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Abstract. In his pioneering work on negative specific heat, Walter Thirring in-

troduced a model that is solvable in the microcanonical ensemble. Here, we give a

complete description of the phase-diagram of this model in both the microcanonical

and the canonical ensemble, highlighting the main features of ensemble inequivalence.

In both ensembles, we find a line of first-order phase transitions which ends in a critical

point. However, neither the line nor the point have the same location in the phase-

diagram of the two ensembles. We also show that the microcanonical and canonical

critical points can be analytically related to each other using a Landau expansion

of entropy and free energy, respectively, in analogy with what has been done in [O.

Cohen, D. Mukamel, J. Stat. Mech., P12017 (2012)]. Examples of systems with certain

symmetries restricting the Landau expansion have been considered in this reference,

while no such restrictions are present in Thirring’s model. This leads to a phase

diagram that can be seen as a prototype for what happens in systems of particles with

kinematic degrees of freedom dominated by long-range interactions.
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1. Introduction

In recent years, the systematic study of systems with long-range interactions has

attracted considerable attention, due to remarkable properties that significantly differ

from those of short-range interacting systems [1–4]. Examples of such systems are self-

gravitating systems [5–13], plasmas [14,15], two-dimensional and geophysical fluids [16–

20] and spin systems [21, 22]. The long-range character of the interactions confers a

striking property to these systems: they are intrinsically non additive. Non additivity,

however, does not hinder neither a statistical mechanical formulation [1] nor a proper

thermodynamic description [23]. Because of non additivity, equilibrium configurations

may present negative specific heat in the microcanonical ensemble [6, 8], ensemble

inequivalence [8, 24–26] and the violation of the usual Gibbs-Duhem equation [23, 27].

A feature which is of direct relevance for this paper is that non additivity, which is

responsible for changes in the concavity of the thermodynamic potentials, directly leads

to ensemble inequivalence. This latter is in turn manifest through the properties of the

phase-diagrams, which are not the same in different ensembles.

A seminal work on negative specific heat was written by Walter Thirring [8]. In

that paper he introduced a simple model that reproduces some of the properties of

self-gravitating systems. He showed that the model exhibits negative specific heat and

temperature jumps in the microcanonical ensemble and that they are both absent, and

replaced by a first-order phase transition, in the canonical ensemble. In the last decade,

ensemble inequivalence in non additive systems has become an established fact [1], and

several different models have been shown to display such a feature.

However, quite surprisingly, a detailed study of the full phase diagram in both

the microcanonical and the canonical ensemble of Thirring’s model has not yet been

performed. Moreover, the analysis of ensemble inequivalence has been restricted in

general to models which are endowed with specific symmetries of the order parameter.

We are here thinking, for instance, to models of magnetic systems which, in absence of

an external field, are invariant under a sign change m→ −m of magnetization m. These

models have typically a phase diagram with a line of second order phase transitions which

ends at a tricritical point. This latter has a different location in different ensembles [25].

Thirring’s model does not possess this symmetry and, as we will show, the line of first-

order phase transitions terminates at a critical point, as it happens for the gas-liquid

phase transitions in fluids. At variance with what is found for models with symmetries,

ensemble inequivalence manifests itself in Thirring’s model by a different location of

the critical point. In addition, the mean-field character of Thirring’s model allows

us to employ a Landau expansion [28] of thermodynamic potentials and to determine

analytically the location of the critical point in both the microcanonical and canonical

ensembles.

Using a Landau expansion for the thermodynamic potentials, phase diagrams and

ensemble inequivalence in systems with two types of symmetry have been considered

in [29]. There, these symmetries are specified by f(m, q) = f(−m, q) and f(m, q) =
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f(−m,−q), where m is the order parameter and f is the thermodynamic potential

corresponding to the “lower” ensemble in which the thermodynamic variable q is fixed,

while this variable can fluctuate in the “higher” ensemble. Furthermore, the ABC

model [30,31], a one-dimensional driven exclusion model, and the anisotropic XY model

for a system with infinite-range interacting spins have been discussed in [29] as concrete

examples. These models consist of lattice sites with internal degrees of freedom; on

the contrary, Thirring’s model is a simplified version of a self-gravitating system, and

as such it describes particles with kinematic degrees of freedom. In addition and in

contrast to the previous examples, Thirring’s model has no symmetries restricting the

Landau expansion, leading to a phase diagram that can be seen as a prototype for

what happens in systems of particles with kinematic degrees of freedom dominated by

long-range interactions.

2. Thirring’s model

Thirring’s model is a minimal model that describes a confined system with regularized

attractive interactions that mimic those of a self-gravitating gas [32,33]. In this model,

N particles of mass m are enclosed in a volume V with a Hamiltonian given by

H =
N∑
i=1

|pi|2

2m
+

N∑
i>j

φ(qi, qj), (1)

where pi is the momentum of the i-th particle, and the interactions are defined by the

nonlocal potential [8]

φ(qi, qj) = −2νθV0(qi)θV0(qj). (2)

Here ν > 0 is a constant, and θV0(qi) = 1 if qi ∈ V0 and vanishes otherwise, where qi is

the position of the i-th particle and V0 < V is the core volume. Particles outside V0 are

free, so that the total potential energy in the large N limit is given by

N∑
i>j

φ(qi, qj) = −νN2
0 , (3)

where N0 is the number of particles in V0 for a given configuration. Notice that, as a

consequence of the interaction potential (2), the system is nonadditive [23] and exhibits

the rich phenomenology common to long-range interacting systems. In particular, the

microcanonical and canonical ensembles are not equivalent, as will be shown below.

Let us consider the thermodynamics of the system when it is isolated. The density

of states in phase space can be written as a sum over all possible values of the number

of particles in the core [8]

ω(E, V,N) =
∑
N0

eŜ(E,V,N,N0), (4)

in such a way that the maximization of Ŝ(E, V,N,N0) leads to the microcanonical

entropy in the large N limit, S(E, V,N) = supN0
Ŝ(E, V,N,N0). Here and below we
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use units in which kB = 1. Furthermore, introducing the fraction of free particles ng

(fraction of particles outside V0), the reduced energy ε, and the reduced volume η, given

by

ng = 1− N0

N
, ε =

E

νN2
+ 1, η = ln

(
V − V0

V0

)
, (5)

the function Ŝ in (4) can be written as Ŝ ≡ Nŝ with [8, 33]

ŝ(ng, ε, η) =
3

2
ln
[
ε− 2ng + n2

g

]
− (1− ng) ln(1− ng)− ng lnng + ngη, (6)

where in (6) we have neglected constant terms. The microcanonical entropy per particle

s = S/N is thus given by

s(ε, η) = ŝ(n̄g, ε, η) = sup
ng

ŝ(ng, ε, η), (7)

where n̄g = n̄g(ε, η) is the value of ng that maximizes (6). The energy E, being the

sum of the potential energy (3) and of the kinetic energy K, is bounded from below

by −νN2, therefore for the reduced energy we have ε ≥ 0. Furthermore, for a given

reduced energy in the range 0 ≤ ε < 1, the fraction of free particles ng is bounded from

above by 1 −
√

1− ε, due to the fact that K ≥ 0. On the other hand, for ε ≥ 1 the

fraction ng can take any value in the range 0 ≤ ng ≤ 1. In turn, this guarantees that the

argument of the logarithm in equation (6) is never negative. The reduced temperature

τ = T/(νN), where T is the temperature, takes the form

1

τ(ε, η)
=

∂

∂ε
ŝ(ng, ε, η)

∣∣∣∣
ng=n̄g

=
3

2

(
ε− 2n̄g + n̄2

g

)−1
, (8)

which is guaranteed to be positive from the same observation made above.

In the canonical ensemble, the system is assumed to be in contact with a thermostat,

in such a way that the reduced temperature τ is fixed and the energy fluctuates. The

reduced canonical free energy is ϕ = F/(NT ), F being the canonical free energy. It

can be obtained from the microcanonical entropy by computing its Legendre-Fenchel

transform [1], namely,

ϕ(τ, η) = inf
ε

[ ε
τ
− s(ε, η)

]
. (9)

The reduced free energy can also be written as

ϕ(τ, η) = ϕ̂(n̄g, τ, η) = inf
ng

ϕ̂(ng, τ, η), (10)

where

ϕ̂(ng, τ, η) = inf
ε

[ ε
τ
− ŝ(ng, ε, η)

]
, (11)

and now the fraction of free particles that minimizes the free energy is a function of the

temperature, n̄g = n̄g(τ, η). In this case, using (6), the expression (11) can be computed

to give

ϕ̂(ng, τ, η) = −3

2
ln

(
3τ

2

)
+

2ng − n2
g

τ
+ (1− ng) ln(1− ng) + ng lnng − ngη +

3

2
. (12)
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Obviously, the constant terms neglected in the entropy (6) are not included. The mean

value ε̄ of the reduced energy in the canonical ensemble is given by

ε̄(τ, η) = −τ 2 ∂

∂τ
ϕ̂(ng, τ, η)

∣∣∣∣
ng=n̄g

=
3τ

2
+ 2n̄g − n̄2

g. (13)

An interesting feature of the system is that it undergoes first-order phase transitions

in both the microcanonical and canonical ensembles. Using the Landau theory of phase

transitions, below we study the critical points in the two ensembles and show explicitly

that they differ from each other.

3. Landau theory: Microcanonical ensemble

Let us introduce the deviation m = ng − n̄g of the fraction of free particles ng with

respect to a certain reference value n̄g. This reference value will be the one maximizing

equation (6), i.e., the equilibrium value. Thus, we perform a Landau expansion of the

entropy (6) in powers of m around n̄g,

ŝ(m, ε, η) = as(n̄g, ε, η) + bs(n̄g, ε, η)m+ cs(n̄g, ε, η)m2 + ds(n̄g, ε, η)m3

+ es(n̄g, ε, η)m4 +O(m5), (14)

where the coefficients are given by

as(n̄g, ε, η) =
3

2
ln
(
ε− 2n̄g + n̄2

g

)
− (1− n̄g) ln(1− n̄g)− n̄g ln n̄g + n̄gη, (15)

bs(n̄g, ε, η) = ln

(
1− n̄g

n̄g

)
− 3(1− n̄g)

ε− 2n̄g + n̄2
g

+ η, (16)

cs(n̄g, ε, η) =
Pε(n̄g)

2 (1− n̄g) n̄g

(
ε− 2n̄g + n̄2

g

)2 , (17)

ds(n̄g, ε, η) =
1− 2n̄g

6(1− n̄g)2n̄2
g

+
3(1− n̄g)(

ε− 2n̄g + n̄2
g

)2 −
4(1− n̄g)3(

ε− 2n̄g + n̄2
g

)3 , (18)

es(n̄g, ε, η) = −
n̄3

g + (1− n̄g)3

12(1− n̄g)3n̄3
g

− 3

4
(
ε− 2n̄g + n̄2

g

)2 −
6(1− ε)(1− n̄g)2(
ε− 2n̄g + n̄2

g

)4 , (19)

with

Pε(n̄g) ≡ 2n̄4
g − 5n̄3

g + (8− 5ε)n̄2
g + (7ε− 6)n̄g − ε2. (20)

We note that the equilibrium states require the conditions bs(n̄g, ε, η) = 0, defining

n̄g = n̄g(ε, η), and cs(n̄g, ε, η) ≤ 0. It is not difficult to see that for 0 ≤ ε ≤ 1 these

conditions are satisfied by only one value of n̄g; therefore a phase transition can occur

only for ε > 1.

3.1. Microcanonical critical point

The microcanonical phase diagram in the (ε, η) plane exhibits a line of first-order phase

transition that ends at a critical point specified by the reduced energy and volume εmp
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Figure 1. Real roots of Pε(n̄g) as a function of the reduced energy ε. Since, by

definition, 0 ≤ n̄g ≤ 1, the roots n3(ε) and n4(ε) are not to be considered. The roots

n1(ε) and n2(ε) become equal at εmp, the energy at the microcanonical critical point.

and ηmp, respectively, corresponding to a fraction of free particles n̄g = nmp. Such

critical values can be obtained by solving the system of equations

bs(nmp, εmp, ηmp) = 0,

cs(nmp, εmp, ηmp) = 0,

ds(nmp, εmp, ηmp) = 0.

(21)

In order to find the critical point, consider the quartic polynomial Pε(n̄g) given by

(20); when Pε(n̄g) vanishes, also the coefficient cs vanishes. Let us denote the roots of

Pε(n̄g) by ni(ε), i = 1, . . . , 4. Two of these roots, say, n3(ε) and n4(ε), lie outside the

interval [0, 1) when they are real: since the fraction n̄g is bounded, 0 ≤ n̄g ≤ 1, these

roots are not to be considered. The other two roots, n1(ε) and n2(ε), can be real or

complex, depending on the value of ε, and are given by

n1(ε) =

√
3

24

{
15√

3
+ z2(ε)−

[
2z1(ε)− 18

√
3

(8ε+ 1)

z2(ε)

]1/2
}
, (22)

n2(ε) =

√
3

24

{
15√

3
− z2(ε) +

[
2z1(ε) + 18

√
3

(8ε+ 1)

z2(ε)

]1/2
}
, (23)

where

z1(ε) = 16(5ε− 8)− 4(ε− 1)(ε+ 26)

z3(ε)
− 4z3(ε) + 75, (24)

z2(ε) =

[
80ε+ 8z3(ε) +

8(ε− 1)(ε+ 26)

z3(ε)
− 53

]1/2

, (25)

z3(ε) =

[
3
√

3

2

√
−∆P (ε) + (1374− 485ε)ε2 − 1293ε+ 404

]1/3

, (26)
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and

∆P (ε) = −36(ε− 1)3
(
968ε3 − 2581ε2 + 2276ε− 744

)
(27)

is the discriminant of Pε(n̄g). When n1(ε) and n2(ε) are real, they lie in the interval

(0, 1] for a certain range of energies ε. To visualize this situation, we plot in figure 1 the

real roots of Pε(n̄g) as function of ε. In addition, these roots are real and different when

the discriminant is positive, are real and degenerate when ∆P (ε) vanishes, and become

complex when ∆P (ε) is negative. Thus, the solution of the system (21) is characterized

by the condition ∆P (εmp) = 0, in such a way that nmp = n1(εmp) = n2(εmp). This can

be seen by noting that cs is continuous for n̄g between n1 and n2, and that

ds(n̄g, ε, η) =
1

3

∂

∂n̄g

cs(n̄g, ε, η), (28)

so that the value of n̄g that cancels out ds must lie between n1 and n2. Therefore, if

the fraction n̄g = nmp cancels out both cs and ds, we have nmp = n1 = n2, which is

precisely what happens when the discriminant vanishes, ∆P (εmp) = 0. Furthermore, in

such a case, from bs(nmp, εmp, ηmp) = 0, the critical reduced volume can be unequivocally

determined as

ηmp =
3 (1− nmp)

εmp − 2nmp + n2
mp

− ln

(
1− nmp

nmp

)
. (29)

The discriminant ∆P (ε), equation (27), is a polynomial of degree six in ε. It has

four reals roots and two complex roots: three of these real roots are found at ε0 = 1,

and the remaining real root is given by

εmp =
(k1 + k2)1/3 + (k1 − k2)1/3 + 2581

2904
' 1.339, (30)

with the numerical coefficients k1 = 1016263261 and k2 = 37792656
√

723. We note that

ε0 is not the critical energy at the critical point, since one has n1(ε0) = n2(ε0) = 1 and,

hence, this corresponds, from equation (29), to a state with η →∞. The critical fraction

can be obtained by evaluating equations (22) or (23) at the critical energy εmp, yielding

nmp ' 0.7929. Finally, from (29), the critical reduced volume is given by ηmp ' 2.969.

In addition, we note that phase transitions can occur only for ε such that ε0 <

ε < εmp, since for ε < 1, as noted before, the condition bs(n̄g, ε, η) = 0 defines only one

state of equilibrium. In figure 2 we show the microcanonical phase diagram in the (ε, η)

plane, with the line of first order transition points terminating at the critical point. The

features of the microcanonical and canonical phase diagrams are commented later.

4. Landau theory: Canonical ensemble

We are interested in showing how the phase diagram in the canonical ensemble differs

from the diagram obtained in the microcanonical ensemble. Following [29], we introduce

the deviation q = ε− ε̄ of the energy with respect to the mean value ε̄ and perform an
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Figure 2. Phase diagram in the (ε, η) plane, showing the transition line in the

microcanonical ensemble. The plot shows the curve η(ε), which represents the points

defined by the reduced energy ε and reduced volume η at which first-order phase

transitions take place in the microcanonical ensemble. The transition line terminates

at a critical point represented by the point (εmp, ηmp). The values of the critical

parameters are εmp ' 1.339 and ηmp ' 2.969.

expansion in powers of q of the entropy in such a way that

ε

τ
− ŝ(m, ε, η) =

ε̄+ q

τ
− a0 − a1q − a2q

2 − a3q
3 −

(
b0 + b1q + b2q

2
)
m

− (c0 + c1q)m
2 − d0m

3 +O(m4) (31)

where we have used (14) and the coefficients of the expansion are given by

αk ≡
1

k!

∂k

∂εk
αs(n̄g, ε, η)

∣∣∣∣
ε=ε̄

, α = a, b, c. (32)

Fixing the temperature to that of the state at which ε = ε̄ and m = 0, such that

1

τ
=

∂

∂ε
ŝ(m, ε, η)

∣∣∣∣
m=0,ε=ε̄

= a1, (33)

and minimizing (31) with respect to q yields

q = − b1

2a2

m− 4a2
2c1 − 4a2b1b2 + 3a3b

2
1

8a3
2

m2 +O(m3), (34)

as well as a second solution given by

q2 = −2a2

3a3

− 2b2

3a3

m− q. (35)

We do not consider the solution q2 because it does not vanish at m = 0. Therefore,

using equations (33) and (34) in (31) and replacing the latter in (11) gives

ϕ̂(m, τ, η) =
ε̄

τ
− a0 − b0m+

(
b2

1

4a2

− c0

)
m2

+

(
4a2

2b1c1 − 2a2b
2
1b2 + a3b

3
1

8a3
2

− d0

)
m3 +O(m4). (36)
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Figure 3. Phase diagram in the (τ, η) plane, showing the transition line in the

canonical ensemble. The plot shows the curve η(τ), which represents the points

defined by the reduced temperature τ and reduced volume η at which first-order phase

transitions take place in the canonical ensemble. The transition line terminates at a

critical point represented by the point (τcp, ηcp). The values of the critical parameters

are τcp = 1/2 and ηcp = 2.

By writing the free energy as

ϕ̂(m, τ, η) = aϕ(n̄g, τ, η) + bϕ(n̄g, τ, η)m+ cϕ(n̄g, τ, η)m2 + dϕ(n̄g, τ, η)m3

+ eϕ(n̄g, τ, η)m4 +O(m5), (37)

one identifies the coefficients

aϕ(n̄g, τ, η) =
ε̄

τ
− a0, (38)

bϕ(n̄g, τ, η) = −b0, (39)

cϕ(n̄g, τ, η) =
b2

1

4a2

− c0, (40)

dϕ(n̄g, τ, η) =
4a2

2b1c1 − 2a2b
2
1b2 + a3b

3
1

8a3
2

− d0, (41)

where the mean energy ε̄ must be taken as a function of τ whose dependence is obtained

through (33). Since ŝ(m, ε̄, η) = a0 + b0m + c0m
2 + d0m

3 + O(m4), the previous

procedure provides the firsts terms of the Landau expansion of the canonical free energy

as functions of the coefficients of the expansion of the microcanonical entropy at a certain

energy ε = ε̄. We observe that the coefficients cϕ and dϕ do not vanish at the same

critical conditions that c0 and d0 do. Hence, the critical point in the canonical ensemble

will be different from the corresponding one in the microcanonical ensemble.

We highlight that we have started from a generic Landau expansion of the entropy.

For Thirring’s model ε̄ is given by (13) and the coefficients in the microcanonical

ensemble by equations (15)-(19), so that using equations (39), (40), and (41) one obtains

bϕ(n̄g, τ, η) =
2 (1− n̄g)

τ
− ln

(
1− n̄g

n̄g

)
− η, (42)



Phase transitions in Thirring’s model 10

cϕ(n̄g, τ, η) =
Qτ (n̄g)

τ (1− n̄g) n̄g

, (43)

dϕ(n̄g, τ, η) =
1

6

[
− 1

n̄2
g

+
1

(1− n̄g)2

]
, (44)

with

Qτ (n̄g) ≡ n̄2
g − n̄g +

τ

2
. (45)

The equilibrium states in the canonical ensemble require the conditions bϕ(n̄g, τ, η) = 0,

defining n̄g = n̄g(τ, η), and cϕ(n̄g, τ, η) ≥ 0.

4.1. Canonical critical point

As it happens in the microcanonical ensemble in the (ε, η) plane, the canonical phase

diagram exhibits in the (τ, η) plane a line of first-order phase transition that ends at

a critical point, here specified by the reduced temperature and volume τcp and ηcp,

respectively, for which the fraction of free particles is denoted by ncp. The critical

parameters can now be obtained by solving the system of equations

bϕ(ncp, τcp, ηcp) = 0,

cϕ(ncp, τcp, ηcp) = 0,

dϕ(ncp, τcp, ηcp) = 0.

(46)

Since dϕ depends only on n̄g, one immediately obtains that the critical point can occur

only for ncp = n̄g = 1/2. Substituting it in equation (43) or equation (45) one then finds

that the critical temperature is τcp = 1/2. Finally, replacing these values in equation (42)

we get that ηcp = 2. However, it is useful to consider the discriminant of the quadratic

polynomial Qτ (n̄g), given in equation (45), following a procedure analogous to that used

in the microcanonical case, where the discriminant of the quartic polynomial Pε(n̄g) was

studied. The discriminant of Qτ (n̄g) takes the form ∆Q(τ) = 1− 2τ , and we know that

the critical temperature satisfies ∆Q(τcp) = 0, giving τcp = 1/2. In this case, the roots

of Qτ (n̄g), given by

n1(τ) =
1

2
−
√

∆Q(τ)

2
, (47)

n2(τ) =
1

2
+

√
∆Q(τ)

2
, (48)

coincide and are equal to ncp = 1/2. The last expressions also show that for τ > τcp,

Qτ (n̄g) has no real roots and, hence, the second order coefficient cϕ does not vanish.

This means that in such a case the condition bϕ(n̄g, τ, η) = 0 defines only one state of

equilibrium, and, therefore, phase transitions can only occur if τ < 1/2.

We emphasize that, for Thirring’s model, the coefficients (42), (43), and (44) of the

Landau expansion can be alternatively obtained from the free energy (12), instead of

the method we employed here. In fact, from (12), the remaining coefficient of (37) takes

the form

eϕ(n̄g, τ, η) =
1

12

[
1

n̄3
g

+
1

(1− n̄g)3

]
. (49)
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Figure 4. Comparison of the microcanonical and canonical phase diagrams. The

reduced volume η is shown as a function of the temperature τ at the transition line

of the two ensembles. In the microcanonical ensemble, there are two temperature

branches that join at the critical point. The temperatures within the region between

these two branches are forbidden in the microcanonical ensemble. In the canonical

ensemble, τ is a control parameter and, thus, has no discontinuity at the transition

line. The critical parameters are τmp ' 0.2547, ηmp ' 2.969, τcp = 1/2 and ηcp = 2.

However, taking into account that the expansions (14) and (31) do not depend on the

model, some general conclusions can be obtained from this method. From equation (40)

one sees that at the canonical critical point, where cϕ = 0, c0 is different from zero

if b1 6= 0, implying that the two critical points do not coincide in general, regardless

of the model. Of course, for a particular model, the Landau expansion may present a

symmetry with respect to the order parameter that enforces the condition b1 = 0 [29];

here we consider that there is no such a symmetry. Furthermore, it is important to stress

that, according to the Landau theory, we are assuming analyticity of the free energy

at the canonical critical point. Analyticity here can be assumed because the system is

nonadditive and for these systems actually there is no phase separation at the transition

line. Therefore, this discussion does not apply to short-range interacting systems, since

these systems do undergo phase separation at a first-order transition, which, in addition,

occurs under the same conditions in the different ensembles.

5. Microcanonical and canonical phase diagrams

In this section we will draw a comparison between the microcanonical and canonical

phase diagrams. Since the transition is first-order in both ensembles, the two equilibrium

configurations associated to the transition are characterized by a jump in n̄g and, hence,

in the associated thermodynamic properties (those which are not control parameters).

In figure 2, we plotted the microcanonical transition line η(ε). This line indicates

the points (ε, η) at which phase transition takes place, i.e., when the entropy reaches the

same value at the two maxima. We emphasize that both ε and η are control parameters
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Figure 5. Comparison of the microcanonical and canonical phase diagrams. The

reduced volume η is shown as a function of the reduced energy ε at the transition

line of the two ensembles. In the canonical ensemble, there are two energy branches

that join at the critical point. The energies within the region between these two

branches are forbidden in the canonical ensemble. In the microcanonical ensemble, ε is

a control parameter and, thus, has no discontinuity at the transition line. The critical

parameters are εmp ' 1.339, ηmp ' 2.969, εcp = 3/2 and ηcp = 2.

in the microcanonical ensemble. In figure 3, we showed the canonical transition line

η(τ) containing the points (τ, η) at which a phase transition occurs in the canonical

ensemble, corresponding to the coincidence of the two free energy minima. We recall

that τ and η are the control parameters in this ensemble.

On the one hand, in the microcanonical case, the jump in n̄g produces a jump in

the temperature. This can be seen in figure 4 in the microcanonical phase diagram

in the (τ, η) plane: we plot η at the transition line as a function of the microcanonical

temperature τ . The phase diagram has two branches starting at small temperatures and

high η that join smoothly at the critical point. According to (8), the microcanonical

temperature at the critical point is τmp ' 0.2547. We highlight that the temperatures

between the two branches of the phase diagram are forbidden for the system in

the microcanonical ensemble. In addition, for comparison purposes, in figure 4 the

canonical phase diagram is also shown, where τ is a control parameter and thus has

no discontinuity. We observe that the microcanonical and canonical critical points are

far from each other and that the temperatures corresponding to the canonical phase

transition are allowed in the microcanonical ensemble.

On the other hand, in the canonical ensemble the jump in n̄g at the transition

produces a jump in the energy, as shown in figure 5 in the phase diagram in the (ε, η)

plane. In this diagram, there are two energy branches that join smoothly at the canonical

critical point, the energy at this point being εcp = 3/2. Moreover, due to the jump, the

values of the energy between the two branches are forbidden in the canonical ensemble.

We finally observe that the energies at the transition line in the microcanonical ensemble,
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Figure 6. Caloric curves in the microcanonical and canonical ensembles for several

values of the reduced volume η. For η ≤ ηcp the two ensembles are equivalent, as

shown in (a) and (b). In (c) and (d), a region of nonconcave entropy, containing a

region with negative specific heat, in the microcanonical ensemble appears for η > ηcp,

which is jumped over by a first order transition in the canonical ensemble. In (c),

the curve has a vertical tangent when approaching from both the left and the right to

the critical energy εmp, occurring just before the local minimum (see the enlargement

in the inset). For η > ηmp, in (d), the system develops a temperature jump in the

microcanonical ensemble. This jump is denoted with a red dashed line.

also shown in figure 5, lie within the region of forbidden canonical energies.

To get a clearer picture of the behavior of the system when the energy is a control

parameter, in comparison with the situation in which the system is in contact with a

thermostat at fixed temperature, in figure 6 we show several caloric curves in both the

microcanonical and canonical ensembles. These curves are shown for different values

of the reduced volume η. When η ≤ ηcp the temperature-energy relation τ(ε, η) is

invertible –in the sense that ε(τ, η) can be unequivocally obtained from it–, and the

microcanonical and canonical ensembles are equivalent. Notice that in this case the

Legendre-Fenchel transform (9) reduces to the usual Legendre transform. For values

of η such that the temperature-energy relation is not invertible in the microcanonical

ensemble, the system undergoes a first-order phase transition in the canonical ensemble.

Moreover, for η > ηmp, the microcanonical phase transition is always jumped over by

the transition in the canonical ensemble. This is, of course, in agreement with the fact

that the microcanonical critical point (η = ηmp) lies in the region of forbidden energies

in the canonical ensemble.

We emphasize that at the canonical critical point the specific heat diverges in both
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the microcanonical and canonical ensembles. This state of the system is described

exactly in the same way in the two ensembles. However, while at τ = τcp and η = ηcp

there is a second-order phase transition in the canonical ensemble (that becomes first-

order for η > ηcp at the corresponding τ), at this point there is no transition in the

microcanonical ensemble. To see that the mere presence of a diverging specific heat (or

a vanishing derivative of the curve τ vs. ε) is not sufficient to say that there is a phase

transition in the microcanonical ensemble, consider for instance the caloric curve for a

value of η such that ηcp < η < ηmp, which corresponds to a situation between (b) and

(c) in figure 6. This curve is continuous with continuous derivative, but with a region of

negative specific heat located between the two values of ε at which the curve τ vs. ε has

zero derivative. The system does not undergo qualitative changes when passing through

any of the points of this curve, which can be achieved by slightly modifying the control

parameters in the neighborhood of a given point. The canonical critical point is, for the

microcanonical ensemble, just the first point where a vanishing value of the derivative

of τ as a function of ε appears. In other words, since the microcanonical specific heat

can be written as

cmicro = −
(
∂s

∂ε

)2(
∂2s

∂ε2

)−1

, (50)

an inflection point in s(ε) with vanishing second derivative may produce a diverging

microcanonical specific heat.

It is interesting to note that the regions of ensemble inequivalence and the

occurrence of phase transitions in both ensembles can be deduced from singular points in

the s(ε, η) curve or, equivalently, from the microcanonical temperature-energy relation

τ(ε, η). We identify two different codimension 1 singularities, as classified in [26]. Notice

that here η is the (only one) parameter, in addition to the energy, that can produce

a change in the structure of s(ε, η) or the caloric curve. These singular points can be

observed in figure 6, as we discuss in what follows. At η = ηcp, a singularity arises due to

convexification, in which a point with horizontal tangent appears in the curve τ(ε, ηcp)

(the entropy is concave at this point). This corresponds to the canonical critical point.

The second singularity occurs at η = ηmp, which is a maximization singularity, in that

a point with vertical tangent appears in the curve τ(ε, ηmp). Such a point correspond

to the microcanonical critical point.

6. Conclusions

We have studied the phase diagrams of Thirring’s model [8] in both the microcanonical

and canonical ensembles. Due to the nonadditive character of the system, these two

ensembles are not equivalent and the corresponding phase diagrams are different from

each other. Using the Landau theory of phase transitions, as done in [29], the coefficients

of the Landau expansion of the canonical free energy can be written in terms of the

coefficients of the microcanonical entropy, which permits an analysis of the critical
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conditions in which these coefficient vanish. Hence, the critical point at which each first-

order transition line terminates can be computed exactly, evincing that they are indeed

different. Since the analysis was performed from generic expansions for the entropy and

the free energy, it can be inferred that, in general, the critical points in the two ensembles

are different. As a difference with respect to [29], here we have considered that there are

no symmetries restricting the coefficients of the Landau expansion of the corresponding

thermodynamic potentials. Moreover, the comparison of the two phase diagrams shows

that the energies at which phase transitions take place in the microcanonical ensemble

are not allowed in the canonical ensemble. Conversely, the temperatures at which the

transitions take place in the canonical ensemble are accessible to the microcanonical

equilibrium configurations.

Furthermore, in this case, the microcanonical entropy and the canonical free energy

can be written as a maximization and minimization problem, respectively, with respect

to a variable ng (here representing the fraction of free particles), and the expansion

parameter in the Landau expressions can be written as m = ng − n̄g, where n̄g is a

reference value. In addition, the Landau expansions are complete, at least to the fourth

order, and the second order coefficient in the two ensembles is a rational function of the

form fλ(n̄g)/gλ(n̄g), where fλ(n̄g) and gλ(n̄g) are polynomials of the variable n̄g that

depend on the parameter λ. The parameter λ is the energy in the microcanonical case

and the temperature in the canonical one. Thus, we have shown that, in general, when

this conditions are met, the critical point in each ensemble can be obtained by studying

the zeros of the discriminants ∆f (λ) associated to the polynomials fλ(n̄g).
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