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Pre-eruptive magmatic processes re-timed
using a non-isothermal approach to magma
chamber dynamics
Chiara Maria Petrone1, Giuseppe Bugatti1, Eleonora Braschi2 & Simone Tommasini3

Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is

paramount to understand magma chamber dynamics and the triggers for volcanic eruptions.

Temporal information of magmatic processes is locked within the chemical zoning profiles of

crystals but can be accessed by means of elemental diffusion chronometry. Mineral

compositional zoning testifies to the occurrence of substantial temperature differences within

magma chambers, which often bias the estimated timescales in the case of multi-stage zoned

minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take

into account the non-isothermal nature of pre-eruptive processes, deconstructing the main

core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The

Non-Isothermal Diffusion Incremental Step model represents a significant improvement in

the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting

temperatures provides a novel approach to constraining pre-eruptive magmatic processes

and greatly increases our understanding of magma chamber dynamics.
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I
t has long been known that the timescale of magma formation,
storage and ascent beneath active volcanoes is the key to
constrain pre-eruptive magmatic processes and magma

chamber dynamics, which provide the basis for volcanic hazard
assessment (for example refs 1–7). Temporal information is
locked in the chemical zoning profile of crystals in erupted
volcanic products. Stepped compositional zoning in such crystals
is the result of physico-chemical variations in the magma (for
example refs 8,9) arising from several processes including cooling,
degassing, magma mixing and magma assimilation9–11. The most
dramatic effect on mineral texture and composition is caused by
magma mixing, which results in reverse, oscillatory and patchy
zoning9,10,12. The degree of interaction between magmas strongly
depends on the relative contrast in their viscosity, temperature,
composition and volume13–16. Elemental diffusion within initially
zoned minerals can smooth and even obliterate initial zoning
profiles depending on the time that the crystal spent at high
temperature and the elemental diffusion rate. Magma eruption
freezes the smoothing of the stepped compositional zoning
profile, thus allowing temporal information to be unlocked by
means of diffusion chronometry (for example refs 17–23).

Diffusion coefficients (D) in silicates are controlled by a
number of parameters such as temperature, pressure, water and
oxygen fugacity, chemical composition and crystallographic
direction. As it has already been shown (for example refs
20,23,24), temperature is by far the most critical parameter
because diffusion is a thermally activated process. Thus, the
variation of the diffusion coefficient strongly depends on the
magnitude of the activation energy of the element in a given
crystal and the temperature20. Clearly, it is critical to accurately
assess the temperature at which diffusion took place in order to
place meaningful constraints on the timescale of pre-eruptive
processes. In case of magma mixing, the temperature contrast can
be as high as 300 �C (ref. 25). If there is more than one event of
magma mixing during crystal growth, or crystals have multiple
contacts with magmas at different temperatures (that is, multi-
stage process), the rate of elemental diffusion within crystals can
be significantly affected26, resulting in severe consequences for
the calculated residence time of the crystals. This could be the
case of multi-zoned clinopyroxenes with high-Mg# (Mg/(Mg/Fe)
at.) compositional bands, formed in the internal portion of the
crystal as a result of magma chamber replenishment by hotter
and more mafic magma, intercalated with low Mg# core and rim
portions formed in equilibrium with the resident magma at lower
temperature27–31. In these crystals, elements will thus diffuse at a
higher rate across the core-band boundary than across the band-
rim boundary.

Kinetic modelling of compositional zoning in olivine crystals
has been used to yield information on crystal (and magma)
residence time in different portions of magmatic plumbing
systems characterized by different conditions or magmatic
environments21,22. Each compositional boundary experienced
isothermal diffusion on contrasting timescales in different
magmatic reservoirs, with the temperature set at the pre-
eruptive equilibrium condition, in agreement with the observed
core-rim zoning patterns of the studied olivine crystals21,22. A
two-step diffusion model has been recently used to constrain
residence time of single portions of plagioclase crystals in
equilibrium with liquids having different compositions and
temperatures in the plumbing system of the Santorini volcano
(Greece)6. In addition, a combination of U-series data, crystal size
distribution and trace element zoning has been recently used to
link the storage time to the thermal state of a magma body32.
However, the direct link between crystal residence time at
different temperatures in active volcanoes (that is, the higher
the temperature, the higher the diffusion rate26) has not been

fully explored. Indeed, when more than one compositional
boundary is present (that is, multi-stage evolution), it is
important to take into account that elemental diffusion rates of
the internal and external compositional boundary layers can be
significantly different, depending on temperature contrast and
elemental activation energy for a given crystal. This is critical to
diffusion chronometry studies aiming to establish meaningful
crystal residence times and set constraints on magma chamber
dynamics.

Here we propose a novel diffusion chronometry approach that
explicitly accounts for the non-isothermal nature of complex
crystal compositional zoning in volcanic systems. Our new Non-
Isothermal Diffusion Incremental Step (NIDIS) model considers
different diffusion coefficients for each crystal compositional
boundary to match its specific equilibrium temperature. This
permits reconstruction of the lifetime history of complex
compositionally zoned crystals, and contributes to a better
understanding of magmatic storage and pre-eruptive processes
in the plumbing systems of active volcanoes.

Results
The non-isothermal conceptual approach of the NIDIS model.
The model has been developed on the basis of diffusion profiles
derived from high-resolution back-scattered electron (BSE) images of
clinopyroxenes (Fig. 1), rather than electron microprobe analyses. To
constrain a meaningful diffusion chronometry, each BSE image has
been calibrated with the actual compositional zoning of clinopyrox-
enes obtained via electron microprobe (Fig. 2; Methods and
Supplementary Figs 1–6). The correspondence between the grey
value profile from BSE image (that is, brightness) and the Mg# profile
(Fig. 2) was tested by calculating the fitting parameter

ffiffiffiffiffiffiffiffi
4Dt
p

(see Methods) to the diffusion profile of Mg# (Fig. 2c) and grey
values (Fig. 2d). The result is identical within error, and demonstrates
that the grey value profile from BSE image can be used as a proxy of
Mg# variation in clinopyroxene, provided that Ca variation across the
zoned boundary is negligible compared to Fe and Mg. This has been
previously shown by Morgan et al.17 for clinopyroxene from
Vesuvius, and is further explored here (Methods and
Supplementary Fig. 1). Therefore, in similar future studies, only a
few electron microprobe spot analyses concentrated on the plateaux
of each crystal’s compositional portion will be necessary, significantly
reducing analytical time. In the example reported in Fig. 2, the lighter
(B160) and the darker (B128) grey values correspond to Mg#
B0.73 and B0.86 respectively. The compositional zoning profile is
the result of diffusion, and not of growth, as illustrated by the profile
of a slowly diffusing element such as Ca, which provides evidence of
having maintained the initial boundary condition, that is no diffusion
occurred for Ca (Supplementary Fig. 1).

Key advantages of working with greyscale values diffusion profiles
include: improved spatial resolution (o0.5mm versus 42–3mm)
(Fig. 2); the ability to measure hundreds of profiles across the zoned
boundary, thus resulting in an average profile with low uncertainty
(that is, 2 standard error of the mean, Fig. 2d); rapid data acquisition
compared with microprobe compositional profiles (o10 min
acquisition time for a high-resolution of 2,000 dpi BSE image versus
B2 h for 30 points in a microprobe profile); and a significant
reduction of the convolution effect of microprobe analyses33.
The increased spatial resolution yields a significant improvement
on the error of the fitting parameter

ffiffiffiffiffiffiffiffi
4Dt
p

(Fig. 2c,d), in particular
when the length of the diffusion profile is only a few microns
(for example, some 5mm, Fig. 2).

The clinopyroxene crystals in Fig. 1 have multiple composi-
tional bands, as testified by different greyscale values of BSE
images, which are correlated to Mg# variation (Fig. 2, Methods
and Supplementary Figs 2–6). The darker grey values (high Mg#)
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record mineral growth in a hotter and more mafic magma, whereas
the lighter grey values (low Mg#) record mineral growth in a cooler
and more evolved magma, resulting in a final diffusion profile at
different temperatures as conceptually described in Fig. 3. The
rationale of the NIDIS model is to deconstruct the entire core-rim
diffusion profile into distinct isothermal steps with their own
diffusion coefficients, each step taking into account the diffusion
timescale of the previous step. This approach is necessary for
complex crystals with more than one compositional boundary
layer and thus showing a multi-stage evolution (for example,
CPX2, CPX3, CPX4, CPX5, Fig. 1). However, it can be also used
for two-stage evolution cases where there is only one compositional
boundary (for example, CPX1, Fig. 1).

The crystallization temperature of each clinopyroxene portion in
Fig. 1 is based on extensive research on Stromboli volcano (for
example refs 28–31), along with a cross-check using a
clinopyroxene-liquid geothermometer34 (Methods) to test the

absolute temperature value and the equilibrium with the liquid.
The estimated temperatures (1098±15 �C and 1150±10 �C, see
below) permitted the determination of different Fe–Mg diffusion
coefficients across the boundary using the thermodynamic data
of Dimanov and Sautter35 (Methods). Considering that
clinopyroxene growth rate is some orders of magnitude faster than
Fe–Mg diffusion rate (for example refs 35,36), we can delineate the
following lifetime history of clinopyroxene crystals from nucleation
to final quenching upon eruption (Fig. 3a,b). At time t0 the high
Mg# band around the low Mg# core grows almost instantaneously
(dashed blue line, Fig. 3a). During the time interval Dt1¼ t1–t0

Fe–Mg diffusion across the boundary takes place, with a diffusion
coefficient D1 determined by the temperature T1 of the magma in
which the high Mg# band formed (solid blue line, Fig. 3a). At time
t1 the crystal is transferred to another portion of the magma
chamber characterized by a temperature T2oT1, and the low Mg#
crystal rim grows (dashed red line, Fig. 3b). The time interval of
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Figure 1 | Zoned clinopyroxene. High-resolution back-scattered electron (BSE) images of selected clinopyroxene crystals of Stromboli volcano modelled in this

study. The red boxes indicate the area where the grey scale raster has been determined using the ‘greyscale calculation’ described in Methods, whereas the

white line is where the electron microprobe profile has been measured (Methods). (a) clinopyroxene 1 (CPX1); (b) clinopyroxene 2 (CPX2); (c) clinopyroxene 3

(CPX3); (d) clinopyroxene 4 (CPX4); (e) clinopyroxene 5 (CPX5).
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this diffusion step is given by Dt2¼ t2� t1, with t2 corresponding to
magma eruption. During this time interval, Fe–Mg exchange
proceeds across the entire crystal (that is, from low Mg# core to
the high Mg# band and the low Mg# rim) with a Fe–Mg diffusion
coefficient D2oD1, because of the lower temperature, and
determines the final diffusion profile (solid red line, Fig. 3b) of the
crystal lifetime history.

To estimate the timescale (Dt1þDt2) producing such a profile,
we can use the analytical solution of diffusion developed for a
semi-infinite plane sheet (equation 2.14; ref. 37), which is based,
however, only on the initial boundary conditions (dashed blue
and red lines, Fig. 3a,b) and a single diffusion coefficient. In
contrast, the crystal lifetime history delineated in Fig. 3a,b clearly
implies two different diffusion coefficients for the core-band
boundary layer (D1 at T1 and D2 at T2).

To overcome this problem we used a backward approach and
estimated the timescale Dt1 (Fig. 3a) by difference. The following
backward method (Fig. 3c,d) has been developed always starting,
in each step, from the initial boundary conditions (dashed blue
and red lines, Fig. 3a,b) implicit in the analytical diffusion
equation across a semi-infinite plane sheet37. In Step 1 (Fig. 3c),

the timescale Dt2 to reproduce the diffusion profile across the
high Mg# band and the low Mg# rim is estimated using the
diffusion coefficient D2 (lifetime history Dt2, Fig. 3b). In Step 2
(solid red line, Fig. 3c) we determined the diffusion profile
developed during Dt2 across the low Mg# core and the high Mg#
band, using the diffusion coefficient D2. In Step 3 (dashed blue
line, Fig. 3d) a fictitious timescale Dt3 is estimated in order to
reproduce the diffusion profile developed during Step 2 across the
low Mg# core and the high Mg# band (solid red line, Fig. 3c),
using the diffusion coefficient D1, that is assuming that it formed
at temperature T1. In Step 4 (solid blue line, Fig. 3d) we
calculated another fictitious timescale Dt4 to reproduce the
diffusion profile across the low Mg# core and the high Mg# band,
using the diffusion coefficient D1, that is assuming that it formed
entirely at temperature T1. Eventually, we could obtain the
timescale Dt1 by difference (Step 5, Dt4�Dt3) reflecting the
lifetime of the clinopyroxene crystal in the magma body at T1
(Fig. 3a). This diffusion chronometry procedure yields the total
crystal residence time within the magma reservoir summing up
Dt1 (time spent at T1, Step 5 of Fig. 3d) and Dt2 (time spent at T2,
Step 1 of Fig. 3c).
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Figure 2 | Electron microprobe versus greyscales profile. The electron microprobe compositional profile (a,c) is used to calibrate the grey scale profile (b,d)

along the clinopyroxene compositional boundary. We used BSE greyscale values as a proxy of Mg# variations in clinopyroxene on the basis of the identical, within

error, fitting parameter (that is,
ffiffiffiffiffiffiffiffi
4Dt
p

¼ 2.63±0.17 for the grey value and 2.48±0.54 for Mg#) obtained using both the greyscale (red line in d) and Mg# (red line

in c) diffusion profile (Methods). (a) BSE-SEM image of the compositional boundary of a clinopyroxene analysed in this study. The red dots mark the single point

analysis of the electron microprobe profile; (b) Same image as in a showing the grey values raster (blue lines) calculated parallel to the electron microprobe profile

(red dots), using the ‘greyscale calculation’ code (Methods). The raster (light parallel blue lines, the first line of the raster is reported as single red line)

is perpendicular to the guideline (single bold blue line) drawn parallel to the boundary layer (Methods); (c) Mg# versus distance (mm) compositional profile, along

the traverse (red dots in a), of the clinopyroxene shown in a. The red line is the best fitting of the compositional profile. Error bars (2 s.d.) in Mg# values represent

error propagation uncertainties of electron microprobe analyses; (d) Grey value versus distance (mm) compositional profile, along the raster (blue lines in b) of the

clinopyroxene shown in b. The red line is the best fitting of the diffusion profile as calculated with the NIDIS. The grey value profile is the average of 100 profile lines;

error bars represent the 2 standard error of the mean (2 s.e.).
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NIDIS and the lifetime history of Stromboli clinopyroxene. We
applied the NIDIS model to carefully screened (Methods)
compositionally zoned clinopyroxene of Stromboli volcano
(Italy) from the present-day activity (o2000 years). The
stratovolcano of Stromboli (ca. 300 km3) is one of the most
famous and best studied volcanoes worldwide because of its
continuous and moderately explosive ‘Strombolian’ activity
over, at least, the last 2000 years (for example refs 38,39).
The present day activity is moderately explosive and persistently
erupts bombs, black scoriae, lapilli and ash (ca. 4–5 events
per hour). Lava flows are periodically erupted (some 15 episodes
in the last 100 years). The typical ‘Strombolian’ activity consists
of High Porphyritic (HP) lavas and black scoriae, formed of
phenocrysts of olivine (4–8 vol%), clinopyroxene (12–20 vol%)
and plagioclase (20–25 vol%). This activity is occasionally
interposed with more violent eruptions and the ejecta consist
of HP scoriae intermingled with highly vesiculated yellowish
Low Porphyritic (LP) scoriae (the so-called golden pumice).
The LP scoriae have a low phenocryst content (ca. 5 vol%) and
consist of microphenocrysts of olivine, clinopyroxene and rare
plagioclase.

There is compelling geochemical and radiogenic isotope
evidence that the LP scoria represents the fresh, phenocryst-poor
magma feeding the volcanic system of Stromboli that upon
storage, crystallization and homogenization within the magma
chamber, forms the magma erupted as HP lava and scoriae. The
relatively constant composition of the HP magma demonstrates
negligible crystal removal during crystallization along with
efficient mixing (that is, homogenization timeoresidence time),
forming a steady-state, compositionally homogeneous reservoir.
Studies of Stromboli28–31 have clearly established the intensive
parameters of both the LP and HP magmas. The LP magma
has T¼ 1150±10 �C, P¼ 100–270 MPa, H2O¼ 3.0±1 wt%,
fO2¼NNOþ 0.5 (NNO, Nickel-Nickel Oxide buffer), whereas
the HP magma has T¼ 1098±15 �C, Po100 MPa,
H2O¼ 0.2 wt%, fO2¼NNOþ 1.

On the basis of BSE images, all the selected clinopyroxenes
have compositional bands (Fig. 1) reflecting crystallization from
magmas with different Mg#. Clinopyroxene 5 (Fig. 1, CPX 5)
records the most complex lifetime history with a resorbed
low Mg# core (light grey) surrounded by a high Mg# portion
(dark grey) and rimmed by a low Mg# band, another high Mg#
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Figure 3 | Conceptual description of the Non-Isothermal Diffusion Incremental Step model. Fe–Mg compositional zoning profiles are measured

perpendicular to the (100) plane (black arrow in a,b) of the schematic clinopyroxene (light green¼ low Mg#—high grey value; dark green¼ high Mg#—

low grey value). Y-axis¼ contrast in grey value and Mg# (left and right hand side) across the boundary layers; x-axis¼ extent of diffusion in mm. Forward

model: (a) development of the compositional zoning from the instantaneous dark band growth at t0 (dashed blue line) to the time t1 spent at T1 �C (solid

blue line). The dashed grey line represents the initial dark band—rim conditions yet to be formed; (b) clinopyroxene rim instantaneous growth at t1 (dashed

red line) and proceeding Fe–Mg diffusion at T2 �C (solid red line), with T2oT1, until the eruption at t2. Fe–Mg diffusion is not limited to the dark band—rim

boundary, but also affects the core—dark band boundary. The dashed blue line corresponds to the diffusion profile developed at T1 �C in the Dt1 time span

(solid blue line in a). Backward model: (c) the dashed red line represents the initial boundary conditions of Step 1 and 2 at T2 �C, whilst the solid red line is

the core—dark band—rim Fe–Mg diffusion profile at T2 �C developed during Dt2; (d) the solid red line is the final dark band—rim profile developed during

Step 1 and corresponds to the compositional profile in b, whilst the solid blue line is the final Fe–Mg diffusion profile developed at T1 �C during Dt4, and

corresponds to the actual compositional profile in b. The initial core—dark band conditions are represented by the dashed grey line. The dashed blue line is

the fictitious Fe–Mg diffusion profile developed at T1�C (4T2), during Dt3 and corresponds to the profile developed at T2 �C in c (Step 2, solid red line). The

clinopyroxene resident time at T1 �C is Dt1¼Dt4�Dt3, and the total crystal residence time is given by Dt1þDt2.
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band and eventually a low Mg# rim. All the light and dark
grey clinopyroxene portions have similar low and high Mg#
(0.72–0.76; 0.83–0.88), respectively (Fig. 4), showing the occur-
rence of crystal exchange between the two domains of the magma
chamber resulting from, for example, convective overturning and
stirring (for example refs 16,40–43) during homogenization
of the LP feeding magma within the HP resident magma.

We have applied the Putirka34 geothermometer to the
clinopyroxenes in Fig. 1 and verified that the high-Mg# band

and the low-Mg# core and rim are in equilibrium with the LP and
HP magma, respectively, yielding temperature estimates
consistent with those reported by the abovementioned studies
achieved by other techniques (for example, melt inclusions,
experimental petrology).

Temperatures of 1150 �C (LP magma) and 1098 �C (HP
magma) yield different Fe–Mg diffusion rates35 between the
core—dark band (Fig. 3a,d) and the dark band—rim (Fig. 3b,c).
Thus, the modelled greyscale profiles (Fig. 4) result from
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Figure 4 | Results of Non-Isothermal Diffusion Incremental Step model. Grey value diffusion profiles (open circles) of the 5 analysed clinopyroxenes

(a, CPX1; b, CPX2; c, CPX3; d, CPX4; e, CPX5) along the red boxes of Fig. 1. Mg# is determined by microprobe analysis (Methods, Supplementary Figs 2–6)

and reported for reference on the basis of Fig. 2 (Methods). The dark band testifying the arrival of the new mafic magma is shaded in dark grey. Each

diffusion profile is the average of 200–600 lines across the boundary layers and is calculated using the ‘greyscale calculation’ procedure (Methods). The

error bar of each point represents the 2 standard error of the mean. The yellow circles are points that have not been used for the fitting procedure due to

the occurrence of intrinsic banding (see text). Fe–Mg diffusion profiles in CPX1–4 across the two boundaries (one boundary for CPX1) have been modelled

using the analytical equation developed for a semi-infinite plane sheet (equation 1), whereas Fe–Mg diffusion profile in CPX5 had been modelled using the

analytical solution developed for diffusion within a finite reservoir of limited extend (equation 2). Solid lines are the result of the NIDIS model and represent

the best fitting grey value diffusion profiles of the core—dark band (blue line at 1150 �C) and dark band—rim (red line at 1098 �C). The solid red lines on the

core-dark band represent the diffusion profile developed during Dt2 (see also Fig. 3c) and correspond to the fictitious profile developed during Dt3 at

1150 �C (see also Fig. 3d). Grey dashed line in CPX5 (e) represents the inferred initial boundary condition of the finite reservoir of limited extend

(equation 2), whilst the solid red and blue lines of the finite reservoir represent, as for other clinopyroxenes, the profiles at Dt3 and Dt4 respectively

(see text for details). The different Dt1–4 are appropriately referred to into the text.
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different Fe–Mg diffusion steps at 1150 �C (blue lines) and
1098 �C (red lines).

Fe–Mg diffusion profiles in clinopyroxenes 1–4 (Fig. 1, CPX1–4)
across the two boundary layers have been modelled (Fig. 4,
CPX1–4) using the analytical equation developed for a semi-
infinite plane sheet (equation 2.14, ref. 37; equation 1). The Fe–Mg
diffusion profile in clinopyroxene 5 presents the most
complex situation with a resorbed low Mg# core, surrounded by
a high Mg# portion, and rimmed by a low Mg# band, a high Mg#
band and a low Mg# rim (Fig. 1, CPX5). In particular, the low Mg#
band situated between the two high Mg# bands lacks any
compositional plateau, and is characterized by a bell shape
(Fig. 4, CPX5). This case cannot be treated as a semi-infinite
reservoir but requires the analytical solution developed for
diffusion within a finite reservoir of limited extent (equation 2.15,
ref. 37; equation 2). Determining the initial boundary condition
(that is, the initial shape of the compositional profile20,44,45) is not
straightforward. Common strategies include using an arbitrary
maximum concentration range and comparing zoning profile of
elements with different diffusivities20,44,45. For clinopyroxenes 1
through 4, the maximum and minimum grey values (or Mg#)
correspond to the plateau exhibited by the diffusion profiles
(Fig. 4, CPX1–4). In the case of clinopyroxene 5, there is no plateau
in the low Mg# portion between the two high Mg# bands
(Fig. 4, CPX 5), although we can safely assume that the bell-shaped
low Mg# portion had the same Mg# (or grey value) of the rim
given the occurrence of only two magmatic domains at Stromboli
(LP and HP magmas).

The analytical solution (equations 1 and 2) of the modelled
diffusion profiles are reported in Table 1 in terms of error
function fitting parameters at 95% confidence levels, nonlinear
least squares (r2), timescales for each diffusion step and the total
pre-eruptive crystal residence time. Two different time estimate
uncertainties are given: 2 s.d. is the calculated error propagation
considering the uncertainties on both temperature (±10 �C and
±15 �C) and the fitted

ffiffiffiffiffiffiffiffi
4Dt
p

parameter (D diffusion coefficient,
t time elapsed, equations 1 and 2); 2 s.d.* is the calculated error
propagation considering only the uncertainty on the fitted

ffiffiffiffiffiffiffiffi
4Dt
p

parameter. In all modelled profiles, there is a robust and excellent
fitting with r2 between 0.9783 and 0.9962 (Table 1).

The diffusion chronometry derived by the modelled composi-
tional profiles using greyscale values of BSE images as a proxy of
Mg# variation (Fig. 4), provides evidence for a residence time of a
few years (Dt2) at the temperature of the HP magma (1098 �C)
and an extremely short residence time (Dt1) at the temperature of
the feeding LP magma (1150 �C) for all the studied clinopyrox-
enes (Fig. 4, Table 1). Considering the propagated error on Dt1,
the residence time at high T is almost instantaneous (Table 1).
The total crystal residence time before eruption varies from 1.8
(CPX2) to 11.9 years (CPX1) after the growth of the low Mg#
rim at lower T (Fig. 4, Table 1). Only one compositional
boundary (band-rim) could be modelled in clinopyroxene 1
(low T diffusion, Fig. 4a), implying that its residence time should
be considered a minimum value.

The calculated total residence time for clinopyroxene 5, the
diffusion profile of which has been modelled using the analytical

Table 1 | Diffusion chronometry results of the NIDIS model.

sample CPX1 site
29

CPX2 site
7

CPX3 17
(profile1)

CPX4 CPX5
Finite Reservoir

T (�C) 1150±10
core-band (mm)a 0–45 0–60 0–100 0–66*
erf parametersb value 2 s.d. value 2 s.d. value 2 s.d. value 2 s.d.
y0 123.8 ±0.1 118.9 ±0.1 121.8 ±0.1 115.7 ±0.1
Co/2 9.9 ±0.1 8.2 ±0.1 15.4 ±0.2 8.7 ±0.1
x0 13.4 ±0.1 17.0 ±0.1 47.0 ±0.2 33.0 ±0.2
h (mm) 6.4 ±0.2ffiffiffiffiffiffiffiffi

4Dt
p

� 10�6 3.0 ±0.1 5.2 ±0.3 7.7 ±0.4
rsquares 0.9937 0.9944 0.9912 0.9467

T (�C) 1098±15
band-rim (mm)a 0–80 30–72 35–80 70–135 70–130
erf parametersb value 2 s.d. value 2 s.d. value 2 s.d. value 2 s.d. value 2 s.d.
y0 139.9 ±0.1 123.0 ±0.1 117.5 ±0.2 124.2 ±0.2 123.4 ±0.2
Co/2 10.0 ±0.1 8.5 ±0.1 5.8 ±0.2 17.1 ±0.2 9.9 ±0.2
x0 34.5 ±0.2 56.9 ±0.1 71.5 ±0.2 113.7 ±0.2 100.3 ±0.2ffiffiffiffiffiffiffiffi

4Dt
p

� 10�6 7.0 ±0.4 2.5 ±0.1 4.2 ±0.4 6.1 ±0.3 6.3 ±0.4
rsquares 0.9936 0.9962 0.9783 0.9912 0.9842

value 2 s.d. 2 s.d.* value 2 s.d. 2 s.d.* value 2 s.d. 2 s.d.* value 2 s.d. 2 s.d.* value 2 s.d. 2 s.d.*
Dt1 (yrs) 0.2 ±0.2 ±0.1 0.6 ±0.6 ±0.3 1.4 ±1.2 ±0.5 2.3 ±1.4 ±0.5
Dt2 (yrs) 11.9 ±4.8 ±1.2 1.6 ±0.6 ±0.1 4.2 ±1.8 ±0.8 9.2 ±3.7 ±1.0 9.5 ±3.9 ±1.3
Dt3 (yrs) 0.4 ±0.1 ±0.1 1.1 ±0.4 ±0.2 2.5 ±0.7 ±0.3 2.6 ±0.7 ±0.4
Dt4 (yrs) 0.6 ±0.2 ±0.1 1.8 ±0.5 ±0.2 3.9 ±1.0 ±0.4 4.9 ±1.2 ±0.3
residence time (yrs)
(Dt1þDt2) 11.9 ±4.8 ±1.2 1.8 ±0.7 ±0.1 4.8 ±1.9 ±0.8 10.5 ±3.9 ±1.1 11.8 ±4.2 ±1.1

The error propagation at 95% confidence level on the time estimate is reported considering the uncertainty on both
ffiffiffiffiffiffiffiffi
4Dt
p

and T (2 s.d.), and only on
ffiffiffiffiffiffiffiffi
4Dt
p

(2 s.d.*). Constants: Do¼ 9.5� 10�05 m2 s� 1

and DH¼406 kJ mol� 1 (ref. 35); D¼ 1098 �C¼ 3.26� 10� 20±1.27 m2 s� 1; D¼ 1150 �C¼ 1.20� 10� 19±0.29 m2 s� 1.
a Core-band and band-rim are the widths of the modelled diffusion profiles. In the case of CPX5, the core-band width is in fact the clinopyroxene portion around the light-band defining the finite reservoir
of limited extent (Figs 1 and 4 CPX5).
b The erf parameters are from the fitting of the diffusion profiles (equations 1 and 2).
*This profile has been modelled using the finite reservoir equation (equation 2) and the grey values of the initial conditions of the light band has been assumed as that of the final rim (y¼ 133).
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solution for a finite reservoir of limited extent (equation 2), is 11.8
years (Table 1), similar to the other clinopyroxenes, and the
deconstruction of the lifetime history indicates a relatively short
time, albeit slightly longer than the other cases, spent at the
temperature of the feeding LP magma (Table 1). As in the case of
clinopyroxene 1, the total residence time should be considered a
minimum estimate, since the time elapsed from inner core
entrapment and resorption within the high-T magma cannot be
determined.

Uncertainties and errors in the NIDIS approach. Uncertainties
and source of errors in diffusion chronometry modelling have
been explored at length in the literature and an excellent review
can be found in Costa et al.20. Uncertainties, errors and pitfalls
are connected with crystal orientation and anisotropy of
diffusion, initial conditions, diffusion coefficients and
temperature.

It has long been known that diffusion in anisotropic crystals is a
vector property and that using a diffusion coefficient inappropriate
for the direction of the measured diffusion profile will yield
incorrect timescales20. We measured all our diffusion profiles along
the direction perpendicular to the (100) crystal plane of selected
crystals cut parallel to (010) (Figs 1, 3 and 4) and we used the
corresponding clinopyroxene diffusion coefficients35 (Methods).
The initial boundary conditions have been determined on the basis
of compositional plateaux (Figs 2 and 4) and are supported by
the chemical profiles of slow diffusing elements such as Ca
(Methods and Supplementary Fig. 1), providing a robust indication
that the observed profiles are the result of diffusion and not
kinetic/growth processes.

The careful screening of the choice of proper clinopyroxene
cuts has certainly mitigated the source of uncertainties related to
the crystal habit parameter. However, the principal factor
affecting error propagation on timescale in all diffusion
chronometry studies, and our NIDIS model is not an exception,
is the uncertainty on the temperature (Eq. 4). As pointed out by
Costa et al.20, the uncertainty on temperature is reflected in an
uncertainty on diffusion coefficient estimates, and hence
timescales, as a function of the activation energy and the
specific temperature. Errors increase with increasing activation
energy and decreasing temperatures20. The higher activation
energy of Fe–Mg in clinopyroxene than in other crystals
determines a greater variation of the diffusion coefficient (D)
with T: the difference in D between 1150 �C and 1098 �C is B74%
with an activation energy of 406 kJ mol� 1 (ref. 35), while it is
‘only’ 48% with a nominal activation energy of 200 kJ mol� 1 (for
example, olivine, plagioclase). The high sensitivity of
clinopyroxene Fe–Mg exchange with temperature makes it
more apt than other crystals to detect timescale estimates in
response to small T variations (for example, 50 �C in our case) in
volcanic systems.

We considered an error of ±10 �C for the high-T LP magma and
±15 �C for the low-T HP magma, respectively (2 s.d.; refs 28–31),
which is reflected in the propagated error on D estimates
of some 24 and 39%, respectively (Table 1). This translates into a
maximum of some 40% uncertainty in the total residence time
estimate (for example 11.9±4.8 years, CPX1, Table 1) when
coupled with the uncertainty in the

ffiffiffiffiffiffiffiffi
4Dt
p

parameter (2 s.d.,
Table 1). The uncertainty is reduced by a factor 4 2 if only the
uncertainty in the

ffiffiffiffiffiffiffiffi
4Dt
p

parameter (2 s.d.*, Table 1) is
considered. Our NIDIS method reduces the error on diffusion
chronometry modelling by using the most accurate mathematical
fitting, and by minimising the error related to crystal orientation
and greyscale calculation (Methods), although temperature
estimation still remains the largest source of uncertainty. We

are confident that advances in the knowledge of the thermo-
dynamic properties of silicate minerals will lead to the
development of more accurate geothermometers and help to
minimize this single major source of error in future.

Discussion
The total crystal residence time (Table 1) for clinopyroxene
diffusion profiles of the present-day activity at Stromboli (Fig. 4)
provides timescale information on the magma plumbing system.
The total clinopyroxene residence time of a few years (Dt1þDt2,
Table 1) in the Stromboli magmatic system is consistent with
timescale estimates obtained by radiogenic isotope approaches (Sr
and U-series isotopes27,46). However, the most striking result of
our novel approach is the almost instantaneous residence time
(Dt1, Table 1) at high T (ca. 1150 �C) of the analysed
clinopyroxenes in comparison to the residence time within the
low-T HP reservoir (Dt2, Table 1). This result is a unique output
of the NIDIS model, which could not be deciphered using
radiogenic isotope approaches. This timescale sets robust
constraints on magma chamber dynamics indicating a well
mixed and stirred reservoir where the inputs of new and fresh LP
magma are rapidly homogenized within the resident HP
magma27 at lower T (ca. 1098 �C). The second order, low
amplitude, grey value (or Mg#) intrinsic banding47 observed on
the dark band plateau of clinopyroxenes 1 and 2 (Fig. 4, CPX1
and CPX2 yellow circles) are likely related to kinetic processes48.
When crystal growth is too rapid, elemental diffusion is not able
to maintain equilibrium at the solid–liquid interface.
Consequently, Mg is depleted more than Fe during
clinopyroxene crystallization in the liquid around the growing
crystal, causing the successive growth of the relatively lower Mg#
(or higher grey value) intrinsic banding. Given that the
temperature difference between the input of the fresh LP
magma (ca. 1150 �C) and the resident HP magma (ca. 1098 �C)
is probably constant, the reason why the profiles of
clinopyroxenes 3 and 4 do not have any intrinsic banding could
be related to the mass fraction of the input magma with respect
to the volume of the magmatic reservoir (o0.3 km3, ref. 27).
The lower the mass fraction of input magma, the higher the
undercooling and the clinopyroxene growth rate36, leading to the
development of intrinsic banding. The occurrence of intrinsic
banding could thus be an indirect record of the magma supply rate
in well stirred and homogeneous magma chambers of active
volcanoes.

Finally, the diffusion profile of clinopyroxene 5 (Fig. 1, Fig. 4,
CPX5) presents the most complex lifetime history of crystal
transfer between the LP and HP magmas. The inner core formed
in the HP magma reservoir, was successively entrapped and
resorbed in the LP feeding magma, and the resorbed core acted
as seed to form the first B25 mm high Mg# portion. The crystal
was then drawn back in the HP magma, growing B12 mm of the
low Mg# portion (that is the finite reservoir) and was then
entrapped again in the LP magma forming the B60 mm high
Mg# portion. The timescale of crystal growth of these last two
events was almost instantaneous given that the diffusion profile
of the low Mg# portion is symmetric on both sides. The crystal
spent a couple of years (Dt1, Table 1) in this reservoir, allowing
Fe–Mg diffusion to operate. Eventually the crystal was
transferred to the HP magma where it grew the last B60 mm
rim over a timescale of some 9 years (Dt2, Table 1) until
eruption.

The NIDIS model has been illustrated using the zoned
clinopyroxenes of Stromboli volcano (Fig. 4) and yields a novel
approach to constrain the timescale of the stepwise history of
crystals in the realistic scenario of diffusion chronometry at two
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different temperatures. The rationale of the NIDIS model
(for example, diffusion chronometry at different temperatures)
and the developed Matlab code (Methods) can be applied to
virtually any volcanic system and mineral phase. For example, the
NIDIS model can resolve BSE diffusion chronometry profiles
such as Fe–Mg in orthopyroxene and olivine and CaAl–NaSi in
plagioclase, and Ti in quartz using cathodoluminescence49.
Caution needs to be exercised on a case by case basis
considering: the rate of diffusion of the elements involved (that
is, the timescale range that can be detected); the contribution of
each element to the yield of BSE images (for example, negligible
Ca variation allowing use of the grey value as a proxy for Mg# in
the case of clinopyroxene, Methods); other limiting factors such
as meeting the criteria for choosing diffusion profiles20,44,45;
availability of diffusion coefficients; diffusion profiles solvable
with BSE images; and appropriate geothermometers or software
packages for temperature estimation (for example refs 50,51).
Provided these considerations are satisfied, the advantages of
working with BSE images are manifold with respect to electron
microprobe data.

In conclusion, the NIDIS model represents a major improve-
ment in crystal residence time estimates, and the deconstruction
of the lifetime history of crystals in non-isothermal, time-
constrained steps provides a new approach to resolve pre-eruptive
magmatic processes. The implications of the NIDIS model in
terms of resolving the relative difference in crystal residence time
between high-T and low-T magmatic environments are far-
reaching for our understanding of magma chamber dynamics.

Methods
Greyscale calculation. The greyscale values of the compositional zoned interface
for each crystal were calculated using a high-resolution back-scattered (BSE) SEM
image and our new Matlab script greyvalues. BSE images were acquired with the
LEO 1445 VP SEM, at the Imaging and Analysis Centre of The Natural History
Museum (IAC-NHM), operating at 15 KeV and 100mA electron current, 460 nm
spot size and 14 mm WD (working distance). The images were acquired with the
INCA software accumulating eight frames of 2046� 1536 pixels each. To obtain
the best results from diffusion modelling in terms of reducing the orientation effect
of the crystal and minimize the effect of not sectioning perpendicular to the core-
rim boundary, careful screening was carried out in the analysed thin sections. Over
100 clinopyroxene crystals have been examined by petrographic microscope and
we selected only those crystals cut parallel to the (010) crystallographic plane based
on the crystal shape (that is, Fig. 1), cleavage and interference colours. The dif-
fusion profiles have been acquired along the direction perpendicular to the (100)
crystallographic plane (Figs 2 and 3).

The Matlab greyvalues script allows extrapolation and export of grey values
from a BSE image. Being designed for straight features, the program asks the user
to draw a guideline (Fig. 2b) along the straight feature of interest (for example,
boundary between two zones of a crystal). It then allows interactive selection of the
length of the profile lines (perpendicular to the guideline, Fig. 2b) along which the
grey values will be extrapolated. Once the profile line is set, the program
extrapolates the grey values along as many profile lines as the length in pixels of the
guideline (we calculated a minimum of 200 lines up to 4600). The grey values are
calculated using the nearest neighbour colour interpolation method. The program
also calculates the distance in pixels between the points from which the grey values
where extrapolated, as well as minimum, maximum and mean grey values and the
standard error of the mean. It then gives the possibility to convert the pixel distance
between grey values into the real world distance by drawing a line along the scale of
the image used. All the grey values, distances and calculation results are exported
into an csv file named after the image used. A jpg image such as Fig. 2b is also
exported as a reference.

Rationale of working with greyscale values of BSE images. The high-resolution
back-scattered electron (BSE) image of the clinopyroxene reported in Fig. 2a,b has
been chosen as an example to demonstrate that the greyscale values can be used,
under certain circumstances (that is, negligible Ca variation, see Supplementary
Fig. 1 and ref. 3), as a proxy of Mg# (Mg/(Mgþ Fe) at.) values. We have performed
electron microprobe spot analyses every 2–3 mm coupled with the greyscale dif-
fusion profile along the clinopyroxene boundary layer (Fig. 2, Supplementary
Figs 2–6). For each spot analysis we have calculated the number of cations per
formula unit, the formula unit weight (g mol� 1), the weight of each cation
(g mol� 1), the backscatter coefficient (ETA, refs 52,53), and the contribution of
each element to the ETA value (Supplementary Table 1). The greyscale value (that

is, the brightness) of the BSE image depends upon the ETA values of the mean
atomic number of the sample volume interacting with the electron beam. Thus, the
formula unit weight of each spot analysis strictly correlates with the corresponding
grey value. In Supplementary Figs 1–6, we have reported the ETA value of each
spot analysis versus the ETA fraction of the most relevant cations making up the
formula unit of clinopyroxene, along with their relative linear regressions. In the
example reported in Supplementary Fig. 1, the clinopyroxene ETA value ranges
from 0.1446 to 0.1489 and the ETA fraction of SiþAl (at. wt. 28.09,
26.98 g mol� 1) has some 3% variation from core to rim (0.0415–0.0427,
Supplementary Table 1). Ca (at. wt. 40.08 g mol� 1) has an ETA fraction variation
from core (0.0370) to rim (0.0336) o10% and is negatively correlated with the
ETA value of each spot analysis, meaning that Ca cannot cause the increase of
brightness of the BSE image (Supplementary Fig. 1a). The ETA fraction of Feþ
MnþNi (at. wt. 55.85, 54.94, 58.69 g mol� 1) has a strong positive correlation with
the ETA value (slope¼ 2.55, Supplementary Fig. 1a) with 4100% variation from
core to rim (0.0096–0.0204, Supplementary Table 1), providing evidence for its
major contribution to brightness variation of BSE image. The ETA fraction of Mg
(at. wt. 24.31 g mol� 1) is, as Ca, negatively correlated with the ETA value of each
spot analysis (Supplementary Fig. 1a), and has a variation from core (0.0119) to
rim (0.0139) of some 15% (Supplementary Table 1). Consequently, Mg# has a
robust (r2¼ 0.9994) and strong negative (slope¼ � 32.9) correlation with the ETA
values (Supplementary Fig. 1b). Overall, these observations set constraints on Fe
(Mn, Ni)—Mg exchange as the primary cause of brightness variation of BSE image.

We have further explored the causes of brightness variation of clinopyroxene
BSE image calculating the fitting profile along with the fitting parameter

ffiffiffiffiffiffiffiffi
4Dt
p

(see
‘Curve fitting protocol and timescale calculation’ for details) to the diffusion profile
of Mg# (Fig. 2c), grey values (Fig. 2d), ETA values (Supplementary Fig. 1c), and Ca
cations per formula unit (Supplementary Fig. 1d).

As expected, the fitting profile results of Mg#, grey values and ETA values are
identical within error (Fig. 2c,d and Supplementary Fig. 1c), although the best
fitting profile is that of grey values because of the extremely fine (o0.1 mm) spatial
resolution (

ffiffiffiffiffiffiffiffi
4Dt
p

¼ 2.63±0.17, 2 s.d., Fig. 2d). This means that if the timescale (t)
were known, the calculated diffusion coefficients D would be the same. Since the
only meaningful diffusion coefficient is that related to Fe–Mg exchange (that is
Mg#, Fig. 2c), it is straightforward to conclude that both the grey values and the
ETA values (Fig. 2d and Supplementary Fig. 1c) can be used as a proxy of Fe–Mg
exchange in clinopyroxene.

In contrast, the fitting profile of Ca (Supplementary Fig. 1d) is still locked at the
initial boundary conditions because this element, as much as Al, has a diffusion
coefficient in clinopyroxene slower than Fe–Mg exchange26. This result sets
constraints that the compositional zoning profile of clinopyroxenes in Fig. 1 is
caused by Fe–Mg diffusion across the boundary layer and not by growth or mixing
processes. Admittedly, the fitting profile of Ca is poor (ca. 70% error on

ffiffiffiffiffiffiffiffi
4Dt
p

)
because of the intrinsic difficulty of having a reliable result with no data close to the
flex point of the error function. The extremely fine spatial resolution (o0.1 mm) is,
however, one of the advantages of our NIDIS model, permitting a significant
improvement on the error of the fitting parameter

ffiffiffiffiffiffiffiffi
4Dt
p

(Fig. 2d), in particular
when the length of the diffusion profile is only a few microns (for example, some
5 mm, Fig. 2).

T estimations. Temperature estimates of Stromboli volcano has been accurately
determined on the basis of melt inclusions and experimental petrology studies28–31.
The LP feeding magma has T¼ 1150±10 �C whilst the HP resident magma has
T¼ 1098±15 �C. The clinopyroxene-liquid geothermometer of Putirka34 was used to
check the clinopyroxene-liquid equilibrium and the consistency with temperature
estimates from literature. The equilibrium test (KD(Fe–Mg)cpx� liq¼ 0.27±0.03,
ref. 34) indicates that the low-Mg# core and rim are in equilibrium with the HP
magma27, whereas the high-Mg# band is in equilibrium with the LP magma27.
The calculated temperatures of the low-Mg# cores and rims have been 1030–1060 �C,
whereas those of the high-Mg# bands have been 1115–1150 �C. For the purpose
of this paper, focused on reporting the rationale of the NIDIS model, we worked
with temperatures of 1098±15 �C and 1150±10 �C for the low- and high-Mg#
(0.72–0.76; 0.83–0.88) clinopyroxene portions, respectively28–31.

Mineral composition. High-resolution core-rim compositional profile, B2–3mm
step size, of each clinopyroxene were obtained using a Cameca SX 100 electron
microprobe to check the relationship between Mg# and grey values (Figs 2–4,
Supplementary Figs 1–6). The Cameca SX 100 at IAC-NHM (Imaging and Analysis
Center at The Natural History Museum, London) is equipped with five WDS
(wavelength dispersive) spectrometers and one EDS (energy dispersive) spectro-
meter. It was operated at 20 KeV and 20 nA with a focused beam. Sodium was
measured as first elements and counted for 10 s, all the other elements (Si, Mg, Al,
Ca, Ti, Cr, Mn, Fe, Ca and Ni) were measured for 20 s. Matrix effects were corrected
using the XPHI Cameca built-in protocol.

Curve fitting protocol and timescale calculation. The grey values obtained are
fitted with the Matlab script createfit, which uses the Curve Fitting Toolbox of
Matlab. In particular, the Matlab function fit() from the toolbox is used. It allows
fitting of custom functions to any data as well as the use of several fitting options.
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The nonlinear least squares fitting option is used for the purpose of this work. The
diffusion equation across a semi-infinite plane sheet, modified after Crank37

(equation 2.14), has been used to fit the grey values profile of clinopyroxenes 1–4
(Fig. 4, CPX1–4) obtained as described in ‘Greyscale calculation’:

y¼y0 þ
C0

2
� erf

x� x0ffiffiffiffiffiffiffiffi
4Dt
p

� �
ð1Þ

The diffusion equation across a finite reservoir of limited extent, modified after
Crank37 (equation 2.15), has been used to fit the grey values profile of
clinopyroxene 5 (Fig. 4, CPX5):

y ¼ y0 þ
C0

2
� erf

h� x� x0ð Þffiffiffiffiffiffiffiffi
4Dt
p þ erf

hþ x� x0ð Þffiffiffiffiffiffiffiffi
4Dt
p

� �
ð2Þ

where y is the grey value at point x (mm); in equation 1, x0 and y0 are the
coordinates to shift the origin of the graph to the flex point of the profile; in
equation 2, x0 and y0 are the midpoint and the grey value of the finite reservoir,
respectively; C0/2 is half the difference between the maximum and minimum grey
value along the profile; erf is the error function (the script automatically decides
whether to use the error function or the complementary error function fitting
routine); D (m2 s� 1) is the diffusion coefficient; t(s) is the time calculated by the
fitting procedure; h (mm) is half width of the finite reservoir. In the case of
equation 2, the value C0/2 has been obtained assuming the grey value of the initial
boundary conditions as that of the final rim grey value (Fig. 4, CPX5, see also main
text: ‘NIDIS and the lifetime history of Stromboli clinopyroxene’).

The diffusion coefficient is calculated using the Arrhenius equation:

D¼D0e
�DH

RT ð3Þ

considering Fe–Mg exchange in clinopyroxene. The values of the pre-exponential
factor D0 (m2 s� 1) and the activation energy DH (kJ mol� 1) are from Dimanov &
Sautter35, R is the gas constant¼ 8.3145 (J mol� 1 K� 1), T is the temperature (K).

The Matlab fit() function returns the best fitting values for each parameter with
the uncertainty at 95% confidence level (2 s.d.).

For the purpose of this work,
ffiffiffiffiffiffiffiffi
4Dt
p

is the parameter of interest. Given the
diffusion coefficient D from (3), the value of

ffiffiffiffiffiffiffiffi
4Dt
p

which best fits the data allows
us to calculate the residence time t of the crystal from which the grey values are
extracted. The error calculated on the parameter

ffiffiffiffiffiffiffiffi
4Dt
p

by the fit() function,
together with the error on the temperature which affects the diffusion coefficient D,
are then used by the createfit script to calculate the relative error propagation on
the residence time t:

st

t
¼

s ffiffiffiffiffiffi
4Dt
p

� �
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assuming that the errors of the fitting parameter
ffiffiffiffiffiffiffiffi
4Dt
p

and T are normally
distributed, independent from each other and there is negligible or no covariance
between them.

The createfit script requires as input a csv file with the grey values, the distance
between grey values and the errors associated with the grey values (that is, the
standard error of the mean). It fits the values with either equations 1 or 2 taking
into account the associated errors weighing each point by:

Weight ¼ 1
Error2 ð5Þ

It then asks the operator to enter D0, DH, T and the error on T and, using the value
for the fitting parameter

ffiffiffiffiffiffiffiffi
4Dt
p

calculated by the fit() function and its fitting error, it
calculates the residence time t and its absolute error (2 s.d.). In the case of
equation 2, it also requires the initial grey value of the finite reservoir to be entered.
Together with a reference diagram, (grey values versus distance) showing the data
and the fitted curve, the script returns as Matlab variables the values associated
with the fitting parameters, the residence time and its error.

Data availability. The data that support the findings of this study are available
from the corresponding author on request. The complete code, both grey values
and createfit Matlab scripts along with the instructions on how to use it, can be
accessed at the following address: https://github.com/cpetrone/NIDIS. All the
scripts have been tested on machines running Matlab 2011b, 2014b and 2015a and
Windows XP, Windows 7, Windows 10, Ubuntu 12.04 and OS 10.7, 10.10 and
10.11. Given the on going development of the code, we kindly ask users to contact
the corresponding author with comments and suggestions for improvement.
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53. Hunger, H. J. & Küchler, L. Measurements of the electron backscattering

coefficient for quantitative EPMA in the energy range 4 to 40 keV. IPSSa 56,
K45–K48 (1979).

Acknowledgements
We greatly thank the criticism of H. Downes, J. Prytulak, C. Stanley, J. Cuadros, N. Ray,
C. Mavris and S. Reed. Two anonymous reviewers and G. Zellmer are thanked for
their valuable suggestions in focussing the manuscript and improving the style. We also
thank E. Ferricchi for helping with the graphics, J. Spratt, A. Kersley and T. Goral
for allowing access to IAC-NHM facilities. This work was supported by NERC Grant
(NE/M014584/1) to C.M.P.

Author contributions
C.M.P. conceived the project, wrote the manuscript and obtained funding
(NERC NE/M014584/1). G.B. and S.T. developed the Matlab codes. E.B. carried out the
grey scale calculation. S.T. carried out the numerical modelling and contributed to
manuscript preparation. C.M.P. and S.T. jointly developed the interpretation presented
in the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Petrone, C. M. et al. Pre-eruptive magmatic processes re-timed
using a non-isothermal approach to magma chamber dynamics. Nat. Commun. 7, 12946
doi: 10.1038/ncomms12946 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12946 ARTICLE

NATURE COMMUNICATIONS | 7:12946 | DOI: 10.1038/ncomms12946 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	The non-isothermal conceptual approach of the NIDIS model

	Figure™1Zoned clinopyroxene.High-resolution back-scattered electron (BSE) images of selected clinopyroxene crystals of Stromboli volcano modelled in this study. The red boxes indicate the area where the grey scale raster has been determined using the ’gre
	Figure™2Electron microprobe versus greyscales profile.The electron microprobe compositional profile (a,c) is used to calibrate the grey scale profile (b,d) along the clinopyroxene compositional boundary. We used BSE greyscale values as a proxy of Mg# vari
	NIDIS and the lifetime history of Stromboli clinopyroxene

	Figure™3Conceptual description of the Non-Isothermal Diffusion Incremental Step model.Fe-Mg compositional zoning profiles are measured perpendicular to the (100) plane (black arrow in a,b) of the schematic clinopyroxene (light green=low Mg#--high grey val
	Figure™4Results of Non-Isothermal Diffusion Incremental Step model.Grey value diffusion profiles (open circles) of the 5 analysed clinopyroxenes (a, CPX1; b, CPX2; c, CPX3; d, CPX4; e, CPX5) along the red boxes of Fig.™1. Mg# is determined by microprobe a
	Table 1 
	Uncertainties and errors in the NIDIS approach

	Discussion
	Methods
	Greyscale calculation
	Rationale of working with greyscale values of BSE images
	T estimations
	Mineral composition
	Curve fitting protocol and timescale calculation
	Data availability

	SparksR. S. J.SigurdssonH.WilsonL.Magma mixing a mechanism for triggering acid explosive eruptionNature2673153181977BlakeS.IveyG. N.Magma mixing and the dynamics of withdrawal from stratified reservoirsJ. Volcanol. Geotherm. Res.271531781986MorganD. J.Mag
	We greatly thank the criticism of H. Downes, J. Prytulak, C. Stanley, J. Cuadros, N. Ray, C. Mavris and S. Reed. Two anonymous reviewers and G. Zellmer are thanked for their valuable suggestions in focussing the manuscript and improving the style. We also
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




