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Summary

The proposed work is aimed at developing accurate train parameters estimation
approaches, to get more informations on the vehicle running on the rail, spacing
from data about the vertical load (Weigh in Motion systems) to ones on the moving
train. More focused, the provided vehicle data concern its speed, vertical axle loads,
direction of travel, distance between axles and timetable of the crossing axles to ensure
functionalities of dynamical estimations of running loads and aims of train detection.
This study allows the formulation of approaches to estimate the quantities above
mentioned, starting from the same measurement layout. The developed approaches
are flexible against sensors of different typology as load cell, strain gauge or the
more efficient Fiber Bragg grating sensors. An analysis of robustness has been
involved, concerning the estimation accuracy as a function of the performance of
the measurement/acquisition chain, in terms on noise affecting the measure. The
performance have been verified in a wide range of speed and vehicle mass showing
good results. A comparison between two solutions that involve functionalities of
train detection has been done, both on aspects of performance and on the required
computational times. The approaches have been stressed, reproducing operating
conditions worse than those of a real measurement scenario. A focus has been done
on the developed Weigh in Motion algorithm, able to estimate dynamical loads and
vehicle centre of mass, for purpose of unbalance loads detection. In order to test
the algorithms in the most operating conditions concerning both the vehicle and
the measurement chain, in absence of experimental data, simulated track inputs are
available thanks a physical model of the infrastructure, composed by vehicle, track

and a global contact model that manages their interaction.
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Preface

Nowadays the trend of industrial companies is to provide tools able to carry out a
big data set that, once processed, is useful for the enhancement of maintenance and
safety systems. Railway infrastructure contains a wide range of measurement systems:
sensor technology has been integrated in railway systems for quite a while. Rail
vehicles and the infrastructure are equipped with a large amount of sensors, on which
safety mechanism like traffic control as weel as control algorithms on the trains are
based. Sensors are getting cheaper and this pushes their usage also in this field: the
trend leads towards solutions making use of different sensor data for several kinds
of monitoring. Monitoring and alarming are core functions. Diagnostic applications
can be added for advanced analysis and decision support. The accuracy of the
predictive maintenance system is also related to the performance of sensors [1][2] used
in the measurement chain and of embedded unit. Commercial solutions [3] provides
different maintenance tools as HBD (Hot Box Detection), HWD (Hot Wheel Detection),
WDD (Wheel Defect Detection), WIM (Weigh in Motion) systems and supplementary
functions as the AVI (Automatic Vehicle Identification).

Thanks the improvements in the electronic boards development, several evaluation
boards have been brought out by industrial companies [4], [5] to provide additional
parameters used to monitoring the state of the running vehicle (see Fig. 1). Beside
the progress of available commercial products, there is a wide attention of the railway
research on the optimization of the sensor and the signal post processing efficiencies to
extract reliable and robust data. There is a development of sensors concerning systems
able to detect the presence of train or wheel and systems aimed at estimating the
vehicle loads on rail. In particular, nowadays the train detection [6, 7] is performed
by two approaches: track circuits [8, 9] and axle counter [6][10]. In order to have less
invasive and expensive solutions, axle counters have been widely used as alternative

[11][12], equipped of a wheel detector,whose approaches are based on:
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Figure 1: AVI system and axle/wheel detectors

Rail deformation (strain gauge);

Acceleration;

Inductive operating principles (magnetic coils);

Wavelenght reading (fiber Bragg grating sensors);

e Force.

Strain gauge detects the dynamic load due to the deformation of the rail, but its
measure is affected by the electromagnetic interference [13]. Rail contacts with a
transmitter coil on one side of the rail and a receiver coil on the other are widely used
[14, 15, 16]. The wheel affects the inductive coupling between transmitter and receiver.
The devices are mostly designed as double sensors and are often used as counting
heads for axle counters. By reading the change of the inducted voltage on the receiver
coil due to the wheel presence is possible to detect the presence of the wheel [17]. Other

solutions are based on the inductive loops provided only by one element (Fig. 2, [1]).

The advantage for the user lies in its simple design, little mounting work and the
fact that no electronics are needed at the rail itself. The wheel detector based on
the electromagnetic field involves a simply approach but its reading can be affected
by an error due to EMI interference. These limits lead to the development of wheel
sensors that are based on other principles of physics. Examples include microwave
technology, piezoelectrics, fibre optics or sound technology, but there are few examples

of licensable system ready for serial production. However, many recent research works
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Figure 2: Inductive wheel sensor in the effective range of head of rail and wheel flange

in literature propose a new simple sensor technology, the fiber Bragg grating sensor
(FBG) to be free from the EMI interference problem and to enhance the accuracy and
reliability of the train detection of the signalling system [18, 19]. Besides, the FBG
sensors are immune to electromagnetic interference (EMI). Thanks to this innovative
technology, the complexity of the measure system has moved from the sensor part to
that of peak reading in the received signal. Chu-liang Wei et al. [18] have developed the
X-Crossing and D-Crossing algorithms to compute the number of train axles crossing
the measurement station: they have used a cut-off threshold followed by a derivative
operation, to extract the useful peak corresponding to the crossing train axles from the
received signals. TK. Ho et al. [7] make the decomposition of the received signals in
different frequency band with the Wavelet Transform to study and define the spectral
characteristics of the useful signal. Buggy et al. [20] make use of cut-off thresholds
and derivative operation to implement the axle counter function. The fiber optic are
also widely applied in the field of the structural engineering with good results [21]; in
[22][23] the optical sensors are used to measure the dynamic load on bridge with speed
higher the 200 km h. Works [24][25][26][27] show the possibility to apply fiber optic to
test the line state, wheel flat and the wheel wear, or the local deformation of the rail
depending by the traversing load [28]. At the end fiber optic are also used to the speed,
acceleration and the weigh in motion systems [29]. Indeed, over the train detection
there are many studies concerning problems affecting the line and vehicle safety that
can be evaluated through WIM (Weigh in Motion) system, able to measure the moving
train loads or unbalances also at high speed. WIM systems can be classified on the basis
of the type of sensors mounted and the location of their mounting. The classification

of the mentioned WIM systems for railways can be performed on the basis of the type
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of sensors adopted and also on the location of their mounting. One of the first systems
was utilizing strain gauges [30] welded to the neutral axis or mounted on rail foot [31].
Optical fibers can be mounted either to the side of the rail, or to the foot of the rail
with the help of special clamps [32]. All the above indicated papers are an important
piece of research in this field, but don’t provide a general analysis approach and
do not meet the question of robustness against the measurement chain performance.
Summarizing, the researchers and industrial efforts towards approaches aimed at
optimizing the sensor performance and the efficacy of the signal post processing [33]
have encouraged this work that is focused on the developing of techniques to extract
data concerning the vehicle running on rail for purposes of vehicle maintenance and
rail, too (by estimations on possible unbalances loads). Two approaches have been
developed to carry out information on the vehicle march through train parameters
estimations as speed, direction of travel, distance among train axles and timetable of
the crossing axles. In order to provide functionalities useful for safety purposes related
to both vehicle and rail a WIM algorithm has been developed. All the approaches have
the prerogative to provide a data set in different working conditions concerning the
vehicle (wagons or a train composition, different values of car body mass and speed).
Studies have also the goal to provide estimation techniques quite flexible against
different measurement chains in terms of number of sensing elements, noise affecting
the measure and kind of sensing elements (strain gauge, FBGs, force sensor), in order
also to do a layout optimization as compromise between the occupied space/cost and
the estimation accuracy.

Fig. 3 summarizes the motivation of the work, aimed at developing efficient estimation
approaches to enhance and integrate the functionalities guaranteed by WIM and AVI
systems.
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Figure 3: The goal is to provide approaches flexible against different typologies of
measurement chains to bring out a data set useful for purposes guaranteed by WIM
and AVI systems



Structure of the thesis

This thesis provides estimation approaches of train parameters flexible and robust

against operating conditions concerning both the vehicle and the measurement chain.

Chapter 1 shows the general architecture of the approach adopted to test the
performance of the algorithms: a physical model of the railway vehicle, a finite element
model of the track and a global contact model have been developed to bring outs the
inputs useful for the estimation part. The benchmark vehicle is the Manchester Wagon,
composed by a car body, two bogies and four wheelsets. The rigid bodies are connected
by means of appropriate elastic and damping elements. The infrastructure model has
been developed to test the approaches performance in different working conditions

regarding both the vehicle and the measurement chain.

Chapter 2 describes the two algorithms developed through time domain or frequency
one approaches (TDA/FDA) to detect the train presence computing its speed and
crossing time instants and number of crossing axles, starting from the knowledge of
the simulated inputs obtained from the physical model described in Chapter 1.

Chapter 3 shows the results of the wide simulation campaign used to test the operation
of both algorithms in the computing of the train detection functionalities. The
benchmark vehicle is the Manchester Wagon and several measurement layouts are
considered in order to check the performance of the estimation algorithms against
different working condition concerning the number and spacing among sensing
elements. Force sensors displaced on measurement sleepers are used during this
training phase. The results on the estimation accuracy on train parameters are shown
and a comparison between the TDA and FDA approaches is carried out, concerning

their performance, functionalities and the required computational times.

Vi
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Chapter 4 highlights the performance of the estimation approaches on an experimental
data corresponding to a train composition of locomotive and two wagons with a
different measurement chain from the one used in the training phase (equipped of
strain gauges rather than force sensor). The robustness of the thresholds used to

optimize the performance shown in Chapter 3 is verified.

Chapter 5 describes the WIM algorithm able to estimate the vertical loads, starting
from the knowledge of vertical force measured on measurement sleepers, obtained
from the interaction between the vehicle and track models described in Chapter 1. The
WIM algorithm takes in input also the train parameters estimated by the TDA /FDA
approaches. The vertical loads on the train axle or wheels and the possible unbalances
are computed starting from a formulation based on a Quasi Linearity Hypothesis: the
reproducing of the input signals, when experimental data are not available, has been
optimized by means of least square minimization (LSQ) techniques. The algorithm
is able to estimate also the center of gravity of the vehicle, which accuracy is strictly

dependent from that of vertical load estimations.

Chapter 6 describes the results of the WIM algorithm in the estimating of vertical wheel
loads and centre of mass in different working condition concerning the vehicle mass

and speed and the measurement layout.



Chapter 1

General architecture of the validation

model

Chapter Contents
1.1 Physical model of the railwaytrack . ... ................ 3
1.1.1 The infrastructuremodel . . . ... ... ... ... .. ..., 3
1.1.2 Thevehiclemodel .. ... ... ... .. ...... .. ..... 9
1.1.3 Globalcontactmodel . . . . .. ... ... .. ... ... 13

To test the performance of the developed algorithms in a wide range of operating
conditions, an accurate validation model has been developed to provide the training

set of the input data. The model can bring out:

¢ force signals [34], rail bending measurements [35];

e signals corresponding to different measurement layouts, in terms of number and

position of sensing elements.

In the proposed work, vertical forces obtained from force sensors placed on left and
right sides of sleepers have been considered. The general architecture of the system
is illustrated in Fig. 1.1 and it is composed by a physical model part and a estimation

one. The physical model is structured in:

* 3D multibody model of the vehicle (in the studied case the Manchester Wagon
[36], implemented with VI-Rail software, is proposed);

1



¢ 3D finite-element model (FEM) of the flexible railway track, developed in Comsol

environment.

These two models interact online through a global wheel-rail contact model, developed
in previous works [37][38]. At each time integration step, the multibody model
provides the kinematic variables (position, orientation and their derivatives) of each
wheel; at the same time, the finite-element model (FEM) of the railway track evaluates
the position, orientation and their derivatives for each node of the beam that represents
the rail. Both the kinematic variables are then sent as inputs to the global contact
model, that returns the global contact forces to be applied to the wheel and the rail.

Once the simulation is finished and the vertical forces on the sleepers F! s with

i=1..Ny; (N is the minimum i of measurement sleepers included in the measurement

INPUT
l Al
EXPERMENTAL DATA [ ESTIMATION ALGORITHM ]
i i
4 SPECTROGRAM  AUTO/ CROSS CORRELATION Time Domain Approach

— (TDA)

A
/ PHYSICAL MODEL \ MI :. _ .- - Frequency Domain Approach

{FDA)

VEHICLE MULTIBODY
MODEL 1

(V1 Rail) %

WHEEL KINEMATICS
VARIABLES COMTACT FORCES ESTIMATION CRITERION

[MAXIMUM PEAK DETECTION)

GLOBAL CONTACT MODEL i
e | — ™
L iLV N, Ti

WIM ALGORITHM ]

RAIL KINEMATICS CONTACT FORCES
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TRACK FINITE ELEMENT g

MODEL
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sasis runcnons =3 Weigh in Motion Algorithm
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ESTIMATION CRITERION J

(LSE)

[ESTIMQTED lCIADS N! X PG]

Figure 1.1: General architecture of the system: the physical model provides the training
set for the estimation algorithms TDA /FDA, whose estimations are sent in input to the
WIM algorithm



1.1 Physical model of the railway track 3

station) (indicating the vertical forces on the i-th sleeper measured at the right or left
side of the train) are obtained, the estimation part begins. The estimation approaches

are:

* Speed, crossing times, train detection estimation algorithms (TDA /FDA);

¢ WIM algorithm to estimate vertical wheel loads and the vehicle centre of mass.

1.1 Physical model of the railway track

The adopted approach can manage the simulated data in absence of the experimental
one: the physical model must contain accurate vehicle and track models. The physical
model consists of a 3D finite element model (FEM) of the infrastructure (rail, sleepers
and ballast), a 3D multibody model of the vehicle [39] and a contact model describing
the interaction between the vehicle wheels and the rail. The vehicle model and the
infrastructure one interact online during the simulations by means of the 3D global
contact model, specifically developed to improve reliability and accuracy of the wheel-

rail contact points detection.

1.1.1 The infrastructure model

Rail and infrastructures are modelled as 3D beams (see Fig. 1.2b), supported by
an elastic discrete foundation representing sleepers and ballast (discretized through
BEAM elements with two nodes for element and 6 DOFs for each node). The rails
are connected through visco-elastic elements to ny 2D rigid bodies representing the
sleepers, which are in turn supported by a visco-elastic foundation including the

ballast properties (see Fig. 1.2b). The discretized equation of the rail is defined as:

Mdl/r + qu/r + qu/r _ Fl/r (11)

in which M, C and K are the mass, damping and stiffness matrices of the track, q/

indicates the discretized track displacements and FY* the external applied forces:

Fl/r _ Fsll/r + Fcl/r (12)
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where Fy,'/", F.'/" indicate the sleeper forces and the contact forces (provided by the
vehicle and the global contact model). The variables of the generic node q;'/" € RS are

the linear displacements v € R® and the rotational displacements 6 € R*:

Vil/r
qi'’" = [ Iy /T] (1.3)

I

where vector v;//" includes longitudinal u; i

. lr
~; and vertical w;

rail

/T, lateral v
displacements expressed in the fixed reference system O, % sysYsys 2sys- The vector 0,/
indicates the rotational displacements ¢, 6,/ and ;" expressed in the fixed
reference system O, s T sysYsys2sys (see Fig. 1.2a).

In this work the damping of the rail is modelled using the "proportional” or Rayleigh
damping; the damping matrix C is evaluated as a linear combination of the inertia M

and stiffness K matrices of the structure:

C=aoM-+5K. (1.4)

The coefficients o, and f3, are calibrated in order to fit the typical behaviour expected
from experimental results and physical considerations available in literature [39, 40,
41].

In this work the UIC60 rail profile (with cant angle equal to 1/20) has been adopted.
The main physical characteristics of the rail beam model are listed in Tab. 1.2a.

Table 1.1: Main characteristics of the rail beam model

Parameter Value

Young modulus £ 2.1% 10" Pa
Density p 7.8 % 10° kg/m?
Area of the beam section A 7.686 * 107% m?
Momentum of the beam section I 3.055 x 107° m*
Rayleigh damping coefficient o, 30s7!

Rayleigh damping coefficient 3, 0.003 s

Distance between neutral section and rail foot z; —0.172m
Shear factor k 0.4

The length of the straight track studied in the model is L = 72m. The separation
distance between two contiguos sleepers is equal to | = 0.60m. The sleepers are
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(b) Model of the interaction between rails, sleeper and ballast

Figure 1.2: Reference system and infrastructure model
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Table 1.2: Main characteristics of the rail-sleeper-ballast system

(a) Main characteristics of the rail beam model

Parameter

Value

Young modulus E

Density p

Area of the beam section A
Momentum of the beam section /
Rayleigh damping coefficient «,
Rayleigh damping coefficient 3,

2.1 % 10" Pa
7.8 % 10° kg/m?
7.686 * 1073 m?
3.055 % 107> m*
30571

0.003 s

Distance between neutral section and rail foot z; —0.172m

Shear factor k

0.4

(b) Main characteristics of the sleepers-ballast system

Parameter Value

Mass of the sleeper my 304 kg

Polar inertia of the sleeper J, 200 kg m?
Sleeper Lateral Stiffness kg 4.3%10" Nm™!
Sleeper Vertical Stiffness k. 2.5% 108 Nm™!
Sleeper Rotational Stiffness kyy 1.0 % 10" Nm

Sleeper Lateral Damping £,
Sleeper Vertical Damping k.
Sleeper Rotational Damping £y
Ballast Lateral Stiffness k4
Ballast Vertical Stiffness k.
Ballast Rotational Stiffness kyyq
Ballast Lateral Damping c,pq
Ballast Vertical Damping c.pa
Ballast Rotational Damping cgpq

Sleepers distance !
Sleepers total number n
Beginning of the track L,
End of the track L

2.4%10° Nsm™!
5.6 x 10 Nsm™!
1.0 % 10° Nms
3.7« 10" Nm™!
1.0 10 Nm™!
1.0 % 10" Nm
2.4 %10 Nsm™!
1.0% 10" Nsm™!
1.0 % 10° Nms
0.6 m

121

0m

72 m
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Table 1.3: Main characteristics of the rail beam model

Parameter Value

Young modulus £ 2.1% 10" Pa
Density p 7.8 % 103 kg/m?
Area of the beam section A 7.686 * 1073 m?
Momentum of the beam section I 3.055 % 107° m*
Rayleigh damping coefficient «, 30s!

Rayleigh damping coefficient 3, 0.003 s

Distance between neutral section and rail foot z; —0.172m

Shear factor k 0.4

modelled as 2D rigid bodies connected to the rails by means of visco-elastic elements
including lateral k4, vertical k. and rotational £y stiffness and lateral ¢, vertical c.
and rotational ¢y, damping properties (see Fig. 1.2b and Tab. 1.2b). The longitudinal
position z ,, of the p — th 3DOF system modelling the sleepers-ballast ensemble can be
expressed as follows:

Tslp = LI + (p — 1)[, k= 1,2, ..M (15)

where zy1 = Ly, 4, = Lr (L; and Lp are the beginning and the end of the track
respectively), [ is the distance between two contiguous sleepers and ny is the total
number of sleepers.

The generic 2D sleeper is supported by a flexible foundation characterising the
behaviour of the ballast through the lateral £, vertical k., and rotational Ekgp.u
stiffness values and lateral ¢, vertical c., and rotational cg,, damping values (Tab.

1.2b). my and jy indicate the mass and inertia of sleepers.

The 3DOF body modelling the sleepers-ballast ensemble is described by the lateral y;
and vertical zy translations and the rotation ¥, around the z, — axis of the sleeper
reference system expressed in the reference system Oy sysYsys2sys (see Fig. 1.2a and
Tab. 1.2b).

Hence, the dynamic model of the sleeper can be expressed through the following
equation:
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Table 1.4: Main characteristics of the sleepers-ballast system

Parameter Value

Mass of the sleeper my 304 kg

Polar inertia of the sleeper .J, 200 kg m?
Sleeper Lateral Stiffness &, 43%10"Nm™!
Sleeper Vertical Stiffness k. 2.5 108 Nm~!
Sleeper Rotational Stiffness kyy 1.0 x 10" Nm

Sleeper Lateral Damping k,
Sleeper Vertical Damping k.

2.4% 10 Nsm™!
5.6 %10 Nsm™!

Sleeper Rotational Damping kg 1.0 % 10° Nms
Ballast Lateral Stiffness kypa 3.7%x10" Nm™!
Ballast Vertical Stiffness k4 1.0 % 10° Nm™!
Ballast Rotational Stiffness kyp; 1.0 * 10° N m

Ballast Lateral Damping c,pq

Ballast Vertical Damping c.pq

2.4% 10 Nsm™!
1.0%x 10" Nsm™!

Ballast Rotational Damping cgp,; 1.0 % 10° Nms
Sleepers distance ! 0.6 m
Sleepers total number n 121

Beginning of the track L; Om

End of the track Lp 72m

D r r DT DT l l
Mslvsl + Ksl<vslp - Vrailp ) + Csl<vsl - Vraz’l) + Ksl<vslp - Vrailp ) +

+ Csl(‘.’gll - ‘.’falil) + Kparvly + Coarvly =0 (1.6)

where subscript sl refers to the sleeper, subscript bal indicates the ballast properties,
subscript rail is related to the rail and [/r refers to the left/right side of the rail.
The vector v,” includes lateral vy, vertical wy? and rotational ¢” displacement of

the sleeper center of mass expressed in the fixed reference system O,y s sysYsys2sys (€€
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Fig. 1.2a); My is the sleeper mass matrix while K;; and Cj; are respectively the stiffness
and damping matrices characterising the rail/sleeper visco-elastic connection. The K,
and C,; are respectively the stiffness and damping matrix of the ballast. The vectors

vgP ! vgP " are defined as:

vP " vg?
va' T = | wa?" | = |wa? — ¢u"5 (1.7)
P Dsi
VP! vg?
val ' = | waP! | vl = [we? + ¢y’ (1.8)
QP! os”

where s indicates the railway gauge among the rails. The vectors vyay? !, vean? " are
defined as:

pr pl
Urail Urail
r r l !
Veail’ | = wfzzil , Viaill | = wfazl . (19)
pr
rail ¢razl

Therefore, each rail-sleeper interaction force is made up of the following components:

FUP (1) = ky a(ohf — 0l 2) + ¢y a0l —0'2) (1.10)
F;Z(t) = ky a(vy” — vrazl) + ¢y sl( — Uyit) (1.11)
FLE () = ke a(wl] —w,iy) + co a(i —igly) (1.12)
F7 a(t) = ke a(wy” — wigp) + ¢z a(iy” — ) (1.13)
M, 2)(1) = kg a($iF — d10) + ¢ sz< ~ Gran) (1.14)
M; fz( ) = kg sl(¢r P — ¢mzl> + ¢y sl( ¢mzz) (1.15)

where p = 1,2, .., 05, Vyait™/* P, Wra/' P and ¢,e;™/' P are the second, third and fourth

element of the generic node variables q;"/! ?.

1.1.2 The vehicle model

The railway vehicle chosen for the dynamic simulations is the Manchester Wagon,

the mechanical structure and elastic and damping characteristics of which are easily
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available in literature [36]. The main general characteristics of the vehicle are

summarized in Tab. 1.5a while in Tab. 1.5b the inertia properties are shown.

The multibody 3D model of this vehicle has been widely studied and validated in
different conditions. The model of the Manchester Wagon, implemented in the Adams
VI-Rail environment, is schematically shown in Fig. 1.3a and it lies in seven rigid

bodies:

* one car body;
* two bogies;

e four wheelsets.

The rigid bodies are connected by means of appropriate elastic and damping elements;
particularly, the vehicle is equipped with two suspension stages. The primary
suspensions connect the wheelsets to the bogies (see Fig. 1.3b) and comprise two coil
springs and six dampers (longitudinal, lateral and vertical ones), while the secondary
suspensions connect the bogies to the coach (see Fig. 1.3c) and consist of the following

elements:

two coil springs;

four dampers (lateral and vertical ones);

the traction rod;

the roll bar (not visible in figure);

two lateral bumpstops.

Both the suspension stages have been modelled through three-dimensional linear and
nonlinear force elements like bushings, dampers, and bumpstops. The main linear
stiffness and dumping properties of the suspension stages are summarized in Tab. 1.5c.
In this work the ORE 51002 wheel profile has been used.
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Table 1.5: Main characteristics of the Manchester Wagon

(a) Main characteristics of the Manchester Wagon

Parameter Value
Bogie pivot distance 19 000 mm
Bogie wheelbase 2 560 mm
Wheel diameter 920 mm
Height above ToR level of bogie CoG 600 mm
Height above ToR level of coach CoG 1 800 mm
Longitudinal and lateral offset of coach CoG 0 mm

(b) Inertia properties of the multibody model

MBS body Mass RollInertia Pitch Inertia Yaw Inertia

kg kgm? kgm? kgm?

Car body 32000 56800 1970000 1970000
Bogie 2615 1722 1476 3067
Wheelset 2091 1120 112 1120

(c) Main linear stiffness and damping properties of the Manchester Wagon

suspensions

k, 3.1E+07 N/m

k, 3.9E+06 N/m

k. 1.2E+06 N/m

Co 1.5E+04 Ns/m

Cy 2.0E+03 Ns/m

C, 4.0E+03 Ns/m

k., k, 1.6E+05N/m
Coil spring  k, 4.3E+06 N/m

ko, kg 1.1E+04 Nm/rad

Primary suspension

_ k, 5.0E+06 N/m
) Traction rod
Secondary suspension Co 2.5E+04 Ns/m

Roll bar ke, 9.4E+05 Nm/rad

Cy 3.2E+04 Ns/m

Dampers
P C, 2.0E+04 Ns/m
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(a) Global view of the multibody model

VERTICAL

DAMP ER LONGITUDINAL

DAMPER

l

\

SPRING

LATERAL
DAMPER

(b) Primary suspensions

BUMPSTOPS

SPRING

VERTICAL
DAMPER

TRACTION ROD L ATHREAE
DAMPER

(c) Secondary suspensions

Figure 1.3: Multibody model composition
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1.1.3 Global contact model

The vehicle model and the infrastructure model interact online during the simulations
by means of a 3D global contact model, developed by the authors in previous works,
to improve the reliability and the accuracy of the contact points detection. In particular
the used global contact model comprises both the contact points detection [37, 38] and
the global contact forces evaluation, based on the theory of Hertz, Kalker [42, 43] and
Polach [44]. The vehicle and infrastructure models calculate the wheel kinematics
variables (related to each wheel) and the rail kinematics variables (related to each
rail node). Starting from these quantities, the global contact model returns the global
contact forces to be applied to the wheel and the rail. The global contact model is
illustrated in Fig. 1.4.

Wheel model G!oba! Contact Model Track model

Wheel kinematic FC

Variables
(with their derivates) Contact Farces
—_— X N Contact Point

Detection

2T “

wheel

— ;
<=

Contact Forces 7

Contact Forces . o
/ 1r F Detection Rail kinematic Y
Yl ¢ Variables L.
xx;eez o / [with their derivates) Finite element
3D

Figure 1.4: Global contact model: interaction between the vehicle model and the finite
element 3D model of the track
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This Chapter describes the estimation approaches developed to involve train detection
functionalities by means of the computing of several parameters as vehicle speed,
crossing time instants, crossing axles and physical distance between axles. Both of
approaches are aimed at bringing out these parameters with methodologies that must
be flexible against different measurement chain in terms of number, kind of sensor
elements and its performance in terms of noise affecting the measure. Algorithms
can manage the experimental data or, in absence of them, simulated track inputs as
described in Chapter 1 (see Fig. 1.1). Two approaches have been proposed aimed
at detecting the meaning of the input signal peaks also in very badly operating
condition, concerning the noise on the input signal. Indeed, the proposed solutions
are flexible against different measurement chains and robust against the noise. The
aim is the computation of signal local peaks coming from force sensors displaced
on measurement sleepers. The first approach is based on auto/cross correlation
operations, very useful as denoising techniques and as estimators of the time shift
between signals: this way is very useful for the estimation of the crossing time

instants and vehicle speed, but becomes quite complicated when it is applied to a long

14
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composite signal and, to overcome this drawback, a frequency domain approach has
been adopted, based on spectrograms. The operation of the algorithm is described in
Par. 2.2.

2.1 Time domain approach (TDA)

The train detection algorithm aims at computing different train parameters like the

crossing times of vehicle on sleepers, vehicle speed and axles number.

Force sensor

Measure station

[
1
I
1
]
1
e
-
1
1
1
1

Xy

K-th measurement
point

Figure 2.1: Measurement layout composed by three measurement sleepers each one

equipped of two force sensors on both left and right sides

The used track inputs are the signals coming from the force sensors located on the left

and right side on every sleeper F! , F?, (see Fig. 2.1), even if the algorithm can manage

different signal input (i.e the vertical forces acting on the sleepers, the rail shear and
bending, longitudinal strain and stress on rail). Fig. 2.2 illustrates the right and left
vertical forces acting on the first sleeper (vehicle speed V' = 10m s~* and car body mass
M = 10t) of the measurement station: there are four peaks related to the four axles of

the Manchester Wagon. F!,, F!, are quite similar because the travel of train is on a

rectilinear track. To stress the estimation approaches, very rough operating conditions
have been simulated, with the adding of an elevate noise level on the simulated signal
amplitude. Fig. 2.2 represents two signals (with or without the added noise), in which

a noise has been added on the input signal to obtain a signal input-to-noise ratio equal
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to 5 dB (vehicle speed V = 10ms~! and car body mass M = 10t). The considered signal
is the mean between the left and right force input signals | F?,, = %) ,in order to

reject possible disturbances due to the lateral motion of the vehicle.

The technique of auto correlation has been applied because it shows an high robustness
against disturbances and noise [45],[46]. Fig. 2.3 shows a scenario in which the
autocorrelation is carried out on a force signal, corresponding to four crossing train
axles, affected by noise. Considering the measured signal, the noise affects all of its
shape, especially its peaks, useful to localize the train axles. Once the autocorrelation
is done the noise doesn’t affect the signal peaks but mainly its low level, that is not
important in the detecting of the main relevant information: this improvement has
pushed to use this technique during the algorithm development, based on the signal
peaks detection. The operation of the algorithm as speed detector can be summarized

in the following points:

* Simulated track inputs: starting from the simulated force signals coming from
the measurement layout (see Fig. 2.1), their mean is done (in order to reject

possible lateral disturbances) and a white noise level is added;

* Auto/Cross Correlation techniques: for each noisy signal the auto and cross
correlation are applied;

* Filtering stage: in order to optimize the estimation accuracy an filter with a cut-

off frequency tuned depending by the vehicle speed is performed(see Tab. 2.1);

* Crossing times and speed detection: starting from the knowledge of the
difference between samples corresponding to the autocorrelation and cross

correlation maximums, the vehicle speed are obtained.

Particularly, starting from a measurement layout equipped of three measurement
sleepers and considering a couple of force signals, the first step consists in performing
the autocorrelation on each obtained signals F?,, and then in the cross correlation
among all the possible pairs of signals F?  and F? . The generic expression of the
cross-correlation between two signals (ij) is:

Ry(m)= D Fio P ey

N—-m—1
=0

n
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(a) Vertical forces F},, F}, acting on the right and left side of the first
sleeper of the measurement station (performed at a vehicle speed V=10
ms~!) and a car body mass M=10 t
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(b) Original input signal F, (red line) and input signal with added
noise (green line): Signal-to Noise ratio (SNR)=5 dB performed at a
vehicle speed V=10 ms~! and a car body mass M=10 t

Figure 2.2: Input signal
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Noise on the measured signal

Figure 2.3: Denoising effect obtained with the autocorrelation signal: the noise not
affects the local peaks, useful for the train axles detection

digitalized with N samples (m indicates the m-th sample of the correlation signals),

where FJ " is the complex conjugate of the discretized signal j and F

zm(n)

S indicates
the discretized signal i, shifted of m samples. R;;(m) indicates the auto correlation
signal. By means of the correlation operations, it is possible to evaluate the degree of
true similarity between all the pairs of signals.

The cut-off frequencies computed for each vehicle speed is summarized in Tab. 2.1.

Table 2.1: Cut off frequencies computed in the full speed range
Speed [ms™']  f..[Hz]

2 27
10 35
20 45
30 55
40 65
50 75
60 85
70 95
80 105

Followed the filtering stage, the maximum signal peaks are detected: starting from

the difference between the sample corresponding to the maximum value of the
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autocorrelation of the signal F?, and the one corresponding to its cross correlation with

the FY  signal, it is possible to compute the time delay between the F?, , F?  signals
just multiplying this difference by the sample time integration step At. Through this
method, the time shifts among all the pairs of input signals can be easily determined.
Once known the time delays, the vehicle speed can be computed just dividing the
distance between the corresponding sleepers by the time shift previously found for
the signals. At the end, the estimation of the vehicle speed is the mean among all the

speeds obtained from the previous computed time shifts (see Tab. 2.2).

Table 2.2: Number of speed computing among sleepers

Number Sleepers Number of speed computing
1

Q1 = W DN

3
6
9

An example with two sleepers located at X; and X positions, spaced of d;; apart, is

reported:

m; = argmaz R;;(m) m;; = argmaz R;;(m) (2.2)
ATy = At x|my; —my| =t; —t; dy=X;-X;, V= i (2.3)
AT,

where m; and m;; are the samples corresponding respectively to the maximum value of
autocorrelation of i-th sleeper signal R;; and cross correlation R;; between the i-th and
the j-th ones; At is the sample time and ATj}; is the time shift between the i-th and the
j-th force signals (corresponding to the two sleepers); V represents the vehicle speed,
computed dividing d;; by the corresponding time delay AT;;. Fig. 2.4a describes the

operation of the algorithm as time crossing instants and speed detector [46][45].

Fig. 2.4b shows the shift between signals coming from two sleepers spaced of 9.6
m: just dividing itself with the obtained time shift the vehicle speed is obtained (Hp.
1.=0.001 s).
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(b) Cross Correlation R; 5 between the first sleeper signal F., and the
fifth one F5,, and the auto correlation R; ; of the signal F},, (performed
at a vehicle speed V=10 ms~! and with a car body mass M=10 t): just
dividing the physical distance between the measurement sleepers (9.6
m) and the time shift is possible to obtain the speed vehicle

Figure 2.4: Application of the Cross/Auto correlation techniques as speed and time

crossing instants estimator
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To compute the crossing times on sleepers it is sufficient to use the signal time shifts

among the different sleepers, starting from the first one to the last one:

1—1
ti=to+» AT, (2.4)
=0

The method used to test the train detection is still based on the correlation theory
because it increases the signals of several orders of magnitude when there is a good
degree of true similarity and so it guarantees a better robustness against the input
noise and disturbances (Fig. 2.3).

Table 2.3: Correspondence between the auto correlation signal peaks and the number

of axles
Distance between axles Description Value [mm]
di2 Bogie wheelbase 2 560
dis Bogie pivot distance 19000
doy Bogie pivot distance 19000
das Distance between bogies 16440
di4 dig * 2 + das 21560

Fig. 2.5a shows the scenarios in which two axles of two different bogies are lost:
more focused, if the first and last axles are lost (blue line) there is a local peak that
corresponds to the distance between the second and third axles (16.44 m). Otherwise,
if the second and fourth or first and third are lost there is a local peak that corresponds
to the bogie pivot distance (19 m). Finally, if the second and third axles are lost there
is a peak corresponding to the distance between the first and last axles (21.560 m). Fig.
2.5b shows the scenarios in which two axles of the same bogie are lost: in both cases
the autocorrelation signal implies the presence of the peak corresponding to the bogie
wheelbase distance (2.56 m). The approach used to discuss the Fig. 2.5a is also valid
in the scenarios in which one of the vehicle axles is lost (Fig. 2.6), because the signal
can be obtained by the combination of each signal showed in Fig. 2.5a. Especially, if
the first or forth axles are lost, the local peaks that compare can be obtained with the
combination of the blue and green line in Fig. 2.5a.

The same approach is used for Fig. 2.6b. These considerations bring out the idea that
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(b) Autocorrelation signal in a scenario in which two axles in the same bogie are lost: the local peaks

correspond to the bogie wheelbase distance

Figure 2.5: Autocorrelation signal in a scenario in which two of the fourth train axles

are lost
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(a) Autocorrelation of the signal if the first or fourth axle are lost: the local peaks are linked with the
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(b) Autocorrelation of the signal if the third or second axle are lost: the local peaks are linked with the
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Figure 2.6: Autocorrelation signal in a scenario in which one of the train axle is lost
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Figure 2.7: Operation of the algorithm as train detector: starting from the noisy
input signal, the autocorrelation is done and then filtered. Once the autocorrelation
is obtained its derivative is done and smooth to find samples corresponding with
autocorrelation local peaks. The traversed axles are at the end computed applying
a cut off threshold 7}, (0.12)

working on the autocorrelation signal allows to hold the information of the original
one with a less noise impact on the local peaks, important for the train detection. The
operation of the algorithm to this aim is shown (Fig. 2.7). Starting from the noisy
input signal, the autocorrelation and its normalization are carried out (to be free from
the force value): then a filtering stage is applied to the autocorrelation signal. The
derivative signal is used and filtered with a smooth action to compute local peaks of
the autocorrelation signal (that is examined for positive lags) and then applying a cut-
off threshold 7}, (0.12) the final signal peaks are found (see Fig. 2.7).
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As previously said, the auto/cross correlations techniques are very useful to estimate
the time shift among signals and so the vehicle speed but the peaks detection becomes
quite difficult with a composite signal as well as in a real scenario. Moreover this
approach has not shown a sufficient flexibility to trains with different composition if
the autocorrelation is applied on the whole input signal (see Fig. 2.8f).

Another significant drawback of the approach concerns the reliability of the vehicle
speed detection (see Fig. 2.4), which also depends by the physical distance among
sensing elements and the sampling time of the measurement chain. Indeed, in the
case in which the theoretical speed needs an accuracy bigger than the one guaranteed
by the sampling time, there is an intrinsic error due to the resolution provided by
the ratio between these two amplitudes. In particular, starting from the Layout 2 as
measurement chain (in which there are two adjacent sleepers spaced of 0.6 m, see Tab.
3.2) is supposed of detecting a train speed of 70 ms™'. Once the cross correlation is
performed, the resulting shift between the two signals is m;; = 892, where ¢ and j
correspond to 1 and 2 respectively: applying the ratio between the physical distance
d;; and the product of the sampling time (7. = 0.001s) with m;; the obtained speed is
66.67 ms™~' involving an estimation relative error of 4.76 %. This is due to not by the
performance of the estimation approach but by the accuracy of the sampling time that
must be of 0.00095 s to obtain the correct speed value (see Fig. 2.9): these considerations
have involved the developing of new estimation approach based on techniques in the
frequency domain.
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Figure 2.9: Time Domain algorithm- drawback of the approach described in Fig. 2.4
aimed at estimating the vehicle speed
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2.2 Frequency domain approach (FDA)

To overcome the time domain problems (see Fig. 2.8), an alternative algorithm has
been developed, based on frequency domain techniques with the aim at searching a
tool flexible to the composition of the input signal. The new methodology is based on
the application of the FFT (Fast Fourier Transform) to identify local peaks due to a train
axle from other peaks like noise. Spectrogram is a widely used post processing method
to analyze audio/speech and biomedical signals [47][48][49][50]. This approach allows
to identify the signal peaks and has also an information of the evolution of the signal
in the time domain. The spectrogram settings depends by spectral informations of the
analysed signal. Fig. 2.10 shows the input signal (simulated force signal corresponding
to a train with 50 t of mass and 80 m s~ of speed) in which the fourth axles are located
in the intervals (0.2-0.3) s and (0.45-0.55) s and its power spectral density estimation
(PSD): the PSD highlights that the simulated signal, coming from the physical model
discussed in Chap. 1, has a bounded bandwith (within 100 Hz ). This information
may suggest the configuration of spectrograms to get an high time resolution and a
low frequency one, due to the no presence of relevant single frequencies that must be
detected.
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Figure 2.10: Input signal and PSD estimation: axles are present in the time interval of
(0.2-0.3) s and (0.45-0.55) s
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In particular, to use the spectrogram different parameters must be setted:

number of FFT points;

type of window;

width of the window;

number of window;

overlap among windows.

The optimal number of points of the FFT has been carried out by means of the
nearest multiple of 2 of the signal size. The choice of the window and its parameters
(type,widthnumber and overlap) is very important and have effects on the good
analysis of the signal. Different windows have been evaluated and at the end, in order
to do the train detection, the Taylor one (Fig. 2.11) has been used. Taylor windows are
similar to Chebyshev ones. Whereas a Chebyshev window has the narrowest possible
main lobe for a specified side lobe level, a Taylor window allows to make trade off
between the main lobe width and the side lobe level. The Taylor distribution avoids
edge discontinuities, so Taylor window side lobes decrease monotonically. The leakage
factor is null, setting the side lobes attenuation to 50 dB (Tab. 2.5). Fig. 2.11 shows the
evolution of Taylor windows in the time and frequency domains with a different side
lobes attenuation: Figs. 2.11a shows how bigger smooth of the lateral ends (left,right)
of signal may involve a bigger attenuation of the lateral side lobes (Fig.2.11b). Setting
a 50 dB of attenuation (Fig.2.11c) the leakage factor is 0.01 % (very low deformation of
the original signal spectrum).

Fig. 2.12 shows spectrograms with an increasing number of samples, from 10 to 100
samples: with the increase of the window size the time resolution decreases and the
frequency one increases. Indeed, in Fig. 2.12a the useful frequency information of
the input signal is localized in a thin time interval, but there is a high frequency one
(low frequency resolution). Increasing the number of window samples (for example
100) the information is more accurate in the frequency domain (amplitude in the
(0;-20) dB interval is within 80 Hz), but has a worst definition in the time domain.
Considerations regarding the windows size have been carried out in order to detect
the train parameters in a wide range of its mass and speed: in particular, with the

increase of the vehicle speed the crossing train axles are thinner and so it’s important to
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use windows with an higher resolution in the time domain. Furthermore, the spectral
properties of the signal (Fig. 2.10) suggests that is useful to use spectrogram with an
high time resolution, rather than a frequency one. To this aim, the size of windows
have been scaled depending by the simulated input: for a speed range of (2-80) ms™!
the windows size has been reduced with the increase of the vehicle speed to obtain a

bigger time resolution (Fig. 2.13, Tab. 2.4).
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Figure 2.12: Spectrogram applied on the input signal with a different value of window
width
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Figure 2.13: Increase of the window time resolution with the increasing of the vehicle
speed

Table 2.4: Setting of the Taylor windows size in the full speed range
Speed [ms™'] Window Size

[samples]
2 120
10 83
20 43
30 30
40 23
50 20
60 17
70 15
80 13

Concerning the overlap among windows, two plots of spectrogram have been done
with or without the overlap, in order to highlight its effect on the spectrogram analysis.

It's possible to notice the difference in Fig. 2.14 due to the overlap: the presence
of overlap gets a detailed analysis. These considerations bring out the idea that
using the spectrogram is possible to identify the train axles, involving train detection
applications. Moreover, when the window scans the signal, if it superimposes a train
axle, the power spectral density assumes a relevant value that, if it is over a threshold,
makes possible the axle detection(Fig. 2.15, 2.16). (Fig. 2.15, 2.16).
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Figure 2.14: Evaluation of the overlapping among windows: the presence of the
overlap involves the train axles detection with bigger accuracy

Fig. 2.17 shows the operation of the algorithm as train axles detection, summarized in
the following steps:

* Noise is added to the input signal (when experimental data are not available, see
Fig. 1.1);
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Figure 2.15: Train axles detection: the maximum PSD (power spectral density)value of

each spectrogram window is computed and plotted
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Figure 2.16: Train axles detection: applying the cut-off threshold is possible to detect

the four train crossing axles

Table 2.5: Configuration of the spectrogram aimed at the train axles detection
Window Side Lobes Attenuation (dB) Number Overlap [%] Cut-Off Threshold (dB)
Taylor -50 40 40 -24

* Normalization of the input signal;

Calculation of the maximum value of PSD corresponding to the spectrogram

windows during the signal scanning;

Plot of the maximum PSD values for each segment;

Smooth operation of the signal;

A cut off threshold (-24 dB) is applied to localize the train axles.

The configuration of the spectrogram used to compute the number of crossing axles
is indicated in Tab. 2.5. The spectrogram has been also used to estimate the crossing

times instants and the vehicle speed thanks to the central time of windows used to
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Figure 2.17: Operation of the algorithm as train detector: starting from the simulated
force signal, provided by the validation model described in Fig. 1.1, a noise level is
added and then the plot of each maximum PSD is used. In this way is possible to

separate the useful peaks from the noise ones

decompose the signal. Once the window corresponding with the axle is found, the

corresponding central time is an approximation of the time crossing instants (see Fig.
2.18).

To provide an accurate estimation a Bartlett window has been used, which main
properties are its leakage factor of 20 % and side lobes attenuation of 20 dB (see Fig.
2.19). The configuration of the spectrogram aimed at estimating the crossing times
referred to the train axles is indicated in Tab. 2.6.

The procedure to estimate the axles crossing instants and, as a consequence, the vehicle
speed is summarized in the following steps:

* application of the spectrogram (which configuration is indicated in Tab. 2.6);



2.2 Frequency domain approach (FDA) 35

Table 2.6: Configuration of the spectrogram for the time crossing instants and vehicle

speed detection

Window Number Overlap
Bartlett 60 90 %

|
}
%

o
)
T
1

Force Signal [N]
T
I

15+ | = | —
N Lo
‘ | | I “ \‘ |
|l I
21 *‘ I/ \ -
. Vo
X:1.56
Y:-2.204e+04
25 L .
0 05 1 15 2 25 3 35 4 45 5
Time [s]

(a) Input Force Signal: the first train axle occurs at 1.56 s

g e o
=) ~ 0
T T T

o
o
T

Spectrogram Windows
2
T

[=]
w
T

<
[N}
T

°
e

/ Y

1.54 1.56 158

o

|
é

(b) Windows of spectrogram applied to the force signal

1.66 1.68

Time [s]

Figure 2.18: Application of the spectrogram as estimator of the time crossing instants
along the rail in correspondence of the train passage: (b) the central time of the eighth

window is the best match of the crossing time corresponding to the first train axle
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___Timo domain ) ) N Frequency domain__

Figure 2.19: Bartlett windows properties in the time domain (left) and in the frequency

one (right)

* identification of the windows corresponding to the train axles and reading of the

time instants in the centre of each window;

e starting from the knowledge of the measurement layout, for each train axle the
g g y

time shifts between pairs of measurement sleepers are done;

* the vehicle speed is computed for each pairs, just dividing the physical distance
between pairs of measurement sleepers with the corresponding detected time
shifts.

Fig. 2.20 shows the operation of the algorithm in the computing of the time shift
among sleepers in a reference scenario of three ones. For each sleepers, four time
crossing instants are computed with spectrogram, corresponding to the train axles.
The frequency approach allows to identify crossing times of each train axle and so the
computing number of the vehicle speed is multiplied with the number of train axle.
The speed detection for three measurement sleepers can be obtained as:

Naxl dasS ds ds
>y (dTi2211 (dT§322 ( ITirs ) (2.5)

V:

NazlesNsleepers
where dT'i;;, indicates the time shift between the j and k sleepers of the i axle, dSj;
indicates the physical distance between the j and £ sleepers.
The same approach is used for layout with different number of sensing elements.
Tab. 2.7 compares the number of computing of the vehicle speed done with the TDA
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and FDA approaches with a measurement chain equipped of a different number of
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Figure 2.20: Speed computing: for each train axle i the vehicle speed is obtained
dividing the physical distance (dS;;) between two sleepers with their time shift d7% .
At the end the mean among all the obtained vehicle speed estimation is carried out

Table 2.7: Number of speed computing

Number of sleepers ~ Time Domain  Frequency Domain
Approach (TDA)  Approach (FDA)

2 1 4

3 3 12
4 6 24
5 9 36




Chapter 3
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Chapter Contents
3.1 Time Domain Approach(TDA) . ..................... 41
3.1.1 Analysis of the TDA algorithm performance . ... ... .. .. 46
3.2 Frequency Domain Approach (FDA) . .................. 62
3.2.1 Analysis of the FDA algorithm performance . ... .. ... .. 73
3.3 Comparison between the TDA/FDA approaches . ........... 93
3.3.1 Performance in the train parameters estimations . . . . . . . .. 93
33.2 Computational Times . .. ... ... ... ... ......... 99

The operation of the two estimation approaches (Time Domain Approach TDA,
Frequency Domain Approach FDA) have been trained with a wide simulation
campaign, concerning several vehicle parameters (mass and speed, see Tab. 3.1) and
measurement chain ones (number of sensing elements and spacing among them, see
Tab. 3.2). In particular, the simulated input signals come from force sensors placed
over measurement sleepers at the right an left sides: the resulting force signal is the
mean between the right and left detected forces in order to reject possible lateral
disturbances. The measurement layout is composed by measurement sleepers spaced
among themselves of 0.6 m (Fig. 3.1). Two different levels of white noise (SNR: 4dB
or 8 dB, see Fig. 3.2) have been added on the simulated input signal to check the

38
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robustness of the estimation approaches under operating conditions worse than those

of a real scenario.

Table 3.1: Simulation Parameters

Parameter Min. Max. Ny /Ny
Velocity (ms™) 2 80 9
Car-body Mass (t) 10 50 5

MEASUREMENT LAYOUT: 6 force sensors, spaced of 0.6 m

I-_"‘_-\
0.6m
FORCE
SENSORS

Figure 3.1: Measurement layout equipped of force sensor elements placed over

measurement sleepers, spaced of 0.6 m

Input Signal with SNR: 4dB

Input Signal with SNR: 8dB

Normalized Amplitude
, Normalized Amplitude

"o 5 10 15 20 25 "o 5 10 15 20 25

Time[s] Time[s]
(a) Input Signal with a snr: 4 dB (b) Input Signal with a snr: 8 dB

Figure 3.2: Noise levels added to the input signal (see also Tab. 3.1) used to test the

algorithm performance in the simulation campaign
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Several measurement layouts have been proposed for both testing the robustness of the
approaches against different measurement chains and to highlight the improvement
of the estimation accuracy with the increasing of the sensing elements number. Each
measurement layout differs from the other ones for the number of sensing elements or

distance among themselves (see Tab. 3.2).

Table 3.2: Measurement layouts used to test the performance of the estimation
approaches, composed by a different number of sensing elements and spacing among
them

Ne¢ Sleepers Spacing Occupied space [m] Sleeper ID Layout ID

2 0 0.6 [64 65] Layout 1
2 1 1.2 [64 66] Layout 2
2 2 1.8 [64 67] Layout 3
2 3 24 [63 67] Layout 4
3 0 1.2 [64 65 66] Layout 5
3 1 2.4 [64 66 68] Layout 6
3 2 3.6 [62 65 68] Layout 7
3 3 4.8 [60 64 68] Layout 8
4 0 1.8 [53 64 65 66] Layout 9
4 1 3.6 [6062 64 66] Layout 10
4 2 5.4 [58 6164 67] Layout 11
4 3 7.2 [56 60 64 68] Layout 12
5 0 24 [63 64 65 66 67] Layout 13
5 1 4.8 [60 62 64 66 68] Layout 14
5 2 5.4 [58 61 64 67 70] Layout 15
5 3 9.6 [56 60 64 68 72] Layout 16
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The two basilar tasks are the crossing times detection (to compute the vehicle speed)
and the trains one: to the first aim, a Monte Carlo analysis has been carried out through
several algorithm iterations (see Tab. 3.3), in which, for each one, a white noise is added
on the input signal. When the goal is the train detection, the aim is to verify that no
estimation errors are involved with a quite big number of crossing axles (in order to be

more confident with a realistic scenario).

Table 3.3: Monte Carlo Analysis to evaluate the algorithms performance in estimating

of the train parameters

Estimated Amplitude Monte Carlo Approach

Crossing Times (Speed Detection)  [1:2:50 60 70 80 90 100]

3.1 Time Domain Approach (TDA)

The performance analysis involves the definition of several errors: the crossing times
and vehicle speed estimations led to the definition of the percentage relative speed
error E5" [%] and Ti one E5™ [%].
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where V and t¢7, represents the nominal values of the speed and crossing times
respectively, and Veim 15" indicate the estimated ones. Errors computed with the
Monte Carlo analysis become:

Niter Esim Niter Etszm
) T,

Eiimiter — Z E;_:imiter _ Z M (3.2)

Niter Niter

n=1 n=1

where ESimiter, E;im”” and n., are respectively the errors on the speed and crossing
times estimations and the number of algorithm iterations.

E.g the Layout 1 is considered which involves two measurement sleepers spaced of 0.6
m: at first an SNR of 8 dB is considered. Results have led out several considerations: in
particular Figs.3.3-3.4 highlight the performance in estimating the vehicle speed (that
are strictly dependent from those on the time crossing estimation) in the operating
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conditions described in Tab. 3.1. Fig. 3.3a is a 3D plot of E5™iter[%] trend with the
Monte Carlo approach: errors corresponding to a vehicle speed of 70 ms™ (yellow
bars) are quite higher than the other ones, because there is an added error due to the
accuracy of the signal sampling time in agree with the considerations developed in
Fig. 2.9. Other considerations concern the dependence of estimation accuracy by the
vehicle mass: indeed, results have been analysed separately for each speed in Fig.
3.3(b-f) and Fig. 3.4(a-d) to highlight the little different among the trends of E5™iter[%]
depending only by the vehicle mass: this is clear because the value of vehicle mass
involves a different auto/cross correlation peaks height, that is normalized during
the post-processing approach (see Fig. 2.4) and so a little difference among errors
depending only by the vehicle mass is expected. These considerations have involved
the computing of additional parameters E,,,7" and E,,;" (Fig. 3.5), defined as:

Nmass E sim Nmass E sim
E sim __ M, E sim My, 3.3
mT’Lk - myk - ( . )
M=1 nmaSS M=1 nmass

where Ey5" and E)5™ are the relative crossing times and speed errors corresponding
to a vehicle mass M € (10 — 50)t and speed k € (2 — 80)ms™ .

As a consequence, for each Monte Carlo iteration, errors become:

Niter E Sim Niter E sim
Emj/ver = e gy =) (3.4)
(2% Vi )
n=1 Niter n—1 Niter
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Figure 3.3: Layoutl: Es™iter[%] convergence with the Monte Carlo Analysis in all the
operating conditions concerning vehicle mass and speed. Focus on error trends for all

vehicle mass and a single value of speed (b-f)
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trends for each speed

Fig. 3.5 shows Emif;:“” and Emj™ errors. In according with considerations in
Fig. 2.4, the accuracy on the speed detection is strictly related to that on the crossing
times: indeed, comparing the trend of both errors, their Monte Carlo trends are
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quite specular. Same considerations and similar results have been obtained with the
other measurement layouts, in which the convergence of the Monte Carlo analysis
has been reached, verifying the good operation of the algorithm with a different
number of sensing elements and spacing among them. Results have been plotted in
the AppendixA, to not overload the reading.

3.1.1 Analysis of the TDA algorithm performance

The Monte Carlo analysis underlines how in all the conditions concerning the vehicle
(speed and mass) and measurement layouts (number and spacing among sensing
elements) the convergence is reached: this is important in order to establish the
good operation of the proposed approach. With the aim at evaluating the algorithm
performance a results reportage has been here carried out in correspondence of the
reached Monte Carlo convergence: estimation errors on the vehicle speed E,,>" [%)]
and E);,*"""[%)] are shown in all the operating conditions indicated in Tab. 3.1. Errors
on the vehicle speed are strictly linked with those on the crossing times (see Eq. 2.3 and
Fig. 2.4). The performance in estimating the vehicle speed are indicated, for both the
signal-to-noise ratio of 4 dB and 8 dB. Results are both on the vehicle speed and on the

approach abilities to carry out train detection functionalities.

3.1.1.1 Speed detection

Following the estimation errors on the vehicle speed are shown, when the Monte Carlo

convergence is reached. Tab. 3.4 summarizes the E,,>"" [%].

To best understand the effect of the measurement layout on the estimation accuracy,
Fig. 3.6 plots the trend of E,,*""[%], highlighting an errors amplitude decreasing
with an increasing number of sensing elements and spacing among them. More
focused, two measurement sleepers involve estimation errors on speed below the 1%
if are spaced of 2.4 m, but the best performance is obtained with five measurement
sleepers that allow to obtain estimation errors below the 0.4% if are spaced of 2.4m.

Figs. 3.7-3.9 show the trend of E,,5""[%] computed among the masses for each
layout and the E);,*""*"*[%] values for each speed. All measurement layout involves
errors below the 1% for each speed except the one of 70 ms™ that is affected by the
intrinsic error due to the accuracy of the sampling time (see Fig. 2.9). Tab.3.5 shows

the maximum values of the Ej;,*™ (%) computed for each vehicle speed, with the
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indication of vehicle mass corresponding with the maximum error value.

Table 3.4: Convergence E,,,*"™"[%)] reached with 40 iterations (SNR: 8dB)

Layout Speed [ms™]
2 10 20 30 40 50 60 70 80
1 026 042 087 1.2 0.4 012 -0.16 4.69 0.94
2 002 025 035 078 0.01 0.18 -0.04 1.22 0.02
3 0.14 020 029 039 0.17 0.03 0.02 1.62 0.39
4 0.08 015 024 041 0.03 004 0.05 0.69 0.09
5 022 034 076 1.09 0.15 -0.12 0 238 02
6 011 019 039 044 -0.1 -0.08 -0.03 095 -0.11
7 0.05 0.09 023 034 -0.1 -0.08 -0.03 1.00 -0.1
8 0.05 0.12 0.15 029 0.04 0.04 0 056 0.02
9 0.18 028 048 094 -0.11 -0.02 -024 234 0.14
10 0.08 0.17 041 048 -0.05 004 0.02 0.84 0.09
11 0.05 0.12 0.20 0.23 0 -0.03 -0.01 0.85 -0.01
12 0.04 0.06 0.14 0.26 0 0.03 0.03 0.50 0.01
13 0.15 020 0.62 0.67 0.08 013 0.08 2.00 0.3
14 0.1 015 030 0.38 -0.03 000 0.00 070 O
15 0.05 0.05 020 0.30 0.02 0.00 0 072 0.15
16 0.04 0.0/ 0.12 020 0.03 0.01 0 036 O
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Figure 3.8: E,,5" (%] trend and E,;,*""[%] values for Layout 7-12: the maximum

errors occurs when the vehicle speed is equal to 70 ms™!

, whose amplitudes are

affected also by errors due to the not sufficient accuracy of the sampling time
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Table 3.5: Maximum E,;,*"" (%) values computed in the full speed range, with an

input SNR of 8 dB
Layout Speed [ms™]
2 10 20 30 40 50 60 70 80
1 0.51 0.60 1.1 2.73 0.72 0.44 -0.44 5.69 1.92
M=20t M=30t M=50t M=30t M=30t M=20t M=20t M=30t M=40t
2 0.07 0.31 0.54 1.07 0.26 0.35 0.26 1.83 0.37
M=40t M=30t M=40t M=10t M=20t M=40t M=40t M=40t M=50t
3 0.18 0.23 0.39 0.54 0.28 0.28 0.25 1.83 0.65
M=50t M=50t M=30t M=30t M=50t M=40t M=20t M=10t M=40t
4 0.13 0.24 0.37 0.56 0.17 0.11 0.13 0.93 0.17
M=40t M=20t M=10t M=10t M=30t M=40t M=20t M=40t M=30t
5 0.32 0.52 0.89 1.35 0.49 0.13 0.06 3.5 0.39
M=40t M=20t M=10t M=50t M=30t M=10t M=20t M=30t M=20t
6 0.17 0.27 0.49 0.73 -0.29 -0.3 -0.17 1.42 -0.3
M=10t M=40t M=30t M=30t M=10t M=40t M=20t M=20t M=10t
7 0.08 0.16 0.29 0.49 0.13 0.14 0.07 1.28 0.62
M=30t M=30t M=20t M=30t M=10t M=40t M=10t M=30t M=10t
8 0.09 0.19 0.26 0.39 0.10 0.13 0.05 0.69 0.08
M=40t M=50t M=10t M=50t M=30t M=20t M=30t M=50t M=30t
9 0.25 0.40 0.82 1.27 -0.21 0.23 0.65 2.88 0.53
M=20t M=20t M=40t M=30t M=50t M=20t M=20t M=50t M=40t
10 0.08 0.17 0.41 0.48 -0.05 0.04 0.02 0.84 0.09
M=40t M=20t M=10t M=50t M=30t M=50t M=10t M=30t M=10t
11 0.09 0.17 0.33 0.41 -0.06 -0.07 -0.17 1.08 0.17
M=50t M=20t M=10t M=40t M=30t M=20t M=40t M=30t M=20t
12 0.07 0.12 0.23 0.3 -0.05 0.12 0.05 0.72 0.08
M=50t M=10t M=10t M=20t M=40t M=40t M=30t M=20t M=30t
13 0.26 0.30 0.90 0.96 0.20 0.22 0.20 2.47 0.79
M=10t M=20t M=20t M=20t M=50t M=30t M=40t M=30t M=40t
14 0.16 0.28 0.31 0.46 -0.11 0.12 0.08 0.97 0.07
M=20t M=40t M=30t M=50t M=20t M=50t M=30t M=50t M=30t
15 0.08 0.08 0.22 0.35 0.16 0.07 0.02 0.88 0.31
M=10t M=30t M=20t M=10t M=40t M=40t M=20t M=50t M=40t
16 0.06 0.08 0.13 0.26 0.07 0.03 0.05 0.47 0.04
M=40t M=10t M=50t M=30t M=20t M=50t M=50t M=40t M=30t




3.1 Time Domain Approach (TDA) 53

Table 3.6: Convergence of the E,,*" %] reached with 40 iterations (SNR: 4dB)

Layout Speed
2 10 20 30 40 50 60 70 80
1 043 240 584 1270 230 580 730 27.00 6.50
2 027 189 344 370 223 200 108 1146 214
3 027 140 188 3.00 083 065 230 680 091
4 013 057 155 250 -040 036 031 476 150
5 039 290 440 655 200 106 323 1576 1.20
6 022 130 260 265 040 -033 189 837 0.60
7 012 120 130 214 08 080 050 540 1.50
8 003 028 070 150 040 027 060 327 034
9 034 190 334 630 100 169 -040 13.84 277
10 017 098 182 300 120 035 070 712 120
11 0.06 077 1.00 138 028 -0.095 -0.84 439 0.90
12 0.06 060 093 1.00 025 -006 030 274 0.02
13 023 030 056 078 032 043 037 210 038
14 012 016 034 029 012 025 -003 089 0.05
15 0.08 0.08 019 032 008 009 005 068 0.02
16 0.08 0.07 012 016 005 0.027 0.13 043 -0.01

Results are shown also for a SNR of 4 dB to highlight the performance of the approach
in very badly conditions. Tab. 3.6 summarizes the results obtained in these operating
conditions and highlights how a number of measurement sleepers bigger than three

(Layout10-Layout16) may involve estimation errors comparable to those obtained with
a lower noise level on the input signal.

In order to best focus the effect of the measurement layout, in terms of the number of
sensing elements and spacing among them, Fig. 3.10 shows the trend of E,, """ (%)
studying its shape with the increasing of space among the sensing elements for layout
of measurement sleepers equipped of two (Fig. 3.10)a, three (Fig. 3.10b) four (Fig.
3.10c) and five (Fig. 3.10d) measurement sleepers. In particular, although the lower
SNR, with five measurement sleepers spaced of almost 1.2 m the E,,*"" (%) are
below the 0.5 %.
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Figure 3.10: E,,*" (%) trend with different measurement chains: errors are

decreasing with the increasing of the number of sensing elements and the spacing

among them (from 0.6 m to a maximum one of 2.4 m)

Following, each values of errors corresponding to the full range of speed and also

mass is considered, in order to find for each speed, the maximum estimation error

EMU StMconwv (%) .
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Figure 3.12: E,,*"m (%] trend and E,;,*""[%] values for Layout 7-12: with a SNR
of 4 dB errors are big but with the increasing of the number of sensing elements and

spacing among them the errors seem to be smaller
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Figure 3.13: E,,5m (%] trend and E,;, "™ [%] values for Layout 13-16: estimation

errors are lower thanks to the increasing of the number and spacing among the sensing

elements

3.1.1.2 Train detection

The performance of algorithm as vehicle detector is examined in each operating

conditions concerning the vehicle and the measurement layout. Results obtained with

a SNR of 8 dB and a number of algorithm iterations of 1000 are shown.

ENpercent =

N4e
Niter

(3.5)
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where N, stands for the number of iteration in which the number of the computed
crossing axles is not equal to four (number of the Manchester wagon axles) and Ny,
is the number of algorithm iterations (equal to 1000). Figs. 3.14-3.16 show results on
EN percent Obtained in the full speed and mass ranges, with a SNR of 8 dB and each
measurement layouts, highlighting the good operation of the approach in estimating

the number of crossing axles within a speed value of 60 ms™.
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Figure 3.14: Estimation errors Eye,c.,; With Layout 1-6: errors are different from zero
1

for vehicle speed bigger than 60 ms™
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Figure 3.15: Estimation errors E ..t With Layout 7-12: errors are different from zero
1

for vehicle speed bigger than 60 ms™
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Figure 3.16: Estimation errors Ey e ..,y With Layout 13-16: errors are different from

zero for vehicle speed bigger than 60 ms™*
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3.2 Frequency Domain Approach (FDA)

Results on the simulation campaign obtained with the frequency domain algorithm
(FDA) are shown, corresponding to different operating conditions concerning the
vehicle (see Tab. 3.1) and measurement layouts (see Tab. 3.2). The percentage
estimation errors on the vehicle speed and crossing time instants are those indicated
in Eq.3.1 and Eq. 3.2 with the difference that the FDA approach allows to detect the
time crossing instants of each train axle: to underline this performance, a new error
is defined as the maximum crossing time instants one among the ones computed for

each train axle:

StMiter _ StMiter
ETimaa: o 12}12/;(4(EaxTi ) (3'6)
where ax is the index of the train axle and EaxSTi_m”” is the crossing time errors on a

measurement sleeper referred to the ax-th train axle.

Fig. 3.17 shows a test case in which the trends of Em%m“” are shown: the data have
been fit with a spline in order to highlight the trend of errors computed for each
crossing axles on the first measurement sleepers (same consideration can be involved
for the second one). The maximum errors are those concerning the passage of the first

axle and so, in according with Eq. 3.6, these errors are considered. At first the errors

ErrTi[%] on Sleeper1-Layout1-Average Mass-Full Speed
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Figure 3.17: EaxSTi_m“” trends: the first axle involves the highest estimation error
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trends as a function of the Monte Carlo analysis are shown and later the performance

of the algorithm are summarized when the convergence is reached.

E.g the Layoutl is considered, which involves two measurement sleepers spaced of 0.6
m. Figs. 3.18-3.20 show the trend of E;f:;‘a;r on the second sleeper (which involves
the bigger errors) in the full speed range (2-80 ms™') and mass one (10-50) t, as a
function of the Monte Carlo analysis. Results suggest some considerations on the test
case displayed in Fig. 3.18a: it seems that at low vehicle speed as 2 ms™!, the algorithm
reaches the Monte Carlo convergence just after two algorithm iterations and the errors
values are less independent from the vehicle mass than the other test cases, in which
there is an overlapping among errors corresponding to different vehicle mass, for each
speed (Fig. 3.18b-3.20). To this reason and in order to best localize the number of Monte
Carlo iterations involving the convergence, the mean among the errors computed for
each mass value is done and displayed in Fig. 3.21.

Error is defined as:

Nmass E StMiter

Em:;i.miter — E MTimaz (3.7)
imax

n
M=1 mass

where M is the index of the train mass (10-50 t), 7,,4ss iS the number of simulation

parameters about it (5) and EMST“Z:IT is the Efﬁ:air computed with the M train mass.
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Figure 3.21: Layoutl: Monte Carlo analysis on the E'my™"": results show as after 49

iterations the convergence is reached

Fig. 3.21 shows the trend of Em?’zgr on the second measurement sleeper (that
involves the maximum errors) as a function of the number of algorithm iterations in
the Monte Carlo analysis: it underlines how the convergence is reached at about 49
iterations with an exception for the vehicle speed of 2 ms™! in which the errors value
has an incredible constant trend just after two algorithm iterations. Considerations and
evaluations are also carried out for the speed detection, focusing the attention on the

dependence of errors by the vehicle mass and on the convergence of the Monte Carlo

StMiter
v

analysis. More focused, Ey (see Eq. 3.3) and Emjim“”(see Eq. 3.4) are shown,
highlighting the not considerable dependence by the vehicle mass (Figs. 3.22-3.23) and
the good operation of the approach since the convergence of the Monte Carlo analysis

is reached(Fig. 3.24).
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Figure 3.24: Layoutl: Monte Carlo convergence of Em"" " reached at about 49
iterations

Fig. 3.24 shows the trend of Emjim“” as a function of the algorithm iterations,
highlighting a convergence reached at 49 iterations.

Results have been reported with the other measurement layouts to focus the trend
of the estimation errors as a function of the number and spacing among the sensing
elements. Layout 2 is considered because it involves accurate estimations (but same
good performance have been obtained with the others measurement layouts, see

AppendixB) with an occupied space of 1.2 m .
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iterations the convergence is reached
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Summering the results, its’ clear how the estimation errors on the crossing times
are below the 0.5% in the full speed range and the Monte Carlo convergence at low
speed as 2 ms™! is reached immediately. As regards the vehicle speed estimation, the
increasing of the number of sensing elements involves a better estimation accuracy due
to the bigger number of time shifts used to estimate the speed amplitude (see Tab. 2.7,
Fig. 2.20).

3.2.1 Analysis of the FDA algorithm performance

The Monte Carlo analysis underlines how in all the conditions concerning the vehicle
(speed and mass) and measurement layouts (number and spacing among sensing
elements) the convergence is reached: this is important in order to establish the good
operation of the proposed approaches. With the aim at evaluating the algorithm
performance, a results reportage has been here carried out in correspondence of
the reached Monte Carlo convergence: the evaluated estimation errors are on the
crossing times (EM%’ZZ"“ and Em%”;i””) and on the vehicle speed (Emffmc"”“ and
By, 5™m). The performance of the FDA approach in estimating the vehicle speed
and crossing times have been evaluated also in the full mass range when the Monte
Carlo convergence is reached. Results are shown with a SNR from 4 dB to 8 dB to

check the approach robustness against a very big noise amplitude on the input signal.

3.2.1.1 Detection of the train axles crossing times on measurement sleepers

The operation of the FDA approach aimed at estimating the train axles crossing time
is independent by the number and spacing among the sensing elements, indeed the
Em%mui"“ computed in each measurement layout are quite similar, see Fig. 3.29(a-d).
To summarize the performance of the approach and test the robustness against the
noise affecting the measure, a comparison between EmsT“Za‘;” values obtained with a
SNR of 4 dB, see Fig. 3.29(e) or a SNR of 8 dB on the input signal is carried out, see Fig.
3.29(f). The comparison between Fig. 3.29e and Fig. 3.29f highlights the robustness of
the approach against an high amplitude of noise on the input signal, since estimation
errors are not worse with a bigger noise level. Results involve considerations about the

STMeco

dependence between the E M values and the vehicle mass, that is relevant only at

low speed as 2ms™.
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Table 3.7: Layout 6: EmST’:”MZ"” [%] and the maximum F M%TZZ‘;”“ [%] for each vehicle speed

B O
SNR Speed:  [ms™]
[dB] 2 10 20 30 40 50 60 70 80
4 0.58 0.21 0.09 0.09 0.05 0.12 0.07 0 -0.05
8 0.57 0.25 0.08 0.08 0.07 0.13 0.01 0 -0.04
gl %]
SNR Speed:  [ms™!]
[dB] 2 10 20 30 40 50 60 70 80
4 0.85 0.28 0.12 0.13 0.11 0.17 0.12 -0.05 -0.16
M=50t M=30t M=40t M=30t M=30t M=20t M=30t M=50t M=40t
8 0.84 0.31 0.10 0.12 0.10 0.20 -0.03 -0.04 -0.05
M=50t M=30t M=20t M=40t M=30t M=10t M=20t M=20t M=40t

Tab. 3.7 summarizes the values of Em%”;aznv and the maximum values of EM%Z;”U
computed for each vehicle speed, obtained with a SNR from 4dB to 8 dB: results
highlight the proximity of errors obtained with 8 dB with the other ones corresponding
to a SNR of 4 dB and this involves positive considerations on the robustness of the
approach against the white noise on the input signal. Same considerations can be done

for the other measurement layouts.

3.2.1.2 Vehicle Speed detection

Tab. 3.8 summarizes results about the E,,5™[%] trend as a function of the
measurement layout (number and spacing among sensing elements): errors are bigger
when the measurement layouts are equipped of sensing elements spaced of 0.6 m and
are lower with the increasing of the number of sensing elements and spacing among

themselves.
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Table 3.8: E,,5"""[%] (SNR: 8dB)

Layout Speed: [ms™]

2 10 20 30 40 50 60 70 80
1 055 045 0.1 2 077 22 131 112 194
2 0.09 0.13 019 -015 013 0.69 072 023 0.11
3 0.0 -0.1 004 028 002 0.08 013 0.08 0.28
4 0.05 0.0 0.02 031 007 018 0 017 0.35
5 041 034 044 008 066 057 1 049 096
6 007 014 002 018 -0.06 0.09 016 019 03
7 005 -0.09 004 006 0.08 0.09 019 0.02 0.16
8 002 002 -001 014 002 0 0.07 0.02 -0.04
9 0.3 022 045 048 057 0.81 0.82 0.88 0.78
10 0 0.06  0.11 0.02 01 019 006 016 0.17
11 002 001 003 008 008 0.08 013 0.06 0.12
12 002 0.02 003 0.09 0 008 0.04 0.04 0
13 0.2 025 024 038 037 037 086 05 074
14 0 006 006 015 012 019 013 0.01 0.12
15 003 004 006 008 0.03 0.08 0.03 007 0.08
16 0.02 -0.02 0.02 0 0.01 0.03 0.05 -0.02 0.03

In order to focus the effect of the measurement layouts on the estimation accuracy, in
adding to the Tab. 3.8, the trend of Emffmc‘”“’, as a function of the number and spacing

among the sensing elements, is carried out in Fig. 3.30.

Fig. 3.30 shows the trend of E,,*"""*[%] that is lower with the increasing of the number
of sensing elements and with a bigger spacing among themselves. Two measurement
sleepers involve estimation errors below the 0.5% if the spacing between themselves
is bigger than 1.2 m, three measurement sleepers allow to obtain similar results with a
spacing bigger than 0.6 m. Layouts with four measurement sleepers allow to obtain
estimation errors below the 0.2% with a spacing bigger than 0.6 m and the most
performing layouts with 5 measurement sleepers involve estimation errors below the
0.1% with a spacing bigger than 1.2 m. The approach have the worst performance if

the spacing among the measurement sleepers is of 0.6 m.
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With the aim at evaluating the global performance of the estimation algorithm in
the full speed and mass range, Figs. 3.31-3.33 show the trend of E,,*"" (%) with
overlapped the values of Ey,* " (%) for each vehicle speed, in order to localize the

maximum errors.
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Table 3.9: Maximum Ej;, """ (%) values computed in the full speed range, with an

input SNR of 8 dB
Layout Speed [ms™!]
2 10 20 30 40 50 60 70 80
1 0.95 0.70 0.84 3.60 2.37 2.98 2.64 2 251
M=40t M=20t M=40t M=30t M=40t M=50t M=30t M=30t M=40t
2 0.27 0.39 0.58 -0.77 0.56 1.28 1.11 0.6 -0.78
M=30t M=30t M=30t M=20t M=40t M=30t M=10t M=50t M=30t
3 -0.27 -0.24 0.19 041 0.20 0.26 0.33 0.36 0.64
M=10t M=50t M=20t M=30t M=10t M=10t M=50t M=50t M=50t
4 0.12 -0.26 0.35 0.47 0.21 0.34 -0.46 0.48 0.64
M=40t M=40t M=20t M=10t M=20t M=40t M=10t M=40t M=10t
5 0.57 0.72 0.73 0.48 0.8 0.99 1.67 1.1 1.34
M=50t M=10t M=40t M=50t M=50t M=30t M=20t M=20t M=40t
6 0.15 0.22 0.13 0.29 -0.3 0.16 0.55 0.49 0.39
M=10t M=40t M=30t M=30t M=10t M=40t M=20t M=20t M=10t
7 0.09 -0.21 0.17 0.15 0.28 0.11 0.40 0.19 0.28
M=30t M=40t M=20t M=40t M=40t M=10t M=30t M=20t M=10t
8 0.06 0.08 -0.1 0.32 0.14 0.17 0.22 -0.27 -0.17
M=30t M=30t M=50t M=30t M=40t M=40t M=30t M=50t M=10t
9 0.48 0.27 0.60 0.82 0.71 1.13 1.68 1.45 1.45
M=20t M=20t M=40t M=20t M=10t M=30t M=40t M=20t M=40t
10 0.07 0.1 0.22 -0.13 0.24 0.43 0.33 0.21 0.30
M=20t M=50t M=20t M=40t M=50t M=20t M=30t M=10t M=40t
11 0.04 0.04 0.11 0.25 0.19 0.17 0.23 0.13 0.23
M=10t M=40t M=20t M=50t M=10t M=50t M=20t M=20t M=20t
12 0.04 0.07 0.13 0.12 0.11 0.17 0.11 0.16 0.1
M=20t M=30t M=50t M=30t M=30t M=40t M=40t M=10t M=30t
13 0.30 0.39 0.35 0.58 0.57 0.59 1.15 0.69 1.16
M=20t M=50t M=10t M=20t M=30t M=20t M=20t M=10t M=40t
14 0.03 0.13 0.12 0.18 0.18 0.26 0.26 -0.10 0.27
M=30t M=40t M=40t M=30t M=30t M=10t M=30t M=20t M=30t
15 0.06 0.08 0.08 0.18 0.05 0.13 0.10 0.19 0.13
M=30t M=30t M=20t M=30t M=40t M=10t M=10t M=20t M=20t
16 0.04 -0.06 0.08 -0.05 0.06 0.1 0.15 -0.06 0.09
M=40t M=50t M=30t M=10t M=30t M=10t M=50t M=20t M=20t
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In order to check the robustness, results are indicated with a SNR of 4 dB (worst
performance of the measurement and acquisition chain). Tab. 3.10 indicates the values
of E,,5™m[%] corresponding to the reached convergence of the Monte Carlo analysis

(49 iterations).

Table 3.10: E,,,*" ™" [%] (SNR: 4dB)

Layout Speed: [ms™!]

2 10 20 30 40 50 60 70 80
1 028 045 0.74 1.2 206 234 237 267 390
2 0.16 0.03 0.12 0.04 025 050 0.67 064 09
3 0.06 0.05 0.08 006 035 038 022 042 0.56
4 0 0.07  0.15 022 021 024 018 0.11 0.32
5 024 036 0.60 0.83 1.2 144 169 148 3
6 0.06 0.04 0.17 018 012 033 054 041 0.65
7 0.06 0.03 0.08 0.09 010 0.12 0.18 0.1 0.32
8 0.02 -0.02 0.05 0.00 006 011 013 0.1 0.082
9 048 103 1.14 148 175 242 3.06 3.01 4.29

10 004 0.1 0.18 009 032 021 028 044 044
11 0.06 0.03 0.06 0.15 0.06 006 0.14 0.13 0.22
12 0.01 0.02 0.07 0.06 0.06 0.07 0.13 0.08 0.06
13 02 035 031 068 083 080 132 134 0.76
14 0.02 0.04 0.08 0.11 0.07 031 029 019 0.33
15 0.03 0.04 0.06 0.08 003 011 0.17 011 0.17
16 0 001 0.03 0 0.07 007 01 0.01 0.05

Tab. 3.10 and Fig. 3.34 summarize the results when the SNR is equal to 4 dB, showing
a trend and value of E,, 5" [%] quite similar with which ones obtained with a SNR
of 8 dB, as a confirm of the good robustness of the approach against the noise affecting
the measurement chain. Two measurement sleepers involve a mean estimation value
B, 5 (%] below the 1% if the sensing elements are spaced of almost 1.2 m, otherwise
with a number of sensing elements bigger than three is possible to obtain mean

estimation errors below the 0.5%.
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Figure 3.34: E,,>"" (%) trend with different measurement chains and SNR of 4dB:

errors are decreasing with the increasing of the number of sensing elements and

spacing among them (from 0.6 m to a maximum one of 2.4 m)

Following, the values of E);,*"""* (%) are overlapped to the shape of E,,*"" (%) for
each layout, to underline the variation from the mean value and detect the maximum
percentage errors for each speed, committed by the estimation algorithm when the
operating conditions are very poor (SNR of 4 dB on the input signal). Tab. 3.11
summarizes the maximum values E,;, %" (%) for each speed, indicating also the

mass value that involves the maximum error.
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Table 3.11: Maximum E,;, <" (%) values computed in the full speed range, with an

input SNR of 4 dB
Layout Speed [ms™]
2 10 20 30 40 50 60 70 80
1 0.84 0.94 1.98 3.5 3.14 3.07 4.77 3.35 5.74
M=20t M=20t M=30t M=20t M=20t M=40t M=10t M=40t M=40t
2 0.34 0.31 0.28 -0.76 0.56 0.77 0.95 1.37 1.57
M=10t M=30t M=40t M=20t M=50t M=40t M=50t M=40t M=40t
3 0.20 0.16 0.30 -0.45 0.69 0.73 0.43 0.51 1.06
M=20t M=40t M=20t M=20t M=40t M=40t M=30t M=50t M=10t
4 0.11 0.28 0.46 0.44 0.43 0.56 0.76 -0.29 0.50
M=20t M=50t M=50t M=40t M=10t M=40t M=20t M=20t M=50t
5 0.43 0.60 0.96 1.24 1.60 2.14 2.34 2.98 3.88
M=40t M=20t M=20t M=20t M=40t M=20t M=10t M=30t M=10t
6 0.23 -0.28 0.39 0.57 0.39 0.50 1.12 0.51 0.83
M=20t M=50t M=50t M=40t M=30t M=10t M=20t M=20t M=50t
7 0.12 0.12 0.17 0.33 0.30 0.24 0.26 0.46 0.56
M=30t M=30t M=40t M=40t M=40t M=10t M=10t M=50t M=40t
8 0.068 0.083 0.12 0.20 0.15 0.24 0.26 0.14 0.23
M=20t M=50t M=40t M=30t M=40t M=40t M=10t M=50t M=50t
9 0.7 1.49 1.84 1.75 2.77 2.85 4.12 4.19 6.87
M=30t M=30t M=30t M=40t M=30t M=10t M=10t M=20t M=40t
10 0.11 0.17 0.28 0.28 0.46 0.46 0.42 0.87 0.71
M=50t M=20t M=10t M=10t M=50t M=20t M=20t M=20t M=50t
11 0.07 0.07 0.24 0.30 0.16 0.26 0.31 0.24 0.33
M=40t M=30t M=20t M=50t M=20t M=30t M=20t M=30t M=50t
12 0.05 0.10 0.09 0.15 0.1 0.1 0.17 0.14 0.20
M=20t M=30t M=50t M=30t M=20t M=30t M=40t M=10t M=30t
13 0.29 0.57 0.50 0.93 1.11 1.01 1.37 1.83 2.28
M=10t M=40t M=10t M=50t M=10t M=30t M=10t M=10t M=50t
14 0.06 0.18 0.21 0.29 0.28 0.37 0.40 0.42 0.45
M=40t M=10t M=30t M=40t M=30t M=30t M=40t M=40t M=10t
15 0.03 0.07 0.13 0.16 0.13 0.15 0.26 0.17 0.20
M=20t M=30t M=40t M=40t M=30t M=40t M=50t M=20t M=30t
16 0.02 0.07 0.09 -0.05 0.14 0.13 0.12 0.09 0.12
M=30t M=40t M=30t M=10t M=20t M=50t M=40t M=30t M=40t
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3.2.1.3 Train detection

In this section the performance of algorithm in train detection functionalities
is examined, with each operating conditions concerning the vehicle and the
measurement layout. The estimation approach has led good results with a signal-to-
noise ratio both of 4 dB and 8 dB, especially if the measurement layout is composed by
almost three sensing elements, for which no estimation errors have been committed.
The plotted errors concern a comparison between the ones obtained with a SNR of 4
dB and 8 dB. Performance are shown after 1000 algorithm iterations and the plotted
errors are those defined in Eq. 3.5.

Figs. 3.38-3.41 show a comparison between estimated errors with a SNR of 4 dB or 8
dB for the Layout 1-4 (two measurement sleepers). Results with a lower noise level
involve errors only when the vehicle speed is 80 ms™ (Layout 3 and 4) or 70 ms™*
(Layout 1 and 2), instead with a SNR of 4 dB there are errors at vehicle speeds of 60
and 80 ms™'.
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Layout1 SNR:4 dB Layout1 SNR:8 dB

10 0
Mass [t] 2 Speed [m/s] Mass [t] 2 Speed [m/s]

(a) Layout 1-SNR:4 dB- Estimation errors (b) Layout 1-SNR:8 dB- Estimation errors

EN percent:errors are different from zero when the  En . ceniierrors are different from zero when the

1 1

vehicle speed is 60 m s~ vehicle speed is 70 m s~

Figure 3.38: Estimation errors Ey ..., With Layout 1 obtained with a SNR of 4 dbB (a)
and 8 dB (b)

Layout2 SNR:4 Layout2 SNR:8 dB

10 5 10
Mass [t] 2 Speed [m/s] Mass [t] Speed [m/s]

(a) Layout 2-SNR:4 dB- Estimation errors (b) Layout 2-SNR:8 dB- Estimation errors
EN percent:errors are different from zero when the  En e, ceniietrors are different from zero when the

1 1

vehicle speed is 60 ms~! and 80 m s~ vehicle speed is 70 ms™

Figure 3.39: Estimation errors Ey ,c,c.,t With Layout 2 obtained with a SNR of 4 dbB (a)
and 8 dB (b)
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Layout3 SNR:4 dB Layout3 SNR:8 dB

0 5 0
Mass [t] 2 Speed [m/s] Mass [t] Speed [m/s]

(a) Layout 3-SNR:4 dB- Estimation errors (b) Layout 3-SNR:8 dB- Estimation errors
EN percent:errors are different from zero when the  En . ceniierrors are different from zero when the
vehicle speed is 60 ms~! and 80 ms™! vehicle speed is 80 ms™!

Figure 3.40: Estimation errors Ey ...,y With Layout 3 obtained with a SNR of 4 dB (a)
and 8 dB (b)

Layout4 SNR:8 dB
Layout4 SNR:4 dB

N48/N 1000 [‘%1

N48/N 1000 [%]

10
1 Mass [t 2 Speed [m/s]
Mass [t] 2 Speed [m/s] u

(a) Layout 4-SNR:4 dB- Estimation errors (b) Layout 4-SNR:8 dB- Estimation errors
EN percent:errors are different from zero when the  En e, ceniierrors are different from zero when the

vehicle speed is 80 ms™! vehicle speed is 80 ms™!

Figure 3.41: Estimation errors Ey ..., With Layout 4 obtained with a SNR of 4 dB (a)
and 8 dB (b)

Figs. 3.42-3.43 show results highlighting the good operation of the approach as vehicle
detector in the speed range of 2-80 ms™!, with measurement layouts equipped of a

number of measurement sleepers bigger than two.
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Layout5 SNR:4 dB

N 36/N 1000 [%]

2 10
Mass [t] Speed [m/s]

(a) Estimation errors Enpercen: in the full mass
and speed range with the Layout 5 and a SNR of
4dB

Layout7 SNR:4 dB

N4e/N 1000 [U/o]

Speed [m/s]

(c) Estimation errors Enpe,cent in the full mass
and speed range with the Layout 7 and a SNR of
4dB

Layout9 SNR:4 dB

N 1o/N 1000 [%]

Speed [m/s]

(e) Estimation errors Enpepcent in the full mass
and speed range with the Layout 9 and a SNR of
4dB

Layout6 SNR:4 dB

50 10
Mass [t] 2 Speed [m/s]

(b) Estimation errors En,cycen in the full mass
and speed range with the Layout 6 and a SNR of
4dB

Layout8 SNR:4 dB

N 46/N 000 [%]

Speed [m/s]

(d) Estimation errors En pe;cent in the full mass
and speed range with the Layout 8 and a SNR of
4dB

Layout10 SNR:4 dB

N 1o/N 000 [%]

Speed [m/s]

(f) Estimation errors Enpercent in the full mass
and speed range with the Layout 10 and a SNR
of 4 dB

Figure 3.42: Estimation errors Ey pe,c., With Layout 5-10: errors are different from zero

-1

for vehicle speed bigger than 60 m s



3.2 Frequency Domain Approach (FDA)

Layout11 SNR:4 dB

N 36/N 1000 [%]

2 10
Mass [t] Speed [m/s]

(a) Estimation errors Enpercen: in the full mass
and speed range with the Layout 11 and a SNR
of 4 dB

Layout13 SNR:4 dB

Layout12 SNR:4 dB

N 16N 000 [%]

2 10
Mass [t] Speed [m/s]

(b) Estimation errors En,cycen in the full mass
and speed range with the Layout 12 and a SNR
of 4dB

Layout14 SNR:4 dB

2 10
Mass [t] Speed [m/s]

(c) Estimation errors Enpepcent in the full mass
and speed range with the Layout 13 and a SNR
of 4 dB

Layout15 SNR:4 dB

2 10
Mass [t] Speed [m/s]

(d) Estimation errors En pe;cens in the full mass
and speed range with the Layout 14 and a SNR
of 4 dB

Layout16 SNR:4 dB

Speed [m/s]

Mass [t] 2

(e) Estimation errors Enpercens in the full mass
and speed range with the Layout 15 and a SNR
of 4dB

Mass [t] 2 Speed [m/s]

(f) Estimation errors Enpepcent in the full mass
and speed range with the Layout 16 and a SNR
of 4 dB

Figure 3.43: Estimation errors Ey .., With Layout 11-16: no errors are committed
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3.3 Comparison between the TDA/FDA approaches

In this paragraph a comparison between the two estimation approaches has been

carried out under several points of view:

¢ performance in the estimation of train parameters;

¢ required computational time.

3.3.1 Performance in the train parameters estimations

One of the main purposes involves the study of the best measurement layout as
compromise between installation and maintenance cost and the estimation accuracy.
To this aim, the goal is to find the shorter layout that allows an high estimation
accuracy. Results (see Figs. 3.6 and 3.30) highlight how configurations equipped of a
bigger number of sensing elements and spacing among them provide lower estimation
errors and so, in order also to do a comparison of the two approaches, a focus on the
performance obtained with layouts 2, 3 and 6 is done, whose lengths are of 1.2, 1.8 and
2.4 m respectively.

Fig.3.44 shows the comparison between the TDA /FDA approaches in estimating of the
E,,5m[%] in the full speed range: in both cases error trends are not constant against
the speed value and FDA led lower estimation errors at low and high speeds, instead
TDA involves better estimations in the speed range of (40-60) ms™'. Fig.3.45 shows
the situation with the Layout 3 composed by still two sensing elements but spaced of
1.8 m: both approaches involve errors quite constant with the increasing of the vehicle
speed and TDA is better than FDA only in the speed range of (50-60) ms~'. Layout
6 (Fig. 3.46) shows a FDA error trend more constant with the varying of the vehicle
speed rather than that obtained with the TDA approach, which however led a little bit
lower estimation error in the speed range of (40-60) ms~'. As observed in the previous
chapter, all speed estimations done by the TDA approach at the vehicle speed of 70
ms~! are affected by additional errors that have led bigger global E,, ¥ [%] values.
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Layout 2: SNR=8 Trend of E_*"an/
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Figure 3.44: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed FE,, "™ [%] with a measurement layouts equipped with 2 sensing

elements spaced of 1.2 m

Layout 3: SNR=8 Trend of E_5"cony

—-® - FDA
TDA

Figure 3.45: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed E,,5"[%] with a measurement layouts equipped with 2 sensing

elements spaced of 1.8 m
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Layout 6: SNR=8 Trend of E_™con
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Figure 3.46: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed E,,5"[%] with a measurement layouts equipped with 3 sensing

elements spaced of 1.2 m

Following, a comparison between the estimation approaches is performed evaluating
the errors Ey, %™ (%) in the full range and using the three measurement layouts
above discussed. Fig. 3.47 shows the trend of errors for each mass and speed value
and discourage the usage of the Layout 2 due to the wide range in which, at the same
speed, errors referred to different vehicle mass differ from each other. Increasing the
spacing among sensing elements, errors computed by the two approaches are lower
and there is a little bit difference between them since FDA involves errors below the 0.5
% in the full mass and speed ranges and the TDA has led quite similar results, except
those affected by errors due to also the intrinsic performance of the measurement
chain. Layout 6 shows an operation of the approach quite similar to that obtained with
the Layout 3, although the adding of a measurement sleeper. As a consequence, the
best configuration of the measurement layout as a compromise between the occupied
space, maintenance cost and estimation accuracy is that equipped of two measurement
sleepers spaced of 1.8 m, that involves a maximum estimation error about the half of
the one obtained with the same number of sensing elements spaced of 1.2 m (Layout
2). Concerning the other train parameters, the FDA has led the estimation also of the
crossing times of each train axles and this is a very important in order of monitoring

the railway traffic on the rail for purposes of vehicle safety and maintenance.
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Figure 3.47: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed for each vehicle mass with measurement layouts equipped of 2 sensing
elements spaced of 1.2 m

In agree with the above considerations, Fig. 3.50 shows the maximum errors
committed among those corresponding to each train axle and each measurement
sleepers of the Layout 3 (quite similar results have been obtained with the others
operating conditions concerning the measurement chain). More focused, estimation
errors are quite low and errors related to different vehicle mass are very close especially

1

with speed bigger than 2 ms™.

The train detection analysis has led different performance since the TDA offers best
results with a SNR of 8 dB and a speed range between 2 to 60 ms™! in all the
measurement layouts, instead the FDA allows no errors with a SNR of 8 dB (but also
with SNR of 4dB) and measurement layouts equipped of almost three measurement
sleepers. In general, the FDA approach has involved estimations on train parameters
more robust against the noise that may affect the measured input signal. However, to
compare the two estimation approaches in the train detection, results on the estimation
errors computed with the Layout 3 and a SNR of 8 dB are indicated in Fig. 3.51, which
highlights as with the FDA approach errors are committed only with a vehicle speed
of 80 ms™.
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Figure 3.48: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed for each vehicle mass with measurement layouts equipped of 2 sensing

elements spaced of 1.8 m

Layout:6 Trend of E_S™conv and E, , S™oanv [%]
mv M

v

16
—=—FDA
14l M:10t
4 M:20t
M:30t
12 M:40t
M:50t
TDA
- 1= M:10t
5
s M:20t
> M:30t
% 08 M:50t
s M:40t
W gel
. .
z .
3
£ 04r :
© g I 1 3
w L s .
021" ¢ z } 0 ' - . .
& . . T T
o1 —a H &
" N4
. ' .
0.2
04 | I | | | I | J
0 10 20 30 40 50 60 70 80

Vehicle Speed [m/s]

Figure 3.49: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed for each vehicle mass with measurement layouts equipped of 3 sensing

elements spaced of 1.2 m
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Figure 3.51: Estimation errors Ey,e.cen: in the full mass and speed range with the

Layout 3 and a SNR of 8 dB, after 1000 trains passed on the measurement layout
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3.3.2 Computational Times

The processor adopted in the simulation campaign is a Intel(R) Core(TM) i7-4700HQ
CPU 2.4 GHz. To introduce the analysis of the required computational times in the
execution of the two algorithm is important to highlight step by step their operation.
More focused the operations done in TDA (Time Domain Algorithm)/TDF (Frequency
Domain Algorithm) approaches are listed below.

TDA Approach

1) Reading of simulated signals coming from the measurement layout;

2) Adding of white noise on each simulated signal;

3) The time shifts between signals are computed by means of auto and cross correlation
approaches;

4) Starting from the time shifts previously obtained, the vehicle speed estimations are performed,
as described in Fig. 2.4;

5) The mean value of the vehicle speed is computed;

6) Post processing of the autocorrelation signal to detect train axles (Train detection), as
described in Fig. 2.7.

FDA Approach

1) Reading of simulated signals coming from the measurement layout;

2) Adding of white noise on each simulated signal;

3) Computing of the crossing times of train axles on each measurement sleepers by using the
spectrogram analysis;

4) Computing for each crossing axle of the vehicle speed using the time shifts previously
estimated and the physical distance between the measurement points, as described in Fig. 2.20;
5) The mean value of the vehicle speed is computed;

6) Post processing of the signal to detect train axles (Train detection) as indicated in Fig. 2.17.
Once the operation of the two algorithms are summarized, the mean computational
times employed to estimate the crossing times, vehicle speed and number of crossing
axles are indicated in Tabs. 3.12, 3.13. Obviously the global computational times
increase with the increasing of the number of measurement sleepers: in order to
compare the computational times required by both approaches Tab. 3.14 summarizes
the ratio between the employed times, split for the estimated train parameter. In

addition, Tab. 3.14 highlights how the FDA implies a bigger computational time both
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in the train detection and in the vehicle speed computing. It also true that FDA allows
to extract more informations from the simulated track inputs, by means of the detection
of each axle (approach suitable for the wheel detection and traffic timetable purposes):
these informations are not available with the TDA approach. This explains also the

bigger computational time required in the speed computing (see also Tab. 2.7).

Table 3.12: Mean computational times required by the Time Domain Algorithm (TDA),
applied to a single Manchester wagon

Layout TDA Train Crossing Times Train Detection
(N sleepers) [s] & Speed Detection [s] [s]
Layoutl (2)  0.266 0.046 0.057
Layout5 (3) 0.321 0.069 0.075
Layout9 (4) 0.367 0.094 0.095
Layout13 (5) 0.441 0.131 0.114

Table 3.13: Mean computational times required bu the Frequency Domain Algorithm

(FDA), applied to a single Manchester wagon

Layout FDA Train Crossing Times Train Detection
(N sleepers) [s] & Speed Detection [s] [s]
Layoutl (2)  0.822 0.353 0.183
Layout5 (3) 1.011 0.507 0.208
Layout9 (4) 1.219 0.681 0.233
Layoutl3 (5) 1.429 0.838 0.253

Table 3.14: Comparison between computational times required by the two estimation

algorithms

Parameter Ratio Value
Tatgrpa/Talgrpa (3 +3.5)
Tazteppa/ Tozterp, — (2.2+3.2)
Trivepa/Trivepa (6.5+6.7)
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This Chapter has the aims to evaluate the operation of the trained algorithms in a
real scenario, concerning the measurement layout and the features of the acquired
signal. Moreover is important to check its flexibility against a train composition and a
measurement layout equipped with sensors different from the force ones used in the
training phase. These capabilities are mandatory prerogatives of innovation offered by
the proposed approaches. Fig. 4.1 summarizes the training phase used to calibrate the
algorithms parameters in a wide range of operating conditions and the test phase used

to check the trained algorithms in a real scenario.

The train configuration is described in Tabs. 4.1,4.2: it is composed by a locomotive and
two wagons. Tab. 4.2 indicates the number of axles composing the vehicle (locomotive,
tirst and second wagons), their inter space and the nominal load. The features of
the measurement chain and the experimental data measured by sensors are indicated
in Tab. 4.3: differently from the force sensors simulated in the training phase, the

experimental measurement chain is equipped of two strain gauges.

101
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Figure 4.1: Procedure to test the performance of estimation algorithms on an
experimental data: after the training phase in which a wide range of operating
conditions regarding the vehicle and measurement chain have been simulated, the

algorithm performance has been verified on a complete train composition

Table 4.1: Benchmark train composition

Vehicle Wheelset Prim. Sec. Axleload Bogie dist. Wheelbase
susp susp t m [m]
Locomotive b-b-b yes  17.7 5.25 2.15
First Wagon 1-1 yes  no 8.0 - 9
Second Wagon 2-2 yes  yes 7.8 15.8 1.8
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Table 4.2: Train composition

Number of Wagon Axle Number Interspace [mm] Nominal Load [t]

1 0

2150
5250
1) Locomotive 7400 106

10500
12650

9000 16
0
1800

2) First wagon

O |00 I | o O &= W BN

— =
- O

15800 31
12 17600

3) Second wagon

Table 4.3: Features of the measurement chain

Sensors  Amplitude Distance between sensor [m] Speed [km h]

2 Strain Gauge 4.8 15.4

The real scenario may involve undesired local peaks like those due to the back effect
of rail traversed by train (see Fig. 4.2, [51]): is important testing the reliability of
algorithms that must not detect these undesired peaks as train axles.

Results of the two estimation algorithms have been shown in order to check their
robustness and flexibility to train with difference composition and measurement layout

equipped of sensing elements different from those used in the training phase.
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Figure 4.2: Experimental data of rail deformation due to the train axles: signal peaks
correspond to the train axle and rail effects

4.1 Performance of the time domain approach (TDA)

Starting from the two measurements of rail deformation (see Fig. 4.3) the

autocorrelation of the first one and its cross correlation with the second one is done
(see Fig. 4.4).

Once the difference between the maximum values of the first and the second signals is
computed, is possible to find the vehicle speed, as stated by Eq. 4.1.

V = D/(d12 % dt) * 3.6 = 15.36km/h (4.1)

where D (4.8 m) is the physical distance between the strain gauges, dt is the sampling
time (0.0004 s) and d12(2814) is the difference between the samples corresponding with
the maximum values of the autocorrelation of the first signal and its cross correlation
with the second one. As regard the train detection functionality, as previously said, the
application of the autocorrelation on signal composed by a high value of peaks may
involve a very bigger number of autocorrelation ones (see Fig. 4.4 red line): for this

reason the train detection can be done on sections of the original signal (see Fig. 4.5).



4.1 Performance of the time domain approach (TDA) 105

0.4 T T T T T T T

Sensori
Sensor2

=]

[®)
T
1

Deformation signal [mm]
=
T

=]
— ]

_02 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Time [s]

Figure 4.3: Deformation signals coming from the strain gauges described in Tab. 4.3

1 T T T T T T T
xCorr1-2
08r ACorrl | 4
t -
[=]
Q
£
b -
=]
Q
[=]
2
5
I i
"D.G 1 1 1 1 1 1 1
0 1 2 3 4 5 5] 7 8
samples n «10%

Figure 4.4: Autocorrelation of the first signal and its cross correlation with the second

one



4.1 Performance of the time domain approach (TDA) 106

xcorr loco Acorr: 1° wagon (2 axles)
T T T T

08
08

06

=
@
T

04
X:-7425
02k Y:0.1379

Xccor

Nermalized xcoor
=
s

| ]
X:-3176

A
Y:0.1096

02 . o —
ab —

04 1

06 . . . 02 . . . . . . .

-1.5 -1 -0.5 0 05 1 15 -8000 -6000 -4000 -2000 o 2000 4000 6000 8000

lags «104 lags

o
[}
T

(a) Autocorrelation of the signal corresponding to  (b) Autocorrelation of the signal corresponding to
the locomotive the first wagon

Acorr: 2° wagon (4 axles)
T T T

o
@
T

o
@
T

=1
s

X: 1.039e+04
Y:0.1568

Normalized xcoor
o
[
T

=
T

021

04 . s s . .
15 El 05 0 05 1 15
lags «10%

(c) Autocorrelation of the signal corresponding to
the second wagon

Figure 4.5: Application of the autocorrelation on separated signals: locomotive + first
and second wagons. The values useful to the train axles recognizing are in agree with
the threshold established in the training phase

Fig. 4.5 also confirms the value of the threshold used to test the algorithm performance
as train detector as indicated in Fig. 2.7. In particular Fig. 4.5b highlights that the
threshold used in the training phase is useful to detect train axles and, at the same time,
allows to not consider peaks due to rail effects in correspondence of the wheelbase of
the two wagons(see Fig. 4.2).
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Figure 4.6: PSD of the experimental data: the threshold allows to cut undesired local
peaks

4.2 Performance of the frequency domain approach
(FDA)

The frequency domain approach has been applied to evaluate the train parameters on
the experimental data coming from the strain gauges (see Fig. 4.3). The post processing
of the signal is done (Fig. 4.7): starting from the experimental data also its positive
values are considered to simplify the computing and not consider negative peaks
caused but the rail extension (see Fig. 4.6 a-b). Then, once the spectrogram and each
PSD maximum values are performed and plotted, the obtained signal is resampled. At
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the end, just applying the cut off threshold of -24 dB (see Tab. 2.5), is possible to detect
the train peaks (see Fig. 4.8).
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Figure 4.7: Post processing of the deformation signal: 1) signal amplitude

normalization with also the cut-off of its the negative values 2) application of the
spectrogram and plot of the signal composed by the maximum values of PSD for each

window, 3) re-sampling of the obtained signal

Fig. 4.8 shows the results of the signal peaks detection process: using other thresholds
is possible to detect peaks due to the locomotive axles from those provided by wagons.
Furthermore, the performance of the algorithm as crossing times and speed estimator
have been shown. As described in Par. 2.2 the estimation accuracy depends by the
number of windows with which the spectrogram is applied. The final configuration
used to estimate the vehicle speed and crossing times on measurement sleepers is a

compromise between the computational time and the estimation accuracy.
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Figure 4.8: Peaks identification of the locomotive and wagons peaks by means of
suitable cut-off thresholds

Table 4.4: Summarized results on crossing times and speed estimation

Strain Gauge Locomotive First Wagon Second Wagon

SGye, [s] 1.6272 21312 2.8388 3344  4.0784 4580 |59116 8.0076 |9.2236  9.6396 12.9316 13.3636
SG24e [s] 2.7636 3.2776s 3.9852 4.4904 5.2248s 5.7264 | 7.0580 9.1540s | 10.3700 10.7860 14.0780 14.5100
Tiyeq [8] 1.613 2.1338 2.853 33738 4.0682 4.589 | 5.9034 8.0114 | 9.2266  9.6482 12.9218 13.3682
Tizeq 8] 2.7538 3.2746s 3.9938 44898 5.1842s 5705 | 7.0442 9.1522s | 10.3426  10.789 14.0378 14.4842
Eryeq [%] 0.8727 -0.122  -0.5002 -0.8911 02501 -0.1965 | 0.1387 -0.0475 | -0.0325 -0.08927 0.0758  -0.0344
Erges [%] 0.7139  0.0915  -0.2158 0.0134 0.7771  0.3737 | 0.1955 0.0197 | 0.2642  -0.0278 0.2856  0.1778
Vear[T] 42076 4.2076  4.2076 43011 4.3011  4.3011 | 4.2076 42076 | 43011  4.2076 43011 4.3011
Ery . [%] 0.7139 0.0915 -0.2158 0.0134 07771 0.3737 | 0.1955 0.0197 | 0.2642 -0.0278 0.2856  0.1778

In addition, the spectrogram configuration defined in Tab. 2.6 has been used to detect
the crossing times on the two measurement points (see Tab. 4.3). Tab. 4.4 summarizes
the theoretical, the estimated crossing times and their relative percentage errors.

Moreover, the estimated vehicle speed is computed for each detected axle (just
dividing the physical distance between strain gauges with the difference between the
axle crossing time on the two measurement points) and its mean value is equal to 0.17
% (see Fig. 4.9). Fig. 4.9 highlights how an increasing number of spectrogram windows
may involve a better estimation accuracy but at the same time a higher computational
cost. The chosen configuration (60 windows and 90% of overlap) allows to reduce the
estimation percentage error (from 0.69% to 0.17%) with a computational time of a bit

over 1 s.
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Figure 4.9: Comparison between the speed estimation accuracy and the required

computational time, with an increasing number of spectrogram windows

In conclusion, the application of the approach to an experimental data has led several
considerations on the algorithm robustness, concerning the spectrogram parameters
and others regarding the approach. More focused, configurations of spectrograms
aimed at estimating the number of crossing axles, crossing times on sensors and vehicle
speed (see Tabs. 2.5, 2.6) have been validated. Furthermore, the value of the cut-off
threshold (-24 dB) used to estimate the number of train axles during the training phase
is also valid in the experimental test, despite the operating conditions (measurement
layout, number and kind of sensing elements, mass and vehicle speed) are quite
different. The approach allows also to avoid the detection of peaks different from train
axle ones (see Fig. 4.8). The ending consideration concerns the noise affecting the input
signal, that is several order smaller in the experimental test (see Fig. 4.3) than those set

in the training campaign (see Fig. 2.7): this highlights how both of approaches have
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been stressed, simulating operating conditions worse than the realistic ones.

4.3 Comparison between the TDA and FDA approaches

on an experimental data

The above developed considerations on both the estimation approaches, once applied
on an experimental data, confirm the drawbacks of the TDA and the benefits of the
FDA approach. Indeed, Eq. 4.1 highlights the good operation of the correlation as
speed estimator: the same cannot be said as axle counter detector due to the complexity
of the autocorrelation signal, if applied on a composite input signal (see Fig. 4.4). As
previously discussed, it is a weakness that it's no present with the approach making
use of the spectrogram. The FDA approach also can detect the single wheel, involving
functionalities of wheel detector, not only the train detector (guaranteed also by the
TDA approach). In conclusion, the TDA approach is not enough flexible against a
composite signal. The FDA approach is able to detect the crossing time of each train

axles, information quite important for wheel detection purposes.
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In this chapter a WIM algorithm for the estimation of the vertical wheel loads is
described (the weights of the wheelsets are included). The nominal values of the loads
are taken from the model, in the simulated case, or are nominal train values in the
experimental case. The WIM algorithm presented in this work is based on the vertical
forces acting on the sleepers, acquired by means of dedicated force sensitive element
placed over the sleepers in the section corresponding to the rail baseplate/pads (see
Fig. 2.1). The WIM algorithm takes in input the estimated train parameters by the
TDA /FDA approaches.

5.1 Architecture of the WIM algorithm

The general architecture of the algorithm is described in the diagram in Fig. 5.1.

The WIM algorithm is general purpose because it is able to manage different kinds
of track measurements as input signals, such as rail deformations or forces acting

on the sleepers and different measurement chains [52]. The WIM algorithm may

112
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Figure 5.1: Operating of the WIM algorithm

operate both with simulated inputs (T/; and TJ") provided by numerical models
and with experimental data (T;; and T}}) directly measured on the railway track.
The developed WIM algorithm performs the estimation of the actual vertical right
N ri; and left N i Wheel loads starting from the generic track measurements chosen
as input signals T,; and T, with £ = 1,.., N,, measured respectively at z,;, and zy
(representing the abscissas of the right  and left [ side of the k—th measurement point).
The WIM algorithm requires some additional information (external inputs) concerning
the investigated vehicle. More specifically, vehicle speed V, the axle number 7, and
the axle positions inside the railway vehicle z,, with i = 1,..,n,; must be known.
These supplementary physical quantities may be identified by the approach previously
discussed in Chapter 3 (the axle positions is guaranteed by the only FDA approach).

The main idea on which the new WIM algorithm is based arises from the quite intuitive
hypothesis of supposing the system approximatively linear with respect to the vertical
loads Ng;, Np; withi = 1, ..., ny (the so-called quasi-linearity hypothesis (QLH)). In other
words the effect of the generic load Ng; and N;,; on the generic track measurement

input T, and Ty, (in the present application the chosen track inputs are the simulated
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vertical forces on the sleeper F/", and F/”, or the measured ones F*

zrk

and F¥,) is
assumed not to be affected by the presence of other loads (especially the contiguous
ones). Evidently, in order to properly apply the superposition principle, the guasi-
linearity hypothesis (QLH) must hold within the whole range of velocities V' and cut
frequencies f,, considered for the studied systems. Thanks to the previous assumption,
the application of the superposition principle allows the calculation of the track inputs
T, and T};. More specifically, the track inputs T, and T}, are respectively estimated
through a linear combination of 2n, track fictitious input signals (namely the basis
functions) produced by 2n,, single fictitious loads N; (one for each vehicle wheel)
moving along the track and properly shifted in the time of a delay ¢;. In order to find
this basis, the algorithm makes use of the flexible multibody model of the track. In this
case the linear combination coefficients are equal to N ri/ Ny and N 1i/Ns. Obviously,
since the system can be assumed only approximately linear, a Least Squares Optimization
(LQSO) is needed to minimize the approximation error and, at the same time, to

optimize the values of N ri; and N Li-

5.1.1 The quasi-linearity hypothesis

As previously stated, if the quasi-linearity hypothesis (QLH) holds, the application of
the superposition effects allows to estimate the right T,; and the left T, track inputs
produced by the transit of the entire investigated vehicle through a linear combination
of track responses (namely the basis functions) produced by single fictitious loads Ny.
The presented WIM algorithm takes into account the coupling effect between the left
and the right rail deformation caused by the dynamical behaviour of the sleeper-ballast
ensemble. In the most general version of the WIM estimation procedure, the track basis
functions due to the transit of both left and right fictitious loads are considered. More
specifically, the quantities B} and B" represent the chosen track fictitious response
due to the transit of the i — th fictitious load respectively on the right or on the left
(denoted respectively with subscripts R and L) rail, measured at the right (r) side of
the k — th measurement point. Analogously, B}, and BY; indicate the chosen track
responses due to the transit of the i — th fictitious load respectively on the right or on
the left rail, measured at the left (/) side of the kK — th measurement station. All the
2n,,, right-side fictitious track inputs B’ and B7* and the 2n,; left-side fictitious track

inputs Bt and B, withi = 1,..,n, and k = 1, .., N,, (in the present case the vertical
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forces acting on the sleepers) produced by 2n,, single fictitious loads N; (with initial

position z,5) can be easily assessed by introducing suitable time delays ¢;:

t= el (5.1)
and by applying such delays to the track responses to the transit of a single fictitious
load B;//l 1 (1) (i.e single wheel transit):

Bii(t) = BR(t +1t;) (5.2)
Bi (1) = BY (¢ + ) (53)
Bli(t) = BR(t + t:) (5.4)
BI(t) = BL(t +t:) (5.5)

where t € [T}, Tr — t;].

At this point, thanks to the superposition principle, the track inputs T, T}, produced

by the transit of the entire train can be approximated according to the following

expressions:
Toi(t) ~ Trpapp(t) = > Biron + > Bliay, (5.6)
i=1 i=1
le(t> =~ le app(t) = Z Bl]%()zRi + Z Bﬁam (57)

i=1 i=1

where the linear combination coefficients ar; o, the estimated vertical loads N Ri N i

and the fictitious vertical load Ny are connected by the following expressions:

QR; = NRz‘/NRfOéLi = NLi/NLf- (5.8)

To simulate the sampling due to the measurement process, the time domain ¢ €
[T}, Tr — t;] has been discretized with a sample time At¢.

Re-arranging equations (5.6) and (5.7) in matrix form leads to the following equations:

T, ~ B}"{“apb + B ay, (5.9)
le ~ BﬁaR + Bg“a,; (510)



5.1 Architecture of the WIM algorithm 116

where k = 1,...,N,,, T,, Ty, € R=*!, Bk prk Bl Bk ¢ Rrsxmet and ap, af, €

R™t*1 Considering the N,, measuring point a general expression can be written:

T, ~ Bror + Bl ay, (5.11)
T, ~ Bhag + BLay, (5.12)

where T,, T; € R=Nex1 Br Br BL B € RusNm*mot and ap,ap € R™t*1 Re-
arranging equations (5.11) and (5.12) in a more compact matrix expression, Eq. 5.13

can be obtained:

T,
T,

BrBj
ByBi,

O‘R] . T=Ba (5.13)

where T € R?%sNmxl B ¢ R2nsNmx2niot qnd o € R2ot¥1,

5.1.2 Least squares estimation

Since the studied problem is only approximatively linear, a Least Squares Optimization
(LSQO) is necessary to minimize the approximation error between T, T, and T, 4y,
Tk app and, at the same time, to optimize the values of N Riy N i~ In this specific case
linear not-weighted least squares have been considered [53][54][55]. As previously
said and shown in Fig. 1.1, the same inputs of TDA/FDA approaches and so the
vertical forces acting on the sleepers (denoted with F/", and F/",) have been adopted
as track inputs, with a Hence, according to the adopted track inputs and taking into

account the time sampling, equations (5.6) and (5.7) become:

FIL(0) ~ ) ai"Bi(t) + Z o' BL;(t) (5.14)
=1
F/o(t) Z B (1) + Z g B (t (5.15)

with h = 1,2,...,n,and k = 1,2,..., N,,. Therefore, defining the A € R?"s/m*2ntot
matrix and vector b/? € R?%sNmx1 a5 follows:
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the matrix form of (5.14) and (5.15) can be obtained:

b/™ ~ AqS™ (5.17)
stm __ simT _ simT r 5.18
o™ _ [aginTaz (518)
where
aji" = |y aiaiiy | (519)
. . B . . T
ai" = |agragpayagy] (520

By means of a least squares optimization (LQSO) (in this case linear and not-weighted), it
is now possible to minimize the squared 2-norms E/"> = ||E/"|> of the approximation
errors E/" = Aa®™ — b/ present in (5.17):

am = (ATA) T AT (5.21)
where the matrix AT A is invertible if and only if the rank of A is maximum. Finally
the values of the estimated vertical loads N Riy N i can be computed starting from the
knowledge of a*"™:

) Nsim P P PN T
oS — — [Nm Nra Nprs Nra Np1 Nio Nps Npa (5.22)

Ny Nry Nry Nry Nry Noy Noy Npy Npy
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Figure 5.2: Evaluation of lateral Y; and longitudinal X coordinates of the vehicle
center of gravity.

where T
N = [Ny Ny (5.23)
with
Y R Y ~ e T
Ng = [NRINRQNR3NR4:| (5.24)
N AT
Np = [NL1NL2NL3NRL} : (5.25)

5.1.3 Center of gravity estimation

As previously stated, the innovative WIM algorithm, starting from the estimated wheel
loads N r; and N 1i, is able to evaluate the lateral Y; and X longitudinal coordinates
of the center of gravity. Considering the horizontal plane containing the center of
gravity (COG) of the railway vehicle and introducing the reference system Ozy shown
in Fig.5.2 where the origin O coincide with the geometric center of the carbody, the

moment equilibrium around X — axis and Y — axis can be respectively expressed as:

Ntot

> (brNpi + b Npi) =0 (5.26)
=1
> ai(Npi+ Nii) = 0. (5.27)

i=1
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Taking into account the nominal values of the geometrical quantities of the vehicle

such as the longitudinal position inside the train of each axle z,; and the distance

between the two nominal rolling radius s, the coefficients by, b, a; can be re-written

as function of the COG coordinates X¢;, Y. More specifically, for the coefficients b, b,

the following expressions hold:

S
bR:§_YG

S
by =—5 ~ Ve

whereas the coefficients a; can be calculated as follows:

a1 = —((Ta1 — aa)/2 + Xg = cl + Xg
ag = —((Ta2 — 243) /2 + Xo = 2+ X¢
az = ((Ta2 — ®a3) /2 + Xo = 3+ X¢

ay = —((Ta1 — xaa)/2 + Xg = 4+ Xg.

At this point, the moment equilibrium equations can be re-written as:

cCG=d
where C' € R?*2, G, d € R? and
C— Z?ﬁ(ﬁm + ﬁm) 0
0 S (Ngi + Nii)
~ X
G |Xe
Yo

d— [_ Z?:f(ﬁm + NLi)Ci
Yo (Np — NRi)%

(5.28)
(5.29)

(5.30)
(5.31)
(5.32)
(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

Hence, the values of the estimated longitudinal )A(G and lateral ffg coordinates of

the center of gravity G can be computed by inverting the C' matrix according to the

following expression:

(5.38)
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The present section describes the performance of the WIM algorithm in estimating
the vertical wheel loads N Riy N i (with @ = 1,...,n4y), starting from the knowledge
of the vertical forces acting on the sleepers F,. The WIM algorithm has been tested
by means of two simulation campaigns, the first one is aimed at testing the accuracy
in the vertical loads estimation, while the second one is focused on its performance
to estimate the vehicle center of gravity. More particularly, simulation campaigns
evaluate the performance of the WIM algorithm in terms of accuracy of the wheel load
estimation and center of gravity, by varying different parameters of the vehicle and
characteristics of the measurement system, such as the vehicle car body mass 1/, its
speed V' and the cut-off frequency f, of the measurement chain. The basic procedure
used to test the algorithm consists in comparing the nominal vertical wheel loads,
Ng; and Np; (taken from the model, in the simulated case, or from nominal values

in the experimental case) to the estimated loads N r; and N i, computed by the WIM
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estimation algorithm. This kind of comparison is really helpful to test the accuracy of

the estimation algorithm model, when no experimental data are available.

6.1 Estimation of the vertical wheel loads N Riy N i

Initially, by way of example, the vertical forces on the sleepers F'" (t) = F/™ (z,4,1)
and F/7 (t) = FI' (2}, t) simulated through the physical model of the railway track
(see Fig. 5.1) are compared with the vertical forces on the sleepers sz vk app(t) =
Fr app(Trk; 1) and 1344 apt) = I opp( Tk, 1) estimated by means of the WIM
algorithm. E.g the layout of the adopted measurement station consists in three
measurement points (/V,, = 3) on both rail sides (xg1 = z11 = 33 m, Tpe = z12 = 34.2

m and zp3 = v13 = 38.4 m) (see Tab. 3.2, Fig. 6.1).

Force sensor

Measure station

(e
NEERRJIRNNnnnnn

BB - NN . NN N

w

X1k

K-th measurement
point

I
I
I
1
I
1
.
™
I
I
I
I

Figure 6.1: Reference measurement layout for the testing of the WIM algorithm

Fig. 6.2 illustrates both simulated F’”

zr2
fn
Fz (2 app

(t) F/7(t) and approximated F/”, app(t)
(t) (these simulations are shown as example) right and left vertical forces acting
on the second measurement point on the right and left side of the sleeper (z,2 = 34.2 m)
relative to a simulation performed at a speed value V = 40 ms™! and a car body mass
M = 50 t. The figure shows a good comparison between the simulated and estimated
quantities hence confirming the accuracy of the WIM algorithm.

To compare the nominal Ng;, Ni; and estimated Ng;, N5; vertical loads on the wheels,

an extensive simulations campaign has been carried out. In particular the dependence

. . Nsi_'m_N i . Nsi_m_N i .
of the relative errors " = —f—= and e}]" = —L—= on the vehicle speed V,
Ri Li
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Wertical Force F, (N)

Vertical Force FZ (N}

Figure 6.2: Vertical forces acting at z,» = 34.2; comparison between the value resulting
from the physical model F/",(t), F/7(t) and the one obtained according to the quasi-

linearity hypothesis F/", app(t)s Fn app(l)

car-body mass M and the cut frequency f, of the physical system is investigated.
In Tab. 6.1 the considered variation ranges for the previous quantities are reported
together with the resolutions adopted for the range discretization (AV, AM, Af,),
where N, represent respectively the number of simulated values of V/, M and f,.

Table 6.1: Variation ranges of V, M and f,, adopted for the simulations campaign

Parameter Min. Max. Ngm A
Velocity (ms™) 10 40 4 AV = _(Vwm;‘/lr;m)
MmaZ_Mm'Ln
Car-body Mass (t) 20 50 4 AM = W
Frequency (s™1) 10 40 4 Af,=Un nzfﬁf—_ff)mm)

The global performance of the WIM algorithm have been studied by considering the
maximum relative error
esm (V, M, f,):

max

ns = max (maz(lef"],[ei"))) 6.1)

The values of the nominal N&™, Ns™ and estimated N, Nim vertical loads acting
on the vehicle wheels evaluated in a test performed with vehicle speed equal to V=40
ms™*, a car-body mass value M = 50 t and different values of f,, are listed in Tab. 6.2.

This case has been shown because it represents the worst case, in terms of error. The
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good algorithm accuracy performance in estimating the vertical loads is mainly due to
the capability of correctly describing the global shape of the solutions (both in space
and in time) and not only the peaks, that are more affected by errors and noise. Tab. 6.2
shows a good accuracy of the WIM algorithm even for relatively low values of f,. The
maximum resulting error among the simulation campaign is equal to 1.9 % and it is
relative to a simulation performed considering the following values: V=40 ms™!, M=50
tand f, = 10s~ .

Table 6.2: Estimated vertical loads on the vehicle wheels, N5, N$m: V=40 ms!,

M=50 t, with different values of f,,.

Cut frequency f, Parameter Value Parameter Value

Hz kN %

10 Foim 75.4 - 1.4%
20 S 76.4 T 0.3%
30 76.4 0.3%
40 76.8 0.2%
10 Faim 75.4 N 1.7%
20 L1 76.5 cL1 0.2%
30 76.6 0.01%
40 76.7 0.03%
10 Feim 75.9 e 0.7%
20 2 76.6 e 0.05%
30 76.6 0.1%
40 76.7 0.2%
10 Faim 76.2 e 0.4%
20 Lz 76.2 L2 0.4%
30 76.4 0.17%
40 76.1 0.5%
10 Faim 75.2 - 1.7%
20 K3 76.2 Chs 0.5%
30 76.4 0.19%
40 76.4 0.2%
10 Feim 75.1 - 1.9%
20 L3 76.2 L3 0.4%
30 76.2 0.01%
40 76.5 0.4%
10 Faim 75.3 . 1.7%
20 R4 76.2 CRa 0.6%
30 76.9 0.3%
40 76.8 0.1%
10 Saim 75.7 i 1.3%
20 L 76.6 L 0.1%
30 76.7 0.06%

40 76.7 0.06%
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Fig. 6.3 shows a comparison between the maximum relative percentage errors

sim
€ax

(V. M, f,) and their behaviour as a function of speed V' and cut-off frequencies

fn; each graph is relative to a different value of the vehicle car body mass M.
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Figure 6.3: Behaviour of the percentage e (V, M, f,,) relative error as a function of

max

speed V, car body mass M and cut-off frequency f,

Although the good algorithm performance, these results show how the estimation of
vertical loads becomes more difficult, in front of an increase of the travel speed V and
low values of the cut-off frequency f,,, because the quasi-linearity hypothesis begins to
be a critically condition if these quantities become too high.
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6.1.1 Estimation of the vertical wheel loads N Riy N 1; with different

measurement layouts

In this section, the performance of algorithm in estimating of the vertical wheel load
are estimated in several working conditions concerning the measurement layout. Figs.
6.4-6.7 show the trend of the maximum value of the relative estimation error computed
between the right and left loads and among all the sleepers that equip the measurement
layouts (see Tab. 3.2). The simulation parameters are those indicated in Tab. 6.1
with a cut-off frequency f, of 20 Hz. Fig. 6.4 highlights how layouts equipped with
consecutive sleepers involve bigger errors and their trends are not constant with the
increasing of the vehicle speed: better trend are obtained with a space between the two
sensing elements. Similar considerations can be done for the other test case.

Results highlight the good operation of the estimation algorithm on vertical loads
against measurement layouts that differ for the number and spacing among the sensing
elements: in particular, the increasing of the number of force sensors involves lower
estimation errors but also a bigger number of sensing elements, maintenance time and
installation cost. A good compromise between installation maintenance and cost and
the estimation accuracy can be provided by measurement layouts equipped of three

sensor spaced of 1.8 m, which involves estimation errors below the 0.5 % (Layout 7).
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measurement layout equipped of two sleepers: errors are below the 1 %

Figure 6.4: Behaviour of the percentage e (V, M, f,) relative as a function of the
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measurement layout equipped of three sleepers: errors are below the 0.9 %
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measurement layout equipped of four sleepers: errors are below the 0.7 %
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measurement layout equipped of five sleepers: errors are below the 0.6 %
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Figure 6.8: Positions of Gy (zy, y) used to modify G(z, y)

6.2 Estimation of the longitudinal X; and lateral Yj

coordinates of the center of gravity ¢

The good accuracy properties exhibited by the WIM algorithm in estimating vertical
loads acting on the wheels make the algorithm suitable for the estimation of the
longitudinal X and lateral Y position of the vehicle center of mass G, to avoid
possible imbalances. To test the performance of the WIM algorithm in the estimation of
the longitudinal X and lateral Y; coordinates of the center of gravity G, two dedicated
simulation campaign have been performed. Firstly the actual longitudinal X, and
then the lateral Y position of the center of mass G of the train have been varied by
changing the position of the center of mass of the carbody Gz in the physical model of
the train according to the values shown in Fig. 6.8 and indicated in Tab. 6.3.

Table 6.3: Positions of the center of mass of the car-body G expressed in longitudinal
X, and lateral Y}, coordinates

X Y,
Xp=00m Y,=00m
Xp=10m Y, =01m
Xp=20m Y,=02m
Xp=30m Y,=03m

Y, =04m
Y,=0.5m

Fig. 6.9 shows the comparison among the estimated loads N R, N 1, with different value

of the longitudinal displacement X; performed with a vehicle speed V' = 10 ms~

1

s it
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Figure 6.9: Comparison between estimated loads Ng, N; with different value of
longitudinal displacement X, of the centre of mass, performed with a vehicle speed
V =10 ms~'. Blue bar: load on the left wheel - Red bar: load on the right wheel

can be seen that loads are perfectly symmetrical with respect to a longitudinal plane,
being the center of gravity G placed along the longitudinal axis of the vehicle (the
vehicle is not unbalanced along the lateral axis). The position of the car body center of
gravity G} is translated longitudinally toward the head of the train, with a consequent
increase of the loads acting on the wheels of the frontal bogie (]v Rys N L1/ N Roy N ,) and
a decrease ones of the rear bogie (]\A/ Ra N Lsr N Ris N L.)-

The test campaign has been performed considering a car-body mass value M = 10
t, a cut-off frequency f, = 20 s™! and four different values of the vehicle velocity
(V = 10,20,30,40 ms™'). Tab. 6.4 summarizes the maximum percentage relative error
on estimated loads as a function of the vehicle speed V' and longitudinal displacement
Xy of center of gravity G, performed with a car-body mass M/ = 10 t and a cut-off
frequency f, =20s %

The second simulation campaign is focused on the lateral displacement Y of the
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Table 6.4: Percentage relative error on estimation loads with different speed and

longitudinal displacement position of car body center of gravity X;, performed with a
-1

car body mass M=10 t and a cut-off frequency f,,=20s

Position Par. Speed Speed Speed  Speed

m 10ms™' 20ms™! 30ms™!' 40ms~!
X, =0 0.10 % 0.16 % 0.26 % 0.26 %
Xy =+1 6;22;”( 0.19 % 0.16 % 0.20 % 0.42 %
Xp = +2 0.19 % 0.24 % 0.25 % 0.33 %
Xy =43 0.17 % 0.29 % 0.19 % 0.37 %

Table 6.5: Percentage relative error on estimation loads with different speed and lateral
displacement position of car body center of gravity Y;, performed with a car body mass
M=10 t and a cut-off frequency f,=20s7*

Position Speed  Speed  Speed  Speed
m 10ms™! 20ms™' 30ms™' 40ms™!
Y, = 0 (m) 0.13 % 0.14 % 0.20 % 0.27 %

Y, =40.1(m) 015% 0.15% 0251% 0.278 %
Y,=4+02(m) 019%  0.24 % 028 %  0.213 %
Y,=+03(m) 017%  0.29% 019%  022%
Y, =+4+04(m) 017%  0.29% 0.19%  0.22%

vehicle center of gravity for different values of speed V, according to the real
dimensions of the car. Fig. 6.10 shows the trends of the estimated loads in according
with the displacement of the center of mass in the lateral direction. Table. 6.5 indicates
the behaviour of the errors as a function of speed, performed with a car body mass

M=10 t and a cut-off frequency f,=20 s™*:

a weak increase of the errors with the
speed is present. These results confirm the good performance of the proposed WIM
algorithm in estimating unbalance loads consequently it can be used to compute the
vehicle centre of gravity G, starting from the values of vertical estimated loads on the

wheel.
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Figure 6.10: Comparison between estimated loads N », N; with different value of
lateral displacement Y}, of the centre of mass, performed with a vehicle speed V' = 10
ms~ ' . Blue bar: load on the left wheel - Red bar: load on the right wheel

6.2.1 Estimation of the longitudinal X and lateral Y; coordinates of

the center of gravity G with different measurement layouts

The performance of the estimation on the center of mass have been verified with
different measurement layouts as done for the estimation of the vertical load, carrying
out estimation errors below the 0.1%: there is no a relevant dependence between the
estimation accuracy and the measurement layouts. E.g the results in estimating the
center of mass with a longitudinal displacement of 1 m and lateral one of 0.2 m are

shown for the measurement layouts equipped of three sensing elements (see Figs. 6.11-
6.12).
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Chapter 7

Conclusion, final remarks and future

developments

This work has led the development of several estimation algorithms of train
parameters, towards aims of train detection and monitoring of the railway traffic on
the rail for vehicle maintenance and diagnostic purposes. Two estimation approaches
(TDA/FDA) have been formulated to carry out functionalities of train detection:
moreover a WIM (Weigh in Motion) algorithm has been studied which, taking in input
several train parameters estimated by the TDA /FDA approaches, is able to do accurate
estimations of vertical wheel loads and the vehicle center of gravity.

The estimation approaches are able to manage both the experimental data or, in
absence of them, simulated track inputs provided by a physical model of vehicle,
track and a global contact model that manages the interaction between them. The
benchmark vehicle is the Manchester wagon. The developed approaches can manage
different kind of input signals, in the proposed work vertical forces on measurement
sleepers are considered.

The physical model has been also used to test the global performance in a wide range
of operating conditions concerning the vehicle (mass and speed) and the measurement
chain, in terms of number of sensing elements and their displacement.

A comparison between the TDA and FDA approaches have been done, both on their
estimations accuracy, functionalities and required computational times.

There is no a relevant difference between the estimation errors, but the FDA algorithm
has shown a better flexibility towards the performance of the measurement chain,

vehicle parameters and, in addition, provides more data on train, thanks to the

136



137

detection of each train axles: these information may be useful for the train geometry
recognition and the wheel detection, no possible with the TDA approach. As a
consequence, the FDA is more powerful than the TDA, because is able to estimate train
parameters and define also the vehicle geometry. The performance of the approaches
have been also verified simulating performance of the measurement chain worse than
that of a real scenario, in terms of noise affecting the measure: results highlight a
major robustness of the FDA rather than that of the TDA, entailing low estimation
errors, despite the high noise level applied on the input signal (SNR: 4dB). The only
weakness of the FDA approach lies in its computational times, especially in the speed
computing, if are compared with those required by the TDA algorithm, but this
can be a good compromise, considering its capability to detect each train axles. A
study on the optimal configuration of the measurement chain has been done, as a
compromise among maintenance and installation cost and the estimation accuracy of
the TDA /FDA approaches: to this end, the chosen measurement layout is equipped of
two sensing elements spaced of 1.8 m. In this scenario both approaches (TDA/FDA)
have led estimation errors of the vehicle speed below the 1% in the [2-80lm s~ speed
range and [10-50]t mass range. The FDA approach entails errors of train detection

-1

only for vehicle speeds bigger than 70 ms™" (no errors are committed with layouts

equipped of a bigger number of sensing elements) and the TDA no commits errors

until 60 ms~!

. The approaches optimized in the training phase have been validated
on an experimental data, showing the major robustness of the FDA algorithm towards
signals corresponding to a train composition.

In conclusion, the FDA is the better estimation approach proposed in this work, able
to compute train parameters like the crossing times, speed and axles recognition,
entailing very low errors and showing flexibility towards different kind of input signal
and measurement layout and provides robustness against possible high white noise
level on the measured input signal. The TDA approach requires less computational
times, especially in the speed computation, but is not flexible and robust in the
same way as shown by the FDA approach. Moreover, a WIM algorithm has been
developed, aimed at estimating the vertical wheel loads and the vehicle center of
gravity, whose estimation accuracies has a big relevance to face problems concerning

possible unbalances: the approach has been tested in the [20-50lms™*

speed range
and [10-40]t mass range and the estimation errors are always below the 1% in all the
measurement layouts. A good compromise between installation maintenance/cost

and the estimation accuracy, can be offered by measurement layouts equipped of three
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sensors spaced of 1.8 m, which involve estimation errors below the 0.5%.

The proposed approaches have a great impact especially in the state of art of this
topic, due to the absence of studies that develop algorithms to estimate several train
parameters, in different working conditions about the measurement layout, sensors
and train composition. The studied solutions are able to do estimation of different train
parameters, starting from the same sensors and using the same approach(Auto/Cross
Correlation (TDA), Spectrogram(FDA)). Moreover, another aspect of novelty of this
study (if compared with those present in literature) lies in the training of the algorithms
with a wide simulation campaign in order to verify their operation also in worse
working condition than those of a real measurement scenario. At the end, efforts
have been done to drive the development towards efficient solutions efficient, able
to meet realistic requirements, concerning their performance (estimation accuracy,
computational times) and the measurement station properties (number of sensors and
maintenance times). Future developments regard the integration of the proposed
estimation approaches in electronic boards in order to perform a wide experimental

campaign, aimed at testing their good operation shown by this study.



Appendix A
Appendix-TDA

The global performance of the TDA approach have been evaluated in all the
measurement layouts. Following, the trend of the estimation accuracy on the vehicle
speed obtained with the Monte Carlo analysis are shown for different measurement
layouts in order to evaluate the performance of the approach against the noise level
inserted in the estimation process. Results are comfortable due to the reaching of the
Monte Carlo convergence in each operating condition, concerning the vehicle (mass,

speed) and the layouts (number and spacing among sensing elements).
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Figure A.11: Layout7: (a) E5"t[%] convergence with the Monte Carlo Analysis in all
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Figure A.23: Layoutl3: (a) E5"™iter[%] convergence with the Monte Carlo Analysis in
all vehicle mass and speed. Focus on EMiim“” with k=(2-80) m s~ (b-f)
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Appendix B
Appendix-FDA

The global performance of the FDA approach has been evaluated in all the
measurement layouts. Following, the error trends on the train axles crossing times and
the vehicle speed, analysed with the Monte Carlo approach, have been summarized,
showing good results as indicated and discussed in Chapter 3. More focused, the trend
of the estimation errors with the Monte Carlo analysis about the vehicle speed in the
full speed and mass range is shown, for each measurement layout. The Monte Carlo
convergence is shown both with the process aimed at estimating the vehicle speed both

with the procedure to estimate the axles crossing times.
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Layout3

Layout3-Monte Carlo Analysis: Average among mass - V:[2-80] m/s
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Figure B.41: Layout13: Monte Carlo analysis on the Em7,™"": results show as after 49
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Figure B.43: Layout13: Speed Estimation-Monte Carlo Analysis with k=(2-50) ms™*
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iterations the convergence is reached
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