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ABSTRACT

In a cognitive radio network wherein primary and secondary
users coexist, an efficient power allocation method repre-
sents one of the most important key aspects. This paper
provide a novel approach based on a game theory framework
to solve this problem in a distributed and fair way. Formu-
lated as an optimization problem, the resource allocation
problem between secondary users and primary users can be
modeled and investigated with the Game Theory, and in
particular S-Modular Games, since they provide useful tools
for the definition of multi objective distributed algorithms
in the context of radio communications. This paper provide
also a performance comparison among the proposed game
and two other algorithms, frequently used in this context:
Simulated Annealing and Water Filling.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—distributed networks, wireless net-
works

Keywords

Resource Allocation, Energy Efficiency, Cognitive Radio,
Game Theory

1. INTRODUCTION
Cognitive Radio represents a promising paradigm aimed

to optimize the radio spectrum efficiency. In a cognitive
radio network, two kind of users can exist: primary (non-
cognitive) users and secondary (cognitive) users. Even though
primary and secondary users coexist within the same net-
work and sharing the same frequency bands, primary users
may be unaware of the presence of secondary users. Con-
trary to primary users, secondary users are smart, since they
are intelligent and interact with selfish network users, choos-
ing best operating parameters on the base of the sensed spec-
trum. Due to the natural radio environment changes, spec-
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trum sharing schemes change frequently, accordingly with
the users allocated resource. In this scenario, a game theo-
retic framework allows to study, model and analyze cognitive
radio networks in a distributed way. Such attractive fea-
ture allows to achieve the flexibility and the efficient adap-
tation to the operative environment that were previously
mentioned. Due to the players behavior, non-cooperative
game theory is closely connected to mini/max optimization
and typically results in the study of various equilibria, most
notably the Nash equilibrium. Developed cognitive radio
strategy has been formulated according the mathematical
discipline of Game Theory, with particular reference to S-
Modular Games.

Non-cooperative games have been proposed for spectrum
sharing in [1], which reports a detailed survey on game the-
oretic approaches for dynamic spectrum sharing in cogni-
tive radio networks, by in-depth theoretic analysis and an
overview of the most recent practical implementations. In
[2], the authors investigate the issue about the spectrum
sharing between a decentralized cognitive network and a
primary system, comparing a suboptimal distributed non-
cooperative game theoretic power control algorithm with the
optimal solution power control algorithm and the power con-
trol algorithm proposed in [3]. Besides the above referred
papers, in [4] and [5] it is also discussed the power con-
trol problem in spectrum sharing model. In [6, 7] authors
proposed different game-theoretic approaches to maximize
energy efficiency of the users within wireless networks, mak-
ing the utility functions being inversely proportional to the
transmit power.

This paper extends the above described results provid-
ing a distributed game-theoretic approach to obtain a quasi-
optimal power allocation method that maximize the energy
efficiency of each user, within the coexistence of primary and
secondary users. The proposed method take into account
throughput fairness among secondary users.

The paper is organized as follows: in Section 2 the pro-
posed system model and applicative scenario are presented.
The game description and the NE existence and uniqueness
is discussed in Section 3, while in Section 4 the Water-Filling
algorithm and a his energy efficient modified version is re-
ported. In 5 the results from computer simulation are com-
mented. Finally some conclusions are expressed in Section
6.

2. SYSTEM MODEL
In this work we consider a Cognitive Radio context in-

spired by a tactical/military scenario where a primary sys-
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Figure 1: Scenario with one primary users pair (rep-
resented by circles) and 5 secondary users pairs;
shaded colors represent the path loss component of
the channel.

tem (owner of the spectrum rights) coexisting with one or
more secondary systems and sharing the same frequency
band. This kind of situation is very interesting and, at the
same time, very frequent, i.e. during coalition deployment of
forces or in case of coexistence of humanitarian and military
convoys, especially when mobility is taken into account. It is
to be noted that such kind of context is a suggested scenario
by EDA and NATO [8] to provide a better reuse of the fre-
quency resource among several nations (coexistence of net-
works) and give a great help to accommodate dynamism of
the operational deployments. Note that, considering a pri-
mary system in the network, the proposed scheme includes
the possibility to existence of more than one primary user.

In the proposed system, each user is characterized by
a dedicated sender and receiver, thus each communicating
couple consists of a transmitter site TXi and a receiver site
RXi. In the most general context, in this work we consider
the transmitters and the receivers positions completely in-
dependent the ones from the others. Moreover, we use a
discrete-time model, based on iterations (which we ahead
refer as t). Indeed, for every single iteration, all users act
only once and until the next iteration they can’t do anything
else.

Since in the above described scenario primary users may
be unaware of the presence of secondary users, in the pro-
posed system there can’t be a ”direct” cooperation among
primary and secondary users. However, by definition, pri-
mary users should not undergo a degradation of the required
QoS due to the presence of secondary users. For this rea-
son, we propose the following the solution: the primary AP
selects and broadcasts periodically on the shared channel a
reasonable interference cap on the total interference it will-
ing to tolerate. Together with the interference cap, the value
of the total interference received by the primary receiver is
transmitted. Thanks to this solution, we introduce a sort
of ”indirect” unaware cooperation among the two kind of
users. The direct result of the introduction of a chosen in-
terference cap is a limitation of the total transmit power
of the secondary users on the shared channel. Thanks to

the introduction of the interference cap, for the simplicity
of exposition, hereinafter we will consider only one primary
transmitter-receiver pair, since the proposed scheme can be
easily extended to include more than one primary user.

Viewed from the perspective of secondary users, each of
them will choose the more suitable transmission power in or-
der to achieve the best transmission quality, respecting the
interference cap (broadcasted by primary AP) and ensuring
low interference to other secondary users. Due to the consis-
tent decisions made by primary and secondary users, game
theory represents an inbred framework to study, analyze and
predict the behavior of this system. For simplicity of expo-
sition, we will consider a fixed primary interference cap and
therefore a fixed maximum transmission power for the sec-
ondary users; this assumption can be made without altering
the validity of the system, since variations of this value are
relatively slow compared with the time of convergence of the
algorithm. In case of wireless networks with high primary
mobility and/or more strict delay needs, a delay efficient
approach should be followed, see [9].

3. THE PROPOSED GAME

3.1 Game description
The non-cooperative game proposed in this paper can

be modeled as game with N secondary users, namely the
players of the game, operating on one radio resource. This
game can be easily extended considering M radio resources
(i.e. subcarriers of the same multi-carrier channel or dif-
ferent channels) following the approach proposed in [10],
where subcarrier allocation is based on the normalized chan-
nel gain. Formally, the proposed non-cooperative game can
be modeled as follows:

• Set of Players: N = {1, 2, 3, ..., N} where i ∈ N is the
i-th secondary user.

• Set of Strategies: S = {Pmin, ..., Pmax}.

• Utility function: ui (p) where i ∈ N is the i-th sec-
ondary user.

Following the approach proposed by [6, 11], we take into
account the energy efficiency problem at the physical layer,
considering an utility function expressed in bit/Joule as per-
formance measure of the model. Each player tries to maxi-
mize the following utility function:

ui (p(t), p(t− 1)) = W
Rif(γi)

pi(t)
− Ωi(p(t), p(t− 1)) (1)

where p is the complete set of strategies of all secondary
users, W is the ratio between the number of information
bits per packet and the number of bits per packet, Ri is
the transmission rate of the ith user in bits/sec, f(γi) is
the is the efficiency function (depending on the considered
modulation), that represents a stochastic modeling of the
number of bits that are successfully received for each unit of
energy drained from the battery for the transmission.

Thanks to the efficiency function, the utility function each
user tries to maximize is related to its instantaneous signal
to noise plus interference ratio (SINR), defined as:

γi,c(t) = 10log

(

gi,ipi(t)

Iri (p−i(t− 1), P )

)

(2)



where with the notation p−i we refer to all components
of p not belonging to user i, pi is the power allocated from
the secondary transmitter i (TXi), gj,i is the path gain from
TXj to RXi, g12,i is the interference channel from the pri-
mary to the secondary receiver RXi, P is the primary trans-
mitted power, while σ2 is the AWGN component at RXi.

Iri (p−i(t−1), P ) represents the total interference received
by the ith user and it can be wrote as:

Iri (p−i(t− 1), P ) =
∑

k 6=i

gk,ipk(t− 1) + σ2 + g12,iP (3)

The path gain can be written as:

gi,j =
K

[(xi − xj)2 + (yi − yj)2]d
(4)

where K = 0.097 and d = 4.
The adopted channel model is composed by a small scale

fading and a path-loss component. In particular, the path-
loss model is the Okomura-Hata model, while the small scale
fading is modeled as a Rayleigh process.

Since the above defined utility function depends on the
path gains, each secondary user need to know it. In order to
solve this problem that could have a strong impact on the
signalling process, we assume that each receiver periodically
send out a beacon, thanks to which transmitters can measure
path gains.

In order to make the NE of the game as efficient as possible
(moving it to the Pareto Optimum), we consider the adap-
tive pricing function Ωi(pi,−i) that generates pricing values
basing on the interference generated by network users. Thus,
users that cause high interference transmitting at high power
will obtain high value of pricing, due to the fact that Ω(p)
is strictly increasing with p. The pricing function is written
as follows:

Ωi(p(t), p(t−1)) = β−δexp











−µ

pi(t− 1)
N
∑

i=1,k 6=i

gk,i

Iri (p−i(t− 1), P )











pi(t)

(5)
where:

• β > 1 is the maximum pricing value,

• δ > 1 is the price weight of the generated interference,

• µ > 1 is the sensitivity of the users to interference.

These three parameters are very useful to adapt the pric-
ing function to the considered wireless network requirements;
i.e. we can make the algorithm converge faster decreasing
the value of δ or force all secondary users to transmit at lower
power levels increasing their sensitivity to the interference
[11].

3.2 Existence and uniqueness of NE
A Nash Equilibrium [12] offers a stable outcome and it

can be guaranteed to exist, under certain conditions, but
does not necessarily mean the best payoff for all the players
involved, especially in presence of pricing techniques. In the
literature there are lots of mathematical methods to demon-
strate the existence and uniqueness of NE, like graphical [11,
13], quasi-concavity curve [14] and super-modularity [15, 6].

Supermodular Games are an interesting class of games
that exhibits strategic complementarity. There are several
compelling reasons like existence of pure strategy Nash equi-
librium, dominance resolvability, identical bounds on joint
strategy space etc. that make them a strong candidate
for resource allocation modeling. Supermodular games are
based on the concept of ”supermodularity”, which is used
in the social sciences to analyze how one agent’s decision
affects the incentives of others.

S-Games are normal form games Γ = 〈N,S, {fi}〉 where
N is the set of users, S the strategy space, fi the set of
utility functions and ∀i ∈ N these conditions are satified:

1. the strategy space Si of user i is a complete lattice.

2. fi is supermodular in si.

3. fi presents increasing differences in s.

The proposed utility function in Equation 1 can be easily
demonstrated to be supermodular, since:

1. the strategy space P is a complete lattice;

2.

∂2ui(p)

∂pi∂pj
≥ 0 (6)

for all p ∈ P and i 6= j.

3. the utility function has the increasing difference prop-
erty.

For the details of proofs we refer to [6], under the proposed
conditions. Uniqueness of the NE can be also demonstrated
following the same approach, since we use a Best Response
rule. Even if our proposed pricing function is more compli-
cated, in comparison with the above-cited work, the demon-
stration procedure does not change. Indeed, the pricing
function Ω (p(t), p(t− 1)) can be considered linear in p(t),
since the coefficient of p(t) at time t is a constant.

4. ENERGY EFFICIENT ITERATIVE WATER-

FILLING ALGORITHM
Water filling is a frequently used algorithm in power allo-

cation methods. This algorithm starts from the idea that a
vase can be filled by a quantity of water equal to the empty
volume of the vase. It is well-known in the literature that
power allocation in parallel uncoupled channels can follow
the water filling principle in order to maximize data-rate. A
channel can be filled by an amount of power depending on
the existing noise level. A multiuser scenario cannot be mod-
eled as the parallel uncoupled channels case, but it has to be
modeled following the approach of an interference channels.

On the base of these considerations, an iterative water fill-
ing procedure can be obtained; each user updates its trans-
mission power level as follows:

Pi
(t) =

(

Pmax
(t) −

γi(t)

pi(t)

)+

, i = 1...N (7)

where P
(t)
i is the power level assigned at the user i in the

iteration t and Pmax is maximum power that can be trans-
mitted in the channel (the water level). Because of a+ =

max {0, a}, if γi(t)
pi(t)

> Pmax, then P
(t)
i = 0 is assigned to the

user i.



Figure 2: SINR trends for increasing values of max-
imum transmission power for different number of
users; N = 5 in purple, N = 10 in pink, N = 15 in
green.

Iterative Water-Filling gets excellent performances in pres-
ence of low interference environments and/or limited number
of users. However for increasing values of interference, the
algorithm get worst; indeed, users experimenting the best
channel conditions will transmit at high power levels, while
users experimenting bad channel conditions (i.e. being the
receiver close to another transmitter) will receive high inter-
ference values and then they will be inactivated. For this
reason, EEIWF turns out to be unfair.

For a fixed target data-rate, we can identify a minimum
target value for the SINR. In this case, Iterative Water-
Filling is energy inefficient, due to the fact that the algo-
rithm tries to maximize the total transmission power, achiev-
ing SINR values that are greater than the target value. For
this reason, we propose the following energy efficient mod-
ified version of the algorithm, called Energy Efficient Iter-
ative Water-Filling (EEIWF). For each iteration, Pmax is
updated as follows:

• if SINR(t) − SINR(t−1) ≥ 0, P
(t)
max = P

(t−1)
max

k

• if SINR(t) − SINR(t−1) < 0, P
(t)
max = P

(t−1)
max

where k > 1 represents the reduction factor and it controls
the convergence speed of the algorithm. Note that for k = 2
the algorithm becomes the bisection method.

Such approach allows us to maintain the fixed data-rate,
using the lowest total transmission power level, taking into
account its trend in Figure 2.

In the case of N < 8 number of user, the SINR trend
for decreasing values of Pmax is a monotonous decreasing
function. Otherwise, when N ≥ 8, a reduction of Pmax

should also improve SINR final value.

5. SIMULATION RESULTS
In this paragraph we show the results of the simulations

that we run in order to verify the behavior of a cognitive
network based on the our proposed game-theoretical frame-
work. In the subsection 5.1 the convergence of the algo-
rithm is shown, while in subsection 5.2 a comparison be-
tween proposed game and heuristic power allocations will
be presented.

10 20 30 40 50 60 70
t
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Figure 3: SINR convergence in a 15-user simulation
with δ = 104.

5.1 Convergence of the algorithm
The operating context is a terrain square area of 1 km

edge, with a suburban path-loss profile. Primary transmitter
and receiver positions are fixed; secondary transmitters are
independently located in the area, while the secondary re-
ceivers positions are placed randomly in a 200m diameter cir-
cle around the respective transmitters. Each secondary user
transmits isotropically with pi ≤ pmax, where pmax = 1dBm
on the base of a fixed interference cap. Moreover, we con-
sider a noise power σ2 = −10dBm, frequency f = 1Ghz,
W = 4/5, a common rate Ri = 104bit/s, β = 104, δ = 104

and µ = 10−2.
Results of a simulation with a primary user and N = 5

secondary users show a fast convergence of the transmitted
power levels and SINR experimented by secondary users.
For increasing numbers of secondary users in the networks,
the algorithm still maintains a very short time of conver-
gence, see Figure 3; in the particular case of very bad loca-
tion of secondary users (i.e. users concentrated in a small
area), a possible growth of the time convergence may be
avoided decreasing the value of δ parameter.

5.2 Performance comparison
In order to obtain a qualitative evaluation of the pro-

posed game, we decide to compare its performance with both
EEIWF and an optimal centralized heuristic power alloca-
tion system, like Simulated Annealing (SA) [16]. The mean
value of the SINR (experimented by secondary users) has
been chosen as the performance index for the three opti-
mization methods. We run the simulations for increasing
number of secondary users, while all the other parameters
of the system remain the same of the previous shown config-
uration. The simulation results illustrated in Figure 4 show
clearly that the SA and the proposed game have quite the
same performance, since the maximum difference between
the mean value of the SINR obtained by the SA and the
game is −3dB. On the other hand, Water-Filling obtains
lower mean SINR levels and performance worsens for in-
creasing number of users in the network.

In addition to the SINR, the energy efficiency of the three
considered methods is an another important key feature that
we need to investigate. If the SINR performance are quite
the same for the proposed game and the SA, on the contrary
we can observe a great difference in terms of power alloca-
tions. Indeed, Figure 5 shows that, for a 15-user simulation,
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Figure 5: Example of power allocation for a 15 users
network; SA in yellow, Game in purple, Water-
Filling in blue.

SA allocation uses approximately 80% of power more than
game allocation. For what concern the EEIWF, while some
users are switched off, the others transmit at highest levels,
compared with the other two proposed allocations. In Fig-
ure 5 the power allocation of the proposed game is shown
in purple, in yellow is reported the additional power allo-
cated by SA (with respect to game) and in blue the excess
additional power allocated by EEIWF (with respect to SA).

6. CONCLUDING REMARKS
In this paper we provide an energy efficient game theo-

retic framework to solve the resource allocation problem in
a cognitive network, wherein primary and secondary users
coexist. The power allocation problem is solved thanks to
the application of S-Modular Games. Transmission power of
secondary users is upper bounded by the interference cap,
defined as the total interference that primary users willing
to tolerate, without loosing their required QoS. Moreover,
secondary users are discouraged to transmit at high power
levels, since they are charged on the base of the interference
they generate, thanks to the introduction of a pricing func-
tion inside of the utility function. Tuning utility function
parameters, the proposed game is able to adapt his perfor-
mance (in terms of time of convergence) to every kind of
network configuration. Indeed, simulation results show a
fast convergence of the algorithm for any number of consid-

ered users in the cognitive network.
In this work, a performance comparison among the pro-

posed game, an optimal centralized resource allocation method
(Simulated Annealing) and an Energy Efficient version of
the Water Filling is also included. Simulation results show
clearly that game theory obtains better performance than
water filling and the proposed game converges to the same
SINR values obtained from the heuristic optimization method.
However, unlike these, the proposed game results to be the
most energy efficient, also for a large number of consid-
ered users. Further investigations will be made in order to
quantify and analyze the signaling process among secondary
users.
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