
Eur. Phys. J. C  (2017) 77:213 
DOI 10.1140/epjc/s10052-017-4765-1

Regular Article - Theoretical Physics

Study of � polarization in relativistic nuclear collisions
at

√
sNN = 7.7–200 GeV

Iu. Karpenko1,2,a, F. Becattini1,3

1 INFN-Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Firenze), Italy
2 Bogolyubov Institute for Theoretical Physics, Ul. Metrolohichna, 14-b, Kiev 03680, Ukraine
3 Universitá di Firenze, Via G. Sansone 1, 50019, Sesto Fiorentino (Firenze), Italy

Received: 21 October 2016 / Accepted: 19 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract We present a calculation of the global polar-
ization of � hyperons in relativistic Au–Au collisions at
RHIC Beam Energy Scan range

√
sNN = 7.7−200 GeV

with a 3 + 1-dimensional cascade + viscous hydro model,
UrQMD + vHLLE. Within this model, the mean polariza-
tion of � in the out-of-plane direction is predicted to decrease
rapidly with collision energy from a top value of about 2%
at the lowest energy examined. We explore the connection
between the polarization signal and thermal vorticity and
estimate the feed-down contribution to � polarization due to
the decay of higher mass hyperons.

1 Introduction

Particles produced in relativistic heavy ion collisions are
expected to be polarized in peripheral collisions because of
angular momentum conservation. At finite impact parameter,
the Quark–Gluon Plasma (QGP) has a finite angular momen-
tum perpendicular to the reaction plane and some fraction
thereof may be converted into spin of final state hadrons.
Therefore, measured particles may show a finite mean global
polarization along the angular momentum direction.

Early estimates of this effect [1] were based on the general
idea that polarized quarks in the QGP stage of the produc-
tion process would eventually give rise to polarized hadrons,
making it possible to predict qualitative features of the final
hadrons polarization. It was then proposed [2,3] that polar-
ization can be calculated assuming that the spin degrees of
freedom are at local thermodynamical equilibrium at the
hadronization stage in much the same way as the momen-
tum degrees of freedom. In other words, polarization can
be predicted finding the appropriate extension of the famil-
iar Cooper–Frye formula to particles with spin. A specific
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derivation was presented in Refs. [2,4], where it was pointed
out that the hydrodynamical quantity steering the polariza-
tion is the thermal vorticity, that is, (minus) the antisymmetric
part of the gradient of the four-temperature field β = (1/T )u
where T is the proper temperature and u the hydrodynamic
velocity:

�μν = −1

2

(
∂μβν − ∂νβμ

)
. (1)

Particularly, the first-order expansion of the polarization in
terms of thermal vorticity was obtained in Ref. [4] for hadrons
with spin 1/2 (lately recovered with a different method in
Ref. [5]), yet its extension to higher spins could be derived
from the corresponding global equilibrium expression [2].

This theoretical work made it possible to make definite
quantitative predictions of global � polarization in nuclear
collisions from hydrodynamic calculations, with a resulting
mean value ranging from some permille to some percent [6–
8], with an apparently strong dependence on the initial con-
ditions, particularly on the initial longitudinal velocity field.
Calculations of vorticity in relativistic heavy ion collisions –
which could then be turned into a polarization map – were
also recently presented in Ref. [9]. To complete the theoret-
ical overview on the subject, it should be pointed out that
different approaches, as well as additional mechanisms, to
the � polarization in relativistic nuclear collisions were pro-
posed in Refs. [10–14].

From the experimental viewpoint, while the early mea-
surement by the STAR experiment in Au–Au collisions at√
sNN = 200 GeV [15] only set an upper limit on the �

polarization of 0.02, a first strong evidence of non-vanishing
global polarization showing the predicted features within the
hydrodynamical model (orthogonal to the reaction plane,
equal sign for particle and antiparticle) has been recently
reported by the STAR experiment [16,17] at the lower ener-
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gies of the RHIC Beam Energy Scan (BES), with a top value
at the lowest energy point

√
sNN = 7.7 GeV of some percent.

This finding certainly opens a new direction in the physics
of the Quark–Gluon Plasma and relativistic heavy ion col-
lisions and, in the short run, calls for new numerical cal-
culations of thermal vorticity and � polarization in the BES
energy range, what is the primary purpose of this work. As has
been mentioned, previous quantitative estimates of � polar-
ization in hydrodynamic models vary from some permille to
some percent, with strong dependence on the collision model
and, specifically, on the hydrodynamic initial conditions. In
[6], simulation of noncentral

√
sNN = 200 GeV Au–Au col-

lisions at RHIC with initial state from Yang–Mills dynamics
followed by a 3-dimensional ideal hydro expansion implying
an initial non-vanishing space vorticity vector [18] resulted
in polarization of low-pT � of few percent magnitude, paral-
lel to the direction of total angular momentum of the fireball,
whereas for few GeV pT it reaches about 8%. In Ref. [7],
at the same collision energy, a 3-dimensional hydrodynamic
expansion with initial state from the optical Glauber model
with parametrized space-time rapidity dependence chosen to
reproduce the momentum rapidity distributions of hadrons
and directed flow results [19] resulted in much lower values
of polarization: about 0.2% for low-pT � and up to 1.5%
for the longitudinal (along the beam) component of polar-
ization of high-pT �. In a recent work [8] an event-by-event
3-dimensional viscous hydrodynamics with initial state from
AMPT model results in a similar few per-mille average global
polarization for A + A collisions at

√
sNN = 62.4, 200 and

2760 GeV and the correlation of polarizations of � pairs is
studied.

Here, we present the simulations of Au–Au collisions at
the RHIC BES energies,

√
sNN = 7.7 . . . 200 GeV using

a 3-dimensional viscous hydrodynamic model vHLLE with
initial state from the UrQMD model. Such a hybrid approach
coupled to final state UrQMD has been tuned to reproduce
the basic hadron observables in relativistic heavy ion col-
lisions, that is, (pseudo)rapidity and transverse momentum
distributions and elliptic flow coefficients. We calculate the
polarization of � hyperons produced out of the fluid (so-
called thermal �). Besides, we estimate, for the first time,
the contribution to the � polarization stemming from the
decays of likewise polarized �0, �(1385), as well as other
� and � resonances up to �(1670).

The paper is organized as follows: in Sect. 2 we briefly
describe the model used to simulate nuclear collisions in the
examined energy range; in Sect. 3 we summarize the main
definitions concerning spin and polarization in the relativistic
regime, as well as the used formulas to calculate the polar-
ization; in Sect. 4 we present the results for the polarization
of � baryons in Au–Au collisions at BES energies and dis-
cuss their interpretation in terms of vorticity patterns in the
hydrodynamic expansion; in Sect. 5 we estimate the correc-

tions due to the resonance decays. Conclusions are drawn in
Sect. 6.

2 Nuclear collision model description

The full cascade + viscous hydro + cascade model used in
our studies is described in detail in Ref. [20], herein we only
summarize its main features. At lower collision energies the
colliding nuclei do not look like thin “pancakes” because
of weaker Lorentz contraction; also, partonic models of the
initial state (CGC, IP-Glasma) gradually lose their applica-
bility in this regime. The longitudinal boost invariance is not
a good approximation anymore, therefore one needs to simu-
late a 3-dimensional hydrodynamic expansion. Such consid-
erations motivate us to choose UrQMD model to describe the
dynamics of the initial state from the first nucleon–nucleon
collisions until a hypersurface of constant Bjorken proper
time τ = √

t2 − z2 = τ0 to provide a 3 dimensional initial
state for subsequent hydrodynamic stage.1 For most of the
collision energies, the value of τ0 is chosen to correspond to
an average time when the two incoming nuclei have passed
through each other, τ0 = 2R/(γ vz).

At the τ = τ0 hypersurface the transition to a fluid
description occurs: energies and momenta of particles cross-
ing the hypersurface are distributed to the hydrodynamic cells
around the positions of particles according to a Gaussian pro-
file. The contribution of each particle to a fluid cell {i, j, k}
is given by:

{

Pμ

i jk,
N 0
i jk

}
=

{
Pμ, N 0

}
· C ·

· exp

(

−
x2
i + 
y2

j

R2⊥
− 
η2

k

R2
η

γ 2
η τ 2

0

)

. (2)

where 
xi , 
y j , 
ηk are the differences between particle’s
position and coordinates of the center of the hydrodynamic
cell {i, j, k} in the transverse plane and space-time rapidity,
R⊥ and Rη are the coarse-graining (smearing) parameters
and γη = cosh(yp − η) is the longitudinal Lorentz factor of
the particle as seen in a frame moving with the rapidity η; the
normalization constant C is calculated in order to conserve
energy/momentum in this transition.

With such initial conditions the 3-dimensional viscous
hydrodynamic evolution in the Israel–Stewart formulation
starts, which is numerically solved with vHLLE code [21].
In particular, we work in a Landau frame, and we neglect
baryon and electric charge diffusion currents. Whereas the
bulk viscosity is set to zero, ζ/s = 0, for the shear–stress
tensor πμν the following evolution equation is solved:

1 Choice of initial hypersurface τ = τ0 and τ as an evolution parameter
at the fluid stage is made to keep the applicability at higher end of the
BES region, where nuclei start to look like thin pancakes.
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〈
uγ ∂;γ πμν

〉 = −πμν − π
μν
NS

τπ

− 4

3
πμν∂;γ uγ , (3)

where the relaxation time of the shear–stress tensor is set to
τπ = 5η/(T s), the brackets denote the traceless part and the
part orthogonal to uμ of the tensor and π

μν
NS is the Navier–

Stokes value of the shear–stress tensor.
Finally, we set the transition from fluid to particle descrip-

tion (a.k.a. particlization) to happen at a certain energy den-
sity ε = εsw. The elements of particlization hypersurface
� are computed in the course of hydrodynamic evolution
by means of the CORNELIUS subroutine [22]. To calculate
basic hadronic observables, the Monte Carlo hadron sam-
pling at the particlization surface is performed using basic
Cooper–Frye formula with standard quadratic ansatz for the
shear viscous corrections. The sampled hadrons are fed into
UrQMD cascade to calculate the final state hadronic interac-
tions.

It has been shown in Ref. [20] that in such a model it is not
possible to reproduce the basic bulk hadronic observables –
(pseudo)rapidity distributions, transverse momentum spectra
and elliptic flow coefficients – simultaneously in the collision
energy range

√
sNN = 7.7 . . . 200 GeV if the parameters of

the model (except the hydro starting time τ0) are fixed at
constant values. However, a reasonable reproduction of the
experimental data has been achieved when the parameters
of the model were chosen to depend monotonically on the
collision energy as it is shown in Table 1. This was obtained
when the particlization energy density was fixed at εsw =
0.5 GeV/fm3 for the whole collision energy range.

The UrQMD cascade does not treat polarization of
hadrons, therefore we calculate the polarization of particles
produced at the particlization surface only. To to so, have
replaced the Monte Carlo hadron sampling with a direct cal-
culation based on the Eq. (10) applied on particlization sur-
faces from event-by-event hydrodynamics. The final state
hadronic cascade (UrQMD) is not used in the present study.

3 Spin and polarization

We summarize in this section the basic definitions concerning
massive relativistic particles with spin.

The starting point is the so-called Pauli–Lubanski vector
operator Ŵμ, which is defined as follows:

Ŵμ = −1

2
εμνρσ Ĵνρ P̂σ , (4)

where Ĵ and P̂ are the angular momentum-boost opera-
tors and four-momentum operators for a single particle. The
proper spin four-vector operator is simply the adimensional
vector obtained by dividing Ŵ by the mass, that is,

Table 1 Collision energy dependence of the model parameters chosen
to reproduce the experimental data in the RHIC BES range:

√
sNN =

7.7–200 GeV. An asterisk denotes the values of starting time τ0 which
are adjusted instead of being taken equal to 2R/(γ vz)

√
sNN (GeV) τ0 (fm/c) R⊥ (fm) Rη (fm) η/s

7.7 3.2 1.4 0.5 0.2

8.8 (SPS) 2.83 1.4 0.5 0.2

11.5 2.1 1.4 0.5 0.2

17.3 (SPS) 1.42 1.4 0.5 0.15

19.6 1.22 1.4 0.5 0.15

27 1.0 1.2 0.5 0.12

39 0.9* 1.0 0.7 0.08

62.4 0.7* 1.0 0.7 0.08

200 0.4* 1.0 1.0 0.08

Ŝμ = 1

m
Ŵμ. (5)

It can easily be shown [23] that

[Ŝμ, P̂ν] = 0 Ŝμ P̂μ = 0.

According to the latter relation, the spin vector is spacelike
and has only three independent components. Therefore, for
single particle states with definite four-momentum p it can
be decomposed [24] along three spacelike vectors ni (p) with
i = 1, 2, 3 orthogonal to p:

Ŝμ =
3∑

i=1

Ŝi (p)ni (p)
μ. (6)

It can be shown that the operators Ŝi (p) with i = 1, 2, 3
obey the well known SU(2) commutation relations and they
are indeed the generators of the little group, the group of
transformations leaving p invariant for a massive particle. In
other, maybe simpler, words they correspond to the familiar
spin operators of the non-relativistic quantum mechanics in
the particle’s rest frame. Also, the Ŝμ Ŝμ operator is a Casimir
of the full Poincaré group whose eigenvalue is S(S+1) where
S is the spin of the particle.

We denote the mean spin vector the four-vector obtained
by taking both the quantum and the thermal average of Ŝ,
that is,

Sμ = 〈Ŝμ〉 ≡ tr(ρ̂ Ŝμ), (7)

and each component takes on values in the interval (−S, S).
Indeed, the properly called polarization vector is obtained by
normalizing �μ to the spin of the particle, that is,

Pμ = 1

S
Sμ, (8)

hence each component takes on values in the interval (−1, 1).
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For a multi-particle system, the calculation of the polariza-
tion of particles with four-momentum p requires the decom-
position of the mean total angular momentum into momen-
tum modes. In general, this requires the knowledge of the
Wigner function, which allows one to express the mean
values of operators as integrals over space-time and four-
momentum space. By using such theoretical tools, the mean
spin vector of spin 1/2 particles with four-momentum p, pro-
duced around point x on particlization hypersurface, at the
leading order in the thermal vorticity reads [4]

Sμ(x, p) = − 1

8m
(1 − f (x, p))εμνρσ pσ �νρ, (9)

a formula recovered in Ref. [5]. In Eq. (9) f (x, p) is the
Fermi–Dirac distribution and � is given by Eq. (1) at the
point x .

In the hydrodynamic picture of heavy ion collisions, par-
ticles with a given momentum are produced across the entire
particlization hypersurface. Therefore to calculate the rela-
tivistic mean spin vector of a given particle species with given
momentum, one has to integrate the above expression over
the particlization hypersurface � [4]:

Sμ(p) =
∫
d�λ pλ f (x, p)Sμ(x, p)

∫
d�λ pλ f (x, p)

. (10)

The mean (i.e. momentum average) spin vector of all particles
of given species can be expressed as

Sμ = 1

N

∫
d3p

p0

∫
d�λ p

λ f (x, p)Sμ(x, p), (11)

where N = ∫ d3p
p0

∫
d�λ pλ f (x, p) is the average number of

particles produced at the particlization surface.
In the experiment, the � polarization is measured in its

rest frame, therefore one can derive the expression for the
mean polarization vector in the rest frame from (11) taking
into account Lorentz invariance of most of the terms in it:

S∗μ = 1

N

∫
d3p

p0

∫
d�λ p

λ f (x, p)S∗μ(x, p), (12)

where an asterisk denotes a quantity in the rest frame of
particle.

As has been mentioned, Eq. (9) applies to spin 1/2 parti-
cles. However, a very plausible extension to higher spins can
be obtained by taking into account that the expression of the
spin vector for massive particle of any spin in the Boltzmann
statistics is known at global equilibrium with rotation [2];
this is discussed in detail in Ref. [25]. The extension of Eq.
(9), in the limit of Boltzmann statistics, reads

Sμ(x, p) � − 1

2m

S(S + 1)

3
εμνρσ pσ �νρ. (13)

Fig. 1 Coordinate system used in the calculations. The figure is taken
from [6]

4 Results

4.1 Coordinate system

We use the following notation for the reference frame in the
simulations: the z axis points in the direction of the beam,
and the x axis is parallel to the impact parameter. Thus xz is
the reaction plane, and y axis points out of the reaction plane,
oppositely oriented to the total angular momentum J. For the
components of the polarization vector (8) we use physically
motivated aliases: P|| is component in the direction of beam
(z), Pb is component in direction of impact parameter (x) and
PJ is component in direction of the total angular momentum
of the fireball J (i.e. −y) (Fig. 1).

4.2 Polarization of thermal � as a function of transverse
momentum

We started simulating semi-central Au–Au collisions at one
particular collision energy in the middle of the Beam Energy
Scan range,

√
sNN = 19.6 GeV. We ran 1000 event-by-

event hydro calculations with initial state corresponding
to 40–50% centrality class (impact parameter range b =
9.3−−10.4 fm) and calculated event-averaged denominator
and numerator of Eq. (10) in the px py plane at zero momen-
tum space rapidity. The resulting components of momen-
tum differential polarization vector [see Eq. (8) for a defini-
tion] are shown on Fig. 2. One can see that the pT depen-
dence of the polarization has a pattern which is similar to
the one obtained in a 3 + 1D hydrodynamic simulation of√
sNN = 200 GeV Au–Au system with ECHO-QGP code

[7,26], including the signs of polarization in different quad-
rants of the px py plane. On this plot, we extend the calcula-
tion up to p⊥ ≈5.5 GeV, which is well beyond the applicabil-
ity of hydrodynamics, to show the trends in the momentum
dependence. � production decreases exponentially with p⊥,
therefore larger polarization of high-p⊥ � does not influence
the momentum-averaged polarization.
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Fig. 2 Components of mean
polarization vector of primary �

baryons produced at zero
momentum space rapidity,
calculated in the model for
40–50% central Au–Au
collisions at

√
sNN = 19.6 GeV.

The polarization is calculated in
the rest frame of �

Fig. 3 Components of thermal
vorticity �t z (left) and �xz
(right) on the zero space-time
rapidity slice of particlization
hypersurface, projected on the
xy plane

The polarization patterns in the px py plane reflect the
corresponding patterns of the components of thermal vor-
ticity over the particlization hypersurface. In particular, we
found that the leading contribution to Pb stems from the term
�t z py in Eq. (9). In turn, �t z , shown in left panel of Fig. 3 is
a result of the interplay of ∂tβz (acceleration of longitudinal
flow and temporal gradients of temperature – conduction)
and ∂zβt (convection and conduction), according to Eq. (1).
The PJ component has a leading contribution from the term
�xz p0 (which is also the only non-vanishing contribution at
pT = 0), and �xz has a rather uniform profile over the zero
space-time rapidity slice of the particlization hypersurface,
and the leading contribution to it comes from ∂xuz (shear
flow in z direction).

At large transverse momenta, the P|| component of polar-
ization has the largest value; however, since Pb and P|| flip
signs in different quadrants in px py plane, their pT integrated
values vanish, and the only nonzero component remaining is
PJ , which is parallel to the direction of total angular momen-
tum J of the fireball. This is in line with the physical expec-
tation that the global polarization has to be collinear with the
vector of the total angular momentum of the system.

4.3 Collision energy dependence of the polarization

Next we ran the simulations for the full BES collision energy
range. To follow recent STAR measurements, we choose
20–50% centrality bin by correspondingly chosen range of
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Fig. 4 Collision energy dependence of the components of polarization
vector of �, calculated in its rest frame, calculated in the model for 20–
50% central Au–Au collisions

impact parameters for the initial state UrQMD calculation.
The resulting pT integrated polarization is shown in Fig. 4.
We observe that the mean polarization component along J ,
that is, PJ decreases by about one order of magnitude as col-
lision energy increases from

√
sNN = 7.7 GeV to full RHIC

energy, where it turns out to be consistent with the results of
[7].

The fall of the out-of-plane component PJ is not directly
related to a change in the out-of-plane component of total
angular momentum of the fireball. In fact, the total angu-
lar momentum increases as the collision energy increases,
which can be seen on top panel of Fig. 5. However, the total
angular momentum is not an intensive quantity like polariza-
tion; therefore, to have a better benchmark we took the ratio
between the total angular momentum and the total energy,
J/E , which is shown in the bottom panel of the same figure.
Yet, one can see that the J/E shows only a mild decrease as
the collision energy increases.

In Fig. 6 we show the distribution of the average polar-
ization of � as a function of centrality (i.e. Npart), where
each point corresponds to a hydrodynamic evolution with a
given fluctuating initial condition characterized by Npart; in
the bottom panel one can see the corresponding distribution
of total angular momentum J . We observe that the total angu-
lar momentum distribution has a maximum at certain range of
Npart, and drops to zero for the most central events (where the
impact parameter is zero) and most peripheral ones (where
the system becomes small). In contrast to that, the polar-
ization shows a steadily increasing trend toward peripheral
collisions, where it starts to fluctuate largely from event to
event because of smallness of the fireball, a situation where
the initial state fluctuations start to dominate in the hydrody-
namic stage.

Fig. 5 Total angular momentum of the fireball (left) and total angular
momentum scaled by total energy of the fireball (right) as a function
of collision energy, calculated in the model for 20–50% central Au–Au
collisions

As has been mentioned above, the parameters of the model
are taken to monotonically depend on collision energy in
order to approach the experimental data for basic hadronic
observables. The question may arise whether the collision
energy dependence of PJ is the result of an interplay of col-
lision energy dependencies of the parameters. We argue that
it is not the case: in Fig. 7 one can see how the pT integrated
polarization component PJ varies at two selected collision
energies,

√
sNN = 7.7 and 62.4 GeV, when the granularity of

the initial state controlled by R⊥, Rη parameters, shear vis-
cosity to entropy ratio of the fluid medium η/s and particliza-
tion energy density εsw change. It turns out that a variation
of R⊥ within ±40% changes PJ by ±20%, and a variation
of Rη by ±40% changes PJ by ±25% at

√
sNN = 62.4 GeV

only. The variations of the remaining parameters affect PJ

much less. We thus conclude that the observed trend in pT
integrated polarization is robust with respect to variations of
parameters of the model.
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Fig. 6 Top out-of-plane � polarization component as a function of the
number of participating nucleons Npart in particular initial state. Each
point represents one hydrodynamic configuration in the ensemble of
2000 event-by-event calculations for 0–50% central Au–Au collisions
at

√
sNN = 39 GeV. Bottom out-of-plane component of initial angular

momentum versus number of participating nucleons Npart in the same
calculation

Fig. 7 Same as Fig. 4 but with bands added, which correspond to
variations of the model parameters

4.4 Discussion of the energy dependence

Now we have to understand the excitation function of the
pT integrated PJ , which is calculated in the model. As has
been mentioned, PJ at low momentum (which contributes
most to the pT integrated polarization) has a dominant con-
tribution proportional to �xz p0. It turns out that the pattern
and magnitude of �xz over the particlization hypersurface
change with collision energy.

We demonstrate this in Fig. 8 for two selected collision
energies. For this purpose we ran two single hydrodynamic
calculations with averaged initial conditions from 100 initial
UrQMD simulations each. At

√
sNN = 62.4 GeV, because

of baryon transparency effect, the x, z components of four-
temperature vector around zero space-time rapidity are small
and do not have a regular pattern, therefore the distribution of
�xz in the hydrodynamic cells close to particlization energy
density includes both positive and negative parts, as is seen
on the corresponding plot in the right column. At

√
sNN =

7.7 GeV, baryon stopping results in a shear flow structure,
which leads to the same (positive) sign of the �xz .

In the right column of Fig. 8, we plot the corresponding
�xz distributions over the particlization hypersurfaces pro-
jected on the proper time axis. Generally speaking, hydrody-
namic evolution tends to dilute the initial vorticities. One
can see that longer hydrodynamic evolution at

√
sNN =

62.4 GeV in combination with a smaller absolute value of the
average initial vorticity results in an average absolute vortic-
ity a factor 4–5 smaller at late times for

√
sNN = 62.4 GeV

than for
√
sNN = 7.7 GeV. This results in a correspond-

ing difference in the momentum-integrated polarization at
these two energies, which is mostly determined by low-pT
�, which are preferentially produced from the Cooper–Frye
hypersurface at late times.

5 Feed-down and post-hadronization interactions

Thus far, we have calculated the polarization of the � pro-
duced from the plasma at the particlization stage – henceforth
denoted as primary � – when the fluid decouples at or right
after hadronization. However, a sizable amount of the final
� are products of resonance decays. Indeed, as long as one
is interested in the mean, momentum-integrated, spin vector
in the rest frame, it can be shown that a simple linear rule
applies [25], that is,

S∗
D = CS∗

X , (14)

where D is the daughter particle, X the parent andC a coeffi-
cient whose expression may or may not depend on the dynam-
ical decay amplitudes. If the coefficientC does not depend on
the dynamical decay amplitudes, it takes on rational values
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Fig. 8 Initial energy density profiles for hydrodynamic stage with
arrows depicting initial four-temperature field superimposed (left col-
umn) and �xz over space-time rapidity |y| < 0.3 slice of particlization
surface, projected onto time axis (right column). The hydrodynamic

evolutions start from averaged initial state corresponding to 20–50%
central Au–Au collisions at

√
sNN = 7.7 (top row) and 62.4 GeV (bot-

tom row)

Table 2 Polarization transfer
coefficients C [see Eq. (14)] to
the � or � hyperon (the 1/2+
state) for various
strong/electromagnetic decays

Decay C

1/2+ → 1/2+ 0− −1/3

1/2− → 1/2+ 0− 1

3/2+ → 1/2+ 0− 1/3

3/2− → 1/2+ 0− −1/5

�0 → �γ −1/3

depending on Clebsch–Gordan coefficients, the initial values
of spin and parity [25]. The values which are relevant for our
calculation in various strong/electromagnetic decays with a
� or a � hyperon in the final state are reported in Table 2;
for the full derivation of the C coefficients, see Ref. [25].

A large fraction of secondary � come from the strong
�(1385) → �π and the electromagnetic �0 → �γ

decays2. We found that – in our code – the fractions of pri-

2 We denote �(1385) below as �∗ for brevity.

mary �, � from �∗ decays and � from the decays of pri-
mary �0 are, respectively, 28, 32 and 17%, with a negligible
dependence on the collision energy. This is very close to
the fractions extracted from a recent analysis [27] within the
statistical hadronization model: 25, 36 and 17%. The remain-
ing 23% of the � consist of multiple smaller contributions
from decays of heavier resonances, the largest of which are
�(1405), �(1520), �(1600), �(1660) and �(1670). Some
of these resonances produce � in cascade decays, for exam-
ple �(1405) → �0π,�0 → �γ .

We start with the contribution from �∗, which is a Jπ =
3/2+ state. In this case the factor C in Eq. (14) is 1/3 (see
Table 2) and, by using Eq. (13) with S = 3/2, we see that
the mean spin vector of primary �∗ is 5 times the one of the
primary �. Thus, the mean spin vector of � from �∗ decay
is

S∗ = 1

3
S∗

�∗ = 5

3
S∗

�,prim.
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Similarly, for the �0, which is a 1/2+ state, the coefficient
C is −1/3 (see Table 2) and

S∗ = −1

3
S∗

�0 = −1

3
S∗

�,prim,

as the primary �0 are expected to have the same polarization
as �.

More generally, the law (14) makes it possible to calcu-
late the mean spin vector inherited by the � hyperons also
in multi-step two-body decays with a simple linear propaga-
tion rule. We have thus computed the mean spin vector of
primary + feed-down � as follows:

S∗ =
N� + ∑

X
NX

[
CX→�bX→� − 1

3CX→�0bX→�0
]

N� + ∑

X
bX→�NX + ∑

X
bX→�0 NX

×S∗
�,prim, (15)

where the sum goes over resonances X decaying into � or
�0 and a pion, NX are the primary multiplicities of reso-
nances, CX→� and CX→�0 are polarization transfer coeffi-
cients, bX→� and bX→�0 are the branching ratios for decay
channels yielding in � and �0, respectively. In Eq. (15)
we have used the fact that nearly all �0 decay to �γ with
polarization transfer −1/3, which allows one to treat cascade
decay contributions X → �0 → �. The results are shown
in Fig. 9, where the thin dotted line corresponds to feed-
down contributions X = �0, �(1385) only. Surprisingly,
in this case the interplay of hadron chemistry and polariza-
tion transfer in the decays results in a correction factor which
varies between 0.94–0.98 in the whole collision energy range.
When we take all aforementioned resonances into account
(X = �0, �(1385), �(1405), �(1520), �(1600), �(1660),

Fig. 9 Same as Fig. 4, the dotted curve corresponds to polarization
of feed-down corrected � from �(1385) and �0 decays only. The
dashed curve corresponds to feed-down corrected � from �0, �(1385),
�(1405),�(1520),�(1600),�(1660) and�(1670), including cascade
decays, e.g. �(1405) → �0 → �

�(1670)), using the polarization transfer coefficients listed
in Table 2, we obtain the dashed line in Fig. 9, correspond-
ing to a 15% suppression of the mean polarization of � with
respect to the primary polarization. This decrease is mostly
due to the increase of the denominator in Eq. (15) from the
heavier resonance contributions, whereas their contributions
to the numerator have opposite signs because of alternating
signs of the polarization transfer coefficients.

There is, however, a further correction which is much
harder to assess, i.e. post-hadronization interactions. In fact,
hadronic elastic interaction may involve a spin flip which,
presumably, will randomize the spin direction of primary as
well as secondary particles, thus decreasing the estimated
mean global polarization in Fig. 9. Indeed, in UrQMD cas-
cade which is used to treat interactions after particlization,
the cross sections of � and �0 with most abundant mesons
and baryons – calculated with the Additive Quark Model
– are comparable to those of nucleons [28]. This implies
that the � do rescatter in the hadronic phase, and indeed we
observe from the full cascade + hydro + cascade calculation
that in the RHIC BES range only 10–15% of the primary �

escape the system with no further interactions3, until they
decay into pion and proton far away from the fireball. For the
present, we are not able to provide a quantitative evaluation
of the rescattering effect on polarization, which assessment
is left to future studies. The only safe statement for the time
being is that the dashed line in Fig. 9 is an upper bound for
the predicted mean global � polarization within the hydro-
dynamical model with the specific initial conditions used in
our calculation.

6 Conclusions

In summary, we have calculated the global polarization of
� hyperons produced at midrapidity in Au–Au collisions
at RHIC Beam Energy Scan collision energies,

√
sNN =

7.7–200 GeV, in the framework of 3-dimensional event-by-
event viscous hydrodynamic model (UrQMD+vHLLE). The
in-plane components of the polarization vector as a func-
tion of transverse momentum are found to have a quadrupole
structure (similar to the one obtained in [7]) and can be
as large as several percents for large transverse momen-
tum. The mean, momentum-integrated polarization vector
is directed parallel to the angular momentum of the fireball
and its magnitude substantially increases from 0.2 to 1.8%
as collision energy decreases from full RHIC energy down
to

√
sNN = 7.7 GeV. Such an increase is related to (1) the

emerging shear flow pattern in beam direction at lower colli-

3 The remaining 85–90% of the � contain decay products of primary
�0, �∗ and other resonances up to �(1670), which is covered by the
calculations above.
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sion energies related to baryon stopping, and (2) the shorter
lifetime of the fluid phase, which does not dilute the initial
vorticity as much as it does at higher collision energies. At
the same time, we did not observe a linear relation between
the polarization and the ratio angular momentum/energy of
the fireball.

A significant fraction of the produced � originate from
resonance decays. We have calculated the contribution to �

polarization stemming from the decay of polarized heavier
states and particularly for the two leading contributing chan-
nels: �0 → �γ and �(1385) → �π . It turns out that the
contributions from �0 and �(1385) alone change the result-
ing polarization by few percents, whereas extending the list
of feed-down corrections up to mass 1670 MeV hyperons
results in about 15% decrease of the resulting � polariza-
tion.

It should be pointed out that we did not include post-
hadronization rescatterings in our calculation, which are
likely to reduce the mean global polarization estimated in
this work.

The calculated excitation function of the mean polariza-
tion reproduces the trend reported in the preliminary data
from STAR [16,17], although the magnitude is about twice
smaller, even without including the further reduction due
to hadronic rescattering. As the uncertainty on the param-
eters of the model cannot compensate for this discrepancy,
this result suggests that a revision of the initial state model,
particularly of the initial longitudinal flow velocity pro-
file is necessary (see e.g. [18]) as the present one pro-
vides an insufficient magnitude of shear longitudinal flow
to approach the experimentally observed magnitude of the
polarization.
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