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Abstract 

Somatic activating mutations in MPL, the thrombopoietin receptor, occur in the 

myeloproliferative neoplasms, although virtually nothing is known about their role in 

evolution to acute myeloid leukaemia. In this study, the MPL T487A mutation, identified in 

de novo acute myeloid leukaemia, was not detected in 172 patients with a 

myeloproliferative neoplasm. In patients with a prior MPL W515L-mutant myeloproliferative 

neoplasm, leukemic transformation was accompanied by MPL-mutant leukemic blasts, 

was seen in the absence of prior cytoreductive therapy and often involved loss of wild-type 

MPL by mitotic recombination. Moreover clonal analysis of progenitor colonies at the time 

of leukaemic transformation revealed the presence of multiple genetically distinct but 

phylogenetically-related clones bearing different TP53 mutations, implying a mutator-

phenotype and indicating that leukaemic transformation may be preceded by the parallel 

expansion of diverse hematopoietic clones. 
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Introduction 

Acquired mutations in MPL, encoding the thrombopoietin receptor, are found in the 

myeloproliferative neoplasms (MPN) essential thrombocythemia (ET) and primary 

myelofibrosis (PMF) (1-5). Exon 10 alterations affect the juxtamembrane (W515L/K/A/R) 

or transmembrane (S505N) domains, resulting in ligand-independent receptor activation (6, 

7). An exon 9 T487A mutation, reported in a single case of de novo acute myeloid 

leukaemia (AML), produced an ET-like phenotype in a mouse model (8) although its 

prevalence in human MPN is unknown.  

 

Virtually nothing is known about molecular events associated with disease progression in 

MPL-mutant MPN. Although mutations in TET2 and MPL may coexist (9), their clonal 

relationship has not been reported. A mutant allele burden exceeding 50% occurs in 

patients with MPL-mutant PMF or rarely ET (1-5) and often reflects duplication of the 

mutant MPL allele by mitotic recombination (10-12). AML following a JAK2 V617F-positive 

MPN commonly lacks the JAK2 mutation (13-15), and although MPL mutations have been 

observed in unfractionated post-MPN AML bone marrow samples (2), the MPL status of 

the prior MPN and of purified blast cells was not established.  

 

We have studied the role of MPL mutations in early and leukaemic phase MPN, focusing 

on the prevalence of mutations in exon 9, the role of MPL and additional mutations in 

leukaemic transformation and mechanisms by which the wild-type MPL allele is lost.  

 

Design and Methods 

Screening for MPL exon 9 mutations was performed on a cohort of 172 patients attending 

a single MPN clinic in Cambridge, UK. Three patients who developed AML following an 

MPL-mutant MPN were identified on an ad hoc basis from clinics in Cambridge, Ulm and 

Florence. Patients were diagnosed with ET, post-ET myelofibrosis or PMF according to 

published criteria (16, 17). A diagnosis of AML transformation required 20% blasts in 
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blood and/or bone marrow. Local Research Ethics Committee approval was obtained and 

studies were carried out in accordance with the principals of the Declaration of Helsinki. 

Cell fractionation and progenitor colony assays were performed as described (15). 

Leukaemic blasts, purified by CD34-immumomagnetic selection, were 90% pure by 

morphological criteria. Mutations in MPL (exons 9 & 10), N/KRAS (codons 12, 13 & 61), 

CEBPA (exon 1), RUNX1 (all coding exons), GATA2 (exon 4), NPM (exon 12), WT1 

(exons 7 & 9), TP53 (exons 4 - 8), CBL (exons 8 & 9), IDH1 (exon 2), IHD2 (exon 4) and 

TET2 (all coding exons) were assessed by direct sequencing. MPL copy number was 

assessed by real-time PCR using control regions on 13q and 9p. 

 

Results and Discussion 

Expression of the AML-associated MPL exon 9 T487A allele in mouse bone marrow cells 

produced an ET-like disease in vivo that was indistinguishable from a similar mouse model 

of MPL W515L (8), an allele associated with human ET and PMF. Of note, JAK2 V617F 

mutations have been observed in occasional patients with de novo AML, indicating that 

MPN-associated mutations may be seen in de novo acute leukaemia, and/or occasional 

patients may present in blastic phase of a previously undiagnosed MPN (15). To ascertain 

whether the MPL T487A allele or other changes in the MPL extracellular-juxtamembrane 

domain are associated with chronic phase ET or with PMF, MPL exon 9 was sequenced in 

granulocyte DNA from 172 patients (Supplementary Table 1). No mutations were detected. 

These data indicate that MPL exon 9 mutations occur rarely, if at all, in human MPN. 

 

Progression to acute leukaemia is observed in a proportion of patients with a JAK2-mutant, 

MPL-mutant or mutation negative MPN, and in ET the presence or absence of an MPL 

mutation does not appear to modulate this risk (4). To investigate the role of MPL 

mutations in leukaemic transformation, we studied three patients with AML following an 

MPL W515L-positive MPN (Table 1). All three patients were negative for the JAK2 V617F 

mutation. In patients 1 and 2, bone marrow studies performed at AML progression showed 
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granulocytic hyperplasia, dysplastic megakaryocytes, reticulin fibrosis 3 (graded on a 0-4 

scale) and clusters of CD34+ cells, in keeping with the AML subtype ‘acute panmyelosis 

with fibrosis’ (18) (Figure 1A). In patient 3, AML was diagnosed by >95% blast cells in the 

peripheral blood. Patients 1 and 3 had received hydroxycarbamide but patient 2 had not 

received cytoreductive therapy. As patients with a JAK2 V617F-positive MPN may develop 

leukaemia that lacks the JAK2 mutation (13-15), leukemia MPL mutation status was 

determined using purified blasts, free from contamination by the preceding MPN. In patient 

1, initially diagnosed with ET, leukaemic blasts were heterozygous for the MPL W515L 

mutation, whereas in patients 2 and 3, with preceding PMF and post-ET myelofibrosis 

respectively, only the mutant MPL allele was detected (Figure 1B). The absence of wild-

type allele in patients 2 and 3 might reflect acquisition of a second mutation, deletion of the 

wild-type allele or mitotic recombination. 

 

To distinguish between these possibilities, we studied W515L-homozygous leukaemic 

blasts from patients 2 and 3 together with granulocytes from a W515L-positive JAK2 

V617F-negative PMF patient (patient 4) with a mutant allele proportion of >0.9. In all 3 

patients, informative SNPs (genotyped by direct sequencing) at both the telomeric end of 

the MPL locus and 39Mb distal (close to the 1p telomere) showed loss of heterozygosity in 

leukaemic blasts (patients 2 & 3) or granulocytes (patient 4) (data not shown), excluding 

acquisition of a second MPL mutation. To distinguish deletion of the wild-type allele from 

mitotic recombination, MPL copy number was assessed by real-time PCR, which 

demonstrated two copies of MPL in all cases (Figure 1C). These findings demonstrate that 

homozygosity for an acquired MPL W515L mutation had arisen by mitotic recombination in 

these three patients, confirming previous studies in which acquired uniparental disomy 

affecting the MPL locus had been detected by SNP array technology (10-12).  Together 

these findings mirror the situation with other signalling pathway mutations, such as JAK2 

V617F and FLT3-ITD, where mitotic recombination results in duplication of the mutant 
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allele, implying a selective advantage is conferred by either increased mutant gene 

dosage or loss of the wild-type allele. 

 

Leukaemic blasts were screened for mutations in N/KRAS, CEBPA, RUNX1, GATA2, 

NPM, WT1, TP53, CBL, IDH1/2 and TET2. Mutations were identified in TP53 and TET2 in 

patient 1 but no additional lesions were found in patients 2 and 3. In patient 1, the TET2 

mutation was predominant in bone marrow cells obtained 3 years prior to leukemic 

transformation, whereas the MPL mutation was present at a relatively low level (Figure 2A). 

Sequencing is not highly quantitative, but the magnitude of the observed difference 

suggests that the TET2 mutation preceded acquisition of the MPL mutation. Erythroid and 

granulocyte-macrophage colonies (n=41 and n=21 respectively), confirmed by cytological 

analysis, all harboured both MPL and TET2 mutations, demonstrating that the mutations 

arose within the same clone. In addition, 13 of 62 colonies harbored mutations in TP53. 

Remarkably, a total of four different TP53 mutations were identified, all of which are 

recurrent, functionally-significant cancer-associated alleles (19). Progression to acute 

leukemia was associated with loss of wild-type TP53 in one subclone (Figure 2A).  

 

Detection of TP53 mutations within erythroid and granulocyte-macrophage colonies 

indicates that terminal differentiation may proceed in the presence of mutant p53 where 

the wild-type allele is retained. Furthermore, the presence of multiple p53-mutant clones, 

all involving C:G-to-T:A transitions (Figure 2A), implies a mutator-phenotype prior to the 

development of an AML-associated differentiation block. One possible mechanism invokes 

a mutagenic effect of mutant MPL, TET2 or other unidentified genes, as reported in 

models of oncogenic ERBB2 and BCR-ABL1 which resulted in a bias towards transversion 

or transition mutations respectively (20, 21). In this patient, no other acquired synonymous 

or non-synonymous mutations were identified in 11.5Kb of DNA sequence from leukemic 

blasts, although the mutation prevalence in solid tumours (1 mutation every 105 - 106 

bases) suggests that a genome-wide approach would be necessary to elucidate the true 
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mutation frequency. In addition, it is possible that alterations of MPL, TET2 or unidentified 

gene(s) within the parental clone impart a strong selective pressure for the acquisition of 

TP53 mutations. Alternatively, diverse clones may arise following exposure to an 

exogenous agent. Hydroxycarbamide (received by this patient) has been linked to 

abnormalities of 17p (which harbours the TP53 locus) (22, 23), although a specific 

mutation signature has not been reported. 

 

Taken together, our data demonstrate the parallel expansion of genetically distinct but 

phylogenetically-related clones prior to leukemic transformation (Figure 2B). Of note, 

clonal diversity (assessed by loss of heterozygosity and TP53/CDKN2A mutation) in 

patients with Barrett’s oesophagus has been associated with an increased risk of 

progression to adenocarcinoma (24), suggesting that in this disease expansion of 

competing clones may also presage progression to a fully malignant phenotype.  

 

In conclusion, this study used paired MPN/AML samples to demonstrate that progression 

to AML is part of the natural history of MPL W515L-associated disease, may occur in the 

absence of prior cytoreductive therapy and may involve loss of the wild-type MPL allele by 

mitotic recombination. Moreover studies of progenitor colonies revealed the expansion of 

divergent but phylogenetically-related clones during progression from MPL-mutant MPN to 

AML. 
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Table 1. Clinical and laboratory features of MPL W515L-positive patients at 

presentation and at time of progression to acute myeloid leukemia

 

ET: essential thrombocythemia; PMF: primary myelofibrosis; MF: myelofibrotic transformation; 

AML: acute myeloid leukemia; HC: hydroxycarbamide. 
¶
reticulin fibrosis on a 0 - 4 scale 

†
44-49,XX,5,+6,del(6)(q?21q?23),+8,t(11;21)(q13;q22),+der(11)t(11;21),del(13)(q?14q?22), 

del(13)(q?14q?22),der(15;17)t(15;17)(q?15;p?12),-17,+1-4mar 

‡
del(20)(q11q13),add(9)(q13),-12,+mar 

At presentation  Patient 1  Patient 2  Patient 3 

       
Age / sex  61 F  69 M  51 F 
       
Diagnosis  ET  PMF  ET -> MF 
       
Hemoglobin (g/dL)  13.2  11.7  14.8 
       
White cell count (x109/L)  11.6  10.3  6.8 
       
Platelet count (x109/L)  813  611  505 
       
Palpable splenomegaly  No  2cm  No 
       
Bone marrow fibrosis¶  0  3  0 
       
Bone marrow karyotype  Normal  ND  Normal 
       
       
At AML transformation       

       
Disease duration (yrs)  5  9  14 
       
Prior therapy  HC  None  HC 
       
Hemoglobin (g/dL)  8.0  6.9  9 
       
White cell count (x109/L)  32  9.1  80.3 
       
Circulating blast count (x109/L)  8.64  4.5  78 
       
Platelet count (x109/L)  15  362  61 
       
Palpable splenomegaly  No  10cm  10cm 
       
Bone marrow fibrosis¶  3  4  Not done 
       
Bone marrow karyotype  Complex†  Complex‡  Not done 
       

Additional mutations 
 TP53 R248Q 

TET2 Q1532fs 
 

None detected 
 

None detected 
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Figure 1. Acute myeloid leukemia following an MPL-mutant myeloproliferative 

neoplasm may be heterozygous or homozygous for the MPL W515L mutation, with 

homozygosity arising by mitotic recombination. (A) Bone marrow trephine biopsies 

from patients 1 and 2, acquired at time of leukemic transformation, showing prominent 

dysplastic megakaryocytes, reticulin fibrosis and clusters of CD34+ cells (examples circled 

in red). All images original magnification x400. (B) Sequencing of MPL exon 10 in T-cells, 

granulocytes from the MPN phase of disease (MPN Grans) and purified leukemic blasts 

(AML blasts), showing W515L-heterozygous AML in patient 1 and W515L-homozygous 

AML in patients 2 & 3. (C) Real-time PCR MPL copy number assay on three W515L-

homozygous patient samples (leukaemic blasts from patients 2 & 3; granulocytes from 

patient 4) with loss of heterozygosity at telomeric end of the MPL locus (rs498166 or 

rs499163) and close to the 1p telomere (rs7537577 or rs1870509): the presence of two 

copies of MPL in all three cases establishes mitotic recombination as the mechanism by 

which the wild-type MPL allele is lost. Analysis of 10 normal individuals and 3 cell lines 

(NB4, HT3 and LAN1) known to harbor a single copy of the MPL locus (25) are shown as 

controls. 

 

Figure 2. Leukemic progression associated with the proliferation of divergent, 

TP53-mutant clones. (A) Analysis of sequential samples from patient 1, demonstrating 

acquisition of a TET2 mutation prior to a mutation in MPL, the proliferation of erythroid and 

granulocyte-macrophage colonies harbouring different heterozygous mutations in TP53, 

and loss of wild-type TP53 in leukemic blasts. (B) Model of disease progression in patient 

1, characterized by the parallel expansion of multiple genetically distinct but 

phylogenetically-related clones bearing heterozygous TP53 mutations, with loss of wild-

type TP53 in one of these subclones associated with progression to acute leukemia. BM: 

bone marrow cells, MPN: myeloproliferative neoplasm, AML: acute myeloid leukemia. 
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Supplementary Table 1. Cohort of patients with a myeloproliferative neoplasm screened for

mutations in MPL exon 9.

JAK2 V617F

positive

MPL exon 10

positive

Mutation

negative+ Total

PMF 43 8 45 96

ET 19 1 56 76

Total 62 9 101 172

+Negative for JAK2 V617F and mutations in MPL exons 9 & 10.
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