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vogliate negar l’esperienza, di retro al sol, del mondo sanza gente.

Considerate la vostra semenza: fatti non foste a viver come bruti, ma

per seguir virtute e canoscenza”.

Dante Alighieri (Inferno XXVI, 112-120)





Abstract

The increasing demand of higher efficiency and increased equipment

compactness is pushing the modern rotordynamic design towards higher

and higher bearing peripheral speed. Due to the increased viscous dis-

sipation, modern fluid film bearings are prone to the development of

complex thermal phenomena that, under certain conditions, can result

in synchronous thermal instability, often referred to as Morton effect.

Although the phenomenon is known and studied from the late 1970s a

lack of knowledge is highlighted in literature and the strategy to approach

its prediction and analysis is yet debated within the scientific community.

This work presents the development and validation of the numerical

models for the prediction of the synchronous thermal instability. The

proposed models are derived from a preliminary analysis of the physical

time scales of the problem and of the orders of magnitude of the equa-

tions, which allowed an aware selection of the modelling strategies from

a dual point of view: the physical genesis of the Morton effect (i.e., the

differential heating of the shaft) and the assessment of the stability of the

rotor-bearing system under the influence of the thermal effects.

Particular focus is devoted to the fluid-dynamical problem with the

description of two dedicated codes, developed, respectively, for the anal-

ysis of the thermo-hydrodyanmics of fluid film bearings and for the mod-

elling of the differential temperature developed across the shaft. This

latter phenomenon is due to the differential heating and results to be the

driving parameter of the problem.

Once the two codes has been individually validated, these have been



iv

inserted in more complex systems in order to evaluate their ability to

enable the prediction of the Morton effect. A linear stability analysis has

been firstly performed and results, although affected by discrepancies

with respect to the experimental data, have shown the potential of the

codes to reach the objective of the work. Better results have been finally

obtained when the models have been inserted in a more complex architec-

ture. This latter has been developed in collaboration with the MDMlab

of the Department of Industrial Engineering of the University of Flo-

rence in order to model the synchronous thermal instability by means of

an iterative approach. A comparison with available experimental data,

derived from a dedicated test campaign carried out at the GE Oil & Gas

facility in Florence, is shown in order to validate both the procedure and

the models. Moreover, some key parameters driving the Morton effect

are presented and a study of the sensitivity of the phenomenon to the

thermal expansion coefficient is proposed in order to improve researchers’

knowledge on the topic.
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Introduction and motivations of

the work

The demand of higher efficiency and increased equipment compact-

ness is pushing modern rotordynamic design towards higher and higher

bearing peripheral speed. As a consequence, due to the increase in vis-

cous dissipation, modern fluid film bearings are prone to the development

of complex thermal phenomena, which heavily affect the machine rotor-

dynamics. In detail, the increased viscous dissipation generates rotor

asymmetrical heating (see the work of De Jongh and Morton [1]), which

drives the formation of a differential temperature across the shaft and

hence induce thermal rotor bowing. This latter, generates rotor thermal

imbalance and can consequently increase synchronous vibrations. Since

differential heating and synchronous rotor vibration are directly linked,

a complex feedback loop can be generated causing, in the worst scenario,

the thermal rotor instability, which is often referred to as Morton effect.

Since the described problem is strictly related to the increase in ma-

chine performance, a raising interest on the topic has been shown both

from the academical and industrial communities. This trend has been

also recently confirmed by the introduction, in 2005, of a dedicated chap-

ter in the second revision of the American petroleum Institute rotordy-

namic tutorial (API Recommended Practice 684 [2]), demonstrating also

the recognition of the technological challenge to be solved by the indus-

trial community.

Although the phenomenon has been recognized and studied for the

xxv
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first time during the late 1970s, a lack of knowledge is nowadays yet high-

lighted in literature, as underlined in the work of De Jongh [3], dated

2008, where is clearly stated that ”synchronous thermal instability, due

to bearing journal differential heating, is not a well-known rotordynamic

phenomenon”. Furthermore, the technological challenge results to be yet

discussed. In fact, the API rotordynamic tutorial reports that ”while

synchronous thermal instability fits the classical definition of an unstable

system, rotor stability codes are currently not used to predict its exis-

tence”.

Motivated by the aforementioned lack of knowledge, this thesis, real-

ized in collaboration with GE Oil & Gas, presents the development and

validation of numerical codes to be used for the prediction of the Morton

effect. The purpose is pursued always having in mind the need for a

trade off between accuracy and computational costs in order to obtain

an useful tool attractive also for the industrial community.

The activity has been divided into two parts. The first one is dedi-

cated to the development and validation of numerical codes both for the

thermo-hydrodynamic analysis of plain and tilting pad journal bearings

and for the calculation of the differential temperature developed across

the shaft. A discussion and quantification of the uncertainties in the oper-

ating conditions is also considered. The second part is aimed to validate

the numerical codes in way to prove their ability to identify the onset

of the synchronous thermal instability. Moreover, some key parameters

driving the Morton effect are studied in order to identify strategies of

solution and improve researchers’ knowledge of the phenomenon.

Before the two aforementioned parts, a description of the problem,

with its implications, and a literature survey are proposed. These, are

aimed to characterize the physics and evaluate the solution strategies

currently considered by researchers. The objective of this latter analysis

is to enable an aware discussion, based on some physical considerations,

in order to select the best strategy to be adopted for the purpose of the

work.



Chapter 1

Synchronous thermal instability:

physics
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Thermal phenomena in rotordynamics are known from the early years

of the 20th century, when Newkirk published a work [4] concerning a

thermally-induced problem affecting a water wheel generator. The pre-

sented unit experienced severe vibrations, which abruptly increased in

the space of a few minutes, necessitating a machine shut-down. Observa-

tions showed that the shaft was bowed immediately after shut-down and

that the bow disappeared after a few minutes. Newkirk concluded that

the problem was due to rubbing of the shaft against the bearing, which

promoted the generation of an hot-spot on the surface of the rotating

shaft. He also reported the following considerations: ”if the journal be-

comes heated along one element of its surface, the shaft bows so that this

1
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element is pressed against the bearing and becomes still hotter, which

results in further bowing, etc. Thus, when a cycle of this sort starts it

progresses rapidly, and violent vibration develops”. Moreover, referring

to an experimental campaign made at the General Electric Company’s

research laboratory, Newkirk observed that if the shaft was running be-

low its first critical speed then the rubbing increased in intensity as a

consequence of a positive feedback mechanism. On the contrary, when

operated above its critical speed the rubbing, if not too severe, was not

able to build up. This phenomenon is nowadays known as Newkirk effect.

Further study on the phenomenon has increased researchers’ knowl-

edge highlighting that the light rub can be promoted for different rub

locations (e.g., bearings, seals and oil deflectors) and, more recently, that

it can affect high-speed turbomachinery rotors running above the first

critical speed. In such a background the work of Dimarogonas [5] was the

first to quantitatively evaluate the Newkirk effect and indicated its three

different modes: a spiralling one, with vibrations increasing in time, an os-

cillating one, which consisted in constat-amplitude sinusoidal vibrations,

and a constant mode, with time-independent vibrations. Dimagoronas

concluded that the main factor determining the mode of the system is

the phase difference between the static mechanical bow and the dynamic

thermal bow, both evaluated with respect to a reference system fixed

with the spinning rotor.

In the late 1970s another thermal phenomenon has been considered

as a root cause for the synchronous thermal instability. Better known as

Morton effect, this latter is the main topic of the present work. It has

strong similarities with the Newkirk effect, particularly in the way the

feedback mechanism drives the system towards instability, but the hot

spot has a different physical genesis, which, in this case, is related to the

viscous dissipation within the bearings.

Although this thermo-hydrodynamic source for the shaft differential

heating has been recognized for the first time during the 1970s, it is only

in 1987, with the work of Schmied [6], that this mechanism has been

proposed in the open literature as a root cause for the rotor spiral vi-
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brations. In fact, according to the work of De Jongh [3], the pioneering

study of the synchronous thermal instability, performed at the General

Electric Company Ltd. in the United Kingdom and at the Stal-Laval

Turbin AB in Sweden respectively by Morton [7], [8] and Hesseborn [9]

during the late 1970s, are internal reports which are not widely avail-

able. Fortunately, information about these works are given in the work

of De Jongh [3]. According to this latter, Morton, in 1975, performed

an experimental campaign on a 711 mm diameter shaft running at 1800

rpm. The temperature distribution along the tangential direction of the

shaft at the bearing section was measured by means of 12 thermocouples

equally spaced on the circumference. It was found that significant dif-

ferential temperatures were measured across the shaft for orbits of only

a few percent of the radial clearance, without any rubbing. This has

been the first experimental proof of the shaft differential heating due to

viscous dissipation and, due to this work, the consequent rotor thermal

instability is usually referred to as Morton effect.

Nowadays, the Morton effect is gaining more and more attention from

the turbomachinery community due to the increasing number of regis-

tered events. This is due to two main reasons: the first one is objec-

tive and is due to the trend adopted by the turbomachinery producers

of increasing the rotational speed, the second one is instead subjective

and is due to the increase in awareness of the phenomenon. In fact,

the increased rotational speed, which pursue the need for increasing the

turbomachinery performance, practically induce an increase in the fre-

quency of the spiral vibration events, particularly if overhung rotor (or

couplings) configurations are considered. At the same time, the increase

in the number of events is related to the ability and opportunity to de-

tect the phenomenon that is given by the increase in Morton effect’s

knowledge. Since this kind of thermal instability can be experimentally

recognized only measuring the temperature across the shaft, which is not

an easy task, it is possible to imagine that before some general rules

of the phenomenon were given, some cases of Morton effect could have

not been recognized nor even hypothesized. In fact, from the work of
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the De Jongh [3], which gives an excellent historical excursus, Morton

reports that prior to the 1975 several empirical approaches were used by

its company to cure the rotordynamic problems, without having an in

depth comprehension of the physics behind them. Referring to the words

of Morton it is stated that ”a reduction on overhang mass proved benefi-

cial and another approach was simply to increase the bearing clearance,

so that the cooling oil flow was increased”. In a number of cases, he

indicated that ”it was sufficient to wait until the troublesome machine

was rigidly coupled to another machine, thereby reducing the overhang

sensitivity”. All of the cited empirical approaches highlight some of the

parameters which have been shown over the years to play a key role in

driving the Morton effect.

The increase in attention revealed by the scientific community, as

stated in the introduction of the present work, can be confirmed observing

Figure 1.1, taken from the work of Panara et al. [10], which is in turn

taken and integrated from the work of De Jongh [3]. It shows an overview

of the number of publications related to the Morton effect from the 1975,

year of the first known study, up to the end of the 2014. As it is possible

to observe a trend underlying the increase in interest is clearly defined.

Figure 1.1: Number of technical publications about the rotor thermal
instability over the years, from the work of Panara et al. [10].
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From the point of view of the industrial community, such an increase

in attention is confirmed by the fact that rotor thermal instability has

gained a dedicated chapter in the second revision, dated 2005, of the

American Petroleum Institute rotordynamic tutorial [2], demonstrating

that the rotor thermal instability is more and more recognized as a tech-

nological challenge whose solution is still to be debated in the technical

community.

Although the increasing interest has driven researchers towards a bet-

ter knowledge of the phenomenon, De Jongh [3], in 2008, states that

the Morton effect is yet ”not a well known rotordynamic phenomenon”.

Moreover, in the closure of the cited API Recommended Practice 684

is reported that ”while synchronous thermal instability fits the classical

definition of an unstable system, rotor stability codes are currently not

used to predict its existence”. This highlighted lack of knowledge has

encouraged the present work in order to overcome current code limita-

tions and present some instruments for the Morton effect prediction and

analysis.

1.1 Introduction to the physics of the problem

In this first chapter an overview of the physics of the thermal rotor

instability is given. The purpose is to highlight its main characteristics

and underline similarities and differences with the more famous Newkirk

effect.

As previously stated, synchronous thermal instability, better known

as Morton effect, is driven by non-uniform bearing journal heating. This

is an uncommon approach since, in the traditional bearing literature, the

shaft is considered with a uniform journal heating and hence, with uni-

form temperature distribution. This latter hypothesis is a fair assumption

when the shaft rotates on its stable equilibrium position but is no more re-

liable when the journal orbits around its stable equilibrium position with

a whirling frequency synchronous with respect to the rotor speed. As it

is possible to imagine, this second condition results to be a more realistic
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scenario due to the residual mechanical imbalance, which characterize

real rotordynamic applications and which results to be unavoidable.

Research confirmed the previously cited mechanism and has shown

that during a synchronous orbit, rotors supported in fluid film bearings

exhibit a non-uniform temperature distribution. According to API684

[2] this unavoidable thermal gradient can be explained as follow: ”one

specific point on the shaft will always be on the outside of the orbit

and will therefore be closer to the bearing wall (see Figure 1.2). This

surface will have a smaller film thickness averaged over the period of

one orbit than the opposite side of the shaft”. This point of minimum

film-thickness is referred to as high-spot.

Figure 1.2: Differential heating mechanism from the second revision of
API684 standard [2].

Since oil temperature is directly proportional to the amount of viscous

dissipation, which in turn is directly proportional to the viscous shear, it

is easy to understand that oil temperature grows inversely with respect to

the oil film thickness, producing a hot and cold spots on the rotating shaft.
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The larger the size of the orbit, the larger the differential temperature

will be. The obtained rotating thermal gradient, determines shaft thermal

bending (see Figure 1.3) and hence rotor thermal imbalance is generated.

If the increased thermal imbalance couples positively with vibration orbit

enhancement, the resulting feedback loop can drive the rotor unstable in

the sense that the synchronous vibration will grow unbounded.

Figure 1.3: Thermal bending inside of the bearing section from the
work of Guo and Kirk [11].

Looking at the problem from a general view it is possible to observe

three main actors driving the phenomenon. These three main physi-

cal aspects interconnected in a loop to each other, shown in Figure 1.4,

constitute the Morton effect core: the mechanical imbalance generates

an elliptical orbit, which generates a thermal gradient across the shaft,

which in turn generates a thermal bending and, as a consequence, ther-

mal imbalance is added to the initial mechanical imbalance closing the

loop.

Due to the variety of the phenomena involved, showing the Morton

effect’s highly inter-disciplinary nature, different models with different

degree of complexity have been proposed over the years. All of these

models confirm that, in order to approach and study the problem, the

three proposed terms (highlighted in Figure 1.4) need to be numerically,

analytically or empirically defined.
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Figure 1.4: Rotor thermal instability loop, from the work of Panara
et al. [10].

The three terms can be summarized as follow:

• the link between thermal imbalance and rotor vibration at bearing

section (hereafter referred to as A term);

• the link between rotor vibration at bearing section and rotor differ-

ential heating (hereafter referred to as B term);

• the link between rotor differential heating and thermal imbalance

(hereafter referred to as C term).

Among all of these terms the most challenging one remain the B term,

which connects the vibration orbit to the thermal gradient. In fact, it

relates two very different problems and involves the unsteady thermo-

hydrodynamic analysis of the oil within the film-thickness of the bearing,

managing the dynamics of the shaft and the pads, thermal and elastic de-

formations, oil cavitation as well as the heat transfer and heat conduction

within the shaft, pads and housing. Such a problem is characterized by

very different length and, above all, time scales. These latter, constitute

the main challenge and entail different choices to approach the problem

on the base of the needed level of accuracy and efficiency.
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1.2 Main characteristics of the phenomenon

Along this section the main characteristic of the phenomenon are

considered. The objective is to present some general rules regarding the

Morton effect and have a comparison with the more famous Newkirk

effect.

The vibrations related to both the thermal phenomena presented are

synchronous (1x) with respect to the rotor running speed. Moreover, in

both cases the Nyquist plot is composed of a spiral vibration at constant

rotor speed due to the moving hot-spot, which induce the thermal bend-

ing. Although under certain aspects the behaviour is very similar, some

characteristics can help in recognizing the Morton effect between the two.

First of all, the Newkirk effect is associated with rubbing, hence, signs of

the erosion have to be found on statoric or rotoric components. Moreover,

shaft orbit plots register usually smooth variations in case Morton effect

is developing, while, on the contrary, the Newkirk effect shows clear signs

of the bounces taking place when rubbing occurs, as shown in the work of

Phuttipongsit [12]. The effect of the bounces is clearly visible in Figure

1.5 where a typical shaft orbit plot of a machine experiencing Newkirk

effect is presented.

Figure 1.5: Shaft orbit plot of a mechanical drive steam turbine
experiencing seal rub, from the work of Phuttipongsit [12]
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Another difference between Newkirk and Morton effects is reported in

the work of De Jongh [3]. The author states that the Morton effect can

show instability upper limit, and hence, the phenomenon can occur in

more than one speed range. In fact, De Jongh recall the results from an

experimental campaign carried out by De Jongh and Morton [1], where

the tested rotor was run through an instability zone with a regain in

stability at higher peripheral speed.

Time scales also characterize the problem. Both Newkirk and Morton

effect, as thermal problems, involve the thermal inertia of the solid parts

(e.g., shaft, pads, bush). As a consequence, very high thermal time scales

are related to these phenomena, as presented in the work of Newkirk

[4], where experimental observations made immediately after one of the

events of thermal vibration ”indicated that the shaft was bowed in its

lowest section, and that the bow disappeared within a few minutes after

shut-down.” A characteristic hysteresis loop is the direct consequence of

the thermal time scales and is shown in Figure 1.6. If the shaft is running

at a constant rotational speed the vibration slowly increases due to the

highlighted thermal mechanisms, when a quick reversal of the speed is

performed an hysteresis loop raises since time is needed by the shaft

bending to restore its original configuration.

Figure 1.6: Typical hysteretical bahaviour when performing a quick
reversal of machine speed (De Jongh [3])
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Another characteristic of the Morton effect is a phase lag existence

between the high and the hot spots, where instead in the Newkirk ef-

fect, which is driven by a different genesis of the hot spot, this latter

coincide with the point where the shaft rubbing occurs. The thermal

mechanism which generates the shifting between the phases, see Figure

1.7, is explained in the work of De Jongh [3]. In his work, the author

reported that the oil is convected counter to the journal rotation with re-

spect to the axis and, as a consequence, ”the hot spot must lag the high

spot”. Although this difference could be used for distinguishing between

the phenomena, it has to be considered that the knowledge of the phase

lag can be obtained only if data of the shaft circumferential temperature

distribution are available.

Figure 1.7: Detail of the journal cross-section showing the phase lag
between hot-spot and high-spot, taken from the work of De Jongh [3].

Due to the lack of dedicated experimental campaigns, information

about the phase lag are yet debated. De Jongh and Morton [1] experi-

mental measurements, obtained on a test rotor at a speed of 10500 rpm,

showed a phase lag of about 20 deg with the hot spot lagging the high

spot. A range from 0 deg to 60 deg, with the hot spot lagging the high

spot, is reported in the work of Murphy and Lorenz. Gomiciaga and

Keogh [13] calculated by means of CFD analysis the thermal gradient

across the shaft in plain journal bearings ongoing a forward or a back-
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ward circular orbit. They found that the maximum journal surface point

was always upstream or downstream from the point of minimum dynamic

film thickness respectively for a forward and backward whirl orbit. Fi-

nally, in the work of Suh [14] a range between −20 deg and +60 deg is

reported, where a positive value means that the hot spot is lagging the

high spot.

Another characteristic which can be used from vibration analysts on

field in order to distinguish between the two effects is the feeding oil flow

rate. In fact, only the Morton effect, which is related to the viscous shear,

is directly driven by this parameter.

Some of the main similarities and differences between the Newkirk’s

and Morton’s effects are resumed in Table 1.1.

Characteristic Newkirk effect Morton Effect
rotor motion synchronous synchronous
rotor overhung not required generally required

coupling overhung not required generally required
hot spot cause rotor-stator rubbing viscous shearing

hot spot location seals, bearings, oil deflectors inside bearings
time scales long (conduction) long (conduction)
hysteresis yes yes

phase lag (hot-high) no yes
mechanical erosion yes no

Table 1.1: Main similarities and differences between Newkirk and
Morton effects.

1.3 Consequences of the phenomenon

The described self-feeding loop which composes the Morton effect can

have very different consequences on the rotordynamic behaviour depend-

ing on its intensity. In particular, three main behaviours can be obtained:

a stable behaviour (generated by a converging spiral), with bounded and

fixed vibrations, a marginally stable or ”borderline” behaviour (usually

obtained in proximity of the spiral instability threshold), with bounded

but oscillating vibrations, and an unstable behaviour with its typical

spiral vibrations. Converging, borderline and diverging vibrations, calcu-
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lated for a two overhung impeller turboexpander in the work of Grigorev

et al. [15], are shown in Figure 1.8. The black circle marker on the plots

represent the starting point of the calculation, that is the resulting vibra-

tion considering the residual mechanical imbalance only.

Figure 1.8: Spiral vibrations in polar plot for a two impellers overhung
turboexpander, presented in the work of Grigorev et al. [15].

More in detail, the stable behaviour drives the system towards a

steady vibration operating point which is generated by means of a blend

between the residual mechanical unbalance and a fixed constant ther-

mal unbalance (generated by a converging thermal spiral). When on the

threshold between stable and unstable behaviour, the vibration response

is a circle centered on the point of the corresponding stable solution

(generated by an oscillating thermal unbalance). Finally, the unstable

behaviour is generated by the typical spiralling thermal imbalance. A

representation of the typical thermal behaviours from the work of Mur-

phy and Lorenz [16] is presented in Figure 1.9.

Figure 1.9: Examples of thermal spirals from the work of Murphy and
Lorenz [16].

These sets of general behaviours can lead to very different working
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conditions. As it is possible to observe from the following proposed sub-

divisions, it is not necessary to operate in a spiral vibrations regime for

a designed machine to be rejected, although this latter is of course the

worst scenario in terms of safety in operation. The aim of the following

list is to present the consequences of the phenomenon in relation with

industrial recommended practices and with customer needs and expecta-

tions since both these factors have an impact from the economic point of

view.

Stable behaviour:

• No synchronous vibration change is obtained: vibrations are unaf-

fected by the thermal phenomenon;

• Bounded and acceptable vibration change: vibrations are repre-

sented by converging spirals on a Nyquist plot to a single value

of phase and amplitude which is acceptable considering API stan-

dards;

• Bounded and acceptable but unusual: vibrations are represented

by converging spirals on a Nyquist plot to a single value of phase

and amplitude which is acceptable considering API standards, but

the vibrations exceed the customer expectations;

• Bounded and unacceptable vibration change: vibrations are rep-

resented by converging spirals on a Nyquist plot to a single value

of phase and amplitude which is not acceptable considering API

standards.

Marginally stable behaviour (borderline):

• Bounded and acceptable vibration change: the vibrations realize

circles on the Nyquist plot. Amplitude and phase oscillates be-

tween a maximum and a minimum values which are within the

API standards acceptability;

• Bounded and acceptable vibration change, but unusual: the vi-

brations realize circles on the Nyquist plot. Amplitude and phase
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oscillates between a maximum and a minimum values which are

within the API standards acceptability, but the maximum vibra-

tions exceed the customer expectations;

• Bounded and unacceptable vibration change: the vibrations realize

circles on the Nyquist plot. Amplitude and phase oscillates between

a maximum and a minimum values which are outside of the API

standards acceptability;

Unstable behaviour:

• Unbounded vibration change: the vibrations realize diverging spi-

rals on the Nyquist plot. Vibrations grows unbounded with contin-

uous phase change. The machine needs an immediate shutdown.

Only three among the eight possible operating conditions results to be

completely acceptable both by norms (e.g., API standards) and customer

needs and expectations.

1.4 Driving parameters and corrective actions

All of the variables related to the rotor, to the journal bearings, to

the operating conditions and the ambient surrounding the system can

have a role in the phenomenon, as for example: the geometry both of the

rotor and the bearings, the construction materials both of the rotors and

the bearings, the residual imbalance, the oil characteristics in terms of

viscosity and temperature (which are strictly connected), the couplings

with other machineries and so on. Among all of this variables, only the

most important driving parameters will be reported further and for each

one of them some corrective actions presented.

From the existing literature it has been highlighted that the Morton

effect can be observed either during the preliminary testing or when the

machine is installed on the field. In both cases, this kind of problem

arises for newly designed machineries or when modifications to an existing

one have been done. Depending on the stage of the project where the

Morton effect reveal itself, some corrective actions result to be less or



16 1. Synchronous thermal instability: physics

more attractive. In fact, if for example the phenomenon is highlighted in

a preliminary phase, some design parameters can be simply modified (e.g.,

rotor material or geometry). The same parameters, if modified when the

machine is on the field would cause a strong increase in costs and time

delay of the whole project. This highlights once more, if necessary, the

importance of the development of predictive models dedicated to the

present problem.

Morton effect is usually related to fast spinning machines with highly

flexible rotors and high overhung masses. Moreover, it has been stated

that the heat exchange within the bearing is the main driving parameter.

As a consequence, it is easy to imagine that the corrective actions will

be devoted to increase rotor stiffness, to decrease the heat input inside of

the shaft and finally to increase the heat elimination in the bearing area.

Once the synchronous thermal instability has been recognized has

the root cause for the vibration problem, the following parameters and

corrective actions can be considered:

• Limit the operating/design speed: by means of this modification

the vibration level usually decreases. It has to be noted that this

parameter is usually not considered since it negatively affects the

machine performance. Moreover, in certain cases it could not be

possible to modify the working frequency or simply it would be

expensive due to the required control systems (as in the case of

electric motors).

• Reduce the overhung moments: overhung masses can be reduced

choosing lighter materials for rotors and for couplings, as for ex-

ample titanium or aluminium. This approach, successfully applied

on a drive-through compressor rotor by De Jongh and Morton [1],

can be easily adopted if the problem has raised during the design

phase and only if the application of the machine allow the selection

of materials with different physical properties (e.g., mechanical or

thermal resistance).

• Modify the rotor shaft: this action can be done for having a dif-
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ferent mechanical behaviour, a different thermal behaviour or both

of them. In particular, the geometry of the shaft can be modified

in order to obtain a stiffer configuration, as presented in the work

of Schmied et al. [17], where the thrust collars have been elimi-

nated and the diameter of the central section of the shaft increased.

The material of the shaft can be also modified, in order to reduce

the thermal expansion coefficient. In the work of De Jongh [3] is re-

ported to consider, if possible, a ferritic steel instead of an austenitic

one. Some considerations on construction steel composition, in re-

lation to the phenomenon, are reported in the last chapter of the

present work.

• Apply an heat barrier sleeve: this action reduces the heat input

inside of the shaft applying a thermal barrier between the shaft

and the oil, where viscous dissipation is produced. Presented in the

work of De Jongh and Van Der Hoeven [18] this solution proved to

be very effective as it is possible to observe in Figure 1.10, where

the thermal gradients with and without barrier sleeve are presented.

(a) Temperature distribution
without heat barrier sleeve

(b) Temperature distribution
with heat barrier sleeve

Figure 1.10: Effects of the application of a heat barrier sleeve, form the
work of De Jongh and Van Der Hoeven [18].

The selected thermal barrier sleeve, among all of the materials con-

sidered by the authors of the work, has been built with the same
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material of the shaft and uses a small air gap as a heat barrier. Once

mounted on the shaft the compressor rotor behaviour resulted to

be perfect over the entire operating speed range. Moreover, the

system resulted no more sensitive to the instability problem.

• Change bearing geometry: this solution, which is composed of vari-

ous different actions on the parameters and geometry of the bearing,

can be adopted in the phase of design but can be also attempted

as a first option in case of field development of the Morton effect.

In fact, it is one of the less cost effective actions.

Many parameters can be modified: number of pads, geometry (e.g.

pads’ preload, clearance), the offset, the configuration (e.g. Load

On Pad (LOP) or Load Between Pads (LBP)) and so on.

Although working on the journal bearing characteristics could be

one of the first choices, for the majority of the parameters pre-

sented in literature there are only a few informations about the

consequences on the phenomenon. Some of these main actions will

be detailed in the following.

• Change of the journal bearing clearance: when a reduction in jour-

nal bearing clearance is performed two counterposed effects are ob-

tained. Since an increase of the viscous shear is promoted, a larger

differential temperature is usually obtained. Simultaneously, the

dynamic coefficients of the bearing will increase resulting in a sys-

tem less sensitive to overhung unbalance. The global behaviour

is then related to the effect which will dominate between the two

proposed.

• Change of bearing length (change of B/D ratio): a reduction in

the bearing length B increases specific or unitary loading Lu, as

shown in Equation 1.1, where L represents the weight of the rotor

supported by the bearing and Rj is the journal radius.

Lu =
L

2RjB
(1.1)
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The increasing of the specific load drives the equilibrium position

of the shaft towards higher eccentricities. As reported in the work

of Balbahadur [19], an increase in eccentricity result in a better

cooling effect lowering the differential temperature across the shaft.

Furthermore, the increase in eccentricity of the shaft allows big-

ger amplitudes of the orbit motion before the bearing center is sur-

rounded. Such a condition, that is easy to understand considering a

plain bearing, magnifies the differential temperature promotion. In

fact, when the orbit does not surround the center the high-spot will

see an averagely minimum thickness, while if the orbit surrounds

the center, the high-spot will be the minimum film-thickness condi-

tion along the whole precession motion. The reduction of the B/D

ratio has been adopted for the pipeline direct inlet compressor pre-

sented in the work of Berot and Dourlens [20].

Moreover, as reported in the work of Schmied et al. [17], which

applied this solution to a turboexpander with a double overhung

wheels, the reduction of the axial length lower the heat input inside

of the shaft, reducing the contact surface, and reduces the thermal

deflection βth which is proportional to the length of the section

of the shaft affected by the differential temperature. Equation 1.2

reports the differential angle of the shaft evaluated between the

shaft axis at the inlet section and the shaft axis at the outlet section

of the bearing. In the proposed equation λ is the thermal expansion

coefficient of the shaft.

βth =
λ∆T

Rj
B (1.2)

• Modify lubrication oil viscosity (µ): this action can be done by

means of selection of a different lubrication oil or by the use of a

different oil feeding temperature. In fact, the dynamic viscosity is

function of the pressure and temperature of the fluid, µ(T, p), al-

though for usual applications the pressure effects on the dynamic

viscosity can be disregarded (µ(T )). If the dynamic viscosity is
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decreased the viscous shear and consequently the fluid dissipation

are decreased. Thus obtaining a lower differential heat input in the

shaft. This has been applied by Schmied et al. [17] on a turboex-

pander. It has to be noted that changing oil viscosity, all of the

bearing working conditions will be affected (e.g., the eccentricity,

attitude angle and dynamic coefficients). Furthermore, reducing

viscosity drives the system towards a greater eccentricity value with

the previously highlighted benefits.

• Increase inlet oil flow: by means of increasing the inlet oil flow, an

increase in the cooling effect of the oil is obtained, reducing the

differential temperature development. In contrast with this useful

behaviour, having more cooling oil in the system, will increase the

effective viscosity of the oil. According to the work of De Jongh [3],

this solution has been applied by Morton [8] to a 61MW gas tur-

bine. The clearance of the upper part of the bearing was increased

resulting in a higher cooling flow rate.

• Ambient temperature: the ambient temperature can affect the feed-

ing oil temperature, and hence, the feeding oil viscosity. Moreover,

the ambient temperature affects the external heat exchange, which

in turn affects the temperature both of the oil and of the metallic

parts. In particular, geometry variations, as for example clearance

variations, can be obtained by means of thermal deformations. Am-

bient temperature in the majority of the cases is not under control

of the operator and results to be one of the uncertainties affecting

the study of the problem.

• Evolving gas temperature: De Jongh and Van Der Hoeven [18] has

revealed an interesting effect related to the temperature of the gas

adopted for the process. For their specific machine, with a cartridge

consisting of relatively large steel part around the impeller-end bear-

ing (see Figure 1.11), they found a high sensitivity of the cooling

effect produced by the process gas, evolving at 5◦C, on the steel.

The result was a decrease in the bearing clearance and a decrease
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of the stability margin. Temperature of the evolving gas is only

dependent on the gas process and hence usually not under control

of the operator and can range from high-values, as in the first high-

pressure stages of gas turbines, to very low values, as for machines

used in cryogenic applications.

Figure 1.11: Longitudinal section of compressor cartridge from the work
of De Jongh and Van Der Hoeven [18].

1.5 Affected machines

Many different typologies of turbomachinery result to be affected by

the rotor thermal instability. As widely reported in literature, machines

affected by such a phenomenon are usually fast rotating machines, highly

loaded, with heavy overhung masses both in terms of impellers and cou-

plings.

In the work of De Jongh [3] a resume of the case studies found in

literature is shown. The cases have been grouped on the base of the

rotor geometry. The classification proposed by De Jongh is here reported

in order to list the typical geometrical configurations affected by the

phenomenon.
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• single overhung wheel (Berot and Dourlens [20], Kocur and de Jongh

[21], De Jongh and Van Der Hoeven [18], Kirk et al. [22])

• double overhung wheels (Faulkner et al. [23], Schmied et al. [17])

• 1 overhung coupling (Kocur and de Jongh [21])

• 2 overhung couplings (De Jongh and Morton [1])

• integrally geared, 1 overhung wheel (Carrick [24])

• integrally geared, 2 overhung wheels (Marscher and McGinley [25])

Moreover, a list of some of the referenced machines affected by the syn-

chronous thermal instability is reported below. The objective is to show

the potential of the Morton effect to occur across-the-board of the turbo-

machinery world.

• air compressors (as presented in the work of Phuttipongsit [12]);

• gas boost compressors (as presented in the work of De Jongh [3]);

• pipeline direct inlet centrifugal compressor (as presented in the

work of Berot and Dourlens [20]);

• gas turbines (as results from the work of De Jongh [3] which reports

about Morton studies [8]);

• radial inflow turbines (as results from the work of Kocur and de Jongh

[21] which reports about the work of Faulkner et al. [23]);

• turbine generators (as presented in the work of Schmied [6]);

• turbo-expanders for cryogenic industry (as presented in the work

of Schmied et al. [17]);

• large turbochargers with overhung turbine wheel (as reported in

the work of Saha [26] about the case study in the work of Faulkner

et al. [23]).
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2.1 Literature survey

After the pioneering works of Morton [7] and Hesseborn [9], which are

not available in open literature, many researchers have proposed different

approaches to the problem.

The first step is the evaluation of the strategy to approach the three

physical terms A, B and C, which resulted to characterize the phenomenon.

This can be done by means of the following approaches:

• experimental evaluations;

• numerical calculations;

• analytical studies.

Once the driving terms are physically represented, the global system

analysis, that is to assess the stability of the system, can be obtained by

means of the following strategies:

• simulating with time accuracy the evolution of the complete system;

• iterating between the quasi-steady solutions of each of the above

physical aspects assuming a segregation of effects;

• using some stability theory criteria or empirical evaluation of stabil-

ity based on the assessment of A, B and C term mutual importance;

Some works with a full analytical approach have been published over

the years, from the works of Keogh and Morton [27] [28] of the early

1990s, to the work of Gu and Chu [29], dated 2013, where the effects of

thermal excitations on a rotor shaft are studied. In the first work of Keogh

and Morton [27] the mechanism of the differential heating is evaluated

by means of a theoretical treatment based on short bearing theory and

iso-viscous lubricant. In their second work, the feedback mechanism is

analysed in order to assess stability of the system, yet again considering

strong simplifications. These evaluation strategies, although important

in order to increase the awareness of the physics of the problem, result to
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be lacking of practical sense due to the necessary simplifications adopted,

which results to be far from the realistic industrial applications.

Schmied [6] proposed in his work a beam finite element model for A

and C terms evaluation. An equivalent of the B correlation is adopted on

the base of an empirical equation proposed in the work of Kellenberger

[30] and coupled with the finite element method. The system stability

could be assessed studying the overall finite element method evolution in

time or on the base of the evaluation of the so called thermal eigenvalues

related to the finite element system solution matrix.

De Jongh and Morton [1] were the first to laboratory reproduce and

openly publish a thermal instability field issue occurred on an offshore

centrifugal compressor. They directly measured the rotor thermal gra-

dient and explained the thermal instability assessing from theory the A

and C terms while the B term was evaluated through laboratory mea-

surements. To assess stability, they successfully applied a control theory

criterion evaluating the gain of the coupled system in loop.

Larsson [31] characterized the B and C terms using an analytical for-

mulation derived from the numerical work of Ericsson (Ericsson 1980).

He obtained an analytical correlation between bow and shaft vibration.

The A term was evaluated using a beam finite element rotor model. Fi-

nally, everything was coupled in order to compute the overall system

solving matrix eigenvalues and assess stability.

Balbahadur and Kirk [32] approach was to characterize B by simply

averaging the temperature results of a steady state bearing solver at

different imposed orbital positions. The C term was determined using a

simple analytical relation depending on thermal gradient and equivalent

shaft overhung dimensions. The main advantage of this approach is to

quickly solve the thermal gradient but its accuracy is debated due to

a quasi-unsteady approach, which aim to represent the real unsteady

behaviour of the system. A criteria for thermal instability was given

by means of comparison between estimated thermal unbalance and rotor

weight.

Murphy and Lorenz [16], following the strategy used by De Jongh
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and Morton [1] and the method of Balbahadur and Kirk [32], proposed a

simplified method based on linear stability theory to predict rotor thermal

instability. For the evaluation of the A term a standard rotordynamic

code was used. To evaluate B and C, the same approach of Kirk and

Balbahadur was used taking advantage of a standard bearing code. A, B

and C can be then expressed as complex coefficients and the criterion for

thermal stability is simply depending on the real part of the composition

of A, B and C which should not exceed a threshold value.

Gomiciaga and Keogh [13] instead used CFD techniques to numer-

ically predict rotor thermal gradients on plain bearings depending on

imposed forward and backward circular rotor orbits. The Navier-Stokes

fluid and energy equations were solved in a 3D cylindrical reference frame.

Similarly, Lee and Palazzolo [33] solved the transient thin film thermo-

hydrodynamic (THD) equations together with the transient shaft heat

conduction. The bearing and shaft thermal solution was then coupled

with a finite element rotordynamic code in order to simulate with time

accuracy the evolution of the complete system. This approach resulted

to be computationally very demanding.

A possible computationally less demanding but still accurate approach

was proposed by Childs and Saha [34]. The method needs to pre-compute

the rotor thermal gradient amplitude and phase for a given set of for-

ward and backward circular orbits with different amplitude at different

rotational speed. Starting from a first response to unbalance, the code

computes, for a generic elliptical orbit, the rotor thermal gradient interpo-

lating from the pre-computed thermal table. Based on the rotor thermal

gradient, the shaft thermal bowing and the induced thermal unbalance is

computed and the calculations are iterated. Stability is assured when the

computed orbit converges to a bounded value. According to their work

the approach results to be less demanding due to the preceding orbit

calculations needed for the thermal table production. About six to eight

hours are needed for the evaluation of a thermal gradient of a specific

orbit at a certain shaft running speed.

Grigorev et al. [15] computed the B term solving the perturbed (os-
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cillating) thin film Reynolds equations. A similar method was used by

Ericsson [35] who first derived the set of equation for the oscillating tem-

perature, film thickness and pressure. The oscillating temperature is

then used to compute the shaft bowing and the equations are coupled

into a beam finite element transient rotordynamic code. Stability can be

monitored looking at the time evolution of the computation or through

the evaluation of the numerical stability of the solution by means of the

computation of the spectral radius of the time solver numerical matrix.

As stated in Chapter 1, for all the mentioned models, the most chal-

lenging term to be evaluated is the B term. The numerical estimation of

the link between rotor vibration at bearing section and rotor thermal gra-

dient requires in fact very demanding and time consuming simulations,

whose accuracy remains still questionable due to the lack of accurate

rotor thermal gradient measurements, with the only exception of the

De Jongh and Morton [1]. This highlights the need for dedicated experi-

mental campaigns to be carried out by the industry in order to validate

or develop prediction models which suit their own product needs. In the

present work, results of the developed predictive models are compared,

where available, with experimental measurements coming from a dedi-

cated experimental test campaigns carried-out by GE Oil & Gas facility

in Florence.

2.2 Physical time scales of the problem

When introduced in Chapter 1, the Morton effect has been presented

as an highly interdisciplinary phenomenon, composed of various differ-

ent physical processes, characterized by very different length and time

scales. In order to improve the knowledge of the problem and allow an

aware selection of the approach to be used for its prediction and analy-

sis, it is necessary to perform a study of the orders of magnitude of the

involved time scales. In particular, these latter are necessary when choos-

ing between time accurate solutions or simplified approaches. Before this

analysis is presented, some considerations on length scales are given.
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Length scales, which in turn play a role in the calculation of time

scales, have a major role when approaching the specific tasks of the

physics in order to simplify the involved equations and select the di-

mensional strategy (one, two or three-dimensional calculations). This

kind of analysis is performed in a dedicated section, where details of the

numerical codes are given.

About the analysis of the physical time scales, the first step is to

evaluate some reference values to be used as a comparison. The analysed

phenomenon is driven by synchronous vibrations and hence, time scales

of the rotation are selected for the purpose. Three different rotational

speed are selected in order to span some typical working range: 3000

rpm, 8000 rpm, 13000 rpm.

Table 2.1 reports the rotational speed, frequencies and reference time

scales for the three selected cases. As it is possible to observe, the ref-

erence time scales (τref ) of the phenomena related to the synchronous

precession motion are of the order of 10−2 ÷ 10−3 s.

Rotational speed [rpm] Frequency [Hz] Reference time scale [s]
3000 50 0.020
8000 133.3 0.0075
13000 216.7 0.0046

Table 2.1: Reference values of rotational speed, frequency and time
scales.

In order to introduce the time scales related to the thermal problem,

let’s imagine a step change of one of the variables affecting the rotordy-

namic behaviour. Once the perturbation is applied, the system finds a

new working condition characterized by a new equilibrium point and or-

bit. About the oil flow, the thermo-hydrodynamic behaviour is suddenly

modified and the variation is transmitted through the whole system trans-

ported by convection, diffusion and conduction mechanisms. When these

perturbations reach the solid surfaces, which constitute the boundaries

of the fluid system, an interaction is performed by means of what we will

refer to as convective heat transfer terms. Finally, the perturbation is dif-

fused inside of the solid parts by means of conduction, which drives the
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thermal deformation of the system and hence, affects the rotordynamics

and in turn the fluid-dynamics again. Elastic phenomena are not con-

sidered since their time scale are lower than the thermal ones and since

thermal phenomena are the main topic of the work.

In order not to weigh down the text, the complete analysis of the

thermal time scales of the problem is reported in Appendix A, where the

analysis of the orders of magnitude of the equations is also extensively

presented. The proposed results have been obtained following the Lord

Kelvin approach. This consists in selecting physical quantities represen-

tative of the phenomenon in order to give dimensionless terms of the

equations of an unitary order. If reference quantities are well selected,

the analysis enables a comparison among the terms in order to weigh their

importance. As a consequence, equations can be simplified, neglecting

lower order of magnitude terms, or a comparison among the terms can

be performed in order to evaluate, for example, the characteristic time

scales.

Results obtained from the introduced analysis are summarized in Ta-

ble 2.2.

time scale type symbol value [s] normalized value τ/τref [-]
reference τref 10−3 − 10−2 1

fluid convection τfcv 10−3 − 10−2 1
fluid conduction τfcd 10−1 10−2 − 10−1

fluid dissipation τfd 10−3 10−1 − 100

convective heat transfer τcht ≥ 102 ≥ 104

solid conduction τsc 102 − 103 104 − 106

thermal deformation τtd 102 − 103 104 − 106

Table 2.2: Comparison among the thermal time scales of the problem.

The main outcome, as expected, is that thermal inertia of the metallic

parts is responsible for very long conductive time scales and hence, results

to be the bottleneck of the physical process. The formulations of the

conductive time scales of the shaft and pads/bush are reported in the
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following Equations 2.1 and 2.2:

τsc−shaft =
ρscsR

2
j

ks
(2.1)

τsc−pads/bush =
ρscs(∆R)2

ks
(2.2)

where ρs is the density, cs and ks are respectively the specific heat capac-

ity and the thermal conductivity of the material composing shaft, pads

and bush. Rj is the journal radius and ∆R is the thickness of the pad or

of the bush.

Four to six orders of magnitude are highlighted when considering

conductive terms with respect to the reference time scales of the system.

Furthermore, it has to be noted that, if time accurate simulations need to

be performed, the physical time step necessary to solve higher frequency

phenomena should be selected as a fraction of the reference time scale.

2.3 Evaluation of the strategies for prediction and

analysis

As shown in Section 2.1, various approaches have been considered by

researchers to evaluate the A, B and C terms characteristic of the Morton

effect and to assess the system stability. The objective of the present work

is to develop numerical predictive models for the thermo-hydrodynamic

problem in order to enable the evaluation of the B term and hence, by

means of integration in more complex analysis, the evaluation of the

Morton effect onset.

2.3.1 B term evaluation

Among the predicting strategies for the B term found in literature,

and presented in Section 2.1, the experimental approach has been rejected

a priori since the purpose of the work is to develop analytical/numerical

predictive models.

The most simple approach resulted to be the analytical one, which is
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based on strong simplification hypothesis. As a consequence, the obtained

models result to be fast and interesting from the point of view of the

physical comprehension of the phenomenon but usually impractical. In

fact, the adopted simplifications (e.g., cylindrical bearings, iso-viscous

approach, infinitely long or short bearings and so on) result to be far from

the realistic problem and hence not attractive for modelling industrial

cases.

Among the possible numerical approaches, the complete transient

models have been rejected due to impractical reasons. This time, the

impracticability is a consequence of the time scale previously analysed.

In fact, very demanding calculations have to be protracted in time before

the effects of the thermal diffusion exhibit. From a preliminary evaluation

of the proposed time scales, an order of magnitude of various thousands

orbits have to be simulated before the onset of appreciable thermal ef-

fects.

The consequence is that only simplified approaches, among the numer-

icals, result of interest. Two main possibilities are in literature: quasi-

unsteady approach and perturbation models. Between the two, the quasi-

unsteady approach has been selected as a first choice for the purpose of

the work. The choice is derived from an increasing complexity attitude.

Therefore, the quasi-unsteady approach has been considered in order to

test its potential in the forecast of the Morton effect onset, before even-

tually adopt a more complex, but in any case simplified, model. Further-

more, the quasi-unsteady approach enable the use of a steady state code,

which was scheduled to be developed, since, for the numerical analysis

of the Morton effect, rotordynamic codes rely on numerically evaluated

dynamic coefficients. Finally, the choice is supported by the promising

results obtained in literature following the same approach.

2.3.2 System stability

Once the thermo-hydrodynamic problem is solved and a strategy for

the estimation of the B term individuated, the global system stability has

to be assessed. Three main strategies have been highlighted in Section
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2.1: simulating with time accuracy the evolution of the complete sys-

tem, iterating between the quasi-steady solutions of each of the physical

aspects or using some stability theory criteria.

Yet again, time accurate simulation of the complete system are re-

jected due to the evaluated time scales and therefore iterative approaches

and stability analysis result to be the available choices. Both the ap-

proaches have been considered for the purpose of the present work.

2.3.3 Adopted strategy for the Morton effect prediction

In conclusion a numerical code for the thermo-hydrodynamic analysis

is developed and validated in order to calculate the static and dynamic

bearing characteristics (called TILTPAD, is presented in Chapter 3). Fur-

thermore, a numerical code for the calculation of the B term is developed

and validated on the base of the selected quasi-unsteady approach (called

SNAPSHOT, is presented in Chapter 4). These models have been then

used in order to assess the Morton effect stability both via a stability

theory analysis and by means of an iterative procedure.

The global system representative of the Morton loop, adopted for the

iterative approach, has been developed in collaboration with the MDMlab

of the Department of Industrial Engineering of the University of Florence,

which developed the rotordynamic models.

Results are compared with the available experimental data obtained

from a dedicated test campaign carried out at the GE oil & Gas facility

in Florence, which is detailed in the work of Panara et al. (2015).
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Various types of bearings are adopted in industry on the base of the

technical and economical characteristics both of the field of application

and of the bearing itself. In particular, among the hydrodynamic bear-

ings, Tilting Pad Journal Bearings (TPJB) are widely used in the tur-

bomachinery field due to their stability performance, which largely over-

takes the fixed geometry ones. Hence, modern machines, such as turbines,

compressors and pumps, benefits from their application and these com-

ponents result to be widely adopted and consequently result of particular

interest for the topic of the present work. Anyway, for sake of generality,

also fixed geometry bearings are considered in the present work.
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Although PJBs and TPJBs are quite simple components, the physics

behind their operating conditions could reach an unexpected complex-

ity. For example, during a real operation the fluid is subject to viscosity

variations, there could be strong effects of thermal and elastic deforma-

tions, and the film could be subject to oil cavitation. Moreover, modern

machines could drive these components towards transitional or fully tur-

bulent oil flow conditions. Therefore, if accurate results are needed, all

of these features should be considered when approaching the numerical

modelling of the hydrodynamic lubrication problem.

3.1 Friction, Wear and Lubrication - Tribology

In the above introduction a direct reference to the hydrodynamic

lubrication in bearings has been given. This is a specific condition of

lubrication and hence, in order to propose a more general point of view,

it is necessary to introduce first the general lubrication problem and its

possible forms and then give evidence, for the cases of the present work, to

be in the range of hydrodynamic lubrication. It is therefore unavoidable

to introduce the word ”tribology”, which unifies the classical subjects of

science and technology concerning friction, wear, and lubrication.

From the advent of machine-based civilization such a topic results of

great interest since many pairs of machine parts are in relative motion

(e.g., gear teeth, systems with cams and rolling element bearings). In

such cases friction always exists and as a result not only energy losses

and wear are obtained but also seizure may take place. These phenomena

are prevented, or at least mitigated, by supplying a suitable substance

such as oil, which take place between the two sliding surfaces, lubricating

the conjunction.

3.1.1 Lubrication regimes

Fluid film lubrication occurs when opposing surfaces are separated by

a film of lubricant. Actually various different regimes of lubrication exist

on the base of the characteristics of the sliding surfaces (e.g., conformal
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or nonconformal, roughness, physical properties of the materials), on the

base of the lubricant adopted and on the base of the operating conditions.

A useful tool for understanding the role of different regimes of lubrica-

tion is the classical Stribeck’s curve, dated 1902, and presented in Figure

3.1. The ordinate represents the friction coefficient and the abscissa rep-

Figure 3.1: Stribeck curve: friction coefficient with respect to the
Hersey number

resents the Hersey number. This latter is an operating parameter which

increases increasing rotational speed or viscosity of the oil and decreases

increasing the load to be carried by the bearing. As a consequence high

values of Hersey number imply thick lubricant films and low values results

in very thin films.

Varying the operating conditions four main lubrications regimes are

obtained: the hydrodynamic lubrication, the elastohydrodynamic lubri-

cation, the mixed lubrication and the boundary lubrication.

The first one, obtained for high Hersey number values, is character-

ized by thick layers of lubricant so that the opposing solid surfaces are

prevented to come into contact. The lubrication in this case is driven

by the bulk flow characteristics of the oil and the pressure is usually not

enough large to cause elastic deformations (p ≤ 5 MPa).

The second one is a form of lubrication characterized by elastic defor-

mation of the lubricated surfaces due to the pressure developed. There

are two kind of elastohydrodynamic lubrications (hard and soft) and both
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of them are usually strongly related to nonconformal surfaces. According

to the work of Hamrock et al. [36], in fact, the conformal surfaces usually

goes directly from hydrodynamic to mixed lubrication.

If the loads to be carried are too high or the rotational speed too low

the lubricant film will be penetrated and the third condition is obtained.

In fact, in the mixed lubrication some contact between the asperities

due to the surface roughness take place and the lubrication results to be

governed by a mix of boundary and fluid film effects.

The last condition is the case at very low Hersey number. This case,

called boundary lubrication, is characterized by considerable asperity con-

tacts and negligible lubrication effects. Hence, the frictional characteris-

tics are determined by the properties of both solids and lubricant at the

common interfaces.

3.1.2 Film parameters for different lubrication regimes

According to the work of Hamrock et al. [36] a film parameter (Λ)

can be defined in order to differentiate the lubrication regimes presented

in the previous section. Proposed in Equation 3.1 the parameter is a

function of the minimum film thickness and of the root mean square

surface finish of the sliding surfaces (Rq).

Λ =
hmin

(R2
q,shaft +R2

q,pad/bush)
0.5

(3.1)

A rough estimate of the range of the parameter characterizing the various

regimes is presented in the previously cited work [36] where Figure 3.2 has

also been taken from. According to such a rough estimation, values of the

film parameter of about 5 < Λ < 100 are referred to the hydrodynamic

lubrication regime.

From an analysis of the parameters of the journal bearings adopted

for the experimental test campaign dedicated to the Morton effect, pre-

sented in Chapter 6, values of the film parameter (Λ) between 30 and

70 are obtained. As a consequence, looking at Figure 3.2, hydrodynamic

lubrication with complete separation of the solid sliding surfaces is ex-
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Figure 3.2: Variation of the friction coefficient with the film parameter
(from the work of Hamrock et al. [36])

pected confirming the need to model this latter state of lubrication at

least preliminary.

3.1.3 Lubrication regimes of the rotor thermal instability

Since the present thesis is devoted to the thermal phenomena affect-

ing the turbomachinery rotordynamic behaviour, some considerations are

here suggested about the lubrication regimes in case of rotor thermal in-

stability.

When the Newkirk problem is considered, the displacement ampli-

tudes are sufficiently high in order for the shaft to reach contact with

some statoric components. Hence, different kind of lubrication regimes

may be encountered along the shaft orbital motion.

The Morton effect has instead a different physical genesis and usually

there is no need to model different lubrication regimes, at least up to

the very end of the process.Moreover, it has to be underlined that the

Morton effect mainly affects high rotational speed machines which are

characterized by reduced eccentricities and hence by higher values of the

film parameter Λ. The consequence is that the hydrodynamic lubrication

models are usually suitable for the modeling of the Morton effect.
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Although roughness effects will not be considered in the present work,

due to the expected fully hydrodynamic regime, here a brief outline on

the approaches found in literature about the topic is proposed.

While the theoretical bases required to obtain an in-depth analysis of

the mixed lubrication regime has been established a long time ago, only

small scale numerical modeling is available due to computing limitations.

In fact, due to the grid refinement requested, roughness-scale simulations

results only attractive for very small lubricated contacts. As a conse-

quence averaging models have gained popularity due to their ability to

generalize the trends observed in very small cases and to transfer these

effects to large scale numerical simulations.

The first deterministic simulations of very small bearings in mixed

lubrication regime have been considered in the works of Patir and Cheng

[37], [38].In their work, the results obtained by means of the determin-

istic approach have been adopted to obtain an average flow model, able

to generalize the roughness-effects on a large scale numerical simulation.

This stochastic approach, based on some flow factors to be included in

the Reynolds equation, results the mainly adopted strategy to numeri-

cally solve mixed lubrication related to commonly sized bearings. The

same approach has been in fact adopted by various researchers. For

example, in the works of Wang et al. [39] and Shi and Wang [40] the

authors adopted the previously cited flow factors for the mixed thermo-

elastohydrodynamic analysis of plain journal bearings. All of these works

and all of the more recent ones, as for example the work of Liu et al. [41],

based on the same approach make the assumption that the results ob-

tained with the deterministic simulation on very small (below 1 mm2 in

area) parallel bearings can be transposed to ”large scale problems”.

Although the stochastic approach results to be the only way to ap-

proach the analysis of ”large scale” journal bearings, effort is also made

on deterministic flow models. One of these works is the one of Dobrica

et al. [42], where mixed elastohydrodynamic lubrication of a partial jour-

nal bearing (3 cm of diameter) is presented.
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3.2 General description of the numerical code

TILTPAD is an in-house numerical code, developed at the Depart-

ment of Industrial Engineering of the University of Florence, for the

thermo-hydrodynamic analysis of both plain and tilting pad journal bear-

ings performance (lemon bore bearings could also be analysed, although

results of these latter will not be shown).

The starting point of the present work has been the numerical code for

the isoviscous analysis of plain bearings presented in the work of Martelli

and Manfrida [43]. The original code has been firstly modified and up-

dated in order to overcome some of its drawbacks, in particular the limit

imposed to the refinement of the numerical grid, then, the routines for

the pressure field evaluation have been adopted in order to develop the

tilting pad bearing code. Once the isoviscous version of the TPJBs solver

has been obtained, thermal effects, the effects of superlaminar regimes

and the calculation of the dynamic coefficients have been implemented.

Finally, the obtained code, presented in the following of the present chap-

ter, has been modified in order to allow also the thermo-hydrodynamic

analysis of plain bearings. Such a choice has been dictated by the oppor-

tunity to simply obtain a plain bearing solver with the same features of

the tilting pad one.

Since, as previously stated, TPJBs are widely diffused for industrial

applications, TILTPAD is detailed in the present work referring mainly

to this kind of bearings. However, different strategies to be adopted for

different journal bearings will be explicitly highlighted.

The main hypothesis behind the code are summarized below and rep-

resent the classical assumptions to approach the hydrodynamic lubrica-

tion problem:

• h/B ≃ Cb/B << 1

• h/Rj ≃ Cb/Rj << 1

• The continuum description is valid (Kn << 1)

• Incompressible fluid
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• Newtonian fluid

• Laminar flow

• Negligible volume forces

• Constant specific heat capacity of the oil

• Constant thermal conductivity of the oil

where B and Rj are respectively the axial extension of the bearing and

the radius of the journal, h and Cb are the film-thickness and the radial

bearing clearance and Kn is the Knudsen number.

The obtained code is steady-state, is based on a 2D thin-film approach

and is able to find either the resulting hydrodynamic load using the shaft

equilibrium position and the rotational speed (i.e., direct problem) or the

shaft equilibrium position once the load to be carried and the rotational

speed are prescribed (i.e., inverse problem). More in detail, the code

handles only direct problem data types and hence a dedicated search

procedure for the evaluation of the equilibrium’s eccentricity and attitude

angle is followed in case of inverse problems. The procedure uses the

method of chords when dealing with eccentricity and a bisection method

for the attitude angles. The choice of using two different procedures

allowed obtaining faster solutions and a higher convergence rate.

3.3 Film-thickness calculation

Once values of eccentricity and attitude angle are provided, together

with the geometrical features of the analyzed bearing, it is possible to

calculate the film-thickness distribution along axial and tangential direc-

tions (in the present code only the tangential film thickness variations

are considered since neither misaligned bearings configurations nor ther-

mal and elastic deformations are considered). Moreover, when dealing

with tilting pad bearings, preload (mTLP ) and pads’ tilt angles (θi−th)

have also to be provided. These latter are evaluated by means of a ded-

icated procedure described in a dedicated section (Section 3.5). The
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final formulation, shown in Equation 3.2 for the i− th pad, is composed

of three terms: the first one is the same in both plain and tilting pad

bearings while the second and the third account for the variation of the

film-thickness respectively due to pads’ tilt angle and preload.

h(δ, z)|i−th =h(δ)|i−th = Cb(1− ǫ cos(δ − γ))+

− 2R sin(α′)θi−th +CbmTLP (1− sin(α′′))
(3.2)

In Figure 3.3 a sketch of a tilting pad bearing with its local and global

reference systems is reported.

Figure 3.3: Sketch of a tilting pad bearing and its local angular
reference systems.

The pad preload adopted in the code (mTLP ) is differently defined

from the classical definition found in literature (m). Both the formula-

tions are reported in Equations 3.3 and 3.4, where Cb and Cp are respec-

tively the assembled bearing clearance and the pad machined clearance.

m =
Cp − Cb

Cp
(3.3)

mTLP =
Cp − Cb

Cb
= m ·

Cp

Cb
(3.4)
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Finally, pads are set in prescribed positions (i.e., tilt angle θi−th = 0)

in order to approach cylindrical bearings, while lemon bore bearings are

obtained by means of the preload effect on the fixed configuration.

3.4 Pressure field calculation: Reynolds’ equation

The pressure field of the hydrodynamic problem applied to plain or

tilting pad bearings is calculated by means of a numerical solution of the

Reynolds’ equation. A review of the widely known physics of the problem

is presented, together with details of the numerical approach.

3.4.1 Orders of magnitude of the equations

In order to obtain the representative equations for the lubrication

problem the first step is the dimensional analysis of the incompressible

Navier-Stokes equations, whose details are reported in Appendix A.

The main consequence of the geometrical condition related to the

length scales of the problem (Cb/Rj ≃ 10−3 << 1) is the opportunity

to neglect curvature effects and hence, adopt Cartesian coordinates. The

general reference system adopted for the dimensional analysis is shown

in Figure 3.4.

Figure 3.4: General reference system adopted for the lubrication
problem.

Introducing the non-dimensional variables, defined in Appendix A,

in the continuity and momentum equations enable to write their non-

dimensionalised form. Once obtained, lower order viscous terms of the
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momentum equations, which result to be multiplied by a factor (Cb/Rj)
n

(with n = 3, 4), are simplified and Equations 3.5, 3.6, 3.7, 3.8 are ob-

tained.
UCb

V Rj
(
∂u∗

∂x∗
+

∂w∗

∂z∗
) +

∂v∗

∂y∗
= 0 (3.5)

Res
∂u∗

∂t∗
+Re∗[(u∗ ∂u

∗

∂x∗
+ v∗

∂u∗

∂y∗
+w∗ ∂u

∗

∂z∗
)] = −

∂p∗

∂x∗
+

∂(µ∗ ∂u∗

∂y∗
)

∂y∗
+

+
Re∗

Fr
f∗

x

(3.6)

Res(
Cb

Rj
)2

∂v∗

∂t∗
+Re∗(

Cb

Rj
)2(u∗ ∂v

∗

∂x∗
+ v∗

∂v∗

∂y∗
+ w∗ ∂v

∗

∂z∗
) = −

∂p∗

∂y∗
+

+
Re∗

Fr

Cb

Rj
f∗

y

(3.7)

Res
∂w∗

∂t∗
+Re∗[(u∗ ∂w

∗

∂x∗
+ v∗

∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗
)] = −

∂p∗

∂z∗
+

∂(µ∗ ∂w∗

∂y∗
)

∂y
+

+
Re∗

Fr
f∗

z

(3.8)

The nondimensional groups introduced in the proposed equations are

defined as given in Equations 3.9, 3.10, 3.11, 3.12.

Re =
ρUCb

µoil
(3.9)

Re∗ = Re(
Cb

Rj
) (3.10)

Res =
ρΩC2

b

µoil
(3.11)

Fr =
U2

gRj
(3.12)

Further simplifications are enabled considering Table 3.1, which reports

some of the main nondimensional groups evaluated for various test cases

found in literature. Due to the choice of the reference time scale τ = 1/Ω,

the modified Reynolds number Re∗ and the squeeze Reynolds number
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Res result identical, and hence only the first one is reported.

Reference work Cb/Rj Re Re∗ Ta Fr

Ferron et al. [44] 0.0029 93 0.27 5.02 895.2
Fitzgerald and Neal [45] 0.001 59 0.059 1.87 2728
Lund and Tonnesen [46] 0.00134 81 0.11 2.97 1398
Daniel and Cavalca [47] 0.00152 606 0.92 23.7 6874
Fillon et al. [48] 0.00158 51 0.08 2.04 894.6
Knight [49] 0.00158 60 0.095 2.39 2721
Monmousseau et al. [50] 0.00158 51 0.08 2 895.2
Taniguchi et al. [51] 0.00256 1429 3.65 72.3 2412

Table 3.1: Main nondimensional groups of the momentum equations for
some typical test cases found in literature.

As previously stated, from the analysis of the proposed groups, fur-

ther simplifications can be obtained. In particular, inertial terms of the

momentum equations result to be negligible (Re∗ << 1) for the majority

of the cases, except for the test cases proposed in the works of Daniel

and Cavalca [47] and Taniguchi et al. [51], where centrifugal and parallel

terms of instability are of importance, as noticed from the Taylor and

Reynolds numbers (see Section 3.8 for more details). Furthermore, vol-

umetric force terms are simplified due respectively to the low value of

the modified Reynolds number Re∗ and to the high value of the Froude

number Fr.

Hence, since the terms with lower order of magnitude of the momen-

tum equations can be disregarded, at least within the usual geometri-

cal and operating conditions, the study of the incompressible lubrica-

tion problem can be accomplished by means of the following formulation,

where Equation 3.13 is the continuity equation and Equations 3.14, 3.15

and 3.16 are the simplified momentum equations.

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.13)

∂p

∂x
=

∂(µ∂u
∂y

)

∂y
(3.14)
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∂p

∂y
= 0 (3.15)

∂p

∂z
=

∂(µ∂w
∂y

)

∂y
(3.16)

One of the main outcome of such analysis, together with the simplification

of the momentum equations is that pressure variation across the fluid film

result also to be negligible (p(x, y, z, t) ≃ p(x, z, t)), thus enabling a two-

dimensional thin-film approach.

3.4.2 Reynolds’ equation

Velocity component in the axial and tangential direction can be di-

rectly evaluated by means of integration of the momentum equations

(Equations 3.14, 3.16), which gives, with suitable boundary conditions,

the following velocity formulations:

u(x, y, z) =
y

2µ
(y − h)

∂p

∂x
+ U

y

h
(3.17)

w(x, y, z) =
y

2µ
(y − h)

∂p

∂z
(3.18)

Then, the continuity equation is integrated across the fluid film with the

substitution of the obtained velocity components. The final result is the

well-known Reynolds’ equation, shown in Equation 3.19, which is widely

reported in literature, as for example in the work of Szeri [52], Hamrock

et al. [36] and Frene et al. [53].

∂

∂x
(
h3

12µ

∂p

∂x
) +

∂

∂z
(
h3

12µ

∂p

∂z
) =

U

2

∂h

∂x
+

∂h

∂t
(3.19)

The present code uses a local reference system fixed with the bush/pads

and with the cross-film coordinate that increases moving from the bush/-

pads towards the shaft.

In terms of Boundary conditions (BC), the code can handle both

pressure (Γpress) or oil flow rates (Γflow). Usually, feeding oil pressure

is applied to the inlet (Γin) and outlet (Γout) of the pads, while ambient
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pressure is applied at the external pad’s border-lines (Γamb), as shown in

Figure 3.5. Relative pressure is specified in the code and hence zero is

usually adopted for the external borders.

Figure 3.5: Boundary conditions for the numerical solution of the
Reynolds equation.

3.4.3 Cavitating region

Swift-Stieber conditions, also known as Reynolds conditions, are adopted

in order to easily consider the effects of cavitation on the pressure field

and to allow for reliable simulations (more physically consistent than

the Sommerfeld’s and Gumbel’s conditions). Under such hypothesis, the

pressure field at the inception of the cavitated region is set as pcav and

the tangential gradient is smoothly brought at zero dp
dδ

= 0. Usually, since

the cavity pressure differs little from the ambient pressure, the relative

pressure in the cavitated region is set as zero. The proposed conditions

are widely used in literature and constitute the preliminary approach to

the problem (see the works of Frene et al. [53] and Szeri [52]).

This is of particular importance when the code is adopted for the

thermo-hydrodynamic analysis of plain journal bearings.

3.4.4 Numerical approach

Usually, finite difference or Finite Element Methods (FEM) are con-

sidered for the solution of the incompressible lubrication problem, which
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consists in finding the solution of the Reynolds’ equation with the pre-

scribed boundary conditions. In the present work, the formulation pro-

posed by Reddi [54] is implemented. In his work, a variational principle

for the incompressible lubrication problem is presented and is proved to

be a minimum principle. Hence, the solution of the Reynolds’ equation

is obtained finding the two-dimensional pressure distribution that mini-

mizes the functional shown in Equation 3.20.

Φ{p} =

∫ ∫

D

−[−
h3

12µ
∇p ·∇p+hU

∂p

∂x
+hW

∂p

∂z
−2p

∂h

∂t
]dA+

∫

Γflow

qpds

(3.20)

Here, p represents the pressure field, h the film thickness distribution, D

is the domain of the surface integration, s is the domain of the Γflow

border integration, U is the tangential shaft speed, W is the axial shaft

speed (if relative axial motion between shaft and bearing exists) and µ is

the dynamic viscosity.

By means of FEM discretization, using linear shape functions on the

triangular elements of the grid, the problem is reduced to a linear system

of equations with nodal pressure values as unknowns, shown in Equation

3.21.

KP =
1

2
(V −H −Q) (3.21)

Here, K is the volumetric fluidity matrix, defined in Equation 3.22, V is

the element flow vector, defined in Equation 3.23, H is the squeeze film

vector, defined in Equation 3.24, Q is the boundary flow vector, defined

in Equation 3.25 and P is the vector of the nodal pressure unknowns.

K =

N
∑

m=1

∫ ∫

Dm

RT
mCmRmdAm (3.22)

V =
N
∑

m=1

∫ ∫

Dm

hmUmRmdAm (3.23)

H =

N
∑

m=1

∫ ∫

Dm

2ḣmTmdAm (3.24)



3.4 Pressure field calculation: Reynolds’ equation 51

Q =
N
∑

m=1

∫

Γm
flow

qTmdsm (3.25)

About the definitions given in the previous equations, the integrals are

evaluated on the triangular element Em, N is the number of all the

triangular elements composing the numerical grid, Rm is the pressure

gradient matrix for the element Em, Cm is the property matrix for the

element Em, Um is the vector of surface velocity in tangential and axial

direction for the Em element, hm is the film thickness for element Em,

Tm is the matrix relating the continuous pressure distribution on Em to

the nodal pressure values (related to the interpolation functions), ḣm is

the squeeze velocity of the element Em and q is the linear normal flow at

boundaries. Matrices and vectors are evaluated by means of numerical

integration following the table reproduced in the work of Reddi [54] and

taken from the work of Felippa [55]. For more details see also the work

of Martelli and Manfrida [43], where isoviscous solution of plain bearings

is presented.

The numerical grid, which defines the nodal points for the pressure

and temperature calculation, is automatically generated by the code once

the geometry and the desired discretization parameters are provided.

These latter are: the number of elements along the tangential direction

(NX) and the number of elements along the axial direction (NZ).

A generic grid is shown in Figure 3.6. The code firstly generates

a structured grid with rectangular elements following the imposed dis-

cretization parameters. Once generated, each rectangular element is sub-

divided in four triangular ones, where the pressure field is evaluated. The

formulation to calculate the total number of rectangular and triangular

elements is shown in Figure 3.6.

The linear system of Equation 3.21, generically written as Ax = b, is

solved by means of the iterative Gauss-Seidel method, see Equation 3.26,

where i and k are referred to the elements constituting the vector x, j is

referred to the iteration number of the method and n is the total number
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Figure 3.6: Example of grid generation: pad geometry, example of grid
composed of rectangular elements and corresponding grid composed of

triangular elements.

of nodes of the grid.

x
(j)
i =

1

aii
(bi −

i−1
∑

k=1

aikx
(j)
k +

n
∑

k=i+1

aikx
(j−1)
k ) (3.26)

A relaxation factor (αORC) is adopted in order to obtain a faster conver-

gence. In Equation 3.27, where the relaxation factor is shown, the term

x
⋆(j)
i is the one effectively calculated.

x
(j)
i = x

(j−1)
i + αORC(x

⋆(j)
i − x

(j−1)
i ) (3.27)

Once the pressure field is obtained an integration is performed over the

domain in order to calculate the resulting load in terms of module and

angle.

3.5 Pads equilibrium positions

The pads’ equilibrium problem allows for the evaluation of the tilt

angles (θi−th) representative of the equilibrium configuration (i.e. when

the torque C [Nm] generated by the pressure field acting on the pad and

evaluated with respect to its pivot axis is zero and the resulting load is not

null). Such a problem can be numerically posed as finding the first zero of

the torque, as a function of the tilt angle. A mixed procedure is used for

the purpose starting from a converging film condition. Figure 3.7 shows
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a typical trend of the moment as a function of the tilt angle, with positive

values of moment obtained for converging pad-shaft configurations.

Figure 3.7: Representation of the mixed procedure for the evaluation of
pads’ equilibrium position.

In the first part of the procedure shown on the upper part of Figure

3.7, the code scans with prescribed tilt angle steps the whole available

range in order to define an appropriate interval characterized by torque

values at the extremes having opposite sign. Once the interval has been

defined, the code uses the method of chords to solve the root finding

problem, shown at the bottom of Figure 3.7.

When a zero is found during the preliminary scanning, the code tests,

with a half of the previous scanning step, the tilt angle range starting

from the last point which resulted in a value different from zero (see 3.8).

This procedure allows to evaluate if the obtained zero is the expected

solution or one of the configurations with zero load carrying capacity

(red dashed line in the figure).



54 3. Plain and tilting pad journal bearings performance

Figure 3.8: Procedure in case zero is found during the scanning of the
tilting angle steps.

3.6 Energy Equations

Temperature calculation is of primary importance in order to account

for dynamic viscosity variations. The problem has been soon considered

and great effort has been dedicated over the years in order to overcome

the isoviscous approach. One of the first proposed formulations is the

adiabatic solution proposed in the work of Cope [56] in 1949. Since then,

many works have followed and several approaches have been proposed:

1D formulations, as implemented in the first two equations of the present

code, quasi-2D and quasi-3D formulations, as respectively described in

the work of Lund and Hansen [57] and in the work of Stefani and Rebora

[58], up to fully 3D approaches, as in the work of Taniguchi et al. [51],

which also accounts for turbulent flow regimes.

The present section describe the three simplified steady-state energy

equations implemented in the present code. The first two equations are

one-dimensional equations based on the Petroff hypothesis, while the

third is a quasi-two-dimensional equation inspired by the work of Knight

[49].

3.6.1 Analysis of the orders of magnitude

Introducing in the energy equation the non-dimensional variables, de-

fined in Appendix A, and by means of manipulation and simplification of

the lower order terms, multiplied by a factor (Cb/Rj)
n (with n = 2, 3, 4),
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the non-dimensional form of the energy equation for the steady state in-

compressible lubrication problem (with constant specific heat capacity

and conductivity) is obtained (Equation 3.28).

Pe(u∗ ∂T̃
∗

∂x∗
+ v∗

∂T̃ ∗

∂y∗
+ w∗ ∂T̃

∗

∂z∗
) =

∂2T̃ ∗

∂y∗2
+Br[µ∗(

∂u∗

∂y∗
)2 + µ∗(

∂w∗

∂y∗
)2]

(3.28)

Non-dimensional terms related to the energy equation are defined in

Equations 3.29, 3.30, 3.31 and 3.32.

Pr =
cµoil

k
(3.29)

Pe =
ρc

k

UC2
b

Rj
= PrRe∗ (3.30)

Ec =
U2

cΘ
(3.31)

Br =
µoilU

2

kΘ
= PrEc (3.32)

The Peclet number (Pe) is the ratio of advective transport rate and dif-

fusive transport rate, while the Brinkman number (Br) is the ratio of

viscous dissipation rate to thermal conduction.

Considering the non-dimensional values, shown in Table 3.2, referred

to some works found in literature, some considerations cane be done. The

Reference work Pr Pe Br Ec

Ferron et al. [44] 430 116.5 9.45 0.022
Fitzgerald and Neal [45] 252 14.9 5.33 0.021
Lund and Tonnesen [46] 244 26.5 3.8 0.015
Daniel and Cavalca [47] 539 498 155 0.287
Fillon et al. [48] 426 34.6 3.73 0.009
Knight [49] 396 37.6 9.12 0.023
Monmousseau et al. [50] 426 34.6 6.23 0.015
Taniguchi et al. [51] 426 1557 48.3 0.113

Table 3.2: Main non-dimensional groups of the energy equation for
some typical test cases found in literature.
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variation of both non-dimensional numbers of Equation 3.28 is substan-

tial: the Pe number varies from 14.9 of Fitzgerald and Neal [45] to 1557

of Taniguchi et al. [51] (for lower rotational speed not reported in the

table, a value of 3.7 is found for the Fitzgerald and Neal [45] case), while

the Br number varies from 3.8 of the Lund and Tonnesen [46] case up to

155 of the work of Daniel and Cavalca [47] (again, for lower rotational

speed a unitary value of Br is obtained for the Fitzgerald and Neal [45]

case). This highlights the opportunity for some cases to adopt the adia-

batic solution, which has been practically used as a first approximation

to solve the problem (as for example in the work of Cope [56]). More in

general, the complete three dimensional steady state energy equation to

be adopted is shown in Equation 3.33.

ρc(u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
) = k

∂2T

∂y2
+ [µ(

∂u

∂y
)2 + µ(

∂w

∂y
)2] (3.33)

3.6.2 Petroff-type simplification

The Petroff-type simplification is based on the hypothesis that the

shaft is perfectly concentric with the bearing. As a consequence, consid-

ering for simplicity a plain bearing, no pressure rise is possible and the

bearing is unable to support any load. This hypothesis gains in reliability

when applied to lightly loaded bearings, to fast running rotors or when

high dynamic viscosity of the oil is considered (that is in all the configura-

tions where a small eccentricity is obtained). Although quite restrictive,

the hypothesis has proved to give reasonable accuracy [19].

Considering the velocity field for a fluid flowing within a plain bearing,

the general solutions of the tangential and axial velocity distributions

along the radial (y) direction are shown in Equations 3.34 and 3.35.

u(x, y) =
1

2µ(x, z)

dp(x, z)

dx
(y2 − yh(x)) + U

y

h(x)
(3.34)

w(y, z) =
1

2µ(x, z)

dp(x, z)

dz
(y2 − yh(x)) +W

y

h(x)
(3.35)

As it is possible to observe, a general velocity field is composed of two
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terms: a Poiseuille term, driven by the pressure gradient and a Couette

term, driven by the moving wall. Since usually there is no axial transla-

tion (W ) between housing and shaft, the axial velocity of the oil inside

the bearing is driven only by the Poiseuille term. See Figure 3.9 for the

typical parabolic and linear velocity profiles representative of Poiseuille

and Couette terms.

Figure 3.9: Velocity profiles along the radial direction fro a Poiseuille
and a Couette flow.

The main consequence of the Petroff-type hypothesis is to simplify the

velocity field. In fact, if no pressure rise is developed within the bearing,

the Poiseuille terms of the tangential and axial velocity profiles vanish.

Under such hypothesis, the axial velocity vanishes completely while the

tangential velocity is composed only of its Couette term. A simplified

shear stress, which drives the dissipation function, and a simplified volu-

metric oil circulation inside of the bearing are consequently found. The

obtained formulations are shown in Equations 3.36,3.37.

τyx = µ(x)
du(x, y)

dy
= µ(x)

U

h(x)
= µ(x)

ΩRj

h(x)
(3.36)

q(x) = B ·

∫ h(x)

0

u(x, y)dy = B ·
Uh(x)

2
= B ·

ΩRjh(x)

2
(3.37)

3.6.3 1D energy equation

The first energy equation implemented in the code has been suggested

by Balbahadur and Kirk [32] and is obtained by means of a steady-state

energy balance executed on a control volume extended across the whole
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film-thickness, including a thin layer of the metal of the bush/pad and

of the shaft (shown in Figure 3.10). Since axial temperature variations

are neglected, see Appendix A for more detailed considerations about

axial simplifications, a one-dimensional mean temperature equation is

provided.

Figure 3.10: Scheme for the journal bearing energy balance.

The thermal balance under steady state condition means there is no

accumulation rate of energy, hence, the energy dissipated inside of the

control volume (Ėvisc) is convected or conducted away by the convective

(Ėlub) and conductive (Ėj ,Ėb) terms. The complete thermal balance is

presented in Equation 3.38.

Ėvisc = Ėlub

∣

∣

x+dx
− Ėlub

∣

∣

x
+ Ėj + Ėb (3.38)

By means of substitution of the appropriate terms in the Equation 3.38,

considering the Petroff-type simplification, Equation 3.39 is obtained. In

the proposed formulation f represents the fraction of thermal power trans-

ferred to the journal and (1 − f) represents the remaining fraction of

thermal power lost to the bearing housing and surroundings.

ΩRjτyxdx =ρoil
ΩRj

2
hcoil(T +

dT

dx
dx)− ρoil

ΩRj

2
hcoilT+

+ fHdx(T − Tamb) + (1− f)Hdx(T − Tamb)

(3.39)
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The bearing heat transfer coefficient H is determined by the Equation

3.40, which is derived from a regression analysis of experimental data

provided by Ettles [59].

H = 25.5U0.7
j µ(T0)

−0.2
oil (Rj∆δpad) (3.40)

Finally, considering the Petroff-type hypothesis for the shear stress evalu-

ation, considering the geometrical relations characteristic of the problem

(i.e., small clearance Cb respect to Rj) which enable to consider Rjδ ≈ x,

simplifying the equal terms on both sides and rearranging gives the fol-

lowing one-dimensional energy equation, where T̃ = (T − T0) is defined

with respect to the feeding oil temperature T0.

dT̃

dδ
+

2H

ρoilcoilΩh(δ)
T̃ −

2µaveΩR
2
j

ρoilcoilh2
(3.41)

Effective viscosity evaluation

The dynamic viscosity (µave) adopted in Equation 3.41 is an average

(or effective) viscosity adopted to simplify the formulation. It is based

on the temperature variation obtained across a geometrically equivalent

plain journal bearing (∆Tave) with the same operating conditions of the

analysed case.

For the evaluation of the effective viscosity value the Reynolds formu-

lation, shown in Equation 3.42, is adopted.

µave = µ(T0)e
−β∆Tave (3.42)

The proposed formulation is widely considered for the thermo-hydrodynamic

analysis of journal bearings. Among the various works some are cited as

an example: the work of Knight [49], the work of Monmousseau et al. [60]

and the work of Balbahadur [19]. Despite this, it has to be underlined

that the proposed formulation is not extremely accurate, as reported in

the work of Balbahadur [19] and also in the work of Williams [61].
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Pads’ inlet temperature evaluation

In order to evaluate the pads’ inlet temperature, which constitutes

the inlet boundary condition of the energy equation, the temperature

raise (∆Tave) obtained on the equivalent plain journal bearing has also

been adopted.

In particular, inlet temperature is considered to be the sum of lubri-

cant supply temperature and the estimated temperature raise, this latter

multiplied by a scaling ratio that is function of the minimum inlet film

thickness hmin−in and of the inlet film-thickness hin of the analysed pad

(or sector if referred to a plain bearing calculation), as shown in Equation

3.43.

Tin = T0 +
hmin−in

hin
·∆Tave (3.43)

Numerical solution

The numerical solution of the energy equation has been obtained by

means of the finite difference method, obtaining Equation 3.44.

Ti+1 = Ti +∆δ

[

2µaveΩR
2
j

ρoilcoilh(δ)2

∣

∣

∣

∣

i

−
2H(T − Tamb)

ρoilcoilΩh(δ)

∣

∣

∣

∣

i

]

(3.44)

The grid adopted for the purpose is shown further, in Figure 3.13.

3.6.4 Improved 1D energy equation

The second equation represents an evolution of the already described

one in the way that it is able to overcome some of its drawbacks. In

particular, it has been decided to make the equation independent from

the use of the effective temperature raise evaluated on an equivalent plain

bearing. As a consequence, a local dynamic viscosity is considered in the

energy equation instead of referring to an effective one, and an improved

mixing model is adopted in order to calculate the inlet temperature at

each pad of the bearing.

The obtained equation is formally similar to the previous one but an

iterative cycle is now introduced since the dynamic viscosity, which is a
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function of the temperature of the oil, has a role in the calculation of the

temperature field (the obtained energy equation is shown in Equation

3.45).

dT̃

dδ
+

2H

ρoilcoilΩh(δ)
T̃ −

2µ(T̃ )ΩR2
j

ρoilcoilh2
(3.45)

At the beginning of the calculation the temperature field is evaluated

considering a constant value of the dynamic viscosity correspondent to

the feeding oil temperature µ0 once the local temperature is evaluated by

means of Equation 3.45, the local dynamic viscosity can be re-calculated

closing the loop (shown in Figure 3.11). The process is iterated until

convergence of the temperature field.

Figure 3.11: Flow chart of the iterative procedure for temperature
calculation.
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Local dynamic viscosity evaluation

The local dynamic viscosity (µ(T )), here presented with respect to the

absolute temperature T instead of the differential temperature T̃ adopted

in Equation 3.45, is evaluated by means of the Reynolds formulation,

shown in Equation 3.46.

µ(T ) = µ(T0)e
−β(T−T0) (3.46)

Mixing model to calculate the pads’ inlet temperature

An improved mixing model, with respect to the original formulation

proposed by Balbahadur [19], has been adopted for the novel energy

equation.

The proposed mixing model is based on an energy and continuity

balance for a control volume chosen between two consecutive pads as

shown in Figure 3.12.

Figure 3.12: Flow chart of the iterative procedure for temperature
calculation.

The Petroff’s simplification, adopted for the energy equation, is also

adopted for the mixing. By means of the continuity equation (see Equa-

tion 3.47) it is possible to calculate the feeding oil mass-flow. This latter

is then used in the enthalpy balance (see Equation 3.48) in order to find

the inlet temperature of the pad, shown in Equation 3.49. Where pedices

are considered in accordance with Figure 3.12.

ρoil
ΩRj

2
hinB = ρoil

ΩRj

2
houtB + ṁoil (3.47)
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ρoil
ΩRj

2
hinBcoilTin = ρoil

ΩRj

2
houtBcoilTout + ṁoilcoilToil (3.48)

Tin =
hout

hin
Tout +

hin − hout

hin
Toil (3.49)

Since pads’ inlet temperatures are function of the outlet temperatures of

the upwind pads, an iterative procedure raises. According to the proce-

dure shown in Figure 3.11, each time the energy equation is solved the

code recalculates the inlet temperatures.

Furthermore, if the configuration drives the model towards an increase

in oil temperature across the feeding groove, the inlet temperature is

limited to the outlet value of the upwind pad.

In case the code is used as a plain bearing solver (considering a con-

stantly zero tilt angle for the pads), the mixing model is slightly modified.

The loaded sector maintains the standard model using the sector’s mini-

mum film-thickness instead of the trailing edge one, while downstream of

unloaded sectors a fixed percentage value of hot-oil carry over is consid-

ered at the inlet section. The adopted percentage value has been selected

by means of model assessment in comparison with experimental data and

has shown good results when adopted both for different test-cases and

operating conditions. More details are proposed in Appendix B.

Numerical solution

The numerical solution of the proposed equation (Equation 3.45) has

been approached by means of the finite difference method, obtaining

the Equation 3.50. A first forward difference has been selected for the

purpose.

Ti+1 = Ti +∆δ

[

2µ(T )ΩR2
j

ρoilcoilh(δ)2

∣

∣

∣

∣

i

−
2H(T − Tamb)

ρoilcoilΩh(δ)

∣

∣

∣

∣

i

]

(3.50)

A numerical one-dimensional grid is considered along the mid section

of the pads (see Figure 3.13). Each pad, has the same number of grid

elements along the tangential direction NX which was selected for the

two-dimensional grid of the pressure calculation.
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Figure 3.13: One dimensional numerical grid for the energy equation.

Frictional power losses

By means of the Petroff’s simplification, the frictional power losses

can be easily evaluated for each single pad, see Equation 3.51, once the

film-thickness distribution h(δ), the oil viscosity µoil, the running speed

Ω and the geometrical characteristics Rj and B are known.

Pf−i =

∫

Ai

ΩRjτdA =

∫ δout−i

δin−i

ΩRjµ(T (δ))
ΩRj

h(δ)
BRjdδi (3.51)

The total frictional power loss is calculated adding the single pad terms

(Equation 3.52):

Pf−tot =

NP
∑

i=1

Pf−i (3.52)

3.7 Conjugate Heat Transfer (CHT) approach

The last implemented energy equation is inserted in a wider context,

hence, an introduction to the general problem is given before details

are presented. In particular, a conjugate heat transfer approach has

been considered, together with an improved energy equation. Once the

procedure is implemented, the energy equation can be changed if an

increase in accuracy is desired.

The adoption of the present equation is beyond the scope of the work.

However, the model is presented since it represents an upgrade of the

thermo-hydrodynamic code. Moreover, the opportunity to simulate the

heat exchange during the precession motion would be more suited for the
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aim of analysing the phenomenon and could be used to give an accurate

initial condition for a perturbation approach, with consistent tempera-

tures for both oil and solid parts.

Among the various approaches proposed in literature, two main branches

are identified on the base of the way temperature and heat flux continuity

are imposed at the solid-fluid interfaces, respectively referred to as con-

jugate and coupled methods. When the first approach is considered, the

numerical domain includes the whole fluid and solid regions, hence, equa-

tions are solved simultaneously and the continuity of temperature and

heat flux is implicitly imposed. For this kind of approach problems arise

due to the need to simultaneously manage different physics with different

physical characteristics (e.g., length and time scales). On the contrary,

coupled methods individually solve fluid and solid regions, entailing the

use of dedicated codes, but an iterative procedure raises in order to guar-

antee the thermal continuity at the interfaces, which is obtained by means

of mutual exchange of thermal results, respectively imposed as boundary

conditions. Some typical problems of the coupled methods are: the need

of interpolation procedures if grids are not identical at the interfaces and

the arise of instabilities which are usually controlled by means of relax-

ation coefficients.

The second approach is selected for the present work, due to the

simplicity of managing a coupling procedure. In fact, as previously stated,

these kind of approaches do not need to modify the existing codes but

need to manage an iterative exchange of information.

3.7.1 Coupled procedure

Four main kind of coupling approaches exist in literature (see the

work of Verstraete [62]), defined on the base of the information exchanged

having as a reference the fluid:

1. TFFB: Temperature Forward Flux Back

2. FFTB: Flux Forward Temperature Back

3. hFTB: Heat transfer coefficient Forward Temperature Back
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4. hFFB: Heat transfer coefficient Forward Flux Back

In the first, Neumann condition is adopted by the fluid solver while Dirich-

let condition is set for the solid solver. In the second, inverted conditions

are applied respectively to fluid and solid solvers with respect to the first

introduced method. The last two methods adopt the convective heat

transfer equation, shown in Equation 3.53, to give a mixed boundary

condition to the solid solver while temperature and heat flux are im-

posed to the fluid solver respectively in the third and fourth case. The

choice of H , which can be imposed with a value (Happ) different from the

real one, do not affect the final result but strongly affects the stability of

the system and the convergence rate.

q̇wall = H(Twall − Toil) (3.53)

Among the various approaches, the FFTB method is selected since

it has been fruitfully adopted in the work of Knight [49]. The resulting

conjugate heat transfer procedure is iterated until the temperature of the

pads, of the shaft and of the fluid film have reached convergence.

3.7.2 Quasi-2D energy equation

Following the results of the dimensional analysis proposed in Section

3.6.1, and further detailed in Appendix A, a two-dimensional approach

has been considered. Temperature variations are expected in the tangen-

tial and radial directions, while axial ones are neglected.

The energy equation presented is a quasi-2D one, derived from the

work of Knight [49], resulting from a further simplification of the com-

plete two-dimensional energy equation shown in Equation 3.33. Such a

simplification is due to the opportunity to efficiently solve the problem,

but primarily, to the fact that the accuracy gained considering a more

accurate equation is affected by strong uncertainties in terms of boundary

conditions. In fact, while it is possible to roughly estimate the average

temperature value at the inlet of the pad, the accuracy of a radial profile

imposed at the inlet section is questionable if the model do not solve the
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complex fluid flow between the pads.

Since a quasi-2D approach has been selected, a bulk flow temperature

is considered for the purpose and its variation along the tangential direc-

tion is evaluated as a function of the viscous dissipation and of the conduc-

tive terms evaluated at the solid walls (shaft and bush/pads). Moreover,

according to the work of Knight and Barrelt [63] the solution of the tem-

perature field is obtained at the center plane of the bearing, neglecting

also the contribution of the axial pressure gradient on the viscous term.

The adopted bulk flow temperature is defined as shown in Equation

3.54, where the temperature profile across the film is supposed to be of

the second order (T (x, y) = a(x)y2 + b(x)y + c(x)).

Tm(x) =

∫ h

0
T (x, y)dy

h(x)
(3.54)

The temperature gradients at the wall are derived from the definition of

the cross-film temperature distribution, with the local coefficients evalu-

ated imposing the average value Tm(x) and the wall values at y(x) = h(x)

and y(x) = 0, which are respectively the bush/pads temperature Tb(x)

and the journal temperature Tj(x). This latter is considered as constant

and is evaluated as the average of the bulk temperature along the whole

tangential extension of the bearing. The obtained gradients are shown in

Equations 3.55 and 3.56.

∂T

∂y

∣

∣

∣

h
=

4Tj + 2Tb − 6Tm

h
(3.55)

∂T

∂y

∣

∣

∣

0
=

6Tm − 4Tb − 2Tj

h
(3.56)

The quasi-2D energy equation, based on the bulk flow temperature pre-

viously defined, is shown in Equation 3.57.

ρc(
Uh

2
−

h3

12µ

∂p

∂x
)
dTm

dx
= 6

k

h
(Tj +Tb −2Tm)+

µU2

h
+

h3

12µ
(
∂p

∂x
)2 (3.57)
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Local dynamic viscosity evaluation

The local dynamic viscosity, dependent to the bulk-flow temperature

Tm, is evaluated by means of the Reynolds formulation, shown in Equa-

tion 3.58.

µ(Tm) = µ(T0)e
−β(Tm−T0) (3.58)

Mixing model to calculate the pads’ inlet temperature

The proposed mixing model is based on an energy and continuity

balance for a control volume chosen between two consecutive pads as

shown in Figure 3.12.

Since the Petroff’s type simplification is not adopted for the quasi-2D

energy equation the mixing model previously presented in Section 3.6.4

has been further improved in order to include the effects of the pressure

field in the calculation of the oil mass-flow rates: at the inlet section of

the pads (ṁin) and laterally (ṁlat), where the oil leaves the pad due to

the axial pressure gradient. The flow at the trailing edge (ṁout) of the

pad is then calculated as shown in Equation 3.59.

ṁout = ṁin − ṁlat (3.59)

Once the mass-flow at the trailing edge of the pad is found, a thermal

balance is executed on the control volume previously defined in Section

3.6.4. Again, since pads’ inlet temperatures are function of the outlet

temperatures of the upwind pads, an iterative procedure raises.

Numerical solution

Equation 3.57 is solved by means of the finite difference method,

adopting first forward difference for the first-order derivatives. The ob-

tained formulation is shown in Equation 3.60, where the subscripts are



3.7 Conjugate Heat Transfer (CHT) approach 69

referred to Figure 3.13 and where δ = x/Rj .

Tm,i+1 − Tm,i

∆δ
=

6 k
hi
(Tj + Tb,i − 2Tm,i) +

µiΩ
2R2

j

hi
+

h3

i

12µiR
2

j

( ∂p
∂δ

|i)
2

ρc(Ωhi

2
−

h3

i

12µiR
2

j

∂p
∂δ

|i)

(3.60)

Iterations are performed until convergence of temperature is obtained, as

previously shown for the improved one-dimensional energy equation.

3.7.3 Conduction equation

The conduction equation adopted for the purpose of the conjugate

heat transfer analysis is applied only to the pads/bush of the bearing,

since the shaft, due to the thermal time scales, can be considered at a

constant temperature value. A steady state equation, expressed in polar

coordinates, is adopted. Further simplification is obtained neglecting the

axial variation of the temperature inside of the pads, as also done for the

temperature of the oil within the film. The final formulation obtained is

shown in Equation 3.61.

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂δ2
= 0 (3.61)

About the boundary conditions, each side of the pads are separately con-

sidered. In particular, since a FFTB approach is used, the temperature

gradient inside of the pads, evaluated at the interface with the oil, is

calculated by means of the requirement of heat flux continuity between

the fluid and the metal, shown in Equation 3.62.

∂T

∂r
=

koil
ks

∂T

∂y

∣

∣

∣

0
(3.62)

At the leading and trailing edges of the pads, the heat convection bound-

ary conditions are imposed (see Equation 3.63). The convection coeffi-

cient adopted is derived from the work of Knight [49]. Two more ap-

proaches are available: the one proposed in the work of Ettles [59] and

the opportunity to tune the model by means of selection of the two pa-
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rameters.

HTC(T − T0) =
ks
r

∂T

∂δ
(3.63)

At the bottom surface of the pads an adiabatic condition is selected, as

also considered in the work of Knight [49]. However, in order to have a

well posed problem at least a temperature value has to be given to the

solid domain. The feeding oil temperature is adopted for the purpose

and it is imposed at both the corners of the bottom of the pads.

Numerical solution

The numerical grid adopted to solve the heat conduction equation

inside of the pads is a structured one that has the same number of el-

ements along the tangential direction adopted for the energy equation

(NX), while in the radial direction, is composed of NR equally spaced

elements. The finite difference method is considered in order to solve

the conduction problem and in particular, central differences are used for

the first and second order derivatives. The final formulation is shown in

Equation 3.64, where indices i and j are respectively considered for the

variations along the radial and tangential directions and where Rpad is

the radius of the inner surface of the pad.

Ti−1,j − 2Ti,j + Ti+1,j

∆r2
+

1

Rpad + (i− 1)∆r

Ti+1,j − Ti−1,j

2∆r
+

+
1

(Rpad + (i− 1)∆r)2
Ti,j−1 − 2Ti,j + Ti,j+1

∆δ2
= 0

(3.64)

The initialization temperature of both shaft and pads is obtained by

means of the effective temperature raise ∆Tave presented in Section 3.6.3.

The Gauss-Seidel point by point method is adopted in order to solve

the numerical problem. By means of this approach, the values of the

temperature are evaluated by iteratively visiting each grid point following

a prescribed order.
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3.8 Superlaminar flow regimes

The classical theory of lubrication considers the inertia terms to be

negligible in comparison with viscous and pressure ones, as highlighted

in Appendix A. The parameter to be considered in order to evaluate the

mutual weight between these terms, in the hydrodynamic bearings field,

is the modified Reynolds number (see Equation 3.65).

Re∗ = Re
Cb

Rj
=

ρΩRjCb

µ

Cb

Rj
(3.65)

When the modified Reynolds number approaches the order of one, the in-

ertia forces are of the same order of magnitude of the viscous ones. The

flow becomes then characterized by: irregularity, three-dimensionality,

anisotropy, increased diffusivity and dissipation. The topic has been

widely studied both in general and with focus on the hydrodynamic jour-

nal bearing field. An interesting excursus on flow stability, transition

and turbulence applied to journal bearings, complete of flow modelling

details, are given in the works of Szeri [52] and Frene et al. [53].

Modern machines, characterized by the need for increased rotational

speed are more and more frequently subjected to work in the superlam-

inar/turbulent flow regime. Since the relative eccentricity value Cb

Rj
in

bearings applications varies usually between a small range, the critical

Reynolds number can be generally overtaken due to fast rotation, high

density or low dynamic viscosity, which in turn is related to the high

rotational speed by means of its temperature dependence.

Turbulence originates as a form of instability of the laminar flow for

high Reynolds number values. Two different kind of instabilities arise in

journal bearings during the transition from laminar to turbulent flow:

• Centrifugal instability: occurs in flows with curved streamlines,

when centrifugal forces dominates the stabilizing viscous ones. The

characteristic parameter is the Taylor number.

• Parallel flow instability: characterized by propagating waves (Tollmien-

Schlichting waves), this is the classical kind of instabilities of bound-
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ary layers and pipe flows where inertial and viscous forces compete.

The parameter is the well known, previously introduced, Reynolds

number.

As reported in the work of Szeri [52] for thin film bearings, the accepted

critical Reynolds number for the parallel flow instability to drive the sys-

tem directly to the fully turbulent regime is 2000. Furthermore, Frene

et al. [53] reports about the results of the characteristic zones of a smooth

loaded bearing presented in the work of Pan and Vohr [64], in analogy

with turbulence occurrence in duct flows, a first critical Reynolds is iden-

tified at 1000 representing the first transition from the laminar behaviour.

About the centrifugal instability, the critical threshold is more compli-

cated to be found due to the effects of the inner cylinder eccentricity and

to the consequently induced pressure field. Above the critical value, yet

to be presented, a first transition occurs driving the system to the onset

of steady secondary vortices, known as Taylor vortices. These represent

the first and most simple form of instability within an unexpectedly com-

plex range of opportunities (see the works of Taylor [65] and Grossmann

et al. [66] for an extensive overview). Two exemplifying flow features, re-

spectively Taylor vortices and wavy vortex flow are represented in Figure

3.14 from the work of Lueptow [67].

(a) Taylor vortex flow. (b) Wavy vortex
flow.

Figure 3.14: Two out of several very distinctive flow features of a
Taylor-Couette system, from the work of Lueptow [67].
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In case coaxial cylinders are considered, the accepted value for the

critical Taylor number is 41.2. The definition of the Taylor number rel-

ative to this threshold is given in Equation 3.66. When the proposed

value of the critical Taylor number is doubled, the fully turbulent regime

is obtained (both for eccentric and concentric cylinders).

Ta = Re

√

Cb

Rj
(3.66)

An interesting overview of the fluid instability in between eccentrically

rotating cylinders is also reported in the work of Deng [68] and in the work

of Frene et al. [53]. In these works, the results of the investigations of

Di Prima [69] and Ritchie [70] on the crtical Taylor number for eccentric

cylinders are reported. Moreover, in the work of Frene et al. [53], results

of an experimental campaign carried out by Frene and Godet [71] on

journal bearings are also given. For the bearing case, experimental data

resulted to be bounded between the two cited instability theories of Di

Prima and Ritchie. On the base of the cited experimental measurements

a correlation is given (Equation 3.67), being an average between the curve

of the two introduced theories. This latter, has been adopted in the code

for the evaluation of the critical Taylor number.

Tac = 63.3ǫ2 − 38ǫ + 41.2 (3.67)

Considering the local Reynolds and Taylor numbers a fluid film bearing

can experience transitional flow, Taylor vortex regime or fully turbulent

state on the base of the parameter which first reach its critical value. By

comparing the critical values of the non-dimensional numbers a threshold

of the clearance ratio Cb/Rj has been identified at about 1/2500. For

smaller values the turbulence will directly occur while for greater values

Taylor vortices are expected before the fully turbulent regime is obtained.

Superlaminar effects are modelled in TILTPAD by means of a simpli-

fied approach proposed by Frene et al. [53]. The approach gives a reason-

able accuracy for Taylor-Couette vortex flows and transitional regimes
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until the fully turbulent condition is reached. By means of the proposed

approach, pressure field seems to be slightly affected by Taylor vortices

and transitional flows while, on the contrary, dissipative effects are en-

hanced. Therefore, the code has been modified to take into consideration

super-laminar effects during the evaluation of the dissipation function. It

has to be noted that the effects of the turbulence on the promotion of

the heat transfer are also neglected by means of the followed approach.

In order to include the superlaminar effects, the local turbulent vis-

cosity, referred to the grid of Figure 3.13 and shown in Equation 3.68,

is evaluated as a function of the local Reynolds number (Equation 3.69)

and of two constants C1 and C2.

µti = µi(1 + C1ReC2

i ) (3.68)

Rei =
ρΩRjhi

µi
(3.69)

Three sets of constants have been tested among some of the several mod-

els proposed in literature, whose a comparison is furnished in by Bouard

et al. [72] for fully turbulent state prediction. From the cited work, the

Constantinescu’s model, based on the Prandtl’s mixing length, resulted

to be the more attractive one. Hence, two sets of constants have been

adopted from the works of Constantinescu [73], [74] and Constantinescu

and Galetuse [75]. Furthermore another set of constants proposed in

Deng [68] from the work of Hirs [76], based on the bulk flow theory,

have been considered. This latter, characterized by C1 = 0.00818 and

C2 = 0.75, has been selected for the superlaminar model due to the bet-

ter agreement obtained. The obtained turbulence model is hereinafter

referred to as MT3.

3.9 Coupling between Reynolds and energy equa-

tions

The coupling between the Reynolds’ and energy equations is obtained

by means of the iterative procedure whose flow chart is shown in Figure
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3.15. As it is possible to observe the coupling procedure includes the

research of the pads’ equilibrium positions. This has been chosen for

handling realistic pads configurations while solving the energy equation

in order to prevent the instability that could arise in non-physical config-

urations.

Figure 3.15: Flow chart of the iterative coupling procedure between
Reynolds and energy equations.

An under relaxation coefficient has been used for the temperature

variation in order to limit numerical oscillations during the coupling pro-

cedure. Different values have been tested on two different cases: a five

pads tilting pad bearing with a diameter of 140 mm and the large four

pads bearing presented in the work of Taniguchi et al. [51]. Results from

direct problem calculations, normalized with respect to the case without

relaxation (i.e., the case with αURC = 1), are shown in Figure 3.16.

As it is possible to observe, an increase in convergence rate is obtained
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(a) Five pads bearing in LOP config-
uration with D = 140mm

(b) Four pads bearing in LBP con-
figuration with D = 479mm

Figure 3.16: Under relaxation coefficient testing

if an under relaxation coefficient is adopted. Values of 0.6 ≤ αURC ≤ 0.8

have shown the best results in terms of convergence rate, resulting in

three to five times faster calculations.

The same values of αURC have been tested on the five pads bearing

for the inverse problem, which is the classical analysis approach.

(a) Inverse problem without un-
der relaxation coefficient

(b) Inverse problem with under
relaxation coefficient αURC =
0.6

Figure 3.17: Under relaxation coefficient testing

Results, shown in Figure 4.6, highlight huge calculation time saving.

The benefits of the relaxation coefficient are repeated for each position

tested by the code during the shaft’s equilibrium research procedure. The

relaxed calculation resulted about five times faster.
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3.10 Dynamic coefficients

Vibration and critical speed problems in rotating machines are grow-

ing more and more important with the increasing speed and performance

to be obtained. Since the dynamic behaviour of a rotor is strongly influ-

enced by the characteristics of its supports, the analysis of these prob-

lems require the knowledge of the response of the bearing lubricant film

to journal displacements and velocities in terms of forces.

When the journal orbit size is relatively small with respect to the

bearing clearance, it is possible to replace the fluid film forces with their

gradients evaluated at the steady state equilibrium position X0, Y0, as

presented in the work of Lund [77]. The dynamic forces are then directly

proportional to the displacements (∆X, ∆Y ) and velocity perturbations

(∆Ẋ, ∆Ẏ ) and can be calculated as reported in Equations 3.70 and 3.71,

where Kij and Cij are respectively called the linearised stiffness and

damping coefficients. This section is devoted to the calculation of these

latter.

FX = −(Kxx∆X +Kxy∆Y +Cxx∆Ẋ + Cxy∆Ẏ ) (3.70)

FY = −(Kyx∆X +Kyy∆Y + Cyx∆Ẋ + Cyy∆Ẏ ) (3.71)

A general overview to the calculation problem is given in the work of He

et al. [78] where the effects of direct and cross-coupled coefficients are

also examined in relation to the stability of the global system.

Several factors have been considered in literature to affect the prob-

lem: e.g., frequency of excitation as considered in the work of Parsell

et al. [79], pads and pivot flexibility, pads preload and clearance thermal

variations. Some of the main differences between calculated values and

measured ones can be in fact be ascribed to these factors as reported in

the work of Wilkes and Childs [80].

The classical approach with synchronously reduced coefficients, widely

diffused in industry, is considered for the purpose of the present thesis

due to its reasonable engineering approximation as also reported in the

work of Parsell et al. [79].
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Different strategies have to be adopted for different type of bearings

and hence will be introduced separately for the fixed geometry and for

the tilting pad bearings.

3.10.1 Plain bearings

In case a fixed geometry bearing is considered the procedure is straight-

forward. In fact, since the code is able to calculate the resulting force once

a position is defined (that is a direct problem), with or without imposed

shaft velocities, it is possible to directly evaluate the forces with respect

to the shaft displacement or velocity perturbations. The resulting dynam-

ical forces, derived from eight calculations (four perturbed displacements

around the equilibrium position and four shaft velocity perturbations

on the equilibrium position), can be then used to approximate the local

gradients and calculate the terms of the dynamic matrices as shown in

Equations 3.72, 3.73.

Kxx =
∂FX

∂X
=

∆FX

∆X
Kxy =

∂FX

∂Y
=

∆FX

∆Y

Kyx =
∂FY

∂X
=

∆FY

∆X
Kyy =

∂FY

∂Y
=

∆FY

∆Y
(3.72)

Cxx =
∂FX

∂Ẋ
=

∆FX

∆Ẋ
Cxy =

∂FX

∂Ẏ
=

∆FX

∆Ẏ

Cyx =
∂FY

∂Ẋ
=

∆FY

∆Ẋ
Cyy =

∂FY

∂Ẏ
=

∆FY

∆Ẏ
(3.73)

3.10.2 Tilting pad journal bearings

The use of tilting pad bearings, with their better dynamic character-

istics (see the work of He et al. [78]), has allowed average rotor speed to

increase up to more than 10000 rpm in many turbomachinery applica-

tions, as reported in the work of Allaire et al. [81].

The analysis of these components is complicated by the additional

degrees of freedom associated with the tilting motion of the pads, respec-

tively θi and θ̇i, which need to be considered together with the journal

degrees of freedom proper of conventional bearings. As a consequence, in
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addition to the dynamical coefficients associated to the shaft’s perturba-

tions, the degrees of freedom of the pads produce stiffness and damping

coefficients associated with pads’ perturbations.

Two main approaches have been found in literature:

• Calculating the complete set of dynamic coefficients

• Adopting synchronously or non-synchronously reduced coefficients.

The first approach is considered in the pad perturbation methods, as

the one proposed in the work of Allaire et al. [81]. In this method the

complete bearing coefficients are calculated considering pads degrees of

freedom. Then the bearing characteristics can be used directly for the

rotor analysis or can be reduced by assuming either synchronous or non-

synchronous pads motion. The main problem is the need to evaluate

8 + 10 · n dynamical coefficients (where n is the number of pads).

The synchronously reduced approaches, considered in the present the-

sis, is taken from the widely adopted pad assembly method (PAM) of

Lund [77]. The main objective of this works is to reduce the dynamical

coefficients associated with the pads and the shaft to equivalent coeffi-

cients associated only with the shaft motion. This is done by assuming

synchronous motion of the pads with respect to the shaft. Since the work

is referenced, only some information on the method is given here.

The Pad Assembly Method (PAM) of Lund uses available or directly

calculated partial arc bearing coefficients for all of the shaft perturbations.

Here, local coefficients are calculated by the code considering fixed pads.

Then, synchronous pad motion is adopted in order to reduce the system

to the shaft motion only (i.e., in order to eliminate the pads perturbation

terms). The local coefficients obtained are then transported in the global

(X,Y ) reference system and then assembled in order to give the complete

dynamical matrices of the bearing.
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3.11 Grid sensitivity analysis

A grid sensitivity analysis has been performed for TPJBs cases. The

aim is to evaluate the effects of the discretization on the obtained results

and enable to define a good trade off between accuracy and computa-

tional cost in terms of number of elements along the axial and tangential

directions.

Two test case have been adopted for the purpose: the five pads TPJB,

with a diameter of 140 mm (referred to as K-5) and the large four pads

TPJB from the work of Taniguchi et al. [51] (referred to as T-4). Both

direct and inverse problem have been tested for the K-5 case while only

direct problem has been analysed on the T-4 one. The test cases and

their operating conditions are shown respectively on Sections 3.12.8 and

3.12.6.

Four grids have been tested for each case and their main character-

istics are reported in Table 3.3. The coarsest grid (GRID-01) has been

defined with its NX = 5 and NZ = 5, then, the refinement has been per-

formed by means of doubling both the number of rectangular elements

along the tangential and axial directions.

GRID ID NX NZ rectangular elem. triangular elem.

GRID-01 5 5 25 100
GRID-02 10 10 100 400
GRID-03 20 20 400 1600
GRID-04 40 40 1600 6400

Table 3.3: Grid sensitivity analysis: characteristics of the tested grids.

Figure 3.18 shows the obtained grids in terms of rectangular elements

and the related pressure fields.

Results are analysed in terms of global working parameters both for

the direct and inverse problem. In particular, when a direct problem is

solved, the results are shown in terms of bearing load carrying capacity

(load module) and frictional power losses. Instead, when inverse problem

are solved the load module is substituted by the eccentricity ratio (in
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Figure 3.18: Grid sensitivity analysis: effects of the grid refinement on
the pressure field of the fourth pad of the Taniguchi et al. [51] test case.

this case in fact the load module is an input of the problem). The shown

results are normalized with respect to the values obtained by means of

the finest grid (GRID-04).

Figure 3.19 shows the results of both the test cases in the direct

problem approach. The K-5 test case results to be less sensitive to the

grid discretization with differences between GRID-01 and GRID-04 about

5% while the T-4 case has shown difference of about 8%. Furthermore,

between the two analysed data type, the load module (or eccentricity)

results to be more sensitive to the discretization.

(a) Direct problem Kingsbury
TPJB

(b) Direct problem Taniguchi et al.

Figure 3.19: Grid sensitivity analysis for direct problem: normalized
frictional power Pf losses and load module L.
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For both the test cases, in order to have an effect of the grid on

the results below the imposed calculation accuracy, which is usually of

a few percent (e.g., the load module accuracy usually imposed is about

1% ÷ 2%), the number of elements to be considered is about NX = 20

and NZ = 20.

Similar conclusions can be obtained considering the inverse problem

results (Figure 3.20). It is interesting to note that the eccentricity ra-

tio is overestimated when a coarse grid is adopted while coherently the

load module is underestimated. This can be explained looking at Figure

3.18. In fact, the coarsest grid (GRID-01) shows a very sharp pressure

field distribution with segments connecting two points usually below the

physical pressure distribution (better represented by GRID-04).

Figure 3.20: Grid sensitivity analysis for inverse problem: normalized
frictional power Pf losses and load module L (Kingsbury TPJB).

Once the analysis has been performed on the TPJBs similar levels of

discretization have been adopted for PJBs. The discretization adopted

for the PJB in the tangential and axial directions are respectively shown

in equations 3.74 and 3.75.

NXpjb ≃
Rj−tpjb ·∆δpad

NXtpjb
Rj−pjb∆δpjb (3.74)

NZpjb ≃
Btpjb

NZtpjb
Bpjb (3.75)
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3.12 Validation results

The code for the thermo-hydrodynamic analysis (TILTPAD) has been

validated by means of comparison with experimental data, where avail-

able, or with numerical data obtained by means of commercial codes.

Results have been analysed in terms of global performance parameters,

both static and dynamic, although some local variables have been also

considered. More in detail, global parameters are generally: equilibrium

position, minimum film thickness, frictional power losses and dynamic

coefficients, while the local parameters considered are pressure and tem-

perature fields.

Four different test cases have been considered for the purpose of the

validation of the plain journal bearing version of the code and other four

cases for the tilting pad journal bearing configuration. All of the obtained

results, based on the discretization studied in Section 3.11, are presented

in the following subsections.

3.12.1 PJB: Ferron et al. test case

The first test case adopted is the one proposed by Ferron et al. [44].

It is a cylindrical bearing with one feeding groove studied at the Univer-

sity of Poitiers. In their work, results from a numerical code, developed

at INSA of Lyon, are also presented and will be hereinafter referred

to as ”Theory”. Their code solves the Reynolds’ equation including

the effects of viscosity variations, which are accounted by means of a

three-dimensional energy equation. A conjugate heat transfer analysis

if adopted to solve the temperature field both within the fluid film, the

shaft and the bush.

The main operating conditions of the test case are reported in Table

3.4. Same conditions have been adopted for the numerical simulations.

Figure 3.21 shows comparison of the numerical and experimental data

in terms of eccentricity ratio ǫ with respect to the Sommerferld number
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Bearing operating characteristics

Journal radius [mm] 50
Bearing length [mm] 80
Radial clearance (20 ◦C) [µm] 145
Groove angle [deg] 18
Rotational speed range [rpm] 1000 ÷ 4500
Load range [kN ] 1 ÷ 10
Lubricant viscosity (40 ◦C) [Pas] 0.0277
Lubricant density [kg/m3] 860
Lubricant specific heat [J/kgK] 2000
Inlet lubricant temperature [◦C] 40
Ambient temperature [◦C] 40
Inlet lubricant pressure [kPa] 70

Table 3.4: Operating conditions adopted for the numerical simulations
of the test case of Ferron et al. [44].

(So). Definition of both the variables are shown in Equations 3.76, 3.77:

ǫ =
e

Cb
(3.76)

So =
µNBD

L
(
Rj

Cb
)2 (3.77)

where e is the eccentricity, L is the load, B and Rj are respectively

the axial length and the radius, N is the rotational speed and µ is the

dynamic viscosity of the oil.

Figure 3.21: Comparison between experimental results and numerical
calculations: eccentricity ratio.
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A good trend prediction is obtained with respect to the experimental

data, although, at high Sommerfeld numbers, the discrepancy is quite

significant (a peak of about 25% is reached with respect to the experi-

ments for the highest Sommerfeld number tested). According to the work

of Ferron et al. [44] the effects of the thermal deformation, and hence of

the increase in the bearing clearance, results to be the cause for such a

difference. Better agreement is obtained, in fact, if results are compared

with Ferron ”Theory”.

In terms of local bearing behaviour, results of pressure and tempera-

ture peaks are shown respectively in Figures 3.22(a) and 3.22(b).

(a) Pressure peak with respect to the
shaft eccentricity ratio.

(b) Temperature peak with respect
to the shaft eccentricity ratio.

Figure 3.22: Comparison between experimental results and numerical
calculations: pressure and temperature peaks.

About the pressure, good results are obtained in terms of trend pre-

diction, with a better agreement for high eccentricity ratios with respect

to lower ones. Discrepancies raise up to 37% with respect to the ex-

perimental data for low ǫ values, which are related to high Sommerfeld

numbers. The effects of the thermal deformation can be again considered

in order to explain such an high difference. In fact, if results are com-

pared with the numerical code of the authors of the experimental work

better agreement is obtained.

In terms of temperature peaks, trends are again well predicted, while

a general underestimation is obtained. Such a misprediction is also high-
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lighted for the numerical code adopted as a further validation.

It has to be specified that for all of the test case considered when

TILTPAD temperatures are compared with experimental data, different

kind of variables are compared. In fact, while the experimental temper-

ature is measured a few millimeters below the metallic surface of the

bush or of the pads, the temperature calculated by the code with its

one-dimensional equation is substantially an average temperature value.

What has been discussed referring to Figure 3.22 can be explained

looking at Figures 3.23(a) and 3.23(b), where pressure and temperature

fields are shown for the case at 4000 rpm and 6000 N .

(a) Local pressure distribution. (b) Local temperature distribution.

Figure 3.23: Comparison between experimental results and numerical
calculations: local pressure and local temperature.

Pressure distribution is well represented by the code with very slight

differences with respect to the theoretical results. This could be expected

since an inverse problem is solved and hence the pressure distribution

needs to generate a load carrying capacity of 6000 N . Hence, for this kind

of analysis, thermal deformations are expected to affect the equilibrium

position more than the pressure distribution.

In terms of temperature good orders of magnitude and trends are ob-

tained, except for tangential angles above 270 deg, where experimental

and Theory values decrease while TILTPAD slightly increases. This mis-

prediction is related to the bush conductivity effects which are strongly af-
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fected by the proximity to the oil feeding groove. About the temperature

peak, both the codes show lower values with respect to the experimental

ones. The authors of the experimental campaign are able to justify the

difference of 4 ◦C by means of the uncertainty of the bush conductivity,

thanks to their accurate model. TILTPAD discrepancies, which has a

maximum value of about 5 ◦C, are both affected by the simplification of

the model and by the different variables compared (local versus averaged

values).

3.12.2 PJB: Glienicke test case

The second test case adopted for the purpose of validation is the cylin-

drical single grooved bearing proposed in the work of Glienicke [82] and

studied at the Institute for Mechanical Design and Automobile Construc-

tion, Technical Institute, Karlsruhe.

Some of its main operating characteristics, which have been adopted

for the simulations, are shown in Table 3.5.

Bearing operating characteristics

Journal radius [mm] 60
Bearing length [mm] 60
Radial clearance [µm] 114
Rotational speed range [rpm] 0 ÷ 10000
Load range [kN ] 1 ÷ 35
Lubricant viscosity (40 ◦C) [Pas] 0.0563
Lubricant density [kg/m3] 860
Lubricant specific heat [J/kgK] 2000
Inlet lubricant temperature [◦C] 40
Inlet lubricant pressure [Pa] 98675

Table 3.5: Operating conditions adopted for the numerical simulations
of the test case from the work of Glienicke [82].

Results are shown in Figure 3.24 in terms of eccentricity ratio and

non-dimensional minimum film-thickness (hmin/Cb) with respect to the

Sommerfeld number. This latter is here calculated as shown in Equation
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3.78.

So =
L

µΩBD
(
Cb

Rj
)2 (3.78)

(a) Eccentricity ratio with respect to
the Sommerfeld number

(b) Non-dimensional minimum film-
thickness with respect to the Som-
merfeld number

Figure 3.24: Comparison between experimental results and numerical
calculations (TILTPAD).

Good agreement is obtained for both the analysed variables. It has

to be noted that the eccentricity ratio and the minimum film-thickness

are strongly related by geometrical characteristics which include the atti-

tude angle. Since one is well predicted the other comes as a consequence.

A maximum difference in terms of eccentricity ratio of about −5% with

respect to experimental data is obtained at the highest Sommerfeld num-

ber.

3.12.3 PJB: Lund and Tonnesen test case

Another test case, proposed in the work of Lund and Tonnesen [46],

shows results of a cylindrical journal bearing with two feeding grooves.

The main operating parameters are shown in Table 3.6.

A very good agreement with experiments is obtained in terms of eccen-

tricity ratio (Figure 3.25(a)) and frictional power losses (Figure 3.25(b))

both for 3500 rpm and for 5000 rpm along the whole range of tested
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Bearing operating characteristics

Journal radius [mm] 50
Bearing length [mm] 55
Radial clearances [µm] 66.8 and 68.6
Rotational speed tested [rpm] 3500 and 5000
Load range [kN ] 1 ÷ 10
Lubricant viscosity (50 ◦C) [Pas] 0.0183
Lubricant density [kg/m3] 850
Lubricant specific heat [J/kgK] 2000
Inlet lubricant temperature [◦C] 50
Ambient temperature [◦C] 20
Inlet lubricant pressure [kPa] 120 and 150

Table 3.6: Operating conditions adopted for the numerical simulations
of the test case from the work of Lund and Tonnesen [46].

loads, with maximum differences always below 2.5% with respect to the

experimental values. It has to be underlined that the assessment of the

modified mixing model, shown in Appendix B, has been performed on

the present test case for a rotational speed of 3500 rpm and with a load

of 5600 N .

(a) Eccentricity ratio. (b) Friction losses.

Figure 3.25: Comparison between numerical and experimental results.

In terms of pressure field, shown in Figure 3.26 for 3500 rpm and 8600

N , a difference of about 12 % is highlighted in terms of maximum pressure

peak. Non considering the pressure measurements tolerance, which is of
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about ±4%, the source for the discrepancy can be ascribed at the sub-

ambient pressure obtained in the cavitating regions both on the loaded

sector of the bearing and on the unloaded region. Better agreement is in

fact obtained with the numerical calculations, also presented in the work

of Lund and Tonnesen [46], where ambient temperature is set in the

cavitated region according to the Reynolds condition. The tolerance on

the experimental data is highlighted by the authors of the experimental

campaign, due to different pressure measurements obtained along several

shaft rotations. In fact, due to the cavitated region, where striae are

present, measurements result different if the probe is in a striae, giving

ambient pressure, or between two striae, giving sub-ambient pressure.

Figure 3.26: Comparison between numerical and experimental results:
pressure field (MPa) at 3500 rpm and 8600 N .

About local temperature distributions, shown in Figure 3.27 for the

3500 rpm and 5000 rpm, orders of magnitude and trends are quite well

predicted, particularly considering that local experimental temperatures

are measured at the bearing bush while TILTPAD data are mean film

values. More in detail, in the unloaded section of the bearing, where the

ruptured film zone is located, the trend is not well predicted. This has to

be ascribed to a backflow recirculation from the groove into the unfilled

space, where the film is striated, as described in Lund and Tonnesen [46].

Comparing the obtained results with the mean temperature presented

in the referenced paper, both trends and values are in better agreement.
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Considering the loaded sector, the maximum temperature differences are

obtained for the 5000 rpm case at its inlet, with values of about +9.2 ◦C

and +4.9 ◦C with respect to the experiments and to the Lund’s calculated

mean values respectively.

(a) Temperature at 3500 rpm. (b) Temperature at 5000 rpm.

Figure 3.27: Comparison between numerical and experimental results:
temperature field (◦C).

3.12.4 PJB: Someya test case

The last test case considered for the validation of the plain journal

bearing version of the code is one of the cases proposed in the work of

Someya et al. [83]. This test case has been selected in order to compare

calculated and measured dynamic coefficients. A cylindrical bearing with

two feeding grooves is considered for the purpose and some of its main

characteristics are resumed in Table 3.10.

Results are shown in terms of eccentricity ratio and dynamic coeffi-

cients, both direct and cross coupled, with respect to the Sommerfeld

number (defined as in Equation 3.77).

In terms of eccentricity ratio, shown in Figure 3.28, results are quite

good in terms of trend and order of magnitude, although a 23% is ob-

tained for the maximum Sommerfeld number tested. Similar results were

obtained for the Ferron et al. [44] test case, shown in Figure 3.21, where

thermal effects were the main reason for the misprediction. Although
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Bearing operating characteristics

Journal radius [mm] 50
Bearing length [mm] 50
Radial clearances [µm] 140
Rotational speed tested [rps] 26 ÷ 100
Load range [kN ] 0.367 ÷ 4.5
Lubricant viscosity (50 ◦C) [Pas] 0.0192
Lubricant density [kg/m3] 860
Lubricant specific heat [J/kgK] 2000
Inlet lubricant temperature [◦C] 50
Ambient temperature [◦C] 20
Inlet lubricant pressure [kPa] 100

Table 3.7: Operating conditions adopted for the numerical simulations
of the test case from the work of Someya et al. [83].

similar considerations could be reasonably done for the present case, not

enough informations are provided in the bearing databook from which the

present test case is extracted. Furthermore, with the formulation adopted

for the Sommerfeld number in the present case, the higher the Sommer-

feld, the higher the rotational speed or the lower the load. Hence, since

the bearing is expected to work with a reduced eccentricity at higher Som-

merfeld number values, the Petroff’s type hypothesis should give more

reliable results supporting the hypothesis of thermal deformation effects

with respect to lack of accuracy in the numerical model.

Figure 3.28: Comparison between numerical and experimental results
from the work of Someya et al. [83]:eccentricity ratio [−].
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The dynamic coefficients presented in Figure 3.29 are expressed in

their non-dimensional form according to the formulations proposed in

Equations 3.79 and 3.80, where Cb is the radial bearing clearance, L is

the static load and Ω is the rotational speed.

K∗

ij = Kij
Cb

L
(3.79)

C∗

ij = Cij
CbΩ

L
(3.80)

(a) Non-dimensional spring coefficient.(b) Non-dimensional damping coeffi-
cient coefficient.

Figure 3.29: Comparison between numerical and experimental results
from the work of Someya et al. [83].

A good trend and orders of magnitude prediction is obtained for both

direct and cross-coupled stiffness coefficients as well as for direct and

cross coupled damping coefficients. Yet again the maximum differences

between experimental data and numerical predictions are obtained at

higher Sommerfeld number, where the maximum misprediction of eccen-
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tricity was obtained. Since the calculation of the dynamic coefficient is

strictly related to the position of the shaft, it is possible to imagine an

influence of this latter on the misprediction of the dynamic coefficients

obtained at high Sommerfeld number.

3.12.5 TPJB: Brockwell and Kleinbub test case

Considering tilting pad applications, a five pads journal bearing in a

load between pads configuration is considered from the work of Brockwell

and Kleinbub [84]. Data are presented in terms of differential eccentricity

ratio, friction coefficient and temperature field.

Differential eccentricity is here evaluated as the vertical distance (non-

dimensional with respect to Cb) between the obtained results and the

result of a reference case, characterized by 83 Hz and 450 N . The friction

coefficient, shown in Equation 3.81, is evaluated dividing the obtained

friction force Lf by the applied load L. Sommerfeld number is evaluated

by means of Equation 3.78.

ff =
Lf

L
=

Pf

RjΩL
(3.81)

The operating conditions characteristic of the test case as summarized in

Table 3.8.

Bearing operating characteristics

Journal radius [mm] 38
B/D [−] 0.75
Assembled bearing clearance [µm] 60
Pads’ preload (m) [−] 0
Number of pads (NP ) [−] 5
Bearing-load configuration [−] LBP
Rotational speed tested [rpm] 1000 ÷ 10000
Load range [kN ] 2.225, ÷ 8.90
Lubricant oil [−] ISOV G32
Inlet lubricant temperature [◦C] 50

Table 3.8: Operating conditions adopted for the numerical simulations
of the test case from the work of Brockwell and Kleinbub [84].
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A good prediction of the equilibrium position (Figure 3.30(a)) is ob-

tained for both the tested configurations (i.e. 2225 and 4450 N at various

shaft rotations) although with a general underestimation. The maximum

difference between the calculated data and the experiments is a −14%

obtained for the case at 3600 rpm and 4450 N . It is necessary to observe

also a comparable scatter of the reported experimental data.

Same considerations can be done for the friction coefficient, shown in

Figure 3.30(b), where a good agreement is globally obtained, yet again,

numerical discrepancies are comparable with the scatter of the experi-

mental data.

(a) Differential eccentricity ra-
tio.

(b) Friction coefficient.

Figure 3.30: Comparison between numerical and experimental results
from the work of Brockwell and Kleinbub [84].

Two configurations have been tested in terms of temperature distribu-

tion (i.e., 1800 and 5000 rpm, with 8900 N) and are shown in Figure 3.31.

Trends and orders of magnitude are quite well predicted considering what

previously reported about mean values calculated from the code and lo-

cally measured temperatures. A misprediction of the trend is highlighted

for the three unloaded pads of the 1800 rpm configuration. Each time a
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mixing is performed the code obtains a lower mean temperature value of

the “mixed” oil at the leading edge of the pad while, particularly for pad

number three, experiments show an increase of temperature after mixing.

The maximum differences on the loaded pads is obtained at the inlet of

the fourth pad and at the outlet of the fifth one with respectively a −6.2
◦C and +9.6 ◦C with respect to the experimental data for the 1800 rpm

case.

Figure 3.31: Comparison between numerical and experimental results
from the work of Brockwell and Kleinbub [84]: temperature field [◦C].

3.12.6 TPJB: Taniguchi et al. test case

The proposed test case is a large four pads TPJB in a load between

pads configuration. Taken from the work of Taniguchi et al. [51] this

test case case has been previously referred to as T-4 when the grid sen-

sitivity analysis has been presented. Such a large bearing operates in

the transitional and fully turbulent regime and hence is adopted in order

to evaluate the potential of the code in handling superlaminar regimes.

Results are compared also with the FEM code presented by the authors,

which is quite complete (i.e., both pressure and energy equations consider

the effect of turbulence) and very well predicts all of the presented data.

The operating conditions are shown in Table 3.9.

In terms of eccentricity ratio, shown in Figure 3.32(a) for a global
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Bearing operating characteristics

Journal radius [mm] 239.5
B/D [−] 0.626
Assembled bearing clearance [µm] 612
Pads’ preload (m) [−] 0
Number of pads (NP ) [−] 4
Bearing-load configuration [−] LBP
Rotational speed tested [rpm] 500 ÷ 5000
Load range [kN ] 20, ÷ 320
Lubricant oil [−] ISOV G32
Inlet lubricant temperature [◦C] 40

Table 3.9: Operating conditions adopted for the numerical simulations
of the test case from the work of Taniguchi et al. [51].

Re of about 1500, an improvement of TILTPAD’s prediction is obtained

when modeling the superlaminar flow effects (referred to as MT3) with

respect to the laminar calculation. A slight overestimation is obtained

along the whole tested range of loads and could be mainly ascribed to

the fact that TILTPAD neglects the effects of turbulence on the pressure

calculation, hence reducing the load carrying capacity of the bearing for

high Reynolds numbers. It has to be noticed that above 210 kN the

code is not able to follow the trend because it has an imposed numerical

limit for the maximum allowable eccentricity ratio. Both the highlighted

critical zones in Figure 3.32 are related to the exceed of the eccentricity

limit. In fact, these results are related to very low rotational speed or

very high loads, resulting in high eccentricity values.

In terms of friction power losses, better trends are again obtained for

the MT3 calculation instead of the laminar one, although the overestima-

tion is here high and increases with increasing rotational speed, so with

increasing Reynolds number. The maximum difference is about +40%

at 4000 rpm when the Re is about 2000. It is not easy to identify the

reason for such a result due to the number of simplification considered in

the code, e.g., Poiseuille terms are neglected, turbulent viscosity effects

on the pressure field are neglected, unloaded pads are set in a prescribed

position. Moreover, the selection of different constants and critical values
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from different turbulence models proposed in literature drives to differ-

ent results. However, some considerations can be done: the more the

Reynolds number increases the less neglecting turbulence effects on the

pressure field is acceptable, driving the code towards overestimations of

the equilibrium eccentricity, and hence, towards the overestimation of the

shear stress on the loaded side, that is here evaluated only considering

the Couette term. Such an increase in shear stress could directly drive an

overestimation of the frictional power loss. Moreover, the overprediction

of the equilibrium position increases the local Reynolds number on the

unloaded pads and hence their dissipation due to the increase in turbu-

lent viscosity. Unloaded pads contribution to the total frictional power

loss raises up to about 50% for high rotational speed.

(a) Eccentricity ratio. (b) Frictional power losses.

Figure 3.32: Comparison betweeon numerical and experimental results
from the work of Taniguchi et al. [51].

Local bearing behaviour is presented in terms of film-thickness, pres-

sure and temperature distributions for 3000 [rpm] and 180 [kN ] and are

shown in Figure 3.33.

About the film thickness distribution, shown in Figure 3.33(a), better

agreement is obtained by the MT3 model with respect to the laminar case
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(a) Film-thickness.

(b) Pressure field on pad 3.

(c) Temperature field.

Figure 3.33: Comparison between numerical and experimental results
from the work of Taniguchi et al. [51]: evaluated at 3000 [rpm] and 180

[kN ].
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due to the better equilibrium position prediction. In particular, better

agreement is obtained in the way the superlaminar model represents the

variations of the film-thickness along the tangential direction. It has to

be noted that the results in this case are very similar to the complete

model presented by the authors of the experimental campaign and here

referred to as ”FEM Taniguchi”.

In terms of pressure values (Figure 3.33(b)), all of the models show

slight differences with each other. A better reproduction of the trend

obtained by the FEM model of Taniguchi et al. [51] is again performed

by the MT3 model. This behaviour was expected since an inverse problem

is solved. Instead, unexpectedly, all of the models result to be unable to

accurately predict the experimental pressure distribution.

In terms of temperature, shown in Figure 3.33(c), a good agreement is

obtained with the experimental data, where instead, laminar calculation

showed remarkable discrepancies in particular at the outlet of pad number

three, with an underestimation of −18.4 ◦C. Here, mean temperature

values result to be quite similar to the experimental local temperature

values. This, could probably be ascribed to the mixing promoted by the

superlaminar regimes.

3.12.7 TPJB: Someya et al. test case

A test case from the work of Someya et al. [83] has been also con-

sidered in order to asses the ability of the code in predicting dynamic

coefficients for tilting pad bearing applications. Among the tilting pad

presented in the data-book a five pads bearing has been selected for the

purpose. Some of its main characteristic are summarized in Table 3.10.

The results obtained by TILTPAD using the pad assembly method of

Lund [77] are compared with experimental results and theoretical curves,

these latter also found in the work of Someya et al. [83]. Furthermore,

eccentricity ratio is also compared with experimental data from the pro-

posed case.

A very good prediction is obtained in terms of eccentricity ratio,

shown in Figure 3.34, for the whole tested range of rotational speed.
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Bearing operating characteristics

Journal radius [mm] 50
Axial bearing length [mm] 50
Pad machined clearance [µm] 216
Pads’ preload (m) [−] 0.51
Number of pads (NP ) [−] 5
Bearing-load configuration [−] LOP
Rotational speed tested [rpm] 8000 ÷ 16000
Load [kN ] 9.8
Lubricant oil viscosity [Pas] 0.016
Inlet lubricant temperature [◦C] 40

Table 3.10: Operating conditions adopted for the numerical simulations
of the test case from the work of Someya et al. [83].

Figure 3.34: Comparison between experiments from the work of Someya
et al. [83] and TILTPAD calculations: Eccentricity ratio.

In terms of dynamic coefficient, shown in Figure 3.35, a good predic-

tion is observed for both direct non-dimensional spring coefficients, while

an overprediction of the non-dimensional damping coefficient in the x-

direction is obtained. Such an overprediction has been also obtained in

literature: in the work of Balbahadur [19], where results of the same case

at 10000 rpm and 9800 N are presented, and in the work of Someya et al.

[83], where results of numerical codes, here referred to as ”Theory”, are
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presented.

(a) Direct spring coefficients. (b) Direct damping coefficients.

Figure 3.35: Comparison between experiments/numerical results from
the work of Someya et al. [83] and TILTPAD calculations: Dynamic

coefficients.

3.12.8 TPJB: Kingsbury D-140

The last test case here presented, is the one adopted for the Morton

effect dedicated experimental campaign presented in Panara et al. [10].

The bearing has been also adopted for the grid sensitivity analysis, where

was referred to as K-5. Results are validated by means of comparison with

experimental data, where available, and by means of comparison with

results obtained from the widely validated commercial code THPAD [85].

Some of the main operating conditions are summarized in Table 3.11.

Three different rotational speeds, 3000 rpm, 8000 rpm and 13000

[rpm], have been selected for the purpose of the validation since they are

representative of the range of operating conditions.

The non-dimensional pressure fields, shown in 3.36(a), have been nor-

malized using the bearing unit load as a reference pressure. A very good
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Bearing operating characteristics

Number of pads (NP ) [−] 5
Bearing-load configuration [−] LOP
Rotational speed range [rpm] 1000 ÷ 20000
Lubricant oil [−] ISOV G 32− 46

Table 3.11: Operating conditions for the numerical simulations of the
test case from the Morton effect dedicated campaign.

agreement has been found with the numerical results of THPAD at the

lowest rotational speed (3000 rpm), while at 13000 rpm discrepancies

up to 33% can be individuated for the ”unloaded” pads. Since pressure

and temperature fields are coupled, the reason for these variations can be

searched in the temperature fields shown in 3.36(b). Temperature values

are non-dimensional with respect to the feeding oil temperature (temper-

ature values have been considered in degree Celsius). It can be observed

that the pad inlet temperatures are quite different (−12.5% for the higher

rotational speed) and then non-negligible changes in the viscosity field

are expected. Such a difference can be ascribed to the THPAD mixing

model (90% of hot oil carry over and a 10% of cold oil injection) that is

different from the one implemented in TILTPAD.

(a) Pressure field. (b) Temperature field.

Figure 3.36: Comparison between numerical results from the present
work and THPAD of Allaire et al. [81]: pressure and temperature

distributions.
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CHT results: Kingsbury D-140

In order to estimate the accuracy of TILTPAD in its conjugate heat

transfer version, which has been implemented with the purpose intro-

duced in Section 3.7, the code has been compared with available data

resulting from the experimental campaign reported in the work of Panara

et al. [10]. Non-dimensional temperature on pads, shown in Figure 3.37,

have been compared for the most loaded pad of the non-drive end bearing.

Results are normalized with respect to the experimental value at 25% of

the pad. Since conjugate heat transfer analysis has been performed coher-

ent data of local temperature values are compared. In particular, results

are obtained at about 5 mm below the pads surface. For the conjugate

Figure 3.37: Comparison between experiments from the Morton effect
dedicated campaign and TILTPAD: pads temperature (CHT approach).

heat transfer simulation the grid of the pads has been obtained imposing

20 elements along the tangential direction, as imposed also for the fluid

film grid, while for the radial direction 8 elements have been considered.

Good agreement is obtained. In particular, the characteristic trend of

pads temperature is highlighted, with a maximum peak of temperature

at about 75% of the tangential pad extension. A slight overestimation is

obtained for the temperature at 25% of the pad, with about a +7% with

respect to the temperature value adopted as a reference.
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This chapter is devoted to the description, testing and validation of

the numerical code for the calculation of the differential temperature

developed across the shaft during its synchronous precession motion. The

objective is to evaluate the temperature coefficient vector, presented in

Chapter 1 as B term.
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4.1 Quasi-unsteady code development

Among all of the influence coefficients, the determination of B appears

to be the most challenging task because predicting such an influential co-

efficient involves solving a multi-physic problem where fluid lubrication,

heat transfer phenomena and rotor dynamics combine in a very complex

fashion. Aiming at simplifying such a task, along with a reasonable com-

putational cost, Murphy and Lorenz [16] suggested a calculation method

for the amplitude of the B term based on the use of a steady-state TPJB

code. Their calculation method is considered here with some modifica-

tions, as pointed out in the following sequence:

1. The TPJB code (TILTPAD) is used for all of the given couples of

rotational speed and load to be analysed. The corresponding shaft

and pads’ equilibrium positions (i.e., eccentricities, attitude angles

and tilt angles of the pads) are stored together with matrices of

stiffness and damping coefficients.

This step is performed only one time before the real procedure is

started. Eccentricities, attitude angles and pads’ tilt angles consti-

tute the input data to be used by the quasi-unsteady code (SNAP-

SHOT), together with geometrical and operating conditions.

2. Once the shaft vibration is given from either experimental testing or

unbalance response analysis, orbits are discretized with a prescribed

number of points (Npso). Each point is then converted in couples of

eccentricities and attitude angles to be used for the film-thickness

and temperature calculations.

The first point along the orbit, from which the discretization process

and the subsequent calculations begin, is selected in order to be

correspondent to the shaft position on the orbit when time is set as

zero.

3. The calculation of the film thickness seen by the journal during its

motion (that is for each point along the orbit) is performed without

considering the pads dynamics.
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In the original method of Murphy and Lorenz a steady state code is

used for each point along the orbit. Hence, the tilt angles adopted

are step by step the pads’ equilibrium configurations. Here, pads

motion is neglected during the shaft precession and tilt angles are

set as those of the original equilibrium configuration, i.e., assuming

the shaft at the centre of the given orbit.

This simplification enables the direct calculation of the film-thickness

once the point along the orbit are given. At the same time a faster

calculation, in particular for heavily discretized orbits, is obtained

because solving the pressure field at each point, for the evaluation

of pads equilibrium positions, is avoided. Such an approximation

results to be more accurate the more is high the frequency of shaft

fluctuations and the more is small the orbit amplitude.

4. A simplified energy equation is then adopted in order to calculate

the temperature field seen by the shaft for each position on the orbit.

The equation is the same of the one implemented in the steady state

code for the analysis of plain and tilting pad bearings, except for

the dynamic viscosity, here treated as an equivalent viscosity based

on the average temperature rise along the pads.

Since the equation is based on a Petroff-type hypothesis, there is

no need to solve the pressure field, neither for the dissipation func-

tion nor for the oil flow rate calculation. As a consequence, the

temperature distributions obtained are directly dependent on the

evaluated film-thickness, which in turn is a direct consequence of

the prescribed shaft position.

5. All of the temperature fields and film-thicknesses calculated by

SNAPSHOT are then shifted of prescribed angle steps ∆δ. In fact,

since the output of the code is referred to the fixed external ref-

erence system and since the shaft rotates during its motion along

the orbit, the fields have to be clocked in order to correctly asso-

ciate the points standing on the shaft with the film-thickness and

temperature field referred to the fixed system.



108 4. Shaft differential temperature calculation

A precession motion along the orbit is shown in Figure 4.1. The

reference point (highlighted in red), stands on the X ′ axis when

the shaft is in the position referred to as 0. Once the shaft has

moved to point 1, the reference point has rigidly moved with the

rotating reference frame (x,y). Hence, in the fixed frame (X ′,Y ′)

the reference point has now an higher tangential angle +∆δ. In

Figure 4.1: Precession motion around the equilibrium position of the
i− th running speed.

order to refer to the points on the shaft the temperature fields are

all tangentially shifted, with the exception of the first one calculated

(see Figure 4.2) which is used as a reference state. Before the signal

(i.e, the temperature field) is shifted, a periodic reconstruction is

performed both downwind and upwind of the 0 ÷ 360 deg range.

This is done in order not to loose information when the field to be

clocked is shifted, i.e., when a part of the signal is moved outside

of the reference domain.

Finally, once shifted, the temperature is interpolated on a grid equal

to the one of the reference state (i.e.,the first calculated configura-
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Figure 4.2: Clocking of the thermal fields seen by the shaft along its
motion.

tion). This interpolation is needed since the shifting ∆δ is strictly

dependent on the number of points around the orbit and usually

differs from the tangential grid step ∆δpad/NX.

6. Temperature fields and film thicknesses clocked to the shaft are

finally averaged to find the corresponding mean field temperature

and mean film thickness representative of the orbital motion.

7. Mean differential temperature across the shaft and hot-spot posi-

tion are then evaluated from the averaged field and both phase and

amplitude of the differential temperature evaluated. This, enable

the calculation of the B term and of the phase shift between high

and hot spot.

The algorithm demonstrated to be very efficient even when consider-

ing a high number of rotor positions along the orbit and journal surface

points. A resume of the input and output of the code is presented in

Table 4.1 where the i stands for the i − th running speed and j for the

j − th pad of the bearing.
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SNAPSHOT data input output
Geometry of the bearing Rj ,Cb,m,B,∆δpad −

Configuration LOP or LBP −

Feeding oil Toil,µoil, −

Running speed Ωmax,Ωmin,∆Ω −

Equilibrium positions ǫi,γi −

Pads tilt angles θij −

Orbits amplitude Axi,Ayi −

Orbits phase Φxi,Φyi −

Differential temperature − ∆Ti
Hot spot position − φi

Table 4.1: Input - Output data of the SNAPSHOT code.

4.1.1 Energy equation

As previously stated, the energy equation adopted is the one imple-

mented in the code for the thermo-hydrodynamic lubrication problem,

with the improved mixing model but with an effective viscosity and hence

with a general formulation ( Equation 4.1) that is equal to the one pro-

posed by Balbahadur [19].

dT̃

dδ
+

2H

ρoilcoilΩh(δ)
T̃ −

2µaveΩR
2
j

ρoilcoilh(δ)2
(4.1)

The choice of adopting such a simplified approach for the solution

of the present task has been done on the base of the promising results

obtained in the previously cited work [19].

4.1.2 Effective viscosity

Mineral base oils usually show a dynamic viscosity, which tends to

decrease with increasing temperature with an approximately exponential

trend. The Reynolds exponential law of viscosity is often used for such

lubricants. However practical, the exponential law has been reported to

yield lower accuracy results when the two reference temperatures upon

which the curve is built, are more than 20 K apart and for temperatures

outside of the reference temperature interval.

The McCoull and Walther [86] expression is another popular formu-
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lation for the modelling of lubricant viscosity-temperature law (reported

in Equation 4.2). Explicitly mentioned in the work of Frene et al. [53]

for mineral oils it has been adopted in various works in order to perform

the thermo-hydrodynamic analysis of journal bearings (e.g., the works of

Bouyer [87] and Pierre et al. [88]).

log[log(ν + 0.6)] = c1 − c2log(T ) (4.2)

In the proposed equation, c1 and c2 are coefficients which can be deter-

mined from the viscosity measured at two different reference tempera-

tures Tref1 and Tref2, while ν is the kinematic viscosity.

With the McCoull-Walther expression the viscosity values obtained

for temperatures higher than the reference temperatures do not fall as

steeply as with the Reynolds curve. This expression was therefore adopted

to calculate the effective viscosity in the present task where, due to the

orbital motion around the equilibrium position, some critical configura-

tions in terms of temperature increase are expected especially for high-

amplitude displacements.

4.1.3 Feeding oil temperature treatment

The numerical code do not include into the domain the space between

the pads where feeding oil is released and where the mixing between hot

and cold oil is obtained. Therefore, the thermal field is available only on

top of the pads.

Since the 360 deg of the shaft see the whole bearing system the space

between the pads has been filled with artificial temperatures. For the

purpose, the available numerical grid has been expanded trying, where

possible, to maintain a similar discretization level. Two temperature

trend have been tested in order to model feeding oil effects.

A constant temperature value equal to the feeding oil temperature

has been considered at first. The choice was driven by the aim to find a

trend representative of the expected cooler zone, which results to be far

from a realistic trend if, for example, an hot oil carry over is considered.
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This approach is shown on top of Figure 4.3.

A linear trend has been then considered in order to be more repre-

sentative of a mixing process. The temperature is linearly varied from

the outlet temperature of the upwind pad to the inlet temperature of

the downwind one as shown on the bottom of Figure 4.3. The two ap-

Figure 4.3: Tested solutions for the feeding oil treatment. Flat trend
(top) and linear trend (bottom).

proaches showed similar behaviour. Therefore, the flat trend solution has

been adopted.

4.1.4 Superlaminar effects

Superlaminar effects are also modeled in SNAPSHOT. The same sim-

plified approach proposed by Frene et al. [53] and described when present-

ing TILTPAD has been considered for the purpose. A dedicated section

has been given to the topic in the previous chapter (see Section 3.8).

4.2 Description of the test case

Due to the lack of experimental data in terms of shaft differential

temperature, the present code is compared with calculated values from

other works found in literature.
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The test case adopted for the validation and testing is the double

overhung turbo-expander supported on a five pads TPJB presented in

the work of Schmied et al. [17] and shown in Figure 4.4. The same

machine has been studied by Murphy and Lorenz [16] at 18600 rpm and

a value of 0.13 ◦C/µm for the B term has been found. About the phase

lag between the hot and high spots Murphy and Lorenz did not used

their procedure but selected a value of 20 deg as measured during the

experimental campaign of De Jongh and Morton [1]. The tilting pad

Figure 4.4: Turboexpander presented in the work of Schmied et al. [17].

bearing parameters referred to the test case are reported in Table 4.2.

These, have been adopted for the validation of SNAPSHOT.

Bearing characteristics

Shaft diameter [mm] 90
Axial length [mm] 117
Pad arc [deg] 52
Pivot offset [−] 0.5
Preload [−] 0.35
Configuration LOP
Assembled diametral clearance [mm] 0.185
Oil type ISO − V G46
Oil temperature [◦C] 43

Table 4.2: Summary of the bearing characteristics for the
turboexpander of Schmied et al. [17].
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4.3 Discretization sensitivity analysis and validation

A discretization sensitivity has been performed to both the number

of points around the orbit Npso and the tangential discretization of each

pad NX. The Npso value has been tested ranging from zero up to 2000

while NX has been doubled each time starting from a value of 50 points

along the pad’s tangential direction up to 200 points.

4.3.1 B term module

Figure 4.5 shows the B term module ([◦C/µm]) as a function of the

number of points along the orbit for the three different pads’ discretiza-

tions. As it is possible to observe, similar results are obtained for each of

Figure 4.5: Discretization sensitivity analysis: B term module.

the discretizations tested when referring to the number of points along

the pads’ tangential development (i.e., NX).

On the contrary, the number of points along the orbit (i.e., Npso)

has major effects on the obtained results. In fact, Figure 4.5 shows an

asymptotic behaviour of the B term module to a value of 0.175◦C/µm.

This value is obtained only when a Npso ≥ 1000 is adopted. This is quite

unexpected, since in the work of Murphy and Lorenz [16], from which

the proposed tool has been inspired, a number of 24 points around the

orbit is suggested.
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The obtained value of B term module of about 0.175◦C/µm is in line,

in terms of orders of magnitude, with the one calculated by Murphy and

Lorenz [16] which was about 0.13◦C/µm.

4.3.2 Phase shift between hot and high spots

In terms of phase shift, shown in Figure 4.6(a) it is possible to observe

strong fluctuations for all of the three tested pads discretizations (NX).

These fluctuations show a reduction when the number of points along

the orbit is increased. Furthermore, as it is possible to observe in Fig-

ure 4.6(b), where Gaussian distributions of the phase shift are reported,

some differences are highlighted among the pads discretizations in terms

of mean value and standard deviation of the phase for low values of Npso.

Increasing the number of points along the orbit increases the code inde-

(a) Discretization sensitivity analy-
sis: hot-high spot phase lag.

(b) Probability density function of the
hot-high spot phase lag, varyng NX
and Npso

Figure 4.6: Effects of the number of points around the orbit Npso on the
hot and high spots phase lag.

pendence from the number of elements NX also in case of phase shift

calculations. Table 4.3 shows the mean value and standard deviations of

a Gaussian distribution based on the number of points along the orbit.

The overall population has been considered together with the analysis

of four reduced packages of phase data considered every ∆Npso = 500

from 0 to 2000, from which Figure 4.6(b) is obtained. The average phase
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shift values evaluated on the overall populations are respectively about

15.5 ≤ µφ ≤ 16.3 [deg]. Similar results are obtained also for the pro-

posed subdivisions where maximum and minimum values of the µφ are

respectively 18.5 [deg] and 14.5 [deg]. Although the average values are

Npso/10
3 overall 0− 0.5 0.5− 1 1− 1.5 1.5− 2

µφ [deg] (NX = 50) 15.547 14.697 15.971 15.802 15.717
σφ [deg] (NX = 50) 4.4174 8.6472 1.5475 1.1601 0.96947
µφ [deg] (NX = 100) 15.826 17.6 15.305 14.968 15.432
σφ [deg] (NX = 100) 2.8409 4.8024 1.7648 1.2534 1.0274
µφ [deg] (NX = 200) 16.305 18.509 15.972 15.322 15.417
σφ [deg] (NX = 200) 2.6703 3.8804 2.1917 1.2226 1.0282

Table 4.3: Discretization sensitivity analysis: average values and
standard deviations of phase shift hot-high spot considering a Gaussian

distribution.

close each other, the standard deviations has shown a strong reduction

increasing the Npso value. For the range 0− 500 the standard deviation

reduces from σφ = 8.6 [deg] to σφ = 3.9 [deg] by means of increase in the

pads discretization NX. Instead, for the range 1500− 2000 the standard

deviation ranges between σφ = 0.97 [deg] and σφ = 1.03 [deg] confirming

the independence from NX at higher Npso values.

In order to reduce the maximum value of σφ = 8.6 [deg], which can

drive the code towards φ = µφ ± 3σphi [deg], a higher number of points

is selected. For the applications of the code in terms of Morton effect

prediction a value of NX = 50 and Npso = 1800 has been adopted. The

same values have been also considered for the present validation.

The obtained average phase shift is about 15.7[deg], with high spot

lagging the hot spot. This results are in line with literature values, as

analysed in Chapter 1.

Figures 4.7(a) and 4.7(b) show the film-thickness and temperature

effectiveness (defined in equations 4.3 and 4.4) for respectively Npso = 36

and Npso = 720. Results, show the source of the phase shift oscillating

distribution. In fact, low value of Npso gives a signal which is affected by

higher frequency fluctuations. As a consequence, it is not easy to clearly
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locate maximum and minimum points.

(a) Results of a case with 36
points around the orbit

(b) Results of case with 720
points around the orbit

Figure 4.7: Effects of the number of points around the orbit Npso on the
shape of temperature and film thickness effectiveness.

ηh =
h− hmin

hmax − hmin
(4.3)

ηT =
T − Tmin

Tmax − Tmin
(4.4)

It is necessary to underline that the hot spot position along the shaft, due

to the proposed approach (i.e., obtained by means of averaging the results

coming from steady calculations), is more related to geometrical features

of both bearing and orbit than to the unsteady flow effects related to the

precession motion. However, since results are plausible, the code has been

adopted for the phase calculation of the B term and a high number of

points along the orbit has been selected in order to reduce the variability

of the results.

4.3.3 Calculation time comparison

The discretization sensitivity analysis has proved that is not necessary

to increase the number of points along the pads, which has a minor effect,

while instead it is necessary to increase the number of points along the

orbit.

This solution can have an impact on the calculation time, which is
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proposed in Figure 4.8 as a function of Npso for the three NX cases. The

non-dimensional time is evaluated with respect to a reference time tref .

Since the code has been developed with the final objective of predict-

ing the Morton effect, its final application will be coupled to other solvers

(necessary to solve the other terms of the physics referred to as A and

C). The reference time has been considered from the ANSYS apdl code

which has been adopted in Chapter 6 to solve both the rotordynamic

problem and the thermo-structural one.

Although the increased number of points, SNAPSHOT remains ef-

ficient due to its high calculation speed. In fact, as it is possible to

observe in Figure 4.8, for the discretization values selected (NX = 50

and Npso = 1800), the time for a SNAPSHOT iteration is 1/4 of the

time of reference. In particular, one single differential temperature calcu-

lation for and imposed orbit at a specific rotational speed, takes about

13 seconds with the selected level of discretization.

Figure 4.8: Discretization effects on the calculation time.

In order to compare the obtained results with the calculation time of

more accurate models, the work of Childs and Saha [34] is considered. In

their work, the time needed for the calculation of the differential temper-

ature across the shaft for an orbit is presented. Their accurate numerical

models, presented in the work of Gadangi et al. [89], need six to eight

hours for a differential temperature calculation with respect to a specific

orbit at a specific rotor running speed.
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Uncertainty quantification in
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The objective of the present chapter is to focus on the uncertainties

affecting the system. A methodology is developed in order to study the

propagation of the uncertainties within the numerical analysis of hydro-

dynamic bearings with the aim to quantify the effects of the ”lack of

knowledge” at the input of the numerical code on some key parameter re-

lated to the Morton effect (e.g., the equilibrium position and the dynamic

119
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coefficients).

5.1 Introduction to uncertainty quantification

According to the work of Oberkampf et al. [90], where a framework for

identifying the errors and uncertainties in modelling and computational

simulations is presented, the general phases related to the process of

modelling and simulation can be summarized as follows:

1. conceptual modelling of the physical system

2. mathematical modelling of the conceptual model

3. discretization and algorithm selection for the mathematical model

4. computer programming of the discrete model

5. numerical solution of the computer program

6. representation of the numerical solution

Each one of the presented phases can be source of errors or uncertainties,

as also suggested in the work of Roy and Oberkampf [91], and hence, if a

reliable simulation is needed, it is necessary to identify the various sources

and to include the non-deterministic features related to the system and

to the environment.

In the previously cited works [90] [91] a clear distinction between er-

rors and uncertainties is presented. An error is defined as ”a recognizable

deficiency in any phase or activity of the modelling and simulation that

is not due to lack of knowledge”. It means errors can be identified upon

examination. Moreover, errors can be further classified as:

• Aknowledged: errors that can be identified, reduced or removed

and that are known and controlled by the operator (e.g., round-off

errors and discretization errors);

• Unaknowledged: errors that cannot be found and removed from

the code (e.g., improper use of the code or computer programming

bugs)
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Uncertainty instead is defined as ”a potential deficiency in any phase or

activity of the modelling process that is due to the lack of knowledge”.

Once again it is possible to further classify the uncertainties in two sub-

categories:

• Aleatory: such an uncertainty is irreducible since it is directly re-

lated to the variability within the system or its environment (e.g.,

manufacturing tolerances, material properties, initial and boundary

conditions and so on);

• Epistemic: such an uncertainty is reducible and is connected to the

lack of knowledge of the physical problem (e.g., turbulence mod-

els, correlations or assumptions such as steady state condition or

periodic behaviour of the system)

The introduction of the uncertainty in the simulations does not alter the

steps of the process of modelling and simulation of a physical problem

but adds some difficulty in each phase and raise the need for some choices

and operations to be done in parallel with the steps of the deterministic

approach.

In particular three steps are needed in the uncertainty study: the

definition, the propagation and the certification of the uncertainty. The

first step consists in the identification and choice of the inputs affected by

uncertainty and, consequently, the definition of their probability density

functions. Various stochastic inputs can be considered, from operating

conditions, as adopted in the work of D’Ammaro and Montomoli [92], to

geometrical features, as considered in the work of Montomoli et al. [93].

The second step consists in the propagation of the defined uncertainty

within the numerical solver in order to identify the probability distri-

bution of some dependent variables of interest at its outlet. Once the

quantities have been statistically evaluated it is possible to use them in

reliability assessment or in a validation procedure.
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5.2 Uncertainty quantification methods

Various methods are proposed in literature in order to approach the

uncertainty quantification (UQ). An aware selection of the best suited

method can be obtained only after a study of their main characteristics

and implications. A well organized review, to be adopted for the purpose,

is presented in the work of Montomoli et al. [94].

There are mainly three categories of UQ techniques: sampling based

methods, quadrature techniques and intrusive techniques. The first meth-

ods are computationally expensive but easy to be implemented and non

intrusive, in the sense that it is not necessary to modify the numerical

solver. Moreover, by means of improved sampling strategies (e.g., lat-

tice based or latin hypercube samplings) it is possible to sensibly cut the

computational cost. The second methods are mainly based on polynomial

chaos representation of the stochastic output. By means of quadrature

formulas with orthogonal polynomials it is possible to obtain fast and ac-

curate UQ analysis. Finally, intrusive techniques results to be accurate

and fast to convergence but require a lot of work to modify the numerical

models.

5.2.1 Monte Carlo with response surface

Due to the characteristics of the numerical code considered for the UQ

analysis (TILTPAD), the Monte Carlo method has been selected among

the presented approaches. Inspired by the work of Montomoli et al. [95],

response surfaces have been considered for having a less computationally

expensive methodology. Figure 5.1 shows the schematic of the classic

Monte Carlo method and of the Monte Carlo with response surface. In

the first case, shown on top of Figure 5.1, the random generation of the

input conditions is obtained with the defined probability density function.

Then, a simulation is performed for each of the generated points in order

to find the statistical distribution at the outlet of the system for the

dependent variables of interest. The second method instead rely on a

two phases approach: simulations are previously performed, covering the
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whole design space and defining the response surface, then, the Monte

Carlo method is used over this metamodel.

Figure 5.1: Schematic of the Monte Carlo approach with the response
surface.

5.3 Uncertainty definition

When hydrodynamic bearings are considered it is immediately possi-

ble to imagine a strong sensitivity of the problem to the uncertainties due

to the very small length scales of the system. However, although such

an expectation is highlighted, no works have been found in literature

about the uncertainty quantification applied to the numerical modelling

of these components. Usually, in fact, uncertainties are only related to

the evaluation of the accuracy of the experimental measurements, at least

in author knowledge. For example, a comprehensive and chronological

survey about the identification of dynamic parameters in bearings is pro-

posed in the work of Tiwari et al. [96] where is underlined that nowadays

many authors recognize the relevance of including accuracy estimations

on the measured dynamic coefficients.

Among the various parameters having a role in the numerical mod-

elling of the thermo-hydrodynamic problem two are considered for the

purpose of the work and are summarized in the following:
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• the radial clearance of the bearing: this parameter results to be

highly affected by manufacturing tolerances and respectively by

thermal, elastic and wear effects;

• the dynamic viscosity of the oil: this parameter results to be af-

fected by the tolerances of the viscosity grade adopted to classify

the oil, by the temperature and weakly by the pressure.

It has to be noted that the dependence of both the variables on the

temperature has to be considered in a wider sense with respect to what

is usually done. In fact, the temperature uncertainty can be related to

the operating conditions of the oil, to the average ambient temperature

of the field where the machine is installed and, as highlighted in the work

of De Jongh and Van Der Hoeven [18], to the temperature of the fluid

processed by the machine.

A preliminary analysis is here presented considering the effects of

the manufacturing tolerances on the radial bearing clearance (assembled

bearing clearance) and of the tolerances adopted for the characterization

of the viscosity grade of the oil. The test case adopted for the analysis is

the one presented in Chapter 3, Section 3.12.8.

5.3.1 Clearance manufacturing tolerances

The ISO tolerance system is considered for the purpose. Considering

the nominal diameter of the hole, the nominal bearing clearance and the

tolerances for shaft and holes, which are respectively adopted as h6 and

H6/7 (data are referred to the catalogues available online of the main

bearing producers), the tolerance range can be calculated. According to

the tested bearing data the radial clearance range is as follows:

Cb = 125+32.5
−0 [µm] (5.1)

This result is obtained considering the H7 tolerance for the hole in order

to test the worst case scenario.

It has to be noted that the nominal clearance results to be the lower

bound of the available range of assembled bearing clearance. This is
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usually overcome since the industrial practice rely on some adjustment of

the clearance when the system is assembled. Anyway, this practice has a

cost and in certain cases it is not applied. Hence, for the present work the

adjustment is not considered and results will be remarkably affected by

the choice of having a nominal clearance at the extreme of the tolerance

range. Again, the choice is motivated by the aim to reproduce the worst

case scenario.

The probability density function of the tolerances is the main assump-

tion of the work since there are no direct information about its realistic

distribution. In particular, a normal distribution centred within the tol-

erance range is adopted resulting in a mean value of 141.25 µm. For the

standard deviation a value of 5.4 µm (i.e., a 3.8% of the mean value) is

selected in order to obtain the extremes of the tolerance range respec-

tively at ±3σ. By means of such a choice, some of the tested values (the

0.3% of the tested points) result to be slightly outside of the tolerance

domain.

5.3.2 Feeding oil viscosity grade

The mineral oil adopted for the lubrication process is usually selected

on the base of the viscosity grade (ISOVG). The proposed classification

is based on the mean value of the kinematic viscosity (e.g., ISOVG-32

has a mean kinematic viscosity value at 40 ◦C of 32 mm2/s).

The oil adopted for the present analysis is an ISOVG-46 with a value

of density of about 870 kg/m3. According to the oil classification, the

selected oil can have a kinematic viscosity between the range 41.4÷ 50.6

mm2/s and hence its dynamic viscosity range (used by the code) is within

the range of 0.036 ÷ 0.044 Pas.

Again, as done for the radial clearance, a normal distribution is con-

sidered with the mean value centred (0.040 Pas) and with a standard

deviation of σ = 0.0013 Pas (i.e., a 3.3% of the mean value) . The se-

lection of the standard deviation imply again that the extremes of the

tolerance range result exactly positioned at ±3σ.
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5.4 Generation of the response surface

Figure 5.2 reports the response surfaces adopted for the present anal-

sysis. A test matrix has been performed in order to cover the entire

surface determined by the two parameters variation. The field of simu-

lation has been extended up to ±4σ for each one of the parameters and

has been covered by means of 41 testing points, resulting in 1681 simula-

tions (accomplished in about 16 hours). The obtained surfaces gives the

(a) Eccentricity ratio (b) Frictional power losses

(c) Spring coefficient (x-
direction)

(d) Spring coefficient (y-
direction)

(e) Damping coefficient (x-
direction)

(f) Damping coefficient (y-
direction)

Figure 5.2: Response surface from TILTPAD, adopted for the Monte
Carlo approach.
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response of the code in terms of eccentricity ratio, frictional power losses

and non-dimensional dynamic coefficients with respect to the clearance

and dynamic viscosity variations.

5.5 Application of the Monte Carlo method

Once the response surfaces are given for the parameters of interest,

the Monte Carlo method is applied. This has been accomplished gen-

erating one million of random pairs of clearance and dynamic viscosity

values, each one following its own normal distribution (hypothesized in

the previous section), and then adopting the response surface to obtain

the dependent results, which are statistically analysed in the following.

The effects of the uncertainty of the two parameters of interest have

been evaluated for the selected dependent variables considering a simul-

taneous variation of the two parameters. Then, each single parameter is

individually studied by means of the same approach with the objective,

in this case, to evaluate their own weight.

Referring to the synchronous thermal instability, this kind of analysis

should be of great interest since it quantifies the effects of the uncertain-

ties, which necessarily affect the system, on some of the driving parameter

of the Morton effects (e.g., the dynamic coefficients). Particular attention

has to be given to such a topic for all of the machines which lie between

the marginally stable (borderline) condition. In fact, for this particular

condition the smallest change can result in an unstable rotor system.

5.5.1 Simultaneous variation

In terms of eccentricity ratio and frictional power losses, shown in Fig-

ure 5.3, a normal distribution is obtained with mean values respectively

of about 0.250 and 11.6 kW and with standard deviations of about 4.7%

and 2.7%. Such a behaviour (normal distribution) could be expected

since the response surface of relative eccentricity and frictional power

losses resulted to be characterized by almost linear relations with respect

to the independent variables (as shown in Figures 5.2(a) and 5.2(b)).
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(a) Eccentricity ratio (b) Frictional power losses

Figure 5.3: Results of the Monte Carlo approach with response surface.

About the non-dimensional dynamic coefficient, whose distributions

are shown in Figure 5.4, a kind of normal distribution is again obtained,

although in this case a slight non-symmetry is highlighted. The observed

(a) Spring coefficient (x-direction) (b) Spring coefficient (y-
direction)

(c) Damping coefficient (x-
direction)

(d) Damping coefficient (y-
direction)

Figure 5.4: Results of the Monte Carlo approach with response surface.
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asymmetry has been confirmed evaluating the probability to obtain a

result within a reference range, respectively positioned below and above

the maximum probability value. The selected reference range has an

extension of a 10% of the maximum probability value. Results, summa-

rized in Table 5.1, confirm the slight non-symmetrical behaviour of the

outlet distributions. The maximum difference between the two tested

ranges below and above the maximum probability value is obtained for

the non-dimensional direct spring coefficient (evaluated with respect to

the y-axis), where a 6% difference is highlighted.

output Range −10% Range +10%

K∗

xx 36.6% 38%
K∗

yy 41.1% 47.2%
C∗

xx 36.7% 38%
C∗

yy 39% 42%

Table 5.1: Probability distribution analysis: probability to obtain a
value within the range of −10% and +10% with respect to the

maximum probability value.

For all of the analysed variables, shown in Figures 5.3 and 5.4, the

values of the deterministic calculations performed with the nominal and

with the mean values of the clearance have been reported by means of

respectively a red and a green line. The choice not to consider the ad-

justment of the clearance and hence consider the nominal clearance as

a lower bound, drives a substantial difference between the results of the

deterministic calculation obtained with the nominal value and the maxi-

mum probability value obtained with the uncertainty quantification anal-

ysis. The maximum difference is found for the non-dimensional damping

coefficient in the x-axis direction where an over-prediction of about 25.5%

of the deterministic value with respect to the most probable one is high-

lighted.

For sake of clarity, Table 5.2 summarizes the values related to the

two deterministic calculations (nominal and mean) and to the maximum

probability value of the obtained distributions. In case the mean value is
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adopted for the deterministic calculation discrepancies are drastically re-

duced and a maximum difference of about 1.2%, evaluated with respect to

the deterministic mean value, is obtained for the non-dimensional spring

coefficient.

output deter. mean deter. nominal max. probability

ǫ [−] 0.250 0.219 0.249
K∗

xx [−] 3.22 4.21 3.18
K∗

yy [−] 4.15 5.10 4.10
C∗

xx [−] 2.85 3.79 2.82
C∗

yy [−] 3.28 4.18 3.24
Pf [kW ] 11.6 12.1 11.6

Table 5.2: Calculation results: deterministic calculation with mean
clearance value, deterministic calculation with nominal clearance value
and maximum probability value obtained with the uncertainty analysis.

If results of the dynamic coefficients are considered as normal distri-

butions, it is possible to evaluate both the mean value and the standard

deviation for each coefficient, shown in Table 5.3. Due to the imposed

approximation, the values obtained as a mean value are slightly different

from the maximum probability values obtained. The maximum value

of the standard deviation is obtained for the damping coefficient with

respect to the x-direction with a value of 9.4%.

mean value µ [−] standard deviation σ [%]

K∗

xx 3.23 9.0%
K∗

yy 4.17 6.4%
C∗

xx 2.87 9.4%
C∗

yy 3.30 7.7%

Table 5.3: Probability distribution analysis: mean value and standard
deviation of the non-dimensional dynamic coefficients.

5.5.2 Individual variation

Considering first the case with uncertainty affecting the viscosity of

the oil and with a constant value of the assembled bearing clearance (i.e.,
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125 µm) a normal distribution, at least in a first approximation, has been

obtained for all of the evaluated variables. Hence, results, expressed in

terms of mean value and standard deviation, are proposed in Table 5.4.

mean value µ standard deviation σ [%]

ǫ [−] 0.218 1.8%
K∗

xx [−] 4.22 2.1%
K∗

yy [−] 5.10 1.2%
C∗

xx [−] 3.79 2.1%
C∗

yy [−] 4.18 1.6%
Pf [kW ] 12.1 2.2%

Table 5.4: Probability distribution analysis: mean value and standard
deviation (viscosity variation).

According to the proposed results it is possible to notice a decrease

in the sensitivity of the dependent variables to the viscosity variations

with respect to the results shown in the previous paragraph. A strong

reduction of the standard deviation, of about 2% in this case, is in fact

highlighted with respect to the results of the combined action of both

viscosity and clearance which resulted in a maximum standard deviation

of about 9.4%. Moreover, it is possible to highlight that the uncertainty

related to the dynamic viscosity mainly affects the frictional power losses

with a 2.2% of standard deviation.

When the case with uncertainty affecting the bearing clearance only

is considered, distributions similar to the ones shown in Figures 5.3, 5.4

are obtained. Considering as a first approximation kind of normal distri-

butions, as done in the case of simultaneous variations, the corresponding

mean values and standard deviations are evaluated. Results of this latter

analysis are reported in Table 5.5.

As it is possible to observe the obtained mean values and standard

deviations are similar to the ones related to the simultaneous effect of

viscosity and clearance, with a maximum of standard deviation obtained

for the damping coefficient in the x-direction of about 9.1%. A reduction

of the standard deviation of the frictional power losses is obtained (from

a 2.7% to 1.4%) since this variable is more sensitive to the viscosity with
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mean value µ standard deviation σ [%]

ǫ [−] 0.249 4.3%
K∗

xx [−] 3.23 8.8%
K∗

yy [−] 4.16 6.3%
C∗

xx [−] 2.87 9.1%
C∗

yy [−] 3.30 7.6%
Pf [kW ] 11.6 1.4%

Table 5.5: Probability distribution analysis: mean value and standard
deviation (clearance variation).

respect than the clearance.

According to the proposed analysis the dynamic coefficients result to

be particularly affected by the uncertainty of the system. In particular a

strong sensitivity to the clearance is highlighted.

Although it is possible to adjust the clearance and hence reduce the

main source of uncertainty with respect to the manufacturing tolerances

it has to be reminded that some other phenomena can drive to clearance

variations, e.g., the thermal behaviour of the system and elastic deforma-

tions. In particular, the thermal behaviour may have a major role. In

fact, as introduced in the work of De Jongh and Van Der Hoeven [18] a

variation in the bearing clearance can be obtained due to the temperature

of the gas evolving inside of the machine. For example in the cited case

a strong reduction was obtained due to the particular field of operation

(cryogenic applications) and due to some specific geometrical features.

Some other cases can be found in literature showing the effects of the

thermal behaviour of the system. For example, in the work of Ferron

et al. [44] two clearance values are reported: the first one is related to a

temperature of 20 ◦C and is of about 145 µm, the second one is related to

a temperature of 45 ◦C and is of about 152 µm with a variation of about

4.8% with respect to the ”cold” value. Hence, since the adjustment is

done while the system is assembled (cold condition), when operated (hot

condition), the clearance can assume sensibly different values.
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The models developed for the thermo-hydrodynamic analysis of PJBs

and TPJBs, presented in the previous chapters, have been finally consid-

ered in order to predict the onset of the Morton effect. This has been

accomplished following the two strategies presented in Chapter 2: the
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linear stability analysis and the iterative approach. Results from both

the selected strategies are compared with data obtained by means of a

dedicated experimental campaign reported in the work of Panara et al.

[10].

6.1 Experimental Campaign

The dedicated experimental test campaign, which is adopted as a val-

idation reference for the prediction of the onset of the Morton effect, has

been carried out at the GE Oil & Gas facility in Florence on a real scale

between bearing dummy rotor. Since the campaign is not part of the the-

sis work, and since details of the experimental apparatus have been given

in the work of Panara et al. [10], only some of its main characteristics are

here reported.

The dummy rotor, driven by an electric motor and shown in Figure

6.1, is representative of a full scale compressor shaft and is supported by

two direct lubricated tilting pad journal bearings. The five pads bearings

adopted for the purpose are mounted in a load on pad (LOP) configu-

ration. In order to allow differential temperature measurements at the

Figure 6.1: Sketch of the experimental apparatus, from the work of
Panara et al. [10].

non-drive end bearing section of the shaft, a set of eight K thermocouples

equally spaced among the 360 degrees were installed a few millimeters

below the shaft surface by means of axially drilled holes.
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Bearing temperatures has also been monitored through Pt100 thermo-

resistances both on drive and non-drive end bearings. In particular the

most loaded pad (it is a LOP configuration) is equipped with two tem-

perature probes respectively at 25% and 75% of the pad arc. Another

temperature probe is mounted on the downstream pad at 75% of the pad

arc.

Shaft vibrations are monitored in four different position along the

shaft by means of Bently Nevada non-contact probes attached to the

ADRE system. The monitored sections are: the bearing sections, both

drive and non-drive ends, rotor mid span and shaft end at the non-drive

side.

The rotor is designed in order to have a predominant overhung at

the non-drive end side with respect to the drive end one. The objective

is to enhance the effects of the thermal bow coming from the instru-

mented bearing section. Three configurations have been tested varying

the overhung non-drive end weight which are respectively referred to as

W 1, W 2 and W 3. W 1 is the maximum overhung configuration while

moving through configuration W 3 the overhung is reduced. Values are

presented in terms of equivalent overhung and rotor weight ratio with

respectively 12.4%, 8.40% and 7.30% for the W 1, W 2 and W 3 configura-

tions.

Results are shown in Figures 6.2, 6.3, 6.4 for the three tested cases.

For each configuration the tested rotational speed have been highlighted

in red. Different thresholds of instability have been found depending on

the idling weight. Results are analysed hereinafter starting from the W 3

configuration which is the minimum overhung weight (no idling) up to

the W 1 which has the heaviest idling adaptor.

The W 3 configuration, shown in Figure 6.2, has been held in rotation

at the following speed: 8200, 9200, 10200, 12600 and 13600 rpm for

5 minutes each. The rotor has shown instability at 13600 rpm. The

vibrations level grew from 10 µm to 50 µm within five minutes, forcing a

quick decrease in rotational speed. The typical Morton effect hysteresis

loop is highlighted. The vibration levels for the other tested velocities
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Figure 6.2: Results of the experimental campaign, taken from the work
of Panara et al. [10]: W3 case.

resulted to be stable.

The rotor with intermediate overhung weight (small idling), i.e., W 2

configuration shown in Figure 6.3, has been held in rotation at four differ-

ent rotational speed: 8200, 10200, 11200 and 11400 rpm. The experimen-

Figure 6.3: Results of the experimental campaign, taken from the work
of Panara et al. [10]: W2 case.

tal tests show a stable dynamic behaviour at 8200, 10200 and 11200 rpm.

While very weak thermal effects have been shown for the 8200 rpm test,

for the two faster speed the vibration increased of about 10 µm pk − pk

however resulting in a stable behaviour. Finally, at 11400 rpm the vi-

bration amplitude grew up to 85 µm highlighting the sensitivity of the

system to the thermal rotor instability. Yet again hysteretical behaviour
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is highlighted.

In Figure 6.4 the amplitude of the displacements for the W 1 configu-

ration is showed. The investigated velocities, which the rotor is hold in

rotation at, are respectively 10600, 11200, 12200 and 13200 rpm. The

Figure 6.4: Results of the experimental campaign, taken from the work
of Panara et al. [10]: W1 case.

vibration levels for this case resulted to be higher then the other showed

configurations but no unstable conditions have been detected during the

experimental tests.

6.2 Morton effect prediction: linear stability analy-

sis

A commonly used strategy to approach stability problems is to as-

sume that linear relationships could be derived among the fundamental

physical quantities governing the phenomena. As described by Murphy

and Lorenz [16], complex linear influence matrices can be derived in order

to link with each other the rotor vibration (V ), the imbalance (U) and

the rotor thermal gradient (T ) as described in Equations 6.1, 6.2, 6.3.

V = AU (6.1)

T ss = BV (6.2)

U = U0 + CT (6.3)
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U0, defined in Equation 6.3, is the initial residual imbalance vector

while A, B and C are the complex influence matrices that define the sys-

tem sensitivity to bearing vibration, rotor thermal gradient and thermal

imbalance. During the shaft motion, the rotor thermal gradient dynam-

ics can be also expressed in terms of thermal damping and stiffening as in

the Equation 6.4, taken from the work of Murphy and Lorenz [16], where

D and E are the thermal damping and stiffness complex matrices.

DṪ +E(T − T ss) = 0 (6.4)

Substituting the vector relations of the influence matrices into Equation

6.4 it is possible to obtain the final form of the system.

τ Ṫ + (1−BAC)T = BAU0 (6.5)

where τ = E−1D is the real non-negative matrix of the thermal time

constants of the problem. Equation 6.5 admits solutions in the form

reported in the following equation:

T (t) = Test (6.6)

where s = (BAC − 1)/τ is the complex eigenvalue of the system.

In order to have a stable solution, a negative value of the real part of

s is required (i.e., Re(BAC) ≤ 1).

The linear stability approach is formulated in the time domain but in

order to compute stability just an accurate knowledge of the sensitivity

matrices in terms of both amplitudes and phases is needed.

6.2.1 Adopted strategies for the A, B and C terms evalu-

ation

For the purpose of the linear stability method, the complex influence

coefficients have to be calculated. The B coefficient is evaluated by means

of SNAPSHOT, which has been presented in Chapter 4.

The A term has be numerically estimated from the rotor response to
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an overhung imbalance evaluated at the bearing mid-line section. This

kind of simulations have been performed by GE Oil & Gas with a stan-

dard rotordynamic code.

The C term has been instead calculated by means of an analytical

relation presented in Equation 6.7, where Rj , B, λ are respectively the

journal radius, the axial length of the bearing and the rotor thermal

expansion coefficient and where Loh, loh are respectively the equivalent

overhung weight and the equivalent overhung length.

C = Loh
λBloh
Rj

(6.7)

The phase of C is always considered to be 180 deg with respect to the

direction of the rotor thermal gradient.

The Equation 6.7 has been derived starting from the classical theory

of the thermal expansion of a shaft subjected to differential temperature.

The shaft thermal bending has been evaluated enabling the calculation

of the thermal imbalance. This is evaluated by means of the overhung

mass and the thermal deflection at the overhung location. The same

approach for the C term evaluation has been also considered in the work

of Balbahadur [19].

6.2.2 Experimental correlation

Further validation of the methodology has been done using the avail-

able experimental data. In order to link the shaft vibration to the ro-

tor differential temperature distribution an experimental correlation has

been derived from the results of the dedicated experimental campaign.

The obtained relation has been adopted to evaluate the B term enabling

the comparison between the experimentally fitted correlation (represen-

tative of the experimental data) and the results obtained by means of the

present code for the differential temperature estimation.

The relations proposed in Equations 6.8, 6.9 allow to obtain informa-

tion on the amplitude of the temperature variation ∆T and on its phase

φ. As a consequence, it is possible to locate the minimum and the max-
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imum of the temperature distribution in function of the shaft vibration

δ0 and of the bearing operating conditions (i.e. lubricant minimum film

thickness of each pad, spinning frequency of the shaft, inlet viscosity of

each pad, density and the specific heat capacity of the lubricant). As it

is possible to observe the proposed correlation is based upon two coeffi-

cients which need to be tuned. The values adopted in the present work,

in fact, have been found by means of the experimental fitting, which has

been performed for each of the analysed cases (W3, W2 and W1). The

adopted correlation has been implemented by GE Oil & Gas and has

been here only fitted on the experimental data, by means of changing K1

and K2.

∆T = f1(hmin,Ω, Rj , µin, ρ, c, B,K1,K2) (6.8)

φ = f2(hmin, δ0,Ω, Rj , µin, ρ, c, B,K1,K2) (6.9)

In Figure 6.5 the measured values of rotor differential temperature

variation in time have been compared with the experimentally fitted data.

These latter, have been calculated by means of the measured amplitude

vibration trend which are also reported in the presented figures. A very

good agreement in all tested configurations (W3, W2 and W1) has been

obtained. The proposed time dependent temperature data have been

non-dimentionalized with respect to the maximum measured rotor tem-

perature gradient during the acquisition time. During the recorded time

the rotor speed was hold at a fixed value.

The operating conditions adopted for the tuning of the experimental

correlation are different for each case. In Figure 6.5(a) the data are

referring to an unstable condition detected during a dwell at a constant

speed of 13600 rpm in configuration W 3 (see Figure 6.2 for detailed

information). In Figure 6.5(b) a similar condition is reported for the

W2 configuration. In this case the threshold of instability reduces from

13600 to 11400 rpm. In Figure 6.5(c) the W1 rotor configuration (higher

overhung weight) is reported at 13400 rpm. Despite the high rotor speed,

the configuration was stable.
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(a) W3-case.

(b) W2-case.

(c) W1-case.

Figure 6.5: Comparison between experimentally fit correlation and
experimental data for W3, W2 and W1 cases (from the work of Panara

et al. [10]).
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6.2.3 Results

The BAC term is calculated as reported in Section 6.2.1 for all of the

cases tested in the experimental campaign. The only difference between

the proposed results is the evaluation strategy adopted for the B term:

”experimentally fitted” data are obtained by means of the fitted correla-

tion, presented in Section 6.2.2, while ”present work” data are evaluated

by means of the code SNAPSHOT proposed in Chapter 4. This latter, in

turn, rely on the journal bearing equilibrium data calculated by the code

for the thermo-hydrodynamic analysis of PJBs and TPJBs presented in

Chapter 3 (TILTPAD).

Both results of the real component of the BAC term (Re(BAC))

and of the module of the BAC term are shown in the following. While

Re(BAC) ≤ 1 is the condition directly derived from the linear stability

theory the |BAC| ≤ 1 can also be adopted due to its conservative nature.

In Figure 6.6(a) the BAC analysis results are shown referring to the

W3 configuration. The experimental instability threshold speed, detected

at 13600 rpm, is reported as a vertical dashed line. Considering the

”present work data”, an underestimation of the instability threshold, pre-

dicted at around 12400 rpm, is obtained.

The main difference between the ”experimentally fit” BAC prediction

and the computed one is represented by the estimation of the B phase

(φB), which affects the computation of the Re(BAC) particularly above

the instability threshold. In fact, it is important to notice that in both

cases the same threshold of instability is predicted.

The phase difference of B can be evaluated looking at Figure 6.6(b)

where the ratio of computed and experimentally fit amplitude and phase

of B are reported with respect to the rotor speed. As can be seen, for the

B amplitude ratio, a convergence towards unity appears at high regimes

of rotation, which is in agreement with the Petroff’s type hypothesys

adopted for the energy equation. Unfortunately, not a similar behaviour

is shown for the B ratio whose estimation is far from the experimentally

fitted values.

Due to the highlighted difference the experimental fit correlation shows
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(a) W3-BAC analysis. (b) W3-comparison snapshot/experimen-
tally fit correlation.

Figure 6.6: Comparison between experimentally fit correlation and
SNAPSHOT for W3 case.

a stability recovery at higher rotational speed, at about 15000 rpm, due

to the phase of the B term. Such a recovery prediction is not instead

shown by the model when B is evaluated by means of SNAPSHOT. Un-

fortunately, speed higher than 13600 rpm have not been tested during the

experimental campaign and hence it is not possible to draw conclusions

about the accuracy of the models.

However, in the work of Panara et al. [10], an iterative model, based

on the same experimentally fitted correlation, has been adopted for the

evaluation of the present cases. Results agree with the ”present work” in

the way that the stability recovery is not predicted.

For the overhung configuration W2 the results are shown in Figure

6.7(a). Experimentally it is found a shift of the instability threshold

towards reduced speed (from 13600 to 11400 rpm). A similar trend is

obtained from the linear stability evaluation, with a good prediction of

the instability onset obtained by both the models. Again, experimentally

fitted model predicts a recover of stability where the model objective of

the present work do not. Unfortunately neither for the previous case nor

this time speeds above the threshold were tested during the experimental

campaign. However, as considered for the W3 case, the iterative model

presented in the work of Panara et al. [10], which has also been previously
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cited, do not show any recovery.

The differences in the evaluation of the B term for the two models are

depicted in Figure 6.7(b). Here, a similar trend to the W3 configuration

is shown. The prediction of the module of the B term became closer to

the experimentally based correlation at higher rotor speeds. The phase

of B, instead, appears to be again the most difficult parameter to be

evaluated.

(a) W2-BAC analysis. (b) W2-comparison snapshot/experimen-
tally fit correlation.

Figure 6.7: Comparison between experimentally fit correlation and
SNAPSHOT for W2 case.

For the W1 configuration (see results in Figure 6.8) the stability anal-

ysis predicts a marginal instability in the range between 8000 and 10000

rpm and this is the region where a synchronous vibration increase has

been experimentally detected (see the experimental bode plots in Figure

6.4). Where both the curves of the BAC module show similar behaviours,

a comparison between the Re(BAC) curves gives evidence of discrepan-

cies in the evaluation of B term, particularly of its phase. In this case, as

depicted in Figure 6.8(b), the B amplitude ratio show some oscillations

around unity at higher rotational speed and the phase ratio results to be

far to approach unity in the whole speed range.

Finally, in Figure 6.9 the A term adopted for the presented stability

analysis, normalized with respect to the maximum value among the tested

cases (Amax ≃ 0.21 µm/g · mm), is compared for the W1, W2 and W3
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(a) W1-BAC analysis. (b) W1-comparison snapshot/experimen-
tally fit correlation.

Figure 6.8: Comparison between experimentally fit correlation and
SNAPSHOT for W1 case.

rotor configurations. A reduction of the A term is shown from the W3 to

the W1 case, with a shift towards lower rotational speed of its maximum

values.

Figure 6.9: Normalized values of the A term for the three tested cases
W3, W2 and W1.

The C term was instead respectively computed as 335, 193 and 144

g ·mm/◦C.

Based on the shown results, it can be concluded that the linear stabil-

ity approach can provide quite accurate prediction of the development of

the thermal instability although some discrepancies are highlighted (e.g.,

the instability threshold of the W3 case is mispredicted of about 1200
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rpm). However, the implemented methodology results to be fast and

quite reliable in predicting if the Morton effect is expected or not for the

analysed system. Furthermore, although SNAPSHOT provides different

values for the phase of B term with respect to the experimentally fitted

data, results in terms of global stability of the system are similar for both

cases. As a consequence, since SNAPSHOT do not rely on a tuning of

the parameters based on an experimental campaign, the proposed tool

can be reasonably considered for the forecast of the Morton effect.

6.3 Morton effect prediction: iterative method

The iterative model is developed in collaboration with the MDMlab

of the Department of Industrial Engineering of the University of Florence,

which developed the rotordynamic models. These, have been adopted for

the harmonic analysis (both uncoupled and thermally affected) and the

thermo-structural analysis for the evaluation of the shaft bending.

6.3.1 Description of the general architecture

The general architecture of the iterative method, proposed to capture

the thermal instability onset, is shown in Figure 6.10. The procedure

shown is related to a single shaft rotational speed and hence the whole

scheme has to be repeated for each condition tested in terms of static load,

residual mechanical unbalance and rotor spinning speed. In particular,

before the iterative loop begins the code for the thermo-hydrodynamic

analysis TILTPAD, presented in Chapter 3, is used to find static and

dynamic characteristics of the journal bearings. The dynamic coefficient

are then given to what is called ”dynamics module” in order to perform

the preliminary harmonic analysis and find the ”uncoupled” orbit motion

related to the residual mechanical unbalance. Instead, the equilibrium

position of the shaft (ǫ,γ) and the tilt angle of each pad (θi) are given to

SNAPSHOT.

The iterative loop is highlighted in red in Figure 6.10. It is based on

two calculations. The first one is performed by the code for the evalu-
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Figure 6.10: Scheme of the iterative architecture (TILTPAD and
SNAPSHOT contributions are highlighted in blue).

ation of the differential temperature developed across the shaft (SNAP-

SHOT) on the base of the previously cited equilibrium positions and on

the amplitude (Ax,Ay) and phase (Φx,Φy) of the vibration displacements

(both in X and Y directions). The result of SNAPSHOT, composed of

module and phase of the differential temperature, is given to the thermo-

structural dynamic module which evaluate the thermal deflection of the

shaft and perform a novel harmonic analysis. Results of this latter are

again adopted as input condition of the SNAPSHOT code. The proce-

dure is iterated until the loop drives the system towards a steady state

condition, in terms of vibration orbit and differential temperature, or

until divergence is obtained.

In the dynamics module the rotordynamic behaviour of the system

is analysed. In particular, the rotor, spinning around its revolution axis

with angular velocity Ω, is subjected to synchronous known unbalance

U0. The resulting movement, due to the centrifugal effects and calculated

through the first harmonic analysis, here referred to as ”uncoupled”, is

generally an elliptical orbit around the rotor stable equilibrium position,
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which can be decomposed in two harmonic displacements along the ver-

tical and transversal directions, each one characterized by an amplitude

and a phase angle. The results of the analysis are the displacements of

the node located at the Non Drive-End side (NDE).

Another analysis dedicated to the rotor is the thermo-structural anal-

ysis. By means of this latter, it is possible to calculate the equivalent

unbalance, representing the centrifugal effects due to the shaft displace-

ments from its initial position caused by the thermal bending. The equiva-

lent unbalance is added to the initial one (residual mechanical unbalance)

in order to calculate the new rotor orbit and then the new displacements

at the NDE bearing.

The rotor model, whose details and validation results are presented

in the work of Panara et al. [10], includes both the shaft FEM model and

the bearing, represented as lumped parameters. The shaft FEM model

is discretized through BEAM elements, composed of two nodes with six

degree of freedom per node, and a 3D solid element, which is used to

mesh the part of the rotor where the NDE bearing is located (i.e., where

the thermal gradient apply). The bearing elements act as spring and

damper elements whose damping and stiffness matrices, depending on

the analysed angular velocity Ω, are calculated through TILTPAD.

6.3.2 Results

The results of the iterative model for all of the tested cases (W3,W2

and W1) are presented as maps of vibration amplitude and differential

temperature evolutions. The tested rotational speed, increasing along the

y-axis of the plots, range from 8000 rpm to 20000 rpm with a step change

of 200 rpm for the W3 and W2 cases, while the W1 case starts from a

value of 6000 rpm due to its critical behaviour at lower rotational speed.

The number of iterations of the model compose the the x-axis of the plot

and represents the ”evolution in time” of the system according to the

pseudo-unsteady approach. Both temperature and vibration amplitudes

are shown through a color map (the calculated displacement amplitudes

are limited to the assembled bearing clearance as a maximum value).
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W3 case

Figure 6.11 shows the results of the W3 case with its experimental

instability threshold highlighted by means of a white dashed line at 13600

rpm. The model is able to predict the instability onset with quite good

Figure 6.11: Results of the iterative model for the W3 case: vibration
amplitude map.

agreement, in fact, only a slight under-prediction is obtained, with diver-

gence detected at 13400 rpm. For all of the lower rotational speed tested,

a stable condition is obtained although with increased amplitude with

respect to the uncoupled case. Finally, no recovery of stability is shown

for rotational speed values higher than the threshold.

A detail of the orbits evolution during the iterative process is pre-

sented in Figure 6.12. Orbits are reported for each iteration starting from

the uncoupled condition, that is the first harmonic analysis without ther-

mal effects, to the stable or diverged conditions, this latter highlighted in

red. As it is possible to observe, the 13200 rpm case results in a stable

orbit motion with an amplitude 0− pk of about 35.5 µm while the 13400

rpm one diverges until the contact with the pads occurs, defining the

instability threshold.

Figure 6.13 show differential temperature results in terms of color
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Figure 6.12: Details of the quasi-unsteady orbits evolution obtained
from the iterative model: 13200 and 13400 rpm.

map as done for the amplitude in Figure 6.11, and in terms of differential

temperature with respect to the vibration amplitude. This latter is shown

in Figure 6.13(b) for a rotational speed below the instability threshold,

at 13000 rpm, and above the threshold, at 13800 rpm.

(a) W3-module of the shaft differen-
tial temperature.

(b) W3-differential temperature evo-
lution: above and below instability
threshold.

Figure 6.13: Results of the iterative model for the W3 case: differential
temperature.
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Temperature plot of Figure 6.13(a) results to be very similar to the

vibration amplitude plot due to the direct relation between the two vari-

ables, highlighted also in Figure 6.13(b). Differential temperature peaks

with values ranging from about 18 to 25 ◦C are shown for vibration

amplitudes ranging from 70 to 125 µm 0 − pk. The maximum differen-

tial temperature related to a stable orbit condition is of about 7.8 ◦C

obtained at 13200 rpm.

A linear trend is highlighted for all of the rotational speed when low

amplitude vibrations are executed (see Figure 6.13(b)). If the vibration

further increase a higher order polynomial is needed for representing the

relation between vibration and predicted temperature. In particular, the

stable orbit condition (below threshold case) is completely linear up to

its stable configuration, while above the threshold the temperature rise

is non-linear up to about 70 µm 0− pk, the flat trend highlighted above

is non-physical and it’s due to the bearing contact. In fact, when SNAP-

SHOT is requested to run with an orbit amplitude which induces the

contact with the pads, as for example at 90 µm 0 − pk, temperature

given to the structural code for the simulation is the last available one.

The simulation is performed until the assembled bearing clearance is over-

taken by the orbit amplitude (for divergent cases).

It has to be noted that the highlighted trends of the relation between

differential temperature and orbit amplitudes, shown in Figure 6.13(b),

supports the results of the modelling choices. In fact, a linear trend is

reported in the work of De Jongh [3] about an experimental campaign

performed by Morton. Moreover, a similar behaviour is reported in the

numerical work of Saha [26], where, after an initial linear trend for low-

amplitude orbits, a non-linear relation is obtained for high-amplitude

orbits.

W2 case

Similar considerations can be done for the W2 case, whose results

are shown in Figure 6.14. In this case, the iterative model is able to

predict the instability threshold with a good agreement. In fact, the
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Figure 6.14: Results of the iterative model for the W2 case: vibration
amplitude map.

experimental value has highlighted the instability onset at 11400 rpm and

the same value is obtained by the iterative model for its first diverging

rotational speed. A recover in stability is obtained for very high running

speed values, of about 19600 to 20000 rpm. Unfortunately, this behaviour

cannot be experimentally proved or denied since rotational speed above

the first threshold have not been tested.

In Figure 6.15 the orbits obtained for each iteration of the procedure

are shown for 11200 and 11400 rpm. A stable condition and divergence

are respectively found, with the stable condition characterized by a vi-

bration amplitude of about 28 µm 0 − pk. In terms of shaft differential

temperature (Figure 6.16) a similar behaviour with respect to the one

highlighted in the W3 case is obtained. The temperature map of Fig-

ure 6.16(a) results in fact similar to the amplitude map. The maximum

differential temperature value obtained for a stable orbit is 5.6 ◦C for

the 11200 rpm case. After the stability recovery at high speed a value

of about 12 ◦C is found at 19600 rpm. Again, differential temperature

peaks of about 18.5 to 25 ◦C are shown for vibration amplitudes near

the range where bearing contact is expected and above (that is from 70

to 125 µm 0− pk).
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Figure 6.15: Details of the quasi-unsteady orbits evolution obtained
from the iterative model: 11200 and 11400 rpm .

Furthermore, a linear trend is highlighted also for this case up to vibra-

tion amplitudes of about 40 µm 0− pk for the case above the threshold,

which is referred to the 11800 rpm case. While completely linear be-

haviour is obtained for the stable case, which is referred to 11000 rpm.

(a) W2-module of the shaft differen-
tial temperature.

(b) W2-differential temperature evo-
lution: above and below instability
threshold.

Figure 6.16: Results of the iterative model for the W2 case: differential
temperature.
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W1 case

In Figure 6.17 the results of the W1 case are presented in terms of

vibration amplitude. For this analysed configuration, the model seems to

Figure 6.17: Results of the iterative model for the W1 case: vibration
amplitude map.

over-predict the amplitude of the shaft displacements. In fact, although

the experimental case showed an increase in vibrations up to a maximum

of about 95 µm pk−pk in the region between 8000 and 10000 rpm (defined

as ”warning range”), no unstable behaviour was detected. Instead, the

model forecast the instability onset at 7800 rpm and a stability recovery

at 10400 rpm. Such a misprediction results to be conservative in terms

of rotor safety.

Figures 6.18 and 6.19 shows the orbits for both the instability onset

and recovery. Stable behaviour is highlighted at 7600 and 10600 rpm

with respectively 15.6 and 31.3 µm 0− pk. Instead, unstable behaviour

is obtained between the case at 7800 rpm and the case at 10400 rpm.

Finally, in terms of temperature, similar considerations can be done

with respect to both the previous cases when analysing Figure 6.20. In

terms of differential temperature map, again, a similar behaviour is ob-

tained with respect to the amplitude maps. This time, values of about
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Figure 6.18: Details of the quasi-unsteady orbits evolution obtained
from the iterative model: 7600 and 7800 rpm.

Figure 6.19: Details of the quasi-unsteady orbits evolution obtained
from the iterative model: 10400 and 10600 rpm.
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15 to 25 ◦C are obtained for the diverged region in the plot.

Four cases are presented this time in order to show the thermal de-

velopment, with respect to the vibration orbit, below and above the two

highlighted thresholds. The first one, is the instability threshold onset

(threshold 1), while the second one is the stability recovery condition

(threshold 2). Figure 6.20(b) shows the 7400 and 8200 rpm cases, which

are respectively below and above threshold 1, and the 10000 and 10800

rpm cases, which are respectively below and above threshold 2. Linear

trend is obtained for the stable tested conditions, while non-linear rela-

tions are obtained for the diverging ones, as in the previous cases. The

(a) W1-module of the shaft differen-
tial temperature.

(b) W1-differential temperature evo-
lution: above and below instability
thresholds.

Figure 6.20: Results of the iterative model for the W1 case: differential
temperature.

increase in the slope representing the linear behaviour with the increase

in rotational speed is here particularly clear due to the range of speed

showed (minimum 7400 rpm and maximum at 10800 rpm).

Hot spot position

Figure 6.21 shows the predicted positions of the hot and high spots on

the shaft for the three tested cases when the rotational speed is varied.

Considering the position of the spots on the shaft, where zero is the
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(a) W3-hot and high spots positions on the
shaft.

(b) W2-hot and high spots positions on the
shaft.

(c) W1-hot and high spots positions on the
shaft.

Figure 6.21: Results of the iterative model: hot and high spots
positions on the shaft varying the rotational speed.
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direction of the mechanical unbalance force, two main considerations can

be done.

The first one is about the behaviour of the code for the prediction

of the differential temperature (SNAPSHOT), which gives an hot spot

position always shifted of a value of about 20 deg with respect to the high

spot position, where the latter is substantially given by the rotordynamic

code. Although SNAPSHOT, due to its simplified nature, is not able to

evaluate the hot spot position on the base of unsteady fluid dynamics

effects, results are in line with literature, as discussed in Section 1.2,

where the characteristics of the phenomenon are introduced.

The second consideration can be done about the general behaviour of

the system moving from case W 3 to case W 1. The threshold of instability

is obtained for all of the three tested case when the hot spot positions is

approaching the 180 deg, and this is obtained at lower rotational speed

values for the W1 case with respect to the W3 one.

6.4 Morton effect analysis and control

After the model has been proved to give quite reliable results, in terms

of ability to forecast the instability onset, it has been considered for the

analysis of the effects of some key parameters. The corrective actions

presented in Chapter 1 have been considered for the purpose.

The majority of the proposed parameters have been studied numeri-

cally or experimentally in literature. Here, the effects of the shaft steel

composition, which have not been yet referenced, are considered.

6.4.1 Sensitivity to the shaft material

The study of the effects of the elements which compose an alloy on its

mechanical and thermal properties has increasing complexity with the in-

crease in number of the components. However, although the components

interaction affects the final results (in terms of alloy properties), some

interesting information can be obtained by means of studying the effects

of each single component.
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For the purpose of the work, alloy steel is considered. In particular,

the thermal characteristics of the steel should be varied in the way to

suppress the shaft bending without modification of the mechanical char-

acteristics needed for its application. Among the various components,

Nickel has been individuated as a possible choice for this kind of solution

due to its properties.

According to the work of Nicodemi [97], which introduces the main

characteristics of steel and alloys, increasing the Nickel of a binary alloy

Fe−Ni results in a strong reduction of the thermal expansion coefficient

(λ) and in a decrease of the thermal conductivity. For example, values

of the thermal expansion coefficient of a Fe−Ni binary alloy can range

from a value of 20 · 10−6 m/mK with a 20 % of Ni to a value of 2 · 10−6

m/mK with a 36 % of Ni. A reduction of one order of magnitude can

be thus obtained. Further increase in Ni drives the material towards an

increase of λ and finally to a plateau at about 13 · 10−6 m/mK.

The main consequence of a reduction of the thermal expansion coef-

ficient λ is a reduction in the shaft thermal bend. Equation 6.10 reports

the differential angle of the shaft due to the thermal deflection as calcu-

lated in the work of Balbahadur [19]. Hence, since the induced thermal

unbalance should be less effective, Nickel should be considered for the

purpose to reduce the undesirable effect.

βth =
λ∆T

Rj
B (6.10)

In terms of conductivity, a reduction is obtained increasing the Ni

percentage. Starting from a value of approximatively 40 W/mK for low

Ni percentage, a minimum of about 10 W/mK for a Ni quantity between

30 % ÷ 40 % is obtained. Again, an increase up tp 40 W/mK is obtained

above the percentage of Ni of the minimum point.

The effect of Nickel on alloy steel properties is complex to be examined

due to the interaction among all of the components, typically: Fe, C,

which constitute the steel, and Mn, Si, Ni, Cr, Mo, V, Al, B, Co, and

so on. However, the main effect shown for the binary alloy Fe−Ni can

be considered as a general rule to qualitatively drive designers towards
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the selection of the proper material. Furthermore, generally speaking,

Nickel has beneficial effect both on the mechanical properties and thermal

treatments of the alloy steel and hence no drawbacks are highlighted.

It has to be underlined that every time a material change is consid-

ered, all of the characteristics has to be carefully checked for the novel

application.

A typical material for heavy duty shafts, gears and couplings is the

40NiCrMo6 (equivalent to the AISI4340), characterized by a 1.65% ÷

2% of Nickel. Its thermal characteristics are: an expansion coefficient λ

of about 12.3 · 10−6 m/mK and a conductivity of about 42 W/mK.

As previously stated, in accordance with the book of Nicodemi [97],

the behaviour that has been highlighted for the binary Fe − Ni alloy

can also be generally considered for the construction alloy steel. Hence,

a research of alloy steel with increased Nickel percentage has been done.

Unfortunately, construction steel alloy have typically a maximum value

of Nickel of about 5%. A further increase in Nickel is possible if high-alloy

are considered, but these latter are characterized by a general increase of

all of the components of the alloy. Approaching instead to the limit of

the low-alloy steel it is possible to find, for example, the 34NiCrMo16

with its 3.7% ÷ 4% of Nickel. This, has similar mechanical properties

with respect to the 40NiCrMo6 but has an expansion coefficient of about

11.3 · 10−6 m/mK.

A test is performed by means of the iterative model in order to eval-

uate the response of the system to such a modification. Four materials

have been considered for the purpose: the first one is the AISI4340 which

has been adopted as a reference case, referred to as λ − 12, the second

one is the 34NiCrMo16 with its reduced thermal expansion coefficient,

referred to as λ − 11, the third and the fourth materials have been in-

stead chosen with respectively 10.3 ·10−6 and 6 ·10−6 m/mK in order to

evaluate the effects of an hypothesized increased of Nickel percentage (ne-

glecting the effects of such an increase on other steel properties). These

latter materials are respectively referred to as λ− 10 and λ− 06.

The novel simulations have been performed with an increased number
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of model iterations, up to 80 iterations. The increase has been necessary

in order to enable the model to reach convergence or diverge in unstable

cases. Particularly, as expected, the case with the lowest thermal expan-

sion coefficient has almost reached the maximum number of iterations

before giving the desired results.

Results of the simulations are shown in Figure 6.22 for the three tested

cases W1, W2 and W3.

(a) W3-case. (b) W2-case.

(c) W1-case.

Figure 6.22: Results of the iterative model: effects of the variation of
the thermal expansion coefficient.

The model results to be highly sensitive to the thermal expansion

coefficients, in fact, as it is possible to observe for all of the cases tested,

a reduction of such a parameter (below 10%), moving from λ − 12 to

λ − 11, results in a sensible reduction of the unstable range and in a

reduction of the orbits amplitude when stable behaviour is highlighted.
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A further reduction, considering the λ−10 case, drives the system to-

wards the complete stability for all of the three cases. A comparison with

the amplitude of the uncoupled case has shown a maximum difference of

about 7.7 µm 0− pk for the W 2 case at 12200 rpm.

If the thermal expansion coefficient is reduced down to the half of the

value adopted as a reference, as for the λ − 06 case, negligible thermal

effects are obtained.

The analysed parameter play a role in the thermal bending, as shown

in Equation 6.10, that is comparable to the role of the differential tem-

perature, hence, it is supposed that a similar reduction of the differential

temperature can drive the system towards a stable behaviour. Such a

reduction, as shown in the work of De Jongh and Van Der Hoeven [18],

where a thermal barrier sleigh is presented, could be also obtained by

means of thermal barrier coatings. This solution would be more easily

applied at a problematic machine with respect to the sleeve and should

have a lower impact on the global system behaviour due to its thin film

nature. The main drawback lies in the fact that the reliability of such a

solution, along the whole service life of the machine, has yet to be proved.

The proposed code for the differential temperature evaluation (SNAP-

SHOT) could be used also in presence of thermal barriers. In fact, this

could be simply done considering a reduction of the module of the cal-

culated differential temperature on the base of the barrier conductivity

and thickness.



Conclusions

The field of the synchronous thermal instability, better known as Mor-

ton effect, is very complex and scarcely covered by the scientific literature.

In fact, although in recent years the phenomenon is attracting attention

from both the academic and industrial communities, as underlined by an

increasing number of publications on the topic, a lack of knowledge is

clearly highlighted in literature and the strategy to be adopted for its

prediction and analysis is yet debated.

The main objective of the present work, realized in collaboration with

GE Oil & Gas, is to develop predictive models for the Morton effect

with particular focus on the thermo-hydrodynamic analysis of thin-film

bearings. These components in fact, when operated on high performance

machines, are prone to the development of complex thermal phenomena,

which constitute the source for the whole process.

After a careful literature survey has been done, in order to better

understand the physics of the problem and its state of the art, an analysis

of the time scales involved in the process and of the orders of magnitude

of the equations has been considered. By means of these kind of analysis

an aware selection of the modelling strategies has been performed both in

terms of the physical genesis of the phenomenon (thermo-hydrodynamic

problem) and in terms of the global stability behaviour of the bearing-

rotor system. The main outcome of this part of the work is the conceptual

modelling of the complex physical system and the clear overview of the

needed models and of the modelling strategy.

Two numerical codes have been developed and presented in the thesis

165



166 Conclusions

following the results of the previously cited analysis. The first one is an

in-house code for the thermo-hydrodynamic analysis of PJBs and TPJBs,

named TILTPAD. The second one is an in-house code for the evaluation

of the differential temperature developed across the shaft during its syn-

chronous precession motion, named SNAPSHOT.

In particular, TILTPAD is a steady state FEM code with a 2D thin

film approach. It considers the effects of the local temperature on the

dynamic viscosity and accounts for super-laminar effects by means of a

simplified approach. The dynamic coefficients are also calculated follow-

ing the well-known pad assembly method. The objective of the code is to

give steady state equilibrium conditions in terms of relative eccentricity,

attitude angles and tilt angles of the pads, which are needed by SNAP-

SHOT, and dynamic coefficients, which are needed by the rotordynamic

models. These latter have been developed by the MDMlab of the Depart-

ment of Industrial Engineering of the University of Florence. The code

has been validated by means of comparison with available experimental

and numerical data showing good results both in terms of global bearing

parameters, such as equilibrium position of the shaft, frictional power

losses and dynamic coefficients, and in terms of local parameters, such

as pressure and temperature distributions inside of the oil film, result-

ing in a good trade-off between accuracy and computational costs. An

improvement of the potential of the code has been obtained with the

previously cited super-laminar modelling, which enabled to extend the

analysis range towards more extreme operating conditions and gave quite

accurate results with an almost negligible rise of the computational cost.

Furthermore, a methodology for the uncertainty quantification analysis

has been implemented, by means of a Monte Carlo method with response

surfaces, and a preliminary evaluation of the effects of the uncertainty of

the clearance and of the dynamic viscosity has been performed. This

analysis is innovative in the field of fluid film bearings, at least in au-

thor’s knowledge, and has given an interesting starting point to consider

these effects, which could have a return also on the comprehension of the

Morton effect.
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The second code (SNAPSHOT), on the base of the equilibrium con-

ditions received by TILTPAD evaluates, by means of a quasi-unsteady

approach, the differential temperature developed across the shaft dur-

ing its synchronous precession motion. The code has been validated by

means of comparison with numerical data found in literature showing its

ability to model the orders of magnitude of the problem.

Once the models for the thermo-hydrodynamic problem have been

developed and validated the stability of the system has been studied. The

two codes has been considered both for a linear stability analysis and for

an iterative approach. The linear stability analysis showed potential for

the prediction of the onset of the Morton effect, but more accurate results

have been obtained with the iterative model. In order to adopt such a

solution strategy the two numerical codes have been introduced inside of

a complex architecture developed in collaboration with the MDMlab of

the Department of Industrial Engineering of the University of Florence.

The validation of the iterative method has been obtained by means

of comparison with experimental data derived from a dedicated experi-

mental campaign carried out by GE Oil & Gas. Good results have been

obtained in terms of prediction of the Morton effect onset for all of the

three tested cases, allowing to obtain the prefixed results. The complete

system of analysis, characterized by a low computational cost, makes the

model interesting also to be adopted by the industry for the design and

verification phase of the product.

Finally, once the model has been proved to give reliable results in as-

sessing the system stability, it has been applied to evaluate the sensitivity

of the models to some key parameters of the Morton effect. In particular,

the sensitivity to the thermal expansion coefficient of the shaft has been

tested since there were no previous study in the open literature. The

analysis showed that a slight reduction, of about a 10%, of the thermal

expansion coefficient resulted in a strong reduction both of the extension

of the instability range and of the vibration amplitudes obtained within

the stable operation range. A further 10% reduction has driven the whole

system to a completely stable behaviour clearly showing the sensitivity
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of the models to the tested parameter.
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select the appropriate approach for the Morton effect prediction, and in

order to simplify the governing equations maintaining physical consis-

tency.

A.1 Time scales analysis

As previously stated, in order to improve the knowledge of the prob-

lem and allow an aware selection of the approach to be used for its pre-

diction and analysis, it is necessary to perform a study of the orders of

magnitude of the involved time scales.

A.1.1 Reference

The first step in the analysis is to evaluate some reference values

to be used as a comparison. The analysed phenomenon is driven by

synchronous vibrations and hence, time scales of the rotation are selected

for the purpose. Three different rotational speed are selected in order to

span some typical working range: 3000 rpm, 8000 rpm, 13000 rpm.

Table A.1 reports the rotational speed, frequencies and time scales

for the three selected reference cases. As it is possible to observe, the

reference time scales (τref ) of the phenomena related to the synchronous

precession motion are of the order of 10−2 s - 10−3 s.

Rotational speed [rpm] Frequency [Hz] Reference time scale [s]
3000 50 0.020
8000 133.3 0.0075
13000 216.7 0.0046

Table A.1: Reference values of rotational speed, frequency and time
scales.

Before time scales are evaluated, a brief introduction is presented.

Lets imagine a step change of one of the variables affecting the problem,

as for example the rotational speed, the static load or the dynamic load.

The rotordynamic system finds a new working condition characterized by

a new equilibrium point and orbit. About the oil flow, the fluid-dynamics
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is modified and the variation is transmitted through the whole system

transported by convection, diffusion and conduction terms. When these

perturbations reach the solid surfaces, which constitute the boundaries

of the fluid system, an interaction is performed by means of what we

will refer to as convective heat transfer terms. Finally, the perturbation

is diffused inside of the solid parts (shaft, pads and bush) by means

of conduction, which drives the thermal deformation of the system and

hence affects its rotordynamics behaviour which in turn affects again the

fluid-dynamics behaviour closing the loop. Elastic phenomena are not

considered in the present analysis since their time scale are lower than

the thermal ones and since thermal phenomena are the main topic of

the work. The complete analysis is proposed in the following adopting

a different section for each different field of application of the the time

scale.

A.1.2 Time scales of the conductivity within the solid do-

main

The time scales of the conduction within the solid parts are studied by

means of the unsteady heat equation. Since radial and axial dimensions

of fluid-film bearings are usually of the same order of magnitude, the

time scale is studied for the radial diffusion only. The equation adopted is

reported in polar coordinates in Equation A.1 where T is the temperature

of the solid component, r is the radial coordinate, t is the time variable,

and ρs, ks and cs are respectively the density, the conductivity and the

specific heat characteristic of the material of the solid component (shaft,

pads or bush).
∂T

∂t
=

ks
ρscs

(
∂2T

∂r2
+

1

r

∂T

∂r
) (A.1)

Considering as constant the material properties and by means of selection

of the following variables:

T̃ = ΘT̃ ∗ (A.2)

t = τ t∗ (A.3)
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r = Rjr
∗ (A.4)

where T̃ = T − Tref is the differential temperature with respect to a

reference temperature value and Rj is the journal radius, it is possible to

write the non-dimensional formulation proposed in Equation A.5.

Θ

τ

∂T̃ ∗

∂t∗
=

ks
ρscs

Θ

R2
j

(
∂2T̃ ∗

∂r∗2
+

1

r∗
∂T̃ ∗

∂r∗
) (A.5)

In order for the two terms to have the same orders of magnitude it is

necessary that the physical time scale related to the problem is written

in the following form:

τsc−shaft =
ρscsR

2
j

ks
(A.6)

where ρs is the density, cs and ks are respectively the specific heat ca-

pacity and the thermal conductivity of the material composing the shaft

and Rj is the journal radius.

Similar considerations can be done to find the conductive time scale of

the conduction inside of the pads and of the bush of the bearing (reported

in Equation A.7).

τsc−pads/bush =
ρscs(∆R)2

ks
(A.7)

Here, ∆R is the thickness of the pads (or of the bush). Since this latter

is usually a fraction of the journal radius it is possible to understand that

the bottleneck of the phenomenon is the thermal inertia of the shaft.

About the tangential and axial conduction, it is possible to consider

similar results of the one obtained in Equation A.6. In fact, the axial

length, the tangential extension (of shaft and pads) and the radial length

of the bearing are usually of the same order of magnitude.

A.1.3 Time scales of the interaction within fluid and solid

domains

Here is presented what will be referred to as the ”convective time

scale”. Once the fluid has changed its own temperature, time is needed

for the heat exchange between the fluid and solid surfaces to happen. It
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is then the solid surface to drive the conductive action analysed in the

previous section.

In the work of Ettles et al. [98] the surface temperature variation of

both shaft and bush, driven by a step change of the fluid temperature, is

presented as a function of the Nusselt number. According to the proposed

diagrams and according to the value of the Nusselt number proposed in

the same work as an upper bound value for fluid film bearings, it is

possible to derive the time scales of the convective terms. These result

to have a lower bound of the same order of magnitude of the conductive

scales presented in Equation A.6.

In the same work [98], diagrams of the proportional thermal strain

are also presented as a function of the Nusselt number. Once more,

time scales similar to the one of the solid conduction mechanism are

found. This is an expected result since it is the thermal diffusion which

generates the temperature variation and hence the thermal deformation.

In Equation A.8 the thermal strain ǫT is presented as a function of the

thermal expansion coefficient λ, of the temperature variation ∆T and of

the proportional thermal strain ǫ∗T . This latter ranges from zero to one

that is from a no strain condition to a complete thermal expansion or

contraction.

ǫT = λ∆Tǫ∗T (A.8)

A.1.4 Time scales of the phenomena within the fluid do-

main

The thermal time scales related to the energy equation of the fluid are

analysed starting from its non-dimensional form presented in Equation

A.9. The procedure to obtained the proposed formulation and the intro-

duced non-dimensional parameters are shown and detailed further, when

the analysis of the orders of magnitudes of the equations is presented.

Pe(
∂T̃ ∗

∂t∗
+ u∗

1
∂T̃ ∗

∂x∗

1

+ u∗

2
∂T̃ ∗

∂x∗

2

+ u∗

3
∂T̃ ∗

∂x∗

3

) =
∂2T̃ ∗

∂x∗2
2

+Br[µ∗(
∂u∗

1

∂x∗

2

)2 + µ∗(
∂u∗

3

∂x∗

2

)2]

(A.9)
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By means of comparison between the unsteady term with the convective,

conductive and dissipative one it is possible to evaluate the expected

time scales. About the convective terms, the same order of magnitude

of the reference time scale is obtained. It means, as expected, that the

thermal convection is driven by the shaft rotation and hence has the same

characteristic time.

Instead, about the dissipative and conductive terms it is possible to

obtained the following formulations:

τfc =
ρc

k
C2

b (A.10)

τfd =
ρc

µ

C2
b

U2
(A.11)

where U is the peripheral speed of the shaft, Cb is the assembled bearing

clearance and ρ, k, c and µ are respectively the density, conductivity,

specific heat and dynamic viscosity of the fluid.

A.1.5 Results

The results obtained from the time scale analysis are summarized in

Table A.2 according to some of the test-case presented in Chapter 3.

time scale type symbol value [s] normalized value τ/τref [-]
reference τref 10−3 − 10−2 1

fluid convection τfcv 10−3 − 10−2 1
fluid conduction τfcd 10−1 10−2 − 10−1

fluid dissipation τfd 10−3 10−1 − 100

convective heat transfer τcht ≥ 102 ≥ 104

solid conduction τsc 102 − 103 104 − 106

thermal deformation τtd 102 − 103 104 − 106

Table A.2: Comparison among the thermal time scales of the problem.

The main outcome, as expected, is that thermal inertia of the metallic

parts is responsible for very long conductive time scales and hence, this

specific physical process results to be the bottleneck of the phenomenon.
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A.2 Dimensionless equations

An analysis of the orders of magnitude of the governing equations

of the incompressible lubrication problem is performed in this section.

Continuity and momentum equations will be firstly considered together

with some considerations about the consequent simplifications, then, the

energy equation will be analysed for the same purpose.

The following conditions constitute some classical hypothesis for this

kind of problems:

• h/B ≃ Cb/B << 1

• h/Rj ≃ Cb/Rj << 1

• Incompressible fluid

• Newtonian fluid

• Stokes relation

• Fourier’s law

• Laminar flow

• Constant specific heat capacity of the oil

• Constant thermal conductivity of the oil

The main consequence of the geometrical condition related to the length

scale of the problem (Cb/Rj << 1) is the opportunity to neglect curvature

effects and hence, adopt Cartesian coordinates. A sketch of the problem

with its reference system is shown in Figure A.1.

A.2.1 Continuity and momentum equations

The general conservative form of the continuity and momentum equa-

tions are shown in Equations A.12 A.13, expressed with the Einstein

notation:
∂ρ

∂t
+

∂ρuj

∂xj
= 0 (A.12)
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Figure A.1: Sketch of a lubrication problem and its reference system.

∂ρui

∂t
+

∂ρuiuj

∂xj
=

∂τij
∂xj

+ ρfi (A.13)

where the stress tensor τij with the Newtonian fluid hypothesis and the

Stokes relation is represented by Equation A.14.

τij = −pδij + µ(
∂ui

∂xj
+

∂uj

∂xi
)−

2

3
µ(

∂uj

∂xj
)δij (A.14)

The flow is incompressible, hence, the continuity equation simplify as

follows:
∂uj

∂xj
= 0 (A.15)

Moreover, rearranging the momentum equations, considering a constant

density, it is possible to obtain the following expression:

∂ui

∂t
+

∂uiuj

∂xj
= −

1

ρ

∂p

∂xi
+

1

ρ

∂[µ( ∂ui

∂xj
+

∂uj

∂xi
)]

∂xj
+ fi (A.16)

Dimensional variables are written in terms of non-dimensional ones as

defined in Equations A.17, A.18 for both spatial coordinates and veloci-

ties.

x1 = x∗

1Rj x2 = x∗

2Cb x3 = x∗

3B ≃ x∗

3Rj (A.17)

u1 = u∗

1U u2 = u∗

2V u3 = u∗

3W ≃ u∗

3U (A.18)

In the presented definitions Rj is the bearing radius, U = ΩRj is the

sliding velocity of the runner surface, Cb is the bearing clearance and B
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is the axial extension of the bearing.

By means of substitutions of the defined variables and rearranging,

the continuity equation can be written in its non-dimensional form, shown

in Equation A.19.

V

Cb

∂u∗

2

∂x∗

2

+
U

Rj
(
∂u∗

1

∂x∗

1

+
∂u∗

3

∂x∗

3

) = 0 (A.19)

In order to have all the terms in the continuity equation of the same

order of magnitude the cross-film velocity V must be defined as in Equa-

tion A.20. Thus, the cross-film velocity results much smaller than the

tangential and axial ones (V << U).

V =
U

Rj
Cb (A.20)

For the momentum equation some other variables need to be defined in

terms of their nondimensional representation (Equation A.21). Here, τ

is the characteristic time, which for bearings is τ = Rj/U = 1/Ω, g is the

gravitational acceleration and µ0 is the oil viscosity.

t = t∗τ p = p∗
µoilURj

C2
b

µ = µ∗µoil fi = f∗

i g (A.21)

By means of substitution and manipulation, considering the momentum

equation in the x1 direction, Equation A.22 is obtained.

ρΩC2
b

µoil

∂u∗

1

∂t∗
+

ρUC2
b

µoilRj
(u∗

1
∂u∗

1

∂x∗

1

+ u∗

2
∂u∗

1

∂x∗

2

+ u∗

3
∂u∗

1

∂x∗

3

) = −
∂p∗

∂x∗

1

+
∂(µ∗ ∂u∗

1

∂x∗

2

)

∂x∗

2

+

+ (
Cb

Rj
)2[2

∂(µ∗ ∂u∗

1

∂x∗

1

)

∂x∗

1

+
∂(µ∗ ∂u∗

2

∂x∗

1

)

∂x∗

2

+
∂(µ∗ ∂u∗

1

∂x∗

3

)

∂x∗

3

+
∂(µ∗ ∂u∗

3

∂x∗

1

)

∂x∗

3

] +
ρgC2

b

µoilU
f∗

1

(A.22)

Since for journal bearings the term Cb/Rj is usually of the order of 10−3,

the term (Cb/Rj)
2 << 1 and hence can be neglected. Furthermore, the

following terms are defined: the flow Reynolds number (Re), the modified
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Reynolds number (Re∗), the squeeze film Reynolds (Res) and the Froude

number (Fr).

Re =
ρUCb

µoil
(A.23)

Re∗ = Re(
Cb

Rj
) (A.24)

Res =
ρΩC2

b

µoil
(A.25)

Fr =
U2

gRj
(A.26)

By means of substitution of Equations A.23, A.24, A.25, A.26 in Equa-

tion A.22, the nondimensional momentum equation in the x1 direction is

obtained (Equation A.27):

Res
∂u∗

1

∂t∗
+Re∗[(u∗

1
∂u∗

1

∂x∗

1

+u∗

2
∂u∗

1

∂x∗

2

+u∗

3
∂u∗

1

∂x∗

3

)] = −
∂p∗

∂x∗

1

+
∂(µ∗ ∂u∗

1

∂x∗

2

)

∂x∗

2

+
Re∗

Fr
f∗

1

(A.27)

Same considerations can be done for the momentum equation in direction

x3, driving to the Equation A.28.

Res
∂u∗

3

∂t∗
+Re∗[(u∗

1
∂u∗

3

∂x∗

1

+u∗

2
∂u∗

3

∂x∗

2

+u∗

3
∂u∗

3

∂x∗

3

)] = −
∂p∗

∂x∗

3

+
∂(µ∗ ∂u∗

3

∂x∗

2

)

∂x2
+

Re∗

Fr
f∗

3

(A.28)

In Table A.3, proposed at the end of this section, the values of the typical

non-dimensional groups evaluated on some plain and tilting pad bearings

found in literature are reported. It has to be noted that for the given

definition of τ in bearings application the two defined Reynolds number

Re∗ and Res result to be identical.

As it is possible to observe, except for the test cases of Daniel and

Cavalca [47] and Taniguchi et al. [51] where inertial effects are of im-

portance, for the majority of the presented cases the modified Reynolds

number is about one order of magnitude below the unitary value. Hence,

the inertial terms can be disregarded. Furthermore, according to the

values of Fr number the terms related to the volume forces can be even
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more neglected. Hence, momentum equations can be further simplified,

obtaining the final dimensional momentum Equations A.29, A.30:

∂p

∂x1
=

∂(µ∂u1

∂x2

)

∂x2
(A.29)

∂p

∂x3
=

∂(µ∂u3

∂x2
)

∂x2
(A.30)

About the x2 direction, momentum equation can be further simplified. In

fact, as it is possible to observe from the non-dimensional form presented

in Equation A.31, similar non-dimensional groups, with respect to the

x1 and x3 directions, are highlighted multiplied by factors Cb/Rj and

(Cb/Rj)
2 which further reduce their order of magnitude.

ρΩC2
b

µoil
(
Cb

Rj
)2

∂u∗

2

∂t∗
+

ρUC2
b

µoilRj
(
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Rj
)2(u∗
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∂u∗

2
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+ u∗

2
∂u∗

2
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2

+ u∗

3
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2
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3

) = −
∂p∗

∂x∗

2

+
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Rj
)4

∂(µ∗ ∂u∗
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∂x∗

1

)

∂x∗
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1

+ 2
∂(µ∗ ∂u∗

2
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2

)

∂x∗

2

+ (
Cb

Rj
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∂(µ∗ ∂u∗

2

∂x∗

3

)

∂x∗

3

+

+
∂(µ∗ ∂u∗

3

∂x∗

2

)

∂x∗

3

] +
ρgC2

b

µoilU

Cb

Rj
f∗

2

(A.31)

As a consequence, the final viscous terms of the momentum equation in

the cross film direction results to be even more simplified with respect to

the other two directions, as shown in Equation A.32. The dimensional

formulation shown in Equation A.33 is finally obtained considering the

characteristic values of the non-dimensional groups of the lubrication

problem.

Res(
Cb

Rj
)2
∂u∗

2

∂t∗
+Re∗(

Cb

Rj
)2(u∗

1
∂u∗

2

∂x∗

1

+ u∗

2
∂u∗

2

∂x∗

2

+ u∗

3
∂u∗

2

∂x∗

3

) = −
∂p∗

∂x∗

2

+
Re∗

Fr

Cb

Rj
f∗

2

(A.32)

∂p

∂x2
= 0 (A.33)

One of the main outcome of such analysis, together with the simplification
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of the momentum equations is that pressure variation across the fluid

film result to be negligible (p(x, y, z, t) ≃ p(x, z, t)), thus enabling a two-

dimensional thin-film approach.

A.2.2 Energy equation

The energy equation adopted to start the analysis is written for the

incompressible lubrication problem in terms of differential temperature

and is shown in Equation A.34.

ρc(
∂T̃

∂t
+ uj

∂T̃

∂xj
) =

∂(k ∂T̃
∂xj

)

∂xj
+ Φij (A.34)

The term Φij represents the dissipation function, k is the conductivity of

the oil, c is the specific heat capacity and T̃ = T − Tref , where Tref is a

reference temperature.

In order to enable the non-dimensionalization together with the vari-

ables defined in Equations A.17, A.18 and A.21 a new variable needs to

be defined:

T̃ = T̃ ∗Θ (A.35)

By means of substitution and manipulation, considering the order of mag-

nitude of V evaluated with the continuity equation, the energy equation

is written as follows:

ρc
Θ

τ

∂T̃ ∗

∂t∗
+ ρc

UΘ
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(A.36)
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By means of simplification of the lower order terms and considering the

definition adopted for the reference time within the journal bearing field,

Equation A.37 is obtained as follows:

ρc
UΘ

Rj
(
∂T̃ ∗

∂t∗
+ u∗

1
∂T̃ ∗

∂x∗

1

+ u∗

2
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3
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b

∂2T̃ ∗
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2

+
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[µ∗(
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2

)2 + µ∗(
∂u∗

3

∂x∗

2

)2]

(A.37)

Non-dimensional terms related to the energy equation are defined in

Equations A.38, A.39, A.40 and A.41.

Pr =
cµoil

k
(A.38)

Pe =
ρc

k

UC2
b

Rj
= PrRe∗ (A.39)

Ec =
U2

cΘ
(A.40)

Br =
µoilU

2

kΘ
= PrEc (A.41)

The Peclet number (Pe) is the ratio of advective transport rate and dif-

fusive transport rate, while the Brinkman number (Br) is the ratio of

viscous dissipation rate to thermal conduction.

If further manipulation is done, together with the substitution of the

defined non-dimensional terms, the non-dimensional energy equation is

finally obtained (Equation (A.42)).

Pe(
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2
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1
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2

)2 + µ∗(
∂u∗

3

∂x∗

2

)2]

(A.42)

The numerical values of the characteristic groups for some cases found

in literature are shown in Table A.3. Particular focus is devoted to the

Pe and Br numbers although also Pr and Ec numbers are reported. The

variation of both the numbers is substantial: the Pe number varies from

14.9 of Fitzgerald and Neal [45] to 1557 of Taniguchi et al. [51] (for lower
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rotational speed, not reported in the table, a value of 3.7 is found for

the case of Fitzgerald and Neal [45]), while the Br number varies from

3.8 of the Lund and Tonnesen [46] case up to 155 of the work of Daniel

and Cavalca [47] (again, for lower rotational speed a unitary value of Br

is obtained for the case of Fitzgerald and Neal [45]). This highlights the

opportunity for some specific cases to adopt the adiabatic solution, which

has been introduced as the first approximation to solve the problem, even

if, more in general, the complete three dimensional energy equation to

be adopted is shown in Equation A.43.

ρc(
∂T

∂t
+ u1

∂T

∂x1
+ u2

∂T

∂x2
+ u3

∂T

∂x3
) = k

∂2T

∂x2
2

+ [µ(
∂u1

∂x2
)2 + µ(

∂u3

∂x2
)2]

(A.43)

Of course if a steady state problem is studied, as in this case, the first

term of the equation is neglected.

Furthermore, if the differential temperature developed along the tan-

gential, radial and axial directions are no more represented by the generic

term Θ, but have the specific representation of respectively Θ1, Θ2 and

Θ3 then an evaluation of the goodness of the approximation adopted

when dealing with the convective terms can be obtained. The radial and

axial differential temperature have been evaluated in terms of the tan-

gential one by means of a coefficient C12 and C13 as shown in Equation

A.44:

Θ2 = C12Θ1 Θ3 = C13Θ1 (A.44)

A research of some typical values has been done in literature between

experimental and numerical results. Some of the evaluated papers are:

He et al. [78], Ettles [59], Fillon et al. [48] and Daniel and Cavalca [47].

Values of C12 between 0.3 and 0.5 are highlighted, while values of C13

result to be ranging between 0.16 and 0.3. Hence, if an approximation

has to be chosen it is better to consider the radial temperature variation

than the axial one.
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A.3 Non-dimensional characteristic groups

An analysis of the values of the non-dimensional groups characteristic

of the problem is presented. Data have been taken from literature and

are referred to the works listed below.

1. Ferron et al. [44] (PJB): referred to as TC01

2. Fitzgerald and Neal [45] (PJB): referred to as TC02

3. Lund and Tonnesen [46] (PJB): referred to as TC03

4. Daniel and Cavalca [47] (TPJB): referred to as TC04

5. Fillon et al. [48] (TPJB): referred to as TC05

6. Knight [49] (TPJB): referred to as TC06

7. Monmousseau et al. [50] (TPJB): referred to as TC07

8. Taniguchi et al. [51] (TPJB): referred to as TC08

TC01 TC02 TC03 TC04 TC05 TC06 TC07 TC08

Cb/R 0.0029 0.001 0.0013 0.0015 0.0016 0.0016 0.0016 0.0026
Re 93 59 81 606 51 60 51 1429
Re∗ 0.27 0.05 0.1 0.9 0.1 0.1 0.1 3.7
Ta 5 1.9 3 24 2 2.4 2 72
Fr 895 2728 1398 6875 895 2721 895 2412
Pr 430 252 244 540 426 396 426 426
Pe 116 15 26.5 498 34.6 37.6 34.6 1556
Br 9.4 5.3 3.8 155 3.7 9.1 6.2 48
Ec 0.02 0.02 0.01 0.3 0.01 0.02 0.01 0.11

Table A.3: Main nondimensional groups of the lubrication problem for
some typical test cases found in literature.
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As explained in Chapter 3, in case the code is used as a plain bearing

solver, the simplified mixing model (i.e., the one based on the Petroff’s

type hypothesis) is slightly modified.

B.1 Description of the problem

The need for the development of a novel mixing model is substan-

tially due to some geometrical considerations. The typical film-thickness

distribution along the tangential direction of the pad in case a TPJB is

evaluated has been shown in Chapter 3, when the improved mixing model

has been described. For these kind of bearings the trailing edge of the pad

has a film-thickness that is usually similar to its minimum film-thickness,

185
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and hence, considering the Petroff’s type hypothesis, the flow rate consid-

ered at the trailing edge (on the base of the trailing edge film-thickness)

is quite representative of the real flow rate observed downstream of the

pad.

When plain journal bearings are considered the previously highlighted

consideration is no more effective, and the model, based on the inlet and

outlet film-thickness, needs to be changed.

B.2 Mixing model for PJBs

The novel model considers different mixing models on the base of the

region of the bearing. As shown in Figure B.1, a bearing can have a

loaded region, defined as the region where the minimum film-thickness

is obtained, and zero, one or more unloaded regions, on the base of the

number of sectors (or grooves) composing the bearing.

Figure B.1: Schematic of the geometrical configuration for the mixing
model of plain journal bearings.

In case a PJB is solved two mixing models are adopted: the first one

is based on continuity and thermal balance downstream of the loaded

region, while the second is a percentage model adopted downstream of

the unloaded sectors.

When the model based on the balance in the groove is considered, the

improved mixing model presented for TPJBs is adopted considering the

minimum film-thickness instead of the one at the trailing edge of the pad.
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The inlet temperature formulation obtained is shown in Equation B.1.

Tin =
hmin

hin
Tout +

hin − hmin

hin
Toil (B.1)

Downstream of the unloaded region the percentage model shown in Equa-

tion B.2 is adopted, where η represents the percentage coefficient of hot

oil at the inlet of the following section.

Tin = ηTout + (1− η)Toil (B.2)

Since a percentage approach has been considered, although only down-

stream of the unloaded regions, the model needs to be assessed in com-

parison with experimental data in order to obtained the value of η to be

adopted for the simulations. Figure B.2 shows the results of the model

assessment, which has been performed on the Lund and Hansen [57] test

case, in terms of normalized relative eccentricity and frictional power

losses at 3500 [rpm] and 5600 [N ]. The obtained value of hot oil at the

Figure B.2: Results of the mixing model assessment.

inlet section is about 70% represented by a value of η = 0.7. All of the

results for plain journal bearings shown in Chapter 3 are obtained with

the present model configuration.
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B.3 Literature models

Three models found in the open literature have been also tested. The

first one is referred to the work of Brito [99], where a mixing model

based on a fixed percentage of hot and cold oil is presented, the second

one is referred to the work of Balbahadur [19], where the temperature of

the inlet oil flow is evaluated by means of an effective temperature raise

(discussed in Chapter 3) and the third is referred to the work of Heshmat

and Pinkus [100], where an experimental correlation is given.

The first model is taken from the work of Brito [99]. In his work

a percentage model is presented with the inlet temperature defined as

shown in Equation B.3, where η = Qout/Qin.

Tin = ηTout + (1− η)Toil (B.3)

The second model is taken from the work of Balbahadur [19]. In his

work, inlet temperature is considered to be the sum of lubricant supply

temperature and the estimated average temperature raise on the bearing

(∆Tave), this latter multiplied by a scaling ratio that is function of the

minimum inlet film thickness hmin−in and of the inlet film-thickness hin

of the analysed pad. The obtained formulation is shown in Equation B.4.

Tin = T0 +
hmin−in

hin
·∆Tave (B.4)

The last model, is taken from the work of Heshmat and Pinkus [100] and

is based on an experimental correlation. Here, an extensive discussion on

the mechanism of the mixing is given, presenting some features charac-

teristic of the real process, as for example: the hot oil layer attached to

the shaft, the cold oil layer entering in the inlet section, the recirculation

at the leading edge, the back flow upstream of the groove, the cavitation,

three-dimensional effects, heat exchange with the walls of the groove and

dissipation inside of the mixing groove.

About the model, starting from the thermal balance on the mixing

groove (Equation B.5), the value of the inlet temperature is obtained by
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means of the following equation:

cQout(Tout − Tref ) + cQoil(Toil − Tref ) = cQin(Tin − Tref ) (B.5)

According to the authors, the inlet temperature obtained (Tin) is not

realistic due to the mechanisms previously highlighted, which the simple

thermal balance cannot account for. Hence, an experimental correlation

has been defined in terms of the parameter ι which is a function of the tan-

gential velocity U and of the feeding oil temperature Toil. The obtained

inlet temperature is shown in Equation B.6 where Tref = −17.7◦C.

Tin =
QoilToil +QoutTout − ( 160

9
)ιQin

Qin(1 + ι)
(B.6)

The results of the comparison among the tested literature models are

shown in Figure B.3. The percentage model obviously fits the assess-

(a) Relative eccentricity. (b) Frictional power losses.

Figure B.3: Comparison of the three models found in literature.

ment condition (3500 [rpm] and 5600 [N ]) but results are not in good

agreement with experiments particularly for the frictional power losses

where the trend is also mispredicted. About the eccentricity ratio a max-

imum difference with respect to the experimental data of about 6% is

obtained for low loads.

The other two models show good trend prediction for both the relative

eccentricity and the power losses, with 13% and 16% underestimantion
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of the relative eccentricity, respectively obtained for the Balbahadur [19]

model and for the Heshmat and Pinkus [100] model. Moreover, overesti-

mation of about 17% to 30% is obtained for the frictional power losses re-

spectively by Balbahadur [19] and Heshmat and Pinkus [100] models.
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