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INTRODUCTION

In a recent review article, an analysis was began of the 
current status of research in the so called Next Generation 
Sequencing Era (NGSE) [1]. There are several reasons for this 
efforts and three will be summarized in this Mini-Review: 1. 
The technological advances leading to ever faster and less 
expensive sequencing methods for cancer patients [2-4]; 2. 
The logical conclusion that we are reaching an “end-of-the-
road” situation in our understanding of the molecular basis of 
cancer [5, 6]; and 3. The need to rationalize and enormously 
growing field and to identify some priorities for future 
successful interventions [1, 7-9]. 

1. Technological Advances:

These are witnessed even in the short span of a few months 
[1]. Although the leading and most utilized Illumina and 
IonTorrent technologies maintain their prime role on the 
screen, great progresses are also witnessed for the emerging 
nanopore technology [10-14]. As previously mentioned, 
Oxford Nanopore Technologies (ONT) has recently launched 
the Mini-Ion system for rapid, easy and long-range sequencing 
[15]. For sequence quality, a number of members of Mini-Ion 
Assess Program (MAP) started evaluating the instrumentation 
outputs in May 2014 [1, 14]. ONT still requires several 
optimizations as previously indicated [1, 16]. One of the major 
problems, still unresolved, of NP technology is the presence 
of intrinsically high error-rate. This is generally evaluated in 
the order of 30%, while different assessment have spanned 
between 5% and 40% [14, 17]. Although this problem is being 
addressed and reasons beginning to be understood – probably 
due to some unspecific binding, oscillation of the nucleic acid 
at the pore entrance and in binding α-haemolysin protein as 
well as nano-amperage reading pattern ambiguity [1] –, high 
error rate is hampering direct utilization of NP technology for 
genome sequencing. While alternative solutions are being 
considered with MspA protein, which may be more efficient 
and specific [18-20], most of today’s methods rely on:

     A. Correcting algorithms and soft-wares and 
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    B. Parallel readings with the state of the art technology            
     (Illumina or Ion Torrent).

Bioinformatic tools convert the amperage change in 
nucleotide sequence (basecalling): standard ONT software 
allows double readings (2 directional) into FASTA5 format 
[21], then extracted by programs such as PORETOOLS or 
PoRe into FASTA [22, 23]. The problem of alignment has been 
typically addressed by programs such as LAST, BLASR, BWA-
MEM and margin-Align. [24-27]. The question of monitoring 
the readouts and alignments is essential with such a high 
error rate and tools are becoming available: the minoTour 
and most recently the Nano-OK , which allows alignment 
based quality control and estimate of error-rate, as well as 
the Nanocorr algorithm, which specifically corrects the NP 
readouts [14, 28, 29]. 2. Parallel readings however still seems 
to be a pursued strategy, in order to obtain meaningful 
sequences. This has become standard practice both for error 
correction and for assembling genomic sequences. Recently, 
the group of McCombie at CSHL has tested the MinION ONT 
platform for sequencing and assembling the Saccharomyces 
Cerevisiae genome with parallel sequencing performed with 
MiSeq (Illumina) [14]. Only by performing correction with the 
previously mentioned Nanocorr soft-ware, were they able of 
obtaining – by comparison with MiSeq shorter sequences- a 
complete and accurate assembly of yeast genome. A similar 
analysis was also performed with data (sequences) from E. 
coli [14, 21]. Generally speaking, the NP technology reads 
are much longer than with Illumina/Ion Torrent and so are 
the contigs (678 kb versus 59.9 Kb, i.e. approximately 10X 
magnification). This is certainly one of its most important 
qualities (once the error issue will be solved), essential for 
efficient sequencing of novel genomes [14]. This very short 
photogram of NP technology at 2016 incipit can just give 
an idea of the fast-pace of this evolving field. It is however 
foreseeable that we will have much more efficient and less 
expensive technologies –already approaching the $1000 
human genome goal of G. Church- in the years/months to 
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come [1, 30]. The next and real questions are: how far do 
have to keep improving sequencing for understanding cancer 
cell? Are we moving in the right direction, or better: today’s 
cancer genomics has only one possible explanation?

2. End-Of-The-Road” (Eor)

For the second question, how far can we reasonably keep 
searching before reaching the so-called “end-of-the-
road” (EOR), even without crystal balls some reasonable 
consideration can be made [1]. Searching for the “cancer-
genome” is reminiscent of what happened in the 50’-60’, 
when molecular biologists were searching “for the gene”. 
Then, great Pioneers such as Jonathan Beckwith, James 
Shapiro, Saymour Benzer and many others were capitalizing 
from previous work of Morgan, McClintock, Beadle, Tatum, 
Lederberg, Watson, Crick, Jacob, Monod and others for 
finally identifying the entity molecular biologists considered 
their Saint-Graal: “the gene” [31]. However, it became 
immediately clear already from the work of S. Benzer that the 
end-of-the-road was going to be reached soon [32]. Benzer 
unequivocally demonstrated in his study of the RII region 
of phage T4 -already at the end of the 50’s- that the gene 
had a defined structure, clearly identifiable by thousands 
of recombination events [32, 33]. The first gene, the Lac 
Operon finally isolated and visualized for the first time by 
the Harvard team of Beckwith and Shapiro [34], was already 
clearly delineated in the experiments of Benzer over 10 years 
earlier [32]. Recombination (and later complementation) 
had delineated an inescapable path toward definition of 
gene structure. Or to put it differently, the genetic analysis 
could not proceed any further or to a finer level than what 
Benzer had done [32-34]. Similarly today, NGS analysis is 
bringing us to another end-of-road (EOR). Becoming capable 
of analyzing the entire genome of theoretically any cancer 
cell will lead us to the full understanding of cancer cells ? 
Genetically, certainly yes: there is not additional or more 
sophisticated analysis that we can do. Yet, the answer(s) for 
cancer understanding may be different from what expected 
[1, 5]. For some years now, the paradigm “cancer is genetic” 
has dominated the research field. Unquestionably, the 
seminal paper by Hanahan and Weinberg on Hallmarks of 
Cancer (HoC) at the end of last Century (and Millennium) has 
paved the way for a robust compendium of cancer hallmarks 
with genetic basis (as reiterated by the same authors in 2011 
and by the voluminous treatise by Weinberg in 2014) [35-
37]. Historical and logical needs for such a synthesis under a 
genetic umbrella are also unquestionable and will probably 
become object of future or epistemological studies. But, with 
the clock ticking toward the EOR’s inevitable discoveries, the 
distinguo’s started appearing and are growing. Cancer maybe 
is not or not just genetic. The first objections came from the 
field of epigenetics (S. Baylin, P. Johnes) and cytogenetics 
(P. Duesberg, H. Hen) [38-40]. Obviously, cancer cells often 
display also epigenetic and chromosomal hallmarks. Although 
the 2011 and 2014 version of HoC include clear examples of 
chromosomal or epigenetic derangements in cancer cells, 

the proposed picture privileges genetic alterations, which 
eventually impinge into the machinery regulating epigenesis 
and epigenetic marks, chromosomal segregation and 
structures, etc. [36, 37].

3. Rationalize And Identify Some Priorities For Future 
Successful Interventions

Are we, therefore, asking the right question(s)? In recent 
months, a paper in Science by Tomasetti and Vogelstein has 
stressed this enigma to the limit by showing a randomness 
in cancer hazard (incidence) [41]. Needless to say, this has 
stimulated strong opposition from cancer research areas 
working on environmental carcinogenesis, an important 
field started by K. Yamagiwa almost 100 years ago [42]. 
The Science paper has been misunderstood quite often by 
mass-media, TV etc., as pointed out in the clear analysis of 
L. Luzzatto in NEJM a few months ago, to which I refer for 
further clarifications [43]. Still, the emerging question is the 
one of causality (or lack-of as per Tomasetti and Vogelstein). 
Specific causality is clearly denied, if we pretend to know with 
certainty what cancer is, what I called the engine of cancer 
(TEOC). If we are totally sure that TEOC is somatic mutations 
accrued during life-time (much more rarely by inheritance), 
then cancer can have a random component as Tomasetti and 
Vogelstein have clearly shown [41].

The real question becomes the nature of TEOCs. To rephrase 
a well-known quote: “DOES THE DEVIL PLAY DICE?”

I have already indicated friends and foes of such theory, 
but the logic tells us that we should probably look better –
as for the HoC paradigm- at TEOCs: their origins and their 
evolutionary mechanisms. As previously indicated [1], simple 
reading of today’s literature suggests that more mechanisms 
than just somatic mutations are proposed, are suggested or 
are believed to be at the origin of TEOC: at least 9 additional 
are summarized and discussed [1]. Another consideration 
(only marginally discussed in [1] and which I am expanding 
elsewhere), is that according to HoC and consequently in the 
great majority of Targeted Gene Therapy (TGT) approaches, 
the postulated underlying mechanism is one of “oncogene 
addiction” [44-46]. However, oncogene-addiction has never 
been clearly defined, particularly for its ontogeny and the 
failure of most TGT may be also linked to ambiguity of such 
concept (or misconcept) [1].

Modelling in Cancer Research and Biology in general appears 
to be much more slow-moving than in other scientific arena’s: 
think about nuclear physics or astrophysics for a comparison 
[47]. This phenomenon was also discussed by Leslie Orgel in 
Nature [48]. In our cancer genetic-paradigm today, the model 
maintained for over 15 years is strongly a-symmetrical. As 
suggested by Vogelstein and Fearon 19 years ago, the yin-
yang forces of Oncogenes and TSGs should be complemented 
upstream only by so-called Caretakers with a mechanism 
resembling that of TSGs, but earlier in ontogeny (see Figure 
1A) [49].
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initial accrual of extensive mutations–very early in tumour 
ontogeny and not just as public or driver-, but also as private 
or passenger- mutations [50]. This was called the “Big Bang 
model of oncogenesis” [9].

CONCLUSION

The concluding remarks want to suggest that in an era in 
which NGS applications to cancer cells will become pervasive, 
it will be essential to also focus on data interpretation and not 
just on their accrual.  Even the Hubble telescope would limit 
its analysis to a scanty number of galaxies, if fixed at a single 
angle of the universe.  Today’s analysis cannot be restricted 
to the idea that somatic mutations “must” be the only causes 
of human cancer, it has to become more comprehensive 
and should finally provide explicatory mechanisms for the 
plethora of additional phenomenology and models emerging 
in cancer research [1, 7, 59-63].
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Figure 1A: Mechanism of Tumor Suppressor Genes and Oncogenes.

Figure 1B: Dominant mechanism of Genome Snipers on Tumor 
Suppressive Genes.
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