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Summary

The proposed work is aimed at developing accurate train parameters estimation
approaches, to get more informations on the vehicle running on the rail, spacing
from data about the vertical load (Weigh in Motion systems) to ones on the moving
train. More focused, the provided vehicle data concern its speed, vertical axle loads,
direction of travel, distance between axles and timetable of the crossing axles to ensure
functionalities of dynamical estimations of running loads and aims of train detection.
This study allows the formulation of approaches to estimate the quantities above
mentioned, starting from the same measurement layout. The developed approaches
are flexible against sensors of different typology as load cell, strain gauge or the
more efficient Fiber Bragg grating sensors. An analysis of robustness has been
involved, concerning the estimation accuracy as a function of the performance of
the measurement/acquisition chain, in terms on noise affecting the measure. The
performance have been verified in a wide range of speed and vehicle mass showing
good results. A comparison between two solutions that involve functionalities of
train detection has been done, both on aspects of performance and on the required
computational times. The approaches have been stressed, reproducing operating
conditions worse than those of a real measurement scenario. A focus has been done
on the developed Weigh in Motion algorithm, able to estimate dynamical loads and
vehicle centre of mass, for purpose of unbalance loads detection. In order to test
the algorithms in the most operating conditions concerning both the vehicle and
the measurement chain, in absence of experimental data, simulated track inputs are
available thanks a physical model of the infrastructure, composed by vehicle, track
and a global contact model that manages their interaction.
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Preface

Nowadays the trend of industrial companies is to provide tools able to carry out a
big data set that, once processed, is useful for the enhancement of maintenance and
safety systems. Railway infrastructure contains a wide range of measurement systems:
sensor technology has been integrated in railway systems for quite a while. Rail
vehicles and the infrastructure are equipped with a large amount of sensors, on which
safety mechanism like traffic control as weel as control algorithms on the trains are
based. Sensors are getting cheaper and this pushes their usage also in this field: the
trend leads towards solutions making use of different sensor data for several kinds
of monitoring. Monitoring and alarming are core functions. Diagnostic applications
can be added for advanced analysis and decision support. The accuracy of the
predictive maintenance system is also related to the performance of sensors [1][2] used
in the measurement chain and of embedded unit. Commercial solutions [3] provides
different maintenance tools as HBD (Hot Box Detection), HWD (Hot Wheel Detection),
WDD (Wheel Defect Detection), WIM (Weigh in Motion) systems and supplementary
functions as the AVI (Automatic Vehicle Identification).

Thanks the improvements in the electronic boards development, several evaluation
boards have been brought out by industrial companies [4], [5] to provide additional
parameters used to monitoring the state of the running vehicle (see Fig. 1). Beside
the progress of available commercial products, there is a wide attention of the railway
research on the optimization of the sensor and the signal post processing efficiencies to
extract reliable and robust data. There is a development of sensors concerning systems
able to detect the presence of train or wheel and systems aimed at estimating the
vehicle loads on rail. In particular, nowadays the train detection [6, 7] is performed
by two approaches: track circuits [8, 9] and axle counter [6][10]. In order to have less
invasive and expensive solutions, axle counters have been widely used as alternative
[11][12], equipped of a wheel detector,whose approaches are based on:

i



ii

Figure 1: AVI system and axle/wheel detectors

• Rail deformation (strain gauge);

• Acceleration;

• Inductive operating principles (magnetic coils);

• Wavelenght reading (fiber Bragg grating sensors);

• Force.

Strain gauge detects the dynamic load due to the deformation of the rail, but its
measure is affected by the electromagnetic interference [13]. Rail contacts with a
transmitter coil on one side of the rail and a receiver coil on the other are widely used
[14, 15, 16]. The wheel affects the inductive coupling between transmitter and receiver.
The devices are mostly designed as double sensors and are often used as counting
heads for axle counters. By reading the change of the inducted voltage on the receiver
coil due to the wheel presence is possible to detect the presence of the wheel [17]. Other
solutions are based on the inductive loops provided only by one element (Fig. 2, [1]).

The advantage for the user lies in its simple design, little mounting work and the
fact that no electronics are needed at the rail itself. The wheel detector based on
the electromagnetic field involves a simply approach but its reading can be affected
by an error due to EMI interference. These limits lead to the development of wheel
sensors that are based on other principles of physics. Examples include microwave
technology, piezoelectrics, fibre optics or sound technology, but there are few examples
of licensable system ready for serial production. However, many recent research works
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Figure 2: Inductive wheel sensor in the effective range of head of rail and wheel flange

in literature propose a new simple sensor technology, the fiber Bragg grating sensor
(FBG) to be free from the EMI interference problem and to enhance the accuracy and
reliability of the train detection of the signalling system [18, 19]. Besides, the FBG
sensors are immune to electromagnetic interference (EMI). Thanks to this innovative
technology, the complexity of the measure system has moved from the sensor part to
that of peak reading in the received signal. Chu-liang Wei et al. [18] have developed the
X-Crossing and D-Crossing algorithms to compute the number of train axles crossing
the measurement station: they have used a cut-off threshold followed by a derivative
operation, to extract the useful peak corresponding to the crossing train axles from the
received signals. T.K. Ho et al. [7] make the decomposition of the received signals in
different frequency band with the Wavelet Transform to study and define the spectral
characteristics of the useful signal. Buggy et al. [20] make use of cut-off thresholds
and derivative operation to implement the axle counter function. The fiber optic are
also widely applied in the field of the structural engineering with good results [21]; in
[22][23] the optical sensors are used to measure the dynamic load on bridge with speed
higher the 200 km h. Works [24][25][26][27] show the possibility to apply fiber optic to
test the line state, wheel flat and the wheel wear, or the local deformation of the rail
depending by the traversing load [28]. At the end fiber optic are also used to the speed,
acceleration and the weigh in motion systems [29]. Indeed, over the train detection
there are many studies concerning problems affecting the line and vehicle safety that
can be evaluated through WIM (Weigh in Motion) system, able to measure the moving
train loads or unbalances also at high speed. WIM systems can be classified on the basis
of the type of sensors mounted and the location of their mounting. The classification
of the mentioned WIM systems for railways can be performed on the basis of the type
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of sensors adopted and also on the location of their mounting. One of the first systems
was utilizing strain gauges [30] welded to the neutral axis or mounted on rail foot [31].
Optical fibers can be mounted either to the side of the rail, or to the foot of the rail
with the help of special clamps [32]. All the above indicated papers are an important
piece of research in this field, but don’t provide a general analysis approach and
do not meet the question of robustness against the measurement chain performance.
Summarizing, the researchers and industrial efforts towards approaches aimed at
optimizing the sensor performance and the efficacy of the signal post processing [33]
have encouraged this work that is focused on the developing of techniques to extract
data concerning the vehicle running on rail for purposes of vehicle maintenance and
rail, too (by estimations on possible unbalances loads). Two approaches have been
developed to carry out information on the vehicle march through train parameters
estimations as speed, direction of travel, distance among train axles and timetable of
the crossing axles. In order to provide functionalities useful for safety purposes related
to both vehicle and rail a WIM algorithm has been developed. All the approaches have
the prerogative to provide a data set in different working conditions concerning the
vehicle (wagons or a train composition, different values of car body mass and speed).
Studies have also the goal to provide estimation techniques quite flexible against
different measurement chains in terms of number of sensing elements, noise affecting
the measure and kind of sensing elements (strain gauge, FBGs, force sensor), in order
also to do a layout optimization as compromise between the occupied space/cost and
the estimation accuracy.
Fig. 3 summarizes the motivation of the work, aimed at developing efficient estimation
approaches to enhance and integrate the functionalities guaranteed by WIM and AVI
systems.
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Figure 3: The goal is to provide approaches flexible against different typologies of
measurement chains to bring out a data set useful for purposes guaranteed by WIM
and AVI systems



Structure of the thesis

This thesis provides estimation approaches of train parameters flexible and robust
against operating conditions concerning both the vehicle and the measurement chain.

Chapter 1 shows the general architecture of the approach adopted to test the
performance of the algorithms: a physical model of the railway vehicle, a finite element
model of the track and a global contact model have been developed to bring outs the
inputs useful for the estimation part. The benchmark vehicle is the Manchester Wagon,
composed by a car body, two bogies and four wheelsets. The rigid bodies are connected
by means of appropriate elastic and damping elements. The infrastructure model has
been developed to test the approaches performance in different working conditions
regarding both the vehicle and the measurement chain.

Chapter 2 describes the two algorithms developed through time domain or frequency
one approaches (TDA/FDA) to detect the train presence computing its speed and
crossing time instants and number of crossing axles, starting from the knowledge of
the simulated inputs obtained from the physical model described in Chapter 1.

Chapter 3 shows the results of the wide simulation campaign used to test the operation
of both algorithms in the computing of the train detection functionalities. The
benchmark vehicle is the Manchester Wagon and several measurement layouts are
considered in order to check the performance of the estimation algorithms against
different working condition concerning the number and spacing among sensing
elements. Force sensors displaced on measurement sleepers are used during this
training phase. The results on the estimation accuracy on train parameters are shown
and a comparison between the TDA and FDA approaches is carried out, concerning
their performance, functionalities and the required computational times.

vi
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Chapter 4 highlights the performance of the estimation approaches on an experimental
data corresponding to a train composition of locomotive and two wagons with a
different measurement chain from the one used in the training phase (equipped of
strain gauges rather than force sensor). The robustness of the thresholds used to
optimize the performance shown in Chapter 3 is verified.

Chapter 5 describes the WIM algorithm able to estimate the vertical loads, starting
from the knowledge of vertical force measured on measurement sleepers, obtained
from the interaction between the vehicle and track models described in Chapter 1. The
WIM algorithm takes in input also the train parameters estimated by the TDA/FDA
approaches. The vertical loads on the train axle or wheels and the possible unbalances
are computed starting from a formulation based on a Quasi Linearity Hypothesis: the
reproducing of the input signals, when experimental data are not available, has been
optimized by means of least square minimization (LSQ) techniques. The algorithm
is able to estimate also the center of gravity of the vehicle, which accuracy is strictly
dependent from that of vertical load estimations.

Chapter 6 describes the results of the WIM algorithm in the estimating of vertical wheel
loads and centre of mass in different working condition concerning the vehicle mass
and speed and the measurement layout.
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General architecture of the validation
model

Chapter Contents
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To test the performance of the developed algorithms in a wide range of operating
conditions, an accurate validation model has been developed to provide the training
set of the input data. The model can bring out:

• force signals [34], rail bending measurements [35];

• signals corresponding to different measurement layouts, in terms of number and
position of sensing elements.

In the proposed work, vertical forces obtained from force sensors placed on left and
right sides of sleepers have been considered. The general architecture of the system
is illustrated in Fig. 1.1 and it is composed by a physical model part and a estimation
one. The physical model is structured in:

• 3D multibody model of the vehicle (in the studied case the Manchester Wagon
[36], implemented with VI-Rail software, is proposed);

1
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• 3D finite-element model (FEM) of the flexible railway track, developed in Comsol
environment.

These two models interact online through a global wheel-rail contact model, developed
in previous works [37][38]. At each time integration step, the multibody model
provides the kinematic variables (position, orientation and their derivatives) of each
wheel; at the same time, the finite-element model (FEM) of the railway track evaluates
the position, orientation and their derivatives for each node of the beam that represents
the rail. Both the kinematic variables are then sent as inputs to the global contact
model, that returns the global contact forces to be applied to the wheel and the rail.
Once the simulation is finished and the vertical forces on the sleepers F i

zr/l, with
i=1..Nst (Nst is the minimum i of measurement sleepers included in the measurement

Figure 1.1: General architecture of the system: the physical model provides the training
set for the estimation algorithms TDA/FDA, whose estimations are sent in input to the
WIM algorithm
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station) (indicating the vertical forces on the i-th sleeper measured at the right or left
side of the train) are obtained, the estimation part begins. The estimation approaches
are:

• Speed, crossing times, train detection estimation algorithms (TDA/FDA);

• WIM algorithm to estimate vertical wheel loads and the vehicle centre of mass.

1.1 Physical model of the railway track

The adopted approach can manage the simulated data in absence of the experimental
one: the physical model must contain accurate vehicle and track models. The physical
model consists of a 3D finite element model (FEM) of the infrastructure (rail, sleepers
and ballast), a 3D multibody model of the vehicle [39] and a contact model describing
the interaction between the vehicle wheels and the rail. The vehicle model and the
infrastructure one interact online during the simulations by means of the 3D global
contact model, specifically developed to improve reliability and accuracy of the wheel-
rail contact points detection.

1.1.1 The infrastructure model

Rail and infrastructures are modelled as 3D beams (see Fig. 1.2b), supported by
an elastic discrete foundation representing sleepers and ballast (discretized through
BEAM elements with two nodes for element and 6 DOFs for each node). The rails
are connected through visco-elastic elements to nsl 2D rigid bodies representing the
sleepers, which are in turn supported by a visco-elastic foundation including the
ballast properties (see Fig. 1.2b). The discretized equation of the rail is defined as:

M q̈l/r + Cq̇l/r +Kql/r = Fl/r (1.1)

in which M , C and K are the mass, damping and stiffness matrices of the track, ql/r

indicates the discretized track displacements and Fl/r the external applied forces:

Fl/r = Fsl
l/r + Fc

l/r (1.2)
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where Fsl
l/r, Fc

l/r indicate the sleeper forces and the contact forces (provided by the
vehicle and the global contact model). The variables of the generic node qi

l/r ∈ R6 are
the linear displacements v ∈ R3 and the rotational displacements θ ∈ R3:

qi
l/r =

[
vi
l/r

θi
l/r

]
(1.3)

where vector vi
l/r includes longitudinal ui

l/r
rail, lateral vi

l/r
rail and vertical wi

l/r
rail

displacements expressed in the fixed reference system Osysxsysysyszsys. The vector θil/r

indicates the rotational displacements φi
l/r
rail, θi

l/r
rail, and ψi

l/r
rail expressed in the fixed

reference system Osysxsysysyszsys (see Fig. 1.2a).

In this work the damping of the rail is modelled using the "proportional" or Rayleigh
damping; the damping matrix C is evaluated as a linear combination of the inertia M

and stiffness K matrices of the structure:

C = αrM + βrK. (1.4)

The coefficients αr and βr are calibrated in order to fit the typical behaviour expected
from experimental results and physical considerations available in literature [39, 40,
41].
In this work the UIC60 rail profile (with cant angle equal to 1/20) has been adopted.
The main physical characteristics of the rail beam model are listed in Tab. 1.2a.

Table 1.1: Main characteristics of the rail beam model
Parameter Value

Young modulus E 2.1 ∗ 1011 Pa
Density ρ 7.8 ∗ 103 kg/m3

Area of the beam section A 7.686 ∗ 10−3 m2

Momentum of the beam section I 3.055 ∗ 10−5 m4

Rayleigh damping coefficient αr 30 s−1

Rayleigh damping coefficient βr 0.003 s
Distance between neutral section and rail foot zf −0.172 m
Shear factor k 0.4

The length of the straight track studied in the model is L = 72m. The separation
distance between two contiguos sleepers is equal to l = 0.60m. The sleepers are
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(a) Fixed reference system

(b) Model of the interaction between rails, sleeper and ballast

Figure 1.2: Reference system and infrastructure model
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Table 1.2: Main characteristics of the rail-sleeper-ballast system
(a) Main characteristics of the rail beam model

Parameter Value

Young modulus E 2.1 ∗ 1011 Pa
Density ρ 7.8 ∗ 103 kg/m3

Area of the beam section A 7.686 ∗ 10−3 m2

Momentum of the beam section I 3.055 ∗ 10−5 m4

Rayleigh damping coefficient αr 30 s−1

Rayleigh damping coefficient βr 0.003 s
Distance between neutral section and rail foot zf −0.172 m
Shear factor k 0.4

(b) Main characteristics of the sleepers-ballast system

Parameter Value

Mass of the sleeper msl 304 kg
Polar inertia of the sleeper Jsl 200 kg m2

Sleeper Lateral Stiffness kysl 4.3 ∗ 107 N m−1

Sleeper Vertical Stiffness kzsl 2.5 ∗ 108 N m−1

Sleeper Rotational Stiffness kϑsl 1.0 ∗ 107 N m
Sleeper Lateral Damping kysl 2.4 ∗ 106 N s m−1

Sleeper Vertical Damping kzsl 5.6 ∗ 106 N s m−1

Sleeper Rotational Damping kϑsl 1.0 ∗ 105 N m s
Ballast Lateral Stiffness kybal 3.7 ∗ 107 N m−1

Ballast Vertical Stiffness kzbal 1.0 ∗ 109 N m−1

Ballast Rotational Stiffness kϑbal 1.0 ∗ 107 N m
Ballast Lateral Damping cybal 2.4 ∗ 106 N s m−1

Ballast Vertical Damping czbal 1.0 ∗ 107 N s m−1

Ballast Rotational Damping cϑbal 1.0 ∗ 105 N m s
Sleepers distance l 0.6 m
Sleepers total number nsl 121

Beginning of the track LI 0 m
End of the track LF 72 m
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Table 1.3: Main characteristics of the rail beam model
Parameter Value

Young modulus E 2.1 ∗ 1011 Pa

Density ρ 7.8 ∗ 103 kg/m3

Area of the beam section A 7.686 ∗ 10−3 m2

Momentum of the beam section I 3.055 ∗ 10−5 m4

Rayleigh damping coefficient αr 30 s−1

Rayleigh damping coefficient βr 0.003 s

Distance between neutral section and rail foot zf −0.172 m

Shear factor k 0.4

modelled as 2D rigid bodies connected to the rails by means of visco-elastic elements
including lateral kysl, vertical kzsl and rotational kϑsl stiffness and lateral cysl, vertical czsl
and rotational cϑsl damping properties (see Fig. 1.2b and Tab. 1.2b). The longitudinal
position xsl p of the p− th 3DOF system modelling the sleepers-ballast ensemble can be
expressed as follows:

xsl p = LI + (p− 1)l, k = 1, 2, ...nsl (1.5)

where xsl1 = LI , xsl nsl
= LF (LI and LF are the beginning and the end of the track

respectively), l is the distance between two contiguous sleepers and nsl is the total
number of sleepers.
The generic 2D sleeper is supported by a flexible foundation characterising the
behaviour of the ballast through the lateral kybal, vertical kzbal and rotational kϑball
stiffness values and lateral cybal, vertical czbal and rotational cϑbal damping values (Tab.
1.2b). msl and jsl indicate the mass and inertia of sleepers.

The 3DOF body modelling the sleepers-ballast ensemble is described by the lateral ysl
and vertical zsl translations and the rotation ϑsl around the xsl − axis of the sleeper
reference system expressed in the reference system Osysxsysysyszsys (see Fig. 1.2a and
Tab. 1.2b).

Hence, the dynamic model of the sleeper can be expressed through the following
equation:
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Table 1.4: Main characteristics of the sleepers-ballast system

Parameter Value

Mass of the sleeper msl 304 kg

Polar inertia of the sleeper Jsl 200 kg m2

Sleeper Lateral Stiffness kysl 4.3 ∗ 107 N m−1

Sleeper Vertical Stiffness kzsl 2.5 ∗ 108 N m−1

Sleeper Rotational Stiffness kϑsl 1.0 ∗ 107 N m

Sleeper Lateral Damping kysl 2.4 ∗ 106 N s m−1

Sleeper Vertical Damping kzsl 5.6 ∗ 106 N s m−1

Sleeper Rotational Damping kϑsl 1.0 ∗ 105 N m s

Ballast Lateral Stiffness kybal 3.7 ∗ 107 N m−1

Ballast Vertical Stiffness kzbal 1.0 ∗ 109 N m−1

Ballast Rotational Stiffness kϑbal 1.0 ∗ 107 N m

Ballast Lateral Damping cybal 2.4 ∗ 106 N s m−1

Ballast Vertical Damping czbal 1.0 ∗ 107 N s m−1

Ballast Rotational Damping cϑbal 1.0 ∗ 105 N m s

Sleepers distance l 0.6 m

Sleepers total number nsl 121

Beginning of the track LI 0 m

End of the track LF 72 m

Mslv̈
p
sl + Ksl(vsl

p r − vrail
p r) + Csl(v̇

p r
sl − v̇p rrail) + Ksl(vsl

p l − vrail
p l) +

+Csl(v̇
p l
sl − v̇p lrail) + Kbalv

p
sl + Cbalv̇

p
sl = 0 (1.6)

where subscript sl refers to the sleeper, subscript bal indicates the ballast properties,
subscript rail is related to the rail and l/r refers to the left/right side of the rail.
The vector vsl

p includes lateral vslp, vertical wslp and rotational φp displacement of
the sleeper center of mass expressed in the fixed reference system Osysxsysysyszsys (see
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Fig. 1.2a); Msl is the sleeper mass matrix while Ksl and Csl are respectively the stiffness
and damping matrices characterising the rail/sleeper visco-elastic connection. The Kbal

and Cbal are respectively the stiffness and damping matrix of the ballast. The vectors
vsl

p l,vsl
p r are defined as:

vsl
p r =

 vsl
p r

wsl
p r

φp r

 =

 vsl
p

wsl
p − φslp s2
φsl

p

 (1.7)

vsl
p l =

 vsl
p l

wsl
p l

φp l

 ,vsl
p l =

 vsl
p

wsl
p + φsl

p s
2

φsl
p

 (1.8)

where s indicates the railway gauge among the rails. The vectors vrail
p l,vrail

p r are
defined as:

vrail
p r =

v
p r
rail

wp rrail
φp rrail

 , vrail
p l =

v
p l
rail

wp lrail
φp lrail

 . (1.9)

Therefore, each rail-sleeper interaction force is made up of the following components:

F l p
y sl(t) = ky sl(v

l p
sl − v

l p
rail) + cy sl(v̇

l p
sl − v̇

l p
rail) (1.10)

F r p
y sl(t) = ky sl(v

r p
sl − v

r p
rail) + cy sl(v̇

r p
sl − v̇

r p
rail) (1.11)

F l p
z sl(t) = kz sl(w

l p
sl − w

l p
rail) + cz sl(ẇ

l p
sl − ẇ

l p
rail) (1.12)

F r p
z sl(t) = kz sl(w

r p
sl − w

r p
rail) + cz sl(ẇ

r p
sl − ẇ

r p
rail) (1.13)

M l p
x sl(t) = kφ sl(φ

l p
sl − φ

l p
rail) + cφ sl(φ̇

l p
sl − φ̇

l p
rail) (1.14)

M r p
x sl(t) = kφ sl(φ

r p
sl − φ

r p
rail) + cφ sl(φ̇

r p
sl − φ̇

r p
rail) (1.15)

where p = 1, 2, .., nsl, vrailr/l p, wrailr/l p and φrail
r/l p are the second, third and fourth

element of the generic node variables qi
r/l p.

1.1.2 The vehicle model

The railway vehicle chosen for the dynamic simulations is the Manchester Wagon,
the mechanical structure and elastic and damping characteristics of which are easily
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available in literature [36]. The main general characteristics of the vehicle are
summarized in Tab. 1.5a while in Tab. 1.5b the inertia properties are shown.

The multibody 3D model of this vehicle has been widely studied and validated in
different conditions. The model of the Manchester Wagon, implemented in the Adams
VI-Rail environment, is schematically shown in Fig. 1.3a and it lies in seven rigid
bodies:

• one car body;

• two bogies;

• four wheelsets.

The rigid bodies are connected by means of appropriate elastic and damping elements;
particularly, the vehicle is equipped with two suspension stages. The primary
suspensions connect the wheelsets to the bogies (see Fig. 1.3b) and comprise two coil
springs and six dampers (longitudinal, lateral and vertical ones), while the secondary
suspensions connect the bogies to the coach (see Fig. 1.3c) and consist of the following
elements:

• two coil springs;

• four dampers (lateral and vertical ones);

• the traction rod;

• the roll bar (not visible in figure);

• two lateral bumpstops.

Both the suspension stages have been modelled through three-dimensional linear and
nonlinear force elements like bushings, dampers, and bumpstops. The main linear
stiffness and dumping properties of the suspension stages are summarized in Tab. 1.5c.
In this work the ORE S1002 wheel profile has been used.
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Table 1.5: Main characteristics of the Manchester Wagon
(a) Main characteristics of the Manchester Wagon

Parameter Value

Bogie pivot distance 19 000 mm
Bogie wheelbase 2 560 mm
Wheel diameter 920 mm
Height above ToR level of bogie CoG 600 mm
Height above ToR level of coach CoG 1 800 mm
Longitudinal and lateral offset of coach CoG 0 mm

(b) Inertia properties of the multibody model

MBS body Mass Roll Inertia Pitch Inertia Yaw Inertia

kg kgm2 kgm2 kgm2

Car body 32000 56800 1970000 1970000
Bogie 2615 1722 1476 3067

Wheelset 2091 1120 112 1120

(c) Main linear stiffness and damping properties of the Manchester Wagon
suspensions

Primary suspension

kx 3.1E+07 N/m
ky 3.9E+06 N/m
kz 1.2E+06 N/m
cx 1.5E+04 Ns/m
cy 2.0E+03 Ns/m
cz 4.0E+03 Ns/m

Secondary suspension

Coil spring
kx, ky 1.6E+05 N/m
kz 4.3E+06 N/m
kα, kβ 1.1E+04 Nm/rad

Traction rod
kx 5.0E+06 N/m
cx 2.5E+04 Ns/m

Roll bar kα 9.4E+05 Nm/rad

Dampers
cy 3.2E+04 Ns/m
cz 2.0E+04 Ns/m
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(a) Global view of the multibody model

(b) Primary suspensions

(c) Secondary suspensions

Figure 1.3: Multibody model composition
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1.1.3 Global contact model

The vehicle model and the infrastructure model interact online during the simulations
by means of a 3D global contact model, developed by the authors in previous works,
to improve the reliability and the accuracy of the contact points detection. In particular
the used global contact model comprises both the contact points detection [37, 38] and
the global contact forces evaluation, based on the theory of Hertz, Kalker [42, 43] and
Polach [44]. The vehicle and infrastructure models calculate the wheel kinematics
variables (related to each wheel) and the rail kinematics variables (related to each
rail node). Starting from these quantities, the global contact model returns the global
contact forces to be applied to the wheel and the rail. The global contact model is
illustrated in Fig. 1.4.

Figure 1.4: Global contact model: interaction between the vehicle model and the finite
element 3D model of the track
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This Chapter describes the estimation approaches developed to involve train detection
functionalities by means of the computing of several parameters as vehicle speed,
crossing time instants, crossing axles and physical distance between axles. Both of
approaches are aimed at bringing out these parameters with methodologies that must
be flexible against different measurement chain in terms of number, kind of sensor
elements and its performance in terms of noise affecting the measure. Algorithms
can manage the experimental data or, in absence of them, simulated track inputs as
described in Chapter 1 (see Fig. 1.1). Two approaches have been proposed aimed
at detecting the meaning of the input signal peaks also in very badly operating
condition, concerning the noise on the input signal. Indeed, the proposed solutions
are flexible against different measurement chains and robust against the noise. The
aim is the computation of signal local peaks coming from force sensors displaced
on measurement sleepers. The first approach is based on auto/cross correlation
operations, very useful as denoising techniques and as estimators of the time shift
between signals: this way is very useful for the estimation of the crossing time
instants and vehicle speed, but becomes quite complicated when it is applied to a long

14
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composite signal and, to overcome this drawback, a frequency domain approach has
been adopted, based on spectrograms. The operation of the algorithm is described in
Par. 2.2.

2.1 Time domain approach (TDA)

The train detection algorithm aims at computing different train parameters like the
crossing times of vehicle on sleepers, vehicle speed and axles number.

Figure 2.1: Measurement layout composed by three measurement sleepers each one
equipped of two force sensors on both left and right sides

The used track inputs are the signals coming from the force sensors located on the left
and right side on every sleeper F i

z r, F i
z l (see Fig. 2.1), even if the algorithm can manage

different signal input (i.e the vertical forces acting on the sleepers, the rail shear and
bending, longitudinal strain and stress on rail). Fig. 2.2 illustrates the right and left
vertical forces acting on the first sleeper (vehicle speed V = 10m s−1 and car body mass
M = 10t) of the measurement station: there are four peaks related to the four axles of
the Manchester Wagon. F i

z r, F i
z l are quite similar because the travel of train is on a

rectilinear track. To stress the estimation approaches, very rough operating conditions
have been simulated, with the adding of an elevate noise level on the simulated signal
amplitude. Fig. 2.2 represents two signals (with or without the added noise), in which
a noise has been added on the input signal to obtain a signal input-to-noise ratio equal
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to 5 dB (vehicle speed V = 10m s−1 and car body massM = 10t). The considered signal

is the mean between the left and right force input signals
(
F i
zm =

F i
z r+F

i
z l

2

)
, in order to

reject possible disturbances due to the lateral motion of the vehicle.

The technique of auto correlation has been applied because it shows an high robustness
against disturbances and noise [45],[46]. Fig. 2.3 shows a scenario in which the
autocorrelation is carried out on a force signal, corresponding to four crossing train
axles, affected by noise. Considering the measured signal, the noise affects all of its
shape, especially its peaks, useful to localize the train axles. Once the autocorrelation
is done the noise doesn’t affect the signal peaks but mainly its low level, that is not
important in the detecting of the main relevant information: this improvement has
pushed to use this technique during the algorithm development, based on the signal
peaks detection. The operation of the algorithm as speed detector can be summarized
in the following points:

• Simulated track inputs: starting from the simulated force signals coming from
the measurement layout (see Fig. 2.1), their mean is done (in order to reject
possible lateral disturbances) and a white noise level is added;

• Auto/Cross Correlation techniques: for each noisy signal the auto and cross
correlation are applied;

• Filtering stage: in order to optimize the estimation accuracy an filter with a cut-
off frequency tuned depending by the vehicle speed is performed(see Tab. 2.1);

• Crossing times and speed detection: starting from the knowledge of the
difference between samples corresponding to the autocorrelation and cross
correlation maximums, the vehicle speed are obtained.

Particularly, starting from a measurement layout equipped of three measurement
sleepers and considering a couple of force signals, the first step consists in performing
the autocorrelation on each obtained signals F i

zm and then in the cross correlation
among all the possible pairs of signals F i

zm and F j
zm. The generic expression of the

cross-correlation between two signals (i,j) is:

Rij(m) =
N−m−1∑
n=0

F i
zm(m+n)

F j
zm(n)

∗ (2.1)
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(a) Vertical forces F 1
z r, F 1

z l acting on the right and left side of the first
sleeper of the measurement station (performed at a vehicle speed V=10
m s−1) and a car body mass M=10 t

(b) Original input signal F 1
zm (red line) and input signal with added

noise (green line): Signal-to Noise ratio (SNR)=5 dB performed at a
vehicle speed V=10 m s−1 and a car body mass M=10 t

Figure 2.2: Input signal
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Figure 2.3: Denoising effect obtained with the autocorrelation signal: the noise not
affects the local peaks, useful for the train axles detection

digitalized with N samples (m indicates the m-th sample of the correlation signals),
where F j

zm(n)

∗ is the complex conjugate of the discretized signal j and F i
zm(m+n)

indicates
the discretized signal i, shifted of m samples. Rii(m) indicates the auto correlation
signal. By means of the correlation operations, it is possible to evaluate the degree of
true similarity between all the pairs of signals.
The cut-off frequencies computed for each vehicle speed is summarized in Tab. 2.1.

Table 2.1: Cut off frequencies computed in the full speed range

Speed [m s−1] fcut[Hz]

2 27

10 35

20 45

30 55

40 65

50 75

60 85

70 95

80 105

Followed the filtering stage, the maximum signal peaks are detected: starting from
the difference between the sample corresponding to the maximum value of the
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autocorrelation of the signal F i
zm and the one corresponding to its cross correlation with

the F j
zm signal, it is possible to compute the time delay between the F i

zm, F j
zm signals

just multiplying this difference by the sample time integration step ∆t. Through this
method, the time shifts among all the pairs of input signals can be easily determined.
Once known the time delays, the vehicle speed can be computed just dividing the
distance between the corresponding sleepers by the time shift previously found for
the signals. At the end, the estimation of the vehicle speed is the mean among all the
speeds obtained from the previous computed time shifts (see Tab. 2.2).

Table 2.2: Number of speed computing among sleepers
Number Sleepers Number of speed computing

2 1
3 3
4 6
5 9

An example with two sleepers located at Xi and Xj positions, spaced of dij apart, is
reported:

mi = argmax Rii(m) mij = argmax Rij(m) (2.2)

∆Tij = ∆t ∗ |mij −mi| = tj − ti dij = Xj −Xi V =
dij

∆Tij
(2.3)

wheremi andmij are the samples corresponding respectively to the maximum value of
autocorrelation of i-th sleeper signal Rii and cross correlation Rij between the i-th and
the j-th ones; ∆t is the sample time and ∆Tij is the time shift between the i-th and the
j-th force signals (corresponding to the two sleepers); V represents the vehicle speed,
computed dividing dij by the corresponding time delay ∆Tij . Fig. 2.4a describes the
operation of the algorithm as time crossing instants and speed detector [46][45].

Fig. 2.4b shows the shift between signals coming from two sleepers spaced of 9.6
m: just dividing itself with the obtained time shift the vehicle speed is obtained (Hp.
Tc=0.001 s).
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(a) Approach adopted at estimating the crossing time instants on fixed point along the track and at the
vehicle speed computing

(b) Cross Correlation R1,5 between the first sleeper signal F 1
zm and the

fifth one F 5
zm and the auto correlation R1,1 of the signal F 1

zm (performed
at a vehicle speed V=10 m s−1 and with a car body mass M=10 t): just
dividing the physical distance between the measurement sleepers (9.6
m) and the time shift is possible to obtain the speed vehicle

Figure 2.4: Application of the Cross/Auto correlation techniques as speed and time
crossing instants estimator
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To compute the crossing times on sleepers it is sufficient to use the signal time shifts
among the different sleepers, starting from the first one to the last one:

ti = t0 +
i−1∑
j=0

∆Tj,j+1. (2.4)

The method used to test the train detection is still based on the correlation theory
because it increases the signals of several orders of magnitude when there is a good
degree of true similarity and so it guarantees a better robustness against the input
noise and disturbances (Fig. 2.3).

Table 2.3: Correspondence between the auto correlation signal peaks and the number
of axles

Distance between axles Description Value [mm]

d12 Bogie wheelbase 2 560

d13 Bogie pivot distance 19000

d24 Bogie pivot distance 19000

d23 Distance between bogies 16440

d14 d12 ∗ 2 + d23 21560

Fig. 2.5a shows the scenarios in which two axles of two different bogies are lost:
more focused, if the first and last axles are lost (blue line) there is a local peak that
corresponds to the distance between the second and third axles (16.44 m). Otherwise,
if the second and fourth or first and third are lost there is a local peak that corresponds
to the bogie pivot distance (19 m). Finally, if the second and third axles are lost there
is a peak corresponding to the distance between the first and last axles (21.560 m). Fig.
2.5b shows the scenarios in which two axles of the same bogie are lost: in both cases
the autocorrelation signal implies the presence of the peak corresponding to the bogie
wheelbase distance (2.56 m). The approach used to discuss the Fig. 2.5a is also valid
in the scenarios in which one of the vehicle axles is lost (Fig. 2.6), because the signal
can be obtained by the combination of each signal showed in Fig. 2.5a. Especially, if
the first or forth axles are lost, the local peaks that compare can be obtained with the
combination of the blue and green line in Fig. 2.5a.
The same approach is used for Fig. 2.6b. These considerations bring out the idea that
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(a) Autocorrelation signal in a scenario in which two axles in two different bogies are lost: the local
peaks correspond to the physical distance of the rimaining axles

(b) Autocorrelation signal in a scenario in which two axles in the same bogie are lost: the local peaks
correspond to the bogie wheelbase distance

Figure 2.5: Autocorrelation signal in a scenario in which two of the fourth train axles
are lost
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(a) Autocorrelation of the signal if the first or fourth axle are lost: the local peaks are linked with the
physical distance of the remaining peaks

(b) Autocorrelation of the signal if the third or second axle are lost: the local peaks are linked with the
physical distance of the remaining peaks

Figure 2.6: Autocorrelation signal in a scenario in which one of the train axle is lost
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Figure 2.7: Operation of the algorithm as train detector: starting from the noisy
input signal, the autocorrelation is done and then filtered. Once the autocorrelation
is obtained its derivative is done and smooth to find samples corresponding with
autocorrelation local peaks. The traversed axles are at the end computed applying
a cut off threshold Th (0.12)

working on the autocorrelation signal allows to hold the information of the original
one with a less noise impact on the local peaks, important for the train detection. The
operation of the algorithm to this aim is shown (Fig. 2.7). Starting from the noisy
input signal, the autocorrelation and its normalization are carried out (to be free from
the force value): then a filtering stage is applied to the autocorrelation signal. The
derivative signal is used and filtered with a smooth action to compute local peaks of
the autocorrelation signal (that is examined for positive lags) and then applying a cut-
off threshold Th (0.12) the final signal peaks are found (see Fig. 2.7).
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(a) Force signal corresponding to eith train
axles

(b) Autocorrelation of a force signal composed
by 8 peaks: the signal contains 13 peaks
(computed for positive lags)

(c) Force signal corresponding to twelve train
axles

(d) Autocorrelation of a force signal composed
by 12 peaks: the signal contains 22 peaks
(computed for positive lags)

(e) Composite Signal: locomotive and two
wagons

(f) Autocorrelation of a signal corresponding
to a composite train

Figure 2.8: Autocorrelation signal evolution with an increasing number of original
signal peaks (a,b,c) and with a composite train (e)

1
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As previously said, the auto/cross correlations techniques are very useful to estimate
the time shift among signals and so the vehicle speed but the peaks detection becomes
quite difficult with a composite signal as well as in a real scenario. Moreover this
approach has not shown a sufficient flexibility to trains with different composition if
the autocorrelation is applied on the whole input signal (see Fig. 2.8f).
Another significant drawback of the approach concerns the reliability of the vehicle
speed detection (see Fig. 2.4), which also depends by the physical distance among
sensing elements and the sampling time of the measurement chain. Indeed, in the
case in which the theoretical speed needs an accuracy bigger than the one guaranteed
by the sampling time, there is an intrinsic error due to the resolution provided by
the ratio between these two amplitudes. In particular, starting from the Layout 2 as
measurement chain (in which there are two adjacent sleepers spaced of 0.6 m, see Tab.
3.2) is supposed of detecting a train speed of 70 m s−1. Once the cross correlation is
performed, the resulting shift between the two signals is mij = 892, where i and j

correspond to 1 and 2 respectively: applying the ratio between the physical distance
dij and the product of the sampling time (Tc = 0.001s) with mij the obtained speed is
66.67 m s−1 involving an estimation relative error of 4.76 %. This is due to not by the
performance of the estimation approach but by the accuracy of the sampling time that
must be of 0.00095 s to obtain the correct speed value (see Fig. 2.9): these considerations
have involved the developing of new estimation approach based on techniques in the
frequency domain.

Figure 2.9: Time Domain algorithm- drawback of the approach described in Fig. 2.4
aimed at estimating the vehicle speed
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2.2 Frequency domain approach (FDA)

To overcome the time domain problems (see Fig. 2.8), an alternative algorithm has
been developed, based on frequency domain techniques with the aim at searching a
tool flexible to the composition of the input signal. The new methodology is based on
the application of the FFT (Fast Fourier Transform) to identify local peaks due to a train
axle from other peaks like noise. Spectrogram is a widely used post processing method
to analyze audio/speech and biomedical signals [47][48][49][50]. This approach allows
to identify the signal peaks and has also an information of the evolution of the signal
in the time domain. The spectrogram settings depends by spectral informations of the
analysed signal. Fig. 2.10 shows the input signal (simulated force signal corresponding
to a train with 50 t of mass and 80 m s−1 of speed) in which the fourth axles are located
in the intervals (0.2-0.3) s and (0.45-0.55) s and its power spectral density estimation
(PSD): the PSD highlights that the simulated signal, coming from the physical model
discussed in Chap. 1, has a bounded bandwith (within 100 Hz ). This information
may suggest the configuration of spectrograms to get an high time resolution and a
low frequency one, due to the no presence of relevant single frequencies that must be
detected.

(a) Input Signal (b) PSD estimation of the input signal

Figure 2.10: Input signal and PSD estimation: axles are present in the time interval of
(0.2-0.3) s and (0.45-0.55) s
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In particular, to use the spectrogram different parameters must be setted:

• number of FFT points;

• type of window;

• width of the window;

• number of window;

• overlap among windows.

The optimal number of points of the FFT has been carried out by means of the
nearest multiple of 2 of the signal size. The choice of the window and its parameters
(type,width,number and overlap) is very important and have effects on the good
analysis of the signal. Different windows have been evaluated and at the end, in order
to do the train detection, the Taylor one (Fig. 2.11) has been used. Taylor windows are
similar to Chebyshev ones. Whereas a Chebyshev window has the narrowest possible
main lobe for a specified side lobe level, a Taylor window allows to make trade off
between the main lobe width and the side lobe level. The Taylor distribution avoids
edge discontinuities, so Taylor window side lobes decrease monotonically. The leakage
factor is null, setting the side lobes attenuation to 50 dB (Tab. 2.5). Fig. 2.11 shows the
evolution of Taylor windows in the time and frequency domains with a different side
lobes attenuation: Figs. 2.11a shows how bigger smooth of the lateral ends (left,right)
of signal may involve a bigger attenuation of the lateral side lobes (Fig.2.11b). Setting
a 50 dB of attenuation (Fig.2.11c) the leakage factor is 0.01 % (very low deformation of
the original signal spectrum).

Fig. 2.12 shows spectrograms with an increasing number of samples, from 10 to 100
samples: with the increase of the window size the time resolution decreases and the
frequency one increases. Indeed, in Fig. 2.12a the useful frequency information of
the input signal is localized in a thin time interval, but there is a high frequency one
(low frequency resolution). Increasing the number of window samples (for example
100) the information is more accurate in the frequency domain (amplitude in the
(0;-20) dB interval is within 80 Hz), but has a worst definition in the time domain.
Considerations regarding the windows size have been carried out in order to detect
the train parameters in a wide range of its mass and speed: in particular, with the
increase of the vehicle speed the crossing train axles are thinner and so it’s important to
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(a) Time domain shape of the Taylor window with
different side lobes attenuation (-50 dB, -30 dB)

(b) Frequency domain shape of the Taylor window
with different side lobes attenuation (-50 dB, -30 dB)

(c) Windows Visualization tool: time domain and frequency one properties of the
Taylor windows with -50 dB of side lobes attenuation

Figure 2.11: Setting of the side lobes attenuation of the Taylor windows: (a-b) with the
increase of smoothing of the left and right window sides the leakage factor decrease,
(c) final configuration of the used Taylor window
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use windows with an higher resolution in the time domain. Furthermore, the spectral
properties of the signal (Fig. 2.10) suggests that is useful to use spectrogram with an
high time resolution, rather than a frequency one. To this aim, the size of windows
have been scaled depending by the simulated input: for a speed range of (2-80) m s−1

the windows size has been reduced with the increase of the vehicle speed to obtain a
bigger time resolution (Fig. 2.13, Tab. 2.4).

(a) Taylor Window Width: 10 samples (b) Taylor Window Width: 50 samples

(c) Taylor Window Width: 80 samples (d) Taylor Window Width: 100 samples

Figure 2.12: Spectrogram applied on the input signal with a different value of window
width
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Figure 2.13: Increase of the window time resolution with the increasing of the vehicle
speed

Table 2.4: Setting of the Taylor windows size in the full speed range
Speed [m s−1] Window Size

[samples]
2 120
10 83
20 43
30 30
40 23
50 20
60 17
70 15
80 13

Concerning the overlap among windows, two plots of spectrogram have been done
with or without the overlap, in order to highlight its effect on the spectrogram analysis.

It’s possible to notice the difference in Fig. 2.14 due to the overlap: the presence
of overlap gets a detailed analysis. These considerations bring out the idea that
using the spectrogram is possible to identify the train axles, involving train detection
applications. Moreover, when the window scans the signal, if it superimposes a train
axle, the power spectral density assumes a relevant value that, if it is over a threshold,
makes possible the axle detection(Fig. 2.15, 2.16). (Fig. 2.15, 2.16).



2.2 Frequency domain approach (FDA) 32

(a) Spectrogram applied without overlap (b) Spectrogram applied with overlap

Figure 2.14: Evaluation of the overlapping among windows: the presence of the
overlap involves the train axles detection with bigger accuracy

Fig. 2.17 shows the operation of the algorithm as train axles detection, summarized in
the following steps:

• Noise is added to the input signal (when experimental data are not available, see
Fig. 1.1);

Figure 2.15: Train axles detection: the maximum PSD (power spectral density)value of
each spectrogram window is computed and plotted
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Figure 2.16: Train axles detection: applying the cut-off threshold is possible to detect
the four train crossing axles

Table 2.5: Configuration of the spectrogram aimed at the train axles detection
Window Side Lobes Attenuation (dB) Number Overlap [%] Cut-Off Threshold (dB)

Taylor -50 40 40 -24

• Normalization of the input signal;

• Calculation of the maximum value of PSD corresponding to the spectrogram
windows during the signal scanning;

• Plot of the maximum PSD values for each segment;

• Smooth operation of the signal;

• A cut off threshold (-24 dB) is applied to localize the train axles.

The configuration of the spectrogram used to compute the number of crossing axles
is indicated in Tab. 2.5. The spectrogram has been also used to estimate the crossing
times instants and the vehicle speed thanks to the central time of windows used to
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Figure 2.17: Operation of the algorithm as train detector: starting from the simulated
force signal, provided by the validation model described in Fig. 1.1, a noise level is
added and then the plot of each maximum PSD is used. In this way is possible to
separate the useful peaks from the noise ones

decompose the signal. Once the window corresponding with the axle is found, the
corresponding central time is an approximation of the time crossing instants (see Fig.
2.18).

To provide an accurate estimation a Bartlett window has been used, which main
properties are its leakage factor of 20 % and side lobes attenuation of 20 dB (see Fig.
2.19). The configuration of the spectrogram aimed at estimating the crossing times
referred to the train axles is indicated in Tab. 2.6.

The procedure to estimate the axles crossing instants and, as a consequence, the vehicle
speed is summarized in the following steps:

• application of the spectrogram (which configuration is indicated in Tab. 2.6);
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Table 2.6: Configuration of the spectrogram for the time crossing instants and vehicle
speed detection

Window Number Overlap

Bartlett 60 90 %

(a) Input Force Signal: the first train axle occurs at 1.56 s

(b) Windows of spectrogram applied to the force signal

Figure 2.18: Application of the spectrogram as estimator of the time crossing instants
along the rail in correspondence of the train passage: (b) the central time of the eighth
window is the best match of the crossing time corresponding to the first train axle
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Figure 2.19: Bartlett windows properties in the time domain (left) and in the frequency
one (right)

• identification of the windows corresponding to the train axles and reading of the
time instants in the centre of each window;

• starting from the knowledge of the measurement layout, for each train axle the
time shifts between pairs of measurement sleepers are done;

• the vehicle speed is computed for each pairs, just dividing the physical distance
between pairs of measurement sleepers with the corresponding detected time
shifts.

Fig. 2.20 shows the operation of the algorithm in the computing of the time shift
among sleepers in a reference scenario of three ones. For each sleepers, four time
crossing instants are computed with spectrogram, corresponding to the train axles.
The frequency approach allows to identify crossing times of each train axle and so the
computing number of the vehicle speed is multiplied with the number of train axle.
The speed detection for three measurement sleepers can be obtained as:

V =

∑naxles

i=1 ( dS21

dT i21
+ ( dS32

dT i32
+ ( dS13

dT i13
)

naxlesnsleepers
(2.5)

where dT ijk indicates the time shift between the j and k sleepers of the i axle, dSjk
indicates the physical distance between the j and k sleepers.
The same approach is used for layout with different number of sensing elements.
Tab. 2.7 compares the number of computing of the vehicle speed done with the TDA
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and FDA approaches with a measurement chain equipped of a different number of
sensing elements.

Figure 2.20: Speed computing: for each train axle i the vehicle speed is obtained
dividing the physical distance (dSjk) between two sleepers with their time shift dT ijk.
At the end the mean among all the obtained vehicle speed estimation is carried out

Table 2.7: Number of speed computing
Number of sleepers Time Domain Frequency Domain

Approach (TDA) Approach (FDA)

2 1 4
3 3 12
4 6 24
5 9 36
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The operation of the two estimation approaches (Time Domain Approach TDA,
Frequency Domain Approach FDA) have been trained with a wide simulation
campaign, concerning several vehicle parameters (mass and speed, see Tab. 3.1) and
measurement chain ones (number of sensing elements and spacing among them, see
Tab. 3.2). In particular, the simulated input signals come from force sensors placed
over measurement sleepers at the right an left sides: the resulting force signal is the
mean between the right and left detected forces in order to reject possible lateral
disturbances. The measurement layout is composed by measurement sleepers spaced
among themselves of 0.6 m (Fig. 3.1). Two different levels of white noise (SNR: 4dB
or 8 dB, see Fig. 3.2) have been added on the simulated input signal to check the

38
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robustness of the estimation approaches under operating conditions worse than those
of a real scenario.

Table 3.1: Simulation Parameters
Parameter Min. Max. NV/NM

Velocity (m s−1) 2 80 9
Car-body Mass (t) 10 50 5

Figure 3.1: Measurement layout equipped of force sensor elements placed over
measurement sleepers, spaced of 0.6 m

(a) Input Signal with a snr: 4 dB (b) Input Signal with a snr: 8 dB

Figure 3.2: Noise levels added to the input signal (see also Tab. 3.1) used to test the
algorithm performance in the simulation campaign
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Several measurement layouts have been proposed for both testing the robustness of the
approaches against different measurement chains and to highlight the improvement
of the estimation accuracy with the increasing of the sensing elements number. Each
measurement layout differs from the other ones for the number of sensing elements or
distance among themselves (see Tab. 3.2).

Table 3.2: Measurement layouts used to test the performance of the estimation
approaches, composed by a different number of sensing elements and spacing among
them
N◦ Sleepers Spacing Occupied space [m] Sleeper ID Layout ID

2 0 0.6 [64 65] Layout 1

2 1 1.2 [64 66] Layout 2

2 2 1.8 [64 67] Layout 3

2 3 2.4 [63 67] Layout 4

3 0 1.2 [64 65 66] Layout 5

3 1 2.4 [64 66 68] Layout 6

3 2 3.6 [62 65 68] Layout 7

3 3 4.8 [60 64 68] Layout 8

4 0 1.8 [53 64 65 66] Layout 9

4 1 3.6 [60 62 64 66] Layout 10

4 2 5.4 [58 61 64 67] Layout 11

4 3 7.2 [56 60 64 68] Layout 12

5 0 2.4 [63 64 65 66 67] Layout 13

5 1 4.8 [60 62 64 66 68] Layout 14

5 2 5.4 [58 61 64 67 70] Layout 15

5 3 9.6 [56 60 64 68 72] Layout 16
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The two basilar tasks are the crossing times detection (to compute the vehicle speed)
and the trains one: to the first aim, a Monte Carlo analysis has been carried out through
several algorithm iterations (see Tab. 3.3), in which, for each one, a white noise is added
on the input signal. When the goal is the train detection, the aim is to verify that no
estimation errors are involved with a quite big number of crossing axles (in order to be
more confident with a realistic scenario).

Table 3.3: Monte Carlo Analysis to evaluate the algorithms performance in estimating
of the train parameters

Estimated Amplitude Monte Carlo Approach

Crossing Times (Speed Detection) [1:2:50 60 70 80 90 100]

3.1 Time Domain Approach (TDA)

The performance analysis involves the definition of several errors: the crossing times
and vehicle speed estimations led to the definition of the percentage relative speed
error Esim

v [%] and Ti one Esim
Ti

[%].

Esim
v =

|V̂ sim − V |
V

Esim
Ti

=
|t̂Ti

sim − tTi |
tTi

(3.1)

where V and tTi represents the nominal values of the speed and crossing times
respectively, and V̂ sim, t̂Ti

sim
indicate the estimated ones. Errors computed with the

Monte Carlo analysis become:

Esimiter
v =

niter∑
n=1

Esim
v

niter
Esimiter
Ti

=

niter∑
n=1

Esim
tTi

niter
(3.2)

where Esimiter
v , Esimiter

Ti
and niter are respectively the errors on the speed and crossing

times estimations and the number of algorithm iterations.
E.g the Layout 1 is considered which involves two measurement sleepers spaced of 0.6
m: at first an SNR of 8 dB is considered. Results have led out several considerations: in
particular Figs.3.3-3.4 highlight the performance in estimating the vehicle speed (that
are strictly dependent from those on the time crossing estimation) in the operating
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conditions described in Tab. 3.1. Fig. 3.3a is a 3D plot of Esimiter
v [%] trend with the

Monte Carlo approach: errors corresponding to a vehicle speed of 70 m s−1 (yellow
bars) are quite higher than the other ones, because there is an added error due to the
accuracy of the signal sampling time in agree with the considerations developed in
Fig. 2.9. Other considerations concern the dependence of estimation accuracy by the
vehicle mass: indeed, results have been analysed separately for each speed in Fig.
3.3(b-f) and Fig. 3.4(a-d) to highlight the little different among the trends of Esimiter

v [%]

depending only by the vehicle mass: this is clear because the value of vehicle mass
involves a different auto/cross correlation peaks height, that is normalized during
the post-processing approach (see Fig. 2.4) and so a little difference among errors
depending only by the vehicle mass is expected. These considerations have involved
the computing of additional parameters EmsimTik and Em

sim
Vk

(Fig. 3.5), defined as:

Em
sim
Tik

=
nmass∑
M=1

EM
sim
Tik

nmass
Em

sim
vk

=
nmass∑
M=1

EM
sim
vk

nmass
(3.3)

whereEMsim
Tik

andEMsim
vk

are the relative crossing times and speed errors corresponding
to a vehicle mass M ∈ (10− 50)t and speed k ∈ (2− 80)m s−1.
As a consequence, for each Monte Carlo iteration, errors become:

Emsimiter
T ik

=

niter∑
n=1

Em
sim
Tik

niter
Emsimiter

vk
=

niter∑
n=1

Em
sim
vk

niter
(3.4)
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(a) 3D plot diagram of the percentage relative
speed errors Esimiter

v

(b) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=2 m s−1

(c) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=10 m s−1

(d) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=20 m s−1

(e) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=30 m s−1

(f) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=40 m s−1

Figure 3.3: Layout1: Esimiter
v [%] convergence with the Monte Carlo Analysis in all the

operating conditions concerning vehicle mass and speed. Focus on error trends for all
vehicle mass and a single value of speed (b-f)
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(a) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=50 m s−1

(b) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=60 m s−1

(c) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=70 m s−1

(d) Scatter plot of the percentage relative speed
errors EM

sim
vk

with k=80 m s−1

Figure 3.4: Layout1: Focus on Esimiter
v [%] trends for each mass and vehicle speed (a-d)
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(a) Percentage Emsimiter

Tik
trend with k=(2-80) m s−1 on the second measurement sleeper

(b) Percentage Emsimiter
vk

trend with k=(2-80) m s−1

Figure 3.5: Layout1: Monte Carlo approach-Focus on Emsimiter
T ik

[%] and Emsimiter
vk

[%]

trends for each speed

Fig. 3.5 shows Emsimiter
T ik

and Emsimiter
vk

errors. In according with considerations in
Fig. 2.4, the accuracy on the speed detection is strictly related to that on the crossing
times: indeed, comparing the trend of both errors, their Monte Carlo trends are
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quite specular. Same considerations and similar results have been obtained with the
other measurement layouts, in which the convergence of the Monte Carlo analysis
has been reached, verifying the good operation of the algorithm with a different
number of sensing elements and spacing among them. Results have been plotted in
the AppendixA, to not overload the reading.

3.1.1 Analysis of the TDA algorithm performance

The Monte Carlo analysis underlines how in all the conditions concerning the vehicle
(speed and mass) and measurement layouts (number and spacing among sensing
elements) the convergence is reached: this is important in order to establish the
good operation of the proposed approach. With the aim at evaluating the algorithm
performance a results reportage has been here carried out in correspondence of the
reached Monte Carlo convergence: estimation errors on the vehicle speed Emsimconv

v [%]

andEMv

simconv [%] are shown in all the operating conditions indicated in Tab. 3.1. Errors
on the vehicle speed are strictly linked with those on the crossing times (see Eq. 2.3 and
Fig. 2.4). The performance in estimating the vehicle speed are indicated, for both the
signal-to-noise ratio of 4 dB and 8 dB. Results are both on the vehicle speed and on the
approach abilities to carry out train detection functionalities.

3.1.1.1 Speed detection

Following the estimation errors on the vehicle speed are shown, when the Monte Carlo
convergence is reached. Tab. 3.4 summarizes the Emsimconv

v [%].

To best understand the effect of the measurement layout on the estimation accuracy,
Fig. 3.6 plots the trend of Emsimconv

v [%], highlighting an errors amplitude decreasing
with an increasing number of sensing elements and spacing among them. More
focused, two measurement sleepers involve estimation errors on speed below the 1%
if are spaced of 2.4 m, but the best performance is obtained with five measurement
sleepers that allow to obtain estimation errors below the 0.4% if are spaced of 2.4m.
Figs. 3.7-3.9 show the trend of Emsimconv

v [%] computed among the masses for each
layout and the EMv

simconv [%] values for each speed. All measurement layout involves
errors below the 1% for each speed except the one of 70 m s−1 that is affected by the
intrinsic error due to the accuracy of the sampling time (see Fig. 2.9). Tab.3.5 shows
the maximum values of the EMv

simconv(%) computed for each vehicle speed, with the
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indication of vehicle mass corresponding with the maximum error value.

Table 3.4: Convergence Emsimconv
v [%] reached with 40 iterations (SNR: 8dB)

Layout Speed [m s−1]

2 10 20 30 40 50 60 70 80
1 0.26 0.42 0.87 1.2 0.4 0.12 -0.16 4.69 0.94
2 0.02 0.25 0.35 0.78 0.01 0.18 -0.04 1.22 0.02
3 0.14 0.20 0.29 0.39 0.17 0.03 0.02 1.62 0.39
4 0.08 0.15 0.24 0.41 0.03 0.04 0.05 0.69 0.09
5 0.22 0.34 0.76 1.09 0.15 -0.12 0 2.38 0.2
6 0.11 0.19 0.39 0.44 -0.1 -0.08 -0.03 0.95 -0.11
7 0.05 0.09 0.23 0.34 -0.1 -0.08 -0.03 1.00 -0.1
8 0.05 0.12 0.15 0.29 0.04 0.04 0 0.56 0.02
9 0.18 0.28 0.48 0.94 -0.11 -0.02 -0.24 2.34 0.14

10 0.08 0.17 0.41 0.48 -0.05 0.04 0.02 0.84 0.09
11 0.05 0.12 0.20 0.23 0 -0.03 -0.01 0.85 -0.01
12 0.04 0.06 0.14 0.26 0 0.03 0.03 0.50 0.01
13 0.15 0.20 0.62 0.67 0.08 0.13 0.08 2.00 0.3
14 0.1 0.15 0.30 0.38 -0.03 0.00 0.00 0.70 0
15 0.05 0.05 0.20 0.30 0.02 0.00 0 0.72 0.15
16 0.04 0.07 0.12 0.20 0.03 0.01 0 0.36 0
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(a) Em
simconv
v (%) trend: the increasing of the

spacing between the two sleepers involve a
decrement of the estimation error

(b) Em
simconv
v (%) trend: the increasing of the

spacing among the three sleepers involve a
decrement of the estimation error

(c) Em
simconv
v (%) trend: the increasing of the

spacing among the four sleepers involve a
decrement of the estimation error

(d) Em
simconv
v (%) trend: the increasing of the

spacing among the five sleepers involve a
decrement of the estimation error

Figure 3.6: Em
simconv
v (%) trend with different measurement chains: errors are

decreasing with the increasing of the number of sensing elements and the spacing
among them (from 0.6 m to a maximum one of 2.4 m)
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(a) Layout1: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout2: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout3: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout4: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout5: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout6: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.7: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 1-6: the maximum
errors occurs when the vehicle speed is equal to 70 m s−1, whose amplitudes are
affected also by errors due to the not sufficient accuracy of the sampling time
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(a) Layout7: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout8: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout9: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout10: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout11: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout12: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.8: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 7-12: the maximum
errors occurs when the vehicle speed is equal to 70 m s−1, whose amplitudes are
affected also by errors due to the not sufficient accuracy of the sampling time
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(a) Layout13: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout14: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout15: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout16: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.9: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 13-16: the maximum
errors occurs when the vehicle speed is equal to 70 m s−1, whose amplitudes are
affected also by errors due to the not sufficient accuracy of the sampling time
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Table 3.5: Maximum EMv

simconv(%) values computed in the full speed range, with an
input SNR of 8 dB

Layout Speed [m s−1]

2 10 20 30 40 50 60 70 80
1 0.51 0.60 1.1 2.73 0.72 0.44 -0.44 5.69 1.92

M=20 t M=30 t M=50 t M=30 t M=30 t M=20 t M=20 t M=30 t M=40 t
2 0.07 0.31 0.54 1.07 0.26 0.35 0.26 1.83 0.37

M=40 t M=30 t M=40 t M=10 t M=20 t M=40 t M=40 t M=40 t M=50 t
3 0.18 0.23 0.39 0.54 0.28 0.28 0.25 1.83 0.65

M=50 t M=50 t M=30 t M=30 t M=50 t M=40 t M=20 t M=10 t M=40 t
4 0.13 0.24 0.37 0.56 0.17 0.11 0.13 0.93 0.17

M=40 t M=20 t M=10 t M=10 t M=30 t M=40 t M=20 t M=40 t M=30 t
5 0.32 0.52 0.89 1.35 0.49 0.13 0.06 3.5 0.39

M=40 t M=20 t M=10 t M=50 t M=30 t M=10 t M=20 t M=30 t M=20 t
6 0.17 0.27 0.49 0.73 -0.29 -0.3 -0.17 1.42 -0.3

M=10 t M=40 t M=30 t M=30 t M=10 t M=40 t M=20 t M=20 t M=10 t
7 0.08 0.16 0.29 0.49 0.13 0.14 0.07 1.28 0.62

M=30 t M=30 t M=20 t M=30 t M=10 t M=40 t M=10 t M=30 t M=10 t
8 0.09 0.19 0.26 0.39 0.10 0.13 0.05 0.69 0.08

M=40 t M=50 t M=10 t M=50 t M=30 t M=20 t M=30 t M=50 t M=30 t
9 0.25 0.40 0.82 1.27 -0.21 0.23 0.65 2.88 0.53

M=20 t M=20 t M=40 t M=30 t M=50 t M=20 t M=20 t M=50 t M=40 t
10 0.08 0.17 0.41 0.48 -0.05 0.04 0.02 0.84 0.09

M=40 t M=20 t M=10 t M=50 t M=30 t M=50 t M=10 t M=30 t M=10 t
11 0.09 0.17 0.33 0.41 -0.06 -0.07 -0.17 1.08 0.17

M=50 t M=20 t M=10 t M=40 t M=30 t M=20 t M=40 t M=30 t M=20 t
12 0.07 0.12 0.23 0.3 -0.05 0.12 0.05 0.72 0.08

M=50 t M=10 t M=10 t M=20 t M=40 t M=40 t M=30 t M=20 t M=30 t
13 0.26 0.30 0.90 0.96 0.20 0.22 0.20 2.47 0.79

M=10 t M=20 t M=20 t M=20 t M=50 t M=30 t M=40 t M=30 t M=40 t
14 0.16 0.28 0.31 0.46 -0.11 0.12 0.08 0.97 0.07

M=20 t M=40 t M=30 t M=50 t M=20 t M=50 t M=30 t M=50 t M=30 t
15 0.08 0.08 0.22 0.35 0.16 0.07 0.02 0.88 0.31

M=10 t M=30 t M=20 t M=10 t M=40 t M=40 t M=20 t M=50 t M=40 t
16 0.06 0.08 0.13 0.26 0.07 0.03 0.05 0.47 0.04

M=40 t M=10 t M=50 t M=30 t M=20 t M=50 t M=50 t M=40 t M=30 t
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Table 3.6: Convergence of the Emsimiter
v [%] reached with 40 iterations (SNR: 4dB)

Layout Speed
2 10 20 30 40 50 60 70 80

1 0.43 2.40 5.84 12.70 2.30 5.80 7.30 27.00 6.50
2 0.27 1.89 3.44 3.70 2.23 2.00 1.08 11.46 2.14
3 0.27 1.40 1.88 3.00 0.83 0.65 2.30 6.80 0.91
4 0.13 0.57 1.55 2.50 -0.40 0.36 0.31 4.76 1.50
5 0.39 2.90 4.40 6.55 2.00 1.06 3.23 15.76 1.20
6 0.22 1.30 2.60 2.65 0.40 -0.33 1.89 8.37 0.60
7 0.12 1.20 1.30 2.14 0.85 0.80 0.50 5.40 1.50
8 0.03 0.28 0.70 1.50 0.40 0.27 0.60 3.27 0.34
9 0.34 1.90 3.34 6.30 1.00 1.69 -0.40 13.84 2.77

10 0.17 0.98 1.82 3.00 1.20 0.35 0.70 7.12 1.20
11 0.06 0.77 1.00 1.38 0.28 -0.095 -0.84 4.39 0.90
12 0.06 0.60 0.93 1.00 0.25 -0.06 0.30 2.74 0.02
13 0.23 0.30 0.56 0.78 0.32 0.43 0.37 2.10 0.38
14 0.12 0.16 0.34 0.29 0.12 0.25 -0.03 0.89 0.05
15 0.08 0.08 0.19 0.32 0.08 0.09 0.05 0.68 0.02
16 0.08 0.07 0.12 0.16 0.05 0.027 0.13 0.43 -0.01

Results are shown also for a SNR of 4 dB to highlight the performance of the approach
in very badly conditions. Tab. 3.6 summarizes the results obtained in these operating
conditions and highlights how a number of measurement sleepers bigger than three
(Layout10-Layout16) may involve estimation errors comparable to those obtained with
a lower noise level on the input signal.
In order to best focus the effect of the measurement layout, in terms of the number of

sensing elements and spacing among them, Fig. 3.10 shows the trend of Emsimconv
v (%)

studying its shape with the increasing of space among the sensing elements for layout
of measurement sleepers equipped of two (Fig. 3.10)a, three (Fig. 3.10b) four (Fig.
3.10c) and five (Fig. 3.10d) measurement sleepers. In particular, although the lower
SNR, with five measurement sleepers spaced of almost 1.2 m the Em

simconv
v (%) are

below the 0.5 %.
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(a) Em
simconv
v (%) trend: the increasing of the

spacing between the two sleepers involve a
decrement of the estimation error

(b) Em
simconv
v (%) trend: the increasing of the

spacing among the three sleepers involve a
decrement of the estimation error

(c) Em
simconv
v (%) trend: the increasing of the

spacing among the four sleepers involve a
decrement of the estimation error

(d) Em
simconv
v (%) trend: the increasing of the

spacing among the five sleepers involve a
decrement of the estimation error

Figure 3.10: Em
simconv
v (%) trend with different measurement chains: errors are

decreasing with the increasing of the number of sensing elements and the spacing
among them (from 0.6 m to a maximum one of 2.4 m)

Following, each values of errors corresponding to the full range of speed and also
mass is considered, in order to find for each speed, the maximum estimation error
EMv

simconv(%).
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(a) Layout1: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout2: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout3: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout4: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout5: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout6: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.11: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 1-6: with a SNR of
4 dB errors are huge and the approach is not able to perform accurate estimations
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(a) Layout7: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout8: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout9: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout10: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout11: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout12: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.12: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 7-12: with a SNR
of 4 dB errors are big but with the increasing of the number of sensing elements and
spacing among them the errors seem to be smaller
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(a) Layout13: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout14: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout15: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout16: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.13: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 13-16: estimation
errors are lower thanks to the increasing of the number and spacing among the sensing
elements

3.1.1.2 Train detection

The performance of algorithm as vehicle detector is examined in each operating
conditions concerning the vehicle and the measurement layout. Results obtained with
a SNR of 8 dB and a number of algorithm iterations of 1000 are shown.

ENpercent =
N4e

Niter

(3.5)
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where N4e stands for the number of iteration in which the number of the computed
crossing axles is not equal to four (number of the Manchester wagon axles) and Niter

is the number of algorithm iterations (equal to 1000). Figs. 3.14-3.16 show results on
ENpercent obtained in the full speed and mass ranges, with a SNR of 8 dB and each
measurement layouts, highlighting the good operation of the approach in estimating
the number of crossing axles within a speed value of 60 m s−1.
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(a) Estimation errors ENpercent in the full mass
and speed range with the Layout 1 and a SNR of
8 dB

(b) Estimation errors ENpercent in the full mass
and speed range with the Layout 2 and a SNR of
8 dB

(c) Estimation errors ENpercent in the full mass
and speed range with the Layout 3 and a SNR of
8 dB

(d) Estimation errors ENpercent in the full mass
and speed range with the Layout 4 and a SNR of
8 dB

(e) Estimation errors ENpercent in the full mass
and speed range with the Layout 5 and a SNR of
8 dB

(f) Estimation errors ENpercent in the full mass
and speed range with the Layout 6 and a SNR of
8 dB

Figure 3.14: Estimation errors ENpercent with Layout 1-6: errors are different from zero
for vehicle speed bigger than 60 m s−1
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(a) Estimation errors ENpercent in the full mass
and speed range with the Layout 7 and a SNR of
8 dB

(b) Estimation errors ENpercent in the full mass
and speed range with the Layout 8 and a SNR of
8 dB

(c) Estimation errors ENpercent in the full mass
and speed range with the Layout 9 and a SNR of
8 dB

(d) Estimation errors ENpercent in the full mass
and speed range with the Layout 10 and a SNR
of 8 dB

(e) Estimation errors ENpercent in the full mass
and speed range with the Layout 11 and a SNR
of 8 dB

(f) Estimation errors ENpercent in the full mass
and speed range with the Layout 12 and a SNR
of 8 dB

Figure 3.15: Estimation errors ENpercent with Layout 7-12: errors are different from zero
for vehicle speed bigger than 60 m s−1



3.1 Time Domain Approach (TDA) 61

(a) Estimation errors ENpercent in the full mass
and speed range with the Layout 13 and a SNR
of 8 dB

(b) Estimation errors ENpercent in the full mass
and speed range with the Layout 14 and a SNR
of 8 dB

(c) Estimation errors ENpercent in the full mass
and speed range with the Layout 15 and a SNR
of 8 dB

(d) Estimation errors ENpercent in the full mass
and speed range with the Layout 16 and a SNR
of 8 dB

Figure 3.16: Estimation errors ENpercent with Layout 13-16: errors are different from
zero for vehicle speed bigger than 60 m s−1
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3.2 Frequency Domain Approach (FDA)

Results on the simulation campaign obtained with the frequency domain algorithm
(FDA) are shown, corresponding to different operating conditions concerning the
vehicle (see Tab. 3.1) and measurement layouts (see Tab. 3.2). The percentage
estimation errors on the vehicle speed and crossing time instants are those indicated
in Eq.3.1 and Eq. 3.2 with the difference that the FDA approach allows to detect the
time crossing instants of each train axle: to underline this performance, a new error
is defined as the maximum crossing time instants one among the ones computed for
each train axle:

Esimiter
Timax

= max
1≤ax≤4

(Eax
simiter
Ti

) (3.6)

where ax is the index of the train axle and Eax
simiter
Ti

is the crossing time errors on a
measurement sleeper referred to the ax-th train axle.
Fig. 3.17 shows a test case in which the trends of Eaxsimiter

Ti
are shown: the data have

been fit with a spline in order to highlight the trend of errors computed for each
crossing axles on the first measurement sleepers (same consideration can be involved
for the second one). The maximum errors are those concerning the passage of the first
axle and so, in according with Eq. 3.6, these errors are considered. At first the errors

Figure 3.17: Eaxsimiter
Ti

trends: the first axle involves the highest estimation error
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trends as a function of the Monte Carlo analysis are shown and later the performance
of the algorithm are summarized when the convergence is reached.

E.g the Layout1 is considered, which involves two measurement sleepers spaced of 0.6
m. Figs. 3.18-3.20 show the trend of Esimiter

Timax
on the second sleeper (which involves

the bigger errors) in the full speed range (2-80 m s−1) and mass one (10-50) t, as a
function of the Monte Carlo analysis. Results suggest some considerations on the test
case displayed in Fig. 3.18a: it seems that at low vehicle speed as 2 m s−1, the algorithm
reaches the Monte Carlo convergence just after two algorithm iterations and the errors
values are less independent from the vehicle mass than the other test cases, in which
there is an overlapping among errors corresponding to different vehicle mass, for each
speed (Fig. 3.18b-3.20). To this reason and in order to best localize the number of Monte
Carlo iterations involving the convergence, the mean among the errors computed for
each mass value is done and displayed in Fig. 3.21.
Error is defined as:

Emsimiter
Timax

=
nmass∑
M=1

EM
simiter
Timax

nmass
(3.7)

where M is the index of the train mass (10-50 t), nmass is the number of simulation
parameters about it (5) and EM

simiter
Timax

is the Esimiter
Timax

computed with the M train mass.
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(a) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 2 m s−1: errors are below the
1.1%

(b) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 10 m s−1: errors are below the
0.2%

Figure 3.18: Layout1: EM
simiter
Timax

trend in the speed range of (2-10) m s−1 and mass
M=(10-50) t: errors are depending by the vehicle mass, particularly at low speed of
2 m s−1

.

(a) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 20 m s−1: errors are below the
0.3%

(b) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 30 m s−1: errors are below the
0.2%

Figure 3.19: Layout1: EMsimiter
Timax

trend in the speed range of (20-30) m s−1 and mass
M=(10-50) t: errors are not depending by the mass vehicle
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(a) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 40 m s−1: errors are below the
0.3%

(b) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 50 m s−1: errors are below the
0.3%

(c) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 60 m s−1: errors are below the
0.3% and are not depending by the vehicle mass

(d) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 70 m s−1: errors are below the
0.2% and are not depending by the vehicle mass

(e) EM
simiter

Timax
computed for M=(10-50) t and a

vehicle speed of 80 m s−1: errors are below the
0.2% and are not depending by the vehicle mass

Figure 3.20: Layout1: EMsimiter
Timax

trend in the speed range of (40-50) m s−1 and mass
M=(10-50) t: errors are not depending by the vehicle mass
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Figure 3.21: Layout1: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Fig. 3.21 shows the trend of Emsimiter
Timax

on the second measurement sleeper (that
involves the maximum errors) as a function of the number of algorithm iterations in
the Monte Carlo analysis: it underlines how the convergence is reached at about 49
iterations with an exception for the vehicle speed of 2 m s−1 in which the errors value
has an incredible constant trend just after two algorithm iterations. Considerations and
evaluations are also carried out for the speed detection, focusing the attention on the
dependence of errors by the vehicle mass and on the convergence of the Monte Carlo
analysis. More focused, EMsimiter

v (see Eq. 3.3) and Emsimiter
vk

(see Eq. 3.4) are shown,
highlighting the not considerable dependence by the vehicle mass (Figs. 3.22-3.23) and
the good operation of the approach since the convergence of the Monte Carlo analysis
is reached(Fig. 3.24).
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

Figure 3.22: Layout1: Speed Estimation-Monte Carlo Analysis with k=(2-30) m s−1,
there is no a correlation between errors and the car body mass
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(a) Percentage EM
simiter
vk

(with k=40 m s−1) (b) Percentage EM
simiter
vk

(with k=50 m s−1)

(c) Percentage EM
simiter
vk

(with k=60 m s−1) (d) Percentage EM
simiter
vk

(with k=70 m s−1)

(e) Percentage EM
simiter
vk

(with k=80 m s−1)

Figure 3.23: Layout1: Speed Estimation-Monte Carlo Analysis with k=(40-80)
m s−1,there is no a correlation between errors and the car body mass
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Figure 3.24: Layout1: Monte Carlo convergence of Emsimiter
vk

reached at about 49
iterations

Fig. 3.24 shows the trend of Emsimiter
vk

as a function of the algorithm iterations,
highlighting a convergence reached at 49 iterations.
Results have been reported with the other measurement layouts to focus the trend
of the estimation errors as a function of the number and spacing among the sensing
elements. Layout 2 is considered because it involves accurate estimations (but same
good performance have been obtained with the others measurement layouts, see
AppendixB) with an occupied space of 1.2 m .
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Layout2

Figure 3.25: Layout2: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure 3.26: Layout2: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure 3.27: Layout2: Speed Estimation-Monte Carlo Analysis on EMsimiter
vk

with k=(2-
50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 50 iterations

Figure 3.28: Layout2: Speed Estimation-Monte Carlo Analysis on EMsimiter
vk

with k=(60-
80) m s−1 and (d) Monte Carlo convergence on Emsimiter

vk
in the full speed range
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Summering the results, its’ clear how the estimation errors on the crossing times
are below the 0.5% in the full speed range and the Monte Carlo convergence at low
speed as 2 m s−1 is reached immediately. As regards the vehicle speed estimation, the
increasing of the number of sensing elements involves a better estimation accuracy due
to the bigger number of time shifts used to estimate the speed amplitude (see Tab. 2.7,
Fig. 2.20).

3.2.1 Analysis of the FDA algorithm performance

The Monte Carlo analysis underlines how in all the conditions concerning the vehicle
(speed and mass) and measurement layouts (number and spacing among sensing
elements) the convergence is reached: this is important in order to establish the good
operation of the proposed approaches. With the aim at evaluating the algorithm
performance, a results reportage has been here carried out in correspondence of
the reached Monte Carlo convergence: the evaluated estimation errors are on the
crossing times (EMsimconv

Timax
and Emsimconv

Timax
) and on the vehicle speed (Emsimconv

v and
EMv

simconv ). The performance of the FDA approach in estimating the vehicle speed
and crossing times have been evaluated also in the full mass range when the Monte
Carlo convergence is reached. Results are shown with a SNR from 4 dB to 8 dB to
check the approach robustness against a very big noise amplitude on the input signal.

3.2.1.1 Detection of the train axles crossing times on measurement sleepers

The operation of the FDA approach aimed at estimating the train axles crossing time
is independent by the number and spacing among the sensing elements, indeed the
Em

simconv
Timax

computed in each measurement layout are quite similar, see Fig. 3.29(a-d).
To summarize the performance of the approach and test the robustness against the
noise affecting the measure, a comparison between Em

simconv
Timax

values obtained with a
SNR of 4 dB, see Fig. 3.29(e) or a SNR of 8 dB on the input signal is carried out, see Fig.
3.29(f). The comparison between Fig. 3.29e and Fig. 3.29f highlights the robustness of
the approach against an high amplitude of noise on the input signal, since estimation
errors are not worse with a bigger noise level. Results involve considerations about the
dependence between the EMsimconv

Timax
values and the vehicle mass, that is relevant only at

low speed as 2m s−1.
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(a) Em
simconv

Timax
(%) trend: 2 measurement sleepers (b) Em

simconv

Timax
(%): 3 measurement sleepers

(c) Em
simconv

Timax
(%): 4 measurement sleepers (d) Em

simconv

Timax
(%): 5 measurement sleepers

(e) Em
simconv

Timax
and EM

simconv

Timax
(%) trend with SNR

of 4 dB
(f) Em

simconv

Timax
and EM

simconv

Timax
(%) trend with SNR

of 8 dB

Figure 3.29: (a-d)Emsimconv
Timax

(%) trends with different measurement chains, (e-f)
Em

simconv
Timax

and EM
simconv
Timax

(%) trend with Layout 6
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Table 3.7: Layout 6: Emsimconv
Timax

[%] and the maximum EM
simconv
Timax

[%] for each vehicle speed
Em

simconv
Timax

[%]

SNR Speed: [m s−1]

[dB] 2 10 20 30 40 50 60 70 80
4 0.58 0.21 0.09 0.09 0.05 0.12 0.07 0 -0.05
8 0.57 0.25 0.08 0.08 0.07 0.13 0.01 0 -0.04

EM
simconv
Timax

[%]

SNR Speed: [m s−1]

[dB] 2 10 20 30 40 50 60 70 80
4 0.85 0.28 0.12 0.13 0.11 0.17 0.12 -0.05 -0.16

M=50 t M=30 t M=40 t M=30 t M=30 t M=20 t M=30 t M=50 t M=40 t
8 0.84 0.31 0.10 0.12 0.10 0.20 -0.03 -0.04 -0.05

M=50 t M=30 t M=20 t M=40 t M=30 t M=10 t M=20 t M=20 t M=40 t

Tab. 3.7 summarizes the values of Emsimconv
Timax

and the maximum values of EMsimconv
Timax

computed for each vehicle speed, obtained with a SNR from 4dB to 8 dB: results
highlight the proximity of errors obtained with 8 dB with the other ones corresponding
to a SNR of 4 dB and this involves positive considerations on the robustness of the
approach against the white noise on the input signal. Same considerations can be done
for the other measurement layouts.

3.2.1.2 Vehicle Speed detection

Tab. 3.8 summarizes results about the Em
simconv
v [%] trend as a function of the

measurement layout (number and spacing among sensing elements): errors are bigger
when the measurement layouts are equipped of sensing elements spaced of 0.6 m and
are lower with the increasing of the number of sensing elements and spacing among
themselves.
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Table 3.8: Emsimconv
v [%] (SNR: 8dB)

Layout Speed: [m s−1]

2 10 20 30 40 50 60 70 80
1 0.55 0.45 0.51 2 0.77 2.2 1.31 1.12 1.94
2 0.09 0.13 0.19 -0.15 0.13 0.69 0.72 0.23 0.11
3 0.0 -0.1 0.04 0.28 0.02 0.08 0.13 0.08 0.28
4 0.05 0.0 0.02 0.31 0.07 0.18 0 0.17 0.35
5 0.41 0.34 0.44 0.08 0.66 0.57 1 0.49 0.96
6 0.07 0.14 0.02 0.18 -0.05 0.09 0.16 0.19 0.3
7 0.05 -0.09 0.04 0.06 0.08 0.09 0.19 0.02 0.16
8 0.02 0.02 -0.01 0.14 0.02 0 0.07 0.02 -0.04
9 0.3 0.22 0.45 0.48 0.57 0.81 0.82 0.88 0.78

10 0 0.06 0.11 0.02 0.1 0.19 0.06 0.16 0.17
11 0.02 0.01 0.03 0.08 0.08 0.08 0.13 0.06 0.12
12 0.02 0.02 0.03 0.09 0 0.08 0.04 0.04 0
13 0.2 0.25 0.24 0.38 0.37 0.37 0.86 0.5 0.74
14 0 0.06 0.06 0.15 0.12 0.19 0.13 0.01 0.12
15 0.03 0.04 0.06 0.08 0.03 0.08 0.03 0.07 0.08
16 0.02 -0.02 0.02 0 0.01 0.03 0.05 -0.02 0.03

In order to focus the effect of the measurement layouts on the estimation accuracy, in
adding to the Tab. 3.8, the trend of Emsimconv

v , as a function of the number and spacing
among the sensing elements, is carried out in Fig. 3.30.

Fig. 3.30 shows the trend ofEmsimconv
v [%] that is lower with the increasing of the number

of sensing elements and with a bigger spacing among themselves. Two measurement
sleepers involve estimation errors below the 0.5% if the spacing between themselves
is bigger than 1.2 m, three measurement sleepers allow to obtain similar results with a
spacing bigger than 0.6 m. Layouts with four measurement sleepers allow to obtain
estimation errors below the 0.2% with a spacing bigger than 0.6 m and the most
performing layouts with 5 measurement sleepers involve estimation errors below the
0.1% with a spacing bigger than 1.2 m. The approach have the worst performance if
the spacing among the measurement sleepers is of 0.6 m.
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With the aim at evaluating the global performance of the estimation algorithm in
the full speed and mass range, Figs. 3.31-3.33 show the trend of Emsimconv

v (%) with
overlapped the values of EMv

simconv(%) for each vehicle speed, in order to localize the
maximum errors.

(a) Em
simconv
v (%) trend: the increasing of the

spacing between the two sleepers involves a
decrement of the estimation error

(b) Em
simconv
v (%) trend: the increasing of the

spacing among the three sleepers involves a
decrement of the estimation error

(c) Em
simconv
v (%) trend: the increasing of the

spacing among the four sleepers involves a
decrement of the estimation error

(d) Em
simconv
v (%) trend: the increasing of the

spacing among the five sleepers involves a
decrement of the estimation error

Figure 3.30: Emsimconv
v (%) trend with different measurement chains and noisy input

signal (SNR of 8dB): errors are decreasing with the increasing of the number of sensing
elements and spacing among them (from 0.6 m to a maximum one of 2.4 m)
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(a) Layout1: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout2: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout3: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout4: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout5: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout6: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.31: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 1-6
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(a) Layout7: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout8: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout9: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout10: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout11: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout12: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.32: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 7-12
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(a) Layout13: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout14: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout15: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout16: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.33: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 13-16
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Table 3.9: Maximum EMv

simconv(%) values computed in the full speed range, with an
input SNR of 8 dB

Layout Speed [m s−1]

2 10 20 30 40 50 60 70 80
1 0.95 0.70 0.84 3.60 2.37 2.98 2.64 2 2.51

M=40 t M=20 t M=40 t M=30 t M=40 t M=50 t M=30 t M=30 t M=40 t
2 0.27 0.39 0.58 -0.77 0.56 1.28 1.11 0.6 -0.78

M=30 t M=30 t M=30 t M=20 t M=40 t M=30 t M=10 t M=50 t M=30 t
3 -0.27 -0.24 0.19 0.41 0.20 0.26 0.33 0.36 0.64

M=10 t M=50 t M=20 t M=30 t M=10 t M=10 t M=50 t M=50 t M=50 t
4 0.12 -0.26 0.35 0.47 0.21 0.34 -0.46 0.48 0.64

M=40 t M=40 t M=20 t M=10 t M=20 t M=40 t M=10 t M=40 t M=10 t
5 0.57 0.72 0.73 0.48 0.8 0.99 1.67 1.1 1.34

M=50 t M=10 t M=40 t M=50 t M=50 t M=30 t M=20 t M=20 t M=40 t
6 0.15 0.22 0.13 0.29 -0.3 0.16 0.55 0.49 0.39

M=10 t M=40 t M=30 t M=30 t M=10 t M=40 t M=20 t M=20 t M=10 t
7 0.09 -0.21 0.17 0.15 0.28 0.11 0.40 0.19 0.28

M=30 t M=40 t M=20 t M=40 t M=40 t M=10 t M=30 t M=20 t M=10 t
8 0.06 0.08 -0.1 0.32 0.14 0.17 0.22 -0.27 -0.17

M=30 t M=30 t M=50 t M=30 t M=40 t M=40 t M=30 t M=50 t M=10 t
9 0.48 0.27 0.60 0.82 0.71 1.13 1.68 1.45 1.45

M=20 t M=20 t M=40 t M=20 t M=10 t M=30 t M=40 t M=20 t M=40 t
10 0.07 0.1 0.22 -0.13 0.24 0.43 0.33 0.21 0.30

M=20 t M=50 t M=20 t M=40 t M=50 t M=20 t M=30 t M=10 t M=40 t
11 0.04 0.04 0.11 0.25 0.19 0.17 0.23 0.13 0.23

M=10 t M=40 t M=20 t M=50 t M=10 t M=50 t M=20 t M=20 t M=20 t
12 0.04 0.07 0.13 0.12 0.11 0.17 0.11 0.16 0.1

M=20 t M=30 t M=50 t M=30 t M=30 t M=40 t M=40 t M=10 t M=30 t
13 0.30 0.39 0.35 0.58 0.57 0.59 1.15 0.69 1.16

M=20 t M=50 t M=10 t M=20 t M=30 t M=20 t M=20 t M=10 t M=40 t
14 0.03 0.13 0.12 0.18 0.18 0.26 0.26 -0.10 0.27

M=30 t M=40 t M=40 t M=30 t M=30 t M=10 t M=30 t M=20 t M=30 t
15 0.06 0.08 0.08 0.18 0.05 0.13 0.10 0.19 0.13

M=30 t M=30 t M=20 t M=30 t M=40 t M=10 t M=10 t M=20 t M=20 t
16 0.04 -0.06 0.08 -0.05 0.06 0.1 0.15 -0.06 0.09

M=40 t M=50 t M=30 t M=10 t M=30 t M=10 t M=50 t M=20 t M=20 t
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In order to check the robustness, results are indicated with a SNR of 4 dB (worst
performance of the measurement and acquisition chain). Tab. 3.10 indicates the values
of Emsimconv

v [%] corresponding to the reached convergence of the Monte Carlo analysis
(49 iterations).

Table 3.10: Emsimconv
v [%] (SNR: 4dB)

Layout Speed: [m s−1]

2 10 20 30 40 50 60 70 80
1 0.28 0.45 0.74 1.2 2.06 2.34 2.37 2.67 3.90
2 0.16 0.03 0.12 0.04 0.25 0.50 0.67 0.64 0.9
3 0.05 0.05 0.08 0.05 0.35 0.38 0.22 0.42 0.56
4 0 0.07 0.15 0.22 0.21 0.24 0.18 0.11 0.32
5 0.24 0.36 0.60 0.83 1.2 1.44 1.69 1.48 3
6 0.06 0.04 0.17 0.18 0.12 0.33 0.54 0.41 0.65
7 0.06 0.03 0.08 0.09 0.10 0.12 0.18 0.1 0.32
8 0.02 -0.02 0.05 0.00 0.06 0.11 0.13 0.1 0.082
9 0.48 1.03 1.14 1.48 1.75 2.42 3.06 3.01 4.29

10 0.04 0.1 0.18 0.09 0.32 0.21 0.28 0.44 0.44
11 0.05 0.03 0.06 0.15 0.06 0.06 0.14 0.13 0.22
12 0.01 0.02 0.07 0.06 0.06 0.07 0.13 0.08 0.06
13 0.2 0.35 0.31 0.68 0.83 0.80 1.32 1.34 0.76
14 0.02 0.04 0.08 0.11 0.07 0.31 0.29 0.19 0.33
15 0.03 0.04 0.06 0.08 0.03 0.11 0.17 0.11 0.17
16 0 0.01 0.03 0 0.07 0.07 0.1 0.01 0.05

Tab. 3.10 and Fig. 3.34 summarize the results when the SNR is equal to 4 dB, showing
a trend and value of Emsimconv

v [%] quite similar with which ones obtained with a SNR
of 8 dB, as a confirm of the good robustness of the approach against the noise affecting
the measurement chain. Two measurement sleepers involve a mean estimation value
Em

simconv
v [%] below the 1% if the sensing elements are spaced of almost 1.2 m, otherwise

with a number of sensing elements bigger than three is possible to obtain mean
estimation errors below the 0.5%.
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(a) Em
simconv
v (%) trend: 2 measurement sleepers (b) Em

simconv
v (%): 3 measurement sleepers

(c) Em
simconv
v (%): 4 measurement sleepers (d) Em

simconv
v (%): 5 measurement sleepers

Figure 3.34: Emsimconv
v (%) trend with different measurement chains and SNR of 4dB:

errors are decreasing with the increasing of the number of sensing elements and
spacing among them (from 0.6 m to a maximum one of 2.4 m)

Following, the values of EMv

simconv(%) are overlapped to the shape of Emsimconv
v (%) for

each layout, to underline the variation from the mean value and detect the maximum
percentage errors for each speed, committed by the estimation algorithm when the
operating conditions are very poor (SNR of 4 dB on the input signal). Tab. 3.11
summarizes the maximum values EMv

simconv(%) for each speed, indicating also the
mass value that involves the maximum error.
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(a) Layout1: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout2: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout3: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout4: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout5: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout6: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.35: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 1-6 and with a SNR
of 4 dB
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(a) Layout7: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout8: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout9: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout10: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(e) Layout11: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(f) Layout12: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.36: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 7-12 and with a
SNR of 4 dB
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(a) Layout13: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(b) Layout14: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

(c) Layout15: Em
simconv
v (%) trend (blue line) and

EMv

simconv (%) values
(d) Layout16: Em

simconv
v (%) trend (blue line) and

EMv

simconv (%) values

Figure 3.37: Emsimconv
v [%] trend and EMv

simconv [%] values for Layout 13-16 and with a
SNR of 4 dB
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Table 3.11: Maximum EMv

simconv(%) values computed in the full speed range, with an
input SNR of 4 dB

Layout Speed [m s−1]

2 10 20 30 40 50 60 70 80
1 0.84 0.94 1.98 3.5 3.14 3.07 4.77 3.35 5.74

M=20 t M=20 t M=30 t M=20 t M=20 t M=40 t M=10 t M=40 t M=40 t
2 0.34 0.31 0.28 -0.76 0.56 0.77 0.95 1.37 1.57

M=10 t M=30 t M=40 t M=20 t M=50 t M=40 t M=50 t M=40 t M=40 t
3 0.20 0.16 0.30 -0.45 0.69 0.73 0.43 0.51 1.06

M=20 t M=40 t M=20 t M=20 t M=40 t M=40 t M=30 t M=50 t M=10 t
4 0.11 0.28 0.46 0.44 0.43 0.56 0.76 -0.29 0.50

M=20 t M=50 t M=50 t M=40 t M=10 t M=40 t M=20 t M=20 t M=50 t
5 0.43 0.60 0.96 1.24 1.60 2.14 2.34 2.98 3.88

M=40 t M=20 t M=20 t M=20 t M=40 t M=20 t M=10 t M=30 t M=10 t
6 0.23 -0.28 0.39 0.57 0.39 0.50 1.12 0.51 0.83

M=20 t M=50 t M=50 t M=40 t M=30 t M=10 t M=20 t M=20 t M=50 t
7 0.12 0.12 0.17 0.33 0.30 0.24 0.26 0.46 0.56

M=30 t M=30 t M=40 t M=40 t M=40 t M=10 t M=10 t M=50 t M=40 t
8 0.068 0.083 0.12 0.20 0.15 0.24 0.26 0.14 0.23

M=20 t M=50 t M=40 t M=30 t M=40 t M=40 t M=10 t M=50 t M=50 t
9 0.7 1.49 1.84 1.75 2.77 2.85 4.12 4.19 6.87

M=30 t M=30 t M=30 t M=40 t M=30 t M=10 t M=10 t M=20 t M=40 t
10 0.11 0.17 0.28 0.28 0.46 0.46 0.42 0.87 0.71

M=50 t M=20 t M=10 t M=10 t M=50 t M=20 t M=20 t M=20 t M=50 t
11 0.07 0.07 0.24 0.30 0.16 0.26 0.31 0.24 0.33

M=40 t M=30 t M=20 t M=50 t M=20 t M=30 t M=20 t M=30 t M=50 t
12 0.05 0.10 0.09 0.15 0.1 0.1 0.17 0.14 0.20

M=20 t M=30 t M=50 t M=30 t M=20 t M=30 t M=40 t M=10 t M=30 t
13 0.29 0.57 0.50 0.93 1.11 1.01 1.37 1.83 2.28

M=10 t M=40 t M=10 t M=50 t M=10 t M=30 t M=10 t M=10 t M=50 t
14 0.06 0.18 0.21 0.29 0.28 0.37 0.40 0.42 0.45

M=40 t M=10 t M=30 t M=40 t M=30 t M=30 t M=40 t M=40 t M=10 t
15 0.03 0.07 0.13 0.16 0.13 0.15 0.26 0.17 0.20

M=20 t M=30 t M=40 t M=40 t M=30 t M=40 t M=50 t M=20 t M=30 t
16 0.02 0.07 0.09 -0.05 0.14 0.13 0.12 0.09 0.12

M=30 t M=40 t M=30 t M=10 t M=20 t M=50 t M=40 t M=30 t M=40 t
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3.2.1.3 Train detection

In this section the performance of algorithm in train detection functionalities
is examined, with each operating conditions concerning the vehicle and the
measurement layout. The estimation approach has led good results with a signal-to-
noise ratio both of 4 dB and 8 dB, especially if the measurement layout is composed by
almost three sensing elements, for which no estimation errors have been committed.
The plotted errors concern a comparison between the ones obtained with a SNR of 4
dB and 8 dB. Performance are shown after 1000 algorithm iterations and the plotted
errors are those defined in Eq. 3.5.
Figs. 3.38-3.41 show a comparison between estimated errors with a SNR of 4 dB or 8
dB for the Layout 1-4 (two measurement sleepers). Results with a lower noise level
involve errors only when the vehicle speed is 80 m s−1 (Layout 3 and 4) or 70 m s−1

(Layout 1 and 2), instead with a SNR of 4 dB there are errors at vehicle speeds of 60
and 80 m s−1.
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(a) Layout 1-SNR:4 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 60 m s−1

(b) Layout 1-SNR:8 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 70 m s−1

Figure 3.38: Estimation errors ENpercent with Layout 1 obtained with a SNR of 4 dbB (a)
and 8 dB (b)

(a) Layout 2-SNR:4 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 60 m s−1 and 80 m s−1

(b) Layout 2-SNR:8 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 70 m s−1

Figure 3.39: Estimation errors ENpercent with Layout 2 obtained with a SNR of 4 dbB (a)
and 8 dB (b)
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(a) Layout 3-SNR:4 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 60 m s−1 and 80 m s−1

(b) Layout 3-SNR:8 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 80 m s−1

Figure 3.40: Estimation errors ENpercent with Layout 3 obtained with a SNR of 4 dB (a)
and 8 dB (b)

(a) Layout 4-SNR:4 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 80 m s−1

(b) Layout 4-SNR:8 dB- Estimation errors
ENpercent:errors are different from zero when the
vehicle speed is 80 m s−1

Figure 3.41: Estimation errors ENpercent with Layout 4 obtained with a SNR of 4 dB (a)
and 8 dB (b)

Figs. 3.42-3.43 show results highlighting the good operation of the approach as vehicle
detector in the speed range of 2-80 m s−1, with measurement layouts equipped of a
number of measurement sleepers bigger than two.
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(a) Estimation errors ENpercent in the full mass
and speed range with the Layout 5 and a SNR of
4 dB

(b) Estimation errors ENpercent in the full mass
and speed range with the Layout 6 and a SNR of
4 dB

(c) Estimation errors ENpercent in the full mass
and speed range with the Layout 7 and a SNR of
4 dB

(d) Estimation errors ENpercent in the full mass
and speed range with the Layout 8 and a SNR of
4 dB

(e) Estimation errors ENpercent in the full mass
and speed range with the Layout 9 and a SNR of
4 dB

(f) Estimation errors ENpercent in the full mass
and speed range with the Layout 10 and a SNR
of 4 dB

Figure 3.42: Estimation errors ENpercent with Layout 5-10: errors are different from zero
for vehicle speed bigger than 60 m s−1
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(a) Estimation errors ENpercent in the full mass
and speed range with the Layout 11 and a SNR
of 4 dB

(b) Estimation errors ENpercent in the full mass
and speed range with the Layout 12 and a SNR
of 4 dB

(c) Estimation errors ENpercent in the full mass
and speed range with the Layout 13 and a SNR
of 4 dB

(d) Estimation errors ENpercent in the full mass
and speed range with the Layout 14 and a SNR
of 4 dB

(e) Estimation errors ENpercent in the full mass
and speed range with the Layout 15 and a SNR
of 4 dB

(f) Estimation errors ENpercent in the full mass
and speed range with the Layout 16 and a SNR
of 4 dB

Figure 3.43: Estimation errors ENpercent with Layout 11-16: no errors are committed
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3.3 Comparison between the TDA/FDA approaches

In this paragraph a comparison between the two estimation approaches has been
carried out under several points of view:

• performance in the estimation of train parameters;

• required computational time.

3.3.1 Performance in the train parameters estimations

One of the main purposes involves the study of the best measurement layout as
compromise between installation and maintenance cost and the estimation accuracy.
To this aim, the goal is to find the shorter layout that allows an high estimation
accuracy. Results (see Figs. 3.6 and 3.30) highlight how configurations equipped of a
bigger number of sensing elements and spacing among them provide lower estimation
errors and so, in order also to do a comparison of the two approaches, a focus on the
performance obtained with layouts 2, 3 and 6 is done, whose lengths are of 1.2, 1.8 and
2.4 m respectively.
Fig.3.44 shows the comparison between the TDA/FDA approaches in estimating of the
Em

simconv
v [%] in the full speed range: in both cases error trends are not constant against

the speed value and FDA led lower estimation errors at low and high speeds, instead
TDA involves better estimations in the speed range of (40-60) m s−1. Fig.3.45 shows
the situation with the Layout 3 composed by still two sensing elements but spaced of
1.8 m: both approaches involve errors quite constant with the increasing of the vehicle
speed and TDA is better than FDA only in the speed range of (50-60) m s−1. Layout
6 (Fig. 3.46) shows a FDA error trend more constant with the varying of the vehicle
speed rather than that obtained with the TDA approach, which however led a little bit
lower estimation error in the speed range of (40-60) m s−1. As observed in the previous
chapter, all speed estimations done by the TDA approach at the vehicle speed of 70
m s−1 are affected by additional errors that have led bigger global Emsimconv

v [%] values.
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Figure 3.44: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed Em

simconv
v [%] with a measurement layouts equipped with 2 sensing

elements spaced of 1.2 m

Figure 3.45: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed Em

simconv
v [%] with a measurement layouts equipped with 2 sensing

elements spaced of 1.8 m
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Figure 3.46: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed Em

simconv
v [%] with a measurement layouts equipped with 3 sensing

elements spaced of 1.2 m

Following, a comparison between the estimation approaches is performed evaluating
the errors EMv

simconv(%) in the full range and using the three measurement layouts
above discussed. Fig. 3.47 shows the trend of errors for each mass and speed value
and discourage the usage of the Layout 2 due to the wide range in which, at the same
speed, errors referred to different vehicle mass differ from each other. Increasing the
spacing among sensing elements, errors computed by the two approaches are lower
and there is a little bit difference between them since FDA involves errors below the 0.5
% in the full mass and speed ranges and the TDA has led quite similar results, except
those affected by errors due to also the intrinsic performance of the measurement
chain. Layout 6 shows an operation of the approach quite similar to that obtained with
the Layout 3, although the adding of a measurement sleeper. As a consequence, the
best configuration of the measurement layout as a compromise between the occupied
space, maintenance cost and estimation accuracy is that equipped of two measurement
sleepers spaced of 1.8 m, that involves a maximum estimation error about the half of
the one obtained with the same number of sensing elements spaced of 1.2 m (Layout
2). Concerning the other train parameters, the FDA has led the estimation also of the
crossing times of each train axles and this is a very important in order of monitoring
the railway traffic on the rail for purposes of vehicle safety and maintenance.
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Figure 3.47: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed for each vehicle mass with measurement layouts equipped of 2 sensing
elements spaced of 1.2 m

In agree with the above considerations, Fig. 3.50 shows the maximum errors
committed among those corresponding to each train axle and each measurement
sleepers of the Layout 3 (quite similar results have been obtained with the others
operating conditions concerning the measurement chain). More focused, estimation
errors are quite low and errors related to different vehicle mass are very close especially
with speed bigger than 2 m s−1.

The train detection analysis has led different performance since the TDA offers best
results with a SNR of 8 dB and a speed range between 2 to 60 m s−1 in all the
measurement layouts, instead the FDA allows no errors with a SNR of 8 dB (but also
with SNR of 4dB) and measurement layouts equipped of almost three measurement
sleepers. In general, the FDA approach has involved estimations on train parameters
more robust against the noise that may affect the measured input signal. However, to
compare the two estimation approaches in the train detection, results on the estimation
errors computed with the Layout 3 and a SNR of 8 dB are indicated in Fig. 3.51, which
highlights as with the FDA approach errors are committed only with a vehicle speed
of 80 m s−1.
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Figure 3.48: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed for each vehicle mass with measurement layouts equipped of 2 sensing
elements spaced of 1.8 m

Figure 3.49: Comparison between TDA/FDA approaches in the estimating of the
vehicle speed for each vehicle mass with measurement layouts equipped of 3 sensing
elements spaced of 1.2 m
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Figure 3.50: Layout 3: Emsimconv
Timax

[%] and the EMsimconv
Timax

for each vehicle speed

(a) TDA (b) FDA

Figure 3.51: Estimation errors ENpercent in the full mass and speed range with the
Layout 3 and a SNR of 8 dB, after 1000 trains passed on the measurement layout
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3.3.2 Computational Times

The processor adopted in the simulation campaign is a Intel(R) Core(TM) i7-4700HQ
CPU 2.4 GHz. To introduce the analysis of the required computational times in the
execution of the two algorithm is important to highlight step by step their operation.
More focused the operations done in TDA (Time Domain Algorithm)/TDF (Frequency
Domain Algorithm) approaches are listed below.

TDA Approach
1) Reading of simulated signals coming from the measurement layout;
2) Adding of white noise on each simulated signal;
3) The time shifts between signals are computed by means of auto and cross correlation
approaches;
4) Starting from the time shifts previously obtained, the vehicle speed estimations are performed,
as described in Fig. 2.4;
5) The mean value of the vehicle speed is computed;
6) Post processing of the autocorrelation signal to detect train axles (Train detection), as
described in Fig. 2.7.

FDA Approach
1) Reading of simulated signals coming from the measurement layout;
2) Adding of white noise on each simulated signal;
3) Computing of the crossing times of train axles on each measurement sleepers by using the
spectrogram analysis;
4) Computing for each crossing axle of the vehicle speed using the time shifts previously
estimated and the physical distance between the measurement points, as described in Fig. 2.20;
5) The mean value of the vehicle speed is computed;
6) Post processing of the signal to detect train axles (Train detection) as indicated in Fig. 2.17.
Once the operation of the two algorithms are summarized, the mean computational
times employed to estimate the crossing times, vehicle speed and number of crossing
axles are indicated in Tabs. 3.12, 3.13. Obviously the global computational times
increase with the increasing of the number of measurement sleepers: in order to
compare the computational times required by both approaches Tab. 3.14 summarizes
the ratio between the employed times, split for the estimated train parameter. In
addition, Tab. 3.14 highlights how the FDA implies a bigger computational time both
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in the train detection and in the vehicle speed computing. It also true that FDA allows
to extract more informations from the simulated track inputs, by means of the detection
of each axle (approach suitable for the wheel detection and traffic timetable purposes):
these informations are not available with the TDA approach. This explains also the
bigger computational time required in the speed computing (see also Tab. 2.7).

Table 3.12: Mean computational times required by the Time Domain Algorithm (TDA),
applied to a single Manchester wagon

Layout TDA Train Crossing Times Train Detection
(N sleepers) [s] & Speed Detection [s] [s]

Layout1 (2) 0.266 0.046 0.057

Layout5 (3) 0.321 0.069 0.075

Layout9 (4) 0.367 0.094 0.095

Layout13 (5) 0.441 0.131 0.114

Table 3.13: Mean computational times required bu the Frequency Domain Algorithm
(FDA), applied to a single Manchester wagon

Layout FDA Train Crossing Times Train Detection
(N sleepers) [s] & Speed Detection [s] [s]

Layout1 (2) 0.822 0.353 0.183

Layout5 (3) 1.011 0.507 0.208

Layout9 (4) 1.219 0.681 0.233

Layout13 (5) 1.429 0.838 0.253

Table 3.14: Comparison between computational times required by the two estimation
algorithms

Parameter Ratio Value

TalgFDA
/TalgTDA

(3÷ 3.5)

TaxleFDA
/TaxleTDA

(2.2÷ 3.2)

TT iVFDA
/TT iVTDA

(6.5÷ 6.7)
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This Chapter has the aims to evaluate the operation of the trained algorithms in a
real scenario, concerning the measurement layout and the features of the acquired
signal. Moreover is important to check its flexibility against a train composition and a
measurement layout equipped with sensors different from the force ones used in the
training phase. These capabilities are mandatory prerogatives of innovation offered by
the proposed approaches. Fig. 4.1 summarizes the training phase used to calibrate the
algorithms parameters in a wide range of operating conditions and the test phase used
to check the trained algorithms in a real scenario.

The train configuration is described in Tabs. 4.1,4.2: it is composed by a locomotive and
two wagons. Tab. 4.2 indicates the number of axles composing the vehicle (locomotive,
first and second wagons), their inter space and the nominal load. The features of
the measurement chain and the experimental data measured by sensors are indicated
in Tab. 4.3: differently from the force sensors simulated in the training phase, the
experimental measurement chain is equipped of two strain gauges.

101
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Figure 4.1: Procedure to test the performance of estimation algorithms on an
experimental data: after the training phase in which a wide range of operating
conditions regarding the vehicle and measurement chain have been simulated, the
algorithm performance has been verified on a complete train composition

Table 4.1: Benchmark train composition

Vehicle Wheelset Prim. Sec. Axle load Bogie dist. Wheelbase

susp susp t m [m]

Locomotive b-b-b yes 17.7 5.25 2.15

First Wagon 1-1 yes no 8.0 - 9

Second Wagon 2-2 yes yes 7.8 15.8 1.8
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Table 4.2: Train composition

Number of Wagon Axle Number Interspace [mm] Nominal Load [t]

1 0

2 2150

3 5250

1) Locomotive 4 7400 106

5 10500

6 12650

7 0

2) First wagon 8 9000 16

9 0

10 1800

3) Second wagon 11 15800 31

12 17600

Table 4.3: Features of the measurement chain

Sensors Amplitude Distance between sensor [m] Speed [km h]

2 Strain Gauge 4.8 15.4

The real scenario may involve undesired local peaks like those due to the back effect
of rail traversed by train (see Fig. 4.2, [51]): is important testing the reliability of
algorithms that must not detect these undesired peaks as train axles.

Results of the two estimation algorithms have been shown in order to check their
robustness and flexibility to train with difference composition and measurement layout
equipped of sensing elements different from those used in the training phase.
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Figure 4.2: Experimental data of rail deformation due to the train axles: signal peaks
correspond to the train axle and rail effects

4.1 Performance of the time domain approach (TDA)

Starting from the two measurements of rail deformation (see Fig. 4.3) the
autocorrelation of the first one and its cross correlation with the second one is done
(see Fig. 4.4).

Once the difference between the maximum values of the first and the second signals is
computed, is possible to find the vehicle speed, as stated by Eq. 4.1.

V = D/(d12 ∗ dt) ∗ 3.6 = 15.36km/h (4.1)

where D (4.8 m) is the physical distance between the strain gauges, dt is the sampling
time (0.0004 s) and d12(2814) is the difference between the samples corresponding with
the maximum values of the autocorrelation of the first signal and its cross correlation
with the second one. As regard the train detection functionality, as previously said, the
application of the autocorrelation on signal composed by a high value of peaks may
involve a very bigger number of autocorrelation ones (see Fig. 4.4 red line): for this
reason the train detection can be done on sections of the original signal (see Fig. 4.5).
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Figure 4.3: Deformation signals coming from the strain gauges described in Tab. 4.3

Figure 4.4: Autocorrelation of the first signal and its cross correlation with the second
one
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(a) Autocorrelation of the signal corresponding to
the locomotive

(b) Autocorrelation of the signal corresponding to
the first wagon

(c) Autocorrelation of the signal corresponding to
the second wagon

Figure 4.5: Application of the autocorrelation on separated signals: locomotive + first
and second wagons. The values useful to the train axles recognizing are in agree with
the threshold established in the training phase

Fig. 4.5 also confirms the value of the threshold used to test the algorithm performance
as train detector as indicated in Fig. 2.7. In particular Fig. 4.5b highlights that the
threshold used in the training phase is useful to detect train axles and, at the same time,
allows to not consider peaks due to rail effects in correspondence of the wheelbase of
the two wagons(see Fig. 4.2).
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(a) Experimental deformation signal measured
by a strain gauge

(b) PSD of the experimental signal

(c) Experimental deformation signal measured
by a strain gauge with zero threshold cut-off

(d) PSD of the experimental signal

Figure 4.6: PSD of the experimental data: the threshold allows to cut undesired local
peaks

4.2 Performance of the frequency domain approach

(FDA)

The frequency domain approach has been applied to evaluate the train parameters on
the experimental data coming from the strain gauges (see Fig. 4.3). The post processing
of the signal is done (Fig. 4.7): starting from the experimental data also its positive
values are considered to simplify the computing and not consider negative peaks
caused but the rail extension (see Fig. 4.6 a-b). Then, once the spectrogram and each
PSD maximum values are performed and plotted, the obtained signal is resampled. At
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the end, just applying the cut off threshold of -24 dB (see Tab. 2.5), is possible to detect
the train peaks (see Fig. 4.8).

Figure 4.7: Post processing of the deformation signal: 1) signal amplitude
normalization with also the cut-off of its the negative values 2) application of the
spectrogram and plot of the signal composed by the maximum values of PSD for each
window, 3) re-sampling of the obtained signal

Fig. 4.8 shows the results of the signal peaks detection process: using other thresholds
is possible to detect peaks due to the locomotive axles from those provided by wagons.
Furthermore, the performance of the algorithm as crossing times and speed estimator
have been shown. As described in Par. 2.2 the estimation accuracy depends by the
number of windows with which the spectrogram is applied. The final configuration
used to estimate the vehicle speed and crossing times on measurement sleepers is a
compromise between the computational time and the estimation accuracy.
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Figure 4.8: Peaks identification of the locomotive and wagons peaks by means of
suitable cut-off thresholds

Table 4.4: Summarized results on crossing times and speed estimation
Strain Gauge Locomotive First Wagon Second Wagon

SG1teo [s] 1.6272 2.1312 2.8388 3.344 4.0784 4.580 5.9116 8.0076 9.2236 9.6396 12.9316 13.3636
SG2teo [s] 2.7636 3.2776s 3.9852 4.4904 5.2248s 5.7264 7.0580 9.1540s 10.3700 10.7860 14.0780 14.5100

Ti1est [s] 1.613 2.1338 2.853 3.3738 4.0682 4.589 5.9034 8.0114 9.2266 9.6482 12.9218 13.3682
Ti2est [s] 2.7538 3.2746s 3.9938 4.4898 5.1842s 5.705 7.0442 9.1522s 10.3426 10.789 14.0378 14.4842

Er1est [%] 0.8727 -0.122 -0.5002 -0.8911 0.2501 -0.1965 0.1387 -0.0475 -0.0325 -0.08927 0.0758 -0.0344
Er2est [%] 0.7139 0.0915 -0.2158 0.0134 0.7771 0.3737 0.1955 0.0197 0.2642 -0.0278 0.2856 0.1778

Vest[
m
s ] 4.2076 4.2076 4.2076 4.3011 4.3011 4.3011 4.2076 4.2076 4.3011 4.2076 4.3011 4.3011

ErV est [%] 0.7139 0.0915 -0.2158 0.0134 0.7771 0.3737 0.1955 0.0197 0.2642 -0.0278 0.2856 0.1778

In addition, the spectrogram configuration defined in Tab. 2.6 has been used to detect
the crossing times on the two measurement points (see Tab. 4.3). Tab. 4.4 summarizes
the theoretical, the estimated crossing times and their relative percentage errors.
Moreover, the estimated vehicle speed is computed for each detected axle (just
dividing the physical distance between strain gauges with the difference between the
axle crossing time on the two measurement points) and its mean value is equal to 0.17
% (see Fig. 4.9). Fig. 4.9 highlights how an increasing number of spectrogram windows
may involve a better estimation accuracy but at the same time a higher computational
cost. The chosen configuration (60 windows and 90% of overlap) allows to reduce the
estimation percentage error (from 0.69% to 0.17%) with a computational time of a bit
over 1 s.
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Figure 4.9: Comparison between the speed estimation accuracy and the required
computational time, with an increasing number of spectrogram windows

In conclusion, the application of the approach to an experimental data has led several
considerations on the algorithm robustness, concerning the spectrogram parameters
and others regarding the approach. More focused, configurations of spectrograms
aimed at estimating the number of crossing axles, crossing times on sensors and vehicle
speed (see Tabs. 2.5, 2.6) have been validated. Furthermore, the value of the cut-off
threshold (-24 dB) used to estimate the number of train axles during the training phase
is also valid in the experimental test, despite the operating conditions (measurement
layout, number and kind of sensing elements, mass and vehicle speed) are quite
different. The approach allows also to avoid the detection of peaks different from train
axle ones (see Fig. 4.8). The ending consideration concerns the noise affecting the input
signal, that is several order smaller in the experimental test (see Fig. 4.3) than those set
in the training campaign (see Fig. 2.7): this highlights how both of approaches have
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been stressed, simulating operating conditions worse than the realistic ones.

4.3 Comparison between the TDA and FDA approaches

on an experimental data

The above developed considerations on both the estimation approaches, once applied
on an experimental data, confirm the drawbacks of the TDA and the benefits of the
FDA approach. Indeed, Eq. 4.1 highlights the good operation of the correlation as
speed estimator: the same cannot be said as axle counter detector due to the complexity
of the autocorrelation signal, if applied on a composite input signal (see Fig. 4.4). As
previously discussed, it is a weakness that it’s no present with the approach making
use of the spectrogram. The FDA approach also can detect the single wheel, involving
functionalities of wheel detector, not only the train detector (guaranteed also by the
TDA approach). In conclusion, the TDA approach is not enough flexible against a
composite signal. The FDA approach is able to detect the crossing time of each train
axles, information quite important for wheel detection purposes.
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In this chapter a WIM algorithm for the estimation of the vertical wheel loads is
described (the weights of the wheelsets are included). The nominal values of the loads
are taken from the model, in the simulated case, or are nominal train values in the
experimental case. The WIM algorithm presented in this work is based on the vertical
forces acting on the sleepers, acquired by means of dedicated force sensitive element
placed over the sleepers in the section corresponding to the rail baseplate/pads (see
Fig. 2.1). The WIM algorithm takes in input the estimated train parameters by the
TDA/FDA approaches.

5.1 Architecture of the WIM algorithm

The general architecture of the algorithm is described in the diagram in Fig. 5.1.

The WIM algorithm is general purpose because it is able to manage different kinds
of track measurements as input signals, such as rail deformations or forces acting
on the sleepers and different measurement chains [52]. The WIM algorithm may

112
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Figure 5.1: Operating of the WIM algorithm

operate both with simulated inputs (Tfn
rk and Tfn

lk ) provided by numerical models
and with experimental data (Tsp

rk and Tsp
lk ) directly measured on the railway track.

The developed WIM algorithm performs the estimation of the actual vertical right
N̂Ri and left N̂Li wheel loads starting from the generic track measurements chosen
as input signals Trk and Tlk with k = 1, .., Nm measured respectively at xrk and xlk

(representing the abscissas of the right r and left l side of the k−thmeasurement point).
The WIM algorithm requires some additional information (external inputs) concerning
the investigated vehicle. More specifically, vehicle speed V , the axle number ntot and
the axle positions inside the railway vehicle xai with i = 1, .., ntot must be known.
These supplementary physical quantities may be identified by the approach previously
discussed in Chapter 3 (the axle positions is guaranteed by the only FDA approach).
The main idea on which the new WIM algorithm is based arises from the quite intuitive
hypothesis of supposing the system approximatively linear with respect to the vertical
loadsNRi,NLi with i = 1, ..., ntot (the so-called quasi-linearity hypothesis (QLH)). In other
words the effect of the generic load NRi and NLi on the generic track measurement
input Trk and Tlk (in the present application the chosen track inputs are the simulated
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vertical forces on the sleeper Ffn
z rk and Ffn

z lk or the measured ones Fsp
z rk and Fsp

z lk) is
assumed not to be affected by the presence of other loads (especially the contiguous
ones). Evidently, in order to properly apply the superposition principle, the quasi-
linearity hypothesis (QLH) must hold within the whole range of velocities V and cut
frequencies fn considered for the studied systems. Thanks to the previous assumption,
the application of the superposition principle allows the calculation of the track inputs
Trk and Tlk. More specifically, the track inputs Trk and Tlk are respectively estimated
through a linear combination of 2ntot track fictitious input signals (namely the basis
functions) produced by 2ntot single fictitious loads Nf (one for each vehicle wheel)
moving along the track and properly shifted in the time of a delay ti. In order to find
this basis, the algorithm makes use of the flexible multibody model of the track. In this
case the linear combination coefficients are equal to N̂Ri/Nf and N̂Li/Nf . Obviously,
since the system can be assumed only approximately linear, a Least Squares Optimization
(LQSO) is needed to minimize the approximation error and, at the same time, to
optimize the values of N̂Ri and N̂Li.

5.1.1 The quasi-linearity hypothesis

As previously stated, if the quasi-linearity hypothesis (QLH) holds, the application of
the superposition effects allows to estimate the right Trk and the left Tlk track inputs
produced by the transit of the entire investigated vehicle through a linear combination
of track responses (namely the basis functions) produced by single fictitious loads Nf .
The presented WIM algorithm takes into account the coupling effect between the left
and the right rail deformation caused by the dynamical behaviour of the sleeper-ballast
ensemble. In the most general version of the WIM estimation procedure, the track basis
functions due to the transit of both left and right fictitious loads are considered. More
specifically, the quantities Brk

Ri and Brk
Li represent the chosen track fictitious response

due to the transit of the i − th fictitious load respectively on the right or on the left
(denoted respectively with subscripts R and L) rail, measured at the right (r) side of
the k − th measurement point. Analogously, Blk

Ri and Blk
Li indicate the chosen track

responses due to the transit of the i − th fictitious load respectively on the right or on
the left rail, measured at the left (l) side of the k − th measurement station. All the
2ntot right-side fictitious track inputs Brk

Ri and Brk
Li and the 2ntot left-side fictitious track

inputs Blk
Ri and Blk

Li with i = 1, .., ntot and k = 1, .., Nm (in the present case the vertical
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forces acting on the sleepers) produced by 2ntot single fictitious loads Nf (with initial
position xaf ) can be easily assessed by introducing suitable time delays ti:

ti =
xai − xaf

V
(5.1)

and by applying such delays to the track responses to the transit of a single fictitious
load B

r/l
R/L k(t) (i.e single wheel transit):

Brk
Ri(t) = Brk

R (t+ ti) (5.2)

Brk
Li(t) = Brk

L (t+ ti) (5.3)

Blk
Ri(t) = Blk

R(t+ ti) (5.4)

Blk
Li(t) = Blk

L (t+ ti) (5.5)

where t ∈ [TI , TF − ti].

At this point, thanks to the superposition principle, the track inputs Trk Tlk produced
by the transit of the entire train can be approximated according to the following
expressions:

Trk(t) ≈ Trk app(t) =
ntot∑
i=1

Brk
RiαRi +

ntot∑
i=1

Brk
LiαLi (5.6)

Tlk(t) ≈ Tlk app(t) =
ntot∑
i=1

Blk
RiαRi +

ntot∑
i=1

Blk
LiαLi (5.7)

where the linear combination coefficients αRi αLi, the estimated vertical loads N̂Ri N̂Li

and the fictitious vertical load Nf are connected by the following expressions:

αRi = N̂Ri/NRfαLi = N̂Li/NLf . (5.8)

To simulate the sampling due to the measurement process, the time domain t ∈
[TI , TF − ti] has been discretized with a sample time ∆t.
Re-arranging equations (5.6) and (5.7) in matrix form leads to the following equations:

Trk ≈ Brk
R αR +Brk

L αL (5.9)

Tlk ≈ Blk
RαR +Blk

LαL (5.10)
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where k = 1, ..., Nm, Trk,Tlk ∈ Rns×1, Brk
R , B

rk
L , B

lk
R , B

lk
L ∈ Rns×ntot and αR,αL ∈

Rntot×1. Considering the Nm measuring point a general expression can be written:

Tr ≈ Br
RαR +Br

LαL (5.11)

Tl ≈ Bl
RαR +Bl

LαL (5.12)

where Tr,Tl ∈ RnsNm×1, Br
R, B

r
L, B

l
R, B

l
L ∈ RnsNm×ntot and αR,αL ∈ Rntot×1. Re-

arranging equations (5.11) and (5.12) in a more compact matrix expression, Eq. 5.13
can be obtained: [

Tr

Tl

]
=

[
Br
RB

r
L

Bl
RB

l
L

][
αR

αL

]
, T = Bα (5.13)

where T ∈ R2nsNm×1, B ∈ R2nsNm×2ntot and α ∈ R2ntot×1.

5.1.2 Least squares estimation

Since the studied problem is only approximatively linear, a Least Squares Optimization
(LSQO) is necessary to minimize the approximation error between Trk, Tlk and Trk app,
Tlk app and, at the same time, to optimize the values of N̂Ri, N̂Li. In this specific case
linear not-weighted least squares have been considered [53][54][55]. As previously
said and shown in Fig. 1.1, the same inputs of TDA/FDA approaches and so the
vertical forces acting on the sleepers (denoted with Ffn

z rk and Ffn
z lk) have been adopted

as track inputs, with a Hence, according to the adopted track inputs and taking into
account the time sampling, equations (5.6) and (5.7) become:

Ffn
z rk(t) ≈

ntot∑
i=1

αsimRi Brk
Ri(t) +

ntot∑
i=1

αsimLi Brk
Li(t) (5.14)

Ffn
z lk(t) ≈

ntot∑
i=1

αsimRi Blk
Ri(t) +

ntot∑
i=1

αsimLi Blk
Li(t) (5.15)

with h = 1, 2, . . . , ns and k = 1, 2, . . . , Nm. Therefore, defining the A ∈ R2nsNm×2ntot

matrix and vector bfn ∈ R2nsNm×1 as follows:
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A =



Br1
z R1 · · · Br1

z Ri · · · Br1
z Rntot

Br1
z S1 · · · Br1

z Li · · · Br1
z Lntot

...
...

...
...

...
...

Brk
z R1 · · · Brk

z Ri · · · Brk
z Rntot

Brk
z S1 · · · Brk

z Li · · · Brk
z Lntot

...
...

...
...

...
...

BrNm
z R1 · · · BrNm

z Ri · · · BrNm
z Rntot

BrNm
z L1 · · · BrNm

z Li · · · BrNm
z Lntot

Bl1
z R1 · · · Bl1

z Ri · · · Bl1
z Rntot

Bz l1
L1 · · · Bl1

z Li · · · Bl1
z Lntot

...
...

...
...

...
...

Blk
z R1 · · · Blk

z Ri · · · Blk
z Rntot

Bz lk
L1 · · · Blk

z Li · · · Blk
z Lntot

...
...

...
...

...
...

BlNm
z R1 · · · BlNm

z Ri · · · BlNm
z Rntot

BlNm
z L1 · · · BlNm

z Li · · · BlNm
z Lntot



(bfn)T =
[
FfnT
z r1 . . .F

fnT
z rk . . .F

fnT
z rNm

FfnT
z l1 . . .F

fnT
z lk . . .F

fnT
z lNm

]T
(5.16)

the matrix form of (5.14) and (5.15) can be obtained:

bfn ' Aαsim (5.17)

αsim =
[
αsimR

T
αsimL

T
]T

(5.18)

where

αsim
R =

[
αsimR1 α

sim
R2 α

sim
R3 α

sim
R4

]T
(5.19)

αsim
L =

[
αsimL1 α

sim
L2 α

sim
L3 α

sim
L4

]T
. (5.20)

By means of a least squares optimization (LQSO) (in this case linear and not-weighted), it
is now possible to minimize the squared 2-norms Efn2 =

∥∥Efn
∥∥2
2

of the approximation
errors Efn = Aαsim − bfn present in (5.17):

αsim =
(
ATA

)−1
ATbfn (5.21)

where the matrix ATA is invertible if and only if the rank of A is maximum. Finally
the values of the estimated vertical loads N̂Ri, N̂Li can be computed starting from the
knowledge of αsim:

αsim =
N sim

Nf

=
[
N̂R1

NRf

N̂R2

NRf

N̂R3

NRf

N̂R4

NRf

N̂L1

NLf

N̂L2

NLf

N̂L3

NLf

N̂L4

NLf

]T
(5.22)
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Figure 5.2: Evaluation of lateral YG and longitudinal XG coordinates of the vehicle
center of gravity.

where
N̂ =

[
N̂simT

R N̂simT

L

]T
(5.23)

with

N̂R =
[
N̂R1N̂R2N̂R3N̂R4

]T
(5.24)

N̂L =
[
N̂L1N̂L2N̂L3N̂RL

]T
. (5.25)

5.1.3 Center of gravity estimation

As previously stated, the innovative WIM algorithm, starting from the estimated wheel
loads N̂Ri and N̂Li, is able to evaluate the lateral YG and XG longitudinal coordinates
of the center of gravity. Considering the horizontal plane containing the center of
gravity (COG) of the railway vehicle and introducing the reference system Oxy shown
in Fig.5.2 where the origin O coincide with the geometric center of the carbody, the
moment equilibrium around XB−axis and YB−axis can be respectively expressed as:

ntot∑
i=1

(bRN̂Ri + bLN̂Li) = 0 (5.26)

ntot∑
i=1

ai(N̂Ri + N̂Li) = 0. (5.27)
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Taking into account the nominal values of the geometrical quantities of the vehicle
such as the longitudinal position inside the train of each axle xai and the distance
between the two nominal rolling radius s, the coefficients bR, bL, ai can be re-written
as function of the COG coordinates XG, YG. More specifically, for the coefficients bR, bL
the following expressions hold:

bR =
s

2
− YG (5.28)

bL = −s
2
− YG (5.29)

whereas the coefficients ai can be calculated as follows:

a1 = −((xa1 − xa4)/2 +XG = c1 +XG (5.30)

a2 = −((xa2 − xa3)/2 +XG = c2 +XG (5.31)

a3 = ((xa2 − xa3)/2 +XG = c3 +XG (5.32)

a4 = −((xa1 − xa4)/2 +XG = c4 +XG. (5.33)

At this point, the moment equilibrium equations can be re-written as:

CĜ = d (5.34)

where C ∈ R2×2, Ĝ,d ∈ R2 and

C =

[∑ntot

i=1 (N̂Ri + N̂Li) 0

0
∑ntot

i=1 (N̂Ri + N̂Li)

]
(5.35)

Ĝ =

[
X̂G

ŶG

]
(5.36)

d =

[
−
∑ntot

i=1 (N̂Ri + N̂Li)ci∑ntot

i=1 (N̂Li − N̂Ri)
s
2

]
. (5.37)

Hence, the values of the estimated longitudinal X̂G and lateral ŶG coordinates of
the center of gravity G can be computed by inverting the C matrix according to the
following expression:

Ĝ = C−1d (5.38)
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The present section describes the performance of the WIM algorithm in estimating
the vertical wheel loads N̂Ri, N̂Li (with i = 1, ..., ntot), starting from the knowledge
of the vertical forces acting on the sleepers Fz. The WIM algorithm has been tested
by means of two simulation campaigns, the first one is aimed at testing the accuracy
in the vertical loads estimation, while the second one is focused on its performance
to estimate the vehicle center of gravity. More particularly, simulation campaigns
evaluate the performance of the WIM algorithm in terms of accuracy of the wheel load
estimation and center of gravity, by varying different parameters of the vehicle and
characteristics of the measurement system, such as the vehicle car body mass M , its
speed V and the cut-off frequency fn of the measurement chain. The basic procedure
used to test the algorithm consists in comparing the nominal vertical wheel loads,
NRi and NLi (taken from the model, in the simulated case, or from nominal values
in the experimental case) to the estimated loads N̂Ri and N̂Li, computed by the WIM

120



6.1 Estimation of the vertical wheel loads N̂Ri, N̂Li 121

estimation algorithm. This kind of comparison is really helpful to test the accuracy of
the estimation algorithm model, when no experimental data are available.

6.1 Estimation of the vertical wheel loads N̂Ri, N̂Li

Initially, by way of example, the vertical forces on the sleepers F fn
z rk(t) = F fn

z rk(xrk, t)

and F fn
z lk(t) = F fn

z lk(xlk, t) simulated through the physical model of the railway track
(see Fig. 5.1) are compared with the vertical forces on the sleepers F fn

z rk app(t) =

F fn
z rk app(xrk, t) and F fn

z lk app(t) = F fn
z lk app(xlk, t) estimated by means of the WIM

algorithm. E.g the layout of the adopted measurement station consists in three
measurement points (Nm = 3) on both rail sides (xR1 = xL1 = 33 m, xR2 = xL2 = 34.2

m and xR3 = xL3 = 38.4 m) (see Tab. 3.2, Fig. 6.1).

Figure 6.1: Reference measurement layout for the testing of the WIM algorithm

Fig. 6.2 illustrates both simulated F fn
z r2(t) F fn

z l2(t) and approximated F fn
z r2 app(t)

F fn
z l2 app(t) (these simulations are shown as example) right and left vertical forces acting

on the second measurement point on the right and left side of the sleeper (xr2 = 34.2 m)
relative to a simulation performed at a speed value V = 40 m s−1 and a car body mass
M = 50 t. The figure shows a good comparison between the simulated and estimated
quantities hence confirming the accuracy of the WIM algorithm.

To compare the nominal NRi, NLi and estimated N̂Ri, N̂Li vertical loads on the wheels,
an extensive simulations campaign has been carried out. In particular the dependence
of the relative errors esimRi =

N̂sim
Ri −NRi

NRi
and esimLi =

N̂sim
Li −NLi

NLi
on the vehicle speed V ,
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Figure 6.2: Vertical forces acting at xr2 = 34.2; comparison between the value resulting
from the physical model F fn

z r2(t), F fn
z l2(t) and the one obtained according to the quasi-

linearity hypothesis F fn
z r2 app(t), F fn

z l2 app(t)

.

car-body mass M and the cut frequency fn of the physical system is investigated.
In Tab. 6.1 the considered variation ranges for the previous quantities are reported
together with the resolutions adopted for the range discretization (∆V , ∆M , ∆fn),
where Nsim represent respectively the number of simulated values of V , M and fn.

Table 6.1: Variation ranges of V, M and fn adopted for the simulations campaign

Parameter Min. Max. Nsim ∆

Velocity (m s−1) 10 40 4 ∆V = (Vmax−Vmin)
(Nv−1)

Car-body Mass (t) 20 50 4 ∆M = (Mmax−Mmin)
(NM−1)

Frequency (s−1) 10 40 4 ∆fn = (fn max−fn min)
(Nf−1)

The global performance of the WIM algorithm have been studied by considering the
maximum relative error
esimmax(V,M, fn):

esimmax = max
1≤i≤ntot,

(
max(|esimRi |, |esimLi |)

)
. (6.1)

The values of the nominal N sim
Ri , N sim

Li and estimated N̂ sim
Ri , N̂ sim

Li vertical loads acting
on the vehicle wheels evaluated in a test performed with vehicle speed equal to V=40
m s−1, a car-body mass value M = 50 t and different values of fn, are listed in Tab. 6.2.
This case has been shown because it represents the worst case, in terms of error. The
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good algorithm accuracy performance in estimating the vertical loads is mainly due to
the capability of correctly describing the global shape of the solutions (both in space
and in time) and not only the peaks, that are more affected by errors and noise. Tab. 6.2
shows a good accuracy of the WIM algorithm even for relatively low values of fn. The
maximum resulting error among the simulation campaign is equal to 1.9 % and it is
relative to a simulation performed considering the following values: V=40 m s−1, M=50
t and fn = 10 s−1.

Table 6.2: Estimated vertical loads on the vehicle wheels, N̂ sim
Ri , N̂ sim

Li : V=40 m s−1,
M=50 t, with different values of fn.

Cut frequency fn Parameter Value Parameter Value
Hz kN %

10
N̂ sim
R1

75.4
esimR1

1.4%

20 76.4 0.3%

30 76.4 0.3%

40 76.8 0.2%

10
N̂ sim
L1

75.4
esimL1

1.7%

20 76.5 0.2%

30 76.6 0.01%

40 76.7 0.03%

10
N̂ sim
R2

75.9
esimR2

0.7%

20 76.6 0.05%

30 76.6 0.1%

40 76.7 0.2%

10
N̂ sim
L2

76.2
esimL2

0.4%

20 76.2 0.4%

30 76.4 0.17%

40 76.1 0.5%

10
N̂ sim
R3

75.2
esimR3

1.7%

20 76.2 0.5%

30 76.4 0.19%

40 76.4 0.2%

10
N̂ sim
L3

75.1
esimL3

1.9%

20 76.2 0.4%

30 76.2 0.01%

40 76.5 0.4%

10
N̂ sim
R4

75.3
esimR4

1.7%

20 76.2 0.6%

30 76.9 0.3%

40 76.8 0.1%

10
N̂ sim
L4

75.7
esimL4

1.3%

20 76.6 0.1%

30 76.7 0.06%

40 76.7 0.06%
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Fig. 6.3 shows a comparison between the maximum relative percentage errors
esimmax(V,M, fn) and their behaviour as a function of speed V and cut-off frequencies
fn; each graph is relative to a different value of the vehicle car body mass M .

(a) M=20 t

(b) M=30 t

(c) M=40 t

Figure 6.3: Behaviour of the percentage esimmax(V,M, fn) relative error as a function of
speed V, car body mass M and cut-off frequency fn

Although the good algorithm performance, these results show how the estimation of
vertical loads becomes more difficult, in front of an increase of the travel speed V and
low values of the cut-off frequency fn, because the quasi-linearity hypothesis begins to
be a critically condition if these quantities become too high.
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6.1.1 Estimation of the vertical wheel loads N̂Ri, N̂Li with different

measurement layouts

In this section, the performance of algorithm in estimating of the vertical wheel load
are estimated in several working conditions concerning the measurement layout. Figs.
6.4-6.7 show the trend of the maximum value of the relative estimation error computed
between the right and left loads and among all the sleepers that equip the measurement
layouts (see Tab. 3.2). The simulation parameters are those indicated in Tab. 6.1
with a cut-off frequency fn of 20 Hz. Fig. 6.4 highlights how layouts equipped with
consecutive sleepers involve bigger errors and their trends are not constant with the
increasing of the vehicle speed: better trend are obtained with a space between the two
sensing elements. Similar considerations can be done for the other test case.
Results highlight the good operation of the estimation algorithm on vertical loads
against measurement layouts that differ for the number and spacing among the sensing
elements: in particular, the increasing of the number of force sensors involves lower
estimation errors but also a bigger number of sensing elements, maintenance time and
installation cost. A good compromise between installation maintenance and cost and
the estimation accuracy can be provided by measurement layouts equipped of three
sensor spaced of 1.8 m, which involves estimation errors below the 0.5 % (Layout 7).



6.1 Estimation of the vertical wheel loads N̂Ri, N̂Li 126

(a) M=20 t

(b) M=30 t

(c) M=40 t (d) M=50 t

Figure 6.4: Behaviour of the percentage esimmax(V,M, fn) relative as a function of the
measurement layout equipped of two sleepers: errors are below the 1 %
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(a) M=20 t

(b) M=30 t

(c) M=40 t (d) M=50 t

Figure 6.5: Behaviour of the percentage esimmax(V,M, fn) relative as a function of the
measurement layout equipped of three sleepers: errors are below the 0.9 %



6.1 Estimation of the vertical wheel loads N̂Ri, N̂Li 128

(a) M=20 t

(b) M=30 t

(c) M=40 t (d) M=50 t

Figure 6.6: Behaviour of the percentage esimmax(V,M, fn) relative as a function of the
measurement layout equipped of four sleepers: errors are below the 0.7 %
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(a) M=20 t

(b) M=30 t

(c) M=40 t (d) M=50 t

Figure 6.7: Behaviour of the percentage esimmax(V,M, fn) relative as a function of the
measurement layout equipped of five sleepers: errors are below the 0.6 %
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Figure 6.8: Positions of Gb(xb, yb) used to modify G(x, y)

6.2 Estimation of the longitudinal XG and lateral YG

coordinates of the center of gravity G

The good accuracy properties exhibited by the WIM algorithm in estimating vertical
loads acting on the wheels make the algorithm suitable for the estimation of the
longitudinal XG and lateral YG position of the vehicle center of mass G, to avoid
possible imbalances. To test the performance of the WIM algorithm in the estimation of
the longitudinalXG and lateral YG coordinates of the center of gravityG, two dedicated
simulation campaign have been performed. Firstly the actual longitudinal XG, and
then the lateral YG position of the center of mass G of the train have been varied by
changing the position of the center of mass of the carbody GB in the physical model of
the train according to the values shown in Fig. 6.8 and indicated in Tab. 6.3.

Table 6.3: Positions of the center of mass of the car-body Gb expressed in longitudinal
Xb and lateral Yb coordinates

Xb Yb

Xb = 0.0 m Yb = 0.0 m
Xb = 1.0 m Yb = 0.1 m
Xb = 2.0 m Yb = 0.2 m
Xb = 3.0 m Yb = 0.3 m

Yb = 0.4 m
Yb = 0.5 m

Fig. 6.9 shows the comparison among the estimated loads N̂R, N̂L with different value
of the longitudinal displacement Xb performed with a vehicle speed V = 10 m s−1: it
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Figure 6.9: Comparison between estimated loads N̂R, N̂L with different value of
longitudinal displacement Xb of the centre of mass, performed with a vehicle speed
V = 10 m s−1. Blue bar: load on the left wheel - Red bar: load on the right wheel

can be seen that loads are perfectly symmetrical with respect to a longitudinal plane,
being the center of gravity G placed along the longitudinal axis of the vehicle (the
vehicle is not unbalanced along the lateral axis). The position of the car body center of
gravity Gb is translated longitudinally toward the head of the train, with a consequent
increase of the loads acting on the wheels of the frontal bogie (N̂R1 , N̂L1 , N̂R2 , N̂L2) and
a decrease ones of the rear bogie (N̂R3 , N̂L3 , N̂R4 , N̂L4).
The test campaign has been performed considering a car-body mass value M = 10

t, a cut-off frequency fn = 20 s−1 and four different values of the vehicle velocity
(V = 10, 20, 30, 40 m s−1). Tab. 6.4 summarizes the maximum percentage relative error
on estimated loads as a function of the vehicle speed V and longitudinal displacement
Xb of center of gravity Gb, performed with a car-body mass M = 10 t and a cut-off
frequency fn = 20 s−1.
The second simulation campaign is focused on the lateral displacement YG of the
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Table 6.4: Percentage relative error on estimation loads with different speed and
longitudinal displacement position of car body center of gravity Xb, performed with a
car body mass M=10 t and a cut-off frequency fn=20 s−1

Position Par. Speed Speed Speed Speed
m 10 m s−1 20 m s−1 30 m s−1 40 m s−1

Xb = 0 0.10 % 0.16 % 0.26 % 0.26 %
Xb = +1 esimmax 0.19 % 0.16 % 0.20 % 0.42 %
Xb = +2 0.19 % 0.24 % 0.25 % 0.33 %
Xb = +3 0.17 % 0.29 % 0.19 % 0.37 %

Table 6.5: Percentage relative error on estimation loads with different speed and lateral
displacement position of car body center of gravity Yb, performed with a car body mass
M=10 t and a cut-off frequency fn=20 s−1

Position Speed Speed Speed Speed
m 10 m s−1 20 m s−1 30 m s−1 40 m s−1

Yb = 0 (m) 0.13 % 0.14 % 0.20 % 0.27 %
Yb = +0.1 (m) 0.15 % 0.15 % 0.251 % 0.278 %
Yb = +0.2 (m) 0.19 % 0.24 % 0.28 % 0.213 %
Yb = +0.3 (m) 0.17 % 0.29 % 0.19 % 0.22 %
Yb = +0.4 (m) 0.17 % 0.29 % 0.19 % 0.22 %

vehicle center of gravity for different values of speed V , according to the real
dimensions of the car. Fig. 6.10 shows the trends of the estimated loads in according
with the displacement of the center of mass in the lateral direction. Table. 6.5 indicates
the behaviour of the errors as a function of speed, performed with a car body mass
M=10 t and a cut-off frequency fn=20 s−1: a weak increase of the errors with the
speed is present. These results confirm the good performance of the proposed WIM
algorithm in estimating unbalance loads consequently it can be used to compute the
vehicle centre of gravity Ĝ, starting from the values of vertical estimated loads on the
wheel.
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Figure 6.10: Comparison between estimated loads N̂R, N̂L with different value of
lateral displacement Yb of the centre of mass, performed with a vehicle speed V = 10

m s−1 . Blue bar: load on the left wheel - Red bar: load on the right wheel

6.2.1 Estimation of the longitudinal XG and lateral YG coordinates of

the center of gravity G with different measurement layouts

The performance of the estimation on the center of mass have been verified with
different measurement layouts as done for the estimation of the vertical load, carrying
out estimation errors below the 0.1%: there is no a relevant dependence between the
estimation accuracy and the measurement layouts. E.g the results in estimating the
center of mass with a longitudinal displacement of 1 m and lateral one of 0.2 m are
shown for the measurement layouts equipped of three sensing elements (see Figs. 6.11-
6.12).
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(a) M=20 t

(b) M=30 t

(c) M=40 t (d) M=50 t

Figure 6.11: Estimation errors of the centre of mass with a longitudinal displacement
of 1 mand measurement layouts equipped of 3 sensing elements
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(a) M=20 t

(b) M=30 t

(c) M=40 t (d) M=50 t

Figure 6.12: Estimation errors of the centre of mass with a lateral displacement of 0.2
mand measurement layouts equipped of 3 sensing elements



Chapter 7
Conclusion, final remarks and future
developments

This work has led the development of several estimation algorithms of train
parameters, towards aims of train detection and monitoring of the railway traffic on
the rail for vehicle maintenance and diagnostic purposes. Two estimation approaches
(TDA/FDA) have been formulated to carry out functionalities of train detection:
moreover a WIM (Weigh in Motion) algorithm has been studied which, taking in input
several train parameters estimated by the TDA/FDA approaches, is able to do accurate
estimations of vertical wheel loads and the vehicle center of gravity.
The estimation approaches are able to manage both the experimental data or, in
absence of them, simulated track inputs provided by a physical model of vehicle,
track and a global contact model that manages the interaction between them. The
benchmark vehicle is the Manchester wagon. The developed approaches can manage
different kind of input signals, in the proposed work vertical forces on measurement
sleepers are considered.
The physical model has been also used to test the global performance in a wide range
of operating conditions concerning the vehicle (mass and speed) and the measurement
chain, in terms of number of sensing elements and their displacement.
A comparison between the TDA and FDA approaches have been done, both on their
estimations accuracy, functionalities and required computational times.
There is no a relevant difference between the estimation errors, but the FDA algorithm
has shown a better flexibility towards the performance of the measurement chain,
vehicle parameters and, in addition, provides more data on train, thanks to the
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detection of each train axles: these information may be useful for the train geometry
recognition and the wheel detection, no possible with the TDA approach. As a
consequence, the FDA is more powerful than the TDA, because is able to estimate train
parameters and define also the vehicle geometry. The performance of the approaches
have been also verified simulating performance of the measurement chain worse than
that of a real scenario, in terms of noise affecting the measure: results highlight a
major robustness of the FDA rather than that of the TDA, entailing low estimation
errors, despite the high noise level applied on the input signal (SNR: 4dB). The only
weakness of the FDA approach lies in its computational times, especially in the speed
computing, if are compared with those required by the TDA algorithm, but this
can be a good compromise, considering its capability to detect each train axles. A
study on the optimal configuration of the measurement chain has been done, as a
compromise among maintenance and installation cost and the estimation accuracy of
the TDA/FDA approaches: to this end, the chosen measurement layout is equipped of
two sensing elements spaced of 1.8 m. In this scenario both approaches (TDA/FDA)
have led estimation errors of the vehicle speed below the 1% in the [2-80]m s−1 speed
range and [10-50]t mass range. The FDA approach entails errors of train detection
only for vehicle speeds bigger than 70 m s−1 (no errors are committed with layouts
equipped of a bigger number of sensing elements) and the TDA no commits errors
until 60 m s−1. The approaches optimized in the training phase have been validated
on an experimental data, showing the major robustness of the FDA algorithm towards
signals corresponding to a train composition.
In conclusion, the FDA is the better estimation approach proposed in this work, able
to compute train parameters like the crossing times, speed and axles recognition,
entailing very low errors and showing flexibility towards different kind of input signal
and measurement layout and provides robustness against possible high white noise
level on the measured input signal. The TDA approach requires less computational
times, especially in the speed computation, but is not flexible and robust in the
same way as shown by the FDA approach. Moreover, a WIM algorithm has been
developed, aimed at estimating the vertical wheel loads and the vehicle center of
gravity, whose estimation accuracies has a big relevance to face problems concerning
possible unbalances: the approach has been tested in the [20-50]m s−1 speed range
and [10-40]t mass range and the estimation errors are always below the 1% in all the
measurement layouts. A good compromise between installation maintenance/cost
and the estimation accuracy, can be offered by measurement layouts equipped of three
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sensors spaced of 1.8 m, which involve estimation errors below the 0.5%.
The proposed approaches have a great impact especially in the state of art of this
topic, due to the absence of studies that develop algorithms to estimate several train
parameters, in different working conditions about the measurement layout, sensors
and train composition. The studied solutions are able to do estimation of different train
parameters, starting from the same sensors and using the same approach(Auto/Cross
Correlation (TDA), Spectrogram(FDA)). Moreover, another aspect of novelty of this
study (if compared with those present in literature) lies in the training of the algorithms
with a wide simulation campaign in order to verify their operation also in worse
working condition than those of a real measurement scenario. At the end, efforts
have been done to drive the development towards efficient solutions efficient, able
to meet realistic requirements, concerning their performance (estimation accuracy,
computational times) and the measurement station properties (number of sensors and
maintenance times). Future developments regard the integration of the proposed
estimation approaches in electronic boards in order to perform a wide experimental
campaign, aimed at testing their good operation shown by this study.



Appendix A
Appendix-TDA

The global performance of the TDA approach have been evaluated in all the
measurement layouts. Following, the trend of the estimation accuracy on the vehicle
speed obtained with the Monte Carlo analysis are shown for different measurement
layouts in order to evaluate the performance of the approach against the noise level
inserted in the estimation process. Results are comfortable due to the reaching of the
Monte Carlo convergence in each operating condition, concerning the vehicle (mass,
speed) and the layouts (number and spacing among sensing elements).
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.1: Layout2: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsim
vk

with k=(2-80) m s−1 (b-f)



141

(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.2: Layout2: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.3: Layout3: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.4: Layout3: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.5: Layout4: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.6: Layout4: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.7: Layout5: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.8: Layout5: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.9: Layout6: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.10: Layout6: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.11: Layout7: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.12: Layout7: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.13: Layout8: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.14: Layout8: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.15: Layout9: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in all

vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.16: Layout9: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.17: Layout10: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in

all vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.18: Layout10: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.19: Layout11: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in

all vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.20: Layout11: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.21: Layout12: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in

all vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.22: Layout12: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.23: Layout13: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in

all vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.24: Layout13: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.25: Layout14: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in

all vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.26: Layout14: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.27: Layout15: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in

all vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.28: Layout15: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations
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(a) Esimiter
v trend in the full speed range (2-80)

m s−1 and mass one (10-50) t
(b) EM

simiter
vk

with k=2 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=10 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=20 m s−1 trend for each
Monte Carlo iteration

(e) EM
simiter
vk

with k=30 m s−1 trend for each
Monte Carlo iteration

(f) EM
simiter
vk

with k=40 m s−1 trend for each
Monte Carlo iteration

Figure A.29: Layout16: (a) Esimiter
v [%] convergence with the Monte Carlo Analysis in

all vehicle mass and speed. Focus on EMsimiter
vk

with k=(2-80) m s−1 (b-f)
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(a) EM
simiter
vk

with k=50 m s−1 trend for each
Monte Carlo iteration

(b) EM
simiter
vk

with k=60 m s−1 trend for each
Monte Carlo iteration

(c) EM
simiter
vk

with k=70 m s−1 trend for each
Monte Carlo iteration

(d) EM
simiter
vk

with k=80 m s−1 trend for each
Monte Carlo iteration

(e) Percentage relative errors on the vehicle speed Emsimiter
vk

with k=(2-80)m s−1

Figure A.30: Layout16: Focus on EM
simiter
vk

trends for each mass and vehicle speed (a-
d) and Emsimiter

vk
[%] trend for each speed(e): the convergence is reached for about 40

algorithm iterations



Appendix B
Appendix-FDA

The global performance of the FDA approach has been evaluated in all the
measurement layouts. Following, the error trends on the train axles crossing times and
the vehicle speed, analysed with the Monte Carlo approach, have been summarized,
showing good results as indicated and discussed in Chapter 3. More focused, the trend
of the estimation errors with the Monte Carlo analysis about the vehicle speed in the
full speed and mass range is shown, for each measurement layout. The Monte Carlo
convergence is shown both with the process aimed at estimating the vehicle speed both
with the procedure to estimate the axles crossing times.
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Layout3

Figure B.1: Layout3: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 30
iterations the convergence is reached

Figure B.2: Layout3: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.3: Layout3: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.4: Layout3: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1 and
(d) Monte Carlo convergence
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Layout4

Figure B.5: Layout4: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 30
iterations the convergence is reached

Figure B.6: Layout4: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
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(with k=2 m s−1) (b) Percentage EM
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vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.7: Layout4: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.8: Layout4: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1 and
(d) Monte Carlo convergence
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Layout5

Figure B.9: Layout5: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.10: Layout5: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
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vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.11: Layout5: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.12: Layout5: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout6

Figure B.13: Layout6: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.14: Layout6: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.15: Layout6: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.16: Layout6: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout7

Figure B.17: Layout7: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.18: Layout7: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.19: Layout7: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.20: Layout7: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout8

Figure B.21: Layout8: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 30
iterations the convergence is reached

Figure B.22: Layout8: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
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vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.23: Layout8: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 49 iteration

Figure B.24: Layout8: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout9

Figure B.25: Layout9: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.26: Layout9: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.27: Layout9: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.28: Layout9: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout10

Figure B.29: Layout10: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.30: Layout10: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.31: Layout10: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.32: Layout10: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout11

Figure B.33: Layout11: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.34: Layout11: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.35: Layout11: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.36: Layout11: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout12

Figure B.37: Layout12: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.38: Layout12: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
simiter
vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.39: Layout12: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 49 iteration

Figure B.40: Layout12: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout13

Figure B.41: Layout13: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.42: Layout13: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
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vk

(with k=2 m s−1) (b) Percentage EM
simiter
vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.43: Layout13: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.44: Layout13: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout14

Figure B.45: Layout14: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.46: Layout14: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage Esimiter
vk

(with k=2 m s−1) (b) Percentage Esimiter
vk

(with k=10 m s−1)

(c) Percentage Esimiter
vk

(with k=20 m s−1) (d) Percentage Esimiter
vk

(with k=30 m s−1)

(e) Percentage Esimiter
vk

(with k=40 m s−1) (f) Percentage Esimiter
vk

(with k=50 m s−1)

Figure B.47: Layout14: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage Esimiter
vk

(with k=60 m s−1) (b) Percentage Esimiter
vk

(with k=70 m s−1)

(c) Percentage Esimiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.48: Layout14: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout15

Figure B.49: Layout15: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.50: Layout15: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
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vk

(with k=2 m s−1) (b) Percentage EM
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vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
simiter
vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.51: Layout15: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
vk

(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 49 iteration

Figure B.52: Layout15: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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Layout16

Figure B.53: Layout16: Monte Carlo analysis on the Emsimiter
Timax

: results show as after 49
iterations the convergence is reached

Figure B.54: Layout16: Percentage Esimiter
V trend in all speed and mass range: results

highlight how, for each speed, the value of mass vehicle not involves a relevant effect
on the errors
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(a) Percentage EM
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vk

(with k=10 m s−1)

(c) Percentage EM
simiter
vk

(with k=20 m s−1) (d) Percentage EM
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vk

(with k=30 m s−1)

(e) Percentage EM
simiter
vk

(with k=40 m s−1) (f) Percentage EM
simiter
vk

(with k=50 m s−1)

Figure B.55: Layout16: Speed Estimation-Monte Carlo Analysis with k=(2-50) m s−1
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(a) Percentage EM
simiter
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(with k=60 m s−1) (b) Percentage EM
simiter
vk

(with k=70 m s−1)

(c) Percentage EM
simiter
vk

(with k=80 m s−1)

(d) Monte Carlo convergence of Emsimiter
vk

reached at about 30 iteration

Figure B.56: Layout16: Speed Estimation-Monte Carlo Analysis with k=(60-80) m s−1

and (d) Monte Carlo convergence
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