressed by x = A·cos(2π·D/φ) and y = A·sin(2π·D/φ), with D fibre displacement and 

φ average sarcomere length. Analogue and digital electronics collect the two signals from the two 

photodiode arrays, giving an output signal that measures the displacement of the region of the fibre 

in terms of sarcomere length with a precision of ~1% of the striation spacing and a time response of 

1 µs, over a range of 128 sarcomeres. The displacements occurring at the level of the two regions are 

subtracted from each other so that the output signal gives the actual length change undergone by the 

selected fibre segment. The signal is converted into nm per half-sarcomere on the basis of the number 

of half-sarcomeres in the segment; consequently the error in the measurement of average length 

change per half-sarcomere is reduced by a factor corresponding to the number of the half-sarcomeres 

in the segment. The sensitivity was adjusted to 125 mV/nm per half-sarcomere. 

The regions of interest in the fibre were selected on the basis of the quality of sarcomere image, by 

shifting longitudinally the movable stage and therefore the muscle fibre across the field of microscope 

objective. 

Systematic errors may result from inhomogeneity of the sarcomere length within the segment and 

from changes of the sarcomere length in the laser spots on activation. The sarcomere inhomogeneity 

of the selected fibres was less than 5% at rest and those fibres developing gross inhomogeneity on 

activation were discarded. 

 

2.3 Experimental protocol 

 
A fibre segment, 4-6 mm long, was mounted between the lever arms of the loudspeaker motor 

and the capacitance force transducer in a drop of relaxing solution and, before starting the experiment,  

its extremes, clamped by T-clips, were fixed first with a rigor solution containing glutaraldehyde (5% 

v/v) and then glued to the clips with shellac dissolved in ethanol (8.3% w/v; (Bershitsky & Tsaturyan, 

1995; Linari et al., 1998). This procedure prevents the sliding of the ends of the fibre segment inside 

the clips and minimizes the shortening of the activated fibre against the damaged sarcomeres, at the 

ends of the segment, during the development of force. Afterwards the sarcomere length (SL), width 

(w) and height (h) were measured at 0.5 mm intervals in the central segment of the fibre (2-4 mm). 

The SL was adjusted to 2.4-2.6 µm, that is within the plateau region of the force-sarcomere length 

relation (Stephenson & Williams, 1982). The fibre cross sectional area (CSA) was determined 

assuming the cross-section as elliptical (CSA ൌ ஠

ସ
∙ w ∙ h). The CSA ranged between 5000 and 7400 
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µm2 in soleus fibres and between 3600 and 5700 µm2 in psoas fibres. The CSA was 42% (slow fibres) 

and 38% (fast fibres) larger in the absence of dextran. Fibres were activated by temperature jump 

using the solution exchange system described above (Linari et al., 2007). The fibre was kept in 

activating solution at the test temperature (12°C) for 3-5 seconds for the mechanical measurements. 

The striation follower allowed nanometer-microsecond resolution recording of length changes in a 

selected population of sarcomeres (range 500-1200 sarcomeres) starting at the time the optic path was 

permitted through the glass window in the floor of the test temperature drop (see Fig. 22A and B and 

(Linari et al., 2007) for details). 

 

2.3.1 Half-sarcomere stiffness measurements 

 

To measure the stiffness of the half-sarcomere (hs), step length changes (ranging from -4 to 

+4 nm per hs, stretch positive), completed in 110 μs, were imposed on the isometrically contracting 

fibre. Half-sarcomere stiffness was estimated by the slope of the relation between the tension attained 

at the end of the step and the change in sarcomere length (T1 relation). To enhance the precision of 

hs-stiffness measurements, a train of different-sized steps at 200-ms intervals was applied during each 

activation and, to maintain constant the isometric tension before the test step, each test step was 

followed, after a 50-ms pause, by a step of the same size but opposite direction (see Fig. 23A).  

 

2.3.2 Contribution of myofilament compliance 

 

The contribution of myofilament compliance to the half-sarcomere compliance was estimated 

by determining the relation between half-sarcomere strain and Ca2+-modulated force. Under these 

conditions the changes in force are accounted for by the change in the number of interacting motors 

and the half-sarcomere strain depend solely on myofilament compliance. 

 

2.3.3 Stiffness measurements in rigor 

 

Rigor was induced by MgATP depletion at low temperature (1 °C) (Linari et al., 2007). 

Stiffness was measured at different steady forces, similar to those developed by activated fibres at 

different pCa’s, obtained by slowly stretching the rigor fibre starting from the low level of force 

(about 0.1 the isometric force attained at saturating pCa, T0,4.5) developed at the end of the rigorization 

procedure to the desired force level. Measurement of hs-stiffness was done by applying the same 
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protocol as that used for activated fibres (see Fig. 23B). 

 

2.3.4 Isotonic velocity transients 

 

To measure the size and the speed of the working stroke, isotonic velocity transients in force 

clamp mode have been elicited by imposing stepwise drops to different fractions of the steady 

isometric force (T0,4.5) attained on a fully activated fibre (pCa 4.5). To account for the artefacts in the 

force transducer signal due to the change of both temperature and solution, zero force in the test 

solution was measured by imposing, a large rapid shortening (6% L0), 50 ms after the fibre entered 

the test-temperature activating solution. Force redeveloped from the slack and, once the isometric 

force had attained the plateau value, the control was shifted from fixed-end mode to force-clamp 

mode. Twenty milliseconds later, a drop in force, completed within 120–150 μs, was imposed by 

using as a command signal the output of an integrated circuit that generated steps to preset fractions 

of T0,4.5. When the isotonic shortening had attained ∼60 nm/hs, the control was shifted back to fixed-

end mode and the motor was returned to its original position by a slow exponential. In force-clamp 

mode only the direct component of the force signal was used for the feedback, while the velocity 

component was taken from the motor lever position sensor. At any clamped force, several trials were 

necessary to adjust the gains of direct, velocity and lag amplifiers to optimise the force step. 

 

2.3.5 Myosin isoform identification 

The fibre type was defined on the basis of MHC isoforms used as molecular markers. The 

MHC isoform composition of each fibre used for the mechanical experiment was determined by 

means of 8% polyacrylamide gel electrophoresis after denaturation in sodium dodecyl sulphate (SDS-

PAGE), following the procedure described by (Talmadge & Roy, 1993). In agreement with previous 

work (Tikunov et al., 2001),  the gel shows only one band in the region of MHC for each fibre, 

corresponding to the slow MHC-1 for fibres from soleus and the fast MHC-2X for fibres from psoas 

(Fig. 22C). 

 

2.4 Data collection and analysis 

 

Force, motor position and sarcomere length signals were recorded with a multifunction I/O 

board (PCI-6110E, National Instruments). A program written in LabVIEW (National Instrument) was 
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used for signal generation and data acquisition. Data analysis was performed using OriginPro 8.0 

(OriginLab Corporation) and programs written in LabVIEW. Data are expressed as mean ± SEM. 

Force has been normalized for the CSA of the skinned fibre in relaxing solution with dextran. 

 

2.5 Solutions 

 

The composition of the solutions (Table 1) was calculated with a computer program similar 

to that described by (Brandt et al., 1972) and (Goldman et al., 1984). Cysteine and cysteine/serine 

protease inhibitors (trans-epoxysuccinil–L–leucylamido–(4–guanidine) butane, E – 64, 10 µM; 

leupeptin, 20 µg/ml) were also added to all solutions, in order to preserve lattice proteins and thus 

sarcomere homogeneity. The control solution contains ~1 mM Pi from two sources: Pi contamination 

in the experimental buffer and accumulation of Pi inside the fibre during contraction (Pate & Cooke, 

1989). 

The activating solution at a given pCa (range 6.8-4.5) was obtained by mixing relaxing and activating 

solutions. 

  

Na2ATP MgCl2 EGTA HDTA CaEGTA TES Na2CP GSH

relaxing 5.44 7.7 25 - - 100 19.11 10

pre-activating 5.45 6.93 0.1 24.9 - 100 19.49 10

activating 5.49 6.76 - - 25 100 19.49 10

rigor - 3.22 53 - - 100 - 10

Na2ATP MgCl2 EGTA Imidazole KP NaN3 PMSF Glycerol

skinning solution 2.5 2.5 5 10 170 - 0.1 -

storage solution 2.5 2.5 5 10 170 5 - 50%

B. Solution used to prepare and store skinned fibres

A. Solution used during the experiments

Table 1. Composition of solutions. All concentrations are in mM except glycerol (v/v). ATP, adenosine 5’-triphosphate; 
EGTA ethylene glycol-bis ( - aminoethyl ether)-N,N,N’,N’-tetraacetic acid; HDTA, 1,6 diaminohexane-N,N,N’,N’-
tetraacetic acid; TES, N-tris[hydroxymethyl]methyl-2-aminoethanesulphonic acid; CP, phosphocreatine disodium salt 
Hydrate; GSH, glutathione, KP, potassium propionate; PMSF, phenylmethylsulphonyl fluoride. 1 mg/ml creatine 
phosphokinase, 10 µM trans-epoxysuccinyl-L-leucylamido-(4. guanidino) butane (E-64) and 20 µg/ml leupeptin, were 
added to all solutions. pH (adjusted with KOH) was 7.1 at the different temperature used (A), and 7.0 at 20 °C (B). Ionic 
strength ranged between 188 and 195 mM; free Mg2+ was 1.3 mM and MgATP was 5mM. HDTA was obtained from 
Fluka (Buchs, Switzerland), all other chemicals from Sigma.  
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Chapter 3 - Results 
 

3.1 Isometric force development 

 
As shown in Fig. 22, following a temperature-jump from 1°C to 12°C imposed in the 

activating solution at saturating [Ca2+] (pCa 4.5), the force rose to a steady value (T0,4.5), which, 

relative to the force developed at low temperature, is about 10 times larger in the slow fibres and 

about 3 times larger in the fast fibres (lower traces in Fig. 22A and B).  

 

 
Figure 22. Force development following a T-jump (from 1 to 12°C) in slow (A) and fast (B) fibres and 
identification of fibre types (C). A and B. Traces indicate hs length change (upper panels) and force response (lower 
panels). The horizontal line in the lower panels indicates zero force. During the period (a) the fibre travels in air and 
within the shadow zone of the chamber. The dashed vertical lines mark the start of the period (b) when the striation 
follower signal is recorded. Slow fibre, type 1 isoform (A): 5 mm; segment length under the striation follower, 1.1 mm, 
average segment sarcomere length, 2.48 µm, test temperature, 12.5°C. CSA 5000 µm2. Fast fibre, type 2X isoform (B): 
fibre length, 5.2 mm; segment length under the striation follower, 0.9 mm; average segment sarcomere length, 2.46 
µm; CSA, 5700 µm2. C. MHC isoform identification in the fibre by SDS-PAGE in the area of migration of myosin 
heavy chain (upper panel) and actin (lower panel). Lane a: single fibre from soleus muscle, which shows pure MHC-
1content; lane b: single fibre from psoas muscle, which shows pure MHC-2X content. On the right of the lanes are 
shown the projections of the mass density along the vertical axis after horizontal integration: blue, slow fibre, and 
black, fast fibre. 
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The signal recording the sarcomere length change (upper traces) started with a delay with respect to 

the force developed at the test temperature, due to the time taken by the fibre travelling in the test 

temperature drop to get into the field of view of the striation follower. A similar difference between 

slow and fast fibres is observed in the time course of the force redevelopment after a period of 

unloaded shortening. The half-time of force redevelopment, t1/2, was 413 ± 4 ms in the slow fibres 

(n=7) and 48 ± 1 ms in the fast fibres (n=8). The reciprocal of t1/2 (kTR) is 2.42 ± 0.02 s-1 in slow fibres 

and 20.9 ± 0.6 s-1 in fast fibres. T0,4.5 was 264 ± 8 kPa in fast fibres and 141 ± 13 kPa, about one half 

of that in fast fibres. At the end of the experiment the MHC isoform composition was determined by 

SDS-gel electrophoresis (Fig. 22C): within the limit of precision of the method used here, slow and 

fast fibres contain pure isoforms, MHC-1 and MHC-2X respectively. 

 

3.2 Half-sarcomere stiffness and motor strain in isometric contraction 
at different pCa 

 

Slow and fast fibres were activated under isometric conditions at different [Ca2+] (pCa range, 

6.8-4.5). For each T0 the half-sarcomere stiffness (k0) was determined by superimposing on T0 length 

steps in the range +4 to -4 nm per hs (Fig. 23A and left column in Fig. 24A). 

 

Figure 23. Protocol for measuring the stiffness of a slow fibre during isometric contraction at saturating [Ca2+] 
(A) and at similar force in rigor (B). Upper trace, length change per half-sarcomere; lower trace, force. The same 
step sequence was imposed on both activated and rigor fibre. Step amplitudes in the sequence were: -1.5 nm; +1.5 nm; 
-3.0 nm; + 3.0 nm per hs. A step of opposite direction was imposed 50 ms after each test step to return the length and 
the force close to their values before the step. The interval between the test steps was 200 ms. Force is expressed 
relative to the CSA in relaxing solution (5150 μm2). Fibre length, 5.3 mm; segment length under the striation follower, 
0.93 mm, average segment sarcomere length, 2.45 µm, test temperature, 12.2 °C. For rigor (same fibre), average 
segment sarcomere length, 2.42 mm; temperature, 12.1 °C; CSA, 4030 µm2. 

 
k0 was estimated as the slope of the relation between the force attained at the end of the steps and the 

size of the steps (T1 relation, open circles in Fig. 24B for a slow fibre and C for a fast fibre). The 

rightward shift of the abscissa intercept of the linear fit to the T1 relation (dashed lines) indicates that 
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k0 decreases with the reduction of T0 less than in proportion to force in both slow (open symbols in 

B) and fast (open symbols in C) fibres.  

Figure 24. Measurements of the half-sarcomere stiffness during isometric contraction and in rigor in slow and 
fast fibres. A. Superimposed hs length changes (upper traces) and force response (lower traces) for steps of different 
sizes in a slow fibres activated at saturating [Ca2+] (left column) and in rigor (right column) at a force about T0,4.5. B 
and C. T1 relations at different pCa (open symbols) and in rigor at about T0,4.5 and 1/3*T0,4.5 (filled symbols) determined 
in a slow (B) and in a fast (C) fibres. Lines are linear regression equations fit to the active (dashed) or rigor (continuous) 
data. The abscissa intercept of each line is the average strain of the half-sarcomere before the length step (Y0). 

 

This reflects on the k0-T0 relations shown in Fig. 25A, where the points for both fast fibres (open 

circles) and slow fibres (filled circles) show an upward deviation with respect to their respective 

straight lines drawn from T0,4.5 to the origin (continuous line, slow fibres, and dashed line, fast fibres). 

The reciprocal of k0, Chs, shows a hyperbolic-like dependence on force (Fig. 25B) for both slow (filled 

circles) and fast (open circles) fibres. At T0,4.5 Chs is 39.5 ± 6.0 nm/MPa in the slow fibres and 27.5 ± 

2.5 nm/MPa in the fast fibres (Table 2). The hs strain Y0, calculated as the product ChsT0, increases 

linearly with T0 in slow (filled circles) and fast (open circles) fibres for forces > 40 kPa while it shows 

a downward concavity for forces < 40kPa (Fig. 25C).  

Thus, in agreement with the finding in frog fibres during isometric force development (Fusi et al., 

2014), at forces > 40 kPa, the activated half-sarcomere can be reduced to a mechanical model where 

a motor array with the stiffness proportional to the number of attached motors is in series with an 

equivalent myofilament compliance (Cf) (Model 1, Fig. 11 in Introduction). In fact, in skinned fibres, 

the Ca2+ –dependent modulation of T0 occurs through a corresponding change in the number of 

attached motors (Linari et al., 2007). Thus the motor strain s0 is constant independent of T0 and Y0 

increases with force with a slope that is explained by the increase in the strain of the myofilaments 

with constant compliance Cf according to eqn (3): 

Y0(T0) = Cf T0 + s0 

The values of Cf and s0, estimated by fitting eqn (3) to Y0-T0 values at forces > 40kPa (Table 2), did 

not differ significantly between slow (15.9 ± 1.0 nm/MPa and 3.33 ± 0.16 nm) and fast (15.1 ± 1.0 

nm/MPa and 3.26 ± 0.20 nm) fibres (P > 0.5, Student’s t-test).  
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Figure 25. Half-sarcomere stiffness in isometric contraction and in rigor and derived parameters. A-C. 
Dependence on force of the hs-stiffness (A), hs-compliance (B) and hs-strain (C) in slow (filled circles) and fast (open 
circles) fibres. The lines in A are the linear extrapolations from the average T0,4.5 (larger symbols) and the origin for 
slow (continuous line) and fast (dashed line) fibres. In B and C the lines are the calculated relations obtained under the 
assumption of a linear mechanical model of the hs (Model 1; continuous lines, slow and dashed lines, fast fibres). D. 
hs-strain relation in rigor in slow (filled circles) and fast (open circles) fibres. The lines are the linear regressions fit to 
data and forced to pass through zero (slow fibres, continuous line; fast fibres, dashed line). 

 

Considering the whole range of the Y0-T0 data in Fig. 25C, a unique relation emerges for both slow 

and fast fibres with a downward concavity for forces < 40 kPa. A more detailed mechanical model of 

the half-sarcomere, where an elastic element in parallel the motor array explains the deviation from 

the linear relation (Model 2, Fig. 11 in Introduction), is expressed by the equation (4): 

 

Chs(T0) = Cf + s0CP/(s0+CPT0)   

 

In Fig. 26, the fit of Chs – T0 relation with Model 2 (magenta line) is compared to the fit with Model 

1 (black line) either for slow (A) or fast (B) fibres. The relevant parameters are reported in Table 3. 

The value of the compliance of the element in parallel with the myosin motors (CP) does not depend 
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on fibre type: CP is 589 ± 130 nm/MPa in the slow fibres and 539 ± 12 nm/MPa in the fast fibres. The 

estimates of Cf and s0 with Model 2 do not differ from those calculated with Model 1. 

 

Figure 26. Dependence of the hs-compliance on force in slow (A) and fast (B) fibres. Experimental data are the 
same as those reported in Figure 24B. Lines in A and B represent the half-sarcomere compliance-isometric force 
relations calculated in the absence (black line, eqn (3) from Model 1) or in the presence (magenta line, eqn (4) from 
Model 2) of CP, the elasticity in parallel with the myosin motors. 

 
The above analysis shows that in both slow and fast fibres, as previously described during isometric 

development in frog fibres (Bagni et al., 2002; Colombini et al., 2010; Fusi et al., 2014), the non-

linear behaviour of the half-sarcomere elasticity at different [Ca2+]-modulated isometric force can be 

explained by an elastic element in parallel with the array of myosin motors with a constant stiffness 

that is similar in both slow and fast fibres and is more than one order of magnitude larger than the 

compliance of the array of myosin motors working in parallel in the half-sarcomere at saturating 

[Ca2+] in both slow and fast fibres. More precisely the ratio CP/Ccb is (590/24 =) 24 in the slow fibres 

and (540/12 nm =) 45 in the fast fibres.  

 

3.2.1 Half-sarcomere strain in rigor 

 

The difference in T0,4.5 between slow and fast fibres could be related to a different force of the 

myosin isoform and/or to a different number of motors attached to actin. Since the average strain of 

the motors at T0,4.5 (s0) is the same in both fibre types, a difference in the force per motor would imply 

a corresponding difference in motor stiffness. To clarify this point the half-sarcomere stiffness has 

been measured in rigor, a condition where all the myosin motors are attached to actin (Cooke & 
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Franks, 1980; Thomas & Cooke, 1980), so that any difference in the half-sarcomere stiffness between 

slow and fast fibres reflects a difference in stiffness between the myosin isoforms. The same step 

sequence as that used in activated fibres was applied to both slow and fast fibres in rigor to measure 

the half-sarcomere stiffness (Fig. 23B and right column in Fig. 24A). Different levels of steady force 

T (range 0.1-1.2 T0,4.5) were attained by slowly stretching the rigorized fibres by different amount (L, 

2–10 nm per hs). The T1 relations are shown by filled symbols in Fig 24B (slow fibres) and C (fast 

fibres). Considering that the number of myofilaments per fibre is the same independent of the reduced 

CSA in rigor, force has been normalized to the CSA of the relaxed fibre. The hs stiffness in rigor (kr, 

measured by the slope of the T1 relation) is larger than in the activated fibre (open symbols), as 

expected because in the isometric contraction only a fraction of the myosin motors is attached to the 

actin filament. Furthermore, kr is larger in the fast fibres than in the slow fibres and, within the same 

fibre type, kr is independent of T, as shown by the parallel rightward shift of the T1 relations as force 

is reduced. Consequently, in the whole range of rigor forces considered, Y0 increases in proportion to 

T (Fig. 25D, slow fibres, filled circles and fast fibres, open circles), as expected in rigor where all the 

elastic components of the half-sarcomere, the myofilaments and the array of myosin motors, are 

strained in proportion to force, and the relation between the hs strain, Y0 and the steady rigor force, T 

shows a larger slope in the slow fibres than in the fast fibres. The linear regression fit to the pooled 

Y0 - T points (lines in Fig. 25D), gives a slope of 26.8 ± 0.5 nm/MPa for the slow fibres and 19.0 ± 

0.3 nm/MPa for the fast fibres. The slope of the relation is the half-sarcomere compliance in rigor 

(Chsr), thus Chsr in slow fibres is 41% larger than in fast fibres, indicating that the slow myosin isoform 

has a larger compliance than the fast myosin isoform.  

The compliance of the motor array (1/er) can be determined by subtracting Cf to Chsr and is 11.3 ± 1.2 

nm/MPa for slow fibres and 3.5 ± 1.0 nm/MPa for fast fibres. Correspondingly the stiffness of the 

motor array in rigor (er), is 88.5 ± 9.4 kPa/nm and 285.7 ± 81.0 kPa/nm respectively (Table 2). The 

stiffness per myosin motor () can be determined by dividing er by the density of myosin motors in 

the half-sarcomere (nhs). Taking a density of myofibrils of 0.83 (Mobley & Eisenberg, 1975), from 

the lattice geometry it possible to obtain a value for nhs of 1.68*1017 m-2 (calculated by multiplying 

the density of the thick filaments, 0.69*1015 m-2, by the number of motors in the half-sarcomere, 294). 

In the slow isoform  is 0.53 ± 0.06 pN/nm, while in the fast isoform  is 1.70 ± 0.48 pN/nm (in 

agreement to the value reported by (Linari et al., 2007). Thus  is about three times larger in the fast 

than in the slow isoform.  
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3.3 Fraction of myosin motors responsible for active force 

 

Since the average strain of the motors during an isometric contraction (s0) is ~3.3 nm 

independently on the myosin isoforms, the finding that the stiffness of the slow motor isoform is three 

times smaller than that of the fast isoform implies that F0, the average force developed by the motor 

in isometric contraction is three times lower in the slow isoform. In fact F0 (=·s0) is 1.75 ± 0.52 pN 

in the slow isoform and 5.61 ± 1.60 pN in the fast isoform. In the slow fibres T0,4.5 is only two times 

smaller than in the fast fibres, suggesting that the fraction of motors attached in the slow fibres (β) is 

larger than in the fast fibres to partly counteract the three times smaller force per motor. β can be 

determined by the ratio between the force per myosin motor if all myosin heads were assumed to be 

attached in the half-sarcomere, Fhs (=T0,4.5/nhs) and F0. Fhs is 0.84 ± 0.08 pN in the slow isoform and 

1.57 ± 0.05 pN in the fast isoform. β (=Fhs/F0) is 0.48 ± 0.07 for the slow fibre and 0.28 ± 0.08 for 

the fast fibre. 

 
Table 2. Estimate of the mechanical parameters of the half-sarcomere and of the myosin motor in slow and 
fast fibres. A. Measured parameters; B. Lattice geometry and force per myosin head site; C. Fraction of 
attached myosin motors and derived parameters.  
    
MHC isoform units MHC-1 MHC-2X 
    
    
A    
    
Isometric force (T0) (kPa) 141 ± 13 264 ± 8 
Filament compliance (Cf) (nm/MPa) 15.9 ± 1.0 15.1 ± 1.0 
Hs compliance in activated fibres (nm/MPa) 39.5 ± 6.0 27.5 ± 2.5 
Hs compliance in rigor (nm/MPa) 26.8 ± 0.5 19.0 ± 0.3 
Myosin head strain (nm) 3.33 ± 0.16 3.26 ± 0.20 
    
 
B 

   

    
Myosin to myosin spacing* (nm) 41 
Myofibrillar volume density** (%) 83 
Myosin head sites (m-2) 1.68·1017 
Force per myosin head  (pN) 0.84 ± 0.08 1.57 ± 0.05 
    
 
C 

   

    
Proportion of attached motors  0.48 ± 0.07 0.28 ± 0.08 
Force per attached motor head (pN) 1.75 ± 0.52 5.61 ± 1.60 
Stiffness of the myosin motor (pN/nm) 0.53 ± 0.06 1.70 ± 0.48 
    

* value for mammalian skeletal muscle reported by Zappe and Maeda (1985), whole muscle from soleus and EDL, and for skinned 
fibres from psoas muscle after addition of 4% dextran to relaxing solution (Brenner & Yu, 1991; Kawai et al., 1993). 
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 ** to my knowledge this value has not been reported for soleus and psoas muscle fibres from rabbit and it has been assumed to be the 
same as that reported for frog muscle (Mobley & Eisenberg, 1975) in both muscle types. The similarity of this value is suggested from 
data in literature for mouse muscles, where the myofibrillar volume density is 81% for soleus (slow) and 75% for EDL (fast) (Fig. 17 
in (Luff & Atwood, 1971). 

 
Table 3. Estimate of the mechanical parameters of the half-sarcomere with Model 1 and 2 in slow and fast 
fibres. 
   
Model Slow fibres Fast fibres 
       
       
 s0 (nm) Cf (nm/MPa) CP (nm/MPa) s0 (nm) Cf (nm/MPa) CP (nm/MPa) 
       
Model 1 3.33 ± 0.16 15.9 ± 1.4  3.26 ± 0.20 15.1 ± 1.0  
Model 2 3.67 ± 0.53 15.3 ± 6.0 589 ± 130 3.45 ± 0.14 15.2 ± 2.0 539 ± 12 

 
 

3.4 Size and speed of the working stroke in slow muscle fibres 

 
The isotonic shortening following a stepwise drop in force imposed on a demembranated slow 

fibre during isometric contraction at saturating Ca2+ exhibits several phases (Fig. 27A), similar to 

those described in intact frog muscle fibres (Piazzesi et al., 2002) and demembranated fast fibres (Fig. 

27B, (Caremani et al., 2013)) but, in general, the kinetics of the different phases is one order of 

magnitude slower. The first phase (phase 1) consists of a shortening simultaneous with the drop in 

force, due to the half-sarcomere elasticity, followed by phase 2, the early shortening phase, which is 

attributed to the synchronous execution of the working stroke in the attached myosin motors. The 

merging between the end of phase 1 and phase 2 might result in an overestimation of the elastic 

response at the expenses of the working stroke response (Piazzesi et al., 2002). Therefore to estimate 

the size of phase 1 (L1), the contribution of phase 2 to phase 1 is subtracted by back-extrapolating, to 

the force step half-time (t1/2, vertical dashed line), the tangent to the initial part of phase 2 (magenta 

line). L1 increases with the size of the force step and the relation between L1 and the force attained at 

the end of the force step (L1 relation, circles in Fig. 28A) can be fit with a linear regression equation 

that intercepts the ordinate at a value, 6.39 ± 0.22 representing the strain in the half-sarcomere at T0, 

Y0, not significantly different from that determined with the isometric force transient (Fig. 24B). Phase 

2 following the elastic response has a roughly exponential time course and its size can be estimated 

by subtracting, from the length trace, the linear back extrapolation of the phase 3 shortening trace to 

t1/2 (dotted line in Fig. 27 A and C).  
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Figure 27. Isotonic velocity transient elicited in slow (A) and fast (B) fibres. In A and B is shown the shortening of 
the half-sarcomere (lower trace) in response to the step to 0.5 T0,4.5 (upper trace). Numbers above the shortening record 
identify the phases of the transient; t3 marks the transition between phases 3 and 4. C and D, early components of the 
shortening showing the method for estimating L1 and L2. L1 is measured by extrapolating the tangent to the initial part 
of phase 2 response (magenta line) back to the half-time of the force step (t1/2, indicated by the vertical dashed line). L2 
is measured by extrapolating the ordinate intercept of the tangent to the phase 3 response (dotted line) back to t1/2. 
Alternatively, as shown in D, the whole time course of phase 2 shortening leading to L2 is calculated by subtracting the 
phase 3 tangent from the record starting from t1/2. LT, the size of the working stroke, is obtained by subtracting the 
elastic response L1 from L2. Steady shortening velocity is estimated from the slope of the tangent to phase 4 response 
(dotted–dashed line in A) The green dashed line is the exponential fit to the trace starting from the end of the force 
step. E. Superposition of the time course of phase 2 in slow (black) and fast (blue) fibres. Slow fibre: fibre segment 
length, 6.3 mm; segment length under the striation follower, 0.65 mm; average sarcomere length, 2.31 μm; CSA, 2660 
μm2; temperature, 12.3°C; Fast fibre: fibre segment length, 3.3 mm; segment length under the striation follower, 1.0 
mm; average sarcomere length, 2.51 μm; CSA, 3780 μm2; temperature, 11.8°C. 
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Figure 28. Force dependence of the parameters of phase 2 and phase 3 of the velocity transient in slow fibres. 
A. L1 (circles) and L2 (squares) relations. Lines are the linear regression fit to L1 (dashed line) and L2 (continuous line) 
data. B. LT–force relation for the same experiments as in A. C. Rate of the isotonic working stroke (r2) in relation to 
force. Line is the parabolic fit to data. D. Rate of phase 3 pause (r3) in relation to force. In all graphs, T is relative to 
T0,4.5. In each graph open symbols are data pooled from six fibres and filled symbols mean values ± SEM. 

 

The distance between the horizontal trace obtained with the subtraction procedure and the length 

before the step estimates the total amount of shortening at the end of phase 2 (L2). L2 increases with 

the size of the force step and the L2 relation (squares in Fig. 28A) can be fit with a line that intercepts 

the ordinate at 15.52 ± 0.64 nm/hs. This value represents the maximum amount of shortening 

accounted for by both the strain of the half-sarcomere elements (myofilaments and myosin motors) 

during the isometric contraction preceding the force step and the working stroke synchronized in the 

motors by the force drop. LT, the amount of shortening accounted for by the working stroke of the 

myosin motors at the force T, is given by the difference (L2 − L1). LT increases with the reduction of 

the load (Fig. 28B): it is 2 nm at 0.8 T0,4.5 and increases up to 8 nm at 0.2 T0,4.5. Assuming an 

exponential time course of phase 2 shortening in the trace of Fig 27D, the time elapsed between t1/2 

and the abscissa intercept of the tangent to the initial part of the trace (magenta line) is an estimate of 

the time constant of phase 2 shortening and its reciprocal is an estimate of the rate constant of the 

process (r2) (green dashed line in Fig. 27D). r2 increases roughly exponentially with the reduction of 
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the load (Fig. 28C) from 100/s at 0.8 T0,4.5 to 600/s at 0.2 T0,4.5. Phase 2 is followed by a pause in 

shortening (phase 3), which eventually evolves in a steady shortening at constant velocity (phase 4). 

The end of phase 3 is measured as the time (t3) from t1/2 to the intercept between the tangent to phase 

4 shortening (dotted-dashed line in Fig. 27A) and the tangent to phase 3 (dotted line). The duration 

of phase 3, (τ3), calculated by taking as starting point the end of phase 2 (estimated as 2*τ2), decreases 

with the reduction of the load so that its reciprocal (r3), an estimate of the rate of phase 3 motor 

detachment from actin following the execution of the working stroke, rises roughly exponentially 

with the reduction of the load (Fig. 28D). The final steady shortening occurs at a velocity defined by 

the force–velocity relation (phase 4, Fig. 29A). The curvature (a/T0,4.5= 0.17 ± 0.08) and the ordinate  

intercept (the unloaded shortening velocity, V0 = 0.28 ± 0.06 μm/s per hs) of the relation are estimated 

by fitting the hyperbolic Hill equation to data. The force-velocity relation is used to calculate the 

power (force x velocity) as a function of the load in Fig. 29B. The maximum power, obtained at about 

1/3 T0,4.5, is about 2.1 mW/g. 

 

 
Figure 29. Force dependence of the parameters of phase 4 of the velocity transient. A. Relation between steady 
shortening in phase 4 (V) and force. B. Power–force relations calculated from the data in A (open circles, pooled data; 
filled circles, mean values ± SEM). Line in A is the fit to the data using the hyperbolic Hill equation. Line in B is 
calculated from the line in A.
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Chapter 4 – Discussion 

 

Fast sarcomere level mechanics in Ca2+-activated skinned fibres from rabbit slow muscle 

(soleus), are used to define the properties of the slow myosin isoform as single motor (stiffness of the 

motor, size and the speed of the working stroke and its dependence on the load), as well as the 

ensemble properties in the half-sarcomere (fraction of motors attached in isometric contraction, 

kinetics underlying both isometric force development and force-velocity relation). The importance of 

the study emerges from the comparison of the relevant parameters with those from fibres of rabbit 

fast muscle (psoas) (expressing >90% the fast isoform MHC-2X). 

 

4.1 Single motor properties  

 

Stiffness and force of the motor.  

In slow fibres (expressing >90% MHC-1) the stiffness per myosin motor is 0.53 pN/nm, about 

three times smaller than in fast fibres (1.70 pN/nm). According to the crystallographic model of force 

generation (Rayment et al., 1993a) the stiffness between the catalytic domain attached to actin and 

the extremity of the lever arm that transfers force and movement to the thick filament is responsible 

for the gain in the coupling between the conformational change responsible for the working stroke 

and the produced force. A lower motor stiffness provides a lower force for the same conformational 

change. For the same average strain of the motor in isometric contraction (3.3 nm), the force 

developed by the slow isoform (~1.8 pN) is about one third of that developed by the fast isoform 

(~5.6 pN). The effect on the macroscopic force of the reduced motor stiffness in the slow fibres is 

attenuated by the larger number of myosin motors working in parallel in the half-sarcomere, therefore 

the force per cross sectional area developed by the slow fibres is about one-half of that developed by 

the fast fibres. With respect to the stiffness of the fast myosin isoform, the lower stiffness of the slow 

myosin isoform could also explain the smaller size of the working stroke during shortening at high-

intermediate loads and its slower speed. 

 

The isotonic velocity transient.  

To compare the mechanokinetic properties of the motor (size and speed of the working stroke) 

determined in this work for the slow isoform with those determined for the fast isoform (Caremani et 
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al., 2013), it must be preliminarily taken into account that Caremani et al experiments were carried 

out in the absence of the osmotic agent dextran T-500 that recovers the original interfilamentary 

spacing. However, tests on fast fibres demonstrate that, for loads ranging between 0.2 and 0.8 T0,4.5, 

the isotonic velocity transient is the same independent of the presence/absence of the osmotic agent 

(data not shown). 

 

At high load (0.8 T0,4.5) the size of the isotonic working stroke (LT) is smaller in the slow isoform (2 

nm) than that in the fast isoform (5 nm), while it is similar at low load: at 0.2 T0,4.5, LT is 7-8 nm for 

both myosin isoforms (Fig. 30A). On the contrary, the rate of the working stroke (r2) is one order of 

magnitude slower in the slow isoform with respect to the fast isoform at any load (Fig. 30B). At high 

load (0.8 T0,4.5) r2 of the slow isoform is 100/s, ten times slower than that of the fast isoform (~ 

1000/s). Decrease in load from 0.8 to 0.2 T0,4.5 increases r2 by ~6 times independently of the myosin 

isoforms, so that the ten times difference in this kinetic parameter is maintained at all loads. 

In conclusion in both isoforms the isotonic working stroke is larger and faster at low load. However 

the load dependence of the size of the working stroke is much more marked in the slow isoform. A 

corollary observation is that a similar load dependence of the size of the working stroke as that in the 

fast isoform (8-5 nm from low to high load) has been found in the twitch muscle of the frog (Piazzesi 

et al., 2002). 

 

Kinetic model of force generation. 

According to the crystallographic model (Rayment et al., 1993a) the working stroke in the 

actin attached motors produces a filament sliding of 11 nm, in quite good agreement with the 

predictions of Huxley and Simmons mechano kinetic model of force generation (1971). Huxley and 

 
Figure 30. Comparison of the size (A) and rate (B) of the isotonic working stroke in slow and fast fibres. Slow 
fibres filled circles, fast fibres open circles. Data for fast fibres from (Caremani et al., 2013). 
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Simmons model provides that the attached motors exist in two force generating states and that the 

proportional occupancies of these states is governed by the load that contributes to the activation 

energy barrier of the forward transition. Actually it has been shown that, considering the relatively 

high stiffness of the motor determined after the formulation of the theory, several transitions are 

necessary to account for the 11 nm working stroke (Piazzesi & Lombardi, 1995; Piazzesi et al., 2014). 

Here for simplicity three force generating states are assumed (A1, A2 and A3), with a 5 nm progression 

in the working stroke for each of the two transitions A1-A2 and A2-A3. A drop in force reduces the 

mechanical energy barrier and promotes a forward transition, which accounts for the phase 2 of the 

isotonic velocity transient. Fig. 31 shows the free energy parabolic profiles of the three states and 

their dependence on x (the displacement of the myosin motor from the position at which the force in 

state A1 is zero), calculated according to the different motor stiffness of the slow (A, 0.53 pN/nm) 

and fast (B, 1.7 pN/nm) isoforms. 

 

 
Figure 31. Free energy profiles of the attached states of the slow (A) and fast (B). x, displacement from the position 
at which the force in state A1 is zero. The free energy curves (A1 continous line, A2 dotted line, A3 dashed line) are 
positioned vertically so that in isometric contraction the fractional occupancy of states is 0.3 A1 and 0.7  A2 for both 
slow and fast fibres at 12°C. This constraint and the 5 nm step size determine the difference between the free energy 
minima.  

 

The distance between the minima of the free energy curves (z,) is set to 5 nm to attain the completion 

of the working stroke with two steps and the fractional occupancies of A1 (0.3) and A2 (0.7) in 

isometric contraction at 12°C have been constrained by the temperature-dependence of force (Linari 

et al., 2007). For the fast isoform the motor stiffness is 1.7 pN, so that the slope of the free energy 

parabolas provides a difference between the free energy minima of consecutive parabolas of 21 zJ. 

Thus the total free energy made available by the two transitions is 42 zJ, which fits the known 

efficiency of energy conversion in fast muscle (0.4-0.5), considering that the free energy of the ATP 

hydrolysis is 100 zJ (Barclay et al., 2010a). The same assumptions, except for the stiffness, are used 
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for calculating the free energy change for the same 5 nm transition in the slow isoform. The result is 

a difference between free energy minima of consecutive parabolas of 6 zJ, and a total free energy 

made available by the two transition of 12 zJ (less than 1/3 of that of the fast isoform). A 

corresponding decrease in the efficiency of energy conversion is predicted. This conclusion, however, 

is not supported by the data reported in literature. In fact the efficiency in the slow fibres is similar to 

(Barclay et al., 1993; He et al., 2000) or higher than (Woledge, 1968; Barclay et al., 2010b) that 

measured in fast fibres, suggesting the presence of a mechanism in slow myosin isoform able to 

recover the efficiency of energy conversion despite the lower stiffness. 

 

4.2 Properties of the motor ensemble  

 

Kinetics underlying the isometric contraction and the force-velocity relation.  

The relevant parameters of the ensemble kinetics estimated in slow fibres during isometric 

contraction are the fraction of attached myosin motors (β) and the rate of force development (kTR). 

Based on a simple two-state model of acto-myosin interaction (Huxley, 1957), β and kTR are related 

to the apparent rate constant of attachment (f) and detachment (g) according to the following 

equations:  

 

β =f/(f+g) and kTR=f+g  

 

By knowing β and kTR, f (=β *kTR) and g (=kTR*(1- β)) can be calculated and compared with those of 

fast fibres (Caremani et al., 2013). For slow fibres f and g are 5 and 12 times slower than in fast fibres, 

respectively. The reduction of f with fibre types is somewhat smaller than that reported in literature: 

it has been found that in slow fibres the forward rate constant of the force generating step is >40 times 

slower than in fast fibres (Millar & Homsher, 1992). Based on f and g values, the predicted ATP 

hydrolysis rate in isometric conditions (kCAT=f*g/(f+g)) in slow fibres is 13% of that in fast fibres. 

The one order reduction in kCAT is in quite good agreement with the experimental observations by 

(Potma et al., 1995) that reported an isometric ATPase rate for the slow fibres 0.05 mM/s, that is 12% 

of that in fast fibres (0.41 mM/s). It is instructive to compare the kinetics of ATPase rate and liberation 

of ATP hydrolysis products in slow and fast fibres in relation to kCAT under high load. The rate of 

hydrolysis of ATP measured in solution (step 2 in the ATPase cycle of Scheme 1 in Introduction) is 

the same for slow and fast myosin isoforms (Marston & Taylor, 1980) and, assuming that it is the 

same in skinned fibres because this step occurs in detached motors (Millar & Homsher, 1992), this  
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step does not explain the lower ATPase rate in slow fibres. In fast fibres the release of Pi is a relatively 

fast process (Dantzig et al., 1992) and kCAT would be limited by the rate of ADP release (Linari et al., 

2010; Caremani et al., 2015). On the contrary in slow fibres the rate of Pi release is a slow process 

(Millar & Homsher, 1992), suggesting that not only release of ADP but also release of Pi would limit 

kCAT.  

Comparison of the force-velocity relations in slow and fast fibres (Fig 32A) shows that at any relative 

load the steady shortening velocity is ten times smaller than in fast fibres. Consequently at the same 

relative load also the power is ten times smaller (Fig 32B). The maximum power (at 1/3 T0,4.5) 

developed by the collective motor is 0.02 T/T0 µm s-1 hs-1 for the slow isoform, about 1/10 of that 

developed by the collective motor of the fast isoforms (0.28 T/T0 µm s-1 hs-1).   

 

Contributions of different structures to half-sarcomere elasticity. 

The structural components that contribute to the hs elasticity are the thick and thin filaments, 

the array of myosin motors attached to actin and an element in parallel with motors (Ford et al., 1981; 

Linari et al., 1998; Bagni et al., 2002; Linari et al., 2007; Piazzesi et al., 2007; Colombini et al., 2010; 

Brunello et al., 2014; Fusi et al., 2014). The compliance of this element (CP) is so large (~560 

nm/MPa) that at forces > 40 kPa, its effect is negligible and the compliances of the other elements 

explain the whole hs compliance: Chs = Cf +1/ βε. In slow fibres Cf, measured by the slope of the hs 

strain-force relation, is 15.9 ± 1.0 nm/MPa, which is similar to that of fast fibres.  The ordinate 

intercept of the relation measures the average strain in the attached myosin motor in isometric 

contraction (s0, 3.33 nm) and also this parameter is similar to that measured in fast fibres.  

At forces < 40 kPa, the hs strain reduces with the reduction of force more than expected from the 

 
Figure 32. Force dependence of steady shortening velocity (A) and power (B) in slow (filled circles) and in fast (open 
circles) fibres. Fast fibres, data from (Caremani et al., 2013). 
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filament compliance, due to the presence of the parallel element with constant compliance CP (~560 

nm/MPa). CP is so large that only when the number of attached motors is very low it contributes 

significatively to the hs elasticity. CP is the same in slow and fast fibres, as expected from a parallel 

elasticity generated by a protein different from the myosin motor (likely titin or myosin-binding 

protein C). The value of CP in demembranated fibres is about twice that found in intact fibres of the 

frog (Fusi et al., 2014). Accordingly the contribution to stiffness at low force is much less marked in 

both slow and fast fibres. The difference is not eliminated with the use of the osmotic agent that in 

demebranated fibres recovers the interfilamentary spacig (Martyn et al., 2002; Linari et al., 2007; 

Seebohm et al., 2009). This indicates that the larger CP in skinned fibres from mammals with respect 

to intact fibres from amphibians could be related to the mechanical properties of the parallel elasticity 

per se or to a difference in the properties of the milieu surrounding the contractile material. Further 

experiments are necessary to clarify this point and identify the origin of CP.  

 

Stiffness of the myosin motor and amino acid sequence of the converter domain 

The domain of the actomyosin complex that experiences the main elastic distortion is 

unknown. One possibility is that the long α-helix undergoes bending (Uyeda et al., 1996; Dobbie et 

al., 1998; Irving et al., 2000) or, alternatively, the regions of major distortion could be the acto-

myosin interface (Huxley, 1974) or the junction between catalytic domain and light chain domain 

(Dobbie et al., 1998), the converter domain, as suggested by single amino acid mutations in this 

region (Kohler et al., 2002; Seebohm et al., 2009; Brenner et al., 2014). In slow muscle fibres from 

soleus muscle of human it has been found that a single natural occurring mutation in the converter 

domain (708-780 region) of the slow β-MHC isoform is responsible for a large change in motor 

stiffness. In fact, when proline (K) in position 713 or valine (V) in the position 719 are replaced with 

tryptophane (T) the stiffness of the myosin motor increases 2-3 times (Kohler et al., 2002; Seebohm 

et al., 2009; Brenner et al., 2014). Comparison of the available amino acid sequence of the converter 

domain between the slow and fast myosin isoforms of six species of mammals of different size 

(mouse, cattle, rabbit, pig, dog and human, Fig. 15 in Introduction), shows a difference in the amino 

acid contents of about 55% in rabbit, much larger than that found in the other species (16-20% 

difference). This makes impossible to relate the difference in motor stiffness between slow and fast 

isoforms to changes of few aminoacid within this region. On the other hand, the larger difference is 

related to the composition of the converter domain of the slow myosin isoform in rabbit with respect 

to the slow isoform of the other species while the converter domain of the fast myosin isoforms is 

well preserved among species. If the converter domain plays a major role in determining the motor 

stiffness, the stiffness of the fast myosin isoform should be similar in the different species while the 
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slow isoform would have different stiffness. Data in literature (Seebohm et al., 2009) support this 

hypothesis: in fact, the motor stiffness measured in the slow myosin isoform from human is 0.3 

pN/nm, 60% lower than that found in this work for rabbit.  
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