

Abstract

Heterogeneous computing devices are surrounding us in our day-to-day life
at an unprecedented rate and they are showing promising capabilities. For
example, the drone Loon Copter is one such device providing an unrestricted
mobility in air, surface and underwater. Similarly, smartphones and IoT are
also enabling to sense our environment. Many of these devices are embedded
with processing, sensing, software and communication capabilities, allowing
many services to be built on top. In the near future these connected devices
will be everywhere from smart cities, factories to our homes and even on
our bodies. In order to reach the full potential of these emerging devices, a
prominent requirement, “security by design", must be fulfilled to make the
technology ready for mass adaptation. Following this direction, we focus on
security and privacy issues of three heterogeneous devices: (i) Smartphone
related security and privacy issues; (ii) Application of drones for secure lo-
calization; and (iii) IoT related security issues.

In the first part of this dissertation we look into security and privacy
challenges in smartphones. Smartphones are taking a leading role in bind-
ing most of the heterogeneous computing devices and also getting cluttered
with lot of personal data. We investigated three security related issues in
smartphones: i) malware detection, ii) preserving anonymity in mobile cloud
communications, and iii) analyzing the energy consumption of cryptographic
protocols to improve user experiences. As for point i), in most attack sce-
narios an adversary takes local or remote control of a mobile device (by
leveraging system vulnerabilities via malicious apps), and sends the collected
information from the smartphone to a remote web server. This undermines
the users security and privacy, and we propose a new approach for detecting
malware by focusing on network communications. As for point ii), Smart-
phone applications are increasingly relying on cloud services such as online
banking, instant messaging and file exchange. For an external observer, this
communication side channel may reveal a lot of information. Strong ad-
versaries like government agencies are also proposing these channels as a

iii

means to monitor their surveillance targets. Similarly, if the mobile network
providers and cloud service providers collude together, they can violate the
privacy of the users. We propose an end-to-end anonymous communications
protocol for delay-tolerant applications (similar to Whatsapp or Email), to
protect user privacy and prove the security properties of the protocol under
this strong attack model. Finally, as for point iii), we analyze the energy con-
sumption of cryptographic protocols running on smartphones. The number
of web services accessed over encrypted traffic is rapidly growing, especially
via SSL/TLS. In our investigation, we focused on TLS and show how TLS
session resume can greatly save energy by avoiding asymmetric cryptographic
operations. We further propose Cloud aided TLS (CaT).

In the second part of this dissertation, we explore the possibility of us-
ing the emerging drone technology to solve the secure location verification
problem. Many innovations are emerging using drones such as last mile de-
livery and emergency response. Many dependable distributed systems are
vulnerable to node displacement attacks. For example, a hostile actor physi-
cally moving few sensors in a pollution monitoring system can easily disrupt
the monitoring. This displacement attack is simple, but difficult to detect.
Current solutions require several fixed anchor nodes with trusted positions.
We propose VerifierBee, which replace all the fixed anchors with a single
drone that flies through a sequence of waypoints. VerifierBee, finds a good
approximation of the shortest path, and at the same time it respects a set of
requirements about drone controllability, localization precision and commu-
nication range.

The third part of this dissertation focuses on IoT related security issues.
In many scenarios, IoT systems comprise of widely deployed sensors and
actuators with connectivity. Many of these sensors are battery operated,
with low processing power and left unattended after deployment. There-
fore, lightweight low-power security protocols are needed. In this part of the
dissertation we propose a framework to detect IoT sensor node actions by
observing the encrypted communication traffic. In particular, IETF stan-
dardized DTLS encrypted traffic. There are many recent incidents about
DDoS attacks using compromised IoT devices and our work steps in this
direction to detect any compromised nodes.

iv

Acknowledgments

First I would like to thank my supervisors Prof. Mauro Conti and Prof.
Cristina M. Pinotti for their supervision of my PhD during the last three
years. Also, I would like to thank Prof. N. Asokan of Alto Univeristy and
University of Helsink, for the valuable insights given from time to time during
the course of this research. Further, I would like to thank Prof. Wee Keo Ng
and Prof. Newton Fernando of Nanyan Technological University, Singapore,
for the guidance and support given to me during my visiting period at NTU,
Singapore.

I am grateful for the tripartite consortium: University of Florence, Uni-
versity of Perugia and INDAM who supported me with the scholarship during
my PhD studies. Also, I would like to thank Prof. Graziano Gentili the PhD
program coordinator.

I would also like to thank the University of Padova, for hosting me, where
I spent most of my time during my studies. Also, I thank the lab mates
for the discussions we had, who’s suggestions greatly helped me to improve
this work. Also, I thank my friends who were always by my side to share
happiness and adversity. Finally, I am immensely gratitude to my parents
and my family who have always been a great strength to me in all moments
of my life.

v

Contents

1 Introduction 1
1.1 Research Motivation and Contribution 2

1.1.1 Smartphone Security and Privacy Issues 3
1.1.2 Application of Drones for Secure Localization 5
1.1.3 IoT Security Issues . 6
1.1.4 Contributions . 7

1.2 List of Publications . 10

I Security and Privacy Issues in Smartphones 13

2 Smartphone Malware Detection Through Dynamic Analysis 15
2.1 Related Work . 18
2.2 Background . 21
2.3 Proposed Methods . 23
2.4 Experimental Setting and Evaluation 27
2.5 Results and Discussion . 30
2.6 Summary . 30

3 Preserving Anonymous End-to-End Communications in Ad-
versarial Mobile Clouds for Smartphone Users 33
3.1 Related Work . 34
3.2 System and Attack Models . 36
3.3 Anonymity Protocol . 37

3.3.1 High-Level Overview of the Protocol 38
3.3.2 Sender Communication 39
3.3.3 Clone-to-Clone Communication 41
3.3.4 Receiver Communication 42
3.3.5 Discussion . 44

vii

3.4 Security Analysis . 44
3.4.1 Cloud operator tampering with clones’ memory 45
3.4.2 Malicious clones and standalone apps 46
3.4.3 Colluding cloud provider, clones, and standalone apps . 47

3.5 Experiments . 47
3.5.1 Evaluation on the proxy-side 48
3.5.2 Evaluation on the device-side 49

3.6 Summary . 51

4 CaT: Cloud aided TLS 53
4.1 Related work . 54
4.2 Background . 55

4.2.1 Full TLS handshake 56
4.2.2 TLS session resume . 56
4.2.3 Session-Identifier . 57
4.2.4 Session-Ticket . 57

4.3 Problem statement . 58
4.4 Preliminary Study . 58
4.5 Protocol Design . 61
4.6 Implementation . 63
4.7 Experiments . 64
4.8 Summary . 69

II Applications of Drones for Secure Localization 71

5 Application of Drones For Secure Localization Problem 73
5.1 Related Work . 75
5.2 Preliminaries . 77
5.3 Drone-Based Verifiable Multilateration 78
5.4 TLVP Formalization . 80

5.4.1 Formalization of the constraints 81
5.4.2 Final problem formulation 84

5.5 VerifierBee Path Planner . 85
5.5.1 Basic path computation 85
5.5.2 Greedy improvement 86
5.5.3 Waypoint reordering and complete algorithm 88

5.6 Experimental Evaluation . 90
5.7 Summary . 92

viii

III Securing IoT Sensor Networks 93

6 Security and Privacy Issues in IoT Devices 95
6.1 Related Work . 99
6.2 Modeling IoT Node Activity Detection Over Encrypted Traffic 101
6.3 Machine Learning Background 103

6.3.1 Feature Extraction . 103
6.3.2 Machine Learning Classifiers 104

6.4 Implementation and Experimental Setting 105
6.5 Evaluation and Discussion . 106
6.6 Summary . 108

7 Conclusions 111
7.1 Summary of Contribution . 111

7.1.1 Smartphone Security and Privacy Issues 112
7.1.2 Drone Application for Secure Localization of Distributed

Devices . 113
7.1.3 Securing IoT Sensor Networks 114

7.2 Future Work . 114
7.2.1 Smartphone Security and Privacy Issues 114
7.2.2 Drone Application for Secure Localization of Distributed

Devices . 115
7.2.3 Securing IoT devices: Activity detection of IoT devices 115

ix

List of Figures

1.1 Some smartphone usecase connecting devices and providing a
controlling interface. 4

1.2 Some drone application usecase scenarios. 5
1.3 Some IoT wireless sensor network application usecase scenarios. 7
1.4 The system architecture, where IoT, drones and smartphones

interact with each other. 8

2.1 Schema of the proposed methods 23
2.2 Steps in data preprocessing 25
2.3 Proposed network monitoring and analysis setup for trade-off

between user privacy and computational power. 28

3.1 Protocol flow for Sender Communication 39
3.2 Protocol flow for Clone-to-Clone Communication 41
3.3 Protocol flow for Receiver Communication 42
3.4 Traffic overhead per message varying (↵, �) anonymity pref-

erences. The graphics include the max, min, and quartiles
values. 49

3.5 Energetic overhead on the source and destination devices. The
graphics include the max, min, and quartiles values. 50

4.1 Full SSL handshake . 57
4.2 Abbreviated SSL handshake 58
4.3 Energy consumption (in µAh) for performing a full TLS hand-

shake and a session-resume over Session ID and Session-Ticket
methods . 59

4.4 Time consumption (in µAh) for performing a full TLS hand-
shake and a session-resume over Session ID and Session-Ticket 60

4.5 Protocol design . 62
4.6 FB - Power . 66

xi

4.7 FB - Time . 66
4.8 FB - Energy . 67
4.9 FB - Instantaneous power . 67
4.10 X - Energy . 68
4.11 G - Energy . 69

5.1 Displacement attack against an environment monitoring sys-
tem. A hostile actor changes the positions of some sensors,
and then she can pollute without being detected. 74

5.2 Verifiable multilateration. The computed position is accepted
only if it lies inside the verifiable triangle (the thick dashed
one). 77

5.3 Classic vs. drone-based verifiable multilateration. 78
5.4 Error tolerance in the worst case. The visited waypoints (black

crosses) are shifted with the planned ones (gray crosses). The
real node’s position (black dot) is shifted with the supposed
one (gray dot). 82

5.5 Ground precision. If the drone is above the ranged node, a
small imprecision on the slant distance ("

s

) will translate into
a huge imprecision on the ground one ("

d

). 83
5.6 TLVP constraints representation. The r

tol

-circle must be con-
tained inside the verifiable triangle, and the waypoints must
lie at a distance between d

min

and d
max

from N
i

. 84
5.7 Minimal verifiable triangle. 85
5.8 Example of basic path with 30 nodes. The black dots are the

nodes, the crosses are the waypoints, the red dashed line is the
path. 86

5.9 Freedom space of W1 (the gray area). The two straight borders
lie on the two rays originating from the other waypoints of the
verifiable triangle (W2 and W3) and tangent to the r

tol

-circle. 87
5.10 Waypoint moving. W12 is moved so that the drone shortens

the path going from W11 to W13. 87
5.11 Waypoint pruning. W12 is pruned and substituted by W20.

When the drone visits W20, it runs two distance bounding
protocols: one with N1 and one with N2. 88

5.12 Example of VerifierBee path. 89
5.13 Average path length with the number of nodes. Each point

stems from 100 experiments. 95%-confidence intervals are dis-
played in error bars. 90

5.14 Average processing time with the number of nodes for 100
experiments. 91

xii

5.15 Average path length with the communication range with 20
nodes. Each point stems from 100 experiments. 95%-confidence
intervals are displayed in error bars. 91

5.16 Average path length with the drone control precision with
20 nodes. Each point stems from 100 experiments. 95%-
confidence intervals are displayed in error bars. 92

6.1 An Example of an IoT wireless sensor network. Each sensor
node can be addressed via the Internet. 97

6.2 Features extracted by counting the packet sizes in a given time
window. Selecting n first arriving packets will fail to represent
most of the apps in the network. The feature vector enables
to include timing and packet size relations implicitly. 104

6.3 Experimental setup. The client/server nodes communicating
with secure CoAP . 106

xiii

List of Tables

2.1 Symbol table for netflow conversion [74] 26
2.2 The performance of the proposed methods in experiment . . . 30

4.1 Number of full SSL/TLS connections for a three day user study 59
4.2 Summary of Wilcoxon rank-sum test. At a significance level

of 0.05, there is a statistically significant difference between
all the data samples. 65

6.1 Summary of the experimental setup 106
6.2 N-class model performance summary for detecting the activi-

ties of the nodes . 108
6.3 Binary classification model performance for differentiating a

specific activity from a given activity 109
6.4 Binary classification model performance summary for detect-

ing a specific activity among a given traffic sample 110

xv

Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

APK Android application Package

BYOD Bring Your Own Device

CaT Cloud aided TLS

CCTV Closed Circuit Television

CoAP Constrained Application Protocol

CPU Central Processing Unit

DDoS Distributed Denial of Service

DNS Domain Name Service

DTLS Datagram Transport Layer Security

DVR Digital Video Recorder

GPS Global Positioning System

HMM Hidden Markov Model

HTTPS Hyper Text Transfer Protocol Secure

IETF Internet Engineering Task Force

IoT Internet of Things

IPv6 Internet Protocol version 6

IR-UWB Impulse Radio Ultra Wide Band

xvii

LAN Local Area Network

MAC Message Authentication Code

OS Operating System

PC Personal Computer

PDA Personal Digital Assist

PHY Physical Layer

RAM Random Access Memory

REST Representational State Transfer

SSH Secure Shell

SSL Secure Socket Layer

SVM Support Vector Machine

TCP Transmission Control Protocol

TLS Transport Layer Security

TLVP Traveller Location Verifier Problem

TSP Travelling Salesman Problem

UAV Unmanned Aerial Vehicle

UDGM Unit Disk Graph Model

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

VPN Virtual Private Network

WSN Wireless Sensor Network

xviii

Chapter 1

Introduction

Heterogeneous computing devices are emerging in our surrounding at an un-
precedented rate and are showing promising capabilities in the next genera-
tion of computing and sensing [113]. For example, the drone ‘Loon Copter’ is
providing an unprecedented mobility in air, surface and underwater [57]. Fur-
thermore, new connected devices like Kinect [33], Google glass [91] are also
enabling new opportunities for innovation and knowledge creation. Many of
these devices are mainly enabling technologies and potential apps are built
around these devices. Smartphone is another such device which revolution-
ized our way of communication. At present it is more than a mere commu-
nication device, and it also acts as a computing device as well. Smartphone
is embedded with rich sensing, computing and many connecting interfaces in
one single hardware and software platform. Given the ubiquitous nature of
the smartphone, along with the support for users day-to-day digital activities,
it has become an epicenter for personal data and provides access to privacy
sensitive information such as user locations and activities, through the rich in-
built sensors. Internet of Things (IoT), is another emerging paradigm taking
the sensing and actuation to the next level by deploying billions and billions
of embedded devices around us. Most of the time these devices are embedded
with processing, sensing, software and a means of connectivity, enabling to
communicate with other devices and enabling remote access from anywhere.
For example, the Nest thermostat enables to control the house temperature
while you are away (through the smartphone app) and enables to save energy
and be more efficient [15]. However, the availability of these devices in huge
numbers is opening new attack surfaces for the cyber criminals. Following,
we present the research motivation and contributions.

1

2 Chapter 1. Introduction

1.1 Research Motivation and Contribution

In the era of IoT we are constantly being surrounded by a plethora of hetero-
geneous devices. The falling prices and shrinking size of computer processors
and sensors, coupled with connectivity, is enabling to create a global inter-
connection of devices addressable from anywhere in the world. Advent of
technologies like IPv6 is just fueling the process. According to Cisco, IoT
alone is foreseen to connect over 50 billion low-power devices to the Internet
by end of 2020 [134]. Furthermore, it is expected by 2020 to have around
7 millions of drones [69] and around 6.1 billion smartphones [68] connected
to our technological echo-system. Smartphones play an essential role in con-
necting a variety of heterogeneous devices including IoT and drones. Recent
progress in IoT technologies, enable remotely controllable lights, thermostats
and cameras, while smartphone apps are providing the binding interface be-
tween the device and the user [126, 122, 190]. Similarly, many drones on
the market use smartphone as a cost-effective solution to provide the drone
controlling interface [38, 167, 60, 117, 94]. Smartphones offer a wide range
of connecting interfaces, such as NFC, Bluetooth, WiFi Direct and cellular,
making it ideal to interact with other devices and sensors. This capability
enables the smartphone to be the perfect qualifier to be the eyes and ears
for a given heterogeneous device ecosystem [66]. Furthermore, these emerg-
ing smart devices are recognized by the industry leaders and media as the
next wave of innovation, disrupting the way we organize our daily life’s [115].
These connected smart devices will provide different services to help us be
more productive with our daily tasks.

However, given the great pace at which connected smart devices are grow-
ing, we are starting to experience also the dark side of these connected de-
vices. These heterogeneous devices are deployed in homes, factories, hospi-
tals, entire cities and accompanied by billions of people in their daily lives.
This is providing a widened attack surface for attackers offering a large num-
ber of entry points to build botnets of tens of thousands of compromised
devices. These hacked devices can be used as weapons in cyber attacks to
bring down web services or intimidate the oppositions [27, 64]. Some recent
attacks using compromised connected cameras and DVRs, were able to di-
rect extraordinary high volumes of traffic (e.g., 700 Gbps) to neutralize their
target [67]. Similarly these attacks can be directed towards smartphone users
too for monitory gains. Current smartphone malware are capable of perform-
ing data theft, surveillance and financial fraud compromising the security and
privacy rights of the mobile users, while showing new threat tactics such as
ransomware [16]. Therefore, the security aspect of these smart devices is a

1.1. Research Motivation and Contribution 3

growing concern as the devices scale into billions while also being connected
to the Internet.

The research work presented in this dissertation will focus on the security
aspects of three heterogeneous smart devices. In particular, we analyzed
specific emerging security requirements in smartphones and IoT, along with
the application of drones for securing IoT sensor network deployments. We
present our research organized according to the three heterogeneous devices:

• Smartphones: to harden against harmful malware and overcome spe-
cific privacy issues users are facing while making use of mobile cloud
services.

• Drones: to solve the secure localization problem of distributed sensor
network deployments in dependable systems against displacement at-
tacks, using a mobile drone.

• IoT sensor nodes: to detect the IoT node activities over encrypted traffic
in IoT sensor networks.

In the following section we briefly introduce each of the above issues and
summarize our contributions.

1.1.1 Smartphone Security and Privacy Issues
Smartphones have changed the way we do our communications and inter-
act with technology. Internet, cloud access, online banking, instant messag-
ing, third-party device controlling (e.g., Nest thermostat) and file exchange
through cloud are just a handful of the myriad of smartphone services that
we make use of every day. Smartphone is an advanced communication device
with considerable computing and sensing capabilities. Furthermore, the dif-
ferent communication interfaces (e.g., Cellular, WiFi, Bluetooth, WiFi direct,
NFC) are providing connectivity to further enhance the capabilities of the
smartphone as a platform. Generally, smartphones come with a pre-installed
operating system (OS) and applications by the vendor. Also, the device man-
ufactures encourage third-party application developers by providing APIs for
their OS platforms and managing application markets for hosting these ap-
plications (e.g., Google Play, Apple App Store). However, due to restrictions
in different countries (e.g., China, where Google Play store is banned) third-
party app stores are still attracting many users. These smartphone apps,
coupled with emerging paradigms like mobile cloud computing is offering
new services to the end-user and the smartphone app market is expected to
grow from current $50 billion to $101 billion by 2020 [71].

4 Chapter 1. Introduction

With the rising popularity of smartphones we are also witnessing a rising
threat in malware targeting smartphone platforms [150, 23, 12]. At present,
majority of the users are inseparable from their smartphones and they per-
form a lot of day-to-day operations on these devices, turning the smartphone
to a vault containing personal and privacy sensitive data. Figure 1.1, presents
some of the usecases smartphones are used.

Smart Refrigerator

Smart Car Smart Watch Smart Lamps CCTV Cameras

Temperature Controllers

Few Day-To-Day Activities Using Smartphone: making calls, accessing email, maps, online
banking

Figure 1.1: Some smartphone usecase connecting devices and providing a
controlling interface.

Smartphones store contacts, emails, messages, photos, credit card and
banking information. Also, privacy sensitive information such as user lo-
cations and activities. Cybercriminals are always interested in these user
personal information [132, 61]. They are looking at ways to compromise
these devices by leveraging system vulnerabilities via malicious apps to gain
remote or local access to the device and sends the collected user data to some
remote web service. According to the anti-virus vendors like Sophos, smart-
phone platforms are a target of many emerging malware families, such as:
surveillance, data theft, botnet activity, impersonation, financial fraud and
intrusive advertising [92]. Apart from the malware threat, the application
traffic can compromise the user privacy as well. For example, government
agencies were known, to be able to retrieve, sensitive information from smart-
phones, such as: location, app preference, unique device identifiers, frequency
of app usage, version of the OS by looking into the advertising and analytic
traffic generated by the ad libraries embedded in most of the free apps [70, 53].
Therefore, preserving end user privacy in such mobile-cloud communications
is another growing concern related to smartphones. In this dissertation our
investigations were motivated towards malware detection and some specific
privacy related issues.

1.1. Research Motivation and Contribution 5

1.1.2 Application of Drones for Secure Localization
Another interesting technology, which is emerging rapidly is drones. The
commercialization of cheap unmanned aerial vehicles (UAVs) or commonly
known as drones is starting to change the way sensor network system de-
signers, think of data collection. For example, decades ago military relied on
ground sensor nodes for information gathering about the enemy movement
in a battle field, however they are now being replaced by mobile drones.
Mobile drones can be seen as small embedded computers that move almost
unconstrained while carrying rich sensory payloads, such as cameras and mi-
crophones, bring sensing and actuation to where no other technology can
reach. They are effectively replacing the connected sensors at rest with one
device being able to be: i) Deployed to different locations, ii) Capable of car-
rying flexible payloads, iii) Re-programmable in missions and being able to
measure just about anything, anywhere. Figure 1.2 presents some application
scenarios.

Emergency Response

SurveillanceLast Mile Delivery

Recreational Photography
Agriculture

Navigation Systems

Figure 1.2: Some drone application usecase scenarios.

Autonomous drones are emerging as a powerful new breed of mobile sens-
ing system [130] and many of them can be controlled by setting waypoints or
by manually steering using a graphical interface through a tablet or a smart-
phone. As new designs emerge, drones progressively achieve higher speeds,
carry larger payloads, and cover larger distances on batteries [129]. They are
increasingly being used to monitor a farmers crops [181], perform surveillance
in disaster relief [157], or monitoring underwater telecommunication systems
[158] more practically and/or more cost-effectively than stationary sensors.
Compared to other kinds of mobile sensing, such as opportunistic sensing
that piggybacks on the mobility of smartphones or vehicles, drones offer di-

6 Chapter 1. Introduction

rect control over where to sample in the environment and the application can
explicitly instruct them where to move. At the moment there are many in-
novations around drones to help us in our day-to-day life apart from sensing
and data collection. For example, there is a mail delivery system introduced
using drones in Singapore [7] and the defibrillator drone introduced by TU
Delft in Netherlands [65]. Also, Amazon and Google are testing drone based
delivery systems [131].

In this dissertation we apply drones to another novel application: se-
cure location verification of distributed dependable systems. Dependability
of many distributed systems relies on the integrity of the component de-
vices. As an example, let us consider a sensor network deployed for pollution
monitoring. The sensors could measure the density of dioxin in the air at
different positions and report it to a centralized gateway, which eventually
decides whether it should raise an alarm. An adversary willing to mask a
pollution event could simply move some sensors in different positions, in a
way such that it will avoid the detection. This attack is simple to carry out,
yet difficult to detect. To mitigate such attacks and to enhance the reliability
of distributed sensor networks against node displacement attack, we propose
a drone based verifiable multilateration method. Drones setup a platform for
creating innovative services which are flexible, cost-effective, reusable, envi-
ronmental friendly (being emission free) and is foreseen to be an effective
enabler in the future cyber physical society [178]. However, flying time is a
major limitation of the current drone technology. Therefore, the energy cost
of the drone must be considered in order to increase the drone operation time
and a key optimization relies on determining the best drone route.

1.1.3 IoT Security Issues
IoT is becoming quite commonplace in the environments where we live, work
and play. Cisco and Ericsson in their individual assessments have estimated
around 50 billion IoT connected devices in the world by 2020 [134, 90]. These
devices help us be more productive and provide for our safety. For example
they are used in the environment to monitor earthquakes, to detect changes
in plains, forests and measure CO2 emission levels in our atmosphere. They
monitor and facilitate vehicle traffic updates on highways and in cities to pro-
vide better commuter experience. They provide passive security in airports,
shopping malls, garages and other facilities. They help us monitor, to move
and promote merchandise in supermarkets and in warehouses. They moni-
tor status, conditions and materials in production processes in our factories.
Also, they are used to turn on heating and cooling in our houses at the right
moment and enable us to be more energy efficient. These interconnected

1.1. Research Motivation and Contribution 7

sensor nodes collect information regarding our physcial environment such as
temperature, sound, acceleration, vibration, pressure, motion, video or par-
ticles in the air and help build useful services. IoT is enabling a new era of
cyber physical society. Key characteristic of IoT applications are typically
composed of: i) A sensor at rest, i.e., on a smart city a sensor on a high-
way or a bridge gathers input like weather conditions, seismic activity, ii) A
connection is established between the sensor and a back-end data collection
infrastructure, iii) The back-end data collection infrastructure is commonly
deployed in the cloud and infer knowledge from the data. Figure 1.3 presents
some use case scenarios where IoT sensor networks are used to sense the
environment around us.

IoT wireless sensor network

IP addressable
sensor node

Border
router

User devices able to address
each sensor through internet

IoT sensor nodes deployed in a smart city

IoT sensor nodes deployed in a smart home

Figure 1.3: Some IoT wireless sensor network application usecase scenarios.

However, these sensors are constrained in nature and most of the time
these devices are equipped with non-rechargeable batteries and are left unat-
tended after deployment. Therefore, IoT is providing a wider attack surface
for the attackers [113]. Since, IoT is going to play a major role in our lives
in the near future, securing these networks is important.

1.1.4 Contributions

Finally, the issues addressed in this dissertation can be summarized under
three heterogeneous devices considered. The inter-dependency of these three

8 Chapter 1. Introduction

devices can also be summarized as presented in Figure 1.4. Especially, smart-
phones play an essential role in connecting a variety of heterogeneous de-
vices including IoT and drones. Among the considered three heterogeneous
devices, IoT is expected to contribute most number of connected devices,
around 50 billion by 2020 [134]. Similarly, it is expected around 7 million
drones [69] and around 6.1 billion smartphones [68] in use by 2020. The
connected nature of these devices are opening the network infrastructure for
wider attack entry points. We discuss possible vulnerabilities and present
counter measures to harden this technological ecosystem in the following
chapters of this dissertation. In the following we summarize the main con-
tributions:

Pollution Event

Last Mile
Delivery
Drones

Surveillance
Drones

Drone Based
Localization

Sensor Reporting
Activity

IoT Sensor Nodes
Layer

Drone Application
Layer

Smartphone Layer
Accessing Temperature
Sensor via InternetProviding A

Controlling
Interface

Offers Cloud Services

Sensor
Moved
Sensor
Supposed
Position
Fix Anchor
Position

Waypoints

Home Waypoint

Figure 1.4: The system architecture, where IoT, drones and smartphones
interact with each other.

Smartphone Security and Privacy Issues: In this part of the disserta-
tion we present our work addressing three pressing issues in smartphones: i)
Hardening smartphones against malware, ii) Preserving anonymity in adver-
sarial mobile cloud communications, and iii) Analyzing the energy consump-
tion of cryptographic protocols running on smartphones. Over the recent
years with the popularity of smartphone usage, we are witnessing a growth
in malware targeting smartphones and in particular the Android platform.

1.1. Research Motivation and Contribution 9

In most attack scenarios the adversary takes local or remote control of the
mobile (by leveraging system vulnerabilities via malicious apps) and send
the collected information to some remote web server. Leveraging the above
network behavior, we propose a new approach for detecting malware solely
by focusing on Android network communications. In particular, we used ad-
vanced machine learning techniques for identifying any anomalous malicious
traffic. Our approach will be explained in detail in Chapter 2. Next we
investigates a specific privacy issue around mobile cloud computing. Many
services are appearing around the processing capability of clouds and the
ubiquitous accessibility for these services with smartphones. However, the
very enablers of these services, mobile Internet providers and cloud platforms
that host them pose several threats to the anonymity of the users commu-
nications. Therefore, we considered the problem of providing end-to-end
anonymous communications and file exchange under the cooperative privacy
threat of involved parties including network operators and cloud providers,
which could actively tamper with the communications. We present our pro-
tocol and the experimental analysis of it in Chapter 3. Many mobile apps
rely on security protocols like Transport Layer Security (TLS) for securing
the web communications of smartphones. However, cryptographic opera-
tions such as public key crypto is expensive on the CPU and hence on the
energy consumption. In particular we designed a possible solution (named
CaT-Cloud aided TLS) for offloading the TLS asymmetric key exchange. We
conducted an extensive experimental analysis to evaluate whether offloading
the asymmetric key exchange of the TLS protocol to a cloud instance could
bring some benefit from the mobile device point of view. We present our
protocol and the experimental analysis in Chapter 4.

Application of drones for sensor network security: In the second
part, we explore the possibility of using the emerging drone technology to
solve the secure location verification problem. Drones, or Unmanned Aerial
Vehicles (UAV), are air-crafts without human pilots. They can enjoy differ-
ent levels of autonomy [77]: ranging from being remotely piloted to being
completely autonomous in movements and decisions. In practice, our idea
is to replace many fixed anchors with a single mobile drone. The drone fol-
lows a path that passes though a series of waypoints. At each waypoint, the
drone “acts like” an anchor by executing a distance bounding protocol with
a node. At the end of the path, each node has been measured from three
different waypoints, and the position can be securely computed by means of
verifiable multilateration. We thus completely eliminate the need for many
expensive fixed anchors. The problem is how to determine a convenient path

10 Chapter 1. Introduction

for the drone. We cannot use existing path planning algorithms, because
a valid path for verifiable multilateration must respect additional geometric
constraints. In particular, the triangle formed by the waypoints must contain
the node, otherwise the computed position will not be secure. Furthermore,
other specific issues must be addressed, like the imprecision on the control
of the drone movements. We explain in detail our approach in Chapter 5.

IoT Security Issues: In the first part of the dissertation we investigated
the ability to detect IoT node activities over encrypted channels. Our work
steps in the direction of identifying any compromised nodes in a network,
where a lot of critical systems depend on. In particular, the industry and
research community is aware about the lack of security in these low power
devices and they are proposing new security protocols for sensor nodes [138].
Many initiatives are on the way and IETF accepted CoAP over DTLS is
emerging as the de-facto standard for securing the communications for the
low power devices [155, 142, 112, 80]. As a result the future IoT devices will
communicate with each other over encrypted channels. In our work we have
focused on IoT activity detection over encrypted traffic, using state of the
art machine learning techniques and we will elaborate further in the Chapter
6.

1.2 List of Publications
The research presented in this dissertation was developed during the PhD
program. The complete list of accepted peer-reviewed workshop, conference
and journal publications are presented in the chronological order.

Journal Papers

J1 Claudio Ardagna, Kanishka Ariyapala, Mauro Conti, Cristina M. Pinotti,
Julinda Stefa. Anonymous End-to-End Communications in Adversarial
Mobile Clouds Pervasive and Mobile Computing. In (Elsevier) Perva-
sive and Mobile Computing, in press, 2016.

Conference Papers

C1 Kanishka Ariyapala, Mauro Conti, Chamath Keppitiyagama. Con-
textOS: a Context Aware Operating System for Mobile Devices. In
Proceedings of the IEEE International Conference on Cyber, Physical
and Social Computing (IEEE CPSCom 2013), pages. 976-984, Beijing,
China, August 20-23, 2013.

1.2. List of Publications 11

C2 Pericle Perazzo, Kanishka Ariyapala, Mauro Conti, Gianluca Dini. The
Verifier Bee: a Path Planner for Drone-Based Secure Location Verifica-
tion. In Proceedings of the IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM 2015),
Boston, MA, USA, June 14-17, 2015.

C3 Kanishka Ariyapala, Mauro Conti, Cristina M. Pinotti. CaT: Evaluat-
ing Cloud-aided TLS for Smartphone Energy Efficiency. In Proceed-
ings of the 1st IEEE Workshop on Security and Privacy in Cybermatics
(IEEE CNS 2015 workshop: SPiCy 2015), Florence, Italy, September
30, 2015.

C4 Kanishka Ariyapala, Hoang Giang Do, Huynh Ngoc Anh, Wee Keong
Ng, Mauro Conti. Host and Network Based Intrusion Detection For
Android Smartphones. In Proceedings of the 2016 Workshop on Secu-
rity, Trust, Privacy and Analytics (IEEE AINA 2016 workshop: STPA
2016), Crans-Montana, Switzerland, March 23-25, 2016.

Part I

Security and Privacy Issues in

Smartphones

Chapter 2

Smartphone Malware Detection

Through Dynamic Analysis

Recently, we are witnessing a growing adaptation of mobile devices over tra-
ditional computing devices like desktop or laptop computers. The presence of
increasing computing power granted by hardware, networking, sensing, and
user-friendliness is empowering the mobile device usage. Out of the popular
mobile device platforms, (e.g., iOS, Android and Windows) Android based
devices are dominating the smartphone market share with around 80% of
the market presence by the end of 20151. The ease of program development,
platform openness, and the user-friendliness have made the Android plat-
form pleasant and ingenious. Millions of Android applications (apps) are
distributed through the Google play store and other third-party application
stores.

The social expectations of the 21st century to be always connected is ex-
posing the smartphone users to possible new attack vectors. For example, the
roaming nature of the mobile device is enabling the device to connect with
different networks, which can make them vulnerable to additional attacks
[146]. Smartphones store a lot of personal data (e.g., contacts, emails, web
history, photos, and credit card information) on the devices and these pri-
vate information have a lot of monetary value. The user popularity and the
new hardware capabilities, along with the user private information stored on
the smartphones are drawing the attention of cybercriminals. Around 99%
of mobile malware is targeted towards Android platform and the malware

1http://www.forbes.com/sites/dougolenick/2015/05/27/apple-ios-and-google-android-
smartphone-market-share-flattening-idc/2/#4e0ea8b7194f

15

16 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

authors are coming up with new sophisticated methods to avoid the malware
detection. Therefore, there is an urgent need to develop methods to mitigate
these threats.

According to anti-virus vendors like Sophos [92], the malware can be cat-
egorized as follows: surveillance, data theft, botnet activity, impersonation,
financial fraud, and intrusive advertising. Though malware can be catego-
rized into different groups, the aim of most malware authors is to have some
degree of control over a victim’s smartphone. Therefore, many malware apps
request network connectivity permission [159], [37] to connect with the In-
ternet. This is justifiable as many malware apps need to connect with their
Command and Control (C&C) center, either to receive a malicious payload
or to send user data from a device. According to the study in [163], it is
possible to model the apps network behavior patterns and to identify any
noticeable anomalous deviations for the majority of the cases.

Malware detection has attracted much attention from the research com-
munity and a considerable number of methods have been proposed to pro-
tect smartphone users from malware. Signature-based methods, which rely
on the previously identified malware cannot detect well the new malware,
meanwhile, anomaly based methods show promising performance. Anomaly
based methods take their advantages from the use of machine learning tech-
niques and the dynamic analysis. They can be divided into host-based fea-
ture and network-based feature methods. Host-based feature methods use OS
related information to extract features. In [162], besides using different clas-
sifiers, Shabtai et al. employ Chi-square, Fisher score for feature selection,
while methods described in [51], [29], [82] exploit system calls to build detec-
tion models. Those methods have the same drawbacks of using few malware
sources and self-written malware. Unlike host-based methods, network-based
methods focus on network related features like IP addresses, service ports,
protocol usage, etc. Methods in [163], [9], [133] utilize network behaviours.
Method described in [163] shows good result, but the benchmarking contains
only ten self-written malware and five real malware. In [133], they extract
11 features, meanwhile, filter out DNS that can be important to identify
malware. Another limitation of the previous work is performing the malware
detection on the device or using third party cloud service. Performing the
computation on the device effects the usability of the device (i.e., battery and
responsiveness), while using a third party cloud service for overcoming the
resource limitations may cause privacy issues, which shuns away the users.
We identify these limitations and propose a use case for securely deploying
our solution.

According to [192], [104] network behaviours of applications over time
can be characterized as a discrete stochastic processes. Therefore, Markov

17

chain-based methods are appropriate choice to construct malware detection
models. Moreover, the sequence of states in a stochastic process can be
considered as a state string. Thus, string kernel methods are potential since
they take advantage of kernel-based methods that have been widely applied.
In this dissertation, we propose two novel methods for malware detection.
In our methods, we collect and analyze netflows that summarize statistics
about network connections of each application. Besides, we employ a high
number of recent malware belonging to diverse malware families to train and
test the constructed models. For classifiers, we adopt Markov chain-based
methods and string kernel-based methods. Therefore, the proposed methods
can overcome the limitation of many existing methodologies.

Our approach can be used in several practical ways to enhance the security
and privacy of the smartphone users. In the following we report some possible
scenarios:

• Frequently, companies employ WiFi in the work premises and a VPN
server to access their resources from outside. Our system can be easily
deployed as a second line of defense to monitor the network traffic
centrally. A company can use network based anomaly detection to
secure the smartphones/tablets given to their employees, while being
relaxed on the apps installed without being worried about enforcing
policies on the application usage [43], [191]. Our method uses netflows
which extracts summarized statistics of the netflows between apps and
web services. Hence, our method is non-intrusive unlike a middle-box
[165], which intercept the data packets and inspect the contents.

• Educational institutes, which have embraced BYOD paradigm [95] is
encouraging personal devices to connect into secure networks which
normally is behind the firewalls. However, this can compromise these
networks due to malware apps running on these devices (e.g., Not-
Compatible malware [119]). In this case, our proposed method can
be applied for monitoring any anomalies in the network traffic in a
non-intrusive manner and help secure the network.

• Some smartphone users are aware of the security threats prevailing for
the smartphones. Our proposed method can be adopted by simply
setting up a personal server and routing the traffic through it. This
enables the user not only to detect any anomalies in the network but
also to gain insights into the network patterns of the installed apps on
her mobile device.

The contributions of our dissertation for Android malware detection are
three folds:

18 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

• Novel detection methods. We introduce two novel methods, using dy-
namic analysis and efficient machine learning techniques for Android
malware detection. To the best of our knowledge, this is the first at-
tempt to apply Markov chain and string kernel methods for Android
malware detection over network features.

• Generalized network models. We formally model our proposed methods,
giving sound mathematical explanations and run a thorough set of
experiments. The proposed models use network traffic samples. In
order to build a generalized learning model, we collected the network
traces of a large number of malware and benign application samples,
belonging to different families on a real Android device.

• Automation Framework. We implement an automation framework us-
ing python and shell scripting to automate many of the tasks, such as
installing, executing, uninstalling apps and collecting network traces
and app related information from the experimental setup.

Organization The rest of the chapter is organized as follows: Section 2.1
explores the important related work in the field, especially focusing network-
based anomaly detection for mobile devices. Section 2.2 explains the termi-
nology and the background knowledge used in our work. Section 2.3 intro-
duces our proposed approach for detecting Android malware using Markov
chain model and string kernel model. Section 2.4 explains the experimental
setup and the evaluation criteria, followed up by the results and discussion
in Section 2.5. Finally, Section 6.6 concludes the findings and the highlights
for future work.

2.1 Related Work
Recently, there has been a dramatic rise in malware targeting smartphones.
This poses severe threats to the smartphones security systems. Therefore,
many malware detection methods have been proposed to detect malware.
Malware detection models can be categorized into two groups: signature and
anomaly-based models. Signature based methods rely on previously identi-
fied malware and analyzing the malware files to create a signature. Many
research work have been proposed in this area, for example, DERBIN [17]
gathers features such as permissions, API calls, network addresses in the code
and other information from the manifest file. DroidAPIMinor [6] is a similar
work using package and API level information from the apk files. Droid-
MOSS [196] uses fuzzy hashing of the apk files for identifying repackaged

2.1. Related Work 19

apps mainly using author information retrieved from the apk files. Further-
more, RiskRanker [77], Dendroid [170] and Apposcopy [62] are deploying
methods for analyzing the apk files and generating signatures from the fea-
tures extracted from the apk files. The main drawback of the above static
analysis based signatures is the constant need for updating the signature
databases. Furthermore, dynamic code downloads, obfuscation methods and
repackaging make it difficult to detect unseen variants of malware [170] and
detection is getting tougher due to the rapidly changing nature of malware.
Subsequently, signature based methods often fail to detect new malware [197].

Anomaly based detection systems are gaining more popularity from the
research community and showing promising results. These systems deploy
machine learning techniques to learn the behaviours of the malware to build
detection models. Thus, they are able to detect new malware which may
use obfuscated techniques or where they deliver the malware payload sepa-
rately. Most anomaly-based methods use dynamic analysis, where the data
collected by monitoring the behavior of applications while running. This is
because most malware applications need to connect to a central C&C server
to receive commands or to exfiltrate private data [146]. Anomalies can be
detected based on either host-based or network-based features. In the com-
ing paragraphs, we give an overview of the popular anomaly based detection
methods for both host-based and network-based approaches.

Host-based feature methods exploit OS related information such as sys-
tem calls, process IDs, CPU usage, memory consumption and battery usage.
Shabtai et al. propose the Andromaly method in [162]. In this method, six
classifiers for malware classification are employed. They are Decision Tree
(DTJ48), Naive Biased (NB), Bayesian Networks (BN), K-Means, Histogram
and Logistic regression based methods. Besides, they also use Chi-square and
Fisher score for feature selection. The classifications are locally done on the
device. Even though the accuracy rates are high especially for DTJ48, to
evaluate, they have used self-written malware. A multilevel anomaly detec-
tor for Android mobile is introduced in [51] by Dini et al. This method works
by monitoring system calls of the applications and using K-Nearest Neighbor
(KNN) algorithm to classify software. The anomalies are detected locally on
the devices and the authors test the system with 50 goodware and 10 malware
samples. Crowdroid [29] is another method, that monitors the system calls
by using a host-based monitoring application. After preprocessing, the data
are sent to a central server where they are analyzed using the K-Means al-
gorithm. For the evaluation, they have used self-written malware too, which
makes the usability of the system questionable. Enack et al. presents PREC
[82], an on device, malware detection system, which monitors the system
calls and uses self organizing maps to detect Root exploits. They have tested

20 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

their prototype with 140 benign apps and with only 10 malware apps. Robot-
Droid [195], introduced by Zhao et al. uses SVM classifier to detect unknown
malware. They mainly focused on privacy information leakage and hidden
payment systems. Their system was assessed with only three types of mal-
ware, namely Gemini, DroidDream and Plankton. Common drawbacks of
the above systems are either the use of too few real malware samples or
self-written malware, which may compromise the accuracy of these systems.
Furthermore, the above-discussed methods use different detection techniques
compared to our work, which only uses network-based features.

Network-based anomaly detection methods utilize network-based fea-
tures such as IP addresses, service ports, protocol usage, traffic volume etc.
STREAM presented by Amos et al. in [9], uses various features and clas-
sifiers. They have used different features such as network, memory, CPU
usage, permissions, and binder interactions. However, network features are
not dominant in their framework, when creating detection models. Besides
that, not using real devices for creating malware profiles is another limi-
tation. Shabati et al. in their work [163], introduce a network behaviour
based malware detection framework. They create the network profiles using
average values of data sent and received over the network interfaces. More-
over, they utilize cross-feature analysis approach for building their detection
models which run on the mobile device, for which they report a resource
overhead. For benchmarking the framework, ten self-written malware, and
five real malware were used. It is a too small data set and only focuses on
self-updating malware. Narudin et al. [133] presents a network behaviour
based detection method for Android malware detection. In order to create
the network behaviour profiles, they let the malware run once for either 10,
20 or 30 mins. They extract 11 features (i.e., src-ip, dst-ip, etc.) from pcap
data and store them in a csv file. Further, they filter out Domain Name
System (DNS) packets from their network capture. However, DNS traffic
may give important indications of any malicious behavior [37].

Network behaviour of an application over time, such as establishing a
connection, listening, exchanging data, idling or terminating connections,
can be modelled as a discrete stochastic process where the behaviour can
be considered as states. Therefore, using Markov Chains for constructing
network-based methods is a logical choice. Markov chains have been applied
in host-based methods in Android [36], [189] and network-based malware de-
tection methods in local area networks (LANs) [97], [32], [104]. To the best
of our knowledge, there is no network-based detection methods for Android
using Markov chains. Besides, the sequence of network states can also be pre-
sented as a string [74]. Therefore, string kernel-based methods are potential
to use as well.

2.2. Background 21

In this dissertation, we propose two novel network-based methods for mal-
ware detection that use Markov chain-based and String kernel-based method.
Our proposed methods are able to overcome the limitations of all the pre-
vious methods that have been mentioned before. Namely, our methods use
network communication data from real smartphone devices. It is useful since
many malware will not perform malicious tasks if they detect virtual environ-
ment [133]. We take into account all the network packets of applications as
they reveal important information, and which we believe should be retained
in the models. The use of different malware families allows our models to
learn a wide variety of malware behaviours. Furthermore, our methods ex-
ploit two efficient machine learning techniques that have not been applied to
network-based malware detection methods to build classifiers.

2.2 Background

In this section we will introduce some background terminology used in our
approach. Netflow data are temporal data whose features can be naturally
represented as strings. In order to construct a learning system using netflow
data, there are two approaches. The first approach is based on Markov
chain theorem. This approach shows promising results in many applications.
The second one employs string kernel based methods. Following, we briefly
describe Markov chain and string kernel based methods, while we point the
reader to appropriate references for a complete introduction on those topics.

Markov chain

A Markov chain is a random process that undergoes transitions from one state
to another on a state space [100]. It needs to satisfy the Markov property,
that is, the probability distribution of the next state depends only on the
current state and not on the sequence of events that preceded it. Therefore,
its property is referred as “memorylessness". Mathematically, a Markov chain
is a sequence of random variables X1, X2, X3, ... such that:

P (X
n+1 = x|X

n

= x
n

, X
n�1 = x

n�1, ..., X1 = x1) = P (X
n+1 = x|X

n

= x
n

),

where SS = {x1, x2, ..., xn

} is state space. It contains all possible values
of X

i

. A Markov chain is determined by an initial vector and a transition
matrix. An initial probability distribution, defined on S, is a vector that
specifies the starting state of the system. A transition matrix (T) is a square
matrix whose transition probability T

ij

characterizes that its current state is

22 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

i given that its previous state was j. Markov chains have many applications
as statistical models of real-world processes.

Kernel methods
In machine learning, kernel methods [176], [177] are considered as state of the
art that have shown impressive performance in many applications of differ-
ent domains. Kernel methods owe their name to the use of kernel functions.
A kernel function is a positive semi-definite function. It allows measuring
similarities over pairs of data examples in a Hilbert space (H) by computing
inner product without an explicit transformation from raw data representa-
tion into H. Mathematically, a kernel function of an input space X is defined
as:

k : X ⇥ X �! R
k(x1, x2) = <'(x1),'(x2)>,

where x1, x2 2 X , ' is a mapping: ' : X �! H. When considering a finite
domain, a kernel function, k, can be presented by a matrix called kernel
matrix (K):

K
ij

= k(x
i

, x
j

).

A kernel-based method can be divided into two modules: a general prob-
lem solver (a well-known method is support vector machine - SVM [45]) and
a specific kernel function. Thus, its performance depends on the quality
of both modules. Traditionally, classical machine learning techniques are
defined over data in vectorial form. However, there exist many potential
application domains where a vectorial representation of the data could lose
important information or is even infeasible. Kernel methods can be employed
to overcome the restriction of classical methods since they only operate on
very general types of data and detect very general types of relations. In
netflow traffic, we can use strings to present data features. Therefore, using
string kernel-based methods to solve such kind of problem is a logical choice.
In the next paragraph, we introduce some of the most used string kernels.

String kernels are functions that allow us to measure the pairwise similar-
ity of any finite string couples on feature space. String kernels are widely used
for biological data [114], netflow data [123], text analysis [118], etc. There
exists a number of strings that have been proposed. A famous string ker-
nel named p-spectrum string kernel is introduced in [114]. This kernel uses
a feature space indexed by substrings of length p. The p-spectrum kernel
K

p

(s, t) counts all the substrings of length p in both strings and kernel value

2.3. Proposed Methods 23

is computed by taking the sum of the products. This algorithm’s time com-
plexity is quadratic in terms of |s| and |t|. Another popular string kernel is
String Subsequence Kernel [118]. It is a generalization version of p-spectrum
kernel. The kernel is an inner product in the feature space consisting of
all sub-sequences of length p. A sub-sequence is any ordered sequence of k
characters occurring in the text though not necessarily contiguously. The
sub-sequences are weighted by an exponentially decaying factor of their full
length in the string, hence emphasising those occurrences which are close
to contiguous. A sequence kernel called the Locality-Improved kernel is de-
scribed in [198] relates recognition of so called translation initial sites in the
sequence. This kernel puts more emphasis on local correlations while the
dependencies between distant positions are of the minor importance or even
do not exist.

2.3 Proposed Methods

In this section, we describe in detail the proposed method for malware de-
tection. The overall schema of our method is presented in Figure 2.1. Our
method captures network traffic of smartphones while apps are running on
the device. This is elaborated in the data collection section. The collected
data are processed, in order to convert the raw network data into state strings,
based on netflows and a set of features. Finally, these state strings are used
for training the Markov chain and String kernel based models. In the test-
ing phase, the coming strings are compared against the models and outputs
a labeled list with predicting if the coming application is benign or mali-
cious. The following sections will explain in detail each step of the proposed
method.

 pcap files Strings

Connection
files

Pre-processingData
collection

Training set

KT SVM

Testing set KP

Label list

Label listMarkov chain-
based classifier

Markov chain model
configuration

String kernel-
based classifier

Figure 2.1: Schema of the proposed methods

24 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

Data Collection
Having a proper data set is crucial for any machine learning based method.
Therefore, we collected the dynamic behavior of many app samples on real
devices in order to train our models accurately. We used over 600 malware
samples from [63], belonging to different malware families and over 1000
top rated applications from the Google play store, which were verified with
the virustotal website [182] to be benign. The malware repository in [63]
consisted of Genome Project [197], Derbin [17], M0Droid [120], virustotal
[182] and some recent malware samples from contagio2. We used apps which
required network connectivity. During application execution we captured
the network traffic and the host-based features like which apps connected
over network. After each experiment we collected a pcap file3 containing the
network traffic and a network connections log file. The exact steps will be
explained in Section 2.4.

Pre-Processing
During the pre-processing phase we converted the outputs from the data
collection into suitable format for our models. First, we converted the raw
network data into netflows, which gives summarized statistics of the network
connections of the smartphone. Using the connection details file, we labeled
the netflows with the corresponding applications in the smartphone. The
steps of generating the labeled netflow files are presented in Figure 2.2. We
used Argus open source software for converting the pcap data into netflows
and the Ra open source software for labeling the netflows. To extract mean-
ingful features from the labeled netflows we used the method described by
Sebastian et al. [73]. Since one netflow cannot represent all the network
behavior, we used the aggregated traffic for an application using a unique
four-tuple structure, which consists of Src-IP, Dest-IP, Dest-Port and Pro-
tocol. Some applications have many unique netflows, for example when a
service is behind a domain which may constantly change the IP address or
uses a pool of IP addresses. In order to aggregate these unique but different
netflows, we used a special character (#) as a separator.

To analyze the behavior of an application three features were used and
each netflow was assigned a state based on the three features. The three
features comprised of size, duration and the periodicity of the netflow. The
size and duration were directly extracted from the netflow while periodicity
was computed from the time-stamp of the netflow. For example, if the time

2http://contagiodump.blogspot.it/
3http://www.tcpdump.org/manpages/pcap.3pcap.html

2.3. Proposed Methods 25

Pcap files

Connection log
files

Netflow
binary files

 ra rule
files

Labeled
netflow files Strings

Argus
software

RA
software

Feature
extraction

Figure 2.2: Steps in data preprocessing

difference between the first and the second flow is represented as T1 and the
time difference between the second and third flows presented as T2, then
the periodicity is computed by T2 � T1. When the app communications
are not periodic, the periodicity is greater than zero. In order to represent
the network behavior as states, we used thresholds for each feature. Using
two thresholds, the features size and duration were broken down into three
states each, while periodicity was broken down into four states. Table 2.1
presents the symbol table (ST) used for assigning a state to the netflow. After
transforming the network behavior to state strings we use them for creating
our models. The exact details of building our models using these strings and
testing a coming application will be explained in the next section.

Model Configuration and Prediction
Consider a set of applications A = {A1, A2, . . . , An

} and a set of labels L =

{L1, L2, . . . , Ln

} in which each application A
i

2 A is associated to a label
L
i

2 L. L
i

equals to 1 if A
i

is malware, and equals to 0 if A
i

is non-malware.
By collecting and processing data from A as presented in previous steps,
we achieve a set S = {S1, S2, . . . , Sn

} such that S
i

2 S is a set of strings
S
i

= {S
i1, Si2, . . . , Sin

i

} in which S
ij

2 S
i

is a sequence of characters in
Alphabet. We aim at constructing a model that can learn from S, L and
detect malware applications. Once the models are built, for each coming
application A

c

that has corresponding set of strings S
c

= {S
c1, Sc2, . . . , Scm

},
our models need to classify the application as malware or not. Following, we
describe how we construct our two proposed methods for malware detection
based on Markov chain and String kernel.

Markov chain-based method
In this section, we characterize how we can build a Markov chain-based model
for malware detection. For each application A

i

2 A, we first form a transition

26 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

Table 2.1: Symbol table for netflow conversion [74]

Periodicity Small Size Medium Size Big Size
Short Medium Long Short Medium Long Short Medium Long

Strongly periodic a b c d e f g h i
Weakly periodic A B C D E F G H I
Weak Non periodic r s t u v w x y z
Strong Non periodic R S T U V W X Y Z
Not enough data 1 2 3 4 5 6 7 8 9

matrix T
i

that represents for its Markov chain M
i

. As we mentioned before,
A

i

is corresponding to a set of strings S
i

in which the string S
ij

= s1s2 . . . snij,
such that s

d

2 ST, d = 1, nij. The transition matrix T
i

is built as follow:

T
i

(x
u

x
v

) =

q
x

u

x

v

p
x

u

, (2.1)

where p
x

u

=

P
x

v

2ST q
x

u

x

v

and q
x

u

x

v

=

f

x

u

x

vP
x

p

,x

k

2ST

f

x

p

x

k

with f
x

u

x

v

=

P
S

ij

2S
i

|{(x
u

, x
v

)|x
u

= s
w

, x
v

= s
w+1; s

w

, s
w+1 2 S

ij

}| is the frequency of
x
u

and x
v

appear in consecutive order in state sequences S
i

. We then take
the longest string in S

i

= s1s2 . . . sn to represent for A
i

and compute the
probability p

i

of its string generated by M
i

by adopting (1) in the following
formula:

p =

n�1X

i=1

log(T
s

i

s

j

). (2.2)

As a consequence, our model contains a set of n Markov chains M =

{M1,M2, . . . ,Mn

} and a set of probabilities p = {p1, p2, . . . , pn}. To predict
the coming application A

c

, for each S
ci

2 S
c

, we first use the formula (2.2), to
compute the probability of S

ci

generated by each Markov chain M
i

2M . As
a result, we have a set of probabilities p

ci

= {p
ci1, pci2, . . . , pcin}. We then use

p and p
c

to measure the difference d
cij

of each S
ci

compared to each repre-
sentative string of each application A

j

2 A by using formula d
cij

= |p
j

� p
ci

|.
Subsequently, we obtain a set of differences d

ci

= {d
ci1, dci2, . . . , dcin}. The

representative string of application in A associated with the minimum value
of d

ci

is the closest to S
ci

. Therefore, the label of its application is assigned
for S

ci

. Finally, we obtain the set of labels for strings in S
c

. To decide the
label for A

c

, the majority vote is used. Namely, if the number of predicted
labels assigned as malware is greater than the number non-malware for the
strings of the coming application A

c

, it will be predicted as malware or else
as non-malware.

2.4. Experimental Setting and Evaluation 27

String kernel-based method

In order to configure the string kernel-based model for malware detection, we
first combine all the strings of the training applications to have an unique set,
S
T

= S1 [S2, . . . , Sn

. All S
i

strings corresponding to an application A
i

will
have the same label as application A

i

. We next apply a string kernel to the
training set S

T

. As a result, we get a gram matrix, K
T

. This gram matrix
[47] contains similarity measures of all string tuples and information needed
for kernel-based methods. We then feed this matrix into Support Vector
Machine (SVM) classifier. SVM works by finding the optimal hyperplane in
Hilbert space that maximizes the minimal margin distribution of positive and
negative hulls. Once the model is built, it is then used to predict the labels
for new applications. For predicting a new application A

c

, we compute the
gram matrix K

P

containing the proximities between any strings in S
c

with
any strings in S

T

. The classifier takes K
P

to calculate and returns a list of
scores showing the likelihood of each string in S

c

to be related to malware.
We then use a threshold r to decide the label for each string in S

c

. Similar
to Markov chain based method, we use the majority vote to assign a label
for A

c

. In practice, we use tuning to find the proper value for r.

2.4 Experimental Setting and Evaluation

In this section, we first describe in detail the steps used to carry out our
experiments. Then we will explain the procedure and metrics adopted to
evaluate the performance of our new methods for malware detection.

Experimental Setting

In order to capture and analyze Android application network traffic, we de-
signed an experimental setup to generate and capture the traffic. This al-
lowed us to execute a large number of apps (malware and benign) and capture
the network traffic. We used Nexus 6 smartphone (Quad-core 2.7 GHz with
3 GB RAM), running Android 5.1.1 as our Android device for executing
malware and a Macbook Pro (Intel Core i5 @ 2.4 GHz with 8 GB RAM)
running OS X server for creating a VPN connection with the smartphone for
capturing the network traffic. Figure 2.3 presents the experimental set up.

Our automation algorithm, which was written in python and shell script
performs: installing, executing, uninstalling of apps and collecting the gener-
ated data. The application dataset we used in our experiments is explained
in Section 2.3. We executed five malware samples in one execution for a

28 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

total of 2.5 hours. Our automation script begins with extracting the package
name and activity name from the APK files and store them along with the
path to APK in a Python list. Later, we installed the APKs and used the
MonkeyRunner library to send various user inputs to the device. Further,
our automation algorithm started the tcpdump to capture the network traffic
on the laptop and ran AndroidLogger app [16] for collecting host data from
the device (i.e., connection log files). At the end of our experiments, the
tcpdump process was stopped and the log files from the AndroidLogger was
retrieved from the smartphone and stored for analysis.

Proposed System Setup
An important design goal we would like to propose is the trade-off between
user privacy and the computational power available for running our detec-
tion algorithms. Many existing solutions either try to run the detection
algorithms on the devices under memory and computational constrains or
send user private data from the mobile device to the cloud for processing.
Many users are not willing to take part in a security solution where they
have to send their sensitive and private information to a third party server
for processing [16]. Our design choice, using a VPN connection through a
dedicated personal computer, enables the user to securely browse the In-
ternet and perform anomaly detection of her Android device. This setup
can be especially applicable for security enthusiastic Android users or cor-
porations where they provide VPN connections for their employees to access
corporations resources [95]. Our proposed system design could enable these
cooperations to run traffic anomaly detection on the employees smartphones
as a second line of defense in addition to the security provided by the VPN
connection. This may eliminate the need for applying policy enforcement
mechanisms [43], [191] for the applications to be installed on the phone.

Figure 2.3, presents the proposed system using a personal computer.
However, the personal computer can be replaced with an enterprise server
and our detection algorithm can be run in any third-party cloud service as
well.

Android Intrusion detector

VPN

Figure 2.3: Proposed network monitoring and analysis setup for trade-off
between user privacy and computational power.

2.4. Experimental Setting and Evaluation 29

Evaluation Method

In order to evaluate the performance of our methods, we employ k-fold cross-
validation that is widely used for evaluating classification algorithms. To
use this evaluation, the dataset is divided into k folds (k subsets), and the
evaluation process is involved into k rounds. Each round uses (k � 1) folds
for the training set to build the classifiers while the remaining one is used
as the test set. We measure the performance of the method in each round
and take the average of all k trials as the final performance of the algorithm.
The advantage of this method is that every data point gets to be in a test set
only once, and gets to be in a training set (k� 1) times so that the variance
of the resulting estimate is reduced as k is increased. In our experiment, we
choose k equal to 10. For string kernel-based model construction, we utilize
subsequence [118] and p-spectrum string [114] kernels that is described in
Section 2.2 to compute the gram matrix. We consider the subsequence of
length two for both adopted kernel methods.

Evaluation Metrics

The following evaluation metrics are used to measure the detection perfor-
mance of our methods:

Precision =

TP

TP + FP
⇥ 100%; (2.3)

Recall =
TP

TP + FN
⇥ 100%; (2.4)

F �measure =
2⇥ Precision⇥Recall

Precision+Recall
⇥ 100%; (2.5)

where TP (true positive) and FP (false positive) are the numbers of correctly
and incorrectly identified malware, respectively. FN (False negative) is the
number of incorrectly identified applications as non-malware. Precision is
the fraction of retrieved instances that are relevant while recall (also called
detection rate) is the fraction of relevant instances that are retrieved. F-
measure considers both the precision and the recall of the test to compute
the score. It can be considered as a weighted average of the precision and
recall. The value of F-measure is large when both precision and recall are
high, and small when either of them is poor.

30 Chapter 2. Smartphone Malware Detection Through Dynamic Analysis

Table 2.2: The performance of the proposed methods in experiment

Measures Methods
Markov chain-based String kernel-based

Recall 84.0% 82.8%

Precision 88.3% 75.0%

F-measure 86.1% 78.7%

2.5 Results and Discussion

Table 2.2 presents the performance of our two methods in the experimental
setting.

According to the results described in Table 2.2, our methods show promis-
ing results. Overall, Markov chain-based method outperforms string kernel-
based method. Related to recall measure, although Markov chain-based
method has a higher value (84%) compared to string kernel-based method
(82.8%), this difference is very small. That means the malware retrieving
ability of both methods are close. However, the Markov chain-based method
demonstrates high precision value (88.3%), meanwhile, it is only 75% in string
kernel-based method. This leads to the significant difference in F-measure
between two methods with 86.1% for Markov chain-based method and 78.7%
for string kernel-based method.

Existing Anti-Virus software is in a constant battle to detect new An-
droid malware families emerging with new threat tactics. According to the
experiments in [197], the existing mobile Anti-Virus Softwares could detect,
in the best case, 79.6%. In our experiments, we tested the performance of our
methods with an updated malware repository belonging to different malware
families. Our Markov chain-based method shows better result (see Table
2.2), showing potential to be applied for malware detection.

2.6 Summary

With the fast growth of smartphone market, we are witnessing more and more
malware targeting smartphones, especially for the Android platform. In most
attack scenarios, the adversary takes local or remote control of the mobile
device (by leveraging system vulnerabilities via malicious apps) and send the
collected information to some remote web service. Many research work have
been conducted for detecting Android malware. However, very few of them

2.6. Summary 31

investigate the possibility of detecting malware by solely focusing on Android
network communications. A network-based anomaly detection method for
Android enables to detect most of the anomalies while being relaxed on the
applications installed on the smartphone. A typical use case is a company
wanting to protect their digital assets such as smartphones/tablets given
to their employees, while not controlling the applications used. The existing
network-based anomaly detection research work shows promising results, but
under restricted conditions. For example, using few malware samples, self-
written malware or using a particular family of malware. In this dissertation,
we investigate to what extent Android malware that can be detected by only
observing the Android network traffic. We design a system, that achieves
this goal using advanced machine learning techniques. We built a complete
implementation of this system and run a thorough set of experiments using
over 600 malware samples belonging to various families and over 1000 top
rated benign app samples from the Google play store. Our system shows
promising results achieving 86.1

Chapter 3

Preserving Anonymous

End-to-End Communications in

Adversarial Mobile Clouds for

Smartphone Users

Mobile cloud computing is the paradigm that was built with the goal to save
a resource very precious to mobile devices—their battery. The idea is simple:
Pushing the execution of (parts of) mobile apps to remote servers residing on
the cloud in order to avoid the energetic cost coming from the local execution
on the device. The paradigm works best with computation-intensive applica-
tions with very limited access to device local resources like sensors, data. In
fact, the more computation-intensive a given task, the more the device will
benefit from executing it remotely. The less a given task needs to access local
resources, the smaller is the device-cloud communication overhead to execute
it remotely. Through the years, researchers have proposed offloading frame-
works that take smart decisions on what to execute remotely [39, 46, 106], and
solutions that boost the security of our devices [20, 22, 147] or enable efficient
data/application backup [21]. Also, solutions that create virtual peer-to-peer
networks of smartphone software clones in the cloud enable unprecedented
and efficient, complex distributed protocols on mobiles [107, 108].

The nature of the mobile apps, but most importantly, their typical com-
plexity, makes it very hard, if not impossible, to use privacy-preserving ex-
ecution mechanisms like homomorphic schemes. In fact, these mechanisms,
designed to operate in hostile environments (e.g., the untrusted cloud) over

33

34
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

encrypted user data, are not suitable for application scenarios considering re-
mote execution of mobile apps [175]. While offloading to the cloud, a mobile
user has then to fully trust the cloud-side of the process. Not only is the cloud
aware of which data and jobs the user is running, but it also knows exactly
who is communicating to whom and what information is being shared.

In this chapter, we advocate that communication and file-exchange pri-
vacy among mobile cloud computing users is achievable, even under very
powerful attacks. To this aim, we propose a protocol that, while support-
ing storage and computation offloading, implements anonymous end-to-end
communications for mobile devices in adversarial mobile clouds. Specifically,
we consider a strong attack model in which smartphones, cloud clones, the
network operator, and the cloud provider are all adversarial entities and can
collude to de-anonymize a communication. The cloud provider can both mon-
itor the traffic from/to the user’s cloud clones, and have access to the memory
within the machines hosting them. Under this powerful and multifaceted at-
tack model, all previous solutions for anonymous end-to-end communication
in a mobile cloud computing setting, including ours [13], are unable to pro-
vide the requested privacy. In this chapter we challenge the common belief
and come up with a solution that provides anonymity and unlinkability to
the users.

Organization The rest of the chapter is organized as follows: Section 3.1
presents the literature review. Section 3.2 presents the system and attack
models used as the basis of our anonymity protocol described in Section 3.3.
Section 3.4 provides an analysis of the security and anonymity provided by
our protocol. Section 3.5 presents experimental results on performance and
efficiency. Finally, in Section 5.7 gives our concluding remarks.

3.1 Related Work

The mobile cloud computing paradigm, though initially designed with the
offloading of heavy computations in mind [39, 46, 106], brings multifaceted
benefits in a large number of application scenarios. It can enable more com-
plex security mechanisms for smartphones [147], or help exploit the cloud to
optimize incoming data-traffic, minimize the device connections to remote
servers, and ensure efficient data backup in the cloud [20, 21, 19]. It opens
the way to complex peer-to-peer services on mobile devices [22, 107, 108],
otherwise impossible to run on our battery-limited smartphones. All these
solutions assume full trust on both the cloud and the network operators pro-
viding the device-cloud communication channel. Also, encryption can come

3.1. Related Work 35

to hand for the protection of the user data stored in the cloud. Unfortu-
nately, if the data/application code is encrypted with a key known only to
the user, the cloud cannot be exploited for offloading anymore. In addition,
encryption does not guarantee full user privacy. Both the cloud and the net-
work operator in fact know how often a user is: i) Offloading computation
to her cloud server (a.k.a. clone of the device [39, 107, 108]); ii) storing
data on her cloud server; iii) exploiting the clone as a bridge to communi-
cate/send the data previously stored on it to other users [107]. If the first
two issues are unavoidable to achieve all the benefits of cloud computation
offloading and backup, the user is increasingly concerned about her privacy
when communicating with other users through the cloud.

Wired, wireless, and hybrid networked systems, have always brought the
need of anonymous communication protocols [14, 125, 127, 128, 151, 152,
161, 194]. Most applicable solutions exploit chains of proxy nodes [34, 171],
accumulating and forwarding source-encrypted messages in batches. Among
them, TOR [171] is probably the most popular one. However, TOR is not
applicable in the scenario in this chapter because devices and clones on the
cloud are uniquely coupled. Also, the communication among two devices di-
rectly involves the corresponding clones. If the latter are compromised, they
will identify the sender (receiver) even if TOR is employed when communi-
cating with the corresponding clone.

With the increasing popularity of social networks, several works put
the trust among friends as a means to achieve anonymity of communica-
tions [125, 127, 128, 151, 152, 161, 194]. However, these solutions either
not fit at all for mobile-cloud computing scenarios, or are computationally
heavy for battery-limited devices. To the best of our knowledge, our previous
work [13] was the first attempt to address the issue of anonymous communica-
tions through the mobile cloud. It provided a user-tunable level of anonymity
to sender (indistinguishable among ↵ users) and receiver (indistinguishable
among � users), the (↵, �)-anonymity, as defined Section 3.2, in presence of
colluding adversaries, including both cloud providers and network operators.
The protocol worked under the assumption that the cloud clones of friend
users could trust each other, and rely on each other to thwart anonymity
breaches of communicating users. Differently from [13], in this work we con-
sider a much stronger attack model: The cloud provider is able to look into a
hosted clone’s memory and read encryption keys stored therein; other clones,
even friend ones, are malicious and can collude with both the cloud provider
and the network operator to de-anonymize other user’s communication. Our
solution also supports computation offloading, in addition to storage offload-
ing, balancing it with data confidentiality.

Other works have addressed a variety of issues in research areas simi-

36
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

lar to the ones considered in this chapter. Senftleben et al. [160] propose
a decentralized privacy-preserving microblogging infrastructure based on a
distributed peer-to-peer network of mobile users. The infrastructure, using
device-to-device communications, is robust against censorship and provides
high availability. Daubert et al. [49] present a solution to privacy-preserving
sharing of smartphone sensor data and user-generated content via Twitter.
The proposed solution ensures both confidentiality and anonymity of users
and their messages. Finally, authentication, a milestone in sensitive-data
handling platforms like the mobile cloud computing, is exahustely reviewed
in the survey in [8].

3.2 System and Attack Models

The goal of our proposal is to achieve (↵, �)–anonymity, that is, given a
sender s and a receiver r , an adversary Adv should not be able to associate
s to less than ↵ users, and r to less than � users. In this section, we present
the system and attack models at the basis of our proposal.

System Model. Our system involves different entities, namely mobile de-
vices and standalone apps belonging to users, cloud providers hosting clones
of the devices, telco operators, and a supporting proxy acting as a middleware
between devices and clones. Mobile devices communicate through both the
cellular network infrastructure and short-range ad-hoc wireless communica-
tion links (we will consider WiFi from now on as a representative technology
for this layer). Each device d

k

of user k is mapped with a clone c
k

(i.e.,
a virtual machine) in the cloud, as well as with a standalone application
std

k

in the Internet. Having clones in the cloud is an emergent practice
for offloading computations and communications, and for backup purposes.
Hence, clones, connected through P2P links in the cloud, are likely to be
entities already present and not necessarily introduced for the sake of our
protocol. Also, we assume that information on friendship relations involving
the system users are freely available (e.g., the public friendship information
available in Facebook).

Key Distribution and User Registration. In our setting, all entities
in the system (device, clone, cloud provider, standalone application, and
proxy) have a private/public key pair and can securely verify the authenticity
of others public keys. The clone keys are distributed by the hosting cloud
provider, while the device and standalone public/private key pairs are locally
generated and then certified by the trusted proxy. To enter the system a
user needs to first register its device with the proxy, and certify device and

3.3. Anonymity Protocol 37

standalone app keys. Then, the user registers its device with a cloud provider
of her choice and have a clone assigned to her. During the registration phase
the device exchanges the public keys with her clone. Finally, each device d

k

shares a secret key SK
k

with the corresponding standalone application std
k

in the Internet, generated locally on the corresponding device and distributed
when necessary through appropriate encryption mechanisms.

The standalone application, the user device, and the proxy are not con-
trolled by the cloud provider. So, their private and secret keys are unknown
to it.

Attack Model. We assume a strong adversarial model, where all commu-
nication channels in our protocol can be the target of an attack. We con-
sider attacks on wireless communications among devices, communications
with the telco operator and proxy, and communications between the clones
in the cloud. We also assume different types of adversaries that are either
malicious (i.e., possibly diverging by the protocol flow) or just honest but
curious (i.e., aiming to violate the privacy, but without tampering with the
exchanged messages). In particular, we consider malicious devices, malicious
clones, and malicious standalone applications, while we assume honest but
curious cellular network operator and cloud provider. Adversaries might col-
lude among them and share their knowledge, such as for instance the device
position within the cellular network and keys stored within clones.

Adversaries aim to identify sender s and receiver r of the communication
or, in other words, to reduce the anonymity to (1,1)–anonymity. We note
that the proxy is trusted and does not collude with any of the adversaries,
although our solution is resilient to the scenario in which it is compromised
by malicious adversaries [13]. In addition, a device or clone can attack or
collude with an adversary to compromise the anonymity of a friend device
or clone.

We underline that, when compared to the attack model considered in [13],
our work considers a significantly stronger adversary model. In particular,
i) we consider the ability of the cloud provider to look into the memory of
the clones and search for encryption keys; ii) we depart from the assumption
of having trusted friend clones (including cs and cr); iii) files can be stored
by the clones in the clear.

3.3 Anonymity Protocol

Our solution provides an end-to-end anonymity communication protocol be-
tween mobile devices accessing the Internet. We assume a user carrying

38
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

a mobile device associated with a clone on the cloud, and installing a stan-
dalone application supporting anonymity activities on its personal computer.
Smartphone data are stored in the clear in the clone and synchronized with
it through an encrypted channel. This approach allows to support full com-
putation offloading in addition to storage offloading, while reducing as much
as possible the parties able to access private data of the users. We note
that, although our focus is on (↵,�) end-to-end anonymity with support for
storage/remote offloading, the offloading can be balanced with data confiden-
tiality as discussed in Section 3.4. Clearly, the opposite scenario of full com-
putation offloading is that of full data confidentiality, which can be provided
by encrypting all data stored in the clones at a price of a reduced/nullified
computational capability of the clones. An approach balancing full compu-
tation offloading (all data in the clear to the cloud provider) and full data
confidentiality (all data encrypted) can selectively encrypt sensitive data,
while storing the remaining data in the clear.

3.3.1 High-Level Overview of the Protocol

Each communication between sender s and receiver r is composed of three
phases as follows [13]: i) Sender communication; ii) clone communication;
iii) receiver communication.

Sender communication implements an anonymous communication be-
tween the sender s and corresponding clone cs , through the proxy and a
set of clones. The sender s initially sends its message through a multi-hop
WiFi communication on an ad hoc WiFi network of devices. Randomly, a
receiving device forwards the message to the proxy using the cellular net-
work. The proxy receiving the message forwards it to a friend clone of cs ,
which in turn broadcasts the message to all its friends including cs . The last
communications are carried out on the cloud.

Clone communication implements the part of the communication respon-
sible for anonymously distributing a message between cs and clone cr of
receiver r . Each friend clone of cs involved in the sender communication
forwards the received message to its standalone app through the Internet.
Standalone apps then forward the message to a friend clone, say c

j

, of clone
cr via the proxy. Clone c

j

finally uses cloud-based communications to broad-
cast the message to all its friends in the cloud including cr .

Receiver communication implements the communication between cr and
corresponding receiver r . It is the inverse of the sender communication and
involves a proxy, the cellular operator, and a device in the proximity of

3.3. Anonymity Protocol 39

s d1 . . . dt dt+1 pr ci

c1

c2
. . .
cs
. . .
cn

M M M M M

Mpr

Mpr

M={[idcm,↵,�, ci, cj ,nonce1,nonce2]Kp
pr
, id f , [idcm]Kp

pr
, [cs ,nonce1]SKs ,

[cr ,�,nonce2]SKs}
Mpr={id f , [idcm]Kp

pr
, [cs ,nonce1]SKs , [cr ,�,nonce2]SKs}

Figure 3.1: Protocol flow for Sender Communication

r . Each friend clone of cr involved in the clone communication sends the
received message to its standalone app through the Internet, which is then
forwarded to the proxy. The received messages are filtered by the proxy,
which forwards only the real message of s to r via a supporting device (WiFi
peer of the destination). The last step uses a mix of cellular and wireless
communications.

The following subsections formalize each of the aforementioned high-level
phases by presenting, in details, the activities carried out by all the parties
involved. Figures 3.1, 3.2, and 3.3 summarize the distribution of packets
among parties illustrating also the content of each message in all three com-
munication phases. Edges with a dotted line refer to wireless communications
carried out on either ad hoc WiFi network (between peers) or cellular network
(between peers and the proxy); edges with a dashed line refer to communica-
tions over the cloud (between clones and proxy); edges with a solid line refer
to communications over the Internet (between clones, standalone apps, and
proxy). The edge labels denote the messages exchanged on the corresponding
links while the description at the bottom of each figure presents the messages
in their entirety.

3.3.2 Sender Communication
Sender communication (Figure 3.1) determines the activities carried out in
order to anonymously send a message from s to cs .

User. Similarly to [13], for each communication, user s defines preferences
↵ and � at the basis of the anonymous communication and selects: i) One
friend clone c

i

whose social network (Sc
i

) has at least ↵ members, that is,
|Sc

i

| � ↵; ii) one friend clone c
j

of c
r

whose social network (Sc
j

) has at least
� members, that is, |Sc

j

| � �. This selection is done using the friendship
database. Then, user s prepares a message M to be sent to cs that includes:
(a) The id id

cm

of the communication, preferences ↵ and �, the identity

40
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

of c
i

and c
j

, and two nonces nonce1 and nonce2 encrypted with K p

pr (the
public key of pr); (b) the id id f of the file to be sent, a number carrying no
information neither on the user nor on the device; (c) the identifier id

cm

of the
communication encrypted with K p

pr (the public key of pr); (d) the identity of
cs and nonce1 encrypted with SK s (the secret key shared between s and its
standalone app std s); (e) the identity of cr , parameter �, and nonce nonce2
encrypted with SK s (the secret key shared between s and its standalone app
std s). We note that, to counteract an attack by the cloud provider that
aims to uncover the sender s by identifying all clones with less than id f files,
s exploits a concealed file identifier. The same operation is performed by
all involved clones to blindly identify the file to be sent according to the
protocol. In this way, all selected files will be valid (including the correct file
by clone c

s

), and the attacker cannot gain any information on the sender.
We also note that nonce1 is used to let i) standalone app std s know that it is
the standalone app of sender s of the communication and ii) pr distinguish
the correct messages among the received ones. Nonce nonce2 has the same
role as nonce1 when std r and r are involved. In addition, it is used to allow
replies from r to s over the same anonymized channel (see Section 3.3.5).

The message M , prepared by the user as described above and depicted
in Figure 3.1, is then sent to proxy pr using a probabilistic multi–hop WiFi
forward to devices in its physical proximity. To guarantee ↵ anonymity, s
sends M only when it is surrounded by at least ↵ devices. This process
prevents the re-identification from nearby devices [13]. To this aim, all de-
vices periodically broadcast a probe request with their identity to surrounding
devices.

Device. Upon receiving M , device d
t

forwards the message to either another
device d

t+1 in its proximity, or to proxy pr , through the cellular network,
using a probabilistic function. The same process is repeated by all involved
peers.

Proxy. Upon receiving message M , pr decrypts
[id

cm

,↵, �, c
i

, c
j

, nonce1, nonce2]Kp

pr
using its private key K s

pr and
stores them for future computations. It then forwards Mpr =

{id f , [id cm

]Kp

pr
, [cs , nonce1]SK s , [cr , �, nonce2]SK s} to c

i

.

Clone c
i

. It forwards the received message Mpr to all clones in its social
network including cs . We note that, by sending Mpr to all clones, ↵ and � be-
come lower bounds to anonymity, and c

i

and c
j

behavior is then independent
from their value.

3.3. Anonymity Protocol 41

c1

c2
. . .
cs
. . .
cn

std1

std2
. . .
stds
. . .
stdn

pr cj

c1

c2
. . .
cr
. . .
cm

M̃std2

M̃stds

M̃stdn

M̃

M̃

M̃

M̃

M̃std1

M̃pr

M̃cj

˜M={f, [idcm]Kp
pr
, [cs ,nonce1]SKs , [cr ,�,nonce2]SKs}

˜Mstds={[f]Kp
stdr

, [cr ,�,nonce2]K
p
stdr

, [nonce2]Kp
cj
, [idcm]Kp

pr
, [nonce1]Kp

pr
}

˜Mstdk={[f]Kp
stdr

, [cr ,�,nonce2]K
p
stdr

, [nonce2]Kp
cj
, [idcm]Kp

pr
, [rnd]Kp

pr
}

˜Mpr={[idcm]Kp
pr
, [f]Kp

stdr
, [cr ,�,nonce2]K

p
stdr

, [nonce2]Kp
cj
}Kp

cj

˜Mcj={[idcm]Kp
pr
, [f]Kp

stdr
, [cr ,�,nonce2]K

p
stdr

}

Figure 3.2: Protocol flow for Clone-to-Clone Communication

3.3.3 Clone-to-Clone Communication
Clone-to-Clone communication (Figure 3.2) includes all activities aimed to
anonymously send a message from cs to cr .

Clone. Each clone c
k

receiving Mpr blindly identifies the file to be sent
by applying a function (e.g., a modulo operation) on the received id f . It
then replaces id f with f generating a new message ˜M={f, [id

cm

]Kp

pr
, [cs ,

nonce1]SK s , [cr , �, nonce2]SK s}, and forwards it to the corresponding std
k

on
the Internet.

Each clone c
k

then sends a file in the clear with the same identifier to
the corresponding standalone application, showing the same behavior to all
observing parties. We note that this approach based on blind file selection
is robust to a scenario where the clone cs is compromised and malicious (see
Section 3.4 for more details). In this case in fact cs behaves as any other
clone in the system and is not able to understand what is going on in the
communication, unless it also owns the corresponding standalone app std s .

Standalone app. Upon receiving ˜M , a standalone app first decrypts
[cs , nonce1]SK s using its secret key SK

k

. If SK
k

=SK s , the decrypted chiper-
text contains c

k

=c
s

, and std
k

identifies itself as std s , that is, the application
of the sender of a communication. std s decrypts [cr , �, nonce2]SK s using
its secret key SK

s

, encrypts [cr , �, nonce2] using K
p

stdr
(the public key of

std r), and encrypts nonce2 using K p

c
j

(the public key of c
j

). It also encrypts
f using K

p

stdr
(the public key of std r) and adds [id

cm

]Kp

pr
to the message.

Nonce nonce1 is finally added to the new message and encrypted with K p

pr

(the public key of pr).
After these activities have been completed, message ˜Mstds={[f]Kp

stdr
, [cr ,

�, nonce2]Kp

stdr
, [nonce2]Kp

c
j

, [id
cm

]Kp

pr
, [nonce1]Kp

pr
} is generated and sent by

std s to pr . The message sent by std
k

6=std
s

involved in the communication is

42
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

c1

c2
. . .
cr
. . .
cm

std1

std2
. . .
stdr
. . .
stdm

pr dm

d1

d2
. . .
dr
. . .
dz

Mstd2

Mstdr

Mstdm

M̃cj

M̃cj

M̃cj

M̃cj

Mstd1

M

M

M stdr={[f,nonce2]SKr , [idcm]Kp
pr
, [nonce2, dm]Kp

pr
}

M stdk={[f,nonce2]SKr , [idcm]Kp
pr
, [rnd]Kp

pr
}

M={[f,nonce2]SKr }Kp
dr

Figure 3.3: Protocol flow for Receiver Communication

the same as ˜Mstds with the only difference that [nonce1]Kp

pr
contains a random

number rnd.

Proxy. Upon receiving a message ˜Mstd
k

sent by std
k

, proxy pr decrypts
the last two fields of ˜Mstd

k

using K s

pr . The first field contains the identi-
fier id

cm

of the communication to which ˜Mstd
k

belongs, while the second
field either nonce1 in case the decrypted message is the correct one (˜Mstd

s

)
or a random number rnd otherwise. Upon identifying ˜Mstd

s

, the proxy
waits until at least ↵ messages belonging to the same communication id
id

cm

are collected. It then prepares message ˜Mpr={[id
cm

]Kp

pr
, [f]Kp

stdr
, [cr , �,

nonce2]Kp

stdr
,[nonce2]Kp

c
j

}Kp

c
j

and forwards it to c
j

. We note that waiting for
at least ↵ messages and encrypting the whole message with the public key
K p

c
j

of c
j

forbids re-identification by attackers able to observe the cloud and
the standalone apps as discussed in Section 3.4. We also note that ↵ and
c
j

are identified using id
cm

previously stored by the proxy with ↵, �, c
i

, c
j

,
nonce1, and nonce2.

Clone c
j

. Upon receiving message ˜Mpr , cj first decrypts it using its private
key K s

c
j

. It then decrypts nonce2 again with its private key K s

c
j

. We note
that nonce2 is used to support bidirectional communications as discussed in
Section 3.3.5. Clone c

j

then forwards message ˜Mc
j

={[id
cm

]Kp

pr
, [f]Kp

stdr
, [cr ,

�, nonce2]Kp

stdr
} to all c

k

in its social network.

3.3.4 Receiver Communication

Receiver communication (Figure 3.3) includes all activities aimed to anony-
mously send a message from cr to r .

Clone. Each clone c
k

receiving ˜Mc
j

forwards the message to its correspond-

3.3. Anonymity Protocol 43

ing std
k

on the Internet.

Standalone app. Upon receiving ˜Mc
j

, a standalone app first decrypts [cr ,
�, nonce2]Kp

stdr
using its private key K

s

std
k

. If K
s

std
k

=K
s

stdr
, the decrypted

chipertext contains c
k

=c
r

, and std
k

identifies itself as std r , that is, the appli-
cation of the receiver of a communication. std r decrypts [f]Kp

stdr
using K

s

stdr

(the private key of std r), and encrypts f and nonce2 using SK r (the secret
key of r). [id

cm

]Kp

pr
is then added to the message. Nonce nonce2 and d

m

are
finally added to the new message and encrypted with K p

pr (the public key of
pr).

After these activities have been completed, message M stdr={[f,
nonce2]SK r , [id

cm

]Kp

pr
, [nonce2, d

m

]Kp

pr
} is generated and sent by std r to pr .

The message sent by std
k

6=std
s

involved in the communication is the same as
M stdr with the only difference that [nonce

s

, d
m

]Kp

pr
contains a random number

rnd. We assume the standalone application to know devices in the proxim-
ity of r . Supporting device d

m

is then selected based on � by extending
the probe request-based mechanism used by user s to start the communica-
tion [13]. In particular, the probe request in sender communication phase
is extended with the information about the number of devices surrounding
the sender of the probe request. Then, r periodically collects and notifies
std r of neighboring devices around it, that is, the ones from which it received
a Probe request including the number of their neighboring devices. In fact,
neighboring devices with less than � devices in their proximity would expose
the anonymity of r , whether selected as destination d

m

. If this privacy con-
dition is not met, then std r would simply ask pr to stop the procedure (as
for the scenario where c

r

is the final destination).

Proxy. Similarly to the previous phase, upon receiving a message M std
k

sent by std
k

, pr decrypts the last two fields of M std
k

using K s

pr (the private
key of pr). The first field contains the identifier id

cm

of the communication
to which M std

k

belongs, while the second field either d
m

and nonce2 in case
the decrypted message is the correct one (M std

s

) or a random number rnd
otherwise. Upon identifying M std

s

, the proxy waits until at least � messages
belonging to the same communication id id

cm

are received. It then prepares
message M={[f, nonce2]SK r}Kp

dr
and forwards it to d

m

, via the cellular op-
erator. Again, waiting for at least � messages and encrypting the whole
message with the public key K p

dr
of dr forbid re-identification by attackers

able to observe the cloud and the standalone apps as discussed in Section 3.4.

Device. Upon receiving message M={[f, nonce2]SK r}Kp

dr
, d

m

broadcasts the
received message to the nearby devices. Among other devices, r receives the
broadcasted message, decrypts it with K s

dr and SK r , and reads the file.

44
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

3.3.5 Discussion

The proposed protocol provides an end-to-end anonymity approach for a mo-
bile cloud environment, which supports storage and computation offloading.
It allows for a tunable tradeoff between the amount of computation that can
be offloaded to the clones in the cloud and the amount of data that are poten-
tially disclosed to the cloud operator. In our protocol, for easy of exposition,
we considered one of the extreme scenarios where data in the clone’s memory
are all stored in the clear (high computation offloading, no confidentiality).

Our protocol employs encryption facilities to hide the two endpoints of
a communication according to ↵ and � anonymity preferences. Its behavior
can slightly differ from the working discussed in this section depending on
↵ and �. For preference ↵=1, sender s does not involve WiFi neighbors
in its proximity during the sender communication phase, while it directly
sends M to cs via pr . For preference �=1, clone c

r

directly receives message
˜Mpr from pr in the clone-to-clone communication phase, and sends message
M={[f, nonce2]SK r}Kp

dr
to r via pr , bypassing d

m

, in the receiver communi-
cation phase.

Bi-directional communications between s and r can be supported by
adding a response communication phase to the protocol. This phase can
be implemented either as a one-way communication switching s with r or by
re-using the anonymous channel created for the communication from s to r .
In the latter case, as discussed in [13], involved clones c

i

and c
j

must be the
same for both directions, r must keep track of the identity of c

j

, and in turn
c
j

of the identity of c
i

. This can be done by using nonce2 and the knowledge
at the proxy.

Finally, there is a subtlety to consider when our anonymous protocol is
executed. The file received by r using our protocol is not synchronized with
the corresponding clone cr to avoid sender-receiver re-identification by the
cloud provider. If synchronized, in fact, the cloud provider could be able to
observe a file stored in cs that is then stored in cr . A file received by r can
be synchronized with cr , if and only if the file has been previously modified
by r .

3.4 Security Analysis

We assess the security of our protocol against possible adversarial entities
aiming to reduce preserved anonymity to (1,1)-anonymity. In particular, we
focus on the novel security features introduced by our proposal and evalu-
ate: i) The security of our solution against a malicious cloud operator that

3.4. Security Analysis 45

tampers with the memory of clones (Section 3.4.1), ii) the security against
malicious clones and standalone apps (Section 3.4.2), iii) the security against
colluding cloud provider, clones, and standalone apps (Section 3.4.3). We
note that, as far as malicious devices, malicious cellular network operator,
and adversary tampering with the proxy are concerned, the security of the
scheme proposed in this chapter is the same as the one discussed in [13].

3.4.1 Cloud operator tampering with clones’ memory

Adversary and capabilities We consider an adversarial cloud operator
that, beyond eavesdropping and analyzing all the traffic going through his
domain, can also tamper with the memory of the clones it hosts.

Execution of the attack Since clones (e.g., Android virtual machines)
are deployed in the physical architecture of the cloud operator, a malicious
cloud can indeed inspect the memory of the clones, retrieve cryptographic
keys, and decrypt all the communications involving the clone.

Defense Our proposal is resilient against this attack, for a simple but ef-
fective reason: All clones involved in the protocol (i.e., c

s

, c
r

, as well as
the supporting clones) will “blindly" execute a set of operations according
to the received messages. Since these operation are, for all the clones in-
volved, “meaningful" operations (e.g., selecting and sending one of the files
they store), the cloud operator cannot discern the actual c

s

and c
r

from
the supporting nodes. More specifically, let us consider the Sender Commu-
nication phase of our protocol, as discussed in Section 3.3.2. Message Mpr

received by each clone involved in this step does not require any computation.
The clone just needs to select the file f corresponding to id

f

and send it (in
the Clone-to-Clone Communication phase) to the corresponding standalone
application. Therefore, in the last step of Clone-to-Clone Communication
and the first step of Receiver Communication, each of the supporting clones
acts simply as a forwarder of message ˜Mc

j

, while c
j

only decrypts a random
number nonce2 in ˜Mpr .

Result of the attack Our protocol provides at least (↵,�)-anonymity in
the worst case.

46
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

3.4.2 Malicious clones and standalone apps

Adversary and capabilities In this scenario the clones can be honest-
but-curios or act in a malicious way by tampering with the protocol. At
the same time, the standalone apps can support the corresponding malicious
clone, or co-operate with either the sender s (receiver r) to identify the other
party involved.

Execution of the attack Honest-but-curious clones obeys to the protocol,
while trying to understand whether they are c

s

and c
r

. Malicious clones also
tamper with the protocol by dropping messages. Malicious standalone app
of supporting clones can only retrieve the information about the fact that it
is the app of neither the sender nor the receiver of the communication. On
the other side, if the standalone app of the of the sender s (receiver r) is
compromised, the standalone app knows it belongs to s (r).

Defense Similar to the previous scenario, nor the cloud provider neither
honest-but-curios clones involved in a communication channel are able to in-
fer the identity of c

s

or c
r

, and thus the one of the sender or the receiver. This
simply follows by the fact that the knowledge of the clones cannot be bigger
than the one of the cloud provider that hosts them. Malicious clones tamper-
ing with the protocol by dropping messages do not endanger the anonymity
of senders or receivers either—note that, our protocol is general enough to
forbid an adversarial clone from understanding its role in the protocol. All
this attack could achieve is at most a denial of service—the messages are
dropped by either c

s

or c
r

. However, in this case the corresponding users
will eventually detect this behavior, and possibly change cloud provider to
mitigate it.

If the standalone app of a malicious clone is also malicious, the user
privacy is still preserved. In fact, even in the worst case scenario, when this
happens for the sender (receiver) standalone app, the identity of the sender
(receiver) is protected by the fact that the malicious std does not know the
real identity of the corresponding clone. We achieve this by storing random
numbers in c

s

and c
r

of ˜M , which are pre-installed in the standalone app
without any link to the real identities of the involved parties.

Result of the attack Our protocol provides at least (↵,�)-anonymity in
the worst case.

3.5. Experiments 47

3.4.3 Colluding cloud provider, clones, and standalone
apps

Adversary and capabilities We consider the possibility of collusion
among cloud provider, clones, and standalone apps.

Execution of the attack The attacker controls the network on the cloud,
and either the couple (c

s

, std
s

), the couple (c
r

, std
r

), or both.

Defense The defense against this attack is given by the complexity of the
attack itself. The attack might be very costly to be implemented, while
it might provide limited results in terms of retrieved information. In fact,
it requires to compromise clones and standalone apps of both sender and
receiver, and have control of the cloud network (e.g., support by the cloud
provider), to access communications involving a single pair of sender and
receiver.

Result of the attack When only one among the couples (c
s

, std
s

) and
(c

r

, std
r

) is compromised by an attacker also controlling the network in the
cloud, our protocol can still guarantee (1, �)–anonymity when (c

s

, std
s

) is
compromised, and (↵,1)–anonymity when (c

r

, std
r

) is compromised. But, if
the attacker compromises c

s

, c
r

, std
s

, and std
r

at the same time, and have the
support of the cloud, it can violate the privacy of both sender and receiver.
This is the only case in which the attacker fully identifies both parties in a
communication.

We note that the proposed attack is very expensive since standalone
apps and cloud clones reside on different platforms—the clones on the cloud,
whereas the standalone apps on decoupled machines on the Internet—and
requires a supporting cloud provider. Also, a single occurrence of this at-
tack would uncover communications only involving a single pair s and d

.

Thus, though possible, it is almost impossible for an attacker to simultane-
ously have a full control of both clones and standalone apps for all possible
sender–receiver couples in the system.

All remaining combinations including an attacker observing the cloud and
the standalone apps are not able to achieve (1,1)–anonymity.

3.5 Experiments
In this section we investigate on the possible overheads induced by our
anonymity protocol. The evaluation focuses on the entities that suffer from

48
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

hardware-related limits (the battery-limited smartphones), and on the proxy,
which could introduce bottlenecks that harm the usability of the system.
The protocol is tested for messages with two types of content: A regular text
message of 160 Bytes (SMS) and a mp3 file of 3.87 MBytes (MP3). Each
experiment is repeated 30 times and the results are aggregated. To measure
the energy-related costs on the phone side we used the Power Monitor1 me-
ter. It samples the smartphone battery with high frequency (i.e., 5,000 Hz)
so to yield accurate results on the battery power, current, and voltage. The
mobile devices in our testbed were Samsung Galaxy S+ devices, 1.4 GHz
Scorpion CPU, and 512 MB of RAM running Android 2.3. The proxy and
the clones were running on a commodity laptop with the following charac-
teristics: Ubuntu 14.04, Intel Core i7–4500U CPU, 1.80GHzX4, 8GB RAM.
Algorithm AES with 192 bit key length was used for symmetric encryption
and RSA with 1024 bit key length for asymmetric encryption.2

3.5.1 Evaluation on the proxy-side

The proxy plays a crucial role in the system and its anonymity: It is respon-
sible of “coupling” device traffic towards clones and standard applications
and vice versa. As such, it is important to study the amount of traffic per
message the proxy needs to handle during a single one-to-one communica-
tion among devices. Recall that the proxy is involved in all the three steps
of the protocol, while the traffic overhead is determined by the number of
clones (standalone apps) involved in a single communication. Indeed, the
proxy needs to receive as many messages as clones (standalone apps) both in
the clone-to-clone and receiver communication steps, from which it discrim-
inates the correct message to push forward in the protocol (see Figures 3.2
and 3.3). This number is strictly related to the (↵, �) anonymity preferences
of the communication: There are at least ↵ clones (standalone apps) involved
in the clone-to-clone step, and at least � clones (standalone apps) involved in
the receiver communication step. For this reason, we have studied the traffic
handled by the proxy varying ↵ and � in the set {1, 5, 10}. The correspond-
ing results are shown in Figure 3.4. As one might expect, the traffic handled
by the proxy is higher for higher values of ↵ and �, for both types of content
exchanged among devices. What is surprising, however, is that the amount of

1https://www.msoon.com/LabEquipment/PowerMonitor/
2We note that, for convenience, we used 1024 bit length for asymmetric encryp-

tion though the latest NIST recommendations suggest using a 2048 bit long RSA key
(http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800–57Pt3r1.pdf). This
choice does not affect our experimental results as the RSA key is mostly used to encrypt
the 192 bit long symmetric key in secret session communications.

3.5. Experiments 49

 0

 5

 10

 15

 20

 25

 30

 35

 40

(1,1) (1,5) (5,1) (5,5) (10,10)

K
B

(a) SMS Overhead.

 0

 10

 20

 30

 40

 50

 60

 70

 80

(1,1) (1,5) (5,1) (5,5) (10,10)

M
B

(b) MP3 Overhead.

Figure 3.4: Traffic overhead per message varying (↵, �) anonymity prefer-
ences. The graphics include the max, min, and quartiles values.

traffic does not grow in a proportional way w.r.t. the anonymity parameters.
This observation indicates that higher anonymity guarantees can be met by
our protocol without inducing severe traffic overheads to the proxy. Recall
that in our testbed the proxy runs on a commodity laptop. Nonetheless, we
believe that in real deployments the proxy could be efficiently implemented
and deployed on a distributed set of high-performing servers, which will boost
its performance and that of the overall protocol.

3.5.2 Evaluation on the device-side
The anonymity protocol involves costly encryption/decryption operations as
well as sending message bundles that include the file index to be transmitted
and other data necessary to guarantee the anonymity of the communication.
In this section we discuss these costs from the perspective of the devices and
compared them with the ones of a plain email protocol. Although the email
protocol does not involve the cloud and does not guarantee any anonymity
properties to users, it served as a benchmark in our evaluation.

Overhead on sender device

We start with the energetic costs on the sender device. They include the
costs of i) the generation of the bundle M to be forwarded to the next hop by
short ad hoc links (sender communication step) and ii) the communication
through WiFi direct. We note that these costs are content-independent.
Indeed, according to our protocol, the content is already on the cloud, and
only the id of the corresponding file is sent within the message bundle to
identify the corresponding file within the cloud and forward it anonymously

50
Chapter 3. Preserving Anonymous End-to-End Communications in

Adversarial Mobile Clouds for Smartphone Users

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

AN EM-SMS EM-MP3

J
o
u
le

s

(a) Energetic Overhead on the source de-
vice: Anonymity protocol (AN) vs E-mail
(EM).

 0

 2

 4

 6

 8

 10

 12

AN-SMS AN-MP3 EM-SMS EM-MP3

J
o
u
le

s

(b) Energetic Overhead on the receiving
device: Anonymity protocol (AN) vs E-
mail (EM).

Figure 3.5: Energetic overhead on the source and destination devices. The
graphics include the max, min, and quartiles values.

towards destination. The results are presented in Figure 3.5(a). It is clear
how, despite the several cryptographic operations involved, the energetic
overhead on the source-side is less than 1.25 J.3 When compared to the plain
email protocol the sender spends 2 times less for short messages (comparable
to SMS) and up to around 20 times less for larger content (mp3 file).

Overhead on receiver device

Now let us consider the costs on the receiver side. Again, they include the
energy spent for receiving the message bundle by d

m

(receiver communica-
tion step), and for decrypting the bundle to finally read the content. We
note that, in this case, the file is included in the bundle. This makes the
costs dependent on the type of content that is being sent. The results are
presented in Figure 3.5(b) and show that the consumption of our anonymity
protocol is again considerably lower than that of the plain email protocol.
In particular, it results 0.78 J for the short text case and around 6 J for the
mp3 audio file. Considering the capacity of almost 22KJ of the battery of
the involved devices, these values are particularly low. Most importantly,
when compared to the plain email protocol the consumption is 3.5 times
lower for the short text case, and around 2 times lower for the mp3 file. Our
investigation showed that this difference is mostly due to the considerably
longer download time of the email content, which is certainly dependent on
the mailing server. This forces the destination device to keep its communica-

3When fully charged, the capacity of the battery of the devices involved in the testbed
contains around 22KJ of energy.

3.6. Summary 51

tion interface up for a longer time, which induces considerably more energy
consumption. Differently, in our protocol, the communication is ad hoc be-
tween the receiving device and d

m

. The communication link exploits the
WiFi direct protocol for device-to-device communication, which results more
efficient from the receiving device’s perspective.

Overhead on relay devices

The anonymity protocol involves also other devices—those that behave as
relays through ad hoc links on both the sender and the receiver communica-
tion steps of the protocol. The devices involved in the sender communication
step, however, have a much easier job than those involved in the latter. In-
deed, they only need to forward the bundle M generated by the source a
step further. According to our experiments, the energetic cost is less than
1 Joule. Differently, in the receiver communication step, we distinguish two
types of devices: The d

m

, in charge of broadcasting the message bundle to all
� devices in its proximity, and a given device d

x

which is not the destination
of the message, but does not know it yet. It is clear that the cost induced to
d
x

is similar to that of the receiver. However, the cost of d
m

is dependent on
the parameter � of the protocol, which determines the number of WiFi-direct
transmissions d

m

needs to perform. According to our experiments, d
m

will
spend 1.8 J, 8.9 J, and 17.8 J for �=1, �=5, and �=10. Again, these values
are very low w.r.t. the 22 KJ battery capacity of the devices involved in the
testbed.

3.6 Summary
We presented a protocol for anonymous end-to-end communications among
users in a mobile cloud environment, where the cloud clones handle part of
the communication towards destination. The attack model considered is un-
precedented. It includes devices, network operators, and the cloud provider
behaving as malicious entities, and the possibility of all of them to collude.
In this scenario, we built a delay-tolerant solution that provably guarantees
(↵, �)-anonymity, and evaluated its performance on a real-life testbed. Our
future work will extend our approach to scenarios where exchanged files may
contain information on sender/receiver, will depart from the assumption of
having a standalone app available for each user in the Internet, and will pro-
vide a formal security analysis of our protocol using automatic cryptographic
protocol verifiers, such as ProVerif.

Chapter 4

CaT: Cloud aided TLS

Smartphone is a very convenient tool providing easy access to information
anywhere, anytime. With the development of mobile Internet services, more
and more users are adopting smartphones as their primary communication
device. According to Gartner statistics [52], the number of mobile devices
shipped out in 2014 surpassed the number of traditional PCs (desk-based and
notebooks). Furthermore, TechCrunch [144] reports that most of the digi-
tal media consumption now takes place via mobile apps (e.g., TechCrunch
reports that during the period of June 2013 to June 2014, the digital time
spent by mobile apps have grown by 52%, compared to 1% growth in desk-
top apps). At present, more mobile apps have a legitimate need for secure
communication (e.g., e-commerce and e-banking). Transport Layer Security
(TLS) and its predecessor, Secure Socket Layer (SSL) are the de facto stan-
dards for secure communications over the Internet [145]. TLS1 is a protocol
designed to provide end-to-end security that guarantees data confidentiality,
integrity and authenticity to the communicating entities. However, TLS con-
nections are computationally expensive to setup because they require public
key cryptography.

Many of the applications available on Google Play store (674 out of 1000
most downloaded free applications) use TLS [59]. In order to establish secure
TLS connections, these applications perform CPU intensive cryptographic
operations, hence high energy consumption. At present, power management
in mobile devices is a complex task because of the many hardware components
(including various power hungry sensors), applications and several network
access interfaces. Furthermore, the user behavior and how the operating

1For rest of the chapter we refer to SSL and TLS as TLS

53

54 Chapter 4. CaT: Cloud aided TLS

system manages the applications, contribute to battery drain as well. Recent
studies suggest the battery life of the smartphones has become a critical factor
in user satisfaction [172].

We mainly focus on increasing the energy efficiency of the smartphone
by proposing a possible solution for handling TLS connection establishment.
Our methodology leverages the emerging mobile cloud computing paradigm
[20, 148, 164, 18, 153] to offload computationally expensive (e.g., asymmetric
cryptography) operations of the TLS handshake to the cloud.

Energy consumption of TLS on mobile devices was studied previously
[145], [172], [24], [124]. Among the findings, an important observation was
that asymmetric cryptography having the highest energy impact [145, 124].
TLS supports session resumption to reuse previously negotiated connection
parameters to short-circuit the TLS handshake.

We conducted a survey to understand the frequency of full TLS hand-
shakes on a smartphone. Furthermore, we measured energy consumption on
the smartphone for full and abbreviated handshakes to better understand the
problem. Motivated by the preliminary studies we designed Cloud-aided TLS
(CaT) to use session-resume on the smartphone all times to connect with the
web servers. We ran a thorough set of experiments to identify the feasibility
of CaT. According to experimental results as well as statistical analysis we
noticed CaT is not improving the energy efficiency of the smartphone on a
significance level of 0.05. Finally we discuss the motivations of this results,
as well as possible directions for improvements.

Organization The rest of the chapter is organized as follows. Related work
is discussed in Section 4.1. Section 4.2 introduces the TLS protocol and dis-
cusses full TLS handshake and session resumption. Section 4.3 presents the
problem statement. Section 4.4 presents the preliminary study we conducted
to better understand the problem. Section 4.5 introduces the protocol design
and Section 4.6 presents the protocol’s implementation. In Section 4.7 we
present the performance evaluation, and finally, Section 4.8 concludes the
chapter.

4.1 Related work

Security protocols and cryptographic algorithms are known to have high
computational requirements especially in resource constrained devices like
smartphones [149, 10, 186]. Apostolopoulosb et al. [11] and Coarfa et al.
[40] have analyzed the performance of SSL using a SSL Web server. Their
performance analysis mainly focused on the timing of an entire client/server

4.2. Background 55

handshake. However, they considered desktop computers as clients, while in
our work we are interested in smartphones. Wong et al. [187] and Hager et
al. [79] measured the timing and the energy overhead of “raw" cryptographic
operations on PDAs. Even though, such cryptographic algorithms are used
in security protocols like TLS, they did not measure the performance of
these algorithms when working together (e.g., TLS). Potlapally et al., [149]
studied the timing performance of SSL on a PDA. However, the authors did
not analyze the energy overhead whereas we analyzed both time and energy
cost for TLS protocol. Diana [24], has considered the timing costs of full SSL
handshake and session resumption. Here the author points out the session
resumption uses less time for connection establishment. However, the work
does not analyze the energy overhead. Furthermore, the work does not assess
the two forms of session resumption: session ID and session-ticket.

While researchers have quantified and addressed the performance over-
head of TLS, the energy implications are relatively less understood, in par-
ticular, for the session resumption. Our work fills this gap by performing
a thorough set of experiments with full and abbreviated (session resume)
TLS handshake using two session resumption mechanisms. Finally, we pro-
pose a novel security protocol, CaT, based on cloud computing and session
resumption paradigms.

4.2 Background

TLS (and its predecessor SSL) is one of the most widely used security pro-
tocols on the Internet [149]. TLS uses a set of cryptographic algorithms to
provide authenticity, integrity and encryption for user data. Authenticity
provides a mechanism to verify the validity of the connecting servers and
is achieved by using a chain of trust (through Certificate Authorities). In-
tegrity provides a mechanism to detect message tampering and is achieved
using Message Authentication Codes (MAC). Encryption provides a mecha-
nism to obfuscate the user data and is achieved using ciphersuites and secret
keys. TLS operates on top of the transport layer, (e.g., TCP/ IP).

It consists of two main layers: handshake and record layer. These two lay-
ers help establish a cryptographically secure data channel over insecure public
networks (e.g., Internet). Handshake protocol authenticates the connecting
peers and help exchange session keys. Record layer, using the negotiated
session keys, protects the data over the Internet.

Negotiating session keys of the TLS handshake protocol is the computa-
tionally expensive, hence in terms of energy consumption as well [24]. We
will start with a brief overview of the TLS full handshake and session resume.

56 Chapter 4. CaT: Cloud aided TLS

4.2.1 Full TLS handshake
In-order to communicate securely, the client and the server must establish
an encrypted channel. To establish this secure channel both parties have to
negotiate a TLS version, verify the certificates and a cypher suit to use. The
process involves exchanging four messages between the client and the server
(without the TCP handshake).

Step 1 The client will initiate TLS handshake by sending a “ClientHello"
message, which contains: TLS protocol version, supported cipher suites,
client’s random value and other TLS options it may wish to use (e.g., session
resume).

Step 2 The server responds with a “ServerHello" message, which contains:
protocol version, a ciphersuite from the list provided by the client and the
server certificate. Optionally it may request clients certificate and additional
parameters for TLS extensions.

Step 3 If both sides negotiate a common version of cipher and the client
accepts the certificate provided by the server, client initiates either RSA or
Diffe-Hellman key exchange, which is used to establish the symmetric key
for the session. Finally, the client sends the server an encrypted “Finished"
message, to indicate the finish of the client handshake.

Step 4 The server will process the key exchange parameters sent by the
client. After checking the message integrity by verifying the MAC, it will
return an encrypted “Finish" message back to the client.

Step 5 Upon receiving the server Finish message, the client will decrypt it
(with the negotiated symmetric key) and will verify the MAC. If the client
is satisfied, the TLS tunnel will be established and the application will start
exchanging data securely.

Figure 4.1 presents the messages passed during the full TLS Handshake.

4.2.2 TLS session resume
In the previous section, we noticed the full TLS handshake is computation-
ally expensive (asymmetric crypto) and add an extra latency (two round
trips) too. To overcome this, TLS protocol supports session-resume and two
mechanisms to accomplish this: 1) Session-Identifier and 2) Session-Ticket
mechanisms

4.2. Background 57

Client Server

Client Hello

Server Hello
Certificate
Server Hello Done

Client Key Exchange
Change Cipher Spec
Finished

Change Cipher Spec
Finished

GET/ HTTP

1

2

4

3

5

Figure 4.1: Full SSL handshake

4.2.3 Session-Identifier

This is described in detail in RFC 5246 [4]. In this mechanism, the server
creates and sends a 32 byte session-identifier as part of the “ServerHello”
message. The server, maintains a cache of session IDs and the negotiated
session parameters for each peer. Clients, too, store the session ID informa-
tion and include the ID in the “ClientHello” message when trying to establish
a new session. If both server and client manage to find the correct session-
identifiers in their caches, an abbreviated handshake can take place. This
will allow the pre-negotiated cipher suite and keys. However, if the server
notices a mismatch in the session IDs, the protocol will fall back to a full
handshake to re-negotiate new keys.

4.2.4 Session-Ticket

The session-ticket mechanism is explained in RFC 5077 [3]. Session-ticket
mechanism was introduced to overcome the limitations of the server-side de-
ployment of TLS session caches. This eliminate the need for the server to
keep per-client session state. A client willing to use session-ticket will indicate
the session-ticket support in the Client Hello message. The server in response
will send an empty session-ticket extension in the Server Hello message, to
indicate it will send a new session-ticket using the “NewSessionTicket" mes-
sage. The server sends the NewSessionTicket message before the server side
ChangeChiperSpec message. If the server notices any anomalies with the
client ticket, it will force a full TLS handshake.

58 Chapter 4. CaT: Cloud aided TLS

Figure 4.2 presents the abbreviated handshake, showing the messages
exchanged during a session resumption. The abbreviated handshake avoids
one round trip and the costliest asymmetric operation of the TLS handshake.

Client Server

Client Hello

Server Hello
Change Cipher Spec
Finished

Change Cipher Spec
Finished

GET/ HTTP

1

2

3

4

Figure 4.2: Abbreviated SSL handshake

4.3 Problem statement

Battery life of smartphones is a limiting factor in the usability of the smart-
phones [172]. Our problem statement was: how to increase the energy effi-
ciency of smartphones, with respect to TLS connection establishment? We
started with two preliminary experiments to investigate the problem better:
1) Conducting a user study to identify the frequency of full TLS connections
on smartphones, 2) Measuring the energy and time consumption for full and
resume TLS handshakes. Section 4.4 gives more information.

4.4 Preliminary Study

We started with a preliminary experiment to identify the frequency of
full TLS handshakes on smartphone. For this we captured the smart-
phone network traffic for three university students, over a period of three
days. For packet capturing we used tpacketcapture application [5]
and used wireshark application to filter (ssl.handshake.session_id and
ssl.handshake.session_ticket) only the TLS full handshake messages
from the entire network traffic. Table 4.1 presents our findings.

According to our study, we noticed the number of full TLS handshakes are
related to personal usage habits (e.g., application usage patterns, applications

4.4. Preliminary Study 59

User No of SSL/TLS Conn.
User 1 825
User 2 1873
User 3 3269

Table 4.1: Number of full SSL/TLS connections for a three day user study

installed) and it varies among users (e.g., between 275 to 1090 connections
per day).

Intuitively session-resume may enhance the energy efficiency of the smart-
phone, especially for the users with high number of full TLS connections.

To identify the significance of session-resume in energy saving, we mea-
sured the time and energy consumption for Full TLS connection and for TLS
resume on the smartphone. In Figures 4.3 and 4.4 we report the average
findings with the standard deviation per full TLS connection and per TLS
session resume. We used the Facebook (FB) server for our experiments and
used session ID and session-ticket methods for Full TLS connections and
TLS resumes correspondingly. Also, we used the Wilcoxon ranked-sum test
(Appendix A) to further analyze the results.

 0

 10

 20

 30

 40

 50

 60

WiFi 3G WiFi 3G

E
n
e
rg

y
co

n
su

m
p
tio

n
 (

µ
A

h
)

 Session ID Session Ticket

Resume method and network interface
���

Resume TLS Full TLS

Figure 4.3: Energy consumption (in µAh) for performing a full TLS hand-
shake and a session-resume over Session ID and Session-Ticket methods

According to the findings, session-resume saves significant amount of time
and energy for both WiFi and the 3G network access interfaces at 0.05 sig-
nificance level. From Figure 4.3, we can see WiFi interface using around half
of the energy, while the 3G interface using little more, with respect to their
Full TLS connection establishment energy. Table 4.2 reports the Wilcoxon
significance levels for each energy experiments in Figure 4.3. Figure 4.4,
presents the time consumption for full TLS connection and for TLS session

60 Chapter 4. CaT: Cloud aided TLS

 0

 0.5

 1

 1.5

 2

WiFi 3G WiFi 3G

T
im

e
 c

o
n
su

m
p
tio

n
 (

s)

 Session ID Session Ticket

Resume method and network interface
���

Resume TLS Full TLS

Figure 4.4: Time consumption (in µAh) for performing a full TLS handshake
and a session-resume over Session ID and Session-Ticket

resume, over WiFi and 3G network access interfaces. Session-resume over
WiFi consumes half the time for a corresponding full TLS connection and
over 3G session-resume consumes little more than half the energy compared
to the corresponding full TLS connection time.

Therefore, according to our findings session-resume saves energy and time
compared to full TLS handshake. This is because of session resume, re-using
previous session keys (avoiding asymmetric crypto) and using one round trip
time less.

Based on the above observation, we considered assessing whether using
session resumption on the smartphone can improve the energy efficiency of
the smartphone.

In particular, we wanted to offload the asymmetric computation of the
TLS protocol to a resourceful instance in the cloud.

One possible design solution was to make the cloud instance acts like a
transparent proxy [2] where all the smartphone network traffic goes through
a single point in the cloud. However, there are many existing solutions using
a proxy to mediate the traffic for security and access control reasons (e.g.,
VPNs, F-Secure Freedome2, CDroid [148]). We identified the following prob-
lems that might occur by sending all the traffic through a single point in the
cloud. They are:

• Sending all the traffic through a single point, requires greater trust
level assumption and hence more security for the cloud instance (e.g.,
an adversary who compromises the cloud instance will have access to all
the traffic between the smartphone and the server). In a solution that

2https://www.f-secure.com/

4.5. Protocol Design 61

avoids sending all the traffic through the cloud instance, the adversary
will have to compromise both the cloud instance and the encrypted
TLS channel between the smartphone and the web server.

• Sending all the traffic through a single point, is non-optimal in terms
of bandwidth and latency. (e.g., the cloud instance may be far away,
whereas the smartphone and web server may be close by: non-optimal
routing). Further, the cloud instance could be a home PC [180], which
may sit behind a relatively slow ADSL connection: non-optimal band-
width usage.

Considering the high number of TLS connections, the energy efficiency of
TLS session-resume and after analyzing the best way to use a cloud instance,
we propose a new architecture to offload the secret key exchange of the TLS
protocol to a cloud instance, while maintaining the smartphone/web server
communications. Section 4.5 gives further details of our design.

4.5 Protocol Design

In this section we introduce: Cloud-aided TLS (CaT), which offloads the
asymmetric crypto of the TLS handshake to a cloud instance.

We perform this asymmetric crypto operation in a cloud instance, to in-
crease the energy efficiency of the smartphone. The cloud instance establishes
the initial connection with the web server (as specified by the smartphone)
where, it performs the initial full TLS handshake. During the handshake
operation, the cloud instance saves the negotiated session parameters.

Our protocol passes these session parameters to the smartphone via a
secure channel, where the smartphone resumes the connection with the web
server using the session keys.

For session-resume our protocol supports session-identifier and session-
ticket methods.

When designing the protocol, we assumed the data stored on the cloud
instance is secure, especially the session related details. We protected all the
communications between the smartphone/cloud instance (Section 4.6).

Further, all the communications between the smartphone/web server
(TLS session resume) and web server/cloud instance (TLS session) are im-
plicitly secure through TLS connections.

If the web server notices any anomalies in the session parameters, as a
safety precaution, it falls back to a full handshake. Thus mitigating the
security vulnerabilities of tampered session details on the cloud.

62 Chapter 4. CaT: Cloud aided TLS

Protocol Description Figure 4.5 shows the overall components of our
protocol. The arrow numbers indicate the sequence of the messages. In step
I the device will indicate to the clone the web service it wants to connect with.
The clone will connect with the web service and perform a full handshake in
step II. As the step III of the protocol the clone will send the Session Context
to the mobile device. Finally, in step IV the device will resume the session
with the web service using the Session Context from step III.

3G/ W
iFi

Resume the
TLS

connection
with the

web service Pass TLS

Session

Details to

Mobile

Initialize TLS

Connection
For the

requested
web service

1

4 3

2

Initialize the web service request

RC4 Stream Cipher with 128 bit key

TLS Default Cipher Suite
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Cloud Instance

Figure 4.5: Protocol design

Energy Model Now we introduce the energy model which we use to ex-
plain the results in Section 4.7.

Offloading a mobile computing task is a tradeoff between energy for of-
floading (uploading the data and downloading the result) vs. energy for local
processing.

If we define E
Device

as the energy required for local computation and
E

Cloud

as the energy for offloading, then the difference in the energy can be
given as E

Saved

:

E
Saved

= E
Device

� E
Cloud

> 0. (4.1)

4.6. Implementation 63

A positive E
Saved

means a saving in energy by offloading and vice versa.
Energy consumption (offload or local) can be represented as a function

of power (P
x

) and time (T
x

). Therefore, energy E
x

:

E
x

= P
x

⇥ T
x

. (4.2)

Energy for offloading can be further broken down as follows: energy to
send the request to the cloud E

s1, the idle energy while waiting for the C
to complete the full TLS handshake E

i

, the energy for receiving the session
parameters E

sp

and energy to resume the session with the web server E
s2.

This can be represented as follows:

E
Clone

= E
s1 + E

i

+ E
sp

+ E
s2. (4.3)

By substituting Equation 4.2 into Equation 4.3, we get the following
Equation:

E
Clone

= P
s1 ⇥ T

s1 + P
i

⇥ T
i

+ P
sp

⇥ T
sp

+ P
s2 ⇥ T

s2. (4.4)

According to Equation 4.4, the execution time plays a crucial role in
saving energy when offloading. If we define the local power consumption as
P
l

and local execution time as T
l

, we can summarize the condition for energy
saving by offloading as follows:

P
l

⇥ T
l

> P
s1 ⇥ T

s1 + P
i

⇥ T
i

+ P
r

⇥ T
r

+ P
s2 ⇥ T

s2. (4.5)

From Equation 4.5, we can identify a higher local execution time and
a large gap between the local execution power and offloading power, would
increase the benefits of computation offloading.

4.6 Implementation

We implemented the CaT protocol using C programming language following
a client/server architecture. All the communications between the smartphone
and the cloud instance was protected. To get indicative measurements we
used RC4 stream cipher, with a 128 bit key. However, in a real deployment
we plan to replace RC4, with a secure ciphersuite (e.g., a block cipher in a
counter mode like Galois/Counter Mode-GCM).

For our experiments we used OpenSSL version 1.0.1g on Android and on
the cloud instance. We cross compiled an OpenSSL client for Android, as
an OpenSSL client is not available by default for Android. To complete the

64 Chapter 4. CaT: Cloud aided TLS

OpenSSL setup on Android we installed certificates of trusted Root Certi-
fying Authorities (CA’s) too. We collected them from the Mozilla Firefox
certificate bundle [1] and converted them to the PEM format.

We used the following two commands to create new sessions (session ID
and with ticket options respectively):

• openssl s_client -connect servername:443 -no_ticket -state -msg

-sess_out session.out

• openssl s_client -connect servername:443 -state -msg -sess_out

session.out

and the following command to resume the sessions:

• openssl s_client -connect servername:443 -no_ticket -sess_in

session.out

• openssl s_client -connect servername:443 -sess_in session.out

We wrapped these commands in our program implementation. C handled
the full TLS in new session creation in CaT, new session creation was done
by C, while D resumed the session.

4.7 Experiments
Under normal circumstances the mobile device cannot perform a session re-
sume with a web server on the first attempt. Therefore we introduced CaT,
which integrates Full handshake and session resume under one protocol. CaT
allows the mobile device to establish a secure connection with the web ser-
vice using resume on the first attempt. We tested our protocol CaT vs. the
Full TLS handshake with the following servers: Facebook (FB), Google (G)
and a sever that we control (which we refer to as X in our work to remain
anonymous). We tested our protocol under two different network access in-
terfaces WiFi and 3G. We used a Galaxy Nexus smartphone (Dual-Core 1.2
GHz with 1 GB of RAM) running Android 4.3. The Lithium-Ion battery
capacity of the smartphone was 1.75 Ah with an operating voltage of 3.7 V.
For the cloud service we used an Amazon T2.small instance (Intel Xeon pro-
cessor operating at 2.5 GHz with 2 GB of RAM). We measured the power
consumption using the Monsoon power monitor3 connected to our phone.

3https://www.msoon.com/LabEquipment/PowerMonitor/

4.7. Experiments 65

This device sampled the smartphone battery with high frequency (i.e., 5,000
Hz) to yield accurate results on the battery power, current and voltage. Dur-
ing the experiments, we switched off the smartphone screen to get accurate
measurements. For each scenario we ran ten sets of experiments, each con-
sisting 100 TLS connections to the web server. The histograms report per
connection values. First, we analyzed the results further using the Wilcoxon
rank-sum test [185] at 0.05 significance level.

Wilcoxon rank sum (WRS) test is a non-parametric statistical hypothesis
test used to compare the two related samples or repeated measurements on
a single sample to check the population mean rank difference. The test
can be considered as an alternative to the t-test. However, WRS can be
applied to any distribution contrary to t-test, which can be applied only to
a normally distributed data samples. In our experiments, p-value less than
0.05 significance level implies a statistical difference in the two data samples.
Table 4.2 presents the summary of the statistical analysis.

Test ID Sub-Category P-value W z r
Full &
Resume TLS
on Phone
(Fig. 4.3)

Session ID (WiFi) p <0.001 55.0 -3.780 -0.845
Session Tkt (WiFi) p <0.001 55.0 -3.780 -0.845
Session ID (3G) p <0.001 55.0 -3.780 -0.845
Session Tkt (3G) p <0.001 55.0 -3.780 -0.845

Cat & Full
TLS for FB
(Fig. 4.8)

Session ID (WiFi) p = 0.005 68.0 -2.797 -0.625
Session Tkt (WiFi) p = 0.023 75.0 -2.268 -0.507
Session ID (3G) p <0.001 56.0 -3.704 -0.828
Session Tkt (3G) p <0.001 55.0 -3.780 -0.845

CaT & Full
TLS for X
(Fig. 4.10)

Session ID (WiFi) p <0.001 56.0 -3.704 -0.828
Session Tkt (WiFi) p <0.001 55.0 -3.780 -0.845
Session ID (3G) p <0.001 55.0 -3.780 -0.845
Session Tkt (3G) p <0.001 55.0 -3.780 -0.845

CaT & Full
TLS for G
(Fig. 4.11)

Session ID (WiFi) p <0.001 55.0 -3.780 -0.845
Session Tkt (WiFi) p = 0.002 65.0 -3.024 -0.676
Session ID (3G) p <0.001 55.0 -3.780 -0.845
Session Tkt (3G) p = 0.005 68.0 -2.797 -0.625

Table 4.2: Summary of Wilcoxon rank-sum test. At a significance level of
0.05, there is a statistically significant difference between all the data samples.

66 Chapter 4. CaT: Cloud aided TLS

We used two session-resume methods in our experiments. They are ses-
sion ID and session-ticket methods. Figure 4.6 presents the average power
consumption of CaT and full TLS connections. Using Figure 4.6 it is notice-
able that the CaT protocol consumes less power than the full TLS connection
with the web server. Figure 4.7 presents the time consumed for TLS con-
nection establishment with both protocols. We can observe CaT consuming
a longer time for establishing a TLS connection. As a result, according to
Equation 4.2 the energy consumption of the CaT protocol increases. Figure
4.8 presents the energy consumption for both operations. With the WiFi
interface, both protocols consumed almost the same amount of energy, while
with 3G, CaT consumed more energy. According to our statistical analysis
there is a significant difference at 0.05 level, in the energy consumption for
the two methods. Table 4.2 gives detailed results of the statistical analysis.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

WiFi 3G WiFi 3G

P
o
w

e
r

co
n
su

m
p
tio

n
 (

m
W

)

 Session ID Session Ticket

Resume method and network interface
���

CaT Full TLS

Figure 4.6: FB - Power

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

WiFi 3G WiFi 3G

T
im

e
 c

o
n
su

m
p
tio

n
 (

m
s)

 Session ID Session Ticket

Resume method and network interface
���

CaT Full TLS

Figure 4.7: FB - Time

4.7. Experiments 67

 0

 10

 20

 30

 40

 50

 60

 70

 80

WiFi 3G WiFi 3G

E
n
e
rg

y
co

n
su

m
p
tio

n
 (

µ
A

h
)

 Session ID Session Ticket

Resume method and network interface
���

CaT Full TLS

Figure 4.8: FB - Energy

Since energy consumption (as given by Equation 4.2), is a function of
power and time we can conclude, the time increase in the CaT protocol,
causes to consume more energy. Figure 4.9 gives a visual representation of the
instantaneous power consumption when connecting with the FB server via 3G
for one experiment. The full TLS reports high energy peaks in comparison
to CaT and the execution time of full TLS is shorter compared to CaT.
Therefore, according to Equation 4.5 we can generalize the operation time of
CaT is currently the bottleneck in saving energy.

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

Time (s)

P
o
w

e
r

co
n
su

m
p
tio

n
 (

m
W

)

With Session Ticket − 3G

CaT
Full TLS

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

Time (S)

P
o
w

e
r

C
o
n
su

m
p
tio

n
 (

m
W

)

With Session ID − 3G

CaT
Full TLS

Figure 4.9: FB - Instantaneous power

We experimented with two other servers, where we observed a similar

68 Chapter 4. CaT: Cloud aided TLS

pattern. Hence, we report the total energy consumption for them. Figure
4.10 presents the total energy consumption for the Server X and Table 4.2
the statistical analysis results. Server X shows a similar behavior to FB
experiments in terms of energy consumption.

 0

 10

 20

 30

 40

 50

WiFi 3G WiFi 3G

E
n
e
rg

y
co

n
su

m
p
tio

n
 (

µ
A

h
)

 Session ID Session Ticket

Resume method and network interface
���

CaT Full TLS

Figure 4.10: X - Energy

Figure 4.11 presents the total energy consumption for creating a session
with the Google web server. According to the Figure 4.11, at 0.05 significance
level (Table 4.2), CaT protocol consumes less energy, compared to the Direct
method, when using WiFi. We will analyze the session ID method with
WiFi interface scenario to understand the situation better. CaT protocol
consumed 1.08 mA and 0.32 s to establish a TLS connection. While full
TLS connection consumed 2.03 mA and 0.23 s to establish a connection.
Applying the above values to the Equations 4.1 and 4.2, we can notice CaT
saving energy compared to Full TLS.

Taking a closer look, we notice Google server reports the smallest execu-
tion times for all scenarios. Since Google servers have high availability, which
allows to create connections faster with the server.

As a result, smartphone connects faster with the Google server, causing
the crypto operations to be faster. This increases the load on the CPU in a
given time compared to other scenarios.

Current smartphones [172, 168] have adjustable CPU frequency in-order
to scale to the workload and save energy. According to [168, 111, 172], the
energy consumption of the CPU increases exponentially with the increase of
the CPU frequency.

In this specific scenario, we noticed the increased load on the CPU, caus-
ing the full TLS to use more power for the operation. Hence we notice CaT
saving energy.

According to the observations we see the CaT protocol consuming less

4.8. Summary 69

 0

 5

 10

 15

 20

 25

 30

 35

 40

WiFi 3G WiFi 3G

E
n
e
rg

y
co

n
su

m
p
tio

n
 (

µ
A

h
)

 Session ID Session Ticket

Resume method and network interface
���

CaT Full TLS

Figure 4.11: G - Energy

power at a given time. This is because of not performing the asymmetric
cryptography locally on the smartphone. The energy consumption increases
when more CPU intensive operations run on the smartphone. The full TLS
connection performs the asymmetric operation in a burst. Since the time
duration of the operation is less than CaT, the full TLS connection makes a
saving in energy for most cases. However, the energy consumed by the full
TLS can vary with the load on the CPU as in the Google server example,
where the CaT protocol is efficient.

4.8 Summary
In this dissertation we proposed a new approach for establishing TLS con-
nections for smartphones using computational offloading to handle the asym-
metric key exchange. Intuitively offloading computationally expensive asym-
metric key exchange from the smartphones is promising in improving energy
efficiency of the smartphone. We started with some preliminary studies. Ac-
cording to our study we identified there are two groups of users: light and
heavy with full TLS connections varying between 275 and 1090 connections
per day. Furthermore, to identify the energy requirements, we performed
full TLS handshake and TLS resume on the smartphone using session ID
and session-ticket methods. According to the findings session-resume consid-
erably reduced the TLS handshake time and also the energy usage for the
operation. Taking into account the positive preliminary results, we imple-
mented our approach, CaT to enhance the energy efficiency of smartphones.
We ran a through set of experiments on CaT and compared the performance
with the full TLS connection establishment on a smartphone. As it is possi-
ble to see in Figure 4.6 the instantaneous energy consumed is lower for CaT

70 Chapter 4. CaT: Cloud aided TLS

than for TLS. However, since the computations lasts more for CaT than TLS,
overall Cat looses in comparison with TLS.

Part II

Applications of Drones for Secure

Localization

Chapter 5

Application of Drones For Secure

Localization Problem

The dependability of many distributed systems relies (often implicitly) on
knowing the positions of the component devices. If the system believes that
a device is in a position different from the real one, then it could infer wrong
information and take wrong decisions. An adversary capable of changing the
position of one or more devices (displacement attack) can deeply affect the
system behavior with little effort. As an example, let us consider a sensor
network deployed for pollution monitoring. The sensors could measure the
density of dioxin in the air at different positions and report it to a centralized
gateway, which eventually decides whether it should raise an alarm. An
adversary willing to mask a pollution event could simply move some sensors in
different positions, in a way such that it will avoid the detection (as illustrated
in Figure 5.1). This attack is simple to carry out and difficult to detect.

Periodically measuring the positions of the devices is not enough to guar-
antee security. In fact, the majority of the positioning methods are vulnerable
to attacks in which an adversary falsifies the position measurement [179, 86].
For example, if the position is inferred from the strength of a received beacon
message, the adversary can confuse the measurement by sending fake bea-
cons from wrong positions. Authenticating the beacons does not solve the
issue, since the adversary could listen and replay authenticated beacons from
different positions (wormhole attack [86]). Providing secure measurements
of positions has shown to be a non-trivial problem [179, 193, 154]. A promis-
ing approach is verifiable multilateration [179]. Verifiable multilateration is
a secure positioning technique that determines a position by measuring the

73

74 Chapter 5. Application of Drones For Secure Localization Problem

Sensor

Moved
Sensor

Supposed
Position

Pollution Event

Figure 5.1: Displacement attack against an environment monitoring system.
A hostile actor changes the positions of some sensors, and then she can pollute
without being detected.

distances from (at least) three anchors by means of distance bounding proto-
cols [28]. A distance bounding protocol is a cryptographic protocol able to
measure a secure upper bound to the distance between two devices. Verifi-
able multilateration has the drawback that it requires many fixed anchors.
The number of necessary anchors grows roughly linearly with the size of the
area in which the nodes are deployed [179]. Another problem is that the fixed
anchors must be truly “fixed”. Otherwise an adversary could simply move an
anchor to jeopardize the security of the system.

In this chapter, we explore the possibility of using the emerging drone
technology to solve these issues. Drones, or Unmanned Aerial Vehicles
(UAV), are aircraft with no human pilot. They can enjoy different levels
of autonomy [101]: ranging from being remotely piloted to being completely
autonomous in movements and decisions. In practice, our idea is to replace
many fixed anchors with a single mobile drone. The drone follows a path
that passes though a series of waypoints. At each waypoint, the drone “acts
like” an anchor by executing a distance bounding protocol with a node. At
the end of the path, each node has been measured from three different way-
points, and the position can be securely computed by means of verifiable
multilateration. We thus completely eliminate the need for many expensive
fixed anchors.

The problem is how to determine a convenient path for the drone. We
cannot use existing path planning algorithms, because a valid path for
verifiable multilateration must respect additional geometric constraints. In
particular, the triangle formed by the waypoints must contain the node,
otherwise the computed position will not be secure. Furthermore, other
specific issues must be addressed, like the imprecision on the control of the
drone movements.

5.1. Related Work 75

Contribution

• We explore the approach of using drones to securely verify a set of
positions by means of verifiable multilateration.

• We formally state the Traveller Location Verifier Problem (TLVP), that
regards finding the shortest path for a drone to securely verify a set of
nodes.

• We propose VerifierBee, a path planning algorithm that finds an ap-
proximate solution to TLVP.

• We run a thorough set of experimental evaluation of VerifierBee. The
results of our experiments show that VerifierBee improves the path
length of some 50% with respect to a simple solution.

Organization The rest of the chapter is organized as follows. Section 5.1
compares relevant related work. Section 5.2 introduces the basic concepts.
Section 5.3 introduces the idea of drone-based verifiable multilateration. Sec-
tion 5.4 formalizes the Traveller Location Verifier Problem. Section 5.5 in-
troduces VerifierBee. Section 5.6 reports the results of our experimental
evaluation. Finally, Section 5.7 concludes the chapter.

5.1 Related Work

Secure positioning aims at measuring the position of a device in the presence
of an adversary that wants to falsify such a measurement. Researchers pro-
posed many methods [98], offering different levels of security (provable or only
statistical), and defending against different adversaries (external or internal).
Čapkun and Hubaux [179] proposed a secure positioning method called ver-
ifiable multilateration. In this proposal, the system measures the distances
from a set of trusted anchors by means of distance bounding protocols. The
position is computed by means of multilateration, and it is considered secure
if it lies inside the polygon formed by the anchors. In this chapter, we ap-
proach the problem of performing verifiable multilateration not with many
fixed anchors, but with a single mobile drone.

Čapkun et al. [154] proposed a drone-based approach for secure loca-
tion verification. In their system, the adversary is a malicious node that lies
about its position. The drone sends a challenge message to the nodes, and
then moves to a different random position. After an agreed period of time,
the nodes respond with a response message, by which the drone infers their

76 Chapter 5. Application of Drones For Secure Localization Problem

positions. Assuming that the malicious node ignores the drone’s new posi-
tion, it cannot falsify its own position in a coherent manner. Our approach
is radically different, because it is based on verifiable multilateration, which
is provably secure. As a consequence, we do not need to suppose that the
drone’s position is unknown by the adversary.

A similar problem to ours is drone-based data gathering from sensors
[26, 54, 83, 121]. In this case, a robot (either aerial, terrestrial, or under-
water) must collect data from a set of sparse and unconnected sensors. These
works propose path planning algorithms that solve generalized forms of the
Traveller Salesman Problem (TSP). The objective is usually to minimize
the path length while respecting particular constraints. In this chapter, we
propose a path planning algorithm to securely verify the positions of a set of
nodes. This problem can be viewed as a generalization of the TSP as well.
However, our problem is radically different from data gathering, because the
path must respect a completely different set of constraints. For example,
we must range each node from three distinct waypoints, whereas a single
waypoint per node is sufficient for data gathering.

Another problem related to ours is drone-based (insecure) localization
of ground devices [30, 44, 48, 143]. All these works do not have security
in mind, and their position measurements cannot be considered trusted in
a hostile environment. One of the simplest approaches is the one given by
Corke et al. [44], in which a robot sweeps the entire area and periodically
broadcasts its GPS position. The nodes collect such messages, called position
broadcasts. They finally infer their own position by averaging all the received
position broadcasts. Such a method is not secure, since an adversary could
simply send fake position broadcasts, in such a way to confuse the nodes.
Authenticating the position broadcasts does not solve the issue, since an
adversary could listen to a legitimate broadcast and replay it on different
positions. This is commonly known in the literature as the wormhole attack
[86]. In general, all the localization method based on the strength of received
messages like [30, 143] are poorly secure, since an adversary has an easy play
on falsifying this information.

Dang et al. [48] uses a set of drones to localize a set of ground nodes,
by measuring the relative distances between them. Our system measures the
relative distances too, but it assures the security of the computed positions
by using verifiable multilateration. Verifiable multilateration poses special
requirements on the path that the drone has to follow. In particular, we
must range each node from three waypoints, and the triangle formed by
them must contain the node. This requirement was not present in classic
trilateration.

5.2. Preliminaries 77

5.2 Preliminaries

A distance bounding protocol [28] is a cryptographic protocol able to measure
a distance between two devices, in such a way that an adversary cannot fake
the measurement to be shorter than real (reduction attack). A distance
bounding protocol determines a distance by precisely measuring the round-
trip time between a challenge and a response message. The messages convey
numeric quantities which are unpredictable by the adversary. The adversary
cannot reduce the round-trip time measurement, because she should guess
and transmit in advance the messages.

A simple example of distance bounding protocol is the following:

M1: A �! B : a
M2: B �! A : b
M3: B �! A : sign

k

(A,B, a, b),

where a and b are random numbers unpredictable by the adversary, and
k is a shared secret, by which B authenticates the protocol execution. M1
and M2 are the challenge and the response messages. To precisely measure
the round-trip time, the challenge and the response are usually transmitted
by means of impulse-radio ultra-wideband (IR-UWB) PHY protocols [89],
resulting in a precision of centimeters. From now on, we will say “A ranges
B” as a shorthand for “A executes a distance bounding protocol with B.”

Verifiable multilateration [179] is a method for the secure measurement
of positions which leverages distance bounding. In verifiable multilateration,
the position of a node is determined by measuring the distances between the
node and at least three anchors whose positions are known (Figure 5.2).

Figure 5.2: Verifiable multilateration. The computed position is accepted
only if it lies inside the verifiable triangle (the thick dashed one).

The distance measurements are performed by means of distance bounding
protocols. The node’s position is computed by trilateration. Such a position

78 Chapter 5. Application of Drones For Secure Localization Problem

is accepted only if it lies inside the triangle formed by the anchors (verifiable
triangle). Otherwise, it is discarded as untrusted. In fact, if an adversary
wants to fake a position inside the verifiable triangle, then she must perform
a reduction attack against at least one distance bounding protocol, which
is infeasible. Note that the coverage of verifiable multilateration is only the
verifiable triangle, because the outside positions are discarded.

5.3 Drone-Based Verifiable Multilateration
Verifiable multilateration is able to securely measure the position of a node,
but it needs a large number of anchors. In case of a set of nodes sparsely
deployed on a large area and with a short communication range, it is nec-
essary to deploy many anchors to reach them all. In addition, the coverage
is restricted to the verifiable triangle, so it is not enough that three anchors
are within the communication range: they have to “surround” the node in
order to locate it securely. The scalability challenges of verifiable multilater-
ation have been studied in [179]. In particular, the work in [179] proposed to
place the anchors following a regular triangles’ grid, in order to minimize the
anchors necessary to cover a given area. Although a regular anchor place-
ment improves the scalability, the number of anchors cannot scale better than
linearly with the size of the area to cover.

With the development of the drone technology [101] and their increased
availability on the markets, it became affordable to replace many fixed an-
chors with a single drone. The drone follows a path, touching a sequence of
waypoints. At each waypoint it acts as an anchor (Figure 5.3), performing
one or more distance bounding protocols with the nodes on the ground.

Figure 5.3: Classic vs. drone-based verifiable multilateration.

The drone shares a different secret k with each node, by which the distance
bounding protocols are executed. The mechanism just described solves the
scalability issue. The problem becomes now how to find a convenient path

5.3. Drone-Based Verifiable Multilateration 79

for the drone in order to securely measure a set of positions in an efficient
way. We assume to have an a-priori knowledge of the nodes’ positions, from
which we compute the drone’s path. We call them supposed positions. The
supposed positions are not trusted, because an adversary could have dis-
placed the nodes. Therefore we want to securely verify them by means of
verifiable multilateration. If the positions determined by verifiable multi-
lateration are not consistent with the supposed ones, a node displacement
attack is detected.

The drone’s path is centrally computed in an off-line fashion, and it must
respect the following requirements.

• The path has to start and terminate at a special fixed waypoint, called
home waypoint (this is where the path is computed and loaded in the
drone). The drone takes off from the home waypoint, performs the
mission, lands at the home waypoint again, and communicates the
outcome of the position verification to some base station.

• Each node has to be ranged from three distinct waypoints, and the
verifiable triangle formed by them must contain the node. This is
required for the localization to be secure.

• The drone has a limited communication range. Far away nodes could
be impossible to reach with a distance bounding protocol.

• The position determined by verifiable multilateration must be suffi-
ciently precise in order to be useful for the verification. Such a precision
depends (also) on the relative positions of the drone and the node. For
example, if the drone ranges the node from exactly above, the precision
will be extremely low. We have to avoid this.

• The path has to be tolerant to sources of imprecision. First, the move-
ments of the drone are not perfectly controllable, because the wind
strongly affects them. It is a good practice to provide for some toler-
ance, since the “true” waypoints actually visited by the drone could be
different from the planned ones. The altitude could not be perfectly
controllable too. Secondly, the supposed positions of the nodes could
be imprecise.

• The mission time should be as short as possible. This is preferable for
saving time and drone’s battery life.

For the sake of simplicity, we assume that the drone moves at a constant
speed. Minimizing the mission time is thus equivalent to minimizing the path

80 Chapter 5. Application of Drones For Secure Localization Problem

length. We assume there are no obstacles to the drone’s movements (e.g.,
walls, buildings, trees). The problem of path planning for secure location
verification in presence of obstacles is interesting as well, but it falls outside
the scope of the current work.

Many drones are limited in the movements they can do. For example,
they cannot perform sharp curves or sudden direction changes (the problem
is more stringent for fixed-wing drones, less for quadcopters). In order to
respect the dynamic constraints of the specific drone, a path must be succes-
sively translated into a trajectory. The trajectory generation is a well-studied
problem [76], and it falls outside the scope of the current work.

We suppose that all the nodes are on the ground, while the drone flies at
a non-negligible altitude (h). We imagine the waypoints to be on the ground.
The drone “visits” a waypoint when its position is above the waypoint (apart
from drone control errors). The verifiable triangle is considered to be on the
ground too. We assume that the ground is flat enough to allow the drone to
be always in the line-of-sight with the ranged node.

We also suppose that, even if the position and the altitude of the drone
are not perfectly controllable, they are actually measurable. The drone em-
ploys a technology that allows it to always know its own position and altitude
with negligible error. An example of such a precise technology is differential
GPS, which is sometimes installed on drones [81]. When the drone performs
a distance bounding protocol with a node, what is measured is the slant dis-
tance (s), which is the line-of-sight one. However, for the aim of localization,
we are interested in the ground distance (d), which is the one projected on
the ground. The system computes the ground distance by:

d =

p
s2 � h2. (5.1)

Once the drone has completed its path, three ground distances have been
collected for each node. So the system can determine the positions of the
nodes by trilateration, and verify if they are consistent with the supposed
ones.

5.4 TLVP Formalization

In this section, we formalize the Traveller Location Verifier Problem (TLVP).
TLVP can be considered as a generalization of the classic Traveller Salesman
Problem (TSP), in which the nodes must not be visited, but rather verified
for their positions. TLVP regards finding the shortest path to securely verify
a set of ground positions by means of drone-based verifiable multilateration.

5.4. TLVP Formalization 81

The supposed positions are a set of points on the Cartesian plane
{N1, . . . , Nn

} that must be securely verified. A path (P) is a couple of se-
quences: a sequence of waypoints {W1, . . . ,Wm

}, and a sequence of ranged
nodes sets {Rng1, . . . , Rng

m

}. Each waypoint is a point on the Cartesian
plane. The drone visits the waypoints in the order specified by the sequence.
At each waypoint, the drone performs a distance bounding protocol with
every node in the corresponding ranged nodes set. The path is closed, in the
sense that the drone goes again to W1 at the end. The first waypoint coin-
cides with the home waypoint (W

home

). Note that a node could be ranged
from three waypoints that are non-consecutive in the path. For example, the
drone could range twice a node in two successive waypoints, then move to
a completely different zone to range other nodes, and finally return in the
neighborhood to perform the third distance bounding. At the end of the
path, each node must have been ranged from three distinct waypoints, and
the verifiable triangle must contain the node.

We assume that the drone control error is bounded. We call such a bound
the drone control precision (�

W

):

kW
j

�W 0
j

k  �
W

, (5.2)

where W 0
j

is the actual position from which the drone performs the distance
bounding. In addition, the altitude is not perfectly controllable, but it is
supposed to be bounded above by a maximum altitude (h

max

):

h  h
max

. (5.3)

Finally, we assume that the error on the supposed positions is bounded. We
call such a bound the supposed positions precision ("

N

):

kN
i

�N 0
i

k  "
N

, (5.4)

where N 0
i

is the actual position of the node.

5.4.1 Formalization of the constraints
If the supposed positions are imprecise, then the node could lie outside the
verifiable triangle, and the drone will fail in verifying its position. To avoid
this, the verifiable triangle must contain the whole circle centered in N

i

and
with radius "

N

. However, this is not enough, since we have to be tolerant
also to the drone control error. If the drone control is imprecise, then the
verifiable triangle actually drawn by the drone (real verifiable triangle) could
be different to the planned one. As a consequence, the node could lie outside

82 Chapter 5. Application of Drones For Secure Localization Problem

Figure 5.4: Error tolerance in the worst case. The visited waypoints (black
crosses) are shifted with the planned ones (gray crosses). The real node’s
position (black dot) is shifted with the supposed one (gray dot).

the verifiable triangle again. To avoid this, it is sufficient that the verifiable
triangle contains the whole circle centered in N

i

and with radius "
N

+ �
W

.
We can prove this by considering the worst case, shown in Figure 5.4. The
real waypoints are shifted (with respect to the planned ones) of �

W

on the
direction orthogonal to the edge of the verifiable triangle. The real node’s
position is shifted (with respect to the supposed one) of "

N

on the opposite
direction. The real verifiable triangle must contain the node even in this case.
By geometrical evidence, we obtain this if and only if the planned verifiable
triangle contains the circle with center N

i

and radius "
N

+ �
W

. We call such
a radius the tolerance radius (r

tol

):

r
tol

, "
N

+ �
W

. (5.5)

The error on the slant distance principally depends on the employed IR-
UWB technology and the quality of the receivers. We suppose that the error
on the slant distance is bounded and we call such a bound the slant precision
("

s

). In the IEEE 802.15.4a IR-UWB standard [89], the slant precision is
usually of the order of centimeters. For example, the IR-UWB transceivers
commercialized by DecaWave have a precision of 10cm [50]. The ground
precision ("

d

) is the bound on the ground distance error. It is always worse
than the slant precision. Especially if the drone is in plumb-line above the
ranged node, a small error on the slant distance will translate into a huge
error on the ground one. Figure 5.5 shows an evidence of this.
If the altitude and the ground distance are sufficiently large compared to the
slant precision, then the following approximate relationship will hold:

"
d

⇡ "
s

· 1

cos(↵)
= "

s

·
p

1 + (h/d)2, (5.6)

5.4. TLVP Formalization 83

Figure 5.5: Ground precision. If the drone is above the ranged node, a small
imprecision on the slant distance ("

s

) will translate into a huge imprecision
on the ground one ("

d

).

where ↵ is the angle of incidence of the slant distance to the ground (cfr.
Figure 5.5). To guarantee a sufficiently precise localization, we impose an
objective ground precision ("̄

d

):

"
d

 "̄
d

) "
s

·
p
1 + (h/d)2  "̄

d

. (5.7)

By expliciting d from (5.7) we get:

d � h ·
q

(("̄
d

/"
s

)

2 � 1)

�1. (5.8)

In other words, the ground distance must be large enough if we want to meet
the objective precision. This depends on the altitude too: the more it is, the
larger the ground distance must be. Also here, we have to take into account
the worst case. We define a minimal distance (d

min

) in this way:

d
min

, h
max

·
q

(("̄
d

/"
s

)

2 � 1)

�1
+ "

N

+ �
W

. (5.9)

If the ground distance between the planned waypoint and the supposed po-
sition is greater than or equal to the minimal distance, then we achieve the
objective ground precision. In (5.9) we added "

N

and �
W

and we supposed
the maximal altitude h

max

to make sure that the requirement is respected
even in the worst case.

Finally, the drone has a limited communication range. Given the maxi-
mum communication range (s

max

), we define a maximal distance (d
max

):

d
max

,
p

s2
max

� h2
max

� "
N

� �
W

. (5.10)

84 Chapter 5. Application of Drones For Secure Localization Problem

If the ground distance between the planned waypoint and the supposed po-
sition is less than or equal to the maximal distance, then the node is within
the communication range. In (5.10) we subtracted "

N

and �
W

to make sure
that the requirement is respected even in the worst case.

To sum up, we identified three constraints: the tolerance radius (r
tol

),
which guarantees that the localization is secure; the minimal distance (d

min

),
which guarantees that the node is ranged with a satisfactory precision; the
maximal distance (d

max

), which guarantees that the node is within the com-
munication range. These constraints refer to the single node, and they can be
represented by three circles centered on the node’s supposed position (Figure
5.6). The r

tol

-circle must be contained inside the verifiable triangle, and the

Figure 5.6: TLVP constraints representation. The r
tol

-circle must be con-
tained inside the verifiable triangle, and the waypoints must lie at a distance
between d

min

and d
max

from N
i

.

waypoints must lie at a distance between d
min

and d
max

from the node.

5.4.2 Final problem formulation
The Traveller Location Verifier Problem (TLVP) relates to the finding of the
shortest path that allows a drone to securely verify the positions of a set of
nodes under the r

tol

, d
min

, d
max

constraints. Formally stated:

minimize
P

length(P);

subject to 8N
i

:

triangle(wp

P

(N
i

)) ◆ circle(N
i

, r
tol

)

8W
j

2 wp

P

(N
i

) d
min

 kN
i

�W
j

k  d
max

,

where length(P) indicates the length of the path P ; wp
P

(N
i

) indicates the
triplet of waypoints which range node N

i

according to the path P ; triangle(·)

5.5. VerifierBee Path Planner 85

indicates the triangle formed by a triplet of waypoints; circle(N
i

, r
tol

) indi-
cates the circle with center N

i

and radius r
tol

.

5.5 VerifierBee Path Planner

TLVP is a generalization of the classic Traveller Salesman Problem (TSP),
which is NP-hard. We present VerifierBee, an algorithm that finds an ap-
proximate solution to TLVP. VerifierBee uses a TSP solver algorithm as a
building block to find a first valid solution. Then, such a solution is itera-
tively improved, following a greedy strategy. The TSP solver is used as a
black box. It is required to find an approximate shortest path that visits all
the points in a list, and then returns to the first point (closed path). It is
not required to be optimal. Approximate TSP algorithms are acceptable as
well. Of course the performances of the TSP solver will affect those of Veri-
fierBee both in terms of optimality and processing time. VerifierBee operates
in three phases: (i) basic path computation; (ii) greedy improvement; (iii)
waypoint reordering.

5.5.1 Basic path computation
VerifierBee computes an ordered list of waypoints: the home waypoint plus
three waypoints for each node, placed at fixed positions to form a mini-
mal verifiable triangle (Figure 5.7). The minimal verifiable triangle is a

Figure 5.7: Minimal verifiable triangle.

regular triangle centered on N
i

and inscribed to a circumference of radius
⇢ = max {2r

tol

, d
min

}. This radius is the smallest one which respects both
r
tol

and d
min

constraints. VerifierBee orients all the minimal verifiable tri-
angles with a vertex toward north. The angular orientation is indifferent,

86 Chapter 5. Application of Drones For Secure Localization Problem

because the successive greedy improvement phase will rotate and distort the
triangles in order to find shorter paths. After having built the list of way-
points, we run the TSP solver on them to find an approximate optimal path
that touches them all. The basic path is thus complete, and it is formed by
3n+1 waypoints (where n is the number of nodes) and 3n+1 ranged nodes
sets. The first ranged nodes set is empty (it is the home waypoint), and the
other ones contain a single node each. Figure 5.8 shows an example of basic
path for 30 nodes.

home waypoint

Figure 5.8: Example of basic path with 30 nodes. The black dots are the
nodes, the crosses are the waypoints, the red dashed line is the path.

Note that the drone passes very close to each node. This makes the path sub-
optimal, since the drone does not use its full communication range. The basic
path is a simple solution to TLVP. We will use it as a term of comparison to
evaluate the performance of VerifierBee.

5.5.2 Greedy improvement

After having computed the basic path, VerifierBee changes it iteratively,
following a greedy strategy. At each step, VerifierBee analyzes the possible
changes (e.g., moving a waypoint in another position) and applies the most
convenient one, that is the one that decreases more the total path length.
The greedy improvement phase terminates when no change is possible or
convenient anymore, meaning that we found a local minimum.

The changes are of two kinds: waypoint moving and waypoint pruning.
Waypoint moving changes the position of a waypoint, while waypoint pruning
removes a waypoint and “substitutes” it with another existing one. Both
moving and pruning make use of the concept of freedom space. The freedom
space of a waypoint is the area where the waypoint can be moved without
violating any constraint of the problem (all the other waypoints remaining
fixed). It can be computed geometrically, as illustrated in Figure 5.9. The
curved borders of the freedom space are the limits of the d

min

and d
max

constraints. The straight borders are the limits of the r
tol

constraint.

5.5. VerifierBee Path Planner 87

Figure 5.9: Freedom space of W1 (the gray area). The two straight borders
lie on the two rays originating from the other waypoints of the verifiable
triangle (W2 and W3) and tangent to the r

tol

-circle.

Waypoint moving changes the position of a waypoint, in such a way to
shorten the global path. Figure 5.10 shows an example.

Figure 5.10: Waypoint moving. W12 is moved so that the drone shortens the
path going from W11 to W13.

The best position where to move a waypoint is always: (i) somewhere on
the border of the freedom space (like in Figure 5.10), or (ii) coincident with
another waypoint in the interior of the freedom space. In the latter case, we
do not apply waypoint moving but rather waypoint pruning (see below), that
is we eliminate the waypoint and substitute it with the other one. Therefore,
waypoint moving always moves a waypoint along the border of the freedom
space.

Waypoint pruning removes a waypoint (pruned waypoint) and substitutes
it with another existing one (substitute waypoint). The drone will not visit
anymore the pruned waypoint. As a consequence, it will miss to run a dis-
tance bounding protocol. The missing distance bounding is run when the
drone passes through the substitute waypoint. Waypoint pruning reduces

88 Chapter 5. Application of Drones For Secure Localization Problem

the total number of waypoints. Figure 5.11 shows an example of waypoint
pruning. The pruned waypoint W

i

and the correspondent ranged nodes set

Figure 5.11: Waypoint pruning. W12 is pruned and substituted by W20.
When the drone visits W20, it runs two distance bounding protocols: one
with N1 and one with N2.

Rng
i

are eliminated from the path, while the nodes that were in Rng
i

are
added to the ranged nodes set Rng

j

of the substitute waypoint W
j

. It is
possible to prune a waypoint when its freedom space contains the substi-
tute waypoint. The home waypoint cannot be pruned. After pruning, the
substitute waypoint has to range two nodes instead of one. Consequently its
freedom space will narrow, because it has to take into account the constraints
relative to both nodes. The resulting freedom space is the intersection of the
freedom spaces relative to the single nodes. In some cases, the freedom space
of the waypoint to prune contains many waypoints. All these waypoints are
suitable candidates to be the substitute waypoint. Which one to choose is
indifferent in terms of path length. VerifierBee chooses the one which nar-
rows less its freedom space, in such a way to leave more “freedom” to the
next steps of the greedy improvement.

To sum up, the greedy improvement phase computes all the possible way-
point movings and prunings. If no change is further possible or convenient,
the phase terminates. Otherwise we apply the most convenient change (either
moving or pruning) and then we recompute all the possible changes again.

5.5.3 Waypoint reordering and complete algorithm
The greedy improvement may change the position and the number of the
waypoints, but it does not change their order, which remains the same of
the basic path. As a consequence, sometimes it is convenient to reorder the
waypoints by running the TSP solver again. This is the third phase of the

5.5. VerifierBee Path Planner 89

Algorithm 1: VerifierBee
Require: {N

i

}, W
home

, �
W

, "
N

, "
s

, "
d

, h
max

, s
max

1: Determine r
tol

, d
min

, d
max

by means of Eqs. 5.5, 5.9, 5.10
2: Path a list of waypoints, one on W

home

,
and the others on the minimal verifiable triangles.

3: Path SolveTSP(Path) {basic mission}
4: loop

5: Path GreedyImprove(Path)
6: if Path has not been improved then

7: exit loop

8: end if

9: Path SolveTSP(Path)
10: if Path has not been improved then

11: exit loop

12: end if

13: end loop

14: return Path

VerifierBee algorithm. The greedy improvement and the waypoint reordering
phases are repeated, until the path length stops decreasing.

Algorithm 1 shows a pseudo-code description of VerifierBee. The func-
tion SolveTSP(·) is our black-box TSP solver. The function takes a path,
reorders the waypoints to form an (approximate) optimal path, and then
returns such a new path. The function GreedyImprove(·) takes a path, per-
forms a greedy improvement, and returns the resulting path.

Figure 5.12 shows an example of VerifierBee path for 30 nodes (the same
ones of Figure 5.8). This path is much shorter than the basic path of Fig-

d
max

N
2

N
4

N
3

N
1

r
tol d

min

home waypoint

Figure 5.12: Example of VerifierBee path.

ure 5.8. Many waypoints have been pruned and the other ones have been
moved in more convenient positions. The path passes very close to the ex-
ternal nodes (N1). On the contrary, interior nodes are ranged from far away
(N2). Note also that nodes close to each other (N3 and N4) are ranged by
the same waypoints, and enclosed by the same verifiable triangle.

90 Chapter 5. Application of Drones For Secure Localization Problem

5.6 Experimental Evaluation

We implemented VerifierBee with the Matlab programming language and
tested its performance under different conditions. For the TSP solver, we
employed an off-the-shelf algorithm available on Mathworks [105].

We assumed the following parameters for our experiments: a slant pre-
cision of "

s

= 10cm (claimed by DecaWave for their IR-UWB transceivers
[50]); an objective ground precision of "̄

d

= 25cm; a communication range of
s
max

= 300m (claimed by DecaWave for their IR-UWB transceivers [50]); a
maximum altitude of h

max

= 160m; a drone control precision of �
W

= 10m;
a precision on the supposed positions of "

N

= 5m. The TLVP constraints
stemming from these parameters are: r

tol

= 15.00m, d
min

= 84.83m,
d
max

= 238.77m. We simulated a random deployment of the nodes on a
1000m ⇥ 1000m map, and we executed VerifierBee to find a path that se-
curely verifies their positions. We put the home waypoint on the south-west
angle of the map. Figure 5.13 shows the average path length for different
numbers of nodes.

10 20 30 40 50
3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

number of nodes

a
ve

ra
g

e
 p

a
th

 le
n

g
th

 [
m

]

basic path
VerifierBee path

−49.6%

−22.5%

Figure 5.13: Average path length with the number of nodes. Each point
stems from 100 experiments. 95%-confidence intervals are displayed in error
bars.

We can see that the basic path increases linearly, whereas the VerifierBee
path shows a sub-linear trend. The length saving of VerifierBee with re-
spect to the basic path is quite significant, especially in case of many nodes
(�49.6% for 50 nodes). This is because the drone ranges more nodes from a
single waypoint if the nodes are denser. Figure 5.14 shows the average pro-
cessing time for the basic path computation and for the complete VerifierBee
algorithm, running on a 2.4GHz Intel Core i5 processor.
A path for 50 nodes takes roughly 4 minutes to be computed. This should
be fully acceptable for an off-line computation. We remark that VerifierBee

5.6. Experimental Evaluation 91

10 20 30 40 50
0

50

100

150

200

250

300

number of nodes

a
ve

ra
g

e
 p

ro
ce

ss
in

g
 t

im
e

 [
s]

basic path
VerifierBee path

Figure 5.14: Average processing time with the number of nodes for 100 ex-
periments.

200 250 300 350 400
4000

4500

5000

5500

6000

6500

7000

communication range [m]

p
a

th
 le

n
g

th
 [

m
]

basic path
VerifierBee path

−37.9%

−20.5%

Figure 5.15: Average path length with the communication range with 20
nodes. Each point stems from 100 experiments. 95%-confidence intervals are
displayed in error bars.

must be executed only once. The computed path remains valid as far as the
positions of the nodes do not change. However, implementing the algorithm
in C language (instead of Matlab language) should improve the performances
even more.

We analyze now the influence of the parameters on the path length. Fig-
ure 5.15 shows the average path length for different values of the communi-
cation range with 20 nodes. As expected, the basic path is unable to leverage
the full communication range. On the contrary, an improved communication
range has a positive effect on the VerifierBee path (up to �37.9% of path
length with a communication range of 400m). Figure 5.16 shows the average
path length for different drone control precisions with 20 nodes.
The path length clearly increases as the imprecision grows. This is because
the drone has to pass farther away from the nodes, to be sure to enclose
them in the verifiable triangle even in the worst-case control error. Veri-

92 Chapter 5. Application of Drones For Secure Localization Problem

5 10 15 25 35
4000

4500

5000

5500

6000

6500

7000

7500

drone control precision [m]

a
ve

ra
g

e
 p

a
th

 le
n

g
th

 [
m

]

basic path
VerifierBee path

−25.7%

−33.9%

Figure 5.16: Average path length with the drone control precision with 20
nodes. Each point stems from 100 experiments. 95%-confidence intervals are
displayed in error bars.

fierBee saves a roughly constant length for each value of the drone control
precision.

5.7 Summary
Many dependable systems rely implicitly on the integrity of the positions
of their components. In this dissertation, we explored the possibility to
use the emerging drone technology in order to overcome the limitation of
using several fixed anchors. In particular, our approach is to replace all the
fixed anchors with a single drone that flies through a sequence of waypoints.
At each waypoint, the drone “acts like” an anchor and securely verifies the
positions of the devices. The main challenge here is to find a convenient path
for the drone to do this. We present VerifierBee: a path planning algorithm
that allows a drone to perform a secure location verification of a set of devices.
VerifierBee finds a good approximation of the shortest path, and at the same
time it respects a set of requirements about drone controllability, localization
precision, and communication range. The results of our experiments showed
that VerifierBee improves the path length of some 50% with respect to a
simple solution.

Part III

Securing IoT Sensor Networks

Chapter 6

Security and Privacy Issues in

IoT Devices

Internet of Things (IoT) is a new paradigm connecting billions of devices
to the Internet. Falling prices and shrinking sizes of computer processors
and sensors, coupled with connectivity, enable to create a global intercon-
nection of devices which are addressable from anywhere in the world. IoT
is being recognized by industry leaders and media as the next wave of in-
novation, disrupting the way we organize our daily life’s. Currently, IoT
devices are being deployed in households, industrial automation, and smart
city infrastructure, most often being connected with the Internet [102]. This
global interconnection of different things or IoT, can sense and interact with
our physical environment and provide different services to help us be more
productive with our daily tasks.

Many of the IoT devices are often embedded with processing, sensing,
software and connectivity, enabling to communicate with other devices, and
to be reached anytime from any where. However, the IoT devices are con-
strained in nature with limited battery and processing capabilities, therefore
communication efficiency is a crucial need. IPv6 over Low power Wireless
Personal Area Networks (6LoWPAN) [56] is one such communication adap-
tation enabling to connect low-power and lossy wireless networks such as
Wireless Sensor Networks (WSNs) to the Internet. According to Cisco [134]
IoT is foreseen to connect over 50 billion low-power devices by end of 2020
communicating with each other and the possibility for secure efficient end-to-
end communication among things is a high priority as IoT scales up. WSN
enabled IoT will play a major role and most of these nodes will be equipped

95

96 Chapter 6. Security and Privacy Issues in IoT Devices

with non-rechargeable batteries, while being left unattended after deploy-
ment. The long term operation of the nodes with limited battery will require
the WSN protocol stack to operate with minimum resources. Therefore, the
security algorithms for WSNs will be designed with limited power, limited
memory and limited battery life in mind [138]. IETF introduced Datagram
Transport Layer Security (DTLS) [55] is becoming the de-facto security pro-
tocol for protecting end-to-end communications between two peers, in the
presence of unreliable datagram protocols such as UDP [174, 75, 88, 109].
Furthermore, the lightweight Constrained Application Protocol (CoAP) [58],
a specialized web transfer protocols for IoT, is adopting DTLS to secure the
end-to-end communications among IoT client and server nodes.

Cisco and Ericsson in their individual assessments have estimated around
50 billion IoT connected devices in the world by 2020 [134, 90]. Given the
great pace as IoT connected devices are growing, we are starting to experience
the dark side of these connected devices. IoT devices are deployed in a
large variety of devices throughout homes, businesses, hospitals and even
entire cities, providing a widened attack surface for attackers offering a large
number of entry points to build botnets of tens of thousands of compromised
devices. These hacked devices are used as weapons in cyber attacks to bring
down web services. Recent prominent attacks includes hosts such as OVH,
Blizzard, Xbox, security bloggers and even the Rio Olympics website [72].
These botnets were capable of sending an extraordinary volume of traffic to
a chosen target reaching a record highest of 700 Gbps [72], initiated from
around 150 607 compromised Internet connected cameras and DVRs [103].
Given the vulnerable state of IoT devices, preparing counter measure to
mitigate such attacks is an eminent priority. Figure 1 shows a typical IoT
setup, which in reality can connect tens of thousands of innocuous IoT devices
to the Internet.

Some researches have investigated the vulnerabilities in IoT networks and
they have mainly focused on network layer and routing layer attacks. For ex-
ample, Shahid et al. present SVELTE [156] where they present an intrusion
detection system for IoT networks. However, their solution was evaluated
against sinkhole and selective-forwarding attacks only, which are routing and
network layer attacks. Prabhakaran et al. [99] present a work for DoS attack
detection in 6LoWPAN based IoT networks. However, their solution is also
not scalable beyond DoS attack detection. Our approach is different com-
pared to previous work as our goal is to identify individually compromised
nodes through the node’s actions over encrypted traffic. According to Pa
et al. [140], in their work IoTPOT, a honey-pot specifically targeting IoT
devices, show many malware samples targeting IoT nodes. The captured
malware samples are now available in the virus total. In our work, we con-

97

IoT wireless sensor network

IP addressable sensor node

Border router

User devices able to address
each sensor through internet

Figure 6.1: An Example of an IoT wireless sensor network. Each sensor node
can be addressed via the Internet.

sider a framework for identifying IoT node activities over encrypted traffic.
After learning the normal node activities,this work can be easily extended for
identifying any compromised nodes. However, detecting compromised node
activities is beyond the scope of the present work.

In particular, this work focuses on understanding whether the node profil-
ing done through analyzing encrypted traffic can be enhanced to understand
exactly which actions the IoT node is doing. For example, we aim at identify-
ing actions such as temperature reading, humidity reading, a routing message
etc. The underlying issue we leverage in our work is that while DTLS protect
the content of a packet, they do not prevent the detection of network pack-
ets patterns that instead reveal some sensitive information about the IoT
node activities. Furthermore, we take advantage of specific properties IoT
networks such as lack of mobility and relatively predictable traffic patterns
[138] that allows for detection of activities of the nodes.

Our approach can be leveraged in several practical ways to infer activities
of an IoT node. In the following, we report some possible scenarios:

• A forensic investigator may try to identify a compromised node which
will be reporting different sensor readings than the expected ones. By
comparing the begin actions of an IoT network against suspicious net-
work activities it is possible to detect possible compromises. In this

98 Chapter 6. Security and Privacy Issues in IoT Devices

way the early responders can take required actions.

• By tracing the actions performed by any two nodes and taking to ac-
count it’s negibouring nodes, and the communication latency, the ad-
versary may guess (even if with some probability of error), whether a
message was passed, where the message was originated, which type of
message it relates to etc. Multiple observations on the network could
further reduce the probability of errors.

• The network administrators can build a behavioral profile of their tar-
get IoT network to finger print the nodes in it along with their user
activities. This will enable to infer the presence of any replicated nodes
in the IoT network as this is a common threat against WSN nodes.

Contributions In this chapter, we propose a framework to infer particular
actions of IoT nodes in a network. In particular, we assume that the traffic
is encrypted and the adversary eavesdrops (without modifying them) the
messages exchanged between the IoT nodes. To the best of our knowledge
this is the first attempt to infer IoT node activities over encrypted traffic.

Our framework analyzes the network communications and leverages
information available in CoAP/ DTLS packets (like IP addresses and
ports), together with other information like the size, the direction (incom-
ing/outgoing), and the timing. By using an approach based on machine
learning, each node that is of interest is analyzed collectively along with the
other network nodes. To set up our system, for each app we first pre-process
a dataset of network packets labeled with the node actions that originated
them, we cluster them in flow typologies that represent recurrent network
flows, and finally we analyze them in order to create a training set that will
be used to feed a classifier. The trained classifier will then be able to classify
new traffic traces that have never been seen before. We run a thorough set
of experiments to evaluate our solution. The results show that it can achieve
accuracy and precision higher than 95%, for most of the considered actions.

We also discuss about the key idea underneath our traffic analysis ap-
proach for DTLS enabled IoT communications. In particular, we examine in
depth the concept of network flow and the metric to evaluate the similarity
between them. We also report details of the machine learning techniques we
leverage in our method.

Organization The rest of this chapter is organized as follows. Section
6.1, presents the important related work in this area particularly focusing
on activity detection over encrypted traffic. In Section 6.2 we introduce

6.1. Related Work 99

the traffic model and the constraints upon which our framework was built.
Section 6.3, explains the machine learning background knowledge used in
this study. In Section 6.4 we describe the implementation details of the
IoT sensor nodes and the experimental setup. Section 6.5 introduces the
evaluation criteria and the results.

6.1 Related Work

In this section we will summarize some important recent work in this area,
which try to infer activities over encrypted traffic. There are many work
in this domain and here we will summarize work relating to web traffic,
smartphone and other application level encrypted traffic such as SSH or
Skype. However, there is a research gap in work related to IoT encrypted
traffic analysis.

Encrypted traffic cannot be analyzed directly, therefore statistical char-
acteristics are used to infer useful information, which is also known as side-
channel information leaks [183]. The authors of [116] have gathered encrypted
communications to 2,000 web sites. Based on these profiles they propose two
methods for inferring the source of the page retrieved under cover of an en-
crypted tunnel. The two methods that identify the traffic are naive Bayes
classifier and Jaccards coefficient. Both their systems rely on packet lengths
and discards the timing information. In [35], the authors are trying to re-
port information leaks in several real world web applications. They utilize
observable attributes from HTTPS traffic such as packet sizes and timing to
find out various user selections on the web applications. Andriy et al. [141],
focus on anonymous web browsers like Tor and JAP. They show anonymity
can be broken under website finger printing attacks. They define features for
website fingerprinting solely based on volume, time, and direction of the traf-
fic. Justine et al. [166], presents BlindBox, a deep packet inspection system
over encrypted traffic. In their work they propose a middle ground solution
without violating privacy as in a middlebox [87], [96] and trying to preserve
the end-to-end encryption. Middlebox will decrypt the traffic violating the
end-to-end encryption. First they rely on exact string matching (e.g., water-
marking, parental filtering etc) and if a stream is detected as suspicious they
would decrypt the packet or flow and do a deep packet inspection. However,
the above work have focused on applications which use standard encryption
protocols which use standard encryption protocols which use standard en-
cryption protocols like SSL/TLS. In particular, these protocols do not take
into account resource constrained environments like IoT networks, therefore,
these solutions cannot be applied directly to the IoT domain.

100 Chapter 6. Security and Privacy Issues in IoT Devices

In [78], they describe a method to identify applications in IP networks,
specifically looking at certain protocols. The different application protocols
they have considered are ftp control, smtp, pop3, imap, https, http and ssh
and have created signatures for encrypted protocols such as ssh or https us-
ing the initial handshake, which happens in clear. They were able to extract
signatures for encrypted communication protocols as the initial handshake of
ssh or https happens in clear. In order to determine which application a flow
belongs to they inspect application layer information such as (TCP, UDP
headers), an IP flow (protocol, srcIP, dstIP, srcPort, destPort) etc. They
have considered the first n-Bytes of the traffic for generating the signatures.
They have used Navie Bayes, AdaBoost, Regularized Maximum Entropy for
signature building. Song et al. [169], analyzes the SSH traffic and in their
work they reveal two vulnerabilities with SSH related to padding of pack-
ets and inter-activeness. Transmitted packets padded only to an eight-byte
boundary. Interactive mode, where every keystroke user types is sent to a
remote server in a separate IP packet immediately after the key press. They
introduce, Herbivore, which try to learn users passwords by monitoring SSH
sessions. They show nested SSH connections and their packet behavior as
well. In their work, they have first described how the training data is col-
lected and secondly show how the inter-key stroke timing can be given as a
Gaussian distribution. Later they modeled the relationship of latency and
character sequence as a Hidden Markov model. In [135], the authors analyze
try to applications behind encrypted traffic and their method was able to
detect Skype among other applications running. Wright et al. [188], in their
work try to infer spoken phrases within a VoIP calls. If the same spoken
word generates the same sequence of packets then the problem of identifying
the instances of that word is reduced to a substring matching problem. How-
ever, since human speech exhibit high degree of variability. To handle this
they have borrowed algorithms from speech recognition and bioinformatics
communities. According to them hidden Markov models are useful when the
training data itself exhibit high variability. Their work flow includes pro-
nunciations from phoneme examples, which are encoded to VoIP packets,
Synethesizing training data, training the HMM with Synethesized data and
finally spotting the phrase in VoIP packets.

Conti et al. [42], [41] presents, apply the same identification problem into
the domain of smartphones. In particular, they try to identify smartphone
user actions over Android encrypted network traffic. They have considered
user actions such as sending an email, reciving an email, browsing a pro-
file on a social network, publishing a post or a tweet. The traffic features
they have considered are: packet size and their order. Analyzing Android
Encrypted Network Traffic to Identify User Actions. In their work they an-

6.2. Modeling IoT Node Activity Detection Over Encrypted Traffic 101

alyze encrypted network traffic to infer private information about the user
actions such as sending an email, receiving an email, browsing a profile on a
social network, publishing a post or a tweet. The traffic features they have
considered are: packet size and their order.

According to the above related work, many work have been done in the
domain of encrypted traffic analysis. However, these works are focused on
domains such as web browsers, smartphone traffic and various applications
(i.e., ssh, skype). In our work we focus on IoT encrypted traffic analysis and
to the best of our knowledge our work is the first attempt to formalize the
problem. In particular, we focus on DTLS encrypted traffic of low power IoT
devices to identify their node activities.

6.2 Modeling IoT Node Activity Detection
Over Encrypted Traffic

According to [138] the authors characterize the traffic in IoT sensor networks
from a single node perspective and under different operation assumptions.
In particular, they point out specific properties in IoT networks, such as lack
of mobility and relatively predictable traffic patterns [138] that allows for
detection of activities of the nodes. Taking into account these characteristics
we start our initial investigations with DTLS encrypted client/server node
pairs and formulate our problem and propose a solution. We built our IoT
node’s traffic model assuming the following:

• Sensors report periodically

• They communicate in a unicast manner

• The IP addresses are hard coded

• Each client node connects with the server periodically and the server
responds with an identical and unique message (each message has a
different length string) for each client/server communication

• One node performs only one activity

We will explain our implementation and the experimental setup in detail
in Section 6.4. As mentioned before IETF is pushing DTLS to be the de-facto
security protocol for protecting end-to-end communications between two IoT
endpoints. DTLS being light weight and energy efficient provides security
services such as preventing eavesdropping, tampering and message forgery,

102 Chapter 6. Security and Privacy Issues in IoT Devices

similar to the widely adopted TLS protocol for Internet. However, unlike
other computing devices, IoT nodes are left unattended after deployment or
even worse deployed in dangerous and hostile environments, therefore have
higher risk of being compromised. A framework for detecting IoT activities
will help detect if and when a node compromise happens. As a result of a
compromise, two types of changes might happen with the nodes activities.
They are,

1 The assigned activity of the node remains the same, however the values
are modified

2 The assigned activity of the node changes and perform another activity,
along side the expected activity or both

In the first type of compromise, an adversary is selectively modifying
encrypted contents while an an external observer remains oblivious about
any change in the node activities. This type of compromise detection is out
of the scope of our work. In the second type of compromise which falls into
the scope of this research, the node perform a different activity, i.e. sending
a malicious attack traffic. For an external observer changes in the node
activities are observable through modified network traffic values its traffic
patterns. Our proposes method is analysing the DTLS encrypted network
traffic to detect IoT nodes activities. Our method is using machine learning
techniques to identify patterns of normal activities to train classifiers. We
propose two classifiers for detecting IoT activities. The two classifiers have
two different approaches: quickly identify the activities present in a traffic
sample and the other classifier to further analyze the traffic sample for a
given activity. For an example, lets assume we like to check how many nodes
are performing their activities correctly after one year of deployment of the
network. Assuming there were n unique nodes we will capture a traffic sample
from the network. After one year several nodes might have run out of battery
or got compromised hence the activity changed and as a result our model will
detect only n

i

activities where i < n. The two classifiers proposed are helpful
in this scenario to identify the number of activities present. In particular, our
N-class based classifier will output the activities it can detect and the binary
classifier can be used to further verify the presence of a particular activity.
Our models are independent of the network topology and is scalable to many
nodes. When the activities of the nodes are unique our method is able to
identify these activities and when the IoT network contain nodes with similar
activities (e.g., multiple temperature and humidity nodes) our method limits
to predict the activity class instead of a particular node.

6.3. Machine Learning Background 103

6.3 Machine Learning Background

In this section, we briefly recall several machine learning techniques we used
in our work, while we point the readers to appropriate references for a com-
plete introduction on those topics. Being able to dynamically classify and
identify the entities behind network traffic could help us with various network
activities. There are advantages to identify information about encrypted traf-
fic and from the point of view of network provider better classification and
understanding of traffic allow better traffic shaping. Here we try to leverage
knowledge to understand IoT node activities over encrypted traffic. We will
call this problem as identification problem for identifying the actions behind
the encrypted channels. In order to solve our problem we capitalize on the
specific features of the IoT networks such as lack of mobility and relatively
predictable traffic patterns [138] that allows for detection of activities of the
nodes behind encrypted channels and in Section 6.2 we presented more dis-
cussion. In order to solve this identification problem first the network traffic
has to be broken down into meaningful features and transform into a for-
mat which the machine learning algorithms can work with. We will organize
this section under two subsections: Feature extraction and Machine Learning
techniques.

6.3.1 Feature Extraction

We will discuss the features we used to break down the traffic into meaningful
features to represent the IoT traffic. According to the literature [183, 116]
observing the encrypted traffic we can make inferences based on statistical
measures. Therefore, the features selected must reflect them well. The fea-
ture selection methods can be grouped under protocol or flow based methods
and each method looks into patterns in the traffic such as packet arrival
rate, the direction of traffic, packet sizes and the timing between the packets
[135]. In our approach we used the later features: packet size and the timing
between the packets. We extracted the packet size count over a given time
window. This feature selection was influenced by [135] and it enable to im-
plicitly encode the relations with the packet size and the time between the
packets. To better understand lets consider a CCTV reporting a video stream
and a temperature sensor reporting the values every five seconds. If we chose
a packet count based method and selected the first 100 packets there is high
probability we will loose the less frequent traffic from the temperature sensor
and as a result the feature vector will not be able to capture all possible
traffic samples. However, choosing a time window like 10 seconds according

104 Chapter 6. Security and Privacy Issues in IoT Devices

to the above discussed scenario allows to capture the traffic samples of all
the applications in the feature vector. We generated a feature vector as a
function of time and counted the number of packet sizes in the considered
time window. Figure 2 presents the feature vector creation with respect to
the traffic pattern.

 8 10 6 4 4 10 10 8

 0 1 2 3 4 5 6 7 8 9 10

212 3

5 seconds
10 seconds

Figure 6.2: Features extracted by counting the packet sizes in a given time
window. Selecting n first arriving packets will fail to represent most of the
apps in the network. The feature vector enables to include timing and packet
size relations implicitly.

6.3.2 Machine Learning Classifiers
In this subsection we will explain the machine learning classifiers. In our
study we particularly make use of two classification approaches: N-class clas-
sification and binary class classification. We used the scikit-learn machine
learning library implementations of the above classifiers.

N-class classification means a classification task with classifying the el-
ements of a given set of data into more than two classes [85]. In our case
classifying activities either as activity 1, 2, 3 or 4, which could be related to
any activity such as a temperature, humidity, light measurement, etc. The
predicted labels will belong to only one class, trying to associate with one
activity.

Binary class classification is a classification task with classifying the
elements of a given set of data into exactly two classes, normally identified
as positive or negative classes [84]. In our case we will select one activity as
a positive class and the rest as the negative class. The predicted labels will
classify the set of data into two classes.

6.4. Implementation and Experimental Setting 105

We used the Decision Tree algorithm as the underlying algorithm for the
classifier, which learns the decision rules from the data features.

6.4 Implementation and Experimental Setting

In this section we will explain the experimental setting. We implement our
IoT node prototypes on top of Contiki OS v2.7 [93] which is an open source
operating system for the Internet of Things providing Internet communica-
tion for low-power wireless devices. The Contiki OS is supplied with an entire
development environment called Instant Contiki. It includes different devel-
opment tools like the Cooja network simulator [139] and Erbium REST En-
gine and CoAP implementation [110] which we use as a CoAP communication
library. In order to make the communications secure, we used DTLS and we
used the publicly available TinyDTLS 0.5 library [25] by Olaf Bergmann. It is
a lightweigth DTLS implementation for constrained environments providing
secure unicast communication. The TinyDTLS enables two nodes running
the DTLS application perform the handshake and afterwards communicate
securely with each other using negotiated security parameters. The cipher-
suites supported by the implementation are TLS_PSK_WITH_AES_128_CCM_8
and TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 where the first ciphersuite pro-
vides authenticated encryption based on AES in CBC mode and the second
ciphersuite provides encryption based on elliptic curves. We used the first
ciphersuite, which requires pre-shared keys to perform the handshake and
derive session keying material. Finally, the library is included into Contiki
OS as an application and referenced from the user program.

In our experimental scenario the IoT nodes compose unicast communi-
cations running as client/server pairs. The client acts as a CoAP client and
a DTLS client and connects with the server periodically. We preconfigure
the applications with a destination IP address and a port number in all the
settings. The server acts as a CoAP server and a DTLS server as well and
upon connecting with the client, the server will respond with a unique string.
The experimental setup is shown in Figure 6.3.

The clients send a CoAP “hello” request of the GET type to their cor-
responding servers. The servers after processing the request, answer with
a unique string message as the response. The client connects to the server
using a CoAP blocking request and waits for its reply. The blocking request
means that the client does not proceed to send the next request until it re-
ceives a reply for the current request. We configure the network settings as
described under Section 6.2 and run all the subset configurations mentioned
in Figure 3. For all these scenarios we capture the network communications

106 Chapter 6. Security and Privacy Issues in IoT Devices

N1

N2

N3

N4

Figure 6.3: Experimental setup. The client/server nodes communicating
with secure CoAP

and run the node activity detection algorithms. Table 6.1 summaries the
experimental configurations.

Table 6.1: Summary of the experimental setup

Setting Value

Wireless channel model UDG model with Distance Loss
Communication range 5 m

Mote type Wismote
Transport and network layer UDP + DTLS + µIPv6 + 6LoWPAN

Application layer CoAP
Radio interface UDGM
Traffic pattern Periodic (2*Clock_Seconds)

Topology Client/Server
Activity 1 64 bytes message
Activity 2 22 bytes message
Activity 3 41 bytes message
Activity 4 109 bytes message

Total simulation time 7h

6.5 Evaluation and Discussion

In this section we will evaluate our proposed systems performance and dis-
cuss the suitably of our method for detecting IoT node activities over DTLS
encrypted network traffic.

6.5. Evaluation and Discussion 107

In order to evaluate our method we ran the experimental setup described
in Section 6.4 and captured two sets of traffic samples for training and testing
of our models. We used the first traffic sample for training our models and
the second set of traffic samples for testing. Scikit learn machine learning
libraries were used to build the models. In particular, we built two models:
a N-class (or multi-class) classification model and a binary class classifica-
tion model. We experimented with several classifiers to find the best fit for
solving our problem. We tested with One Vs Rest, One vs One, Out put
code and Decision tree algorithms for the multi-class and binary classifica-
tion models. Decision tree classifier had better overall performance over our
data and we built our model with this classifier. To build the multi-class
classification model we used the traffic from all possible configurations (24)
of all the nodes and tested with each configuration. For each configuration
we used voting to predict the final activity and calculated the average perfor-
mance for all the possible configurations. The final results of the multi-class
classification is presented in the table 6.2. The N-class classifier enables to
find the activities present in a given traffic sample. We build the binary
classifier to check a particular activity against a given traffic sample. The
activity we are interested represents the positive class and the rest represents
the negative class and we trained our models with different examples from
different configurations. We tested our model for its ability to differentiate a
given activity from different activities and the results are reported in Table
6.4 and in Table 6.3.

We used the following evaluation metrics to measure the activity detection
performance of our methods:

Precision =

TP

TP + FP
⇥ 100%; (6.1)

Recall =
TP

TP + FN
⇥ 100%; (6.2)

F �measure =
2⇥ Precision⇥Recall

Precision+Recall
⇥ 100%; (6.3)

where TP (true positive) and FP (false positive) are the numbers of correctly
and incorrectly identified activities, respectively. FN (False negative) is the
number of incorrectly identified activities as with respect to the considered
activity. Precision is the fraction of retrieved instances that are relevant
while recall (also called detection rate) is the fraction of relevant instances
that are retrieved. F-measure considers both the precision and the recall of
the test to compute the score. It can be considered as a weighted average of
the precision and recall. The value of F-measure is large when both precision

108 Chapter 6. Security and Privacy Issues in IoT Devices

and recall are high, and small when either of them is poor.

Table 6.2: N-class model performance summary for detecting the activities
of the nodes

Scenario Precision Recall F1-Score

Activity 1 0.83 0.62 0.71
Activity 2 0.86 0.75 0.80
Activity 3 0.64 0.88 0.74
Activity 4 1.00 1.00 1.00
Average 0.83 0.81 0.81

According to the results presented in the tables above, our methods show
promising results. Overall, the binary classification methods outperforms the
N-class classification methods in the ability to detect activities. This could
be due to having many possible out comes in the predictions, compared with
the two possibilities in binary classification. Table 6.2 summarizes the aver-
age detection rate of the four activities in a given traffic sample. According
to the results, our model can correctly identify the presence of activity four,
however other activity detection varies in performance. However, in order to
overcome this limitation we propose our second model based on binary clas-
sification. According to Table 6.3 detecting activity 1 among other activities
has significantly improved. Similarly Table 6.4 tires to summarize the results
of the ability to predict if an activity is not present among other activities,
which is important to verify as this might indicate a compromised node (as
a result the activities are different now) in the network. Our models will en-
able a network forensic investigator to perform network audits. For example,
comparing a two network traffic samples captured in two consecutive years
may yield some anomalies compared to the previous year. This could result
due to compromised nodes and the expected activities are no longer present
in the traffic. Our work is the first step in this direction, proposing activ-
ity detection models to predict IoT node activities behind DTLS encrypted
traffic and our initial investigations reveal promising results.

6.6 Summary

In the era of the Internet of Things (IoT), many digitally connected devices
are surrounding us in our day-to-day lives. In the near future, we expect
50 billion connected devices everywhere, from smart cities, factories to our

6.6. Summary 109

Ta
bl

e
6.

3:
B

in
ar

y
cl

as
sifi

ca
tio

n
m

od
el

pe
rf

or
m

an
ce

fo
rd

iff
er

en
tia

tin
g

a
sp

ec
ifi

c
ac

tiv
ity

fr
om

a
gi

ve
n

ac
tiv

ity

A
ct

iv
iti

es
A

ct
iv

ity
1

A
ct

iv
ity

2
A

ct
iv

ity
3

A
ct

iv
ity

4
P

R
F

P
R

F
P

R
F

P
R

F
A

ct
iv

ity
1

-
-

-
0.

99
1.

00
0.

99
1.

00
1.

00
1.

00
1.

00
0.

99
0.

99
A

ct
iv

ity
2

1.
00

0.
99

0.
99

-
-

-
0.

66
0.

77
0.

71
0.

79
0.

88
0.

83
A

ct
iv

ity
3

1.
00

1.
00

1.
00

0.
71

0.
58

0.
64

-
-

-
0.

85
0.

85
0.

85
A

ct
iv

ity
4

0.
99

1.
00

0.
99

0.
86

0.
76

0.
81

0.
85

0.
85

0.
85

-
-

-
H

er
e

w
e

ha
ve

co
ns

id
er

ed
th

e
ab

ili
ty

of
ou

r
m

od
el

to
se

pa
ra

te
be

tw
ee

n
tw

o
gi

ve
n

ac
ti

vi
ti

es
.

110 Chapter 6. Security and Privacy Issues in IoT Devices

Table 6.4: Binary classification model performance summary for detecting a
specific activity among a given traffic sample

Scenario Precision Recall F1-Score

Activity 1 among A. 2,3,4 0.94 1.00 0.97
Activity 2 among A. 1,3,4 1.00 1.00 1.00
Activity 3 among A. 1,2,4 1.00 1.00 1.00
Activity 4 among A. 1,2,3 1.00 1.00 1.00

Average 0.98 1.00 0.99

homes and even on our bodies. The advent of technologies like IPv6 and the
wide deployment of WiFi networks is enabling the growth of IoT. However,
many IoT devices are lacking proper security methods for safe guarding the
individual nodes and these vulnerability may open up a wider attack surface
for much larger attacks. In this work we propose a proof of concept frame-
work to detect IoT node actions by observing the encrypted communication
traffic. We passively observe the wireless network traffic of the nodes and
try to detect the activities. The fact that the network traffic is often en-
crypted makes the task even more challenging. In this chapter we investigate
to what extent IoT node actions can be identified by passively observing the
encrypted network traffic. We designed a framework for achieving the above
goal using advanced machine learning techniques. We built a complete imple-
mentation of this framework using Contiki OS, the widely used open source
operating system (OS) for IoT devices. Furthermore, we run a through set of
experiments using the Cooja simulator (which runs deployable Contiki code),
which show that our framework can achieve high accuracy and precision for
most of the considered actions. To the best of our knowledge this is the first
framework for detecting IoT node actions over encrypted traffic.

Chapter 7

Conclusions

The ever increasing demand of connectivity and services that rely on dis-
tributed heterogeneous devices is populating the world with billions of de-
vices. They are expected to generate millions of job opportunities, and tril-
lions of dollars in economic growth and cost savings. Some key areas where
these devices will be widely used is in preventive health care, enhancing public
safety, patient monitoring, smart manufacturing and power generation, and
seamless home and municipality infrastructure improvements [173]. Unfortu-
nately, the increased penetration of these devices around us, is also opening
new attack surfaces for cyber-criminals. In order to reap the full benefits
of this emerging technological eco-system, it must be well protected against
new cyber-attacks. This dissertation presents our research efforts devoted
to emerging security and privacy challenges; particularly focusing on three
heterogeneous devices in this technological eco-system. In the following, we
summarize our contributions (Section 7.1) and discuss future research direc-
tions (Section 7.2).

7.1 Summary of Contribution

This dissertation presents our research efforts under three parts, focusing
on three heterogeneous devices. In the following, we will summarize the
contributions under each part.

111

112 Chapter 7. Conclusions

7.1.1 Smartphone Security and Privacy Issues
In Part I of the dissertation we focused on smartphone related security and
privacy issues. Given the ubiquitous nature of the smartphones, users are
always carrying the smartphones with them and hence accumulate a lot of
personal data. Furthermore, with the increasing capabilities with smart-
phones (e.g., processing, storage, connectivity) there are many applications
which are built around smartphones providing value added services for the
users. For example, online banking, Internet access and interfacing with
third party IoT devices (e.g., fitness trackers, thermostats, etc). Smartphone
becoming an epicenter of daily life poses many security challengers and side
channel privacy leaks through its communication traffic. For example, the
communication pattern might reveal user habits or de-anonymize the end-
users resulting in a privacy leak. In this part we tried to address these main
issues and tired to help improve the usability of the smartphone:

• Android Malware Detection Through Network Analysis: In this study
we implemented a Network based malware detection framework to de-
tect the rising Android malware. In particular we proposed two meth-
ods to detect maliciously behaving apps through the apps network char-
acteristics. First the network traffic of the smartphone was converted
into a set of state sequences to represent the network behavior of an
app. These state sequences can also be characterized as strings if we
consider each state as a single character. Next, we propsed two methods
based on Markov chain and string kernel to build malware detection
models. These models take state sequences as the input to learn how
to recognize malware. Finally, the obtained models are used to predict
the label for every new application. In particular, our methods lever-
aged: i) retaining all important features of network communications
(without filtering traffic), ii) modeling the data as state sequences that
can be used in many machine learning techniques, iii) use of efficient,
widely applied classifiers to process the state sequences as the input,
iv) the employment of various malware families to allow our models to
learn a generalized network behavior.

• Preserving anonymous end-to-end communications in adversarial mo-
bile clouds: We presented a protocol for anonymous end-to-end commu-
nications among users in a mobile cloud environment, where the cloud
clones handle part of the communication towards destination. The at-
tack model considered is unprecedented. It includes devices, network
operators, and the cloud provider behaving as malicious entities, and
the possibility of all of them to collude. In this scenario, we built

7.1. Summary of Contribution 113

a delay-tolerant solution that provably guarantees (↵, �)- anonymity,
and evaluated its performance on a real-life testbed.

• CaT- Cloud aided TLS: In this work we investigated the TLS proto-
cols cryptographic operational cost on a smartphone. Smartphones are
widely used for operations like accessing email, e-banking, web brows-
ing, which most of the time are encrypted communication. As the
number of encrypted communications are increasing, the number of
cryptographic operations are also increasing proportionately. However,
crypto operations such as public key crypto stress the CPU and hence
is energy intensive. We extensively measured the energy consumption
of TLS full handshake and session-resume. Full handshake use asymet-
ric crypto for establishing session keys and session-resume reuse the
previously negotiated keys. We noticed a significant reduction in the
energy consumption for session resumption. Furthermore, we evaluated
whether offloading the asymmetric key exchange of the TLS protocol to
a cloud instance could bring some benefit from the mobile device point
of view. In particular, we designed a possible solution (named CaT)
for offloading the TLS asymmetric key exchange, and conducted an
extensive experimental analysis. The results show that CaT is actually
less energy-efficient than performing the normal full TLS handshake
on a smartphone. We identified that CaT consumes less power as the
computation was offloaded, however required more time to finish the
operation with respect to the standard approach, hence as the net result
ended up consuming more energy.

7.1.2 Drone Application for Secure Localization of Dis-
tributed Devices

In Part II, we presented the problem of secure localization in distributed
systems. The dependability of many of these systems rely on the integrity
of the position information of the distributed sensing devices. An adversary
capable of changing the position of one or more devices (displacement attack)
can deeply affect the system behavior with little effort, yet it will be diffi-
cult to detect. In our work, we explored the approach of using the emerging
drone technology to securely verify a set of positions. We formally stated
the Traveller Location Verifier Problem (TLVP), with regard to finding the
shortest path for a drone to securely verify a set of nodes by means of veri-
fiable multilateration. We proposed VerifierBee, a path planning algorithm
that finds an approximate solution to TLVP. The results of our experiments
showed that VerifierBee improves the path length of some 50% with respect

114 Chapter 7. Conclusions

to a simple solution.

7.1.3 Securing IoT Sensor Networks
In Part III we introduced a framework for detecting IoT node activities over
DTLS encrypted traffic. DTLS is expected to be the de-facto standard for
securing low-power IoT devices. To the best of our knowledge, our work is the
first attempt with an approach to detect IoT node activities. Furthermore, an
essential goal also is to fill a research gap in activity detection of constrained
networks. Our framework observers the network traffic samples and predict
the node activities present in the traffic. Our proposed framework leverages:
(1) the relatively predictable traffic patterns of IoT sensor nodes, (2) extract
important features which reflect the node activities and model the feature
vectors to be used by machine learning techniques, (3) use of efficient, widely
applied classifiers to process the features and infer node activities present in
a traffic sample. Our evaluation showed that our framework is able to detect
most of the considered activities with high precision.

7.2 Future Work

The work presented in this dissertation represents an initial effort. We now
discuss possible future developments that naturally follow form the research
contributions presented in this dissertation.

7.2.1 Smartphone Security and Privacy Issues
Smartphones are constantly being exposed to new and sophisticated security
threats. It is always a battle between the malware authors and the security
providers. In our work we tried to address some of the issues related to
security and privacy as well as enhancing the overall efficiency of the smart-
phone user experience, however, we find the following challenges and some
limitations to be addressed.

The first step towards proper protection against smartphone malware is a
proper mindset from the users. Users must be educated to stick to official app
markets (e.g., Google Play), enabling basic security settings (e.g., enabling
app verification before install, using a password) and keeping the smartphone
upto date by installing the relevant software updates. Furthermore, better
user habits such as not connecting with open and suspicious WiFi hotspots.
Therefore, making the smartphone users aware about the security and privacy
issues is an important step in securing this eco-system.

7.2. Future Work 115

However, to face the threats of complicated and social engineered attacks
of malware the detection algorithms need to be improved as well. In the
methods we proposed in Chapter 2 we identify the following: Improving
the Markov-chain based method and gram matrix in the string kernel based
method. In particular, we plan to investigate the possibility of choosing the
most representative strings (the longest or the two longest) instead of using
the whole set of strings. For the gram matrix in string kernel-based method,
we aim to introduce a new string kernel, that allows to appropriately compute
similarities between strings in this context. Generally we see further room
for improvement in the detection algorithms. Also, we identify the need
to compare our proposed methods with existing methods to compare the
efficiency.

For the privacy solution proposed in Chapter 3, we would like to consider
that the files exchanged might contain information on sender/receiver and
also to depart from the assumption of having standalone app available for
each user in the Internet. Finally, we would like to provide a formal security
analysis of our protocol using automatic cryptographic protocol verifiers, such
as ProVerif.

7.2.2 Drone Application for Secure Localization of Dis-
tributed Devices

Displacement attack is a major problem on distributed dependable systems
and verifiable multilateration is a well accepted [31] approach by the research
community for securing the positions. In our work we proposed a drone based
secure localization approach, which is more cost-effective (by eliminating
fixed anchor nodes) however, it opens many challenges still to be addressed.
Currently, our work presents a path planning algorithm to securely verify
a set of positions. Our proposed solution, VerifierBee finds an approximate
solution to TLVP. However, there still exists a gap in moving from path
planning to mission planning. We identify filling this research gap will enable
to perform verifiable multilateration more cost-effectively using the emerging
drone technology.

7.2.3 Securing IoT devices: Activity detection of IoT
devices

The IoT activity detection framework we presented in Chapter 6 presents an
initial effort and has some limitations that open new research challenges for
future in terms of the framework and the underlying protocols.

116 Chapter 7. Conclusions

First, we identify the need to validate our system on real IoT sensor nodes,
to better fine tun the system. However, in order to fully test in a real life
sensor deployment the existing protocols also need to improve. For example,
the existing implementations for multicast group communications for DTLS
needs to support all the features discussed in [174] for secure multicast group
communication. The current publicly available tinygroupdtls library [136]
by Kirill Nikitin provides an open source extension for Contiki OS, however,
the operation of this library is limited to a single hop. We are aware the
framework we have proposed is an initial step towards detecting compromised
nodes in an IoT network, partially due to the above mentioned protocol level
limitations. However, to the best of our knowledge our work is the first
attempt in this domain and we see lot of potential for improvements. Our
framework has the potential to be extended as an intrusion detection system
or as a forensic investigation framework depending on the operation mode
(online vs. offline). With the growing cyber threats [184, 137], protecting
the IoT echo system needs comprehensive efforts in the development of the
underlying protocols and detection frameworks like ours. More generally,
it is expected to have around 50 billion connected devices by 2020 and in
order to protect these devices: i) the devices need secure and light weight
protocols, and ii) detection tools which can be automated and scalable for
large number of devices is needed. Our work provides an initial step towards
this direction and as future work we plan to improve our framework and
provide comparisons.

Bibliography

[1] Mozilla firefox root certificate authorities. http://developer.android.
com/reference/android/os/Process.html. [Online; accessed September
2016].

[2] Rfc 2616. https://tools.ietf.org/html/rfc2616. [Online; accessed
September 2016].

[3] Rfc 5077. https://tools.ietf.org/html/rfc5077. [Online; accessed
September 2016].

[4] Rfc 5246. https://tools.ietf.org/html/rfc5246. [Online; accessed
September 2016].

[5] tpacketcapture. https://play.google.com/store/apps/details?id=jp.co.
taosoftware.android.packetcapture\&hl=en. [Online; accessed Septem-
ber 2016].

[6] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining
api-level features for robust malware detection in android. In Pro-
ceedings of the International Conference on Security and Privacy in
Communication Systems, pages 86–103. Springer, 2013.

[7] Channel News Aisa. Mail sent by drone in world-first
singpost trial. http://www.channelnewsasia.com/news/business/
mail-sent-to-pulau-ubin/2177406.html. [Online; accessed October
2016].

[8] M. Alizadeh, S. Abolfazli, M. Zamani, S. Baharun, and K. Sakurai. Au-
thentication in mobile cloud computing: A survey. Journal of Network
and Computer Applications, 61:59–80, 2015.

[9] Brandon Amos, Hamilton Turner, and Jules White. Applying machine
learning classifiers to dynamic android malware detection at scale. In

117

118 Bibliography

Proceedings of the 9th international wireless communications and mo-
bile computing conference (IWCMC), pages 1666–1671. IEEE, 2013.

[10] George Apostolopoulos, Vinod Peris, Prashant Pradhan, and Debanjan
Saha. Securing electronic commerce: reducing the ssl overhead. IEEE
Network, 14(4):8–16, 2000.

[11] George Apostolopoulos, Vinod Peris, and Debanjan Saha. Transport
layer security: How much does it really cost? In Proceedings of the 8th
IEEE INFOCOM’99, pages 717–725. IEEE, 1999.

[12] Axelle Apvrille and Tim Strazzere. Reducing the window of opportu-
nity for android malware gotta catch them all. Journal in Computer
Virology, 8(1-2):61–71, 2012.

[13] Claudio A Ardagna, Mauro Conti, Mario Leone, and Julinda Stefa.
An anonymous end-to-end communication protocol for mobile cloud
environments. IEEE Transactions on Services Computing, 7(3):373–
386, 2014.

[14] Claudio A Ardagna, Sushil Jajodia, Pierangela Samarati, and Angelos
Stavrou. Providing usersâĂŹ anonymity in mobile hybrid networks.
ACM Transactions on Internet Technology (TOIT), 12(3):7, 2013.

[15] Orlando Arias, Jacob Wurm, Khoa Hoang, and Yier Jin. Privacy and
security in internet of things and wearable devices. IEEE Transactions
on Multi-Scale Computing Systems, 1(2):99–109, 2015.

[16] Kanishka Ariyapala, Hoang Giang Do, Huynh Ngoc Anh, Wee Keong
Ng, and Mauro Conti. A host and network based intrusion detection for
android smartphones. In Proceedings of the 30th International Confer-
ence on Advanced Information Networking and Applications Workshops
(WAINA), pages 849–854. IEEE, 2016.

[17] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and
Konrad Rieck. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of the 20th Annual Network &
Distributed System Security Symposium (NDSS), 2014.

[18] Ines Ayadi and Simoni Noëmie. Adaptive provisioning of connectivity-
as-a-service for mobile cloud computing. In Proceedings of the 2nd
IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud), pages 169–175. IEEE, 2014.

Bibliography 119

[19] Marco V Barbera, Sokol Kosta, Alessandro Mei, Vasile C Perta, and
Julinda Stefa. Cdroid: towards a cloud-integrated mobile operating
system. In Proceedings of IEEE INFOCOM’13, pages 47–48. IEEE,
2013.

[20] Marco V Barbera, Sokol Kosta, Alessandro Mei, Vasile C Perta, and
Julinda Stefa. Mobile offloading in the wild: Findings and lessons
learned through a real-life experiment with a new cloud-aware system.
In Proceedings of the IEEE INFOCOM’14, pages 2355–2363. IEEE,
2014.

[21] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. To
offload or not to offload? the bandwidth and energy costs of mobile
cloud computing. In Proceedings of IEEE INFOCOM’13, pages 1285–
1293. IEEE, 2013.

[22] Marco V Barbera, Sokol Kosta, Julinda Stefa, Pan Hui, and Alessandro
Mei. Cloudshield: Efficient anti-malware smartphone patching with a
p2p network on the cloud. In Proceedings of the 12th IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P), pages 50–56.
IEEE, 2012.

[23] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christo-
pher Kruegel, and Engin Kirda. Scalable, behavior-based malware clus-
tering. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), pages 8–11, 2009.

[24] Diana Berbecaru. On measuring SSL-based secure data transfer with
handheld devices. In Proceedings of the 2nd International Symposium
on Wireless Communication Systems, pages 409–413. IEEE, 2005.

[25] Olaf Bergmann. TinyDTLS. https://projects.eclipse.org/proposals/
tinydtls/. [Online; accessed October 2016].

[26] Deepak Bhadauria, Onur Tekdas, and Volkan Isler. Robotic data mules
for collecting data over sparse sensor fields. Journal of Field Robotics,
28(3):388–404, 2011.

[27] Gustaf Bjorksten. Defending users at risk from ddos at-
tacks: An evolving challenge. https://www.accessnow.org/
defending-users-at-risk-from-ddos-attacks-an-evolving-challenge/.
[Online; accessed October 2016].

120 Bibliography

[28] Stefan Brands and David Chaum. Distance-bounding protocols. In
Proceedings of the Workshop on the Theory and Application of of Cryp-
tographic Techniques, pages 344–359. Springer, 1993.

[29] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:
behavior-based malware detection system for android. In Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, pages 15–26. ACM, 2011.

[30] Fernando Caballero, Luis Merino, P Gil, Ivan Maza, and Aníbal Ollero.
A probabilistic framework for entire WSN localization using a mobile
robot. Robotics and Autonomous Systems, 56(10):798–806, 2008.

[31] Srdjan Capkun and J-P Hubaux. Secure positioning of wireless de-
vices with application to sensor networks. In Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies., pages 1917–1928. IEEE, 2005.

[32] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly de-
tection: A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[33] Chien-Yen Chang, Belinda Lange, Mi Zhang, Sebastian Koenig, Phil
Requejo, Noom Somboon, Alexander A Sawchuk, and Albert A Rizzo.
Towards pervasive physical rehabilitation using microsoft kinect. In
Proceedings of the 6th International Conference on Pervasive Com-
puting Technologies for Healthcare (PervasiveHealth), pages 159–162.
IEEE, 2012.

[34] David L Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[35] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-
channel leaks in web applications: A reality today, a challenge tomor-
row. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P’10), pages 191–206. IEEE, 2010.

[36] Yang Chen, Mo Ghorbanzadeh, Kevin Ma, Charles Clancy, and Robert
McGwier. A hidden markov model detection of malicious android ap-
plications at runtime. In Proceedings of the 23rd Wireless and Optical
Communication Conference (WOCC), pages 1–6. IEEE, 2014.

[37] Zhenxiang Chen, Hongbo Han, Qiben Yan, Bo Yang, Lizhi Peng, Lei
Zhang, and Jin Li. A first look at android malware traffic in first

Bibliography 121

few minutes. In Proceddings of the IEEE Trustcom/BigDataSE/ISPA,
pages 206–213. IEEE, 2015.

[38] Bill Childers. Hacking the parrot AR drone. Linux Journal,
2014(241):1, 2014.

[39] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. Clonecloud: elastic execution between mobile device
and cloud. In Proceedings of the sixth conference on Computer systems,
pages 301–314. ACM, 2011.

[40] Cristian Coarfa, Peter Druschel, and Dan S Wallach. Performance
analysis of TLS web servers. ACM Transactions on Computer Systems
(TOCS), 24(1):39–69, 2006.

[41] Mauro Conti, Luigi V Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. Can’t you hear me knocking: Identification of user actions
on android apps via traffic analysis. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, pages 297–
304. ACM, 2015.

[42] Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor, and
Nino Vincenzo Verde. Analyzing android encrypted network traffic
to identify user actions. IEEE Transactions On Information Forensics
and Security, 11(1):114–125, 2016.

[43] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. CRePE:
Context-related policy enforcement for Android. In Proceedings of
the International Conference on Information Security, pages 331–345.
Springer, 2010.

[44] Peter Corke, Ron Peterson, and Daniela Rus. Coordinating aerial
robots and sensor networks for localization and navigation. In Proceed-
ings of the Distributed Autonomous Robotic Systems, pages 295–304.
Springer, 2007.

[45] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[46] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making
smartphones last longer with code offload. In Proceedings of the 8th
international conference on Mobile systems, applications, and services,
pages 49–62. ACM, 2010.

122 Bibliography

[47] Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for rela-
tion extraction. In Proceedings of the 42nd Annual Meeting on Asso-
ciation for Computational Linguistics, pages 423–430. Association for
Computational Linguistics, 2004.

[48] P Dang, FL Lewis, and DO Popa. Dynamic localization of air-ground
wireless sensor networks. In Proceedings of the Advances in Unmanned
Aerial Vehicles, pages 431–453. Springer, 2007.

[49] Jörg Daubert, Leon Böck, Panayotis Kikirasy, Max Mühlhäuser, and
Mathias Fischer. Twitterize: Anonymous micro-blogging. In Proceed-
ings of the 11th IEEE/ACS International Conference on Computer
Systems and Applications (AICCSA), pages 817–823. IEEE, 2014.

[50] DecaWave. ScenSor SWM1000 Module.
http://www.decawave.com/products/dwm1000-module.

[51] Gianluca Dini, Fabio Martinelli, Andrea Saracino, and Daniele Sgan-
durra. Madam: a multi-level anomaly detector for android malware. In
International Conference on Mathematical Methods, Models, and Ar-
chitectures for Computer Network Security, pages 240–253. Springer,
2012.

[52] Egham. Worldwide device shipments by segment. http://m0droid.
netai.net/modroid/. [Online; accessed September 2016].

[53] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmer-
man, Jonathan Mayer, Arvind Narayanan, and Edward W Felten.
Cookies that give you away: The surveillance implications of web track-
ing. In Proceedings of the 24th International Conference on World Wide
Web, pages 289–299. ACM, 2015.

[54] Halit Ergezer and Kemal Leblebicioglu. Path planning for uavs for
maximum information collection. IEEE Transactions on Aerospace and
Electronic Systems, 49(1):502–520, 2013.

[55] E. Rescorla et al. Datagram transport layer security version 1.2. https:
//tools.ietf.org/html/rfc6347. [Online; accessed October 2016].

[56] G. Montenegro et al. Transmission of ipv6 packets over ieee networks.
https://tools.ietf.org/html/rfc4944. [Online; accessed October 2016].

[57] Osamah Rawashdeh et al. Aerial-surface-underwater re-
connaissance drone. https://dronesforgood.ae/finals/

Bibliography 123

aerial-surface-underwater-reconnaissance-drone. [Online; accessed
October 2016].

[58] Z. Shelby et al. The constrained application protocol (coap). https:
//tools.ietf.org/html/rfc7252. [Online; accessed October 2016].

[59] Adrian Mettler et al. for FireEy. Ssl vulnerabili-
ties. https://www.fireeye.com/blog/threat-research/2014/08/
ssl-vulnerabilities-who-listens-when-android-applications-talk.html.
[Online; accessed September 2016].

[60] Ramsey M Faragher, Oliver RA Chick, Daniel T Wagner, Timothy
Goh, James Snee, and Brian Jones. Captain buzz: An all-smartphone
autonomous delta-wing drone. In Proceedings of the First Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications for Civilian
Use, pages 27–32. ACM, 2015.

[61] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve got
99 problems, but vibration ain’t one: a survey of smartphone users’
concerns. In Proceedings of the second ACM workshop on Security and
privacy in smartphones and mobile devices, pages 33–44. ACM, 2012.

[62] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
Semantics-based detection of android malware through static analysis.
In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 576–587. ACM, 2014.

[63] Hossein Fereidooni, Veelasha Moonsamy, Mauro Conti, and Lejla
Batina. Efficient classification of android malware in the wild using
robust static features. Protecting Mobile Networks and Devices: Chal-
lenges and Solutions, 1:181–209, 2016.

[64] Kendra Moyer for APCNews. Attacks on social movements increase on-
line, tech support comes to the rescue. https://www.apc.org/en/news/
attacks-social-movements-increase-online-tech-supp. [Online; accessed
October 2016].

[65] Mark Prigg for MailOnline. The ambulance drone that
could save your life: Flying defibrillator can reach speeds of
60mph. http://www.dailymail.co.uk/sciencetech/article-2811851/
The-ambulance-drone-save-life-Flying-defibrillator-reach-speeds-60mph.
html. [Online; accessed October 2016].

124 Bibliography

[66] Ernst Wittmann for memeburn. The internet of things is here, and it
will revolve around the smartphone. http://memeburn.com/2015/12/
the-internet-of-things-is-here-and-it-will-revolve-around-the-smartphone/.
[Online; accessed October 2016].

[67] Tim Greene for Network World. Largest ddos at-
tack ever delivered by botnet of hijacked iot devices.
http://www.networkworld.com/article/3123672/security/
largest-ddos-attack-ever-delivered-by-botnet-of-hijacked-iot-devices.
html. [Online; accessed October 2016].

[68] Ingrid Lunden for Tech Crunch. 6.1 billion smartphone users globally
by 2020, overtaking basic fixed phone subscriptions. https://goo.gl/
rwabC2. [Online; accessed October 2016].

[69] Rina Marie Doctor for Tech Times. Faa predicts drones will number
7 million by 2020. http://www.techtimes.com/articles/144405/
20160326/faa-predicts-drones-will-number-7-million-by-2020.htm.
[Online; accessed October 2016].

[70] Micah Lee for The Intercept. Secret badass intelligence pro-
gram spied on smartphones. https://theintercept.com/2015/01/26/
secret-badass-spy-program/. [Online; accessed October 2016].

[71] Dean Takahashi for Venturebeat. The app economy could double
to usd101 billion by 2020. http://venturebeat.com/2016/02/10/
the-app-economy-could-double-to-101b-by-2020-research-firm-says/.
[Online; accessed October 2016].

[72] Thomas Fox-Brewste. How hacked cameras are helping launch the
biggest attacks the internet has ever seen. https://goo.gl/WOSs0V.
[Online; accessed October 2016].

[73] Sebastián García, Vojtěch Uhlíř, and Martin Rehak. Identifying and
modeling botnet c&c behaviors. In Proceedings of the 1st International
Workshop on Agents and CyberSecurity, pages 1–8. ACM, 2014.

[74] Sebastián García, Alejandro Zunino, and Marcelo Campo. Survey on
network-based botnet detection methods. Security and Communication
Networks, 7(5):878–903, 2014.

[75] Oscar Garcia-Morchon, Sye Loong Keoh, Sandeep Kumar, Pedro
Moreno-Sanchez, Francisco Vidal-Meca, and Jan Henrik Ziegeldorf. Se-
curing the ip-based internet of things with hip and dtls. In Proceedings

Bibliography 125

of the sixth ACM conference on Security and privacy in wireless and
mobile networks, pages 119–124. ACM, 2013.

[76] Chad Goerzen, Zhaodan Kong, and Bernard Mettler. A survey of
motion planning algorithms from the perspective of autonomous UAV
guidance. Journal of Intelligent and Robotic Systems, 57(1-4):65–100,
2010.

[77] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. Riskranker: scalable and accurate zero-day android malware
detection. In Proceedings of the 10th international conference on Mobile
systems, applications, and services, pages 281–294. ACM, 2012.

[78] Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, and Dongmei
Wang. ACAS: automated construction of application signatures. In
Proceedings of the 2005 ACM SIGCOMM workshop on Mining net-
work data, pages 197–202. ACM, 2005.

[79] Creighton TR Hager, Scott F Midkiff, J-M Park, and Thomas L Martin.
Performance and energy efficiency of block ciphers in personal digital
assistants. In Proceedings of the Third IEEE International Conference
on Pervasive Computing and Communications, pages 127–136. IEEE,
2005.

[80] Jiyong Han, Minkeun Ha, and Daeyoung Kim. Practical security analy-
sis for the constrained node networks: Focusing on the DTLS protocol.
In Proceedings of the 5th International Conference on the Internet of
Things (IOT), pages 22–29. IEEE, 2015.

[81] Guillermo Heredia, Fernando Caballero, Iván Maza, Luis Merino, An-
tidio Viguria, and Aníbal Ollero. Multi-unmanned aerial vehicle (UAV)
cooperative fault detection employing differential global positioning
(DGPS), inertial and vision sensors. Sensors, 9(9):7566–7579, 2009.

[82] Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. PREC:
practical root exploit containment for android devices. In Proceedings of
the 4th ACM conference on Data and application security and privacy,
pages 187–198. ACM, 2014.

[83] Geoffrey A Hollinger, Sunav Choudhary, Parastoo Qarabaqi, Christo-
pher Murphy, Urbashi Mitra, Gaurav S Sukhatme, Milica Stojanovic,
Hanumant Singh, and Franz Hover. Underwater data collection using
robotic sensor networks. IEEE Journal on Selected Areas in Commu-
nications, 30(5):899–911, 2012.

126 Bibliography

[84] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical
guide to support vector classification. 2003.

[85] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-
class support vector machines. IEEE transactions on Neural Networks,
13(2):415–425, 2002.

[86] Yih-Chun Hu, Adrian Perrig, and David B Johnson. Packet leashes:
a defense against wormhole attacks in wireless networks. In Twenty-
Second Annual Joint Conference of the IEEE Computer and Commu-
nications. INFOCOM’03, pages 1976–1986. IEEE, 2003.

[87] Lin Shung Huang, Alex Rice, Erling Ellingsen, and Collin Jackson. An-
alyzing forged SSL certificates in the wild. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P’14), pages 83–97. IEEE,
2014.

[88] René Hummen, Hanno Wirtz, Jan Henrik Ziegeldorf, Jens Hiller, and
Klaus Wehrle. Tailoring end-to-end ip security protocols to the internet
of things. In Proceedings of the 21st IEEE International Conference on
Network Protocols (ICNP), pages 1–10. IEEE, 2013.

[89] IEEE Computer Society. IEEE Std 802.15.4a-2007 (Amendment 1:
Add Alternate PHYs), 2007.

[90] Ericsson Inc. Connected devices. https://www.ericsson.com/
openarticle/mwc-connected-devices_1686565587_c. [Online; accessed
October 2016].

[91] Google Inc. Google glass. https://developers.google.com/glass/. [On-
line; accessed October 2016].

[92] Sophos Inc. Transmission of ipv6 packets over ieee net-
works. https://www.sophos.com/en-us/medialibrary/PDFs/other/
sophos-security-threat-report-2014.pdf. [Online; accessed October
2016].

[93] Thingsquare Inc. Contiki: The open source os for the internet of things.
http://www.contiki-os.org/. [Online; accessed October 2016].

[94] Javier Irizarry, Masoud Gheisari, and Bruce N Walker. Usability as-
sessment of drone technology as safety inspection tools. Journal of
Information Technology in Construction, 17:194–212, 2012.

Bibliography 127

[95] David Jaramillo, Neil Katz, Bill Bodin, William Tworek, Robert Smart,
and Thomas Cook. Cooperative solutions for bring your own device
(BYOD). IBM journal of research and development, 57(6):5–1, 2013.

[96] Jeff Jarmoc and DSCT Unit. SSL/TLS interception proxies and tran-
sitive trust. Presentation at Black Hat Europe, 2012.

[97] Somesh Jha, Kymie MC Tan, and Roy A Maxion. Markov chains,
classifiers, and intrusion detection. In Proceedings of the 14th IEEE
Computer Security Foundations Workshop, pages 206–209. IEEE, 2001.

[98] Jinfang Jiang, Guangjie Han, Chuan Zhu, Yuhui Dong, and Na Zhang.
Secure localization in wireless sensor networks: A survey. Journal of
Communications, 6(6):460–470, 2011.

[99] Prabhakaran Kasinathan, Claudio Pastrone, Maurizio A Spirito, and
Mark Vinkovits. Denial-of-service detection in 6lowpan based internet
of things. In Proceedings of International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pages
600–607. IEEE, 2013.

[100] John G Kemeny, James Laurie Snell, et al. Finite markov chains,
volume 356. van Nostrand Princeton, NJ, 1960.

[101] Farid Kendoul. Survey of advances in guidance, navigation, and control
of unmanned rotorcraft systems. Journal of Field Robotics, 29(2):315–
378, 2012.

[102] Sye Loong Keoh, Sandeep S Kumar, and Hannes Tschofenig. Securing
the internet of things: A standardization perspective. IEEE Internet
of Things Journal, 1(3):265–275, 2014.

[103] Swati Khandelwal. World’s largest 1 tbps ddos attack launched from
152,000 hacked smart devices. http://thehackernews.com/2016/09/
ddos-attack-iot.html. [Online; accessed October 2016].

[104] Syed A Khayam and Hayder Radha. Markov-based modeling of wire-
less local area networks. In Proceedings of the 6th ACM international
workshop on Modeling analysis and simulation of wireless and mobile
systems, pages 100–107. ACM, 2003.

[105] Joseph Kirk. Traveling Salesman Problem - Genetic Algorithm.
http://www.mathworks.com/matlabcentral/fileexchange/13680-
traveling-salesman-problem-genetic-algorithm. [Online; accessed
November 2016].

128 Bibliography

[106] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen
Zhang. Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading. In Proceedings of IEEE INFO-
COM’12, pages 945–953. IEEE, 2012.

[107] Sokol Kosta, Vasile Claudiu Perta, Julinda Stefa, Pan Hui, and
Alessandro Mei. Clone2clone (c2c): Peer-to-peer networking of smart-
phones on the cloud. In Proceedings of the 5th USENIX Workshop on
Hot Topics in Cloud Computing, 2013.

[108] Sokol Kosta, Vasile Claudiu Perta, Julinda Stefa, Pan Hui, and
Alessandro Mei. Clonedoc: exploiting the cloud to leverage secure
group collaboration mechanisms for smartphones. In Proceedings of
IEEE INFOCOM’13, pages 19–20. IEEE, 2013.

[109] Thomas Kothmayr, Corinna Schmitt, Wen Hu, Michael Brünig, and
Georg Carle. DTLS based security and two-way authentication for the
Internet of Things. Elsevier Ad Hoc Networks, 11(8):2710–2723, 2013.

[110] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. Erbium
(Er) REST engine and CoAP implementation for Contiki. ETH Zurich,
Switzerland, 2015.

[111] Tadahiro Kuroda, Kojiro Suzuki, Shinji Mita, Tetsuya Fujita, Fu-
miyuki Yamane, Fumihiko Sano, Akihiko Chiba, Yoshinori Watanabe,
Koji Matsuda, Takeo Maeda, et al. Variable supply-voltage scheme for
low-power high-speed cmos digital design. IEEE Journal of Solid-State
Circuits, 33(3):454–462, 1998.

[112] Hyeokjin Kwon, Jiye Park, and Namhi Kang. Challenges in deploying
CoAP over DTLS in resource constrained environments. In Proceedings
of International Workshop on Information Security Applications, pages
269–280. Springer, 2015.

[113] Hyun Jung La and Soo Dong Kim. Technical challenges and solutions
to realize ultra-heterogeneous mobile computing. Advanced Science
Letters, 21(3):290–296, 2015.

[114] Christina S Leslie, Eleazar Eskin, and William Stafford Noble. The
spectrum kernel: A string kernel for SVM protein classification. In
Pacific symposium on biocomputing, number 7, pages 566–575, 2002.

[115] Yuan Li, Mingjun Hou, Heng Liu, and Yi Liu. Towards a theoretical
framework of strategic decision, supporting capability and information

Bibliography 129

sharing under the context of internet of things. Information Technology
and Management, 13(4):205–216, 2012.

[116] Marc Liberatore and Brian Neil Levine. Inferring the source of en-
crypted http connections. In Proceedings of the 13th ACM conference
on Computer and communications security, pages 255–263. ACM, 2006.

[117] Marino Linaje and Luis Miguel Dominguez-Peinado. U-AirPoll: Mobile
Distributed and Collaborative Air Pollution Measurement. ERCIM
News, (93):42–43, 2013.

[118] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini,
and Chris Watkins. Text classification using string kernels. Journal of
Machine Learning Research, 2(2):419–444, 2002.

[119] Lookout. The new notcompatible: Sophisticated and evasive threat
harbors the potential to compromise enterprise networks. https://
blog.lookout.com/blog/2014/11/19/notcompatible/. [Online; accessed
April 2016].

[120] M0Droid. M0droid. http://m0droid.netai.net/modroid/. [Online; ac-
cessed April 2016].

[121] Ming Ma, Yuanyuan Yang, and Miao Zhao. Tour planning for mobile
data-gathering mechanisms in wireless sensor networks. IEEE Trans-
actions on Vehicular Technology, 62(4):1472–1483, 2013.

[122] Akm Jahangir Alam Majumder, Piyush Saxena, and Sheikh Iqbal
Ahamed. Your Walk is My Command: Gait Detection on Un-
constrained Smartphone Using IoT System. In Proceedings of the
40th IEEE Annual Computer Software and Applications Conference
(COMPSAC), pages 798–806. IEEE, 2016.

[123] Zbynek Michlovskỳ, Shaoning Pang, Nikola Kasabov, Tao Ban, and
Youki Kadobayashi. String Kernel Based SVM for Internet Security
Implementation. In International Conference on Neural Information
Processing, pages 530–539. Springer, 2009.

[124] Pedro Miranda, Matti Siekkinen, and Heikki Waris. TLS and energy
consumption on a mobile device: A measurement study. In Computers
and Communications (ISCC), 2011 IEEE Symposium on, pages 983–
989. IEEE, 2011.

130 Bibliography

[125] Prateek Mittal, Matthew Wright, and Nikita Borisov. Pisces: Anony-
mous communication using social networks. In Proceedings of Network
and Distributed System Security Symposium (NDSS), pages 1417–1433,
2012.

[126] Mohammad-Mahdi Moazzami, Daisuke Mashima, Ulrich Herberg, Wei-
Pen Chen, and Guoliang Xing. SPOT: a smartphone-based control app
with a device-agnostic and adaptive user-interface for IoT devices. In
Proceedings of the ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct, pages 670–673. ACM, 2016.

[127] Abedelaziz Mohaisen and Yongdae Kim. Dynamix: anonymity on dy-
namic social structures. In Proceedings of the 8th ACM SIGSAC sym-
posium on Information, computer and communications security, pages
167–172. ACM, 2013.

[128] Aziz Mohaisen, Huy Tran, Abhishek Chandra, and Yongdae Kim.
Trustworthy distributed computing on social networks. pages 333–345.
IEEE, 2014.

[129] Luca Mottola. Real-world drone sensor networks: A multi-disciplinary
challenge. In Proceedings of the 6th ACM Workshop on Real World
Wireless Sensor Networks, pages 1–1. ACM, 2015.

[130] Luca Mottola, Mattia Moretta, Kamin Whitehouse, and Carlo Ghezzi.
Team-level programming of drone sensor networks. In Proceedings of
the 12th ACM Conference on Embedded Network Sensor Systems, pages
177–190. ACM, 2014.

[131] Chase C Murray and Amanda G Chu. The flying sidekick travel-
ing salesman problem: Optimization of drone-assisted parcel delivery.
Transportation Research Part C: Emerging Technologies, 54:86–109,
2015.

[132] Alexios Mylonas, Vasilis Meletiadis, Bill Tsoumas, Lilian Mitrou, and
Dimitris Gritzalis. Smartphone forensics: A proactive investigation
scheme for evidence acquisition. In IFIP International Information
Security Conference, pages 249–260. Springer, 2012.

[133] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, and Abdul-
lah Gani. Evaluation of machine learning classifiers for mobile malware
detection. Soft Computing, 20(1):343–357, 2016.

Bibliography 131

[134] Plamen Nedeltchev. The internet of everything is the new econ-
omy. http://www.cisco.com/c/en/us/solutions/collateral/enterprise/
cisco-on-cisco/Cisco_IT_Trends_IoE_Is_the_New_Economy.html.
[Online; accessed October 2016].

[135] Brandon Niemczyk and Prasad Rao. Identification over encrypted
channels. Presentation at BlackHat USA, 2014.

[136] Kirill Nikitin. DTLS Adaptation for Efficient Secure Group Commu-
nication, 2015.

[137] Huansheng Ning, Hong Liu, et al. Cyber-physical-social based secu-
rity architecture for future internet of things. Advances in Internet of
Things, 2(01):1, 2012.

[138] Ilker Onat and Ali Miri. A real-time node-based traffic anomaly detec-
tion algorithm for wireless sensor networks. In Proceedings of Systems
Communications (ICW’05), pages 422–427. IEEE, 2005.

[139] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and
Thiemo Voigt. Cross-level sensor network simulation with Cooja. In
Proceedings of 31st IEEE Conference on Local Computer Networks,
pages 641–648. IEEE, 2006.

[140] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Mat-
sumoto, Takahiro Kasama, and Christian Rossow. IoTPOT: analysing
the rise of IoT compromises. In Proceedings of 9th USENIX Workshop
on Offensive Technologies (WOOT 15), 2015.

[141] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas En-
gel. Website fingerprinting in onion routing based anonymization net-
works. In Proceedings of the 10th annual ACM workshop on Privacy
in the electronic society, pages 103–114. ACM, 2011.

[142] Jiye Park and Namhi Kang. Lightweight secure communication for
CoAP-enabled internet of things using delegated DTLS handshake.
In Proceedings of IEEE International Conference on Information and
Communication Technology Convergence (ICTC), pages 28–33. IEEE,
2014.

[143] Pubudu N Pathirana, Nirupama Bulusu, Andrey V Savkin, and Sanjay
Jha. Node localization using mobile robots in delay-tolerant sensor net-
works. IEEE Transactions on Mobile Computing, 4(3):285–296, 2005.

132 Bibliography

[144] Sarah Perez. Majority of digital media consumption now takes
place in mobile apps. http://techcrunch.com/2014/08/21/
majority-of-digital-media-consumption-now-takes-place-in-mobile-apps/.
[Online; accessed September 2016].

[145] Sophia Petridou and Stylianos Basagiannis. Towards energy consump-
tion evaluation of the ssl handshake protocol in mobile communications.
In Proceedings of 9th Annual Conference on Wireless On-demand Net-
work Systems and Services (WONS), pages 135–138. IEEE, 2012.

[146] Heloise Pieterse and Martin S Olivier. Android botnets on the rise:
Trends and characteristics. In 2012 Information Security for South
Africa, pages 1–5. IEEE, 2012.

[147] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Her-
bert Bos. Paranoid android: versatile protection for smartphones. In
Proceedings of the 26th Annual Computer Security Applications Con-
ference, pages 347–356. ACM, 2010.

[148] Nachiketh R Potlapally, Srivaths Ravi, Anand Raghunathan, and Ni-
raj K Jha. A study of the energy consumption characteristics of cryp-
tographic algorithms and security protocols. IEEE Transactions on
mobile computing, 5(2):128–143, 2006.

[149] Nachiketh R Potlapally, Srivaths Ravi, Anand Raghunathan, and Ni-
raj K Jha. A study of the energy consumption characteristics of cryp-
tographic algorithms and security protocols. IEEE Transactions on
mobile computing, 5(2):128–143, 2006.

[150] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang,
Nagendra Modadugu, et al. The ghost in the browser: Analysis of
web-based malware. Proceedings of the first USENIX workshop on hot
topics in Bot-nets (HotBots’07, 7:4–13, 2007.

[151] Krishna PN Puttaswamy, Alessandra Sala, Omer Egecioglu, and Ben Y
Zhao. Rome: Performance and anonymity using route meshes. In
Proceedings of IEEE INFOCOM’09, pages 2861–2865. IEEE, 2009.

[152] Krishna PN Puttaswamy, Alessandra Sala, and Ben Y Zhao. Star-
clique: guaranteeing user privacy in social networks against intersection
attacks. In Proceedings of the 5th international conference on Emerging
networking experiments and technologies, pages 157–168. ACM, 2009.

Bibliography 133

[153] Mazedur Rahman, Jerry Gao, and Wei-Tek Tsai. Energy saving in mo-
bile cloud computing. In Proceedings of IEEE International Conference
on Cloud Engineering (IC2E), pages 285–291. IEEE, 2013.

[154] Kasper Rasmussen, Mani Srivastava, et al. Secure location verification
with hidden and mobile base stations. IEEE Transactions on Mobile
Computing, 7(4):470–483, 2008.

[155] Shahid Raza, Ludwig Seitz, Denis Sytenkov, and Göran Selander. S3K:
Scalable Security With Symmetric Keys: DTLS Key Establishment for
the Internet of Things. IEEE Transactions on Automation Science and
Engineering, (99):1–11, 2016.

[156] Shahid Raza, Linus Wallgren, and Thiemo Voigt. SVELTE: Real-time
intrusion detection in the Internet of Things. Elsevier Ad hoc networks,
11(8):2661–2674, 2013.

[157] Piotr Rudol and Patrick Doherty. Human body detection and geolo-
calization for uav search and rescue missions using color and thermal
imagery. In Proceedings of IEEE Aerospace Conference, pages 1–8.
IEEE, 2008.

[158] CNN Ryan Bergeron. Your personal underwater drone. http://edition.
cnn.com/2013/11/06/tech/innovation/underwater-drones/. [Online;
accessed October 2016].

[159] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju,
Cristina Nita-Rotaru, and Ian Molloy. Android permissions: a per-
spective combining risks and benefits. In Proceedings of the 17th ACM
symposium on Access Control Models and Technologies, pages 13–22.
ACM, 2012.

[160] Marius Senftleben, Mihai Bucicoiu, Erik Tews, Frederik Armknecht,
Stefan Katzenbeisser, and Ahmad-Reza Sadeghi. Mop-2-mop–mobile
private microblogging. In International Conference on Financial Cryp-
tography and Data Security, pages 384–396. 2014.

[161] Stefaan Seys and Bart Preneel. Arm: Anonymous routing protocol for
mobile ad hoc networks. International Journal of Wireless and Mobile
Computing, 3(3):145–155, 2009.

[162] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael
Weiss. Andromaly: a behavioral malware detection framework for an-
droid devices. Journal of Intelligent Information Systems, 38(1):161–
190, 2012.

134 Bibliography

[163] Asaf Shabtai, Lena Tenenboim-Chekina, Dudu Mimran, Lior Rokach,
Bracha Shapira, and Yuval Elovici. Mobile malware detection through
analysis of deviations in application network behavior. Computers &
Security, 43:1–18, 2014.

[164] Rishabh Sharma, Sanjay Kumar, and Munesh Chandra Trivedi. Mo-
bile cloud computing: A needed shift from cloud to mobile cloud. In
5th International Conference on Computational Intelligence and Com-
munication Networks (CICN), pages 536–539. IEEE, 2013.

[165] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Blindbox: Deep packet inspection over encrypted traffic. In ACM SIG-
COMM Computer Communication Review, pages 213–226. ACM, 2015.

[166] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Blindbox: Deep packet inspection over encrypted traffic. In ACM SIG-
COMM Computer Communication Review, pages 213–226. ACM, 2015.

[167] Wolfgang Slany. Tinkering with pocket code, a scratch-like program-
ming app for your smartphone. Proceedings of Constructionism 2014,
Vienna, 2014.

[168] David C Snowdon, Stefan M Petters, and Gernot Heiser. Accurate
on-line prediction of processor and memoryenergy usage under voltage
scaling. In Proceedings of the 7th ACM & IEEE international confer-
ence on Embedded software, pages 84–93. ACM, 2007.

[169] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing Anal-
ysis of Keystrokes and Timing Attacks on SSH. In Proceedings of
USENIX Security Symposium (HotSec’01), 2001.

[170] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and
Jorge Blasco. Dendroid: A text mining approach to analyzing and
classifying code structures in android malware families. Expert Systems
with Applications, 41(4):1104–1117, 2014.

[171] Paul Syverson, R Dingledine, and N Mathewson. Tor: the second-
generation onion router. In Proceedings of USENIX Security Sympo-
sium (HotSec’04), 2004.

[172] Sasu Tarkoma, Matti Siekkinen, Eemil Lagerspetz, and Yu Xiao.
Smartphone energy consumption: modeling and optimization. Cam-
bridge University Press, 2014.

Bibliography 135

[173] Adam Thierer and Andrea Castillo. Projecting the Growth and Eco-
nomic Impact of The Internet of Things. George Mason University,
Mercatus Center, June, 15, 2015.

[174] Marco Tiloca. Efficient protection of response messages in dtls-based
secure multicast communication. In Proceedings of the 7th Interna-
tional Conference on Security of Information and Networks, pages 466–
473. ACM, 2014.

[175] Marten Van Dijk and Ari Juels. On the impossibility of cryptogra-
phy alone for privacy-preserving cloud computing. In Proceedings of
USENIX Security Symposium (HotSec’10).

[176] Vladimir Vapnik. The nature of statistical learning theory. Springer
Science & Business Media, 2013.

[177] Vladimir N Vapnik. Statistical learning theory. adaptive and learning
systems for signal processing, communications, and control. Simon
Haykin, 1998.

[178] Edwin Vattapparamban, İsmail Güvenç, Ali İ Yurekli, Kemal Akkaya,
and Selçuk Uluağaç. Drones for smart cities: Issues in cybersecurity,
privacy, and public safety. In Proceedings of IEEE International Wire-
less Communications and Mobile Computing Conference (IWCMC’16),
pages 216–221. IEEE, 2016.

[179] Srdjan Čapkun and Jean-Pierre Hubaux. Secure positioning in wire-
less networks. IEEE Journal on Selected Areas in Communications,
24(2):221–232, 2006.

[180] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt.
Cloudlets: bringing the cloud to the mobile user. In Proceedings of the
third ACM workshop on Mobile cloud computing and services, pages
29–36. ACM, 2012.

[181] John Villasenor. Observations from above: unmanned aircraft systems
and privacy. Harv. JL & Pub. Pol’y, 36:457, 2013.

[182] VirusTotoal. Virustotoal. https://www.virustotal.com/. [Online; ac-
cessed April 2016].

[183] Xiaolei Wang, Jie He, and Yuexiang Yang. Identifying p2p network
activities on encrypted traffic. In Proceedings of IEEE International
Conference on Trust, Security and Privacy in Computing and Com-
munications, pages 893–899. IEEE, 2014.

136 Bibliography

[184] Lee J Wells, Jaime A Camelio, Christopher B Williams, and Jules
White. Cyber-physical security challenges in manufacturing systems.
Elsevier Manufacturing Letters, 2(2):74–77, 2014.

[185] Frank Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics bulletin, 1(6):80–83, 1945.

[186] Duncan S Wong, Hector Ho Fuentes, and Agnes Hui Chan. The per-
formance measurement of cryptographic primitives on palm devices. In
Proceedings 17th Annual Computer Security Applications Conference (
ACSAC’01)., pages 92–101. IEEE, 2001.

[187] Duncan S Wong, Hector Ho Fuentes, and Agnes Hui Chan. The per-
formance measurement of cryptographic primitives on palm devices. In
Proceedings of the 17th Annual Computer Security Applications Con-
ference (ACSAC)., pages 92–101. IEEE, 2001.

[188] Charles V Wright, Lucas Ballard, Scott E Coull, Fabian Monrose, and
Gerald M Masson. Spot me if you can: Uncovering spoken phrases in
encrypted VoIP conversations. In IEEE Symposium on Security and
Privacy (S&P’08), pages 35–49. IEEE, 2008.

[189] Liang Xie, Xinwen Zhang, Jean-Pierre Seifert, and Sencun Zhu. pB-
MDS: a behavior-based malware detection system for cellphone devices.
In Proceedings of the third ACM conference on Wireless network secu-
rity, pages 37–48. ACM, 2010.

[190] Ke Xu, Yi Qu, and Kun Yang. A tutorial on the internet of things:
from a heterogeneous network integration perspective. IEEE Network,
30(2):102–108, 2016.

[191] Rubin Xu, Hassen Saïdi, and Ross Anderson. Aurasium: Practical
policy enforcement for android applications. In Proceedings of the 21st
USENIX Security Symposium (USENIX Security’12), pages 539–552,
2012.

[192] Nong Ye et al. A markov chain model of temporal behavior for anomaly
detection. In Proceedings of the IEEE Systems, Man, and Cybernetics
Information Assurance and Security Workshop, volume 166, pages 169–
170. West Point, NY, 2000.

[193] Yanchao Zhang, Wei Liu, Yuguang Fang, and Dapeng Wu. Secure lo-
calization and authentication in ultra-wideband sensor networks. IEEE
Journal on Selected areas in communications, 24(4):829–835, 2006.

Bibliography 137

[194] Yanchao Zhang, Wei Liu, Wenjing Lou, and Yuguang Fang. MASK:
anonymous on-demand routing in mobile ad hoc networks. IEEE trans-
actions on wireless communications, 5(9):2376–2385, 2006.

[195] Min Zhao, Tao Zhang, Fangbin Ge, and Zhijian Yuan. Robotdroid: a
lightweight malware detection framework on smartphones. Journal of
Networks, 7(4):715–722, 2012.

[196] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repack-
aged smartphone applications in third-party android marketplaces. In
Proceedings of the second ACM conference on Data and Application
Security and Privacy, pages 317–326. ACM, 2012.

[197] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Charac-
terization and evolution. In IEEE Symposium on Security and Privacy
(S&P’12), pages 95–109. IEEE, 2012.

[198] Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf,
Thomas Lengauer, and K-R Müller. Engineering support vector ma-
chine kernels that recognize translation initiation sites. Bioinformatics,
16(9):799–807, 2000.

