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Representative Surrogate Problems as test functions for expensive 

simulators in multidisciplinary design optimization of vehicle structures  

Ramses Sala1, Niccolò Baldanzini, Marco Pierini 

Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze,  
Via di Santa Marta 3, 50139 Firenze, Italy 

Abstract 

A large variety of algorithms for multidisciplinary optimization is available, but for various industrial problem 

types that involve expensive function evaluations, there is still few guidance available to select efficient 

optimization algorithms. This is also the case for multidisciplinary vehicle design optimization problems 

involving, e.g., weight, crashworthiness, and vibrational comfort responses. In this paper, an approach for 

the development of Representative Surrogate Problems (RSPs) as synthetic test functions for a relatively 

complex industrial problem is presented. The work builds on existing sensitivity analysis and surrogate data 

generation methods to establish a novel approach to generate surrogate function sets, which are accessible 

(i.e. not resource demanding) and aim to generate statistically representative instances of specific classes of 

industrial problems. The approach is demonstrated through the construction of RSPs for multidisciplinary 

optimization problems that occur in the context of structural car body design. As a ―proof of concept‖ the RSP 

approach is applied for the selection of suitable optimization algorithms, for several problem formulations and 

for a meta-optimization (i.e. an optimization of the optimization algorithm parameters) to increase 

optimization efficiency. The potential of the approach is demonstrated by comparing the efficiency of several 

optimization algorithms on an RSP and an independent simulation-based vehicle model. The results 

corroborate the potential of the proposed approach and significant performance gains in optimization 

efficiency are achieved. Although the approach is developed for the particular application presented, the 

approach is described in a general way, to encourage readers to use the gist of the concept. 

Keywords: Multidisciplinary Design Optimization, test problems, benchmarking, meta-optimization, vehicle 

design. 

Introduction 

In the design process of complex structures the search for design solutions that are effective compromises 

between conflicting structural objectives is a challenging task. Within the scope of automotive vehicle design, 

weight reduction can be conflicting with the structural requirements for disciplines fields such as NVH (Noise, 

Vibration and Harshness) and crashworthiness. Early feasibility studies of design optimization methods 

applied to automotive structures involving crashworthiness analysis on sub-structures such as those by Yang 

et al. (1994) and Schramm and Pilkey (1996) were published about a decade after the first numerical 

crashworthiness simulation by Haug et al. (1986). These feasibility studies were later followed by basic 

studies of Multidisciplinary Design Optimization (MDO) of full vehicle structures with respect to crash, NVH 

and lightweight criteria in the works of, for example, Yang et al. (2001) and Sobieszczanski-Sobieski et al. 

(2001). Since then the investigations and showcase studies applying various types of optimization methods 

on vehicle design problems have increased strongly in quantity (e.g. Baldanzini et al. (2001); Baldanzini and 

Scippa (2004); Durgun and Yildiz (2012); Mihaylova et al. (2012); and Yildiz and Solanki (2012)).  

The application of metaheuristic and nature-inspired search algorithms to solve non-convex problems, which 

are related to MDO of structures with complex responses has gained increasing interest in research over the 

last decades (see the review articles by Venkayya (1978), Sobieszczanski-Sobieski and Haftka (1997) and, 

Simpson et al. (2008)). A great variety of optimization methods can be applied to non-convex MDO 

problems. Recent reviews on derivative-free and biologically inspired algorithms are for example given in the 

works of Rios and Sahinidis (2012) and Tang and Wu (2009) respectively. But which of these algorithms 
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should be chosen for a particular structural optimization problem? According to the ―no free lunch‖ theorem 

(Wolpert and Macready 1995; 1997) all optimization or search methods perform equivalent, when averaged 

over all possible problems. Nevertheless certain optimization methods can perform better than others on 

specific problem types. So although it is not a theoretically legitimate goal to find an overall best algorithm, it 

is a legitimate goal to rank algorithm performance in order to find efficient algorithms for particular problem 

types, or to tune an algorithm for a specific type of application. In order to benchmark
2
 (i.e. compare the 

performance and efficiency of) different optimization methods, several commonly used test functions were 

developed in the optimization community, Examples are the Rosenbrock function (Rosenbrock 1960), the 

Rastrigin’s function (Rastrigin 1974) for single objective problems, and the ZDT functions by Zitzler, Deb and 

Thiele (2000) for multi-objective optimization problems. Such test functions, sometimes also named ―artificial 

landscapes‖, are often expressed as simple closed form expressions, which require little computational effort 

such that millions of function evaluations can be achieved in a small amount of time on modern computers. It 

remains however a challenge to relate such standard analytical test functions to particular real world 

problems, and vice versa.   

An alternative to analytical test problems could be the use of simulation-based structural optimization 

benchmarks, based on standardized problem instances. The need for more complex realistic system 

benchmark problems is expressed in Alimoradi et al. (2010), and a relatively recent initiative to start an open 

benchmark database for simulation-based multidisciplinary optimization problems with engineering relevance 

is presented in Varis and Tuovinen (2012). For the optimization of vehicle design problems, involving 

crashworthiness and NVH responses, no relevant open-source benchmark problems are available yet. 

Although vehicle models are made publicly available by the vehicle modeling laboratory of the National 

Crash Analysis Center (NCAC), none of these or other models are to the knowledge of the authors used for 

any standardized simulation-based optimization benchmark problems. Even if standardized simulation-based 

benchmark optimization problems of full vehicle models would become available in the near future, the 

hardware and software resources required for the computationally expensive simulations remain a big hurdle 

to perform the large amount of function evaluations required to obtain statistically significant performance 

comparisons of optimization methods and algorithms for these problem types. These difficulties also exist for 

other structural optimization benchmark problems that involve resource demanding simulations.  

Multidisciplinary full vehicle optimizations, including crashworthiness and NVH simulation responses, can be 

expensive in terms of hardware and software resources (solver licenses), modeling effort and computation 

time. For such MDO studies in an industrial context, the computational budget is restricted to approximately 

280-500 function evaluations for an optimization run on a problem, that could have more than 50 design 

variables, and which could require about 600 CPU hours per function evaluation if several crashworthiness 

load cases are involved Duddeck (2008). Although MDO using metaheuristic search algorithms is commonly 

applied in an industrial automotive context, the literature provides nearly no significant performance 

comparisons, or guidelines for efficient optimization, of more than two relevant algorithms applicable for 

vehicle design problems involving crashworthiness. A notable exception is the work of Duddeck (2008) in 

which several benchmark studies for NVH and crashworthiness related problems were presented, together 

with a list of search algorithm requirements on such optimization problems. Investigations in another study 

published by Sala et al. (2014a) indicated that the optimization algorithm performance for similar vehicle 

optimization problems on different vehicle models are significantly correlated, such that optimization 

algorithm performance characteristics can be attributed to a problem type, and not only a particular problem 

instance. The results of that study and additional investigations, however indicated that although meta-model 

or response surface based benchmarks can be effectively used for mass, and low-order eigenfrequency 

responses, they seem however less suited for problems involving highly nonlinear and non-smooth 

crashworthiness responses. The non-smoothness of the responses is due to the highly nonlinear 
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phenomena involved such as local buckling, plasticity, contact and fracture instabilities. Under such 

conditions, small changes to the design variables of a system can cause bifurcations or abrupt changes in 

the topological behavior of the system and the resulting structural response. In a high dimensional design 

variable space, this highly non-smooth behavior is difficult to represent by traditional meta-models. Even the 

use of methods that are generally considered as suitable for nonlinear responses (such as Radial Basis 

Functions (RBF) and Kriging), results in smooth behavior between the construction points. Such methods 

can capture the ―global‖ nonlinearities with a limited number of construction points which is useful for 

approximation models. However, to represent local non-smooth behavior (which can affect the optimization 

algorithm performance on the simulation-based model) these meta-models require a number of construction 

points proportional to the number of local ―peaks‖ and ―valleys‖ of the response ―landscape‖ to be 

represented. For high dimensional models with local non-smoothness such as observed in the parameter 

studies presented later in this work, the construction of meta-models with representative non-smooth 

behavior would require a density of construction points which would currently be infeasible to achieve 

because of high computational costs.  

For optimization problems involving crashworthiness response, and more generally for MDO involving 

expensive simulators with complex responses the current state of the art could be paradoxically stated as: 

the problems for which performance matters the most, because they are expensive and restricted to a limited 

evaluation budget, are also the ones for which it is too expensive to compare algorithms, tune the 

optimization parameters or develop specialized optimization methods.  

This paper describes an approach that could contribute to extricate this paradoxical situation. The paper is 

structured as follows: the second section introduces the objectives and general idea of the approach to 

generate representative surrogate responses and optimization problems; in the third section the properties of 

the vehicle design optimization application example are described; the fourth section provides a brief 

overview of the most important methods applied for the response characterization and a summary of the 

characterization of the vehicle simulation responses; in the fifth section the surrogate response formulation is 

presented; a demonstration and result corroborations follow in section six where an RSP is used to compare 

optimization algorithms and an meta-optimization of the optimization algorithm parameters is performed; in 

the last section the approach and obtained results are discussed, followed by an outlook and conclusions.  

2 The concept of Representative Surrogate Problems  

In scientific literature there is much attention for the development of new meta-heuristics, while there is 

relatively few attention for the analysis of the problems, and their characteristics (see also Shan and Wang 

(2010)). The general idea of the presented approach is to construct synthetic and computationally affordable 

test problems based on characteristics of real world complex structural optimization problems. In the 

proceeding of this work these synthetic test problems will be called Representative Surrogate Problems 

(RSP) Note that (unlike conventional meta-model or surrogate modeling methods) the involved surrogate 

models and responses in this context are not intended to be used as an interpolation or approximation model 

of the targeted simulation responses, rather they aim to serve as a representative artificial response 

landscape with similar typical characteristics as the simulation-based response in a statistical sense. A RSP 

does not fit particular problem data, but is constructed to fit or satisfy selected characteristics of a problem 

type or class. The RSP approach can also be regarded as an adaptation and extension of surrogate data 

generation methods for time series such as proposed by Prichard and Theiler (1994) for applications with 

multiple correlated multivariate responses. Apart from an oral conference presentation by the authors Sala et 

al. (2014b), in which preliminary results of this work were discussed, this or similar approaches to construct 

synthetic test problems based on particular real world problems did not receive attention yet in the 

optimization literature. 

2.1 Representative surrogate functions 

In this communication a surrogate function for an individual response is denoted as a Representative 

Surrogate Function (RSF). An RSF is intended as a representative relationship between a model response 

w.r.t. its design variables. In the general case this could also be a parameterized meta-model (e.g. Kriging or 

https://www.researchgate.net/publication/13232043_Generating_surrogate_data_for_time_series_with_several_simultaneously_measured_variables?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/274312208_PRESENTATION_The_development_and_application_of_tailored_test_problems_for_metasimulation_of_multidisciplinary_optimization_of_vehicle_structures?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/274312208_PRESENTATION_The_development_and_application_of_tailored_test_problems_for_metasimulation_of_multidisciplinary_optimization_of_vehicle_structures?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
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RBF based meta-models), in this work the authors however use a function representation for the RSFs is 

inspired by the Sobol-Hoeffding function decomposition (Hoeffding 1949; Sobol 1990). 

 ( )   ( )     ∑   (  ) 
    ∑     (     ) 

                   (          )   (1) 

In equation 1,  ( ) and  ( ) are functions of dimension d, which can be decomposed in a series of 

summands of increasing interaction order. The design variable vector is denoted by the symbol  , and it has 

elements    in the normalized domain of the d-dimensional unit hypercube    *                +. 

The expression  ( ) refers to the targeted simulation-based response function, and  ( ) is refers to the 

surrogate function. In the scope of this work the symbol   will refer to similarity according to criteria to be 

defined by the modeler (in the application example in section 5 a particular set of such criteria will be defined 

and enforced as constraint expressions). Theoretically an exact decomposition  ( ) exists, but in the case of 

expensive black box functions, and function decomposition based on a limited number of samples this is of 

little practical relevance. The aim is to find a parameterized truncated series expansion or another 

computationally affordable expression that can represent the characteristic behavior of the individual 

simulation responses, which is not necessarily limited to an approximation of the particular response. 

Depending on the response type the summands that are part of the decomposition of equation 1 (truncated 

in ―interaction order‖) could be either represented by simple analytical functions or by series expansions over 

the corresponding variable subset. These ―second‖ series expansions can again be truncated in ―resolution‖, 

according to the data obtained from the response characterization. The choice for the truncation, basis 

functions and resulting representativeness, of such an expansion is dependent on the information obtained 

from the response characterization. The characteristic behavior or similarity criteria of the response output 

w.r.t. the design variables could involve for example the degree of nonlinearity, and the variance 

decomposition distribution of first and higher order interactions. The function series representation enables 

parameterized control over such response characteristics, whereas in data-fitting based meta-models such 

as RBF and Kriging surrogates, the response characteristics can only be controlled indirectly.  

2.2 Representative Surrogate Systems 

When more responses are involved in the optimization problems such as the case in MDO, the solution of 

the problem is not only dependent on the individual response characteristics but also on the relationship and 

structure between the different responses. A set of RSFs (superscript r in equation 2) combined with defined 

structure or relation between the involved responses, is denoted as an RSF-Set or Representative Surrogate 

System (RSS).  

  ( )    ( )    
  ∑   

 (  ) 
    ∑     

 (     ) 
                  

 (          )   (2) 

2.3 Representative Surrogate Problems 

An RSP can be defined by choosing an optimization formulation involving objectives and constraints that are 

depending on RSS responses. An example of a single objective optimization problem subjected to nonlinear 

inequality constraints could be expressed as: 

     (  ( )) subject to:   (  ( ))  0         (3) 

Where index w refers to the number of constraints. Once an RSS is established it is straight forward to test 

different optimization formulations on a given set of responses.  

2.4 RSP construction  

As can be seen from the previous definitions, the most challenging part of the RSP approach is to obtain 

RSFs and an RSS that is representative for the responses of interest. The general structure of the approach 

is: to apply parameter study and other existing sensitivity analysis methods (see section 4) to identify and 

quantify characteristics of the involved simulation-based responses that are common over a set of problem 

instances (different vehicle models in the application example). These characteristics such as nonlinearity 
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types, sensitivity index distributions, and inter-response correlations can be used to define a constraint 

satisfaction problem (CSP) based on the combination of suitable basis functions with free parameters, the 

domain of the parameters and the constraint set that enforce the selected function characteristics (See 

section 5). Using the solutions of this CSP problem as a parameter set for the given basis functions will result 

in an RSS with a selection of similar response characteristics as the simulation-based calibration responses. 

The responses of the resulting RSS can be used to define a synthetic optimization problem.  

The activities to construct an RSP could be summarized by the following steps: 

1. response characterization  

2. construction of the RSFs and the RSS by defining and solving a CSP 

3. combining the optimization formulation with the resulting RSS to define an RSP 

4. corroboration of the RSP.  

Since the RSS and RSP are not approximative surrogates, the validation or corroboration of them can only 

be done indirectly by comparing the characteristics, or the performance of operators such as optimization 

algorithms between them, and an independent model or optimization problem instance.  

2.5 Applications and general remarks 

The resulting synthetic problem or RSPs could be used as a test or ―toy functions‖ to compare, select, tune 

and develop efficient performing optimization algorithms and optimization frameworks for the related class of 

real-world optimization problems. Once established, they have a computational cost orders of magnitude 

less than the real problem instance. In addition they also improve the accessibility of problem types which 

are normally only available to a limited community because simulation-based function evaluations often 

require modeling expertise, solver licenses and considerable computation resources to be used in an 

optimization. Furthermore such RSPs could be made publicly available to serve as standardized benchmark 

problems, enabling an increased comparability, and reproducibility between performance studies on 

particular type of applications. In section 5 a schematic overview of the approach for the example case study 

on a multidisciplinary car body design application is provided. 

Although the function characterization necessary for the formulation of an RSP requires much more function 

evaluations than a typical optimization run of a single problem instance in an industrial design environment, 

the cost of such investigations can be seen as an investment that provides increased insight into the typical 

response structure for similar problem types. The investment to apply the approach could pay off for 

practitioners that deal with many similar optimization problem instances that involve expensive simulators 

(such as vehicle design problems), in particular for those who aim to select or develop specialized algorithms 

for particular complex problem types. In the case where conventional meta-models are able to represent the 

response characteristics, they can replace computationally expensive ―black box‖ simulation responses, with 

computationally affordable ―black box‖ meta-models. Although this can be practical, the additional insight for 

a systematic analysis of the problem is rather limited. For the systematic development of optimization 

strategies for difficult problems, it would be useful to analyze problems by their characteristics. The nature of 

the proposed approach enables the investigation on the influence of different response characteristics on the 

performance of optimization algorithms or strategies. Such additional insight could be a further justification 

for the required investment in the response characterization.  

3  Description of the industrial application example of multidisciplinary vehicle design 

optimization 

3.1 Solvers and vehicle models 

The objectives and constraints of the example optimization problems are based on the response of 

numerical simulations using the Finite Element Method (FEM). The vehicle models used in this work are 

based on the models available from the NCAC finite element model archive (NCAC 2014). For the presented 

investigation and case studies, the models displayed in table 1 are selected. The Metro model (A) is selected 

because the low mesh resolution, and forthcoming low computational cost which enabled a larger number of 
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function evaluations for the response characterization. The Neon model (B) has a much higher FEM mesh 

resolution, and a more detailed model structure. The Taurus model (C) has a computational cost between 

that of models A and B, which allows the large number function evaluations required for the corroboration of 

the approach. The number of design variables is different for each of the vehicle models because different 

design car body construction concepts are used and the vehicles used are modeled with a different level of 

detail. Although this work is dealing with ―similar‖ vehicle-related optimization problems, it is rather typical in 

industry that there are some differences between the different problem instances. The differences in 

geometry, FEM mesh resolution, number of design variables, and car body concepts, enable the 

assessment of the robustness of the response characterization for the different vehicle models and 

presented benchmark approach. Typical full vehicle crashworthiness models applied in industry today have 

about 1-10 million elements, and require computation times in the order of magnitude of 100 CPU hours, for 

a single 100ms crash event. The models used for the response characterization had lower mesh resolution 

and required less computation time (see Table 1). These models are less accurate in representing the exact 

behavior of a particular vehicle model, however in this work the identification of typical response 

characteristics w.r.t. the design variables is prioritized over the accuracy required in a detailed analysis of a 

particular vehicle design. The response characterization results in section 5 did not indicate any dependency 

of the response characteristics depending on the mesh, although the used models differed in mesh 

resolution for an order of magnitude.  

As design variables for the optimization problems, the scaling factors on the thickness of BIP components 

have been parameterized. Components appearing on both sides of the vehicle are scaled symmetrically. In 

table 1 the parts with variable thickness are colored in the pictures of the modal analysis models, while 

constant parts are displayed in gray, the same design variables have been used for the crash simulation. 

Table 1 Overview of the used vehicle models 

  model A model B model C 

  Metro Neon Taurus 

Modal analysis models 
(in color the parts with variable 

thickness)  

   

Crashworthiness models 
 

 

 
 

Nr. of elements Crash model 16k 271k 28k 

Total CPU time
3
 [hr.] for a 

crash simulation of 100ms 0.4  30 1.1  

Nr. of design variables 32 72 50 

 

For vehicle models A, B and C the total nominal mass of the parameterized components accounts for 75%, 

90% and 90% of the total BIP mass respectively. The design variables of all vehicle models are the 

parameterized sheet thickness of selected BIP components. The design variables are normalized to be in 

                                                           
3
 Approximate CPU time per simulation using a single logical core of a HP Z600 with 2 Intel Xeon E5520 processors, and 24GB DDR3 

Memory. 
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the unit hypercube domain and scale the nominal part thickness by a scaling factor varying between 0.5 and 

2. 

In the following sections of this paper the results of four response types are discussed in further detail: 

(1) Vehicle body mass (Mass) 

(2) First (free-free) natural torsion eigenfrequency (NTF1) 

(3) Deformation between A- and B-Pillars during crash (ABP. Def.) 

(4) Peak acceleration during crash
4
 (P. acc.) 

The mass for each vehicle model design, is calculated by summation over the lumped element masses of a 

predefined set of elements representing the components of the vehicle Body In Prime (BIP). For the FEM 

based linear modal analysis using LS-DYNA-implicit (version 971) codes is used. The eigenmodes are 

distinguished using the Modal Assurance Criterion (MAC) with respect to the dynamic behavior of the 

nominal vehicle model configuration. The crash load case is a frontal crash configuration against a rigid wall 

at 64 km/h. For the crashworthiness simulations, nonlinear transient dynamic analysis explicit FEM (LS-

DYNA 971) is used (see Wu and Gu (2012) for a general theoretical overview and Hallquist (2006) for details 

about the used software implementation). Fig. 1 illustrates the typical phenomena involved in the load cases.  

(a) (b) 

Fig. 1 a Simulation response: scaled deformation plot of the first natural torsional eigenfrequency of vehicle 
model B; b Simulation response deformation during a crash simulation of vehicle model B 

For the response characterization and to perform structural optimizations, a simulation workflow is created 

such that the NVH, crashworthiness, and mass criteria of each design variant can be determined 

―automatically‖ as a function of the design variables.  

4 Simulation response characterizations  

4.1 Local parameter studies 

Local one-factor-at-a-time (OFAT) and two-factor-at-a-time (TFAT), parameter studies have been performed 

to investigate and quantify the degree and type of nonlinearity of the response functions, as a function of the 

design variables. For these parameter studies, one or two variables have been changed in fixed steps over 

the entire domain, while all other design variables are fixed to their nominal value, hence only first and 

second-order effects are investigated. The term local in this context refers to the fact that these parameter 

studies have only been performed at a single location w.r.t. the other design variables. It has to be noted that 

for other responses or design variable types (such as parameterized ply orientation in the case of composite 

materials), or other design variable ranges the relationship type between the design variables and response 

could be different. Fig. 2 shows a representative sample of the response characterization w.r.t. change of a 

single design variable, while keeping the others fixed to the nominal value. In the present work a 

characterization of the responses of first-order changes of all the design variables is performed for vehicle 

models A and B 

                                                           
4
 The peak acceleration results are based on SAE 60 Hz low pass filtered acceleration values of an accelerometer element located at 

the center of the vehicle on the tunnel.  
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Fig. 2 Overview of different types of nonlinearities in OFAT parameter studies, for four different response 
types w.r.t the variation of one design variable 

For the sake of brevity, only a few results are displayed. However, the full set of parameter study results 

indicate very similar nonlinearity characteristics w.r.t the design variables for each response type. The 

relative importance or amplitude of the first and second-order effects varied over the different design 

variables, but the ―shape‖ of the relation between the responses and the design variables identified 

characteristic types of nonlinearity for each response type. The results indicated linear behavior for the 

vehicle mass response, mildly nonlinear behavior for the natural modes, and highly nonlinear behavior of the 

deformation and peak acceleration responses during the crashworthiness load cases  

To investigate the type of interactions, similar investigations are performed for the using TFAT parameter 

studies on a subset of the design variables. The subset is defined based on the global sensitivity analysis 

results described in section 4.2. Fig. 3 shows an example of the results.  

             

Fig. 3 Overview of different types of nonlinearities in TFAT parametric studies 

Further analysis is performed to quantify the nonlinearity and variations among parameters. For the 

responses with nonlinear and non-smooth first-order and second-order effects, the results are analyzed 

using one and two-dimensional spectral wavenumber decomposition using the Fast Fourier Transform (FFT). 

Fig. 4 shows examples of wavenumber decomposition analysis results for the peak acceleration response, of 

vehicle model A. 

(a)  (b) 

Fig. 4 Fourier analysis on the OFAT, and TFAT parameter study results. a: the normalized single sided 

amplitude spectrum (SSAS) for 2d wavenumber decomposition; b: the 1D SSAS of low wavenumbers ( ) for 
all design variables 

For all of the investigated design variables and vehicle models the results indicate that the low wavenumber 

―trends‖ are of predominant importance. Although it is difficult to discover common trends in the distribution 
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of individual amplitude contributions per wavenumber, the amplitude contribution averaged over all design 

variables, is decreasing with increasing wavenumber.  

4.2 Global sensitivity analysis and variance decomposition 

Using existing global sensitivity analysis (GSA) methods, and variance based variable screening methods, 

the first and second-order variance contributions or sensitivity indices of the model output w.r.t. the 

optimization design variables are estimated for the two vehicle models. First-order sensitivity indices are 

defined as:          ( ) where       (    (    )) represents the variance (   ) of the expected value 

 () of response or model output   conditioned w.r.t. design variable   . Analogously second-order indices 

can be defined as:        (     ( |   )). For an introduction and further theory of GSA methods the 

reader is referred to Sobol (2001) and Saltelli et al. (2010). The used implementations for the sensitivity 

index estimation and variable screening are described in Ratto and Pagano (2010). For GSA of the response 

model output w.r.t. the model input, 2000 pseudo random samples of design variable combinations are used 

for vehicle model A, and 1000 for vehicle model B. Fig. 5 shows the sensitivity distributions
5
 for the four 

different response types of two vehicle models.  

 

Fig. 5 Sensitivity distributions for responses and two vehicle models, for vehicle model A (top) and B 
(bottom). The variables are independently sorted in descending order of relevance, within each sub-figure 

                                                           
5
 The distribution of the first order sensitivity indices    are expressed in terms of √   since this is in the opinion of the authors more intuitive for 

visualization (in a similar manner as standard deviation can be preferred over variance in particular diagrams).  
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The resulting estimates of the first-order sensitivity indices show characteristic distributions for all of the 

investigated simulation responses.  For the Mass, NTF1 and ―ABP. Def.‖ responses, a small fraction of the 

design variables have a high contribution to the total response variance. Similar results are obtained for both 

investigated vehicle models (A and B). It should be noted that in Fig. 5 the variables are sorted in 

descending order of relevance according to variance contributions. Their ordering for the different response 

types is however different, such that variables important for one response are not necessarily important for 

another response. This is visualized in Fig. 6, where for each vehicle model a unique ordering according to 

the mass response is used. The relation of the variable importance between the different simulation 

responses is further dealt with in section 4.3.  

 

Fig. 6 First-order sensitivities sorted by mass influence, for vehicle model A (top) and B (bottom) 

.  

A natural property of the sensitivity indices or Sobol indices resulting from a GSA is that the variance 

contributions should sum up to unity. Combining the explained variance of a linear regression model together 

with the previously mentioned sensitivity analysis methods for the estimation of first and second-order 

sensitivity indices, an overall estimation of the variance decomposition can be obtained for each of the 

simulation responses (Fig. 7).  

 (a) (b) 

Fig. 7 Variance decomposition per response for: a: vehicle model A; b: vehicle model B 

4.3 Simulation response correlations 

Previous sections dealt with the analysis of the individual simulation responses with w.r.t. the design variable 

changes. In this section, a basic analysis of the structure between the different simulation responses of the 
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system is presented. The structure between the different simulation responses and between the sensitivity 

distributions of the responses is investigated using the normalized covariance (see equation 10).   

(a) (b) 

Fig. 8 Linear correlation coefficients between the simulation responses for: a: vehicle model A; b and B 
(right) 

Fig. 8 shows the matrix of normalized covariance’s also called (linear) correlation coefficients (Rodgers and 
Nicewander 1988) between the simulation responses, based on a quasi-random sampled design variable 
values for each of the vehicle models (A and B). Besides correlations among the design responses also the 
correlations between the linear first-order effects, of the different simulation responses are assessed. 

(a) (b) 

Fig. 9 Linear correlation coefficients between linear first-order effect distributions of different simulation 
responses for: a: vehicle model A; b: vehicle model B 

As an example Fig. 9 shows the correlation coefficient matrix between the distributions of the linear first-order 

sensitivity index estimates (based on linear regression models) for each of the simulation responses.  

4.4 Discussion and summary of the response characterization 

Of course, no general results can be obtained or claimed by investigating only two vehicle models with these 

approximate response characterization techniques. Nonetheless comparing the results between the two 

vehicle models, common trends, and a band of mutual differences between the investigated response 

characteristics could be qualitatively estimated. Although, for other applications and response types, possibly 

more problem instances and other characterization techniques might be required for a useful estimate, the 

applied characterization methods are by no means specific to the presented application, and could be used 

to investigate other response types.  

The response characterization performed here required a large investment in terms of computational effort. 

This investment, could however be worthwhile if a significant increase in optimization efficiency for other 

instances of related problems can be obtained with the RSP approach. The computational investment for this 

particular example is done in scope of a proof of concept. The main goals of this section were however to 

show the application of different analysis techniques that can be used for the response characterization and 

to provide an overview of similarities and differences in response characteristics of different simulation model 

instances of similar type. 
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5 Construction of representative surrogate problems for the vehicle design optimization 

example 

In this section, an example implementation of the RSP approach is presented. As stated in the general 

description of the approach, the aim of an RSP is to mimic selected function characteristics of the simulation-

based vehicle model responses of interest in a statistical sense, and not to approximate a particular 

response or dataset such as is usually done in the context of meta-models or surrogate models. Fig. 10 

displays a schematic workflow of the steps used to construct the RSP in this application example.  

  

Fig. 10 Schematic flow diagram for the construction of the RSP for the car body design application case 
study 

The results of the simulation response characterization gave an indication of common features and 

differences between the corresponding responses of the different vehicle models. For this example the 

selected characteristics for a single response are:  

 The type or ―shape‖ of the response nonlinearity w.r.t the design variables  

 The distribution of the first and second-order sensitivity indices w.r.t the design variables 

 The distribution of the total variance contribution of the first, second and higher order effects  

The selected characteristics between the different responses are:  

 The correlation coefficients (or normalized covariance) of the responses 

 The correlation coefficients of the first-order sensitivity indices between the responses 

For this example, an RSF formulation for each response type superscript r), composed of a series expansion 

truncated to include interaction effects up to the second-order followed by a combined higher order is used to 

represent the behavior of the characteristic responses. 

  ( )  ∑   
 (  ) 

    ∑     
 (     ) 

                
 (          )      (4) 

Superscript   is the index over the different types of outputs or pseudo responses (in this example: 1 Mass, 2 

NTF1, 3 ―ABP. Def.‖, 4 ―P acc.‖). All operations considered are invariant to addition with a constant, which is 

therefore omitted at this stage. For each of the responses the choices for the summands of the representing 

basis functions, and the parameter bounds are summarized in Table 2. Each of the basis function 

summands has free parameters which are the variables for the constructed CSP. For the RSS with the 
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contributions 

response 
correlations 

Variance 
contribution  
correlations 

Global Response 
Characterization 

Local Parameter 
Studies 

Local first order 
effects 

Local variable 
interactions 

𝐿𝐵𝑝𝑘𝑟  𝑝𝑘 
𝑟  𝑈𝐵𝑝𝑘𝑟  

Definition 
parameterized RSF 

𝜃 𝑟 .𝒑
 
𝑟  𝒙/  and bounds 

𝐺 𝑞
𝑟 .𝜃 𝑟(𝒑 

𝑟  𝒙)/    

𝐺 ℎ .𝜃 𝑟(𝒑 
𝑟  𝒙)/    

RSF constraints definition: 

RSS constraints definition: 
𝐺 𝑞
𝑟 .𝜃 𝑟(𝒑 

𝑟  𝒙)/     

𝐿𝐵𝑝𝑘𝑟  𝑝𝑘 
𝑟  𝑈𝐵𝑝𝑘𝑟  

Solve CSP 𝜃 𝑟 .𝒑
 
𝑟  𝒙/ 

Subject to: 

𝐺 ℎ  𝜃 𝑟 .𝒑
 
𝑟  𝒙/    a d  

    𝑓(𝜃𝑟( 𝒙)) 
RSP instance 

Subject to: 

𝑔𝑤(𝜃𝑟( 𝒙))  0 

Feasible CSP solution: 𝒑
 
𝑟  

RSF set instance: 

𝜃𝑟( 𝒙)  𝜃 𝑟 .𝒑
 
𝑟   𝒙/ 

    𝑓(𝑇𝑟(𝒙)) 

Optimization 
formulation 

Subject to: 
𝑔𝑤(𝑇𝑟(𝒙))  0 

    𝑓(∙) 
Combine optimization formulation 

Subject to: 
𝑔𝑤(∙)  0 

With RSF set instance 

𝑇𝑟(𝒙) ≈ 𝜃𝑟( 𝒙) 



The final publication is available at Springer via http://dx.doi.org/10.1007/s00158-016-1410-9  

general set of free parameters    the following notation is used:    (    ). The general set of parameter 

bounds is expressed as     
   

  
      

 . The particular free parameters for each summand in the RSF of 

each response type are listed in column 5 of table 2.  

The general set of constraints on the CSP that relate to the separate RSFs is expressed as:  

   
     . 

 
    /               (5) 

And the general set of constraints working on the combined set of RSFs is expressed as: 

  ℎ     . 
 
    /                (6) 

The CSP problem can be relaxed by defining tolerances for each of the constraints, or by using lower and 

upper bounds for the quantities of interest, in the presented example lower and upper bounds are used 

instead of tolerances, this is however at the cost of doubling the number of constraints in the CSP. These 

nonlinear constraint functions will be defined later in this section. 

5.1 Selection of the basis functions 

As mentioned in section 2 the choice for basis functions and the series truncation is dependent on the 

respective response characterization results. For the provided example the choice for the basis function 

types is based on the local OFAT and TFAT parameter studies on a subset of the design variables. To 

represent the ―Mass‖ and ―NTF1‖ responses w.r.t. the design variables (see Fig. 3 and 4), linear basis 

functions and a subset of quadratic polynomials are selected respectively. For these response types second 

and higher order interaction terms are omitted, since nearly all the variance of the responses can be 

explained without these (see also Fig. 7). Based on the parameter study results (see Fig. 2, 3 and 4) a 

composition of linear functions and harmonic series (expressed as complex exponentials in table 2) is 

selected to represent the first and second-order characteristic nonlinear relation between the design 

variables and the ―ABP. Def‖ and ―P. acc‖ simulation responses. 

An analysis of higher than second-order effects of the simulation responses requires a high amount of 

function evaluations and was computationally infeasible to the authors. The performed response 

characterization could however provide an indication for the total magnitude of the variance contribution of 

unexplained third and higher order effects (Fig. 7). Based on the unsmooth behavior observed in the local 

sensitivity analysis, the assumption is made that these higher order effects can be represented by a single 

non-smooth field with higher order interactions. To represent such a non-smooth field, functions that 

generate reproducible isotropic uniform distributed noise are used. “These functions denoted by operator 

 ( )          serve as a multivariate random map to pseudo random but reproducible values of set  , 

where   is a set with a uniform distribution in the open interval (    -. ”The magnitude of this uniform noise 

field is scaled by a factor   which is chosen such that variance contribution of this term matches the 

―explained‖ variance by higher order terms in the response characterization (see also Fig. 7). 
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Table 2 Overview on the summands for the RSFs 

Response 

type 

r int. 
representing summand formulation function/parameter constraints 

Mass 1 

1   

   
 (   

    )    
    

     
    

 

2  

    
 (     )    
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 (     
 )    

 (  
 )  
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 (     )    
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The Fourier series coefficients of the RSFs for responses 3 and 4 (referred to by the symbol   with the 

corresponding sub and superscripts) are not part of the set of free parameters of the CSP. For the first-order 

terms, for each variable   the complex Fourier series coefficients    
  with index    over the frequencies are of 

similar structure     
     

     to the coefficients of a reference set    
     

. The coefficients of the reference set can 

be obtained by performing the discrete Fourier transform on gridded data points on the design variables after 

subtracting the linear trend (such as done in section 4). For the presented case study ―similar‖ Fourier 

coefficient structures are obtained using the Iterative Adjusted Amplitude Fourier Transform (IAAFT) 

algorithm described by Schreiber and Schmitz (1996) and implemented by Venema (2003). The IAAFT 

method (denoted by operator  ) can generate various discrete series or fields (depending on the random 

seed ―z‖ that have the same amplitude distribution and autocorrelations, as the provided input data (the 

various calibration fields), up to a specified tolerance ― ‖ (in the example 0.005). 

   
       (   

     
    )           (7) 

The resulting series and fields are later scaled by the factors   
  which are part of the variables set of the 

CSP. In this context the selected similarity criteria are: amplitude distribution and autocorrelation.  

For the responses with considerable nonlinear second-order interactions (3 and 4), the correlation coefficient 

between the inner product of the first-order sensitivity indices, and the second-order sensitivity index 

estimate is high and significant for the calibration vehicle models. This indicates that for the application 

example the variables with high first-order effects are also the variables involved in the most important 

second-order interactions in terms of variance contribution. In order to reduce the number of free variables in 

the CSP the relative second-order sensitivity index distribution controlled by variable    
  (see also table 2) is 

defined dependent of the first-order sensitivity distribution as:    
    

     
  where   denotes the outer 

vector product. The amplitudes of the resulting nonlinear fields is scaled by variable   which is constrained 
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such that the total variance contribution of the fields corresponds to the second-order contributions estimated 

in the response characterization (See Fig. 7). 

Besides the selection of the basic functions and parameter bounds, also function and additional parameter 

constraints are defined to enforce response characteristics.  

5.2 RSF constraints  

The choice for the targeted sensitivity index distributions is made using the global sensitivity results 

presented in section 4. Sorting the sensitivity indices for each response, obtained in the function 

characterization on descending order, a fit for the sensitivity index distribution can be made. The distributions 

of all of the responses in this case study could be approximately described by a two-term exponential fit 

model (see also Fig. 5). The related function constraints are defined as upper (  
    

) and lower bounds 

(  
    

) on the ordered set first-order sensitivity indices. The set of upper and lower bounds is based on the fit 

model on the sorted set of sensitivity indices from the calibration models.  This can be expressed for the 

general case as:  

   
     . 

 
    / = 

  
    

    
  for q=1:d and j=d and 

   
     . 

 
    / =  

    
  

  
   for q=d+1:2d and j=q-d       (8) 

Where   
  contains the sensitivity index estimates   

  for each response r in descending order over index i 

using the sorting transformation   
 = (  

 ). The sensitivity indices for each RSF   
   .  ( 

 
     )/ are 

estimated using the method described in Plischke (2010) denoted by operator   based on a set of pseudo 

random samples      

5.3 RSS constraints  

Following the described approach up to this point for each of the design responses (mass, frequency, 

deformation, peak acceleration) would lead to function formulations that could be representative for each 

simulation responses individually, but would not take into account the coupling structure between the 

responses. In the applied approach, the coupling between the responses is accounted for by applying 

constraints on the correlations between the function responses, and the correlations between the sensitivity 

distributions for each of the responses.  

For a set of w design evaluation vectors the matrix of results (Y) for each design is defined as:  

      (  )            (9) 

The linear correlation coefficients between the column vectors of the responses are given by: 

   
   (        )           (10) 

where  () is the operator that results in the correlation coefficient between two vectors defined as: 

   (   )  
   (   )

,   (   )   (   )-             (11) 

The similarity of the obtained correlation coefficient matrices of the test function can be defined by choosing 

lower (   
    

) and upper bounds (   
    

) for each of the upper diagonal matrix entries. The upper and lower 

bounds are based on the values obtained in the response characterization of the calibration models.  
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  ℎ     . 
 
     /     

     
      for t=1:(N-1), v=(t+1):N & h=t+N(v-1)-v(v-1)/2 

  ℎ     . 
 
     /     

        
   for t=1:(N-1), v=(t+1):N & h= t+N(v-1)-v(v-1)/2+N(N-1)/2         (12) 

where N is the number of responses (4 in this example). A similar approach is used for the correlation 

between the first-order sensitivity indices   
  of all combinations responses. 

   
    (  

    
 )            (13) 

Also here lower and upper bounds for the correlation coefficients are defined based on the results of the 

response characterization of the calibration models. The corresponding constraints are defined as:  

  ℎ     . 
 
     /     

      
    

  for t=1:(N-1), v=(1+t):N & h=t+N(v-1)-v(v-1)/2 + N(N-1) 

  ℎ     . 
 
     /     

    
    

    for t=1:(N-1), v=(1+t):N & h= t+N(v-1)-v(v-1)/2+3N(N-1)/2      (14) 

These function and problem constraints are selected to achieve representativeness of the surrogate problem 

to the calibration problems. The selection of the function formulation for each of the responses, and the 

corresponding free parameters, combined with the parameter constraints, function constraints, sensitivity 

index constraints, and correlation constraints define a CSP.  

5.4 CSP solution 

The general notation used previously for the set of parameterized basis functions to represent the responses 

can now be linked to the corresponding parameters from table 2 :  

   . 
 
    /     (  

    
    

    
    

       
    

       )       (15) 

The CSP remains parameterized in the number of design variables d over index i, which can be chosen 

according to the target problem dimensionality. After fixing the number of design variables (set to 50 for the 

case study that will be presented in section 6), the CSP can be solved. For this application with relatively few 

problem instances in the training set the upper and lower bounds for the constraints are based on a simple 

―averaging approach‖, where the minimum and maximum values from the calibration model characterization 

results are set as the lower and upper bounds of the respective constraint values. The total number of 

constraints K for the CSP criteria in this example scales with d according to K=2Nd+2N(N-1) where N is the 

number of responses. Each of the constraint equations of the CSP is dependent on the set   . In this 

example a, fixed set of     pseudo random samples in the domain of the design variables (the unit hyper 

cube) is used for    and during the CSP solution procedure it can be considered as a constant. Solutions to 

the flexible CSP problem could be obtained using various methods. For the presented example a standard 

Interior point method that handles nonlinear constraints (the MATLAB 2013a ―fmincon‖ function) is used, with 

the full set of constraints as separate nonlinear constraints. An auxiliary objective function defined as: 

 . 
 
 /  ∑  .   

 ( 
 
 )/  ∑     ℎ . 

 
 / ℎ            (16) 

where operator  (∙) is an indicator function defined as:  

 ( )  {
        
        

           (17)  

Combining this auxiliary objective function, the parameter bounds and constraint sets from equations 8, 12 

and 14 the CSP can be solved. For the example this is done using successive optimization runs with 

decreasing constraint violation tolerances ranging from 1 at the start, to 1E-6 in the final run. For the 

successive optimizations, the final value of the previous run is used as the initial value of the next 
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optimization. Each feasible solution to the CSP represents a parameter set which when combined with the 

basis functions forms a response set with representative characteristics with respect to the selected criteria. 

Up to this point, the constraints are all based on relative measures (sensitivity indices, and correlation 

coefficients, which are invariant w.r.t. the addition of constants and scaling by multiplication). The absolute 

range of the response of the surrogate functions can be controlled by applying the corresponding offset    
and scaling factors    to the resulting RSS from the CSP solution.  

  ( )=          . 
 
     /          (18) 

Optimization algorithms are however typically programmed to be scale-free. Therefore this last step is not 

necessary to obtain results, and the results are not affected by the choice of the offset and scaling factors.  

6 Application examples and “proof of concept” corroboration 

6.1 Benchmarks of optimization efficiency 

As a first application example of the RSP approach, its use in benchmarking optimization performance for 

particular problem types is considered. The performance of several optimization algorithms is estimated on 

two RSP formulations, after which the results are compared with performance results based on simulation 

workflow based problems. The two different optimization problem formulations used for the comparisons are: 

1. Objective: Minimization of the vehicle mass, subjected to crashworthiness constraints (max peak 

acceleration at the tunnel, and A-B-pillar deformation) 

2. Objective: Maximization of the 1st natural torsion frequency, subjected to mass constraints 

Both RSPs are based on a single RSS (obtained as described in section 5), and the results are compared 

with the optimization performances on the corresponding problem formulations of a full vehicle simulation 

workflow (vehicle model C) which was not part of the original calibration data set. The number of design 

variables RSS is set to 50 according to the targeted validation vehicle model. The comparison for the 

optimization efficiency is made for the following algorithms:  

1. Interior point (IP) algorithm 

2. Sequential quadratic programming (SQP) 

3. Genetic Algorithm (GA) 

4. Non-dominated Sorting Genetic Algorithm, (NSGA2) 

5. Differential Evolution (DE) 

6. Particle Swarm Optimization (PSO) 

7. Simulated Annealing (SA) 

8. Fire Fly Algorithm (FFA) 

For further information on the methods and implementations the reader is referred to the corresponding 

references
6
.  Algorithms 3, 5, 6, 7 and 8 are metaheuristic search algorithms which are commonly used for 

                                                           
6 1) The Interior Point (IP) algorithm is commonly used to solve convex problems. The implementation used is included in MATLAB 

2013a in the ―fmincon‖ function option 1. For a description of the algorithm see Boyd and Vandenberghe (2009).  

2) Sequential Quadratic Programming (SQP) approaches are generally used to solve smooth nonlinear problems, by sequential steps of 

the Newton method. In this work the implementation included in MATLAB 2013a in the ―fmincon‖ function (option 3) is used. A 

description of the algorithm is given in Fletcher (2010). 

3) Genetic Algorithms (GA) are a class of evolutionary algorithms, which are inspired by the genetic process of reproduction in biological 

life. The application of such algorithms is proposed in Rechenberg (1973), and a detailed description can be found in the work of 

Goldberg and Holland (1988). In this work the ―ALGA‖ implementation included in MATLAB 2013a is used.  

4) The Non-dominated Sorting Genetic Algorithm (NSGA-2) is a multi-objective evolutionary algorithm developed by Deb et al. (2000). 

The variant of the algorithm used in this work is Reference-point based NSGA-II implemented by Lin (2011). 
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problem types involving non-convex nonlinear responses, whereas the IP and SQP algorithms are typically 

used for nonlinear convex problems, and NSGA2 is a multi-objective optimization algorithm. Although the 

application of NSGA2 is unconventional for single objective problems, preliminary investigations showed 

reasonable performances for the type problems of interest. Since optimization formulation 2 does not include 

the highly nonlinear crashworthiness responses, also algorithms 1 and 2 are included in the comparison.  

For each formulation, the optimization algorithm is repeated on the same optimization problem with default 

optimization algorithm parameters (except for the random seed and the initial population), such that 

performance statistics can be obtained. To compare the optimization efficiency for each problem, the results 

can be expressed in terms of Relative Objective Improvement (ROI) which is defined as: 

    
          

              

            (19) 

where      
 is the minimum feasible objective after k function evaluations,      is the objective value of the 

reference design, and          
 is the best ―known‖ feasible objective value found for the given problem 

formulation, during all optimization runs of all algorithms. The ROI expresses the ratio of the objective 
improvement at a given number of samples to the maximum known achievable improvement of the problem 
formulation.  

Fig. 11 shows the performance expressed in averaged relative objective improvement for optimization runs 

up to 250 function evaluations per optimization run, 100 repetitions per optimization for the corresponding 

RSP, and 20 repetitions per optimization on the independent full vehicle C simulation model. A higher 

number of repetitions would allow more accurate estimates, especially of the distribution or percentiles but, 

this was unfeasible due to the involved computational cost. The total number of function evaluations per 

optimization run is limited to 250, due to the high computational cost for the validation runs. As indicated in 

Duddeck (2008), it is common in an industrial environment to apriori limit the number of function evaluations 

to a number too small to reach convergence, a true optimization up to convergence is rather exceptional 

when dealing with problems that involve computationally expensive simulations (see also Knowles et al. 

(2005).   

                                                                                                                                                                                                 
5) Differential Evolution (DE) is another evolutionary algorithm used for optimization (Storm and Price (1997)). The implementation used 

in this work is an adaptation of the code by Buehren (2008), combined with a penalty approach to enforce nonlinear constraint handling.  

6) Particle Swarm Optimization (PSO) algorithms are nature inspired meta-heuristics that mimic the movement of groups of organisms 

such as bird flocks or fish schools. In this work the implementation by Birge (2006) is applied combined with a penalty factor approach to 

handle nonlinear constraints. A description for the algorithm principles can be found in chapter 8 of Yang (2010a).  

7) Simulated Annealing (SA) is an optimization approach inspired by the thermodynamic process used in metallurgic annealing heat 

treatment (Kirkpatrick et al (1983)). In Yang (2010b) a description of the algorithm is provided together with an implementation of the 

algorithm that is used in this work.  

8) Fire Fly inspired optimization algorithms are population based algorithms inspired by the behavior of fire flies. A description of the 

algorithm and implementation used in this work is provided in Yang (2010b).  

https://www.researchgate.net/publication/220118677_Optimization_by_Simulated_Annealing?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
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  (a)   (b) 

Fig. 11 comparison of average optimization efficiency for eight optimization algorithms on two different 
optimization problem formulations, a: formulation 1; b: formulation 2)  

The results in Fig. 11 show a similar trend in relative algorithm performances between the optimizations run 

on the RSP and the optimization runs on the simulation workflow of vehicle model C. The error bars are 

estimates of the 20% and 80% percentiles. The similarity between the performance prediction and results 

can be quantified by the correlation coefficients R and the corresponding significance by the p-values 

between the vectors of optimization algorithm performance results obtained with the RSP and simulation 

workflow, which are R=0.910, p=0.0012 and R=0.964, p=0.0001 respectively. Thus, it can be concluded that 

in this corroboration example, the RSP approach offers a statistically significant prediction of the optimization 

efficiency of the tested algorithms applied to both problem formulations using the independent corroboration 

vehicle model. Application of the RSP approach to benchmark the algorithms and selecting the most efficient 

algorithms leads to optimization efficiency increases of 32% and 16% in terms of ROI for the respective 

optimization formulations (1 and 2) with respect to ―the average‖ performance over the investigated 

algorithms. The computation cost of such a benchmark study without the RSP approach, comparing eight 

algorithms, 100 algorithm run repetitions, of 250 function evaluations, each requiring about 1 CPU hour (if a 

computationally cheap model is used) would require       CPU hours. Whereas the RSP approach for the 

same study would take about 5 CPU hours
7
 (including optimization algorithm overhead), thus saving several 

orders of magnitude in computation time. Even including the total function evaluation cost for the formulation 

of the RSP requiring about         function evaluations, and a total of about         CPU hours, the 

application of the RSP approach would already be worthwhile the computational investment, if a benchmark 

study was to be made. To justify the computational effort and endeavor of such a comparison, the 

computation cost of the comparison or RSP calibration (using reduced resolution simulation models) should 

be compared against the cost the industrial size problem which can be about       CPU hours for a single 

optimization run. For the investigated examples the difference in efficiency between the algorithms in terms 

of CPU time is larger than the difference in terms of ROI. If CPU time savings in the order of 20% can be 

made by selecting a suitable optimization algorithm, the investment of the comparison pays off after about 

five industrial scale optimizations problems. For this particular example in the field of automotive engineering 

the increase in efficiency can however also translate in the improved mechanical performance due to the 

tight time constraints between design freezes in the vehicle development process. 

Although the corroboration shows a significant correlation between the relative performances, such a 

resemblance cannot be guaranteed for any arbitrary vehicle. Nevertheless, it seems reasonable to assume 

that the results can be relevant for vehicle models with a similar structural concept, optimization parameters, 

and response criteria as the two calibration vehicle models and the third vehicle model used for the proof of 

concept. Furthermore, a single RSS can be used to construct several RSPs for different optimization 

formulations, and thus provides information and flexibility beyond single benchmark comparison results. For 

application-oriented practitioners the RSS and the derived RSP approach can answer more detailed 

                                                           
7
 CPU time for a RSP function evaluation is about 2.5E-2 [s] for the four responses in the example, using a MATLAB 2013a 

implementation on an Dell T3500 workstation with an Intel Xeon X5650 processor and 12 GB of RAM. The runtime of the optimizations 
using the RSP is dominated by the overhead of the optimization algorithm and optimization history saving.  
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questions than published benchmarks. For the community interested in optimization method development 

and comparisons, several standardized problems can be defined, and made available in order to provide 

access to reproducible representative surrogate problems of problem types which would be otherwise 

difficult to assess.  

6.2 Meta-optimization by means of an RSP 

A further example application of the RSP approach, regards the tuning of the parameters of an optimization 

algorithm to increase the optimization efficiency for problem types of interest. An optimization of the 

optimization parameters (or meta-optimization) is performed for the DE algorithm on an RSP. In the inner 

loop of the optimization, DE optimization runs with a maximum of 200 iterations are performed on the RSP. 

The objective of the inner loop is the minimization of the RSP mass response, with nonlinear constraints on 

the first natural mode and test function peak acceleration of the RSS. The design variables for the outer 

optimization are the optimization algorithm meta-parameters of the inner optimization (3 DE parameters: 

population size ( ), crossover probability ( ), and step size ( )). In the outer loop for each parameter-

setting-vector -evaluation) a set of 50 inner loop optimization run repetitions is executed on the RSP: The 

80% percentile of the minimum feasible pseudo mass determined after 200 function evaluations is set as the 

objective for the outer optimization. In the outer optimization loop a GA algorithm is used (with default 

settings) for 500 iterations to minimize objective thus finding statistically efficient performing optimization 

parameters for the inner optimization. A total of       function evaluations on the RSP are performed for 

this case study.  

The increase in optimization efficiency due the optimization meta-parameter tuning based on the RSP 

approach can be visualized by comparing the difference in optimization efficiency between the DE algorithm 

with ―default‖ settings ( =30,       and      ) and ―optimized‖ ( =10,        and       ) settings. 

Fig. 12 shows the plots of the best feasible objective history for standard parameter settings, and optimized 

parameter settings, on both the RSP and the full vehicle simulation workflow based optimization problem 

during respectively 50 and 15 optimization runs. The error bars indicate the 20% and 80% percentiles. 

(a) (b) 

Fig. 12 Comparison of best feasible objective history for standard and optimized optimization parameter 
settings for: a the RSP; b the validation vehicle model C 

For both the RSP as well as for the full vehicle simulation workflow based problems, the optimization 

performance is significantly improved by the tuning of the optimization meta-parameters. Since the full 

vehicle optimization problem (vehicle model C) was not part of the calibration set for the RSP, these results 

confirm the usefulness of the RSP approach for this problem type. In the corroboration example, the RSP 

approach based parameter tuning leads on average to additional performance gains of about 4% in terms of 

normalized BIP mass, for the fixed function evaluation budget.  

Since optimizations of the full vehicle simulation workflow are orders of magnitude more computationally 

expensive than on the test functions, the number of repeated optimization runs on the vehicle simulation 

workflow is limited to 12 and hence, the resulting statistics are estimates only. The results have a significant 
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common trend regarding the means, but the percentile statistics between optimization on the RSP and real 

problem are not quantitatively identical. Surprisingly the performance of the optimized settings is even better 

on the real problem than predicted.  Although further refinements of the approach could possibly increase 

the general accuracy of the efficiency predictions, this accuracy is at the same time also capped by the 

nature of the approach. A surrogate problem, representative for a class of problems inherently has variability 

in efficiency prediction accuracy similar to the efficiency variation within the class of problems targeted. If 

additional information on the specific target problem is available prior to the simulation run, such data could 

be augmented to the RSP for increased performance estimation accuracy.  

7 Discussion and outlook 

The comparative study on optimization efficiency is unique in the literature for this type of problems. However 

the authors wish to emphasize, that these results are provided, to proof the concept of the RSP approach, 

and should not be regarded beyond this context. Although the results can be of practical significance, the 

main message of the presented results is not that algorithm A is ―X‖ percent better than algorithms B, but 

that such relative optimization performances for this particular type and problem formulation can be 

estimated with significant accuracy using the RSP approach, based on calibration data from similar problem 

types. The particular benchmark results should be relativized by the fact that many different implementations 

and variations of the compared optimization algorithms exist, which could perform different as the 

implementations used. Besides that, the response characterization of computationally expensive problems 

leads to more insight of the problem structure. The main message should be that RSP based performance 

benchmarks could aid to the selection and tuning of optimization algorithms, in order to increase the 

efficiency for computationally expensive simulation-based optimization problems.  

The authors furthermore would like to highlight: that suitable parameterized benchmark problems are of 

greater general value than published benchmark results. This is underlined by the fact that the optimization 

efficiency of algorithms on particular multidisciplinary problem instances can be dependent on problem and 

formulation properties such as the number of design variables, number and type of design responses, the 

choice for the objective and constraints, constraint limits (feasibility fraction), and the available function 

evaluation budget.  Flexible parameterized benchmark problems, such as those constructed with the RSP 

approach, could be useful for the ―practitioner‖ audience since the RSP problem instance parameters can be 

adopted to resemble the particular problem of interest. For the algorithm ―developer‖ audience standardized 

RSP instances could be defined for industrially relevant problems, in order to make complex optimization 

problem types (in terms of simulation expertise, hardware and software resources) more accessible.  

Likewise as many other works in the literature dealing with vehicle optimization, the presented study deals 

only with a subset of all relevant vehicle design objectives and criteria. It should be noted that to design a car 

suitable for production, more crash scenarios, NVH criteria, as well as structural requirements from other 

disciplines such as drive dynamics, and structural durability should be considered.  

The vehicle models used for the response characterization are of lower mesh resolution than typical 

industrial models. Although lower mesh resolution models have a much lower accuracy to represent the 

response of a particular vehicle model, it is assumed that the most general crashworthiness response 

features can be represented by the models. The vehicle models used for the characterization for the RSP 

calibration differed in mesh resolution in about an order of magnitude while still significantly consistent 

response characteristics could be identified, this observation supports the previous assumption and 

emphasizes the robustness of the approach.  

The authors are aware that the ―unsmooth‖ parameter study results obtained from the crashworthiness 

simulations could also be modeled by a stochastic model with a conventional meta-model as a backbone. In 

reality, the response criteria for a particular vehicle design seem non-unique due to the uncertainties in a 

crash experiment. Small design variable perturbations can also trigger such chaotic dynamic response 

behavior. Depending on the crash simulation solver settings even non-unique solutions can be obtained for 

the same crash event, only by using another CPU configuration during the numerical solution such as also 

indicated by Blumhardt (2001) and Duddeck (2008). Indeed for this application type, further work is 

necessary to take into account aspects relevant for robust design optimization.  
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In the presented example case studies, the application of the RSP approach is calibrated and corroborated 

using similar problems (similar in terms of response types, design variable types, design variable range and 

optimization formulation), on different vehicle models. For other design variables, design criteria, or other 

applications, the relationship between the design variables and responses might be different, and other basis 

functions might be more suitable. Although the approach is developed for the presented vehicle design 

application, the general idea of the approach, the presented response characterization techniques, and the 

concepts to construct and solve a CSP to incorporate response characteristics for an RSP are however not 

limited to this particular problem type, and they could be of interest to be applied and tested on a wider range 

of problems and applications. 

For a true generalization, there remain however still open issues. The approach is developed based on 

empirical investigations, a supporting theory on: which response characteristics affect the representativeness 

of surrogates on the performance of optimization algorithms, would have to be developed. Although the 

application example is rather complex, the approach should be tested on other problem types, to investigate 

the limitations and applicability in a more general scope. The involved response characterization requires 

many function evaluations and can be of considerable computation cost, but the results could provide 

valuable insights. If the response characteristics can be represented by meta-models with sufficient 

accuracy, the approach could be applied indirectly by means of meta-models. Its additional value would be 

the characterization of the meta-models responses. Other future work regarding the development of the 

approach could involve an extension to accurately represent the shape, type, and distribution of the Pareto-

fronts between different responses, for RSP problems targeting multi-objective optimization problems. Due to 

the background of the authors, this paper is written and formulated with an ―engineering‖ mindset. Therefore, 

the authors like to invite practitioners and researchers from other fields to test, develop, generalize or criticize 

the approach, and in particularly to establish a more theoretical basis in addition to empirical experience on 

which it is leaning in its present form.  

Further investigations on the RSP approach in the context of vehicle design problems could be: to extend or 

modify the approach to deal with problems with more different design variable types, and to widen the 

considered design response types and load cases.  

As a general outlook on the applications of the RSP approach for the optimization of systems with expensive 

simulators, future work can involve investigations of additional aspects or response characteristics that 

influence the optimization efficiency. A first point of interest for future investigations, is the comparison of 

different optimization frameworks (such as for example Collaborative Optimization, or Analytical Target 

Cascading). A second point is taking into account the available computational resources to find an efficient 

optimization strategy. Simulation solvers can be constrained in the number of available parallel licenses, or 

by the available hardware infrastructure (number and type of nodes, processors memory etc.). Aspects such 

as the parallelization and scalability of a single function evaluation, combined with the ability of different 

optimization algorithms, to use parallel function evaluations (using for example a population-based 

approach) can be explored. Therefore, the RSP approach could aid to find efficient optimization strategies 

for a particular problem, by enabling a meta-simulation of the optimization process which could take into 

account a particular resource environment.  

8 Summary and conclusions 

An approach is presented that could be used to construct computationally affordable synthetic test problems 

(RSPs), based on response characteristics of computationally expensive real world industrial optimization 

problems. The approach is developed and tested for the application of multidisciplinary vehicle design 

problems, involving vibrational comfort and crashworthiness responses, but the applied strategy and used 

methods are not limited or specific to the application example. The approach is presented in a general way 

to facilitate the use and testing of the concept to other application fields. A composition of existing analysis 

methods (parameter studies, sensitivity analysis, Fourier analysis and correlation analysis) is used to identify 

and quantify typical response characteristics of the simulation responses, with respect to the design 

variables.  Based on the response characterization results, basis functions to represent the responses are 

selected. The combination of: the basis functions, the function parameters, parameter bounds and the 

formulation of constraints that enforce selected response structure characteristics, formulate a CSP. Each 
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feasible solution of the CSP provides a set of parameters for which the set of basis functions have response 

characteristics which are ―representative‖ w.r.t. the selected criteria. These surrogate response functions can 

be used to formulate surrogate response based optimization problems. The proof of concept and 

corroboration with an independent vehicle model indicated that for this relatively complex application such 

RSPs can be used as benchmarks to compare optimization efficiency of different optimization algorithms, 

and to improve the efficiency of an optimization algorithm by tuning of the optimization meta-parameters. The 

response characterization required for the RSP construction is computationally expensive, but once made it 

can provide valuable insights in the problem structure, which could pay off for applications in which many 

instances of similar problems. No general theory of this novel approach has been formulated yet, neither are 

the limits of applicability to other problems known. The presented results on are however remarkable and 

encourage further investigations of the concept. The approach is a step towards systematic analysis of 

industrially relevant complex black box optimization problems. The authors encourage creative interpretation, 

application, and critiques of the approach, such that further improvements, in the optimization of complex 

industrially relevant problems can be achieved. 

Acknowledgements 
This work is performed in the scope of the GRESIMO and ENLIGHT projects, targeting environmentally 

friendly mobility solutions. The authors have been partially funded by the European Community’s 7
th
 

Framework program by means of: an ITN fellowship in the GRESIMO project as part of the People program 

(Marie Curie Actions) grant agreement no. 290050, and a contribution to the activities in the ENLIGHT 

project grant agreement no. 314567. Furthermore, the authors are thankful for the publicly available finite 

element vehicle models used in this work. These models have been developed by the National Crash 

Analysis Center (NCAC) of The George Washington University under a contract with the FHWA and NHTSA 

of the US DOT. 

References 
Alimoradi A, Foley CM, and Pezeshk S (2010) Benchmark Problems in Structural Design and Performance Optimization: Past, Present, 

and Future—Part I. Structures Congress 2010: pp. 455-466. doi: 10.1061/41131(370)40  

Baldanzini N, Caprioli D, and Pierini M (2001) Designing the dynamic behavior of an engine suspension system through genetic 
algorithms. Journal of Vibration and Acoustics 123.4: 480-486. 

Baldanzini N, Scippa A (2004) Shape and size optimization of an engine suspension system. Proceedings of the 2004 International 
Conference on Noise and Vibration Engineering, ISMA, 2004. 

Birge B (2006) Particle Swarm Optimization Toolbox, retrieved from MATLAB file exchange in January 2014 
http://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox 

Blumhardt R (2001) FEM-crash simulation and optimisation. International Journal of Vehicle Design 26.4: 331-347. 

Boyd S and Vandenberghe L (2009) Convex optimization. Cambridge University Press, 2009. 
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf 

Buehren M (2008) Differential evolution, MATLAB file exchange http://www.mathworks.com/matlabcentral/fileexchange/18593-
differential-evolution 

Deb K, Agrawal S, Pratap A and Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective 
optimization: NSGA-II. Lecture Notes in Computer Science 1917 (2000): 849-858. 

Duddeck F (2008) Multidisciplinary optimization of car bodies. Structural and Multidisciplinary Optimization, 35(4), 375–389. 
doi:10.1007/s00158-007-0130-6 

Fletcher R (2010) The sequential quadratic programming method. Nonlinear Optimization. Springer Berlin Heidelberg, 2010. 165-214. 
DOI: 10.1007/978-3-642-11339-0_3  

Goldberg DE and Holland JH (1988) Genetic algorithms and machine learning. Machine learning, 3(2), 95-99  

Hallquist, JO (2006) LS-DYNA theory manual. Livermore Software Technology Corporation 

Haug E, Scharnhorst T, DuBois P (1986) FEM-Crash, Berechnung eines Fahrzeugaufpralls. VDI-Tagung: Berechnung im 
Automobilbau, Würzburg, Germany, (VDI-Berichte 613), 479-505 

Hoeffding W (1948) A class of statistics with asymptotically normal distribution. The Annals of Mathematical Statistics (1948): 293-325 

Durgun I, and Yildiz AR (2012) Structural design optimization of vehicle components using cuckoo search algorithm. Materials Testing 
54.3: 185-188. 

https://www.researchgate.net/publication/287700558_Shape_and_size_optimization_of_an_engine_suspension_system?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/287700558_Shape_and_size_optimization_of_an_engine_suspension_system?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/242422247_Designing_the_Dynamic_Behavior_of_an_Engine_Suspension_System_Through_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/242422247_Designing_the_Dynamic_Behavior_of_an_Engine_Suspension_System_Through_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/235722746_LS-Dyna_Theory_manual?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/266447028_Benchmark_Problems_in_Structural_Design_and_Performance_Optimization_Past_Present_and_Future_-Part_I?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/266447028_Benchmark_Problems_in_Structural_Design_and_Performance_Optimization_Past_Present_and_Future_-Part_I?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/224817336_A_Class_of_Statistics_With_Asymptotically_Normal_Distribution?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/245401583_FEM_-_crash_simulation_and_optimisation?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/30847708_Genetic_Algorithms_and_Machine_Learning?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/2523573_A_Fast_Elitist_Non-dominated_Sorting_Genetic_Algorithm_for_Multi-objective_Optimization_NSGA-II?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/2523573_A_Fast_Elitist_Non-dominated_Sorting_Genetic_Algorithm_for_Multi-objective_Optimization_NSGA-II?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/270144281_Structural_Design_Optimization_of_Vehicle_Components_Using_Cuckoo_Search_Algorithm?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/270144281_Structural_Design_Optimization_of_Vehicle_Components_Using_Cuckoo_Search_Algorithm?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==


The final publication is available at Springer via http://dx.doi.org/10.1007/s00158-016-1410-9  

Kirkpatrick S, Gelatt CD, and Vecchi MP (1983) Optimization by simulated annealing Science 220.4598 (1983): 671-680. 

Knowles J, and Hughes EJ (2005). Multiobjective optimization on a budget of 250 evaluations. In Evolutionary Multi-Criterion 
Optimization (pp. 176-190). Springer Berlin Heidelberg. 

Lin S (2011) NGPM A NSGA-II Program in Matlab, MATLAB file exchange. 
http://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4 

Mihaylova P, Pratellesi A, Baldanzini N, & Pierini M (2012) Optimization of the global static and dynamic performance of a vehicle body 
by means of response surface models. ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. 
American Society of Mechanical Engineers, 2012. 

NCAC Finite Element Model Archive. retrieved from January 2014, from http://www.ncac.gwu.edu/vml/models.html 

Plischke E (2010). An effective algorithm for computing global sensitivity indices (EASI). Reliability Engineering & System Safety, 95(4), 
354-360. 

Prichard D and Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Physical 
Review Letters 73.7: 951. 

Rainer S and Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. 
Journal of global optimization 11.4: 341-359. 

Rastrigin LA (1974) Systems of extremal control. Theoretical Foundations of Engineering Cybernetics Series, (In Russian) Nauka, 
Moscow. 

Ratto M and Pagano A (2010) Using recursive algorithms for the efficient identification of smoothing spline ANOVA models. AStA 
Advances in Statistical Analysis 94.4: 367-388. 

Rechenberg I (1973). Evolutionsstrategie. Stuttgart: Holzmann-Froboog. ISBN 3-7728-0373-3. 

Rios LM and Sahinidis NV (2012) Derivative-free optimization: A review of algorithms and comparison of software implementations. 
Journal of Global Optimization (2012): 1-47. 

Rodgers LJ and Nicewander WA (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59-66. 

Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. The Computer Journal 3.3: 175-184. 

Sala R, Pierini M and Baldanzini N (2014a) Optimization efficiency in multidisciplinary vehicle design including NVH criteria. 
Proceedings of the Leuven Conference on Noise and Vibration Engineering (ISMA); 2014 September 15-17; Leuven, Belgium 

Sala R, Pierini M and Baldanzini N (2014b) The development and application of tailored test problems for meta-simulation of 
multidisciplinary optimization of vehicle structures. Presentation at the (XI) World Congress on Computational Mechanics; 2014 
July 20-25; Barcelona, Spain 

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M and Tarantola S (2010) Variance based sensitivity analysis of model output. 
Design and estimator for the total sensitivity index Computer Physics Communications 181.2: 259-270. 

Schramm U and Pilkey WD (1996), Review: optimal design of structures under impact loading. Shock and Vibration, Vol. 3, pp. 69-81. 

Schreiber T and Schmitz A (1996) Improved surrogate data for nonlinearity tests. Physical Review Letters 77.4: 635.  

Shan S and Wang GG (2010). Survey of modeling and optimization strategies to solve high-dimensional design problems with 
computationally-expensive black-box functions. Structural and Multidisciplinary Optimization,41(2), 219-241. 

Simpson TW, Toropov V, Balabanov V and Viana FA (2008) Design and analysis of computer experiments in multidisciplinary design 
optimization: a review of how far we have come or not 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. 
Vol. 5. 2008. 

Sobieszczanski-Sobieski J, and Haftka RT (1997) Multidisciplinary aerospace design optimization: survey of recent developments, 
Structural Optimization 14.1: 1-23. 

Sobieszczanski-Sobieski J, Kodiyalam S, and Yang RJ (2001) Optimization of car body under constraints of noise, vibration, and 
harshness (NVH), and crash. Structural and Multidisciplinary Optimization 22.4: 295-306. 

Sobol IM (1990) On sensitivity estimation for nonlinear mathematical models Matematicheskoe Modelirovanie 2.1 (1990): 112-118. 

Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and 
Computers in Simulation 55.1-3: 271-280. 

Tang WJ, and Wu QH (2009) Biologically inspired optimization: a review. Transactions of the Institute of Measurement and Control 31.6 
(2009): 495-515. 

Varis T and Tuovinen T (2012) Open Benchmark database for multidisciplinary optimization problems. Proceedings of the International 
Conference on Modeling and Applied Simulation  

http://www.ncac.gwu.edu/vml/models.html
https://www.researchgate.net/publication/221228406_Multiobjective_Optimization_on_a_Budget_of_250_Evaluations?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/221228406_Multiobjective_Optimization_on_a_Budget_of_250_Evaluations?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/267494199_Optimization_of_the_Global_Static_and_Dynamic_Performance_of_a_Vehicle_Body_by_Means_of_Response_Surface_Models?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/267494199_Optimization_of_the_Global_Static_and_Dynamic_Performance_of_a_Vehicle_Body_by_Means_of_Response_Surface_Models?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/267494199_Optimization_of_the_Global_Static_and_Dynamic_Performance_of_a_Vehicle_Body_by_Means_of_Response_Surface_Models?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/274311913_Optimization_efficiency_in_multidisciplinary_vehicle_design_including_NVH_criteria?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/274311913_Optimization_efficiency_in_multidisciplinary_vehicle_design_including_NVH_criteria?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/245384606_Biologically_inspired_optimization_A_review?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/245384606_Biologically_inspired_optimization_A_review?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/13232043_Generating_surrogate_data_for_time_series_with_several_simultaneously_measured_variables?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/13232043_Generating_surrogate_data_for_time_series_with_several_simultaneously_measured_variables?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/257588610_Derivative-free_optimization_A_review_of_algorithms_and_comparison_of_software_implementations?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/257588610_Derivative-free_optimization_A_review_of_algorithms_and_comparison_of_software_implementations?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/220257174_Variance_based_sensitivity_analysis_of_model_output_Design_and_estimator_for_the_total_sensitivity_index?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/220257174_Variance_based_sensitivity_analysis_of_model_output_Design_and_estimator_for_the_total_sensitivity_index?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/1781984_Improved_Surrogate_Data_for_Non-Linearity_Tests?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/237775469_Design_and_Analysis_of_Computer_Experiments_in_Multidisciplinary_Design_Optimization_A_Review_of_How_Far_We_Have_Come_-_Or_Not?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/237775469_Design_and_Analysis_of_Computer_Experiments_in_Multidisciplinary_Design_Optimization_A_Review_of_How_Far_We_Have_Come_-_Or_Not?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/237775469_Design_and_Analysis_of_Computer_Experiments_in_Multidisciplinary_Design_Optimization_A_Review_of_How_Far_We_Have_Come_-_Or_Not?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/227090446_Multidisciplinary_aerospace_design_optimization_Survey_of_recent_developments?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/227090446_Multidisciplinary_aerospace_design_optimization_Survey_of_recent_developments?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/285237745_DE-a_simple_and_efficient_heuristic_for_global_optimization_over_continuous_space?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/285237745_DE-a_simple_and_efficient_heuristic_for_global_optimization_over_continuous_space?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/274312208_PRESENTATION_The_development_and_application_of_tailored_test_problems_for_metasimulation_of_multidisciplinary_optimization_of_vehicle_structures?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/274312208_PRESENTATION_The_development_and_application_of_tailored_test_problems_for_metasimulation_of_multidisciplinary_optimization_of_vehicle_structures?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/274312208_PRESENTATION_The_development_and_application_of_tailored_test_problems_for_metasimulation_of_multidisciplinary_optimization_of_vehicle_structures?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/222666479_An_effective_algorithm_for_computing_global_sensitivity_indices_EASI?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/222666479_An_effective_algorithm_for_computing_global_sensitivity_indices_EASI?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/226676816_Using_recursive_algorithms_for_the_efficient_identification_of_smoothing_spline_ANOVA_models?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/226676816_Using_recursive_algorithms_for_the_efficient_identification_of_smoothing_spline_ANOVA_models?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/222535147_Global_sensitivity_indices_for_nonlinear_mathematical_models_and_their_Monte_Carlo_estimates?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/222535147_Global_sensitivity_indices_for_nonlinear_mathematical_models_and_their_Monte_Carlo_estimates?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/244441883_Sensitivity_Estimates_for_Nonlinear_Mathematical_Models?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/220118677_Optimization_by_Simulated_Annealing?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/302172206_An_automatic_method_for_finding_the_greatest_or_least_value_of_a_function?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/237436551_Thirteen_Ways_to_Look_at_the_Correlation_Coefficient?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==


The final publication is available at Springer via http://dx.doi.org/10.1007/s00158-016-1410-9  

Venema V (2003) IAAFT implementation in MATLAB retrieved January 2014 from http:\\www.meteo.uni-bonn.de\victor 

Venkayya VB (1978) Structural optimization: a review and some recommendations International Journal for Numerical Methods in 
Engineering 13.2: 203-228. 

Wolpert DH and Macready WG (1995) No free lunch theorems for search. Vol. 10. Technical Report SFI-TR-95-02-010, Santa Fe 
Institute 

Wolpert DH and Macready WG (1997) No free lunch theorems for optimization Evolutionary Computation, IEEE Transactions on 1.1 
(1997): 67-82. 

Wu SR and Gu L (2012) Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics. John Wiley & Sons. 

Yang RJ, Gu L, Tho CH, Sobieski J (2001) Multi-disciplinary optimization of a full vehicle with high performance computing. In: Conf. of 
the American Inst. of Aeronautics and Astronautics, pp 688–698, AIAA Paper No. AIAA- 2001- 1273 

Yang RJ, Tseng L; Nagy L; Cheng J (1994) Feasibility study of crash optimization. In: Gilmore BJ, Hoetzel DA, Dutta D, Eschenauer HA 
(eds.) Advances in design automation, DE-Vol 69-2 pp, 549-556. ASME 

Yang XS (2010a) Nature-inspired metaheuristic algorithms. Luniver press, 2010. 
http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/tehnici/FireflyAlgorithm/Yang_nature_book_part.pdf  

Yang XS (2010b), Engineering optimization: an introduction with metaheuristic applications. John Wiley & Sons  

Yildiz AR, and Solanki KN (2012) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach 
The International Journal of Advanced Manufacturing Technology 59.1-4: 367-376. 

Zitzler E, Deb K and Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary computation 
8.2: 173-195. 

 

View publication statsView publication stats

https://www.researchgate.net/publication/221997149_No_Free_Lunch_Theorems_for_Search?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/221997149_No_Free_Lunch_Theorems_for_Search?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/266172186_Introduction_to_the_Explicit_Finite_Element_Method_for_Nonlinear_Transient_Dynamics?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/4673145_Multidisciplinary_Design_Optimization_of_a_Full_Vehicle_with_High_Performance_Computing?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/4673145_Multidisciplinary_Design_Optimization_of_a_Full_Vehicle_with_High_Performance_Computing?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/12473894_Comparison_of_Multiobjective_Evolutionary_Algorithms_Empirical_Results?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/12473894_Comparison_of_Multiobjective_Evolutionary_Algorithms_Empirical_Results?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/227598006_Structural_Optimization_A_Review_and_Some_Recommendations?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/227598006_Structural_Optimization_A_Review_and_Some_Recommendations?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/259603793_Engineering_Optimization_An_Introduction_with_Metaheuristic_Applications?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/275685525_Multi-objective_optimization_of_vehicle_crashworthiness_using_a_new_particle_swarm_based_approach?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/275685525_Multi-objective_optimization_of_vehicle_crashworthiness_using_a_new_particle_swarm_based_approach?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/281266055_No_Free_Lunch_Theorems_for_Optimization?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/281266055_No_Free_Lunch_Theorems_for_Optimization?el=1_x_8&enrichId=rgreq-84be8b8c81dceb489f028d1c747cd813-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgzMDU1MztBUzozNTk1ODE0ODMwNjEyNDhAMTQ2Mjc0MjMxNDkwNA==
https://www.researchgate.net/publication/301830553

