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Abstract	
	

	

	

	

The	 interest	 in	 RAMS	 (Reliability,	 Availability,	 Maintainability	 and	 Safety)	 and	 diagnostics	

parameters	is	growing	in	many	different	manufacturing	fields.	These	branches	of	knowledge	

are	nowadays	crucial	 and	play	a	 fundamental	 role	 in	 industrial	 engineering	becoming	 focal	

part	of	performance	requirements.		

Modern	 technologies	 and	 business	 requirements	 are	 producing	 a	 growth	 in	 variety	 and	

complexity	of	manufacturing	product	and	this	trend	increased	number	and	variety	of	failures.	

System	 downtime	 and	 unplanned	 outages	 massively	 affect	 plant	 productivity.	 In	 many	

Oil&Gas	 applications	 an	 emergency	 shutdown	 produces	 an	 interruption	 of	 normal	 running	

operation,	a	considerable	productivity	reduction	and	a	loss	of	thousands	dollars	[1-2].		

This	 is	 the	 reason	 why	 RAMS	 disciplines	 together	 with	 fault	 diagnosis	 and	 condition	

monitoring	 are	 almost	 mandatory	 in	 Oil&Gas	 applications	 where	 products	 are	 forced	 to	

endure	extreme	process	and	environmental	conditions	[3].	

	

This	thesis	is	focused	on	availability	improvement	and	takes	into	account	maintainability	and,	

in	particular,	reliability	roles	in	order	to	achieve	this	kind	of	target.		

The	 goal	 is	 to	 develop	 a	 procedure	 for	 availability	 improvement	 that	 engineers	 may	 used	

during	the	early	stages	of	product	design.	

		

Availability	means	that	a	system	is	“on-line”	if	it	is	involved	in	continuous	running	condition	

or	“ready	to	use”	in	case	of	on-demand”	usage.		

As	said	before,	in	modern	systems	there	are	a	great	variety	of	factors	that	can	take	a	system	

off-line,	ranging	from	scheduled	maintenance	downtime	to	catastrophic	failures.		

The	goal	of	 improving	system	availability	 is	to	detect	 incipient	failures,	minimize	downtime	

and	minimize	the	time	needed	to	restore	the	system	to	normal	working	conditions.		

Obviously	 the	 margin	 of	 downtime	 tolerance	 is	 directly	 associated	 with	 the	 system	

application	 and	 this	 requirement	 impose	 the	 complexity	 and	 the	 corresponding	 cost	 of	 the	

solution	[4-6].	

Reliability	prediction	is	the	main	focus	of	this	study	since	it	turned	out	to	be	best	method	in	

RAM	 (Reliability,	 Availability	 and	 Maintainability)	 analysis	 for	 industrial	 applications:	

reliability	 prediction	 is	 very	 helpful	 in	 order	 to	 evaluate	 design	 feasibility,	 compare	 design	

choices,	 identify	potential	 failure	areas,	 trade-off	 system	design	 factors	and	 track	 reliability	

improvement.		

This	 is	the	reason	why	the	best	solution	to	improve	system	availability	 in	the	early	product	

design	 stages	 turned	 out	 to	 be	 reliability-oriented	 since	 it	 provides	 reliability	 feedback	 to	

design	engineers	in	order	to	reduce	re-design	costs	and	time	for	upgrades.		
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This	thesis	is	organized	as	follows:	Chapter	1	contains	a	brief	description	of	Life	Data	Analysis	

focusing	on	the	comparison	of	two	failure	distributions,	Exponential	and	Weibull.	

The	second	Chapter	shows	the	best	Availability	improvement	methods	starting	from	standby	

redundancy	and	comparing	cold	and	warm	standby	solutions.	

Chapter	 3	 deepens	 the	 Reliability	 Allocation	 procedures	 starting	 from	 a	 review	 of	 the	

methods	described	in	literature	and	showing	a	new	solution	to	achieve	allocation	parameters	

in	 complex	 systems;	 this	 Chapter	 contains	 also	 the	 description	 of	 a	 new	 Reliability	

Importance	 procedure	 (Credible	 Improvement	 Potential)	 and	 its	 application	 on	 Auxiliary	

Systems	of	a	gas	turbine.	

Chapter	 4	 describes	 the	 Condition-based	 Maintenance	 using	 Markov	 models	 with	 some	

applications	 in	 case	 of	 complex	 repair	 solutions	 and	 standby	 spares;	 Chapter	 5	 shows	 the	

basis	of	fault	detection,	isolation,	reconfiguration,	diagnostics	and	Condition	Monitoring.	This	

Chapter	contains	both	on-board	and	logic	solver	diagnostics	with	a	detailed	application	on	a	

gas	 turbine	 safety	 loop	 and	 corresponding	 Probability	 of	 Failure	 on	 Demand	 (PFD)	

assessment	[7-8].		

The	 final	 Chapter	 describes	 the	Reliability	Assessment	 Loop	with	 the	 brand	 new	 approach	

proposed	 and	 show	 the	 potential	 of	 the	 tool	 that	 was	 developed	 to	 achieve	 a	 reliability	

prediction	in	the	early	product	design	stages.	
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Chapter	1	
	

Life	Data	Analysis	
	

	

	

	

1.1 Reliability	introduction	
	

The	 analysis	 of	 RAMS	 –	 Reliability,	 Availability,	 Maintainability	 and	 Safety	 requires	 and	

introduction	of	some	basic	concepts	that	are	relevant	in	particular	for	reliability	purposes	i.e.	

time	to	failure	T,	reliability	function	R(t)	and	failure	rate	λ(t).		

The	following	definitions	are	the	reference	for	the	whole	document.	

	

The	state	of	an	item	at	time	t	may	be	described	by	the	state	variable	X(t),	generally	a	random	

variable	[9]:	

X t =
	1				if	the	item	is	functioning	at	time	t				

								
0				if	the	item	is	in	a	failed	state	at	time	t			

																															(1)	

	

Time	to	failure	T	is	a	random	variable	which	defines	the	time	period	starting	from	the	instant	

in	which	the	item	is	put	into	operation	up	to	the	instant	it	fails	for	the	first	time.		

If	T	 is	continuously	distributed	with	probability	density	 f(t)	and	distribution	 function	 is	 the	

following:	

F t = Pr T ≤ t = f u du			:
; for	t > 0																																(2)	

	

While	the	probability	density	function	is	defined	as	follows:	

	

f t = =>(:)
=:

= lim
∆:→;

> :C∆: D> :
∆:

= lim
∆:→;

EF	(:GHG:C∆:)
∆:

																					(3)	

	

F(t)	represents	the	probability	that	the	item	fails	within	the	time	interval	(0,	t].		

The	reliability	function	of	an	item	is	defined	by:	

	

R t = 1 − F t = Pr T > t 			for	t > 0																																				(4)	
	

R t = f u 	duK
: 																																																																	(5)	

	

R(t)	is	the	probability	that	the	item	does	not	fail	in	the	time	interval	(0,	t]	or	the	probability	

that	the	item	survives	the	time	(0,	t]	and	is	still	functioning	at	time	t	[9].	
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The	probability	that	an	item	will	fail	in	the	time	interval	(t,	t+Δt],	with	the	hypothesis	that	the	

item	is	functioning	at	time	t,	is	the	following:	

	

LM N < P ≤ N + ∆N P > N) = R SC∆S DR(S)
T(S)

																																							(6)	

	

By	 dividing	 this	 probability	 by	 the	 length	 of	 the	 time	 interval	 Δt,	 and	 letting	 Δt→0,	 the	

following	failure	rate	function	λ(t)	of	the	item	is	obtained:	

	

	U N = VWX
YS→;

R SC∆S DR(S)
YS

Z
T(S)

= [(S)
T(S)

																																									(7)	

Considering	Eq.	3:	

	

f t = =>(:)
=:

= =(ZD\ : )
=:

= −R′(t)																																																(8)	

Then	considering	Eq.	7:	

	

λ t = − \_ :
\ :

= − =
=:
ln(t)																																																					(9)	

Since	R(0)=1,	then:	

	

λ u 	du = − ln(R(t)):
; 																																																					(10)	

	

And	

R t = exp − λ u 	du:
; 																																																		(11)	

	

The	reliability	function	R(t)	and	distribution	function	F(t)	are	therefore	uniquely	determined	

by	the	failure	rate	function	λ(t)	[9].	

To	 determine	 the	 form	 of	 λ(t)	 it	 is	 necessary	 to	 carry	 out	 this	 experiment:	 considering	 n	

identical	 items	 functioning	 at	 time	 t=0,	 n(i)	 the	number	of	 down	elements	 and	Tij	 the	 time	

when	the	j-th	element	is	functioning	in	the	interval	i,	then	it’s	possible	to	define:	

	

λ i = b(c)
Hdef

egh
																																																												(12)	

	

	

1.2 Bathtub	curve	
	

The	 bathtub	 curve	 shown	 in	 Figure	 1	 describes	 the	 trend	 of	 the	 failure	 rate	 of	 an	 entire	

population	of	products	over	time	[2].	The	bathtub	curve	is	characterized	by	three	sections:	

• Infant	mortality	period	with	a	decreasing	failure	rate;	

• Normal	life	period	(also	known	as	"useful	life")	with	a	low,	relatively	constant	failure	rate;		

• Wear-out	period	that	exhibits	an	increasing	failure	rate.	
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Figure	1.	The	bathtub	curve	

	

Failures	 during	 infant	mortality	 are	 highly	 undesirable	 and	 are	 always	 caused	 by	material	

defects,	design	blunders,	errors	in	assembly,	etc.		

Normal	 life	 failures	 are	 normally	 considered	 to	 be	 random	 cases	 of	 "stress	 exceeding	

strength."		

Wear-out	is	a	fact	of	life	due	to	fatigue	or	deterioration	of	materials	[10].		

As	 said	 before,	 failures	 during	 infant	mortality	 are	 caused	 by	 defects	 designed/built	 into	 a	

product.	 Therefore,	 to	 avoid	 infant	 mortalities,	 the	 product	 manufacturer	 must	 determine	

methods	 to	 eliminate	 these	 defects:	 appropriate	 specifications,	 adequate	 design	 tolerance	

and	 sufficient	 component	 derating	 can	 help	 and	 should	 always	 be	 used	 but	 even	 the	 best	

design	intent	can	fail	to	cover	all	possible	interactions	of	components	in	operation.		

In	 addition	 to	 the	 best	 design	 approaches,	 stress	 testing	 should	 be	 started	 at	 the	 earliest	

development	phases	 in	order	to	evaluate	design	weaknesses	and	uncover	specific	assembly	

and	materials	problems;	these	tests	are	called	HALT	(Highly	Accelerated	Life	Test)	or	HAST	

(Highly	 Accelerated	 Stress	 Test)	 and	 should	 be	 applied	 with	 increasing	 stress	 levels	 until	

failures	arise	[11-12].		

After	the	beginning	of	the	manufacturing	process,	a	stress	test	can	still	be	valuable;	there	are	

two	 distinct	 uses	 for	 stress	 testing	 in	 production.	 One	 purpose	 (often	 called	 HASA,	 Highly	

Accelerated	Stress	Audit)	is	to	identify	defects	caused	by	assembly	or	material	variations	that	

can	 lead	 to	 failure	and	 to	 take	action	 to	 remove	 the	root	causes	of	 these	defects.	The	other	

purpose	 (often	 called	 “burn-in”)	 is	 to	 use	 stress	 tests	 as	 an	 ongoing	 screen	 to	 weed	 out	

defects	in	a	product	where	the	root	causes	cannot	be	eliminated	[13].	

Some	reliability	specialists	 like	to	point	out	that	real	products	don't	exhibit	constant	 failure	

rates.	This	 is	quite	 true	 for	a	mechanical	part	where	wear-out	 is	 the	primary	 failure	mode.	

And	all	kinds	of	parts,	mechanical	and	electronic,	are	subject	to	infant	mortality	failures	from	

intrinsic	defects.	There	are	other	cases,	especially	in	electronic	products,	where	a	"constant"	

failure	rate	may	be	appropriate	(although	approximate).	This	 is	 the	basis	 for	standards	and	

other	methods	to	estimate	system	failure	rates	from	consideration	of	the	types	and	quantities	

of	components	used.	
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For	many	electronic	components,	wear-out	is	not	a	practical	failure	mode.	The	time	that	the	

product	is	in	use	is	significantly	shorter	than	the	time	it	takes	to	reach	wear-out	modes.	

In	the	long	run,	everything	wears	out.	For	many	electronic	designs,	wear-out	will	occur	after	

a	 long,	 reasonable	use-life.	For	many	mechanical	assemblies,	 the	wear-out	 time	will	be	 less	

than	the	desired	operational	 life	of	 the	whole	product	and	replacement	of	 failed	assemblies	

can	be	used	to	extend	the	operational	life	of	the	product.	The	shortest-lived	component	will	

determine	the	location	of	the	wear-out	time	in	a	given	product	so	in	designing	a	product,	the	

engineer	must	assure	that	it	lasts	long	enough	to	provide	a	useful	service	life	[9].	

	

	

1.3 Exponential	distribution	
	

The	failure	rate	of	an	item	with	exponential	life	distribution	is	constant	(i.e.,	 independent	of	

time),	so	it	may	be	a	realistic	life	distribution	for	an	item	during	its	useful	life	period	[9-10].		

The	probability	that	an	item	is	working	for	t	time	units	is	therefore	equal	to	the	probability	

that	 the	 item	 is	 still	 working	 in	 a	 different	 time	 interval	 of	 length	 t.	 So	 exponential	

distribution	doesn’t	consider	the	degradation	of	items.	

Consider	 that	 the	 random	 variable	 time	 to	 failure	 T	 follows	 an	 exponential	 probability	

density	function	with	parameter	λ:	

	

								f t =
λeDi:						for	t > 0	and	λ > 0

	
	0														otherwise																				

																																																(13)	

	

As	 shown	 in	 Fig.	 2,	 all	 curves	 are	 exponentials	 and	 increasing	 the	 parameter	 λ,	 the	 curves	

decrease	quickly.	The	reliability	function	of	the	item	is	the	integral	of	equation	(13),	so:	

	

																						R t = λeDikduK
: = eDi:																																																								(14)	

	
Figure	2.	Exponential	probability	density	function	varying	λ		
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Fig.	 3	 shows	 some	 functions	 starting	 at	 their	 maximum	 (1)	 and	 decreasing	 thereafter	

monotonically:	 the	 drop	 speed	 is	 function	 of	 λ	 (larger	 values	 of	 λ	 correspond	 to	 faster	

decreases).	

The	failure	rate	function,	according	with	Eq.	7,	is	the	following:	

	

λ t = l(:)
\(:)

= λ																																																																				(15)	

	

The	exponential	distribution	 is	 the	most	used	 life	distribution	 in	applied	reliability	analysis	

since	it	is	quite	easy	to	manage	and	it	represents	a	realistic	lifetime	model	for	a	wide	variety	

of	items.		

	
Figure	3.	Exponential	reliability	function	varying	λ	

	

	

1.4 Weibull	distribution	
	

The	 Weibull	 distribution	 is	 one	 of	 the	 most	 widely	 used	 life	 distributions	 in	 reliability	

analysis.	It	 is	a	very	flexible	distribution	since	it	 is	based	on	different	parameters	and	it	can	

model	different	behaviours	of	failure	rate	functions	[9].		

The	time	to	failure	of	an	item	T	is	said	to	be	Weibull	distributed	with	parameters	β	and	η	if	

the	distribution	function	is	given	by:	

	

F t = 1 − eD
m
n

o

				if	t > 0
	

				0																						otherwise

																																																	(16)	

	

The	corresponding	density	function	is	the	following:	

	

f t = 		p
q

:
q

pDZ
eD

m
n

o

			for	t > 0	
	

		0																													otherwise

																																																(17)	

	

Where	η	is	a	scale	parameter	and	β	is	the	shape	parameter.	
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The	reliability	function	is:	

R t = eD
m
n

o

				for	t > 0																																																								(18)	
And	the	failure	rate	function	is:	

λ t = p
q

:
q

pDZ
						for	t > 0																																																					(19)	

	

The	parameter	β	is	a	pure	number,	i.e.	it	 is	dimensionless	[12].	Different	values	of	the	shape	

parameter	β	can	have	marked	effects	on	the	behaviour	of	the	distribution.		

In	fact,	some	values	of	the	shape	parameter	will	reduce	the	distribution	equations	to	those	of	

other	 distributions:	 for	 example,	 when	β	=	 1,	 the	PDF	 of	 the	 three-parameter	 Weibull	

equation	reduces	to	the	two-parameter	exponential	distribution	[14-15].		

Figure	4	shows	 the	effect	on	PDF	of	different	values	of	 the	shape	parameter	 (considering	a	

constant	value	of	the	scale	parameter	η=1,5h):	 it	can	be	observed	that	the	shape	of	the	PDF	

can	assume	a	variety	of	forms	based	on	the	β	value.		

Figure	 5	 shows	 the	 same	 effects	 of	 β	 modulation	 on	 the	 reliability	 function	 (in	 case	 of	

constant	value	of	 the	scale	parameter	η=4h):	high	β	values	ensure	a	higher	reliability	up	to	

the	crossroad,	then	R(t)	curves	with	greater	β	quickly	decrease.			

	

	
Figure	4.	Weibull	probability	density	function	varying	β	

	

		
Figure	5.	Weibull	reliability	function	varying	β	
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The	 modulation	 of	 β	 has	 consequences	 also	 on	 the	 failure	 rate	 function	 and	 this	 trend	 is	

shown	in	Fig.	6;	this	is	one	of	the	most	important	aspects	of	the	Weibull	distribution.		

As	shown	in	the	plot,	Weibull	distributions	with	β<1	have	a	failure	rate	that	decreases	with	

time,	the	same	trend	of	the	first	part	of	bathtub	curve	in	case	of	infantile	or	early-life	failures.		

For	β	values	close	or	equal	to	1	the	Weibull	distributions	have	a	 fairly	constant	 failure	rate,	

indicative	of	useful	life	or	random	failures.		

Finally,	 Weibull	 distributions	 with	β	>1	 have	 a	 failure	 rate	 that	 increases	 with	 time	

representing	the	typical	trend	of	wear-out	failures.		

Therefore	this	behaviour	comprises	the	three	sections	of	the	classic	"bathtub	curve":	the	plot	

of	 three	 Weibull	 distributions	 with	 respectively	 β	<1,	 β	=1	 and	 β	>1	 would	 reproduce	 the	

whole	trend	of	the	standard	bathtub	curve	[10].		

	

Also	 the	 modulation	 of	 the	 scale	 parameter	 η	can	 influence	 the	 trend	 of	 curves;	 η	has	 the	

same	unit	of	measure	as	T	(hours)	and	a	change	in	this	parameter	has	the	same	effect	on	the	

distribution	of	a	change	in	the	x-axis	scale.		

An	increase	of	η	(holding	β	constant)	has	the	effect	of	stretching	out	the	PDF,	as	shown	in	Fig.	

7.	 	 Since	 the	 area	under	 a	PDF	 curve	has	 a	 constant	 value	of	 one,	 the	maximum	of	 the	PDF	

curve	will	decrease	together	with	the	growth	of	η,	as	indicated.	If	η	is	increased	(decreased),	

while	β	 is	 the	 same	 (β=4),	 the	 distribution	 gets	 stretched	 out	 to	 the	 right	 (left)	 and	 its	

maximum	 decreases	 (increases),	 while	maintaining	 its	 shape.	 Figure	 8	 and	 Figure	 9	 show	

reliability	and	failure	rate	functions:	a	growth	of	the	parameter	η	produces	a	corresponding	

increase	of	reliability	and	reduction	of	number	of	failures.		

	

	
Figure	6.	Weibull	failure	rate	function	varying	β	
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Figure	7.	Weibull	probability	density	function	varying	η	

	

	

	
Figure	8.	Weibull	reliability	function	varying	η	

	

	
Figure	9.	Weibull	failure	rate	function	varying	η	

	

A	natural	extension	of	this	distribution	is	the	three-parameter	Weibull	distribution	(β,	η,	γ),	

where	γ	is	called	the	location	parameter.		
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In	this	case	the	reliability	and	the	failure	rate	functions	are	the	following:	

	

R t = eD
mrs
n

o

,		λ t = p
q

:Dt
q

pDZ
	with	t ≥ γ																																			(20)	

	

The	 third	 parameter	 has	 the	 effect	 to	 move	 the	 distribution	 on	 the	 x-axis:	 if	 γ>0	 the	

distribution	is	moved	on	the	right	whereas	if	γ<0	it	is	moved	on	the	left.	

	

	

1.5 Normal	or	Gaussian	distribution	
	

The	most	commonly	used	distribution	 in	statistics	 is	 the	normal	distribution	 [9].	A	random	

variable	 T	 is	 said	 to	 be	 normally	 distributed	 with	 mean	 μ	 and	 variance	 σ2	 when	 the	

probability	density	of	T	is	the	following:	

	

f t = Z
wxy

eD
mrz {

{|{ 					for	t ∈ −∞,∞ 																																						(21)	

	

If	 μ=0	 and	 σ=1,	 then	 the	 distribution	 is	 called	 standard	 normal	 distribution	 and	 usually	

denoted	by	ϕ,	the	PDF	function	is:	

			ϕ t = Z
wx
eD

m{

{ 																																																																			(22)	

The	reliability	function	is	the	following:	

	

R t = Z
wxy

eD
Årz {

{|{
K
: dx																																																							(23)	

	

And	the	failure	rate	function	of	the	normal	distribution	is:	

	

λ t = Ç
r mrz {

{|{

Ç
r Årz {

{|{É
m =Ñ

																																																																(24)	

Fig.	10	shows	the	curves	of	normal	 failure	rate	 function	with	a	constant	mean	value	μ=0	 in	

case	of	varying	the	standard	deviation:	an	increase	of	the	σ	value	produces	a	decrease	of	the	

number	of	failures	and	the	curves	loose	the	typical	exponential	trend.	
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Figure	10.	Normal	failure	rate	function	varying	σ	

	

	

1.6 Lognormal	distribution	
	

This	 distribution	 is	 used	 for	 the	 description	 of	 failures	 of	 devices	 characterized	 by	 a	 large	

wear	out	period	[4].	The	time	to	failure	T	of	an	item	is	said	to	be	lognormally	distributed	with	

parameters	μ	and	σ2,	if	the	random	variable	Y=ln(T)	is	normally	(Gaussian)	distributed	with	

mean	μ	and	variance	σ2	[9].	The	probability	density	function	of	T	is:	

	

f t = 			
Z
wxy:

eD
Öf mrz {

{|{ 						for	t > 0	
	

0																															otherwise

																																												(25)	

The	reliability	function	is	the	following:	

	

R t = Z
wxy

Z
Ñ

K
: eD

[Öf 	 Å rz]{

{|{ dx	 																																																		(26)	

	

The	failure	rate	function	of	the	lognormal	distribution	is:	

	

λ t =
h
mÇ
r[Öf	 m rz]

{

{|{

h
Å

É
m Ç

r[Öf 	 Å rz]{

{|{ =Ñ

	 																 																														(27)	

Fig.	 11	 shows	 that	 increasing	 the	 standard	 deviation,	 the	 failure	 rate	 decreases;	 it	

corresponds	 to	 have	 a	 lower	 number	 of	 failures	 together	 with	 time	 increase.	 This	

distribution,	due	to	its	trend,	describes	the	first	part	of	the	bathtube	curve	where	the	failures	

are	caused	by	infant	mortality.	
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Figure	11.	Lognormal	failure	rate	function	varying	σ	

	

	

1.7 Comparison	between	Exponential	and	Weibull	distributions		
	

Nowadays	 the	 assumption	 that	 most	 reliability	 engineering	 problems	 can	 be	 perfectly	

modelled	by	the	exponential	distribution	is	still	widely	held.		

For	the	sake	of	simplicity,	many	insiders	have	embraced	simple	equations	derived	from	the	

underlying	 assumption	 of	 an	 exponential	 distribution	 for	 different	 purposes	 such	 as	

reliability	 prediction,	 accelerated	 testing,	 reliability	 growth,	 maintainability	 and	 system	

reliability	analyses.	As	said	before,	the	exponential	distribution	models	the	behaviour	of	units	

that	fail	at	a	constant	rate,	regardless	of	the	accumulated	age:	although	this	property	greatly	

simplifies	the	analysis,	it	makes	the	distribution	inappropriate	for	most	reliability	assessment	

because	it	does	not	apply	to	real	world	applications.	

For	example,	if	cars	exhibited	a	constant	failure	rate,	then	the	vehicle’s	mileage	would	not	be	

a	factor	in	the	price	of	a	used	car	because	it	would	not	affect	the	subsequent	reliability	of	the	

vehicle:	 in	 other	words,	 if	 a	 product	 can	wear	out	 over	 time,	 it	 should	 not	have	 a	 constant	

failure	 rate.	 Similarly	 to	 cars,	 most	 items	 in	 this	 world	 are	 affected	 by	 wear	 out,	 even	

electronic	components	and	non-physical	assets	such	as	computer	software.			

Anyway,	 despite	 the	 illustrated	 inadequacy	 of	 the	 exponential	 distribution	 to	 accurately	

model	 the	behaviour	of	most	products	 in	 the	real	world,	 the	exponential	assumption	 is	still	

widely	used	in	today’s	reliability	practices,	standards	and	methods	[15-16].	

The	 use	 of	 the	 Weibull	 distribution	 is	 more	 accurate	 and	 practical.	 	 It	 is	 shown	 that	 the	

Weibull	 best	 models	 the	 reliability,	 maintainability	 and	 availability	 of	 parts	 that	 have	 a	

variable	 failure	 rate	 over	 its	 useful	 life.	 The	 role	 of	 reliability	 analysis	 is	 to	 evaluate	 the	

behaviour	 of	 failure	 mechanisms	 on	 a	 part	 to	 understand	 failures	 and	 provide	 insights	 to	

design	efficacy.		It	seems	obvious	that	if	a	failure	mechanism	is	incorrectly	modelled	then	any	

information	derived	 from	that	model	 is	 imperfect	 [17-19].	Graphically	 it	 can	be	shown	that	

the	exponential	and	Weibull	probability	density	 functions	resulting	 from	the	same	data	are	

very	different	(Fig.	12).	

If	 it	 is	 possible	 to	 assume	 that	 one	 or	 the	 other	model	 is	 a	 correct	 characterization	 of	 the	

failure	mechanism,	 then	 it	 is	obvious	 that	 the	wrong	distribution	 is	not	 close	enough	 to	be	
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useful	 as	 an	 estimator.	 The	 impact	 of	 the	 differences	 between	 the	 reliability	 functions	 is	

shown	in	Fig.	13.		Notice	that	the	exponential	reliability	is	an	exponential	curve	for	the	whole	

time	span:	on	the	other	hand,	for	lower	values	of	time,	Weibull	guarantees	a	higher	reliability	

value	 then	decreases	 and	after	 the	 curve	 crossroad	 the	exponential	distribution	provides	 a	

higher	reliability	performance.	

The	 comparative	 failure	 rates	 (Fig.	14)	 reveal	quantifiable	differences	between	 the	Weibull	

distribution	and	the	exponential	one:	exponential	considers	a	higher	number	of	failure	in	the	

early	 time	but	Weibull	curve	 increases	and	 it	considers	a	high	number	of	 failure	 increasing	

time.		

Consider	 a	 system	 composed	 by	 n	 series	 elements,	 the	 system	works	 if	 all	 the	 items	work	

properly	[20].	If	the	components	of	a	system	follow	an	exponential	distribution,	the	reliability	

of	the	system	is:	

Ràâà t = eiäãä∙:																																																														(28)	

Where:	

λàâà t = λcb
cçZ 																																																												(29)	

	

	
Figure	12:	Comparative	PDF	plots	

	

Meanwhile	for	processes	following	the	Weibull	distribution	the	equation	becomes:	

	

Ràâà t = e
D h

nd

o
f
dgh :o

																																																									(30)	

	

And	the	failure	rate	of	the	system	is	the	following:	

	

λàâà t = βtpDZ Z
qd

p
b
cçZ 																																																					(31)	
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Figure	13.	Comparative	reliability	functions	

	

	

	
Figure	14.	Comparative	failure	rate	functions	

	

In	 both	 cases	 increasing	 the	 number	 of	 the	 series	 items	 produces	 a	 decrease	 in	 system	

reliability.		

In	order	to	compare	the	reliability	performance	of	Weibull	and	exponential	distributions,	a	3	

elements	series	system	(n=3)	is	considered:	the	Weibull	distribution	(η = 5000	h		and	β = 3)	
in	Fig.	15	shows	a	lower	number	of	failure	before	approximately	2000h	(7	months),	then	the	

curves	 crosses	 each	 other	 and	 the	 exponential	 distribution	 (with	 constant	 failure	 rate	λ =
10Dí	hDZ)	provides	a	better	perspective	than	the	Weibull	one.		
The	 same	 conclusions	 are	 achieved	 comparing	 the	 reliability	 function	 in	 Fig.16:	 before	 the	

intersection	of	the	curves	the	Weibull	distribution	provides	a	higher	reliability	performance,	

then	it	decreases	faster	than	the	exponential	[21-22].	

	

Consider	a	system	composed	by	two	parallel	items,	the	system	works	if	one	element	at	least	

works.	 If	 the	 system	 follows	 an	 exponential	 distribution	 and	 the	 items	 fail	 with	 the	 same	

failure	rate	λ,	the	reliability	of	the	system	is:	

	

Ràâà t = 2eDi: − eDwi:																																																									(32)	
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And	the	failure	rate	of	the	system	is:	

	

λàâà t = i ZDÇrîm

ZD;.ñÇrîm
																																																														(33)	

	

Meanwhile	the	distribution	follows	the	Weibull	distribution	the	equation	becomes:	

	

óòôò = 2öD
õ
ú

ù

− öDw
õ
ú

ù

																																																								(34)	

	
Figure	15.	Comparison	of	failure	rate	functions	of	three	series	system	

	

	
Figure	16.	Comparison	of	reliability	functions	of	three	series	system	

	

And	failure	rate	is	the	following:	

λàâà t = p
q

:
q

pDZ
wDwÇ

r m
n
o

wDÇ
r m
n
o 																																																					(35)	

Fig.	 17	 shows	 that	 in	 the	 early	 time	 the	 system	 offers	 a	 lower	 failure	 rate	 in	 case	 the	

components	 follows	 a	 Weibull	 distribution	 (η = 5000	h			e			β = 3);	 anyway	 after	 the	
crossroad,	 the	 curve	 increases	 exponentially	 so	 the	 exponential	 distribution	 (λ = 10DíhDZ)	
gives	a	better	prevision	since	it	increases	linearly	with	a	lower	slope.		
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Fig.	 18	 confirms	 the	 same	 trend,	 so	 initially	 Weibull	 distribution	 is	 convenient	 then	 it	

decreases	and	exponential	gives	a	higher	reliability	values.	

	

	
Figure	17.	Comparison	of	failure	rate	functions	of	two	parallel	items	

	

	
Figure	18.	Comparison	of	reliability	functions	of	two	parallel	items	

	

	

1.8 Life	Data	Analysis	and	Parameter	Estimation	
	

The	Weibull	 distribution	 is	 a	 quiet	 common	model	 in	 reliability	 and	 lifetime	 data	 analysis	

[10];	not	by	chance	the	Life	Data	Analysis	(LDA)	is	called	“Weibull	analysis”	since	the	Weibull	

distribution	is	widely	used	to	analyse	the	relationship	between	reliability	and	the	life	span	of	

the	product	(or	system).		

Life	data	analysis	 starts	with	 the	analysis	of	 a	 representative	 sample	of	units	 (belonging	 to	

the	population	of	interest)	in	order	to	make	a	life	prediction	for	all	the	products.	

The	 resulting	 distribution	 for	 the	 data	 set	 can	 be	 used	 to	 achieve	 important	 life	

characteristics	 of	 the	 product	 e.g.	 reliability	 function,	 probability	 of	 failure	 at	 a	 fixed	 time,	

failure	rate,	etc.		
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Life	data	analysis	is	usually	developed	in	four	steps:	

• Collect	product	life	data;	

• Select	the	best-fitting	distribution	to	model	the	life	of	the	products;	

• Assess	the	parameters	that	ensure	the	distribution	to	the	data;	

• Generate	plots	and	results	to	estimate	product	life	characteristics.	

	

One	of	the	strong	points	of	Weibull	distribution	is	 its	ability	to	provide	reasonably	accurate	

analysis	 and	 failure	 forecasts	 with	 extremely	 small	 data	 samples.	 Because	 the	 Weibull	

distribution	 can	 take	 a	 variety	 of	 forms,	 it	 is	 effective	 in	 analysing	 data	 from	 increasing,	

constant,	and	decreasing	failure	rate	applications.		

Weibull	analysis	is	typically	used	to	determine	the	best-fit	distribution	for	a	set	of	failure	data	

collected	during	testing	or	field	operations.	A	said	before,	the	distribution	that	best	fits	these	

data	points	provide	info	about	the	population	from	which	they	are	drawn.		

The	best-fit	distribution	for	any	set	of	data	points	is	quiet	often	the	Weibull	distribution	but	

in	some	applications	it	may	be	another	failure	distribution,	such	as	the	lognormal,	normal,	or	

exponential;	the	behaviour	of	each	distribution	is	described	and	influenced	by	characteristics	

and	parameters	that	vary	from	distribution	to	distribution.	In	order	to	fit	a	statistical	model	

to	a	life	data	set,	the	analyst	should	estimate	the	parameters	of	the	life	distribution	that	will	

make	the	function	fitting	the	data	in	the	best	way.	The	parameters	define	the	scale,	shape	and	

location	of	the	PDF	function	[21].		

	

Several	 methods	 have	 been	 developed	 to	 estimate	 the	 parameters	 that	 will	 fit	 a	 lifetime	

distribution	 to	 a	 particular	 data	 set	 and	 the	most	 important	 are	described	 in	 the	 following	

paragraphs.	 Starting	 from	 the	 relatively	 simple	 method	 of	 Probability	 Plotting	 and	 then	

analysing	 complex	 methods	 such	 as	 Rank	 Regression	 (or	 Least	 Squares)	 and	 Maximum	

Likelihood	Estimation	(MLE).	

Obviously	the	appropriate	analysis	method	will	vary	depending	on	the	data	set	and,	in	some	

cases,	on	the	life	distribution	selected.	

	

	

1.8.1 Probability	Plotting	
	

The	method	of	probability	plotting	takes	the	cumulative	density	functions	of	the	distribution	

and	attempts	to	linearize	it	using	a	dedicated	paper.		

This	 process	 includes	 linearization	 of	 the	 unreliability	 function,	 construction	 of	 the	

probability	plotting	paper	and	assessment	of	the	X	and	Y	positions	of	the	plot	points;	then	the	

plot	is	used	to	read	any	particular	time	or	reliability/unreliability	value	of	interest.			

In	the	case	of	two-parameter	Weibull,	Eq.16	gives	the	unreliability	function	and	this	function	

can	be	linearized	(i.e.,	following	the	standard	format	y = m′x + b)	by	setting:	
	

y = ln ln Z
ZD>(:)

				

x = ln t																										
																																																												(36)	



	 	
	 	 	

19	

The	equation	can	then	be	rewritten	as	follows:	

	

y = βx − β ln η																																																																						(37)	

Which	is	now	a	linear	equation	with	a	slope	of	m=β	and	an	intercept	of	b = −β ln η.		
The	next	 task	 is	 to	 construct	 the	Weibull	 probability	plotting	paper	with	 the	 appropriate	 y	

and	x	axes:	the	x-axis	transformation	is	simply	logarithmic	while	the	y-axis	is	more	complex	

and	requires	a	double	logarithmic	reciprocal	transformation.		

The	y-axis	represents	unreliability	and	the	x-axis	represents	time;	both	of	these	values	must	

be	known	for	each	time-to-failure	point	to	plot.	Then,	given	the	x	and	y	value	for	each	point,	

the	points	 can	 easily	 be	put	 on	 the	plot.	Once	 the	points	have	been	placed	on	 the	plot,	 the	

best-fitting	straight	line	is	drawn	through	these	points	[15].		

Once	the	line	has	been	drawn,	the	slope	of	the	line	can	be	obtained	(some	probability	papers	

include	a	slope	indicator	to	simplify	this	calculation):	this	is	the	parameter	β	that	corresponds	

to	 the	 value	 of	 the	 slope.	 To	 determine	 the	 scale	 parameter,	 (also	 called	 the	 characteristic	

life),	it	is	necessary	to	read	the	time	from	the	x-axis	corresponding	to	F(t)=63,2%.	

Determining	the	appropriate	y	plotting	positions,	or	the	unreliability	values,	means	to	obtain	

the	 cumulative	 per	 cent	 failed	 for	 each	 time-to-failure.	 The	 most	 widely	 used	 method	 of	

determining	this	value	is	to	assess	the	median	rank	for	each	failure.	The	median	rank	is	the	

value	that	the	true	probability	of	failure	F(ti)	should	have	at	the	j-th	failure	out	of	a	sample	of	

N	 units	 at	 the	 50%	 confidence	 level.	 The	 rank	 can	 be	 found	 for	 any	 percentage	 point,	 P,	

greater	than	zero	and	less	than	one,	by	solving	the	cumulative	binomial	equation	for	Z.	This	

represents	the	rank,	or	unreliability	estimate,	for	the	j-th	failure	in	the	following	equation	for	

the	cumulative	binomial:	

P = †
° Z°(1 − Z)†D°†

°ç£ 																																																					(38)	

Where	N	is	the	sample	size	and	j	the	order	number.	The	median	rank	is	obtained	by	solving	

this	 equation	 for	 Z	 at	 P=0,50.	 Besides	 the	 amount	 of	 effort	 required,	 which	 is	 the	 most	

obvious	 drawback	 to	 Probability	 Plotting,	 manual	 probability	 plotting	 is	 not	 always	

consistent	in	the	results.		

Two	people	plotting	a	straight	line	through	a	set	of	points	will	not	always	draw	this	line	the	

same	 way,	 and	 thus	 will	 come	 up	 with	 slightly	 different	 results.	 This	 method	 was	 used	

primarily	before	the	widespread	use	of	computers	that	could	easily	perform	the	calculations	

for	more	complicated	parameter	estimation	methods,	such	as	the	least	squares	and	maximum	

likelihood	methods	[22].	
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Figure	19.	Plotting	paper	

	

	

1.8.2 Least	Square	Estimation	(LSE)	
	

The	Least	Square	method	requires	that	a	straight	line	is	fitted	to	a	set	of	data	points	in	order	

to	minimize	the	sum	of	the	squares	of	the	distance	of	the	points	to	the	fitted	line	[15].		

This	minimization	can	be	performed	both	vertically	and	horizontally:	if	the	regression	is	on	x,	

then	 the	 line	 is	 fitted	 so	 that	 the	 horizontal	 deviations	 from	 the	 points	 to	 the	 line	 are	

minimized.	 If	 the	 regression	 is	 on	 y,	 then	 this	 means	 that	 the	 distance	 of	 the	 vertical	

deviations	from	the	points	to	the	line	is	minimized	(Fig.	20).		

For	 the	vertical	 regression,	 it	 is	 assumed	 that	a	 set	of	data	pairs	 (x1,	 y1),	 (x2,	 y2),….,	 (xN,	 yN)	

were	 obtained	 and	 plotted,	 and	 that	 the	 x-values	 are	 known	 exactly.	 The	 least	 squares	

principle	minimizes	the	vertical	distance	between	the	data	points	and	the	straight	line	fitted	

to	the	data	and,	according	to	this	assumption,	the	best	fitting	straight	line	to	these	data	is	the	

straight	line	[18]:	

	

y = bx + a																																																																					(39)	
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Where:	

a = Z
†

ln − ln 1 − F(tc)†
cçZ − b Z

†
ln tc†

cçZ 																																									(40)	

b = † §b :d §b D §b ZD>(:d) D §b :d
•
dgh §b D §b ZD>(:d)

•
dgh

•
dgh

† §b :d {D §b :d•
dgh

{•
dgh

																																(41)	

Then	the	estimated	parameters	are:	

η = eD
¶
ß			

β = Z
®
										

																																																																					(42)	

For	the	horizontal	regression,	the	same	least	squares	principle	is	applied,	but	this	time,	

minimizing	the	horizontal	distance	between	the	data	points	and	the	straight	line	fitted	to	the	

data.	The	best	fitting	straight	line	to	these	data	is	the	straight	line:	

	

y = − ©
®
+ Z

®
x																																																																				(43)	

Where:	

	

a = Z
†

ln tc†
cçZ − b Z

†
ln − ln 1 − F(tc)†

cçZ 																																								(44)		

b = † §b :d §b D §b ZD>(:d) D §b :d
•
dgh §b D §b ZD>(:d)

•
dgh

•
dgh

† §b D §b ZD>(:d) {D §b D §b ZD>(:d)•
dgh

{•
dgh

																															(45)	

	

Then	the	parameters	estimated	are:	

η = eD
¶
ß
	ho	

β = Z
®
										

																																																														(46)	

The	correlation	coefficient	is	a	measure	of	the	quality	of	data-fitting	of	the	linear	regression	

model	 and	 it	 is	 usually	 denoted	 by	 ρ.	 The	 case	 of	 life	 data	 analysis	 is	 a	 measure	 for	 the	

strength	 of	 the	 linear	 relation	 (correlation)	 between	 the	 median	 ranks	 and	 the	 data.	 The	

correlation	coefficient	of	the	population	is	defined	as	follows:	

	

ρ = † Ñd´d
•
dgh D Ñd

•
dgh ´d

•
dgh

† Ñd
{•

dgh D Ñd•
dgh

{
† ´d

{•
dgh D ´d•

dgh
{
																																		(47)	

	

It	assumes	values	in	a	range	[-1,	1],	the	closer	the	value	is	to	±1,	the	better	is	the	linear	fitting.		

The	least	squares	estimation	method	is	a	good	solution	for	functions	that	can	be	linearized:	

for	 these	 distributions,	 the	 calculations	 are	 relatively	 easy	 and	 straightforward,	 since	 they	

have	 closed-form	solutions	 that	 can	yield	 an	 answer	without	having	 to	 resort	 to	numerical	

techniques	or	tables.	Furthermore,	this	technique	provides	a	good	measure	of	the	goodness-

of-fit	of	the	chosen	distribution	in	the	correlation	coefficient.	
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Figure	20.	Rank	regression	on	y	(left)	and	on	x	(right)	

	

	

1.8.3 Maximum	Likelihood	Estimation	(MLE)	
	

In	statistics	the	Maximum	Likelihood	Estimation	method	is	considered	one	of	the	most	robust	

parameter	 estimation	 techniques	 [21].	 The	 basic	 idea	 behind	MLE	 is	 to	 obtain,	 for	 a	 given	

distribution,	the	most	likely	values	of	the	parameters	that	will	best	describe	the	data.		

Supposing	 T	 is	 a	 continuous	 random	 variable	 with	 PDF	f(t, β, η, γ)	[9],	 where	t, β, η, γ	are	
unknown	 parameters	 which	 need	 to	 be	 estimated,	 with	 R	 independent	

observations,	xZ, xw,x¨, … , x\	,	 which	 correspond	 to	 failure	 times	 (in	 life	 data	 analysis).	 The	

likelihood	function	is	given	by:	

	

						L(β, η, γ	|tZ, tw,t¨, … , t\) = L = f(\
cçZ tc; β, η, γ)																													(48)	

The	logarithmic	likelihood	function	is	the	following:	

	

Λ = ln L = ln f(tc; β, η, γ)\
cçZ 																																																		(49)	

Maximizing	 Λ	 or	 L	 are	 the	 two	 solutions	 to	 obtain	 the	maximum	 likelihood	 estimators	 (or	

parameter	values)	of	β,	γ,	η:	by	maximizing	Λ	which	is	much	easier	to	work	with	than	L,	the	

maximum	likelihood	estimators	(MLE)	are	the	simultaneous	solutions	of	equations	such	that:	

	

≤≥
≤p
= 0						 ≤≥

≤t
= 0							 ≤≥

≤q
= 0																																																					(50)	

If	all	the	three	parameters	are	unknowns,	the	log-likelihood	function	becomes	the	following:	

	

Λ = N ln β − Nβ ln η + β − 1 ln tc − γ −†
cçZ

:dDt
q

p
†
cçZ 																(51)	

	

The	 parameters	 are	 achieved	 by	maximizing	 the	 equation	 above.	 In	most	 cases,	 no	 closed-

form	solution	exists	for	this	maximum	or	for	the	parameters.	If	η	is	known,	by	defining	xi=ti-

γ,	Eq.	48	can	be	solved	as	follows:	

	

Λ = N ln β − Nβ ln η + β − 1 ln tc†
cçZ − :d

q

p
†
cçZ 																							(52)	
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Deriving	and	solving	to	η	Eq.	47,	the	estimated	parameter	is:	

	

η = Z
†

tc
p†

cçZ

h
o
																																																																		(53)	

	

Furthermore,	the	shape	parameter	has	not	a	closed	form:	

	

≤≥
≤p
= N Z

†
ln xc†

cçZ + Z
p

Ñd
o §b Ñd

•
dgh

Ñd
o•

dgh
= 0																																								(54)	

The	 equation	 can’t	 be	 solved	 analytically	 but	 needs	 a	 numeric	 technique	 or	 a	 software	

implementation.	

	

	

1.8.4 Confidence	Bounds	
	

Consider	 a	 sample	 Y1,	 ...	 ,	 Yn	 from	 a	 known	 distribution	 F(y,	 θ)	 except	 the	 parameter	 	 θ,	

supposed	to	be	a	real	number	[8].	A	statistical	couple	XZ(YZ, . . . , Yn	)	and	Xw(YZ, . . . , Yn	)	with	
Prob(XZ ≤ Xw	)	 =	 1	 	 is	 said	 confidence	 bound	 for	 the	 parameter	 θ	 with	 confidence	 level	
α	ϵ(0, 1)		if:	

Prob XZ ≤ θ ≤ Xw	 ≥ α																																																											(55)	

Usually	 two-sided	 confidence	 bounds	 (or	 intervals)	 are	 used	 for	 closed	 intervals	 where	 a	

certain	percentage	of	the	population	is	likely	to	lie	[12].		

One	possible	methodology	used	to	find	confidence	bounds	is	the	so-called	Fisher	matrix	

bounds;	for	the	MLE	applications	the	Fisher	matrix	is	the	following:	

	

F =
− ≤{≥
≤p{

− ≤{≥
≤p≤q

− ≤{≥
≤p≤q

− ≤{≥
≤q{

																																																															(56)	

Substituting	the	 values	 of	 the	 estimated	 parameters	β, η	and	 then	 inverting	 the	matrix,	 the	
local	estimate	of	the	covariance	matrix	is	achieved:	

Var(β) Cov(β, η)
Cov(β, η) Var(η)

=
− ≤{≥
≤p{

− ≤{≥
≤p≤q

− ≤{≥
≤p≤q

− ≤{≥
≤q{

DZ

																																(57)	

Values	for	the	variance	and	covariance	of	the	parameters	are	obtained	from	Fisher	Matrix	

equation.	Once	they	have	been	obtained,	the	approximate	confidence	bounds	on	the	function	

are	given	as:	

β − KhrΩ
{
∙ Var(β) < β < β + KhrΩ

{
∙ Var(β)																																(58)	

η − KhrΩ
{
∙ Var(η) < η < η + KhrΩ

{
∙ Var(η)																																(59)	
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Where	Kα	is	defined	as	follows:	

	

α = Z
wx

eD
m{

{ dtK
æø 																																																																				(60)	

	

	

1.8.5 Comparison	between	estimation	methods	
	

The	 likelihood	 function	 indicates	 how	 frequently	 the	 observed	 sample	 is	 as	 a	 function	 of	

possible	parameter	values	[20].	Therefore,	maximizing	the	likelihood	function	determines	the	

parameters	that	are	most	likely	to	produce	the	observed	data.	From	a	statistical	point	of	view,	

MLE	 is	 usually	 recommended	 for	 large	 samples	 because	 it	 produces	 the	 most	 precise	

estimates,	 	 furthermore	 it	 is	 versatile	 and	applicable	 to	most	models	 and	different	 types	of	

data.	

Least	squares	estimates	are	calculated	by	fitting	a	regression	line	to	the	points	from	a	data	set	

that	 has	 the	 minimal	 sum	 of	 the	 deviations	 squared	 (least	 square	 error).	 In	 reliability	

analysis,	the	line	and	the	data	are	plotted	on	a	probability	plot.	

For	 large	 and	 complete	 data	 sets,	 both	 the	 LSE	 method	 and	 the	 MLE	 method	 provide	

consistent	results;	anyway	in	reliability	applications	data	sets	are	typically	small	or	moderate	

in	size.	Extensive	simulation	studies	show	that	in	small	sample	designs	where	there	are	only	

a	few	failures,	the	MLE	method	is	better	than	the	LSE	method.	

The	advantages	of	the	MLE	method	over	the	LSE	method	are	that	the	calculations	use	more	of	

the	 information	 in	 the	data,	 the	distribution	parameter	estimates	are	more	precise	and	 the	

estimated	variance	is	smaller.	

The	 LSE	method	 is	 also	 traditionally	 associated	with	 the	 use	 of	 probability	 plots	 to	 assess	

goodness-of-fit.	 However,	 the	 LSE	method	 can	 provide	misleading	 results	 on	 a	 probability	

plot	[20].	

	

	

1.9 Case	Studies	
	

The	methods	described	 above	 are	used	 for	 two	 applicative	 case	 studies	 found	 in	 literature	

[22-23]	in	order	to	describe	the	procedure	to	analyse	these	samples	of	data	and	find	the	best-

fitting	distribution.	The	data	taken	into	account	come	from	two	different	testing	procedures,	

a	 test	 on	 electronic	 board	 for	 automatic	 control	 and	 accelerated	 testing	 of	 electronic	

components.	Both	the	data	have	been	analysed	with	the	software	Windchill	Quality	Solutions	

[18].	 The	data	were	 insert	 in	 the	 tool	Weibull	Analysis	 and	 the	 software	displays	 the	plots	

generated	of	different	functions	such	as	reliability,	unreliability,	PDF	and	failure	rate.	These	

outcomes	 help	 to	 identify	 the	 best	 values	 of	 the	 parameters	 for	 the	 data	 set	 and	 provide	

additional	insights.		

Furthermore,	the	selected	distributions	are	analysed	to	determine	how	well	they	fit	the	data	

point	 within	 the	 data	 set;	 once	 the	 analysis	 is	 complete,	 the	 software	 shows	 the	 ranking	
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results	 for	the	selected	distributions.	To	determine	the	rankings,	Λ	(log-likelihood	function)	

or	ρ	(correlation	coefficient)	are	used.		

	

	

1.9.1 Test	On	Electronic	Board	For	Automatic	Control	
	

Table	 I	 shows	 the	 failure	 times	achieved	with	 the	 testing	procedure	on	a	population	of	 ten		

electronic	 boards	 while	 Table	 II	 lists	 the	 results	 of	 the	 best-fitting	 procedure	 using	 both	

methods	LSE	and	MLE.		

	

Table	I.	Failure	times	of	components	

	

Component	 Failure	Time	[h]	
1	 1200	

2	 2300	

3	 2500	

4	 2800	

5	 3000	

6	 3700	

7	 4000	

8	 4100	

9	 4200	

10	 4800	

	

The	two	methods	give	different	solutions	for	the	second	and	third	distributions;	both	Weibull	

and	 normal	 distributions	 fit	 well	 the	 data,	 but	 the	 rank	 is	 different	 since	 the	 estimation	

methods	are	different.	The	other	distributions,	such	as	 log-normal	and	exponential	don’t	 fit	

the	data	and	in	fact	a	lower	value	of	the	coefficient	is	obtained.	

The	 distribution	 that	 better	 fits	 the	 data	 is	 the	 three-parameter	 Weibull:	 the	 correlation	

coefficient	 is	 almost	 unitary	 and	 the	 log-likelihood	 coefficient	 is	 higher	 than	 the	 other	

distributions.		

Fig.	21	and	Fig.	22	show	the	data	best-fitting	as	a	confirm	of	the	results	described	above.		

In	particular,	Fig.	21	shows	that	the	data	follows	the	three-parameter	Weibull	distribution.	All	

the	data	are	placed	almost	linearly	and	the	distance	between	the	real	curve	and	the	expected	

Weibull	 line	 is	minimized.	 In	 fact	 the	correlation	coefficient	ρ=0,9885	 is	very	high	and	very	

close	 to	 one.	 Fig.	 22	 shows	 the	 fitting	 of	 the	 normal	 distribution	 where	 the	 data	 are	 not	

perfectly	 linear;	 furthermore	 the	 distance	 between	 the	 reference	 line	 is	 bigger	 than	 the	

Weibull	 distribution	 but	 however	 the	 normal	 distribution	 can	 be	 considered	 a	 good	

approximation	of	this	set	of	data.	The	correlation	coefficient	ρ=0,9799	is	very	similar	to	the	

perfect	correlation	correspondent	to	one	[20].	
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Figure	21.	Three-parameter	Weibull	probability	plot	

	

							 	
Figure	22.	Normal	probability	plot	
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Table	II.	Ranking	of	the	best	fit	distribution	

	

Least	Square	Estimation	 Maximum	Likelihood	Estimation	
Distribution	 ρ	 Distribution	 Λ	

Weibull	(β,	η,	γ)	

• β=	8,0	
• η=8530	h	
• γ=	-4800	h	

0,9885	

Weibull	(β,	η,	γ)	

• β=	9,45	
• η=8504	h	
• γ=	-4800	h	

-83,30	

Normal	(μ,σ)	

• μ=3260,00	h	
• σ=1165	h	

0,9799	
Normal	(μ,	σ)	

• μ=3259	h	
• σ=	1035	h	

-83,62	

Weibull	(β,	η)	

• β=2,80	
• η=3681	h	

0,9730	
Weibull	(β,	η)	

• β=3,68	
• η=3621	h	

-83,47	

Log-normal	(μ,	σ)	

• μ=8,0	h	
• σ=0,42	h	

0,9331	
Log-normal	(μ,	σ)	

• μ=8	h	
• σ=	0,39	h	

-84,96	

Exponential	(λ,	η,	γ)	

• λ=0,00056	h-1	
• η=1785	h	
• γ=1188	h	

0,8864	

Exponential	(λ,	η,	γ)	

• λ=0,000485	h-1	
• η=2060	h	
• γ=1200	h	

-86,30	

Exponential	(λ,	η)	

• λ=0,00039	h-1	
• η=2529	h	

0,8864	
Exponential	(λ,	η)	

• λ=0,000307	h-1	
• η=3260	h	

-90,89	

	

	

1.9.2 Accelerated	Test	On	Electronic	Components	
	

The	second	test	case	required	a	high	stress	procedure	on	thirty	electronic	components;	 the	

corresponding	failure	times	are	shown	in	the	Table	III	and	the	best-fitting	results	are	listed	in	

Table	IV.		

Since	the	number	of	components	is	higher	then	the	first	test	case,	the	method	used	is	just	the	

MLE	technique	that	is	particularly	suited	for	this	kind	of	applications	[22].		

The	rankings	show	that	the	best-fitting	distributions	are	the	two-parameter	exponential	and	

the	three-parameter	Weibull.		

The	 two-parameter	 exponential	 is	 defined	 by	 the	 standard	 parameter	 λ	 and	 a	 location	

parameter	γ.	The	location	parameter,	in	case	it	assumes	positive	values,	shifts	the	beginning	

of	 the	distribution	by	a	distance	of	γ	on	the	right	of	 the	origin:	 this	means	that	 failures	may	

occur	only	after	γ	hours	of	operation,	not	before	that	time.	
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Table	III.	Failure	times	of	components	

	

Component	 	Failure	time	[h]	
1	 2100	

2	 3800	

3	 5400	

4	 6600	

5	 7600	

6	 7800	

7	 12300	

8	 13000	

9	 15200	

10	 15900	

11	 19900	

12	 20100	

13	 20400	

14	 21500	

15	 21800	

16	 28100	

17	 29500	

18	 31000	

19	 33800	

20	 34100	

21	 35400	

22	 35800	

23	 43100	

24	 45700	

25	 54500	

26	 56900	

27	 67700	

28	 81800	

29	 94600	

30	 148600	
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Table	IV.	Ranking	of	the	best	fit	distribution	

	

Maximum	Likelihood	Estimation	
Distribution	 Λ	

Exponential	(λ,	η,	γ)	

• λ=0,000032	h-1	

• η=31699	h	

• γ=2100	h	

-340,92	

Weibull	(β,	η,	γ)	

• β=0,98	

• η=31486	h	

• γ=2079	h	

-340,93	

Log-normal	(μ,	σ)	

• μ=10	h	

• σ=	0,96	h	

-342,18	

Weibull	(β,	η)	

• β=1,18	

• η=35885	h	

-342,20	

Exponential	(λ,	η)	

• λ=0,00003	h-1	

• η=33800	h	

-342,85	

Normal	(μ,	σ)	

• μ=33799	h	

• σ=30992	h	

-352,81	

	

	

Fig.	 23	 shows	 the	 probability	 plot	 of	 the	 data-set	 supposing	 a	 two	parameters	 exponential	

distribution,	 where	 most	 of	 data	 are	 distributed	 on	 the	 exponential	 line:	 the	 software	

calculates	a	very	high	log	 likelihood	coefficient	Λ=-340,92	as	a	confirm	that	the	distribution	

fits	very	well	the	data	[20].			

Fig.	 24,	 instead,	 shows	 the	 output	 achieved	 using	 the	Weibull	 distribution:	 it	 has	 a	 lower	

value	of	 log-likelihood	 function	Λ=-340,93,	 however	 it	 offers	 a	 good	 fitting	 and	a	 satisfying	

approximation	of	the	dataset.	Fig.23	shows	that	data	are	concentrated	on	the	Weibull	line	and	

they	are	located	more	linearly	anyway	both	the	distribution	are	a	good	approximation.	

The	Weibull	distribution,	as	expected,	 is	a	satisfying	approximation	also	in	this	case,	even	if	

for	 this	application	the	exponential	 is	a	more	accurate;	 in	any	case	 the	Weibull	distribution	

confirms	to	be	very	flexible	and	capable	to	describe	different	types	of	data.	
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Figure	23.	Two-parameter	exponential	probability	plot	

	

	
Figure	24.	Three-parameter	Weibull	probability	plot	
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1.10 Discussion	And	Remarks	
	

The	 exponential	 distribution	 is	widely	used	 in	 reliability	 applications	 since	 it	 describes	 the	

constant	 failure	 rate	 section	 and	 it	 is	 used	 for	 component	 with	 a	 long	 useful	 life	 (e.g.	

electronic	components).		

In	 all	 other	 cases,	 data	 generally	 has	 a	 non-constant	 failure	 rate	 trend	 and	 the	most	 used	

distribution	to	describe	it	 is	the	Weibull	one	that	 is	a	very	flexible	distribution	thanks	to	its	

parameters	β	conditioning	the	shape	of	the	curves	and	η	that	extend	or	compress	the	curves	

[21].		

The	 first	case	study	described	was	referred	 to	a	 little	population	and,	as	a	result,	 the	set	of	

data	under	 analysis	 doesn’t	 fit	 a	 constant	 failure	 rate	distribution;	 as	 expected	 the	Weibull	

and	normal	distribution	provide	the	best-fitting.		

The	 second	 case,	 instead,	 was	 assessed	 on	 an	 elevate	 number	 of	 samples	 and	 the	 two-

parameter	 exponential	 and	 the	 three-parameter	Weibull	 resulted	 to	 be	 the	 best	 to	 fit	 the	

data.	 The	 second	 test	 provides	more	 realistic	 results	 than	 the	 first	 since	 it	was	 based	 on	 a	

larger	number	of	 samples	 and	 it	 confirms	 that	 the	Weibull	 distribution	 is	 very	 flexible	 and	

can	 describe	 a	 lot	 of	 life	models	 although	 for	 this	 particular	 test	 case	 the	 distribution	 that	

better	fits	the	samples	is	the	two-parameter	exponential	one	[20].	

	

As	 said	 before,	 the	 failure	 rates	 of	mechanical	 components	 are	 not	 usually	 described	 by	 a	

constant	 failure	 rate	 distribution	 because	 of	 wear,	 fatigue	 and	 many	 other	 stress	 failure	

mechanisms.	 Anyway	 in	 the	 following	 chapters	 the	 exponential	 distribution	 is	 used	 as	 the	

reference	 for	 design	 for	 reliability	 purposes	 so	 infant	 mortality	 and	 wear	 out	 periods	 are	

excluded	from	the	prediction.	This	choice	is	justifiable	because:	

• The	 infant	 mortality	 period	 is	 representative	 of	 the	 development	 of	 equipment	 or	 a	

system.	 Control	 over	 increasing	 reliability	 during	 this	 phase	 is	 a	 fundamental	 step	 in	

order	to	assess	good	reliability	performance;	

• The	wear	out	period	is	usually	far	in	the	future	compared	with	the	useful	life	of	most	of	

the	devices	taken	into	account	in	this	study;	

• The	failure	mechanisms,	in	particular	at	a	microscopic	analysis,	rarely	satisfy	a	constant	

rate	 occurrence	 but	 the	 dispersion	 of	 many	 failure	 mechanisms,	 even	 if	 they	 are	

accumulative	and	increasing	with	time,	play	a	fundamental	role	so	they	can	be	assumed	

to	 be	 constant	 over	 the	 period	 considered.	 Furthermore	 presence	 of	 large	 number	 and	

diversity	 of	 components	 in	 a	 complex	 system	 together	 with	 different	 ages	 (due	 to	

component	 replacement	 and	 overhaul)	 between	 equipment	 in	 the	 same	 system	 will	

produce	a	trend	that	is	very	close	to	a	constant	for	an	observer	at	system	level.	

	

This	is	the	reason	why	the	use	of	a	constant	failure	rate	is	still	the	most	relevant	approach	for	

estimating	the	predicted	reliability	of	a	system	[9].	
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Chapter	2	
	

Availability	Improvement	
	

	

	

	

2.1 Availability	Improvement	
	

Availability	 is	 one	 of	 the	 most	 important	 characteristics	 of	 repairable	 systems	 and	 low	

availability	values	require	big	efforts,	and	corresponding	costs,	to	improve	it.		

Any	 improvement	 in	 availability	 of	 a	 system	 needs	 to	 be	 valuated	 in	 terms	 of	 costs	 and	

benefits	 in	 order	 to	 optimize	 the	 efforts	 and	 ensure	 that	 availability	 improvements	 lead	 to	

benefits	for	the	business.	

So	it	 is	important	that	any	additional	investment	to	improve	the	availability	performance	of	

the	system	can	be	cost	justified.		

Following	 the	 “cost-saving”	 trend	 the	 interest	 in	 availability	 is	 growing	 in	 many	 different	

manufacturing	fields	and	starts	in	design	stage.	

The	 design	 of	 high-available	 systems	 is	 not	 associated	 to	 a	 specific	 technology	 nor	 a	

quantifiable	attribute,	it	is	the	result	of	several	strategies,	technologies	and	services	that	are	

involved	to	achieve	it.	

The	 main	 solutions	 to	 assess	 high-availability	 solutions	 and	 improve	 the	 whole	 system	

availability	are	the	following:	

• Improve	the	availability	performance	of	single	items	in	the	system;	

• Introduce	redundant	architectures	(fault	tolerant	design)	for	the	most	exposed	items	in	

the	system;		

• Improve	maintainability	operation	using	different	techniques	such	as	Markov	models;		

• Improve	reliability	performance	using	Reliability	Allocation	and	Reliability	Importance	

methods;	

• Introduce	diagnostic	features	on	both	local	and	system/process	level.	

	

The	first	and	the	simplest	method	to	improve	system	availability	is	to	increase	the	availability	

of	each	component	and	 this	 is	possible	 through	 increase	of	 failure	 time	and/or	decrease	of	

repair	 time.	Using	components	with	higher	availability	 lead	to	an	expected	 improvement	 in	

performance	but	the	cost	impact	is	often	relevant.	

For	this	reason	the	best	solution	is	taking	into	account	system	availability	performance	from	

the	 first	 design	 stages	 in	 order	 to	 monitor	 the	 economic	 and	 technical	 feasibility	 of	 the	

process.	

The	availability	of	a	system	is	directly	influenced	by	uptime	and	downtime	and,	for	scheduled	

working	time,	the	mathematical	expression	is	the	following:	
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¿¡¬WV¬√WVWNƒ = ≈∆«R
≈∆«RC≈∆∆T

																																																																(61)	

	

MTBF	 represents	 the	 Mean	 Time	 Between	 Failures	 (life	 time),	 and	 MTTR	 represents	 the	

Mean	Time	To	Repair	(repair	time)	for	machine	that	is	defined	as	maintainability.		

In	this	analysis	an	exponential	distribution	is	assumed	to	be	representative	for	the	reliability	

and	maintainability	statistical	models.	The	MTBF	is	the	inverse	of	the	failure	rate.	

Similarly,	 the	 MTTR	 is	 the	 inverse	 of	 the	 repair	 rate	 when	 it	 is	 constant	 and	 it	 can	 be	

influenced	 by	 technical	 design	 and	 availability	 of	 maintenance	 resources	 during	 repairing	

process	[24-26].		

The	 impact	 of	 technical	 design	 is	 obviously	 restricted	 to	 design	 stages	while	MTTR	 can	 be	

improved	 in	 the	 following	 life	 phases	 of	 the	 device	working	 on	 availability	 of	maintenance	

resources	(human	resources,	necessary	 for	machine	servicing,	and	spare	parts	available	 for	

the	replacement).	

	

Furthermore	the	availability	of	manufacturing	systems	is	directly	dependent	to	reliability	and	

maintainability	of	the	system	itself.	An	improvement	in	availability	could	be	experienced	by	

increasing	 MTBF,	 with	 correspondent	 system	 reliability	 growth,	 or	 decreasing	 MTTR:	

repairing	 time	 is	 influenced	 by	 two	 factors,	 technical	 design	 of	 the	 component	 and	

maintenance	resources	availability	during	repairing	process	so	 for	decreasing	 the	repairing	

time,	a	suitable	allocation	of	maintenance	resources	is	necessary.	

	

	

2.2 Fault	Tolerant	Design	
	

Fault	tolerant	design	is	a	design	that	allow	a	system	to	continue	its	intended	operation	(with	

reduced	 efficiency	 level	 in	 some	 circumstances)	 rather	 than	 failing	 completely	 in	 case	 of	

failure	of	some	components	of	the	system.	Fault	tolerance	provides	a	more	robust	approach	

to	surviving	faults	and	failure	[26].		

Fault	 tolerant	 configurations	 are	 widely	 used	 in	 many	 manufacturing	 fields	 in	 order	 to	

achieve	 continuous	 and	 successful	 operations	 despite	 extreme	 process	 and	 environmental	

conditions,	in	particular	if	immediate	repair	or	maintenance	is	not	available.	

There	 are	 many	 different	 techniques	 to	 achieve	 fault	 tolerance	 and	 the	 most	 used	 is	

redundancy:	this	method	is	based	on	the	duplication	of	the	components	that	are	most	critical	

for	 the	 whole	 system	 performance	 in	 order	 to	 increase	 both	 system	 reliability	 and	

availability.	

Redundancy	techniques	are	usually	divided	in	two	categories	in	case	of	fault	tolerant	designs:	

static	and	dynamic	redundancy,	in	compliance	with	MIL-HDBK	338B	[27].	
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Fig.	1.		Standby	architecture	

	

Static	(or	“active”)	redundancy	consists	of	fault	masking	without	proper	fault	detection:	this	

solution	 includes	e.g.	parallel,	k-out-of-n,	major	voting	and	there	 isn’t	a	performance/status	

monitoring	so	final	user	is	not	aware	of	failure	occurrence	[28].	

Dynamic	 (or	 “standby”)	 redundancy,	 instead,	 consists	 of	 fault	 detection	 and	 system	

reconfiguration	 with	 a	 standby	 unit;	 in	 case	 of	 main	 component	 failure,	 standby	 unit	 is	

activated	 to	 complete	 the	 mission.	 In	 particular,	 there	 are	 three	 dynamic	 redundancy	

configurations:	hot	standby,	warm	standby	and	cold	standby	[29].	

The	 first	 architecture	 offers	 the	 same	 reliability	 performance	 of	 standard	 parallel	

configuration	[9]	and,	for	this	reason,	is	not	described	in	this	study.		

	

	

2.2.1 RBD	Model	Based	Approach	
	

Reliability	 Block	 Diagram	 (RBD)	 is	 one	 of	 the	 most	 used	 top-down	 techniques	 to	 achieve	

reliability	 assessment.	 A	RBD	 is	 a	 functional	 diagram	of	 all	 the	 components	making	 up	 the	

system	that	shows	how	component	reliability	contributes	to	 failure	or	success	of	 the	whole	

system.	 Each	 component	 in	 the	 system	 has	 a	 corresponding	 block	 that	 is	 described	 by	 a	

specific	failure	rate	and	connections	with	other	part	of	the	system.	Despite	Functional	Block	

Diagrams	(FBDs),	which	are	focused	on	normal	operation	functionality,	in	RBDs	the	attention	

is	shifted	onto	component	failures	and	their	consequences	on	the	system.	

IEC	 61078	 [4]	 shows	 the	 necessary	 assumptions	 to	 develop	 the	 RBD	 and	 to	 calculate	 the	

reliability	parameters;	such	assumptions	can	be	summarized	as:		

• System	 item	 (component	 or	 a	 sub-system)	 assumes	 only	 two	 states:	working	 (“up”	

state)	or	failed	(“down”	state);	intermediate	working	state	is	not	allowed.	On	the	basis	

of	this	assumption,	the	system	state	can	be	considered	as	a	discrete	random	variable.		

• The	failures	are	assumed	as	independent	events:	the	failure	condition	of	a	given	item	

does	not	affect	the	probability	of	failure	of	any	other	block	within	the	system	modeled.	

On	 the	basis	 of	 this	 assumption,	 the	probability	of	 failure	of	 the	block	A,	P(A)	–	 for	

example	–	 is	not	related	with	the	probability	of	 failure	P(B)	of	 the	block	B,	and	vice	

versa.	

( | ) ( )P A B P A= 		 ( | ) ( )P B A P B= 																																																					(62)	
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• Sequential	events	are	not	considered	in	this	method;	the	system	analysis	stops	when	

the	 first	 fault	 is	 shown.	 For	 this	 reason,	RBDs	 are	not	 suitable	 for	modelling	order-

dependent	or	time-dependent	events.	

• System	items	are	considered	in	“useful	life”	period	where	failures	can	be	considered	

random	events	and	failure/hazard	rate			is	assumed	as	constant	in	the	time,	that	is:	

	

( )i itl l=
																																																																																

(63)	
	

With	i=1…n,	being	n	the	number	of	items	of	the	system.	

• The	 probability	 density	 function	 of	 failure	 f(t)	 is	 an	 exponential	 distribution.	

Considering	the	useful-life	period	and	assuming	random	failures,	 f(t)	and	 	reliability	

function	R(t)	can	be	written	as	follows:		

	

( )( ) tdR tf t e
dt

ll -= - = 																																																																						(64)	

0

( ) exp{ ( ) } tR t t dt e ll
¥

-= - =ò 				 																																																				(65)	

	

• Not	reparable	system	is	considered	with	Mean	Time	To	Failure	(MTTF)	as:		

	

0 0

( ) ( )MTTF t f t dt R t dt
¥ ¥

= × =ò ò 																																																												(66)	

	

These	hypotheses	are	mandatory	to	achieve	a	reliability	prediction	otherwise	 the	proposed	

RBD	approach	would	not	be	put	in	practice	[9].	

The	 following	 paragraphs	 describe	 a	 brand	 new	 approach	 to	 achieve	 system	 reliability	 in	

systems	containing	 standby	 redundancies.	The	added	value	 is	 that	 there	 is	no	 limit	 to	RBD	

complexity	and	this	feature	is	essential	to	achieve	reliability	prediction	of	complex	systems.		

	

	

2.2.2 Standby	Architecture	
	

The	general	equation	for	standby	redundancy	is	represented	by:	

	

2,
1 1 2,

2,0

( )( ) ( ) (1 ) ( ) ( )
( )

t
a e

s sb
a e

R t t x
R t R t p f x R x dx

R t
+ -

= + - × × × ×ò
																																			

(67)	

Where:	

• t:	mission	time;	

• x:	time	of	main	failure	and	further	stand-by	activation;	

• te:	 equivalent	 operating	 time	 for	 the	 stand-by	 branch	 if	 it	 had	 been	 operating	 at	 an	

active	mode;	

• Rs(t):	reliability	of	the	system;	
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• R1(t):	reliability	of	the	active	branch	(main);	

• f1(x):	pdf	of	the	active	branch;	

• p:	probability	of	failure	of	switch;	

• R2,sb(t):	reliability	of	the	stand-by	branch	in	quiescent	mode	;	

• R2,a(t):	reliability	of	stand-by	branch	in	active	mode.	

	

The	 following	 two	 paragraphs	 describe	 the	 cold	 and	 warm	 redundancy	 and	 show	 the	

developed	standby	reliability	models.	

	
	

2.2.3 Cold	Standby		
	

In	a	cold	stand-by	architecture	the	main	unit	 is	 fully	operative;	 the	stand-by	 is	 inactive	and	

completely	 disconnected	 from	 any	 kind	 of	 power	 source	 or	 fuel	 supply.	 This	 is	 the	 reason	

why,	 during	 inactive	 period,	 quiescent	 components	 do	 not	 age	 and	 cannot	 fail	 (this	

assumption	 can	 be	 considered	 supposing	 to	 store,	 transport,	 operate	 and	 maintain	 the	

equipment	in	totally	controlled	environment).	

In	this	configuration,	diagnostics	plays	a	fundamental	role	 in	order	to	detect	both	main	and	

stand-by	unit	failures.	On/off-line	tests,	auto-diagnostics	circuits	and	continuous	monitoring	

on	main	equipment	are	mandatory	to	switch	the	 load	on	demand	(when	failure	arises)	and	

this	practice	 is	 required	also	on	 stand-by	devices,	 in	particular	 if	 are	 involved	 in	 industrial	

applications	 such	 as	 Oil&Gas:	 this	 equipment,	 although	 in	 quiescent	 status,	 are	 forced	 to	

endure	severe	environmental	and	process	conditions	and	can’t	be	considered	failure	free	by	

definition.	

In	a	cold	standby	architecture	the	switching	device	is	included	in	the	reliability	analysis	since	

its	failure	cancel	all	the	advantages	achieved	through	redundancy;	for	this	reason	it	can’t	be	

considered	 failure	 free	by	definition.	Switch	 failure	modes	are	essentially	 two,	not-required	

commutation	and	failure	to	commute	on	demand	[28].	

In	 these	 assumptions	 response-time	 required	 to	 activate	 and	 initialize	 stand-by	 unit	 and	

switch	failure	rate	are	the	residual	constrictions	of	cold	stand-by	employment.	Therefore	in	a	

cold	stand-by	architecture	the	following	assumption	can	be	made:	

	

2, 2,( ) ( )sb a eR x R t= 		 2, 0sbl = 		 0et = 	 2, 2,( ) ( ) 1sb a eR x R t= = 																										(68)	
	

The	brand	new	reliability	function	for	cold	stand-by	architecture	is	shown	below:	

	

1 1 2,

0

( ) ( ) (1 ) ( ) ( )
t

s aR t R t p f x R t x dx= + - × × - ×ò 																																														(69)	

	

Where,	referring	to	the	system	in	Figure	1,	we	have:	

• Rs:	reliability	of	the	system;	

• R1:	reliability	of	the	active	component	(main);	
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• p:	switch	failure	probability;	

• f1:	pdf	of	the	active	component;	

• R2,a:	reliability	of	the	standby	component	in	active	mode;	

• x:	time	of	main	failure	and	further	standby	activation.	

	
	

2.2.4 Warm	Standby		
	

In	warm	stand-by	architecture	also	the	standby	equipment	is	connected	to	power/fuel	supply	

although	only	 the	main	device	 is	 involved	 in	 the	process.	Backup	unit	 is	half	operative	and	

ready	 to	 take	 over	 if	 main	 failure	 occurs.	 One	 of	 the	 strengths	 of	 this	 configuration	 if	

compared	 with	 cold	 stand-by	 is	 the	 reduced	 response-time:	 in	 this	 architecture	 it’s	 not	

necessary	 to	wait	 for	stand-by	unit	start-up	(equipment	 is	ready	 to	use)	so	 it’s	sufficient	 to	

switch	the	 load	from	main	to	stand-by	to	keep	the	system	working.	On	the	other	hand,	as	a	

consequence	of	the	uninterrupted	supply,	stand-by	units	age	during	quiescent	period	and	can	

fail	before	switching	the	 load;	 for	 this	reason	to	define	the	reliability	behaviour	of	stand-by	

equipment	two	different	failure	rates	are	required	[28]:	

• “λo”	when	main	unit	is	working	properly	so	stand-by	unit	is	half-operative	(quiescent	

status);	

• “λ”	when	 stand-by	 unit	 is	 fully	 operative	 due	 to	main	 equipment	 failure	 (operative	

status).	

In	a	warm	standby	architecture	the	following	assumption	can	be	made:	

	

2, ( ) 1sbR x < ;	 2, 0sbl ¹ 																																																																															(70)	

	

The	brand	new	reliability	function	for	warm	stand-by	architectures	is	shown	below:	

	

1 1 2, 2,

0

( ) ( ) (1 ) ( ) ( ) ( )
t

s sb aR t R t p f x R x R t x dx= + - × × × - ×ò
	

																											(71)	

	

Where:	

• Rs:	reliability	of	the	system;	

• R1:	reliability	of	the	active	component	(main);	

• p:	switch	failure	probability;	

• f1:	pdf	of	the	active	component;	

• R2,sb:	reliability	of	the	stand-by	component	in	quiescent	mode;	

• R2,a:	reliability	of	the	standby	component	in	active	mode;	

• x:	time	of	main	failure	and	further	stand-by	activation.	

	

The	equations	described	above	are	necessary	to	put	in	practice	the	new	approach	proposed	

in	 this	 study:	 thanks	 to	 the	 cold	 and	 warm	 standby	 functions	 it	 is	 possible	 to	 achieve	 a	

reliability	prediction	of	complex	systems	containing	standby	architectures.	There	is	no	limit	
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in	 structure	and	number	of	 components	 that	 can	be	used	on	each	branch	of	 the	 redundant	

architecture.	

These	features	are	implemented	in	a	dedicated	tool	named	“RBDesigner”	that	was	developed	

in	order	to	assess	reliability	parameters:	this	tool	is	fully	described	in	the	Chapter	6.	

In	 the	 following	 paragraph,	 instead,	 a	 case	 study	 is	 described	 to	 show	 the	 potential	 of	 the	

method.	

	

	

2.2.5 Case	Study	
	

The	previous	paragraphs	show	a	new	broad	approach	for	reliability	assessment	and	without	

setting	 limits	 to	 the	 complexity	 of	 Reliability	 Block	 Diagrams;	 so	 it	 is	 possible	 to	 achieve	

reliability	 prediction	 of	 complex	 systems.	 Despite	 the	 classic	 approach	 in	 [9],	 the	 user	 can	

achieve	reliability	prediction	of	very	complex	structures	on	each	branch	of	 the	architecture	

e.g.	cold	stand-by	redundancy	with	cold	stand-by	blocks	on	each	branch.	

	

An	 example	 of	 the	 proposed	 methodology	 is	 shown	 below:	 for	 reason	 of	 space	 and	 for	

simplicity	 the	 system	 is	 considered	 made	 of	 four	 notional	 components,	 the	 redundant	

frameworks	 are	 1oo2	 cold	 stand-by	 and	 each	 branch	 contains	 two	 blocks	 with	 the	 same	

failure	rate,	λa	and	λb	respectively	(see	Figure	2).	

	

	

	

	

Fig.	2.		Cold	stand-by	architecture	with	cold	stand-by	blocks	

	

The	 system	reliability	 function	 is	described	below:	equation	 (72)	 is	obtained	 from	Eq.	 (70)	

considering	the	probability	of	failure	of	all	the	switches	equal	to	zero	(failure	free).	All	terms	

in	 Eq.	 (72)	 are	 defined	 in	 Eqs.	 (73),	 (74)	 and	 (75).	 Equation	 (76)	 represents	 the	 final	

reliability	function	of	the	whole	system.	

	

1 1 2,
0

( ) ( ) ( ) ( - )
t

s aR t R t f x R t x dx= + ×ò 																																																											(72)		

t)λ(1e(t)R a
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In	Figure	3	 is	shown	the	reliability	 function	of	the	system	under	analysis	(green)	compared	

with	two	alternative	solutions:	a	cold	stand-by	redundancy	with	serial	items	on	each	branch	

(red)	and	a	cold	stand-by	redundancy	with	parallel	(hot	standby)	blocks	instead	(blue).		

This	 chart	 provides	 a	 close	 comparison	 between	 the	 different	 architectures	 and	 shows	 the	

corresponding	 reliability	 trend:	 as	 it	 was	 expected,	 the	 cold	 standby	 redundancy	 of	 cold	

standby	 blocks	 offers	 the	 best	 reliability	 performance.	 This	 result	 evidences	 the	

trustworthiness	of	the	proposed	methodology	using	the	developed	reliability	 functions	[29-

31].	The	reliability	 functions	described	 in	this	chapter	are	 fully	 implemented	 in	a	dedicated	

software	 named	RBDesigner®	which	 plays	 a	 fundamental	 role	 in	 the	 Reliability	 assessment	
loop.	The	features	of	this	software	and	a	case	study	are	shown	in	Chapter	3.	

	

	

		

Fig.	3.	 Reliability	vs.	time	plot	for	different	system	configuration	
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Chapter 3 
 

Design for Reliability 
 

 
 

	

3.1 Design	for	Reliability	
 
Life	Data	Analysis	and	Weibull	Analysis	are	two	of	 the	most	used	methods	 in	reliability	but		

nowadays	they	are	not	enough	to	achieve	high	reliability	performance.	

There	 are	 many	 other	 activities	 that	 are	 required	 to	 take	 part	 to	 an	 effective	 reliability	

program	and	develop	reliable	products:	strategic	vision,	suitable	planning,	optimal	resource	

allocation	and	the	full	integration	of	reliability	practices	in	the	development	process.	

Design	 for	Reliability	 (DFR)	 is	 the	whole	process	 that	 takes	 into	account	all	 these	activities	

and	involves	the	set	of	tools	necessary	for	the	product	and	process	design.	

Design	 engineers	 need	 to	 achieve	 reliability	 standards	 to	 be	 competitive	 on	 the	 market,	

reduce	 warranty	 costs	 and	 satisfy	 customer	 expectations:	 these	 targets	 require	 that	

reliability	be	weaved	into	the	whole	development	cycle	[30-32].		

The	 increasing	 complexity	 of	 systems	 involving	 numerous	 interactions	 and/or	 interfaces,	

diversified	usages	and	stress	profiles	produced	a	corresponding	growth	in	the	complexity	of	

reliability	methods	that	nowadays	are	required	to	be	well	defined	and	incorporated	into	the	

whole	design	cycle.		

A	 clarification	 is	 now	necessary	 to	 distinguish	 reliability	 from	quality:	 	 a	 quality	 control	 is	

done	to	ensure	that	the	product	will	perform	as	expected	after	manufacturing	process	while	a	

reliability	procedure	provides	the	probability	that	an	item	will	perform	its	intended	function	

for	a	designated	period	of	time	without	failure	(under	specified	conditions).	

Furthermore,	despite	Quality	Control	methods,	Design	for	Reliability	is	a	process	focused	on	

achieving	 high	 long-term	 reliability	 to	 identify	 and	 prevent	 design	 issues	 early	 in	 the	

development	phase	[33-34].	

	

The	DFR	process	is	based	on	the	fight	between	stress	and	strength:	a	product	fails	when	the	

stress	 experienced	 by	 the	 product	 exceeds	 its	 strength.	 The	 solution	 to	 reduce	 the	 failure	

probability	 and,	 as	 a	 consequence,	 increase	 the	 reliability	 is	 to	 cut	 down	 the	 interference	

between	stress	and	strength;	this	is	the	goal	during	Design	for	Reliability	assessment.	

DFR	process	is	organized	in	six	steps:	

• Define	 the	 reliability	 requirements	 for	 a	 product	 together	 with	 the	 expected	

environmental	 and	 usage	 conditions	 of	 the	 product.	 The	 definition	 of	 these	

requirements	can	be	assessed	following	different	procedures	and	taking	into	account	

contracts,	benchmarks,	competitive	analysis,	customer	expectations	and	costs.	
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In	 a	 complex	 system	 the	 reliability	 requirement	 goal	 can	 be	 allocated	 to	 the	

component	 level	 with	 different	 allocation	 techniques	 that	 are	 described	 in	 the	

following	 paragraphs.	 After	 the	 requirement	 assessment	 the	 next	 step	 is	 translate	

them	into	design	(and	manufacturing)	requirements.		

• Identify	 the	 impact	of	 the	new	product	 in	 terms	of	change	with	 the	past	design	and	

production:	the	new	item	can	be	a	completely	new	product,	an	upgrade	of	an	existing	

product	 or	 for	 example	 an	 existing	 product	 that	 is	 introduced	 to	 a	 new	

market/application.	 These	 changes	 produce	 changes	 in	 design,	 material,	

manufacturing,	 usage,	 environment,	 interfaces	 etc.	 and	 they	 require	 to	 identify	 and	

prioritize	the	key	reliability	risks	and	the	corresponding	risk	reduction	strategy.	One	

of	the	best	techniques	for	this	purpose	is	Failure	Mode	and	Effect	Analysis.	

• Analyse	the	product's	reliability	from	early	design	phases	in	order	to	validate	physics	

of	failure,	produce	simulation	models	and	deepen	failure	risks	and	mechanics.	

After	 this	 study	 the	 product	 weaknesses	 are	 shown	 so	 the	 analysts	 can	 quantify	

failure	parameters	predict	product	life	and	focus	the	reliability	improvement	efforts.	

At	this	stage	the	Life	Data	Analysis	(described	in	Chapter	1)	is	a	powerful	method	to	

statistically	 estimate	 the	 reliability	 of	 the	 product	 and	 calculate	 various	 reliability-

related	 metrics.	 Also	 System	 Reliability	 Analysis	 with	 Reliability	 Block	 Diagrams	

(RBDs)	is	widely	used	to	model	the	whole	system	reliability	following	the	information	

and	probabilistic	data	developed	on	the	component	or	subsystem	level.	

All	of	 these	methods	are	a	great	 support	 for	design	engineers	 to	verify	whether	 the	

product	 meets	 its	 reliability	 goals,	 compare	 designs,	 avoid	 failures	 and	 achieve	

warranty	returns.	

• Validate	 the	 design	 using	 different	 tests	 to	make	 sure	 that	 the	 product	 is	 ready	 for	

production;	the	use	of	statistical	methods	is	recommended	to	develop	a	test	plan	and	

demonstrate	 the	 achievement	 of	 desired	 goals	with	 the	 least	 expense	 of	 resources.	

The	 following	 step	 is	 to	 reduce	 or	 eliminate	 problems	 introduced	 by	 the	

manufacturing	process	since	during	this	phase	many	variations	in	terms	of	materials,	

processes,	manufacturing	sites,	human	 factors,	etc.	are	 involved	so	some	changes	 in	

the	design	might	be	necessary	to	improve	the	whole	system	robustness.		

• Monitor	and	Control	to	describe	the	actions	required	at	each	phase	of	the	process	to	

assure	 that	 all	 process	 outputs	 will	 be	 in	 control	 and	 that	 the	 requirements	 are	

achieved.	 Some	 tests	 like	 Burn-in	 and	 Screening	 are	 useful	 to	 prevent	 from	 infant	

mortality	failures	caused	by	manufacturing-related	problems.	

Anyway	continuous	monitoring	and	 field	data	analysis	are	necessary	 to	observe	 the	

behaviour	of	the	product	in	“real”	applications	and	acquire	data	for	improvements	or	

future	projects.		

	

Following	the	steps	described	above	a	design	engineer	can	generate	a	reliable	product	with	a	

focus	on	reliability	performance	and	requirement	[30-34].	
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3.2 Reliability	Allocation	
	
Reliability	Allocation	 	 (RA)	 is	 a	 top-down	 technique	 that	 allows	apportioning	 the	 reliability	

goal	 of	 the	 system	between	 its	 components:	 this	 is	 a	 very	 sensitive	 issue	 in	 industrial	 and	

commercial	environments.	

Furthermore	in	order	to	satisfy	the	product	requirements,	the	first	step	in	the	design	phase	is	

to	 translate	 the	 overall	 system	 reliability	 goal	 into	 reliability	 requirements	 for	 each	 of	 the	

subsystems:	 for	 this	 reason	 the	 RA	 processes	 are	 fundamental	 to	 assign	 reliability	

requirements	to	individual	units	and	obtain	the	target	system	reliability	[34-37].	

During	 the	 years	 a	 lot	 of	methods	 for	 reliability	 allocation	 assessment	were	developed	but	

they	all	follow	the	same	algorithm:	the	failure	rate	to	be	allocated	to	a	generic	subsystem	is	

directly	proportional	to	the	failure	rate	of	the	whole	system.	The	proportionality	constant	ω	

is	said	weight	factor	and	each	allocation	method	has	a	dedicated	procedure	to	assess	its	own	
weight	factors	[30].	

Every	 technique	 shares	 with	 the	 others	 two	 hypothesis:	 all	 subsystem	 must	 be	 in	 series	

configuration	and	follows	exponential	failure	distribution.	

Under	these	assumptions,	the	reliability	to	be	allocated	to	each	subsystem	is	given	by:	

	

»…
∗ À = »ÃÕÃ

∗ À Œ… 																																																											(77)	
	

Where	óòôò
∗ N 	is	the	system	reliability	target.	

Nowadays	many	reliability	allocation	methods	are	available	and	the	most	important	are	the	

following:	 Equal	 Allocation	 Method	 (Department	 of	 Defense	 of	 USA,	 1988),	 ARINC	 (Alven,	

1964),		Advisory	Group	of	Reliability	of	Electronic	Equipment	(AGREE,	1957),	FOO	Technique	

(Department	 of	 Defense	 of	 USA,	 1988),	 Bracha	 Technique	 (J.V.	 Bracha,	 1964),	 Average	

Weighting	Allocation	Method	(Kuo,	1999)	and	Maximal	Entropy	Ordered	Weighting	Average	

Method	(Chang,	2009)	[34].	

	

	

3.2.1 ARINC	method	
	

The	 ARINC	 apportionment	 method	 was	 designed	 by	 ARINC	 Research	 Corporation,	 a	

subsidiary	 of	 Aeronautical	 Radio,	 Inc.	 This	 method	 is	 based	 on	 the	 assumption	 that	 the	

reliability	of	components	can	be	assessed	using	previous	calculations	on	similar	components.	

The	mathematical	expression	of	weight	factors	is	the	following:		

	

Œ… =
œ…
œÃÕÃ

= œ…
œ–—

–g“
																																																																(78)	

	

Where	U” 	is	 the	 estimated	 failure	 rate	 of	 the	 component	 i-th	 obtained	 through	 a	 similar	
system	and	Uòôò	is	the	estimated	failure	rate	of	the	whole	architecture	[35].		
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3.2.2 AGREE	method	
	

AGREE	 technique	 considers	 the	 complexity	 of	 each	 subsystem	 to	 calculate	 the	 weighting	

factors:	these	are	assessed	as	the	number	of	elements	of	the	generic	subsystem	‘” 	compared	
to	 the	 total	 number	 of	 components	’òôò 	of	 overall	 configuration.	 This	 technique	 also	
considers	 the	 importance	÷” 	of	 each	 subsystem	 i,	 where	 importance	 is	 defined	 as	 the	
probability	that	the	system	fails	when	the	subsystem	fails	[36].	

Weighting	factors	are	given	by:	

	

Œ… =
◊…
ÿ…

À
À…
																																																																						(79)	

	

3.2.3 FOO	method	
	

The	 FOO	 technique	 was	 first	 introduced	 in	 1976	 and	 is	 included	 in	 the	 MIL-HDBK-338B	

Electronic	Reliability	Design	Handbook	(Department	of	Defense	of	USA,	1988)	as	a	method	to	

develop	and	implement	reliability	programs	for	all	types	of	military	products.	With	the	FOO	

method,	 subsystem	 allocation	 factors	 are	 computed	 as	 a	 function	 of	 a	 numerical	 rating	 of	

complexity	 (Ÿ⁄),	 state-of-the-art	 (€S),	 operating	 time	 (‹S),	 and	 environment	 condition	 (›fi)	
[34].	

Each	 rank	 is	 based	 on	 a	 scale	 from	 1	 to	 10	 (Tab.	 1)	 and	 they	 are	 estimated	 using	 design	

engineering	and	expert	judgments.		

The	rating	values	are	then	multiplied	to	achieve	the	partial	weight	factor	fl” .	
The	final	product	results	 in	a	value	ranging	from	1	to	10000	and	the	subsystem	ratings	are	

normalized	so	that	their	sum	is	equal	to	1	[34].		

Weighting	factors	are	given	by:	

	

Œ… =
◊‡…·À…‚„…ÃÀ…
◊‡–·À–‚„–ÃÀ–

—
–g“

= ‰…
‰–—

–g“
																																																	(80)	

	

	

Table	I	-	Rules	for	the	assessment	of	influence	factors	

	

Influence	Factors	 Rating	

Complexity	ÂÊ	
1	2	3	4	5	6	7	8	910	
Low																					Max	

Environment	Condition	ÁË	
1	2	3	4	5	6	7	8	910	
Low																					Max	

State	of	the	art	ÈÍ	
1	2	3	4	5	6	7	8	910	
Max																				Low	

Operating	time	·À	
1	2	3	4	5	6	7	8	910	
Max																				Low	

	



	 	
	 	 	

44	

3.2.4 Bracha	method	
	

	

Bracha	method	uses	 the	same	 factors	of	FOO	technique	but	 it	privileges	 the	€S	factor	 inside	
the	expression	for	calculate	the	partial	weight	factors	[31]:	

	

Î… = ÃÀ… ◊‡… + ·À… + ‚„… 																																																																(	81)	
	

Unlike	 the	 FOO	 method,	 in	 this	 technique	 each	 influence	 factor	 is	 achieved	 by	 means	 of	

special	formulas	and	it	ranges	within	the	interval	[0;1].			

The	subsystem	rating	are	then	normalized	so	the	weighting	factors	are	given	by:	

	

Œ… =
ÃÀ… ◊‡…C·À…C‚„…
ÃÀ– ◊‡–C·À–C‚„–

—
–g“

= Î…
Î�—

–g“ 			
																																												(82)	

	

	

3.2.5 AWM	method	
	

Kuo	 (1999)	 created	 an	 average	 weighting	 allocation	 method	 as	 a	 guide	 for	 reliability	

allocation	design.	The	method	uses	a	questionnaire	investigation	to	select	the	most	influential	

system	reliability	factors	such	as	complexity,	state-of-the-art,	system	criticality,	environment,	

safety,	 and	maintenance	 in	 order	 to	 determine	 the	 subsystem	 reliability	 allocation	 ratings.	

Each	rank	is	estimated	on	a	scale	from	1	to	10	using	design	engineering	and	expert	judgments	

to	obtain	the	subsystem	reliability	rate	[34].	

Suppose	a	system	is	composed	of	N	subsystem,	m	is	the	number	of	influence	factor	and	p	the	
number	 of	 expert.	 Let	Ï”Ì 	denote	 the	 j-th	 rating	 for	 subsystem	 i.	ÓÔ”Ì 	is	 the	 j-th	 rating	 for	

subsystem	i	set	by	L-th	expert.	To	each	of	the	factors	is	assigned	the	following	value:	
	

Õ…– =
“


ÒÚ…–

Ûç“ ∀… = “, … ,ı∀– = “,… , —																																									(83)	

	

Two	different	models	can	be	used	to	allocate	weighting	factors	ˆ”:	
	

• Geometric	model	

Œ… =
Õ…–

—
–g“

Õ…–—
–g“

ı
˜g“

= ¯…
¯˜ı

˜g“
																																																												(84)	

	

• Arithmetic	model	

Œ… =
Õ…–

—
–g“

Õ…–—
–g“

ı
˜g“

= ◊…
◊˜ı

˜g“
																																																										(85)	
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3.2.6 MEOWA	method	
	

	

	

In	 1988	 Yager	 first	 introduced	 the	 concept	 of	 OWA	 operators,	 which	 are	 important	

aggregation	operators	within	the	class	of	weighted	aggregation	methods.	It	has	the	ability	to	

derive	optimal	weights	of	the	attributes	based	on	the	rating	of	the	weighting	vectors	after	an	

aggregation	process	[34].	

An	OWA	operator	of	dimension	n	is	mapped	F	from	÷fi ⟶ ÷,	where	 I	=	[0,	1];	 the	associated	
weighting	vector	˙ =	 ˚Z, ˚w, … , ˚fi ∆ 	is	defined	as	follows:	
	

¸… = “„
…ç“ 				∀¸… ∈ ˝, “ ,				… = “, ˛, … „																																				(86)	

	

˜ ˇ“,�˛, … , ˇ„ = ¸…!…„
…ç“ 																																																(87)	

	

Where	√” 	is	the	i-th	largest	element	in	the	collection	¬Z, ¬w, … , ¬fi			and	√Z ≥ √w ≥ ⋯ ≥ √fi.	[7]	
Later	 Yager	 introduced	 two	 important	 characterizing	 measurements	 with	 respect	 to	 the	

weighting	 vector	 W	 of	 the	 OWA	 operator.	 One	 of	 these	 two	 measures	 is	 “orness	 of	 the	
aggregation”,	which	is	defined	below	(Eq.	87).	
Let’s	 assume	 F	 is	 an	 OWA	 aggregation	 operator	 with	 a	 weighting	 vector	˙ =
	 ˚Z, ˚w, … , ˚fi ∆ ,	the	degree	of	orness	associated	with	this	operator	is	defined	as:	

	

‹M‘ö## ˙ = 	$ = Z
fiDZ

(‘ − W)fi
”çZ ˚”																																							(88)	

	

Where	Orness(W)	= $	is	a	situation	parameter	[34]	and	can	vary	within	the	interval	[0;1].	
The	 second	 characterizing	 measurement	 introduced	 by	 Yager	 is	 the	 “dispersion	 of	 the	
aggregation”	that	is	defined	as:	
	

%W#&öM#W'‘ ˙ = − ˚”ln	(˚”)fi
”çZ 																																								(89)	

	

O’Hagan	(1988)	combined	the	principle	of	maximum	entropy	and	OWA	operators	to	propose	

a	 particular	 OWA	 weight	 that	 has	 maximum	 entropy	 with	 a	 given	 level	 of	 orness.	 This	

approach	 is	 based	 on	 the	 solution	 of	 the	 following	 mathematical	 problem:	 Maximize	

%W#&öM#W'‘ ˙ 	subject	to:	

	

“
„D“

„ − …„
…ç“ ¸… = (																																																			(90)	

	

Where		0 ≤ α ≤ 1;			 wc
b
cçZ = 1; 			0 ≤ wc ≤ 1.	

Fuller	 and	 Majlender	 (2001)	 used	 the	 method	 of	 Lagrange	 multipliers	 on	 Yager’s	 OWA	

equation	to	derive	a	polynomial	equation,	which	can	determine	the	optimal	weighting	vector	

under	 the	 maximal	 entropy.	 By	 their	 method,	 the	 associated	 weighting	 vector	 is	 easily	

obtained	by	the	following	equations:	

	

¸– = ¸“
„D–¸„

–D“„r“
																																																									(91)	
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¸„ =
„D“ (D„ ¸“C“
„D“ (C“D„¸“

																																																																(92)	

	

¸“ „ − “ ( + “ − „¸“
„ = „ − “ ( „D“ „ − “ ( − „ ¸“ + “ 																				(93)	

	

With	situation	parameter	$ ∈ Z
w
	; 1 .	

After	 determining	 the	 weighting	 vector	W,	 the	 overall	 factor	*+ 	can	 be	 achieved	 and	 then	
allocated	to	each	subsystem	[34].	

This	index	considers	all	n	influence	factors,	each	multiplied	by	the	optimal	weight.		
	

								,Û = ¸…!…,Û„
…ç“ 																																																																				(94)	

	

Where√Z,+ , √w,+ , … , √fi,+ 	are	 the	 values	 assigned	 to	 the	 influence	 factors	 of	 the	 k-th	
subsystem.	

Depending	on	the	system	under	analysis	it	is	possible	to	choose	the	number	and	the	type	

of	influence	factors.	Weighting	factors	ˆ+ 	are	given	by:	
	

ŒÛ =
,Û
-(
	./010	-( = ¸… !…,–—

–ç“
„
…ç“ 																																						(95)	

	

This	allocation	procedure	is	called	MEOWA	method	(Chang,	2009)	[34].	

MEOWA	 technique	 provides	 a	 situation	 parameter	$ ∈ 0,5	; 1 	to	 assess	 the	 reliability	
allocation	values:	

• 		$ = 1	is	used	to	represent	the	situation	when	the	decision-maker	is	very	confident;	
• $ = 0.5	is	used	when	the	decision-maker	faces	a	moderate	uncertainty.		

	

The	conditional	parameter	 is	particularly	useful	when	the	reliability	allocation	procedure	is	

achieved	during	design	phase	using	imprecise,	incomplete	or	uncertain	information	[34].		

The	 situation	 parameters	 have	 particular	 effect	 on	 the	 value	 of	 the	 weighting	 vector	

component	since	they	influence	the	weight	of	the	factor	with	very	high	or	very	low	ratings.		

In	 conclusion,	 except	 for	 ARINC	 and	 AGREE	 methods,	 the	 weighting	 factor	 for	 Reliability	

Allocation	is	given	by:	

Œ… =
˜(Õ…–)

˜(Õ…–)—
…g“

																																																																						(96)	

	

Where	Ï”Ì 	denote	the	j-th	rating	for	subsystem	i,	and	f	is	a	function	of	Ï”Ì .		
	

	

3.2.7 Reliability	Allocation	in	Redundant	Architectures		
	

In	order	to	enlarge	the	range	of	applicability	of	allocation	methods,	the	following	hypotheses	

are	required:	
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• Replacement	 of	 the	 reliability	 function	 R(t)	with	 unreliability	 function	 Q(t)	 and	

successive	re-conversion	in	terms	of	reliability:	

	

2…∗ À = 2ÃÕÃ∗ À Œ… 										»…
∗ À = “ − 2…∗ À 																																				(97)	

	

• Inversion	 of	 the	 influence	 factor	 rating;	 this	 step	 is	 necessary	 to	 keep	 the	 right	

relationship	between	the	factor	definition	and	the	corresponding	rating.		

In	traditional	methods	for	series	system	the	complexity	factor	C0	ranges	from	1	to	

10,	where	1	corresponds	to	the	least	complex	system	and	10	to	the	most	complex	

one.	 As	 a	 consequence	 a	 growth	 in	 the	 complexity	 produces	 an	 increase	 in	 the	

weighting	factor	ˆ” 	and	a	decrease	in	the	reliability	allocated.	
For	parallel	systems	the	new	complexity	factor	Ÿ⁄	has	to	be	defined	as:		

	

◊‡ = ““ − ◊‡																																																																							(98)	
	

Following	 this	 definition	 a	 growth	 in	 terms	 of	 complexity	 produces	 a	 decrease	 in	 the	

weighting	 factors	ˆ”	and	 a	 consequent	 increase	 of	 the	 allocated	 unreliability	 like	 series	
systems.		

	

This	approach	works	for	parallel	architectures	in	some	methods	(in	particular	FOO,	Bracha,	

AWM	and	MEOWA)	but	it	is	not	applicable	for	ARINC	and	AGREE	techniques.	

This	 is	the	roadblock	for	the	applicability	of	these	methods	since	it	 is	mandatory	to	achieve	

reliability	allocation	parameters	without	restrictions	for	the	model	structure.		

The	explanation	of	this	technical	limit	is	the	following:	the	solution	to	extend	the	applicability	

range	of	these	allocation	methods	from	simple	series	configurations	to	parallel	architectures	

is	 to	 use	 the	 system	 reliability	 definition	 for	 series	 (system	 reliability	 is	 given	 by	

multiplication	of	the	reliability	of	each	items).	Similarly,	in	parallel	configurations,	the	system	

unreliability	is	calculated	as	multiplication	of	the	unreliability	of	each	component.		

For	 this	 reason	 the	 first	 hypothesis	 is	 necessary	 in	 order	 to	 apply	 the	 techniques	 to	

redundant	designs.	Anyway	it	is	still	mandatory	that	the	sum	of	all	the	factors	ˆ” 	is	unitary:	
	

Œ…
—
…ç“ = 	“																																																																	(99)	

	

»…
∗ À = »ÃÕÃ

∗ À Œ… 																																																									(100)	
	

»…
∗ À—

…ç“ = »ÃÕÃ
∗ À Œ…—

…ç“ = »ÃÕÃ
∗(À) Œ…

—
…g“ = »ÃÕÃ

∗(À)												(101)	
	

2…∗ À = 2ÃÕÃ∗ À Œ… 																																																											(102)	
	

2…∗ À—
…ç“ = 	 2ÃÕÃ∗ À Œ…—

…ç“ = 2ÃÕÃ∗(À) Œ…
—
…g“ = 	2ÃÕÃ∗(À)																				(103)	

	

Following	 Eq.	 100-101	 for	 series	 and	 Eq.	 102-103	 for	 parallel	 systems	 the	 fundamental	

relationships	of	redundancy	are	fulfilled.		
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Now	 it	 can	 be	 observed	 why	 ARINC	 method	 cannot	 be	 extended	 to	 architectures	 with	

complexity	greater	then	simple	series.	Generically,	for	all	possible	configuration:	

	

Œ… =
œ…
œÃÕÃ

																																																																								(104)	

	

In	 series	 configuration	 the	 system	 failure	 rate	 is	 the	 sum	 of	 all	 items	 failure	 rate,	 so	 the	

weighting	factors	are	normalized	and	equation	(23)	is	satisfied.		

In	parallel	configuration	the	system	failure	rate	is	given	by	a	generic	function	of	component	

failure	rates.	So:	

œÃÕÃ ≠ 	 œ…—
…ç“ 																																																																		(105)	

	

Œ…
—
…ç“ = œ…

œÃÕÃ
—
…ç“ ≠ “																																																										(106)	

	

As	a	consequence	of	(1)	and	(30),	the	following	relationship	is	achieved:		

	

2…∗ À—
…ç“ = 	 2ÃÕÃ∗(À) Œ…—

�ç“ ≠ 2ÃÕÃ∗(À)																																						(107)	
	

This	 result	 is	 produced	 by	 the	 conflict	 with	 the	 fundamental	 relationship	 of	 parallel	

configuration	given.		

Therefore	 for	ARINC	method	 the	 reliability	 allocation	 in	 case	 of	 redundant	 architectures	 is	

not	possible	with	these	assumptions.	

Similarly	AGREE	method	is	not	applicable	to	parallel	systems	because	the	sum	of	weighting	

factors	defined	by	Eq.	78	is	not	unitary	and	Eq.	101	is	not	satisfied.	

On	the	contrary,	in	FOO,	Bracha,	AWM	and	MEOWA	methods	the	weighting	factors	are	given	

by	the	generic	Eq.	97	so:	

	

Œ…
—
…ç“ = 	“				 2…∗ À—

…ç“ = 	 2ÃÕÃ∗(À) Œ… = 2ÃÕÃ∗(À)—
…ç“ 																						(108)	

	

In	 this	 case	 the	 reliability	 apportion	 works	 also	 for	 redundant	 systems	 [34-37].	 These	

methods	are	the	reference	to	assess	Reliability	Allocation	in	complex	systems	and,	in	general,	

for	systems	containing	redundant	architectures:	this	trend	is	shown	in	paragraphs	3.2.8,	3.2.9	

and	3.2.10.	

	

	

3.2.8 Reliability	Allocation	in	Complex	Systems		
	

The	Reliability	Block	Diagram	of	the	system	under	test	is	shown	in	Fig.	1.	
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Fig.	1.	RBD	of	generic	complex	system	

	

This	 system	 is	 composed	 of	 N	 branches	 in	 parallel	 configuration.	 Each	 branch	 is	 in	 turn	
composed	of	 a	 cascade	of	 a	 generic	’” 	number	of	 elements	 in	 series	 configuration,	with	W =
1, 2, …’.	
In	order	to	achieve	Reliability	Allocation	of	this	system,	the	following	steps	are	required:	

• The	 reliability	 target	 is	 allocated	 using	 one	 of	 the	 techniques	 described	 in	 the	

previous	 paragraphs	 and	 considering	 an	 equivalent	 system	 where	 each	 branch	 is	

simplified	in	one	block;	the	N	branches	are	in	parallel	configuration	(Fig.	2).	
• The	reliability	target	achieved	in	the	first	step	is	used	to	allocate	that	requirement	to	

each	branch;	the	RBD	of	the	generic	i-th	branch	is	shown	in	Fig.	3.	
	

	
	

Fig.	2.	–	Equivalent	system	RBD	at	first	step	

	

	

	
	

Fig.	3.	RBD	of	generic	branch	to	study	at	second	step	

	

Following	 the	 procedure	 described	 above,	 the	 first	 step	 is	 the	 assessment	 of	 equivalent	

influence	 factors	of	 the	single-branch	subsystems;	 this	procedure	starts	 from	the	estimated	

factors	of	the	individual	elements	inside	the	series	chain	once	they	are	achieved	throw	expert	

judgments.	Furthermore	the	following	worst-case	hypothesis	are	introduced:	

 
• COMPLEXITY	Ÿ⁄→	the	total	complexity	of	a	branch	 is	given	by	the	maximum	complexity	

value	between	the	elements	belonging	to	the	branch.	

 
◊‡… = 456

–ç“,…,—…
◊·– ∀… = “, ˛, … , —                                       (109) 
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• STATEOF	THE	ART	€S	→	 the	 total	 state	 of	 the	 art	 of	 a	 branch	 is	 the	mean	 between	 the	
states	of	the	art	of	the	elements	belonging	to	the	branch.	

	

ÃÀ… =
“
—…

ÃÀ–
—…
–ç“ ∀… = “, ˛, … , —	                                           (110) 

 
• OPERATING	TIME	‹S	→	the	overall	branch	operating	time	is	equal	to	the	operating	time	of	

the	most	used	element.	

·À… = 456
–ç“,…,—…

·À– ∀… = “, ˛, … , —                                      (111) 

 
• ENVIRONMENT	FACTOR	›fi	→	 the	 total	 environment	 factor	 of	 a	 branch	 is	 given	 by	 the	

maximum	environment	factor	between	the	elements	belonging	to	the	branch.	

 
‚„… = 456

–ç“,…,—…
‚„– ∀… = “, ˛, … , —                                         (112) 

• CRITICALITY	Ÿ7→	 the	 total	 criticality	 factor	 of	 a	 branch	 is	 given	 by	 the	 minimum	
criticality	factor	between	the	elements	belonging	to	the	branch.	

 
◊8… = 49Ë

–ç“,…,—…
◊8– ∀… = “, ˛, … , —                                        (113) 

 
• MAINTAINABILITY	:;→	 the	 maintainability	 of	 a	 branch	 is	 the	 mean	 between	 the	

maintainability	of	the	elements	belonging	to	the	branch.	

 

-ˇ…
= “

—…
-ˇ–

—…
–ç“ ∀… = “, ˛, … , —                                          (114) 

 
• SAFETY	€;→	 the	 total	 safety	 factor	 of	 a	 branch	 is	 given	 by	 the	maximum	 safety	 factor	

between	the	elements	belonging	to	the	branch.	

 
Ãˇ… = 456

–ç“,…,—…
Ãˇ– ∀… = “, ˛, … , —                                       (115) 

 
The	Reliability	Allocation	procedure	described	above	was	implemented	in	a	dedicated	tool	on	

MathWorks	"Matlab	r2015a"	platform:	the	software	calculates	the	reliability	and	the	failure	

rate	to	be	allocated	to	each	component	of	the	system.	

The	 necessary	 inputs	 are	 system	 reliability	 goal,	 time	 to	 allocation,	 number	 of	 parallel	

subsystems,	number	of	series	elements	of	each	subsystem,	allocation	method	and	 influence	

factors	[40-41].		

The	 test	 of	 the	 developed	 tool	 on	 two	 dedicated	 case	 studies	 is	 shown	 in	 the	 following	

paragraphs.	

	

	

3.2.9 Case	Study	A	
	

Fig.	4	shows	the	complex	system	analysed	in	this	paragraph	with	the	developed	tool.	
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Fig.	4.	RBD	of	case	study	A	

	

The	system	is	a	special	case	of	the	generic	complex	system	described	in	Fig.	1:	it	is	composed	

by	5	parallel	branches	(N	=	5),	each	made	up	of	Ni	components	as	follows:	N1=	3,	N2=	4,	N3=	2,	
N4=	1,	N5=	5.	
The	 system	 reliability	 goal	 to	 achieve	 through	 the	 Reliability	 Allocation	 procedure	 is	

óòôò
∗ N = 0.99	where	N = 8760ℎ.	

After	a	great	number	of	 tests	and	simulations,	 the	MEOWA	method	shows	 the	best	 results:	

the	weighting	vector	w	given	by	Eq.	92,	Eq.	93	and	Eq.	94	solve	the	problem	arisen	with	the	
other	 methods	 to	 assign	 an	 appropriate	 weight	 to	 influence	 factors	 with	 very	 high/low	

values.	

Table	II	shows	the	influence	factors	used	in	the	simulation	of	MEOWA	technique	while	Table	

III	shows	the	reliability	allocation	results	using	the	developed	tool.		

	

Table	II	-	MEOWA	influence	factors	for	case	study	A	

	

Branch	 Element	 ◊‡	 ‚„	 ÃÀ	 ◊8	 -ˇ	 Ãˇ	

	
1	

1.1	 1	 4	 7	 7	 7	 6	

1.2	 1	 5	 4	 8	 8	 10	

1.3	 1	 2	 10	 6	 9	 3	

	
	
2	

2.1	 3	 5	 9	 9	 8	 8	

2.2	 2	 7	 6	 9	 8	 4	

2.3	 4	 6	 7	 10	 6	 7	

2.4	 3	 2	 6	 9	 10	 9	

3	
3.1	 2	 5	 10	 8	 10	 3	

3.2	 2	 6	 6	 7	 6	 8	

4	 4.1	 7	 3	 2	 6	 10	 6	

	
	
5	

5.1	 2	 4	 9	 8	 6	 8	

5.2	 2	 3	 9	 10	 6	 4	

5.3	 2	 5	 9	 5	 4	 3	

5.4	 1	 2	 9	 5	 8	 4	

5.5	 1	 2	 9	 8	 6	 7	
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Table	III	-	Tool	output	using	MEOWA	method		

	

Branch	 »…,–
∗ À 	

1	 0,885	 0,850	 0,850	 	 	

2	 0,847	 0,853	 0,845	 0,836	 	

3	 0,747	 0,796	 	 	 	

4	 0,632	 	 	 	 	

5	 0,906	 0,899	 0,916	 0,909	 0,907	

	

	

As	a	result,	lower	reliability	is	allocated	to	components	with	high	influence	factors	(Table	III);	

this	trend	validates	both	the	tool	operation	and	the	RA	method	selected.		

In	fact	other	techniques	(e.g.	FOO,	Bracha	and	AWM)	calculate	the	weighting	factors	as	a	sum	

(or	product)	of	influence	factors:	in	this	way	the	weight	factors	do	not	reflect	the	impact	each	

influence	factor	has	on	the	system.	Therefore	these	methods	can’t	take	care	of	single	factors	

with	high/low	ratings	[40-43].	

The	tool	calculates	also	the	failure	rate	to	be	apportioned	to	each	item,	assuming	that	all	the	

blocks	 of	 the	 system	 are	 single	 elements	 and	 not	 subsystems	 in	 turn.	 Figure	 5	 shows	 an	

example	of	the	tool	outcomes	containing	the	simulation	results	for	MEOWA	technique.	

	

	
	

Fig.	5.	RA	tool	output	screenshot	

	

	

3.2.10 Case	Study	B	
	

Figure	6	shows	the	second	case	study	chosen	to	test	the	proposed	method	and,	at	the	same	

time,	the	potential	of	MEOWA	technique	supposing	a	variation	of	the	situational	parameter	$.	
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Fig.	6.	RBD	of	the	second	case	study		

	

This	complex	system	is	another	particular	case	of	the	generic	model	described	above	and	it	is	

composed	by	two	parallel	branches	(N	=	2),	each	made	up	of		Ni	subsystems	as	follows:	N1=	2,	
N2=	1.	
The	first	branch	is	made	of	two	subsystems:	two	blocks	in	parallel	configuration	(subsystem	

A)	and	three	blocks	in	TMR	architecture	(subsystem	B).	

The	 single	 element	 characterized	 by	 the	óA	reliability	 function	 will	 be	 considered	 as	 the	
subsystem	C.	

This	 kind	 of	 applications	 requires	 a	 double	 allocation	 procedure:	 the	 first	 step	 is	 the	 RA	

assessment	 at	 subsystem	 level,	 then	 the	 outcomes	 are	 used	 to	 allocate	 the	 final	 reliability	

target	at	each	component.		

In	most	applications	TMR	architecture	 is	 formed	by	three	 identical	elements	with	 the	same	

reliability	function.	For	this	reason	it	is	not	possible	to	use	the	allocation	methods	shown	in	

paragraph	 2.2.6	 since	 these	 techniques	 don’t	 allocate	 the	 requirements	 uniformly	 to	 the	

items.	In	TMR	configuration	is	mandatory	to	use	the	Equal	Allocation	Method	that	apportions	

the	 reliability	 target	 evenly	between	 the	 redundant	 items;	voter	allocation,	 instead,	 follows	

the	standard	MEOWA	procedure.	

The	influence	factors	determined	by	experts	in	reliability	are	shown	in	Table	IV:	the	voter,	as	

known,	 is	 the	most	critical	component	 in	TMR	architectures	and	 it	 is	characterized	by	very	

low	parameters	with	consequently	high	reliability	performance	demand	[43].		

	

	

Table	IV	–	Influence	factors	for	case	study	B	

	

Subsystem	 Item	 ◊‡	 ‚„	 ÃÀ	 ◊8	 -ˇ	 Ãˇ	
	
A	

1	 4	 10	 10	 4	 10	 3	

	 2	 7	 7	 6	 5	 6	 5	

	 3	 3	 4	 7	 4	 5	 6	

	
B	

4	 3	 4	 7	 4	 5	 6	

	 5	 3	 4	 7	 4	 5	 6	

	 Voter	 2	 2	 1	 1	 3	 3	

	
C	
	

6	 3	 5	 4	 6	 7	 9	
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Table	 V	 shows	 the	 influence	 factors	 achieved	 for	 subsystem	 A,	 B	 and	 C	 according	 to	 the	

hypothesis	shown	in	paragraph	IV.	

	

	

Table	V	–	Influence	factors	for	subsystem	A,	B	and	C	

	

Subsystem	 Item	 ◊‡	 ‚„	 ÃÀ	 ◊8	 -ˇ	 Ãˇ	

A	 1	 7	 10	 8	 4	 8	 5	

B	 2	 3	 4	 4	 1	 4	 6	

C	 3	 3	 5	 4	 6	 7	 9	

	

The	 simulation	was	 performed	with	 the	 same	 reliability	 target	 of	 the	 previous	 case	 study:	

óòôò
∗ N = 0.99	where	N = 8760ℎ.	

The	results	of	the	first	step	of	simulation	and	the	final	results	are	shown	in	Table	VI	and	Table	

VII	(considering	ó¨ = óí = óñ	for	the	TMR	architecture).	
	

	

Table	VI	–Reliability	of	subsystems	A,	B	and	C	calculated	with	the	MEOWA	method,	varying	α	

	

	
Reliability	to	be	allocated	to	each	

subsystem	

(	 Subsystem	
A	

Subsystem	
B	

Subsystem	
C	

0,50	 0,927	 0,961	 0,907	

0,55	 0,929	 0,961	 0,905	

0,60	 0,931	 0,962	 0,903	

0,65	 0,932	 0,962	 0,902	

0,70	 0,934	 0,963	 0,900	

0,75	 0,935	 0,963	 0,897	

0,80	 0,937	 0,964	 0,895	

0,85	 0,939	 0,965	 0,891	

0,90	 0,942	 0,966	 0,887	
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Table	VII	–	Reliability	of	all	items	of	the	configuration	calculated	by	MEOWA	method,	varying	α	

	

	 Reliability	to	be	allocated	to	each	
subsystem	

(	 R1	 R2	 R3	 RV	 R6	
0,50	 0,697	 0,761	 0,896	 0,991	 0,907	

0,55	 0,714	 0,752	 0,897	 0,991	 0,905	

0,60	 0,729	 0,744	 0,898	 0,991	 0,903	

0,65	 0,743	 0,737	 0,898	 0,991	 0,902	

0,70	 0,755	 0,730	 0,899	 0,991	 0,900	

0,75	 0,766	 0,724	 0,900	 0,992	 0,897	

0,80	 0,777	 0,720	 0,901	 0,992	 0,895	

0,85	 0,787	 0,717	 0,902	 0,992	 0,891	

0,90	 0,797	 0,716	 0,904	 0,992	 0,887	

	

	

Figure	7	shows	the	RA	trends	in	function	of	the	situational	parameter	variation:	the	voter	has	

the	highest	reliability	to	be	allocated	with	a	value	close	to	1	and	its	reliability	allocation	is	not	

affected	by	the	increase	of	α.	This	trend	was	expected	since	the	voter	is	characterized	by	very	

low	influence	factors.	

As	 shown	 in	 the	 figure,	 the	 reliability	 allocated	 to	 the	 elements	 involved	 in	 the	 parallel	

configuration	 is	 initially	 lower	 than	 the	 TMR	 ones:	 also	 this	 gap	 was	 expected	 since	 the	

elements	 in	 subsystem	 A	 are	 characterized	 by	 higher	 values	 than	 subsystem	 B	 (Table	 V).	

However	the	distance	between	the	two	reliabilities	significantly	decreases	together	with	the	

growth	of	α	[43].	

Obviously	redundant	architecture	ensures	high	reliability	performance	even	for	low	values	of	

reliability	 of	 its	 components	 and	 the	 reliability	 allocated	 to	 the	 parallel	 elements	 assumes	

very	low	values.	For	these	two	blocks:	óZ
∗(N) < ów

∗(N),	considering	� = 0.5	and	the	presence	
of	 the	 maximum	 value	 (10)	 in	 three	 of	 the	 influence	 factors	 of	 the	 first	 element	 is	 the	

justification	[40-42].		

With	 the	 growth	 of	 the	 situational	 parameter	 the	 relationship	 between	 the	 two	 reliability	

curves	is	reversed,	and	the	reliability	of	the	component	1	becomes	greater	than	the	reliability	

of	the	other	one.		

This	trend	is	produced	by	the	influence	of	the	situation	parameter	on	the	importance	of	the	

maximum	ratings	for	the	assessment	of	the	weighting	factors	ˆ”	and	this	is	possible	through	
the	weighting	vector	W	defined	by	OWA	operators.		
Subsystem	A	it	is	the	only	one	to	take	into	account	to	select	the	value	of	situation	parameter	

that	 best	 fits	 the	 whole	 system	 since	 the	 reliability	 allocated	 to	 subsystems	 B	 and	 C	 is	

subjected	to	very	low	variations.	

Anyway	this	is	not	a	standard	rule:	sometimes	an	influence	factor	with	max	rank	is	a	sort	of	

“out	 of	 standard”	 and	 the	 corresponding	 component	 may	 require	 a	 higher	 reliability	

allocation.	For	this	reason	the	influence	factors	can’t	be	assigned	by	default	and	they	need	to	

be	appointed	case	by	case	in	order	to	achieve	an	optimum	allocation	[38-40].		
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Fig.	7.	Reliability	allocation	values	using	MEOWA	method	vs.	situation	parameter	α	

	

	

3.2.11 Discussion	and	Remarks	
	

The	 test	 cases	 described	 in	 the	 previous	 paragraphs	 are	 necessary	 to	 summarize	 and	

compare	all	 the	Reliability	Allocation	 techniques	 found	 in	 literature	such	as	ARINC,	AGREE,	

FOO,	Bracha,	AWM	and	MEOWA:	the	first	test	bench	(standard	parallel	architecture)	showed	

that	 the	 ARINC	 and	 AGREE	 techniques	 are	 not	 suitable	 for	 this	 kind	 of	 application	 due	 to	

mathematical	problems,	so	their	employment	is	limited	to	series	configurations.		

In	 case	 of	 redundant	 architectures	 FOO,	 Bracha,	 AWM	 and	 MEOWA	 techniques	 should	 be	

applied	but	the	assumptions	described	in	paragraph	2.2.7	are	required.	

The	 two	 case	 studies	 showed	 how	 the	 new	 approach	 proposed	 in	 this	 study	 is	 useful	 to	

achieve	 RA	 parameters	 in	 complex	 systems	 and	 that	 all	 the	 techniques	 applicable	 to	 the	

parallel	 configuration	 are	 also	 applicable	 to	 the	 complex	 architectures	 under	 analysis:	 the	

proposed	method	requires	the	assessment	of	the	allocation	process	twice,	both	at	subsystem	

and	component	level.		

Furthermore	 in	 this	 study	 an	 innovative	 procedure	 is	 described	 and	 implemented	 in	 the	

dedicated	 RA	 tool	 developed	 on	 Matlab	 platform:	 this	 software	 is	 useful	 to	 achieve	 the	

subsystem	influence	factors	starting	from	the	component	ones	using	MEOWA	method	[43].	

In	 conclusion,	 the	 Reliability	 Allocation	 procedure	 in	 complex	 systems	 containing	 standby	

architectures	can	be	summarized	as	follows:		

• The	 first	 step	 is	 the	 assessment	 of	 the	 reliability	 requirements	 using	 the	 MEOWA	

technique	(the	results	are	in	function	of	the	situational	parameter	α);	

• The	 second	 step	 is	 plotting	 the	 reliability	 values	 allocated	 to	 each	 element	 of	 the	

system;	

• The	final	step	is	the	analysis	of	the	collected	data	and	their	trends	in	order	to	decide	

which	 situational	 parameter	best-fits	 the	 system	and	 achieve	 the	optimal	 reliability	

allocation.	

 
 



	 	
	 	 	

57	

3.3 Reliability	Importance	
 
Reliability	Importance	(RI)	is	one	of	the	most	trustworthy	and	efficient	procedures	to	measure	

the	impact	each	component	has	on	the	overall	system	reliability.		

RI	 methods	 are	 widely	 used	 during	 design	 stage	 since	 engineers	 can	 optimize	 efforts	 to	

improve	the	system	reliability	focusing	on	the	components	that	have	the	greatest	effect	on	the	

whole	system.		

One	of	 the	main	advantages	 that	 this	procedure	can	offer	 is	cost	and	 time	saving	due	 to	 the	

possibility	to	achieve	a	trustworthy	prediction	of	reliability	importance	parameters	also	in	the	

early	 stages	 of	 industrial	 product	 development;	 Reliability	 Importance	 offers	 real-time	

feedbacks	to	designers	and	this	information	are	mandatory	to	found	the	system	advancement	

on	reliability	importance	outcomes.	Furthermore	it	is	possible	to	compare	different	solutions,	

prove	system	robustness	and	reduce	time	for	improvements	[44-45].	

The	analysis	of	the	system	and	the	reliability	assessment	are	the	first	steps	for	RI	assessment	

and	they	obviously	require	a	deep	knowledge	of	the	system	itself:	for	this	purpose	one	of	the	

most	used	technique	is	Reliability	Block	Diagram	(RBD)	that	is	a	top-down	technique	based	on	

a	functional	diagram	of	all	the	components	making	up	the	system.		

The	 RBD	 outcomes	 are	 useful	 to	 take	 into	 account	 the	 contribution	 of	 each	 component	 to	

system	 failure	 using	 a	 one-to-one	 correspondence	 between	 components	 and	 blocks:	 each	

block	in	the	diagram	is	described	by	a	specific	failure	rate	and	its	connections	with	the	rest	of	

the	system.	

After	system	reliability	assessment	design	engineers	can	identify	the	least	reliable	component	

in	 the	 system,	 improve	 the	whole	 system	 reliability,	 prioritize	 re-design	 actions	 to	be	 taken	

(reliability	 improvement)	or	suggest	 the	most	effective	way	 to	operate	and	maintain	system	

status	[31].		

	

	

3.3.1. Reliability	Importance	Measures	
	

In	literature	there	are	many	reliability	importance	indices,	most	of	them	are	specific	methods	

for	 dedicated	practice	while	 others	 have	 a	wide	 range	 of	 applications	 and	 they	 are	 suitable	

also	 for	 generic	 complex	 systems;	 after	 many	 test	 on	 different	 test	 cases,	 Improvement	

Potential	(IP)	and	Credible	Improvement	Potential	(CIP)	turned	out	to	be	the	best	two	metrics	

for	our	purpose	[31].	

Improvement	Potential	 index	 establish	how	much	 the	 system	 reliability	would	benefit	 from	

making	one	component	completely	reliable;	in	other	words	it	assess	the	maximum	potential	in	

improving	a	specific	component	reliability	[46-48].	 IP	measure	is	the	difference	between	the	

system	 reliability	 with	 a	 perfect	 component	 i	 and	 the	 system	 reliability	 with	 the	 actual	
component,	as	follows:	

	

Ii
IP (t) = Rs[t;Ri (t) =1]− Rs (t)                                                             (116) 
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Where:	

• IIIP(t)	is	Improvement	Potential	index	of	component	i	at	time	t;	
• RS(t)	is	system	reliability	at	time	t;		
• Ri(t)	is	reliability	of	component	i	at	time	t.		

	

The	main	criticality	of	this	reliability	index	is	that	the	supposed	improvement	is	not	physically	

achievable	since	it	is	not	actually	possible	improving	component	reliability	Ri(t)	to	100%.	
In	order	to	solve	this	issue	a	new	reliability	importance	measure	was	introduced,	the	Credible	

Improvement	Potential	metric.	

CIP	solves	the	limit	described	above:	following	this	procedure,	the	Ri(t)	value	is	improved	to	a	
new	one	Ri+(t)	that	represents	the	reliability	corresponding	to	the	state	of	the	art	for	this	type	
of	components.	CIP	definition	is	shown	below:		

	

Ii
CIP (t) = Rs[t;Ri (t) = Ri

n (t)]− Rs (t) = ΔRs (t) 																																															(117)	

Where:	

• IICIP(t)	is	Credible	Improvement	Potential	index	of	component	i	at	time	t;	
• RS(t)	is	system	reliability	at	time	t;		
• Ri(t)	is	reliability	of	component	i	at	time	t;		
• Ri+(t)	is	the	improved	reliability	of	component	i	at	time	t.	
			

The	use	of	a	component	with	reliability	Ri+(t)	in	place	of	a	correspondent	component	defined	
by	Ri(t)	produces	a	system	reliability	improvement	defined	by	IICIP(t):	CIP	measure	solves	the	
issue	 arisen	 with	 Improvement	 Potential	 metric	 and	 is	 usable	 in	 presence	 of	 standby	

redundancy	architectures	[31].
		

For	 this	 reason	 Credible	 Improvement	 Potential	 turned	 out	 to	 be	 the	 best	 metric	 for	 our	

purpose	and	the	reliability	improvement	was	set	as	follows:	

	

    
				                                              (118) 

	

The	 introduction	of	“n”	as	 the	Improvement	Factor	(IF)	 is	necessary	because,	as	said	before,	
component	reliability	 improvement	to	100%	is	not	physically	achievable	and	n	concerns	the	
quality,	 the	 application	 and	 the	 effort	 that	 designers	 would	 accept	 to	 improve	 system	

reliability.		

The	range	of	suitable	values	for	this	parameter	was	defined	using	the	quality	factor	πQ	in	MIL-
HDBK-217	 [23]	 where	 it	 is	 used	 to	 calculate	 the	 failure	 rate	 of	 a	 specific	 item	 assuming	

different	values	in	function	on	equipment	quality.	Therefore,	following	the	definition	and	the	

range	 of	 values	 of	πQ	 defined	 in	 [49],	 in	 this	 study	 the	 Improvement	 Factor	n	 is	 considered	
fixed	at	value	of	4:	this	assumption	is	 justified	for	Oil&Gas	systems	and	for	any	other	kind	of	
application	 with	 high	 quality	 standards	 and	 requirements.	 In	 [31]	 Quality	 Factor	 assumes	

values	greater	than	4	when	a	low	quality	equipment	is	compared	to	a	top	quality	one	but,	for	

n = λold
λnew

=
λi
λi
+ ( ) it

iR t e l-= ( )
i t
n

iR t e
l

-+ =
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this	 study,	 low	 quality	 is	 not	 taken	 into	 account	 so	 the	 chosen	 value	 is	 adequate	 for	

standard/mid-quality	to	top-quality	improvements.	

	
CIP	metric,	in	other	words,	performs	the	achievable	percent	improvement	with	a	component	

that	offers	higher	reliability	standard.	It	assumes	values	in	the	following	interval:	

	

0 ≤ Ii
CIP (t)<1                                                                                    (119) 

Where: 
• IICIP(t)=0	means	that	there	is	no	improvement,	Ri(t)=Ri+(t)	and	system	reliability	is	the	

same	then	before;	

• IICIP(t)>0	low	CIP	value	corresponds	to	little	reliability	improvement;	

• IICIP(t)<1	high	CIP	value	corresponds	to	high	reliability	improvement;	
• IICIP(t)=1	 is	not	 included	 in	 the	CIP	 range	because	 it	 corresponds	 to	 a	100%	system	

reliability	improvement	and	it	is	possible	only	in	case	of	Ri(t)=0	and	Ri+(t)=1.	
	

The	system	reliability,	as	obvious,	will	 improve	when	a	component	 is	replaced	with	another	

one	that	offers	higher	reliability	performance:	this	procedure	is	done	for	all	the	items	making-

up	the	system	and	produces	a	wide	insight	to	understand	which	item	has	the	greatest	impact	

on	 the	whole	 system	reliability	 [31].	A	 test	 case	of	CIP	procedure	 is	 shown	 in	 the	 following	

paragraph.		

	

	

3.3.2. Test	Case:	Fault	Tolerant	Complex	System	
	

The	 ideal	 test	 bench	 to	 validate	 the	 Credible	 Improvement	 Potential	 method	 is	 a	 generic	

complex	system	containing	standby	redundant	blocks	(Fig.	8).	

	

	
	

Fig.	8.	Case	study	Reliability	Block	Diagram	

	

Redundancy	 is	 the	most	common	technique	to	achieve	 fault	 tolerance	as	 it	was	described	 in	

Chapter	2.		

The	system	under	analysis	consists	of	12	blocks	where	all	 redundant	configurations	are	hot	

standby,	1oo2	and	2oo3	respectively,	except	for	the	1oo2	cold	standby	architecture	between	

the	two	branches:	Branch	1	–	Main	and	Branch	2	-	Standby.		
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The	reliability	functions	necessary	to	assess	Reliability	Importance	measures	were	

	achieved	using	the	method	described	in	Chapter	2	and	the	functions	are	listed	below.	

	

Items	in	series	(A,B,D,F,L):			

                                                                  (120) 

	

1oo2	hot	standby	node	(C):		

                                                         (121)  

	

1oo2 hot standby node (E): 

                                                          (122) 

 
1oo2 cold standby node (Branch 1-2): 
 

Rcold(t) = e−λBt (−e−2λCt + 2e−λCt )+e−(λE+2λF )t − 2(λB +λC )
λB +λC −λE − 2λF

+
λB + 2λC

λB + 2λC −λE − 2λF

⎡

⎣
⎢

⎤

⎦
⎥+  

+
4(λB +λC )e

−(λE+λF )t

λB +λC −λE −λF
+
2(λB + 2λC )e

−(λE+λF )t

−λB − 2λC +λE +λF
−e−(λB+2λC )t − 2(λB +λC )e

λCt

λB +λC −λE − 2λF
+

λB + 2λC
λB + 2λC −λE − 2λF

+
⎡

⎣
⎢  

+
4(λB +λC )e

λCt

λB +λC −λE −λF
+

2(λB + 2λC )
−λB − 2λC +λE +λF

"

#
$

                                                     

(123) 

	

2oo3	hot	standby	node:		

	

                          (124) 

	

System reliability: 
 

Rs (t) = e
−(λA+λH+λN )t e−(λI+λL )t + e−(λI+λM )t + e−(λL+λM )t − 2e−(λI+λL+λM )t"# $%⋅ e

−λBt (−e−2λCt + 2e−λCt )+{
 

  
+e−(λE+2λF )t − 2(λB +λC )

λB +λC −λE − 2λF
+

λB + 2λC
λB + 2λC −λE − 2λF
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⎣
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⎤

⎦
⎥+
4(λB +λC )e

−(λE+λF )t

λB +λC −λE −λF
+
2(λB + 2λC )e

−(λE+λF )t

−λB − 2λC +λE +λF
+

  

−e−(λB+2λC )t − 2(λB +λC )e
λCt
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+
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%

&
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(
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*
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(125)

 

 
The	 following	 table	 shows	 the	 failure	 rates	 and	MTTFs	of	 all	 the	 components	 in	 the	 system	

while	Fig.	9	and	Fig.	10	shows	the	system	reliability	and	system	failure	rate	in	function	of	time.	

	

	

Ri (t) = e
−λit

R2C (t) = 2e
−λCt − e−2λCt

R2E (t) = 2e
−λEt − e−2λEt

R2oo3(t) = e
− λG+λH( )t + e− λH+λI( )t + e− λG+λI( )t − 2e− λG+λH+λI( )t
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Table VIII – Failure rates and MTBF 

	

Component 
Failure rate 

[failures/106h] 
MTTF [h] 

Item A 1,51 662252 
Item B 7,05 141844 
Item C 8,10 123457 
Item D 5,31 188324 
Item E 40,42 24740 
Item F 1,11 900901 
Item G 5,23 191205 
Item H 6,12 163399 
Item I 2,26 442478 
Item L 3,11 321543 

	

	

	

	
	

Fig.	9.	System	Reliability	vs.	Time	
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Fig.	10.	System	Failure	Rate	vs.	Time	

	

	

3.3.3. Reliability	Importance	Assessment	
	

Figure	11	shows	the	system	reliability	considering	a	single	component	upgrade	at	once:	each	

curve	 in	 the	 chart	 corresponds	 to	 the	 reliability	 of	 the	 system	where	 the	 selected	 item	was	

replaced	with	the	improved	one	(in	terms	of	reliability	performance)	and	they	are	compared	

with	the	standard	reliability	function	of	the	system	(green	curve).	The	enhancement	is	based	

on	the	Improvement	Factor	n	described	above	[49-50].	
	

	
	

Fig.	11.	System	Reliability	with	single	item	upgrade	vs.	Time	
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Figure	12	shows	the	Credible	Improvement	Potential	measure	of	each	component	in	function	

of	time	so	each	line	represents	the	percent	 improvement	achievable	at	any	time	considering	

the	upgrade	of	that	particular	component.		

	

	
	

Fig.	12.	Component	Reliability	Importance	vs.	Time	

	

Static	reliability	importance	is	a	different	plot-type	introduced	to	focus	on	the	behavior	of	the	

system	at	a	specific	time.	It	is	a	sort	of	reliability	snap-shot	of	the	system	using	histograms	and	

pie	charts.	Fig.	13,	14,	15	show	CIP	indices	at	24000,	48000	and	72000	hours	respectively	and	

it	 is	 possible	 to	 notice	 the	 different	 contribution	 of	 each	 component	 to	 system	 reliability	

importance	[52].	

	

	

	

Fig.	13.	Static	Component	Reliability	Importance	at	24000h	
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Fig.	14.	Static	Component	Reliability	Importance	at	48000h	

	

	

	

Fig.	15.	Static	Component	Reliability	Importance	at	72000h	

	

The	following	figure	shows	a	brand	new	chart:	the	MTBF	upgrade	assessment	is	displayed	in	

case	 of	 improving	 the	 reliability	 performance	 of	 each	 component	 in	 the	 system.	 The	 x-axis	

crosses	 at	 MTBF	 value	 of	 the	 starting	 system	 (68077h):	 this	 is	 helpful	 to	 underline	 the	

estimated	improvement	that	is	achievable	with	each	component	upgrade	[52].	

	

	
	

Fig.	16.	MTBF	improvement	comparison	with	single	item	upgrade	
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Time-dependent	 and	 static	 CIP	 measures	 offer	 a	 clear	 overview	 of	 Reliability	 Importance	

trend	of	 each	 component	 in	 the	 system;	 in	order	 to	discuss	 the	 results	 achieved	on	 the	 test	

case	 a	 comparison	 of	 two	 components	 is	 shown.	 In	 this	 way	 the	 achievable	 benefits	 of	 RI	

assessment	are	highlighted.	

The	 chosen	 components	 are	 item	 E	 and	 item	 L,	 which	 differs	 for	 the	 characteristics	 listed	
below:	

• Components	 have	 different	 failure	 rates,	 λE	=	40,42�10-6	 failure/h	 and	 λL	 =	3,11�10-6	
failure/h	so	E	is	one	order	of	magnitude	greater	than	L;	

• Components	 are	 linked	 to	 the	 rest	 of	 the	 system	 with	 different	 connections;	 L	 is	
connected	 in	 series	 whereas	 E	 is	 involved	 in	 1oo2	 hot	 redundancy	 that,	 in	 turn,	 is	
inside	the	standby	branch	of	a	1oo2	cold	standby	architecture.	

	

At	 24k	 hours	 the	 Reliability	 Importance	 of	 L	 is	 greater	 than	 the	 other	 item:	 L	offers	 28%	
contribution	to	system	RI	and	allow	a	5%	improvement	to	the	whole	reliability	while	E	has	a	
reduced	weight	(12%)	and	a	corresponding	2%	upgrade	on	system	reliability.	

At	48k	hours	the	impact	of	the	two	components	is	the	same:	both	items	have	19%	significance	

and	ensure	approximately	7%	gain	in	terms	of	system	reliability	performance.	

Finally,	 at	 72k	 hours	 the	 inversion	 is	 remarkable:	 component	 L	has	 15%	weight	 on	 overall	
importance	 offering	 7%	 reliability	 improvement	 while	 the	 Reliability	 Importance	 of	

component	E	has	22%	contribution	to	system	RI	and	allow	10%	improvement	[52].	
The	 trend	 of	 component	 Reliability	 Importance	 measures	 underlines	 the	 time-dependency	

behavior	 and	 the	 significance	 of	 RI	 assessment	 that	 is	 central	 to	 focus	 on	 the	 “right”	

components	and	take	the	best	design	decisions	for	money	and	time	saving.	

 

 

3.3.4. Time-dependent	CIP	Measure	Analysis	
 

Component	Reliability	Importance	vs.	Time	shows	a	complex	and	interesting	trend	that	lends	

to	multiple	interpretations,	for	this	reason	it	is	extensively	examined	in	this	section:	

	

• Maximum	point:	the	“maximum”	of	a	function	is	the	largest	value	that	the	function	takes	at	
a	point	 either	within	a	given	 range	 (named	 local	or	 relative	maximum)	or	on	 the	whole	

function	domain	(named	global	or	absolute	maximum).		

In	this	case	the	point	of	interest	is	the	absolute	maximum	that	correspond	to	the	peak	of	

the	percent	reliability	improvement	at	a	precise	instant	of	time	[31].	

Figure	 17	 shows	 an	 example	 that	 gives	 readers	 the	 right	 interpretation	 of	 absolute	

maximum	in	this	particular	application:	for	the	sake	of	simplicity	the	chart	represent	the	

CIP	measure	in	function	of	time	for	only	three	items	and	the	highlighted	points	represent	

the	absolute	maximum	value	of	the	function.	

CIP	index	for	the	highest	curve	in	the	chart	(pink)	reaches	the	maximum	at	τ	=	100000h	

and	 the	 corresponding	 CIP	 value	 is	 approximately	 0,09.	 So	 the	 highest	 system	 percent	

reliability	improvement	is	9%.		
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Ii
CIP (t)

t=τ
= RS

+(τ )− Rs (τ ) ≅ 0,09                                                     
(126) 

 
RS
+(τ ) ≅ Rs (τ )+ 9%                                                                    (127)

 

	

	
	

Fig.	17.		CIP	curves	showing	maximum-points	

	
• Area	subtended	 from	the	curve:	 the	CIPi(t)	 function,	 in	graphic	 terms,	corresponds	to	 the	

gap	between	the	standard	reliability	 function	and	the	 improved	one	as	a	consequence	of	

the	upgrade	of	the	component	reliability	performance	(Fig.	18).	The	improvement	in	terms	

of	reliability	is	the	area	under	CIP	curves,	as	shown	in	Fig.	19.		

For	 the	 purpose	 of	 clarification,	 the	 area	 between	 the	 two	 curves	 doesn’t	 have	 to	 be	

confused	with	MTTF	 -	Mean	Time	Between	Failures,	which	 is	 the	predicted	elapsed	time	
before	item	showing	the	first	failure	.	

	

Ii
CIP (τ )dτ = ΔRs (τ )

0

t

∫
0

t

∫ dτ                                                     (128) 

             MTTF = Ri (t)
0

∞

∫ dt = e−λt
0

∞

∫ dt
                                                  

(129) 
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Fig.	18.		System	Reliability	vs.	Time	

	

	

	

	

Fig.	19.	CIP	vs.	Time	with	subtended	area	
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the	 growth	 of	 the	 CIP	 value	 and	 this	 trend	means	 that	 the	 reliability	 importance	 of	 the	

component	is	rising.	On	the	contrary	the	latter	(violet)	is	associated	with	a	reduction	of	the	

CIP	trend	and	the	corresponding	decrease	of	RI	value.	
This	distinction	between	rising	and	falling	edges	is	useful	to	allow	the	designer	to	take	the	

best	decision	for	his	application,	taking	into	account	the	period	of	interest:	if	the	focus	of	

the	 achievable	 improvement	 is	 in	 the	 period	 of	 time	 before	 the	 crossroad,	 the	 designer	

should	 improve	 the	 first	 item;	 otherwise	 the	 second	 item	 can	 offer	 a	 higher	 long-term	

reliability	performance	[52].	

	
• Inflection	point:	an	“inflection”	(or	 flex)	 is	a	point	at	which	a	curve	changes	 its	curvature	

from	concave	(concave	downward)	to	convex	(concave	upward),	or	vice	versa	[31].	

A	tangent,	i.e.	the	straight	line	that	touches	the	curve	at	a	single	point,	is	the	best	solution	

to	 underline	 the	 two	 different	 trends:	 the	 curve	 is	 concave	 when	 it	 is	 above	 its	 own	

tangent;	in	this	case	the	curve	shows	a	sort	of	parabolic	trend	and	its	growth	is	more	than	

linear	 so	 the	 CIP	 value	 quickly	 increases.	 The	 curve	 is	 convex	when	 it	 is	 below	 its	 own	

tangent;	in	this	case	the	curve	shows	a	sort	of	root	square	trend	and	its	growth	is	less	than	

linear	so	the	CIP	value	slowly	increases.	

	

	
	

Fig.	20.	CIP	curve	showing	crossroad-point	
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Fig.	21.	CIP	curve	showing	inflection-point	

	

	

• Same-ordinate	points:	many	CIP	values	are	achievable	in	two	different	time	instants	and	in	
these	 cases	 component	 reliability	 importance	 is	 the	 same.	 It’s	 worth	 to	 notice	 that	 CIP	

represent	the	achievable	percent	improvement	so	the	importance	measure	is	referred	to	

different	 absolute	 values	 and,	 as	 a	 consequence,	 the	 magnitude	 of	 the	 improvement	 is	

different.		

Fig.	22	shows	a	CIP	curve	assuming	the	value	0,06	in	both	τ1=36000h	and	τ2=91000h.		

The	 importance	 is	 the	 same	 but	 the	 percentage	 value	 is	 referred	 to	 different	 reliability	

values:	this	feature	is	crtical	to	balance	the	benefits	of	the	improvement	and	the	cost	of	the	

component	upgrade.	
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Fig.	22.	CIP	curve	showing	same-ordinate	points	

	

The	 CIP	 method	 described	 above	 was	 fully-integrated	 in	 the	 developed	 tool	 RBDesigner®:	
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described	in	Chapter	6.	
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Chapter 4 
 

Condition-based Maintenance & Markov Modelling 
 

 
 

	

4.1 Availability	and	Maintainability	Improvement	
 
The	 interest	 for	 maintainability,	 availability	 and	 the	 techniques	 to	 evaluate	 it	 had	 an	

exponential	growth	in	the	last	few	years,	in	particular	for	systems	involved	in	mission-critical	

environments:	these	applications	demand	both	high	performance	and	high	availability.		

Maintainability	 is	 directly	 associated	 to	 the	 concept	 of	 availability	 assessment	 since	 it	

concerns	failure	and	recovery	aspects	of	a	system.	

The	 best	 product	 design	 offers	 very	 high	 reliability	 performance	 but,	 however,	 all	 the	

products	 deteriorate	 over	 time:	 for	 this	 reason	 maintenance	 is	 fundamental	 to	 keep	 the	

system	running	during	the	useful	life	[53].	

This	 thesis	 is	 focused	 on	 availability	 improvement	 and	 obviously	 it	 takes	 into	 account	

maintainability	roles	in	order	to	achieve	this	kind	of	target:	the	goal	is	to	develop	a	procedure	

for	 availability	 improvement	 that	 engineers	 may	 used	 during	 the	 early	 stages	 of	 product	

design.	

	

The	 simplest	 maintenance	 technique	 is	 based	 on	 breakdowns	 and	 it	 is	 a	 run-to-failure	

procedure	 without	 any	 kind	 of	 plan.	 Advanced	 techniques	 are	 time-based	 preventive	

maintenance:	 in	 this	 case	 the	maintenance	operation	 is	planned	and	performed	at	periodic	

intervals	without	 considering	 the	 health	 status	 of	 the	 device.	 Anyway	 this	method	 is	 quite	

expensive	and,	since	the	cost-saving	in	manufacturing	is	critical,	more	efficient	maintenance	

approaches	were	developed	such	as	condition-based	maintenance	(CBM).	

CBM	 is	 a	 maintenance	 program	 referred	 to	 the	 information	 collected	 through	 condition	

monitoring.	It	consists	of	three	steps:	data	acquisition	to	collect	information,	data	processing	

to	handle	information	and	decision-making	following	maintenance	policies.	

In	other	words,	condition-based	maintenance	is	performed	after	one	or	more	indicators	show	

that	 the	 equipment	 under	 analysis	 is	 going	 to	 fail	 or	 that	 equipment	 performance	 is	

deteriorating.	One	of	the	best	method	to	carry	on	availability	analysis	is	the	condition	based	

maintenance	modelling	using	Markov	analysis	[53-54].	

In	 general	 there	 are	 two	 approaches	 to	 evaluate	 maintainability	 and,	 as	 a	 consequence,	

availability	of	the	system:	measurement-based	and	model-based.		

Measurement-based	evaluation	is	often	quite	expensive	and	it	requires	building	a	real	system	

(or	a	prototype)	to	take	measurements	in	order	to	statistically	analyse	the	collected	data.		

On	the	other	hand,	model-based	evaluation	is	less	expensive	and	quite	easy	to	perform	even	

if	 some	 solving	 problems	 may	 arise	 to	 develop	 models	 for	 large	 and	 complex	 systems:	
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however	in	this	study	the	model-based	approach	is	considered	and	it	is	described	in	details	in	

the	following	paragraphs.	

	

	

4.2 Model-based	Evaluation	
	

As	 said	 before,	 model-based	 evaluation	 is	 the	 cost-effective	 solution	 as	 it	 allows	 system	

evaluation	without	having	to	build	and	measure	a	system.	

It	 can	 be	 assessed	 through	 discrete-event	 simulation,	 analytic	 models	 or	 hybrid	 models	

(combining	simulation	and	analytic	procedures).		

A	discrete-event	simulation	is	a	program	whose	execution	simulates	the	dynamic	behaviour	

of	the	system	and	evaluates	the	required	measures.		

The	main	benefit	of	this	procedure	is	the	ability	to	characterize	in	detail	the	system	behaviour	

through	 the	 model;	 at	 the	 same	 time	 the	 main	 drawback	 is	 the	 long	 execution	 time	 in	

particular	when	the	solutions	require	tight	confidence	bounds.	

An	analytic	model,	instead,	consists	of	a	set	of	equations	describing	the	system	behaviour	and	

the	 evaluation	 measures	 are	 obtained	 by	 solving	 these	 equations.	 In	 simple	 applications	

closed-form	solutions	are	achievable	otherwise	numerical	solutions	are	necessary.	

In	general,	analytic	models	tend	to	be	easier	to	develop	and	faster	to	solve	than	a	simulation	

model.	 The	 main	 drawback	 of	 this	 procedure	 is	 the	 set	 of	 assumptions	 that	 are	 often	

necessary	to	use	analytic	models	[54-55]	

This	 study	 is	 focused	 on	 model-based	 maintainability	 and	 availability	 evaluation	 using	

analytic	techniques	with	particular	attention	to	Markov	models.	

	
	
4.3 Analytical	Modelling	
	

Analytical	modelling	 techniques	are	usually	divided	 in	 two	categories,	 state	space	and	non-

state	 space	 models;	 the	 choice	 of	 the	 best-fitting	 technique	 is	 essential	 to	 generate	 a	

trustworthy	model	representing	the	system	behaviour.	

	

	

4.3.1. Non-state	Space	Models	
	

These	models	can	be	solved	without	generating	 the	underlying	state	space	and	they	can	be	

used	 to	 assess	 system	 availability,	 reliability	 and	 mean	 time	 to	 failure.	 Non-state	 space	

models	require	two	assumptions:	statistical	independency	of	failures	and	independent	repair	

units	for	components.		

The	 techniques	 used	 to	 achieve	 system	 reliability	 and	 availability	measures	 are	 Reliability	

Block	Diagrams	(RBDs)	and	Fault	Trees	(FTs).	
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4.3.2. State	Space	Models	
	

These	 models	 are	 developed	 in	 complex	 systems	 with	 failure/repair	 dependencies	 and	

shared	repair	facilities;	in	these	applications	non-state	space	models	such	as	reliability	block	

diagrams	and	fault	trees	cannot	be	easily	used.	

A	state-space	representation	is	basically	a	mathematical	model	of	the	system	under	analysis	

based	on	a	set	of	input,	output	and	state	variables	that	are	related	by	first-order	differential	

equations.		

To	abstract	from	the	number	of	 inputs,	outputs	and	states,	these	variables	are	expressed	as	

vectors;	 in	 case	 the	 dynamical	 system	 is	 linear,	 time-invariant,	 and	 finite-dimensional,	 the	

differential	and	algebraic	equations	may	be	written	in	matrix	form	[56].	

In	 this	 case	 the	 state	 space	 representation	 of	 a	 system	 replaces	 an	 n-th	 order	 differential	

equation	with	a	single	first	order	matrix	differential	equation.		The	state	space	representation	

of	 a	 system	 is	 given	 by	 two	 equations,	 named	 respectively	 state	 equation	 and	 output	

equation:	

							 																																						(135)	

Where,	for	an	n-th	order	system	with	r	inputs	and	m	outputs:	
• x	is	the	state	vector	(nx1),	a	function	of	time;	
• A	is	the	state	matrix	(nxn),	a	constant;	
• B	is	the	input	matrix	(nxr),	a	constant;	
• u	is	the	input	vector	(rx1),	a	function	of	time;	
• C	is	the	output	matrix	(mxn),	a	constant;	
• D	is	the	direct	transition	matrix	(mxr),	a	constant;	
• y	is	the	output	vector	(mx1),	a	function	of	time.	

	

For	systems	with	a	single	input	and	single	output,	r=1	and	m=1.	

One	 of	 the	 best	 state	 space	 techniques	 is	 Markovian	 modelling	 and	 it	 is	 described	 in	 the	

following	section.	

	
	
4.4 Markov	Modelling	
	

The	 Markov	 property	 is	 the	 memory-less	 property	 of	 stochastic	 processes	 where	 the	

conditional	 probability	 distribution	 of	 future	 states	 depends	 only	 on	 the	 present	 state	

without	taking	into	account	the	sequence	of	events	that	preceded	it:	the	state	of	the	system	at	

future	time	tn+1	is	function	of	the	system	state	at	the	current	time	tn	and	does	not	depend	on	

the	path	that	led	the	system	to	be	in	the	present	state	(states	at	time	instants	t1,	…	,	tn-1).	

A	Markov	random	field	is	a	set	of	random	variables	having	a	Markov	property	and	it	extends	

this	property	to	variables	defined	for	an	interconnected	network	of	items.		

In	 probability	 theory	 and	 statistics	 a	 stochastic	 process	 that	 satisfies	 Markov	 property	 is	

known	as	a	Markov	process.	So	a	Markov	process	 is	a	stochastic	memory-less	model	and	 it	

x
•

(t) = Ax(t)+Bu(t) y(t) =Cx(t)+Du(t)
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can	be	used	to	model	the	changes	of	states	of	a	random	system	according	to	a	transition	rule	

that	only	depends	on	the	current	state	[54-56].	

	

There	are	two	basic	components	common	to	all	the	Markov	models,	a	set	of	states	and	a	set	of	

transitions	between	the	states:	the	system	can	be	in	only	one	state	at	time	and	from	time	to	

time	it	makes	a	transition	from	one	state	to	another.		

The	 states	 usually	 represent	 system	 configurations	 or	 operational	 status	 of	 the	 system	

components	 and	 they	 can	 represent	 instances	 where	 the	 system	 is	 operational/failed,	

undergoing	recover/repair,	operating	in	a	degraded	mode,	etc.	

Usually	 the	states	of	any	Markov	model	are	divided	 in	 two	sets:	one	set	contains	 the	states	

representing	 situations	 where	 the	 system	 is	 working	 properly	 (sometimes	 in	 degraded	

modality)	and	the	other	set	containing	states	where	the	system	is	degraded	too	much	that	the	

system	must	be	considered	failed	[56].	

The	standard	set	of	possible	states	is	the	following:	

• Operating:	component	is	working	properly;	

• Standby:	component	is	ready	for	operation	on	demand	(cold,	warm	or	hot	standby);	

• In-service	inspection:	component	is	under	periodic	inspection	during	operation	(on-

line);	

• Maintenance:	component	is	under	maintenance	or	off-line	inspections;	

• Failure:	component	is	not	working	due	to	a	failure;	

• Post-failure	repair:	component	is	under	repair	or	is	going	to	be	replaced	after	failure.	

	

The	events	associated	to	each	state	are	mutually	exclusive	so	the	system	cannot	be	in	more	

than	one	 state	 at	 time;	 furthermore	 they	are	 collectively	 exclusive	 since	 the	 system	always	

must	be	in	at	least	one	of	the	states.	

The	transitions	follow	rates	that	govern	the	length	of	time	between	transitions	from	one	state	

to	 another:	 these	 rates	may	be	 constant	or	 time	dependent	 and	 they	 are	usually	 related	 to	

failure	and	repair	rates	of	components	in	the	system.	

The	system	availability	varies	together	with	the	mission	progress	and	this	change	is	reflected	

in	 the	 probabilities	 of	 being	 in	 each	 state	 in	 the	Markov	model:	 these	 probabilities	 change	

over	time	too	so	the	solution	of	the	model	is	based	on	finding	a	procedure	to	determine	the	

probability	of	the	individual	states	at	a	particular	point	in	time.	

The	 change	 in	 the	 probability	 for	 a	 given	 state	 is	 the	 difference	 between	 the	 probability	

coming	 into	 the	 state	 from	 all	 other	 states	 and	 the	 amount	 of	 probability	 going	 out	 of	 the	

state	to	other	states	in	the	model:	this	behaviour	is	described	with	a	system	of	simultaneous	

differential	equations,	one	differential	equation	for	each	state	and	the	solution	is	a	vector	of	

state	probabilities	at	a	specified	time	[57-58].	

	

	

4.5 Maintainability	and	Availability	Analysis	using	Markov	Models	
	

Markov	 modelling	 offers	 both	 advantages	 and	 disadvantages	 for	 maintainability	 and	

availability	assessment;	the	main	advantages	of	using	Markov	models	are	the	following:	
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• Dynamic	 system	 behaviour:	 Markov	 models	 have	 great	 flexibility	 in	 expressing	

dynamic	 system	behaviour	 and	 they	 are	 suitable	 for	 a	wider	 range	of	 systems	 than	

combinatorial	models	(e.g.	Reliability	Block	Diagrams,	Fault	Tress,	etc.);	anyway	they	

are	 limited	 by	 the	 Markov	 property	 and	 other	 assumptions	 on	 the	 distributions	

involved	and	for	 this	reason	they	cannot	model	systems	containing	non-exponential	

component	lifetimes.	

• Complex	repair:	Markov	models	 take	 into	account	 repairs	of	 individual	 components	

or	groups,	variable	number	of	repair	persons	assigned	to	repair	activities,	sequential	

repair	and	partial	repair	procedures	(components	working	in	degraded	conditions).	

• Standby	 spares:	 Markov	 models	 include	 hot,	 warm	 and	 cold	 standby	 units;	 these	

different	classes	of	spare	components	differ	each	other	for	the	degrading	process	they	

endure	during	the	inactive	period	and	for	the	response	time	they	offer	to	activate.		

• Sequence	 dependent	 behaviour:	 Markov	model	 takes	 into	 account	 the	 sequence	 in	

which	 events	 occur	 e.g.	 functional	 dependency	 (the	 failure	 of	 one	 component	 may	

cause	 other	 component	 to	 fail)	 and	 sequence	 enforcement	 (some	 events	 are	 not	

allowed	to	occur	before	certain	others).		

• Imperfect	fault	coverage:	Markov	model	is	used	to	deal	with	dynamic	reconfiguration	

processes	that	may	not	be	completely	successful;	 in	these	cases	the	failure	is	said	to	

be	imperfectly	covered.	

	

These	features	are	deeply	analysed	in	paragraph	7.	

On	the	other	hand,	the	main	disadvantages	of	Markov	modelling	are	the	following:	

	

• Large	 number	 of	 states:	 realistic	 models	 can	 require	 large	 number	 of	 states	 and	

solving	 these	 huge	 models	 may	 challenge	 the	 computational	 resources	 of	 most	

computers.	

• Difficulties	in	model	construction	and	validation:	in	very	complex	models	the	analyst	

may	 face	 problems	 in	 specifying	 correctly	 states	 and	 transitions;	 furthermore	 it	 is	

difficult	to	built	the	model	and	verify	its	accuracy.		

• Markov	 property	 and	 failure	 distribution	 assumptions:	 these	 assumptions	 may	 be	

invalid	for	the	system	under	analysis.	

• Techniques	 feasible	 for	 small	 systems:	models	 of	 greatest	 complexity	 require	 huge	

execution	time	to	solve	and	dedicated	solution	techniques	that	are	currently	feasible	

only	for	small	systems.	

• Physical	or	logical	organization	of	the	system:	the	structure	of	Markov	model	(based	

on	states	and	transitions)	may	not	have	a	great	correspondence	with	system	physical	

or	logical	organization.	

	

For	the	reasons	described	above,	sometimes	Markov	models	are	not	the	best	choice	and	some	

other	 techniques	 are	 more	 advisable;	 this	 happens	 when	 the	 system	 can	 be	 satisfactorily	

modelled	with	 simpler	 combinatorial	methods	 (e.g.	model	may	be	 smaller	 and	more	 easily	

constructed	or	model	solution	may	be	computationally	more	efficient)	or	in	case	the	system	
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requires	a	very	large	number	of	states	and	its	behaviour	is	too	complex	to	be	expressed	in	a	

Markov/semi-Markov	model,	so	simulation	approach	is	preferred	[57-59].		

	

	

4.6 Markov	Models	
	

For	 any	 generic	 system	 a	Markov	model	 is	made	 of	 all	 the	 possible	 states,	 transitions	 and	

corresponding	rate	parameters	of	 that	system:	 in	case	of	reliability	analysis,	 the	 transitions	

usually	consist	of	failures	and	repairs.		

There	 are	 several	Markov	models	 depending	on	 the	 application	 and	 typology	of	 sequential	

states.	

The	 simplest	 Markov	 model	 is	 the	 Markov	 chain:	 it	 models	 the	 state	 of	 a	 system	 using	 a	

random	variable	that	changes	through	time.	In	other	words,	the	sequence	of	transitions	that	

moves	 the	system	 from	one	state	 to	another	corresponds	 to	a	 chain	composed	by	different	

rings.	This	concept	can	be	expressed	with	the	following	proportion:	

	

Chain	:	Sequence	of	transitions	=	Ring	:	State																																								(136) 
 
It	 is	worth	noting	that	Markov	chains	assume	discrete	states	and	a	discrete	time	parameter	

while	Markov	processes	require	that	states	are	continuous.	 In	case	the	time	step	(e.g.	Δt)	 is	

small	enough	the	Markov	process	can	be	approximated	by	a	Markov	chain.	

According	 to	 Markov	 property,	 the	 distribution	 of	 this	 variable	 depends	 only	 on	 the	

distribution	of	the	present	state	[56-59].	

Therefore	a	Markov	chain	is	a	stochastic	process	X(t)	based	on	sequence	of	random	variables	
(states)	x1,	x2,	x3,	...	ruled	by	the	Markov	property:	
	

                       (137)	

Where	
	
is	 the	 probability	 to	 find	Xn	in	 state	 xn	and	 	is	 the	

probability	of	going	from	one	state	at	time	n	to	another	state	at	time	n+1.	This	feature	shows	
the	 behaviour	 of	 Markov	 chains	 that	 are	 independent	 from	 the	 initial	 distribution	

.	

	

As	 said	 before,	 Markov	 models	 describe	 the	 lifetime	 behaviour	 of	 systems	 in	 a	 state-time	

space.	 A	 number	 of	 distinct	 states	 of	 the	 system	 are	 identified	 and	 correspond	 to	 certain	

combination	of	component	states	and/or	(environmental)	conditions.		

Transitions	 between	 these	 states	 are	 governed	 by	 events	 such	 as:	 component	 failure	 or	

repair,	 conditional	events	 (such	as	 loss	of	main	power	supply)	and	even	 trigger	events	 like	

overload	situations	or	short	power	peaks	that	 invoke	component	failures.	These	transitions	

bring	in	the	“time	element”	into	the	model	[55].	

There	 are	 two	 types	 of	 models	 to	 be	 considered	 depending	 on	 how	 the	 transitions	 are	

permitted	to	occur	in	the	time	domain:	if	transitions	mandatory	occur	at	fixed	time	interval	(a	

transition	at	each	interval),	the	model	is	called	Discrete	Time	Markov	Chain	(DTMC).		

Pr Xn+1 = x | X1 = x1,X2 = x2,...,Xn = xn( ) = Pr Xn+1 = x | Xn = xn( )

Pr Xn = xn( ) Pr Xn+1 = x | Xn = xn( )

Pr X1 = x1( )
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Whereas	 transitions	 are	 permitted	 to	 occur	 at	 any	 time	 interval,	 the	 model	 is	 called	

Continuous	 Time	 Markov	 Chain	 (CTMC)	 and	 this	 class	 is	 split	 in	 two	 subcategories,	

homogeneous	and	non-homogeneous:	

	

• Homogeneous	Continuous	Time	Markov	Chain	

For	this	type	of	model	the	Markov	property	holds	at	all	times	so	the	future	behaviour	

of	the	model	depends	only	on	the	present	state	of	the	system	and	not	on	the	previous	

transitions	and	states.	

A	 second	property	of	 these	models	 is	 that	 the	state	holding	 times	are	exponentially	

distributed	and	do	not	depend	on	previous	or	future	transitions.	

Therefore	 if	 system	 is	 in	 state	 i	 at	 time	 T,	 the	 probability	 that	 the	 next	 transition	
leading	out	of	state	i	will	occur	at	or	before	a	time	t	is	given	by:		

	

                                                           (138)	

Otherwise	 the	 probability	 that	 the	 next	 transition	will	 occur	 at	 or	 after	 time	T+t	 is	
given	by:	

                                                         		(139)	

In	both	cases	λi	is	the	sum	of	all	rates	of	the	transitions	going	out	from	state	i.	
As	a	consequence	of	this	property,	interstate	transition	rates	are	all	constant	and	the	

time	to	the	next	transition	is	not	influenced	by	the	time	already	spent	in	the	state.	

So	 for	 time-homogeneous	 Markov	 chains	 (or	 stationary	 Markov	 chains)	 holds	 the	

following	equation	for	all	n	states	and	the	probability	of	the	transition	is	independent	
of	n:	

																									(140)	

• Non-homogeneous	Continuous	Time	Markov	Chain	

This	 type	of	model	 is	obtained	when	a	homogeneous	CTMC	is	generalized	to	permit	

transition	rates	to	be	function	of	time.	The	Markov	property	still	holds	at	all	times	so	

the	 transitions	 to	 the	 following	states	depend	only	on	 the	present	 state;	 this	 is	 true	

also	for	the	state	holding	times.	

	

Another	class	of	models	is	the	Semi-Markov	type	where	the	Markov	property	does	not	hold	at	

all	 times,	 rather	 it	 holds	 only	 when	 transitions	 occur.	 The	 behaviour	 of	 the	 Semi-Markov	

model	 is	 the	 same	 of	 CTMCs	 so	 the	 transition	 to	 the	 next	 state	 does	 not	 depend	 on	 the	

previous	 path	 leading	 to	 the	 present	 state;	 however	 it	 differs	 from	 the	 others	 since	 the	

holding	 times	 follow	general	 distributions	 (non-exponential)	 and	 they	may	 also	depend	on	

the	next	state	[57-59].		

Anyway	in	most	common	Markov	models	the	transition	rates	are	constant	and	the	transition	

times	are	exponentially	distributed;	 in	 case	 the	model	 considers	non-constant	 failure	 rates,	

the	equations	governing	 the	 states	are	 the	 same	but	 the	 failure	 rates	are	 function	of	 time	 t	
(corresponding	to	the	age	of	the	component).	

P =1− e−λit

1−P = e−λit

Pr Xn+1 = x | Xn = y( ) = Pr Xn = x | Xn−1 = y( )
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This	kind	of	models	is	very	useful	to	describe	wear-our	or	infant	mortality	but	they	are	more	

complex	to	develop:	each	state	is	no	longer	determined	by	the	health	status	of	a	finite	number	

of	components	but	it	depends	on	the	time	passed	since	the	last	component	replacement	(or	

restoration).	 In	 this	 models	 units	 fail	 following	 their	 instantaneous	 failure	 rate	 and	 then	

return	 to	 the	 full-operative	state	at	various	 times	so	 this	 “reference”	state	 is	 constituted	by	

components	 in	 the	 same	 operational	 condition	 but	 with	 different	 ages.	 Therefore	 the	

operative	 life	 of	 each	 component	must	 be	 analysed	 separately	without	 taking	 into	 account	

interactions	or	repairs.	

One	 of	 the	 best	 solutions	 to	 solve	Markov	models	with	 time-dependent	 failure	 rates	 is	 the	

Monte	Carlo	simulation	that	is	based	on	a	large	number	of	simulated	systems	to	be	analysed.	

Anyway	this	subject	is	not	deepened	in	this	study	since	the	focus	is	on	analytical	modelling.	

	

	

4.6.1. Single	Item	
	

The	 simplest	Markov	model	 is	made	of	 one	 component	with	 two	associated	 states,	 healthy	

and	failed	and	the	transition	rate	is	time-independent.	

	

	

	

Fig.	1.	Markov	model	with	two	states	

	

Some	useful	symbols	and	corresponding	definitions	are	described	below:	

• State	0:	normal	running,	item	is	working	properly;	

• State	1:	fault	condition,	item	is	not	able	to	complete	the	mission;	

• λ:	rate	parameter	of	the	transition	from	State	0	to	State	1;		
• Pj(t):	probability	of	the	system	being	in	State	j	at	time	t;	in	case	the	device	is	known	to	

be	working	at	initial	time	t=0,	the	initial	probabilities	of	the	two	states	are	P0(0)	=	1	

and	P1(0)	=	0.		

	

The	probability	to	find	the	system	in	State	0	decreases	following	the	constant	rate	λ;	so	if	the	
system	 is	 in	State	0	at	 time	 t,	 the	 transition	probability	 in	 the	successive	 time	 interval	dt	 is	
λdt.	
Therefore	 the	 probability	 of	 transition	 occurrence	 during	dt	 is	 given	 by	 the	 product	 of	 the	
probability	of	being	in	starting	State	0	and	the	probability	of	the	transition	during	the	interval	

dt.	This	represents	the	incremental	change	dP0	in	probability	of	State	0	at	any	given	time,	so	it	
can	be	written:		

                                                              (141)	

Dividing	both	sides	by	dt,	the	following	differential	equation	is	obtained:	
	

dP0 = −(P0 )λdt
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	                                                                 	(142)	

Therefore	the	rate	of	change	of	the	probability	of	the	source	state	is	reduced	to	the	product	

between	the	transition	rate	and	the	probability	of	the	source	state	itself.		

Since	the	item	should	be	in	State	1	or	in	State	0,	the	total	probability	of	both	states	must	equal	

1:	 so	 when	 the	 probability	 of	 State	 1	 increases,	 the	 probability	 of	 State	 0	 must	 decrease	

following	the	same	rate:	

						 						 	
                                         

	
(143)	

Using	the	initial	state	conditions	P0(0)	=	1	and	P1(0)	=	0,	the	solutions	are	the	following:	

	

			 		
                                                  

	
(144)	

In	this	simple	example	the	transition	times	are	exponentially	distributed;	 this	way	the	total	

probability	of	all	the	states	is	conserved	and	the	probability	moves	from	one	state	to	another.		

In	more	 complex	 systems	 the	Markov	model	 usually	 includes	 a	 state	 with	 all	 components	

fully	operating	and	a	set	of	intermediate	states	representing	partially	failed	conditions.		

Transition	paths	may	 include	both	 failure	and	repair	events	and,	 in	general,	each	transition	

path	 between	 two	 states	 of	 the	 system	 reduces	 the	 probability	 of	 the	 starting	 state	 and	

increases	the	probability	of	the	successive	one;	the	corresponding	rate	is	the	product	of	the	

transition	parameter	λ	and	the	current	probability	of	the	source	state	Pi(τ).	

Also	 in	 complex	 systems	 the	 rate	 of	 change	 of	 the	 probability	 of	 each	 state	 (dP/dt)	

corresponds	 to	 the	 probability	 of	 flowing	 into	 and	 out	 of	 that	 state;	 furthermore,	 the	 total	

probability	to	flow	into	a	given	state	is	achieved	by	the	sum	of	the	transition	rates	into	that	

state,	each	multiplied	by	the	probability	of	the	state	at	the	beginning	of	that	transition.		On	the	

other	hand,	the	probability	to	flow	out	of	the	given	state	is	the	sum	of	all	transitions	out	of	the	

state	multiplied	by	the	probability	of	that	given	state.		

	

	

	

	
Fig.	2	–	Markov	model	of	a	generic	state	k	

	

dP0
dt

= −λP0

dP0
dt

= −λP0
dP1
dt

= λP0 P0 +P1 =1

P0 (t) = e
−λt P1(t) =1− e

−λt
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Fig.	 2	 shows	 a	 generic	 single	 state	 k	 with	 some	 of	 surrounding	 states	 and	 corresponding	

transitions.	 The	 state	 equation	 for	 state	 k	 is	 shown	 below:	 the	 rate	 of	 the	 change	 of	 the	

probability	dPK/dt	is	equal	to	the	sum	of	the	probability	flows	associated	to	each	transition:	

	

																																					(145)	

	

The	system	behaviour	is	determined	by	these	equations,	one	for	each	state	in	the	model.		

In	the	simple	model	under	analysis	both	failure	and	repair	transitions	are	ruled	by	constant	

rates:	anyway,	in	real-word	applications,	repairs	may	not	be	characterized	by	constant	rates.	

The	following	paragraphs	show	Markov	models	of	more	complex	architectures.	

	

	

4.6.2. 1oo2	Redundant	Architecture	
	

The	effects	of	repairs	are	deepened	below,	taking	into	account	a	redundant	system	with	two	

components	in	1oo2	architecture.	

There	are	four	possible	states	for	this	system:	

• State	0:	Unit	1	healthy,	Unit	2	healthy;	

• State	1:	Unit	1	unhealthy,	Unit	2	healthy;	

• State	2:	Unit	1	healthy,	Unit	2	unhealthy;	

• State	3:	Unit	1	unhealthy,	Unit	2	unhealthy.	

	

	

	

	

Fig.	3	–	RBD	of	1oo2	redundant	system	

	

The	 maintenance	 strategy	 changes	 depending	 on	 the	 application;	 in	 this	 case	 Unit	 1	 is	

monitored	 continuously	 and,	 in	 case	 of	 failure,	 it	 is	 repaired	 within	 100	 hours.	 In	 case	 of	

failure	of	Unit	1	or	during	maintenance	period,	Unit	2	ensures	system	continuity	of	operation.	

The	 status	 of	 Unit	 2	 is	 not	monitored	 continuously,	 the	 only	 requirement	 is	 an	 inspection	

every	1000	hours.	

In	case	both	units	fail,	the	system	is	no	longer	able	to	carry	on	its	required	function	and	both	

units	are	immediately	repaired,	than	the	system	returns	to	the	full-up	state.		

The	corresponding	Markov	model	is	shown	in	Fig.	4.	
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Fig.	4	–	Markov	model	of	1oo2	redundant	system	

	

The	repair	transition	in	case	of	both	failed	units	from	State	3	to	State	0	is	usually	ruled	by	a	

constant,	and	very	large,	rate;	on	the	other	hand,	the	repair	transitions	in	case	of	single	failure	

(i.e.	State	1	and	State	2)	cannot	be	governed	by	a	constant	rate	since	the	repair	time	of	Unit	1	

depends	on	the	time	of	failure	and	the	repair	time	of	Unit	2	has	a	discrete	distribution	(repair	

actions	on	Unit	2	occur	at	discrete	intervals).		

Therefore,	 in	 practice,	 the	 distribution	 of	 failures	 is	 usually	 considered	 uniform	 and	 the	

expected	time	between	failure	and	repair	is	actually	half	of	the	inspection	interval;	following	

these	hypotheses,	assuming	T	the	periodic	inspection/repair	interval,	the	repair	rate	is	fixed	

at	2/T	(instead	of	1/T).	

In	order	to	assess	the	average	system	failure	rate	it	is	necessary	to	consider	only	the	steady-

state	 condition,	 so	 the	 flow	entering	 and	exiting	 each	 state	 is	 the	 same.	The	 corresponding	

equations	for	this	system	are	the	following:	

	

	

	

                                                                                               (146) 

	

Notice	 that	 the	 probability	 of	 State	 3	 is	 zero	 since	 its	 repair	 rate	 is	 infinite.	 The	 set	 of	

equations,	taking	into	account	also	the	conservation	property,	can	be	solved	as	follows:	

	

	

	

                                                                                 (147)
	

	

λ1 +λ2( )P0 = µ1P1 +µ2P2 +µ3P3
λ1P0 = λ2 +µ1( )P1
λ2P0 = λ1 +µ2( )P2
λ2P1 +λ1P2 = µ3P3

λ1 +λ2( )P0 = λ2 +µ1( )P1 + λ1 +µ2( )P2

P1 =
λ1

λ2 +µ1
P0

P2 =
λ2

λ1 +µ2
P0

P0 +P1 +P2 = 0
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                                                                    (148)
	

	

                                                  (149)
	

	

The	procedure	described	above	is	suitable	for	small	systems,	in	case	of	larger	models	is	more	

appropriate	the	matrix	form	(using	the	state	equations	for	each	state	of	the	model):	

	

	

																																																																								
(150)

	

	
	

Since	 the	 first	 equation	 is	 the	 sum	 of	 the	 other	 two,	 it	 is	 preferred	 to	 replace	 it	 with	 the	

conservation	property;	therefore	the	resulting	set	of	equations	can	be	written	in	matrix	form:	

	

	 	 																							
(151)

	

	

The	solution	is:			

																																																																														
(152)

	

Usually	the	system	shutdown	rate	is	a	linear	combination	of	the	state	probabilities	and	in	this	

example	it	is:		

                                                                                          (153)
	

So,	defining	the	vector	L,	the	average	system	failure	rate	is	the	following:	

	

                                                                           
				

(154)
	

	
                                                                                     (155)
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4.6.2.1. System	Failure	Rate	Transient	Analysis	
	

The	 transient	 (time-dependent)	 analysis	 is	 very	 interesting	 on	 either	 closed-loop	 or	 open-

loop	models,	corresponding	to	models	with	or	without	repair.	

In	some	applications	it	is	necessary	to	know	the	worst-case	instantaneous	system	failure	rate	

as	a	function	of	time	since	the	average	system	failure	rate	is	not	enough.		

Taking	into	account	the	simple	1oo2	system	described	above,	the	time-dependent	equations	

of	failure	and	repair	transitions	are	the	following:	

	

	

				 	 																																																																																	
(156)

	

	

	

	

Using	matrix	notation:	

																																																																									
(157)	

	

	

																				
(158)	

	

The	time-dependent	solution	of	this	system	of	equations	is:	

	

																																																		
(159)	

	

									
																																																

(160)	
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Fig.	5.	Instantaneous	failure	rate	in	case	of	both	continuous	and	periodic	repair	

	

Supposing	 continuous	 repair	 procedures	 (exponentially	 distributed),	 the	 instantaneous	

failure	rate	shown	in	Figure	5	goes	close	to	the	asymptotic	steady-state	rate	in	a	short	period	

of	time	(in	this	case	around	1000h)	but	this	is	irrelevant	comparing	to	the	expected	useful	life	

period	(e.g.	millions	of	hours).	This	is	the	reason	why	sometimes	the	steady-state	analysis	is	

often	preferred	to	the	transient	one	to	achieve	the	average	system	failure	rate.	

The	trend	of	the	system	failure	rate	is	completely	different	considering	a	discrete	distribution	

for	 repair	 activities;	 the	 repair	 rate	 is	 zero	 during	 each	 inspection	 or	 repair	 interval	 (e.g.	

1000h),	and	infinite	for	an	instant	at	the	end	of	each	interval.		

This	way	the	full-up	state	is	restored	at	the	end	of	each	interval	and	every	interval	begins	in	

exactly	 the	same	full-up	conditions;	 the	result	 is	a	saw-tooth	 function	repeating	every	cycle	

(in	this	case	1000h).	Anyway	the	main	value	results	the	same	of	the	steady-state	analysis.	

In	 critical	 applications	 long	 latency	 is	 rarely	 acceptable	 and	 for	 this	 reason	 these	 critical	

systems	 are	 frequently	 monitored	 and	 inspected:	 as	 a	 result,	 they	 are	 repaired	 and	 the	

system	is	restored	in	short	time	intervals.	Therefore	the	main	interest	is	to	achieve	the	long-

term	average	reliability	over	the	whole	period	of	maintenance	cycles	that	corresponds	to	the	

steady-state	 solution	 of	 the	 closed	 loop	 model	 where	 all	 repair	 transitions	 are	 taken	 into	

account.	The	periodic	variations	within	each	maintenance	cycle	are	not	considered.	

In	conclusion,	the	transient	analysis	represents	the	average	instantaneous	failure	rate	over	a	

single	period	of	cyclic	maintenance	while	the	steady-state	analysis	is	a	good	approximation	of	

the	long-term	average	failure	rate	over	multiple	maintenance	intervals	[60-63].	

	

	

4.6.3. Complex	Systems	
	

The	procedure	described	in	the	previous	paragraphs	is	used	for	simple	systems	with	just	dual	

redundancy	and	repair	rates	that	are	much	greater	than	failure	rates.	
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For	more	complex	systems	or	in	case	of	repair/failure	rates	of	the	same	order	of	magnitude	

(e.g.	in	case	of	long	latency	maintenance),	in	order	to	use	Markov	models	some	other	factors	

must	be	taken	into	account	[57].	

	

	

4.6.3.1. Sporadic	Periodic	Repair	For	First-Order	States	
	

As	 said	 before,	 a	 component	 periodic	 repair	 of	 T	 hours	 can	 be	 modelled	 with	 a	 repair	

transition	 with	 constant	 rate	 2/T	 since	 the	 failure	 distribution	 is	 approximately	 uniform	

during	 each	 interval;	 with	 this	 hypothesis,	 the	 duration	 between	 failure	 and	 repair	 is	 T/2	

hours.		

In	critical	applications	it	is	often	preferred	a	more	conservative	solution	(repair	rate	of	1/T)	

but	 for	 this	 analysis	 the	 “standard”	 2/T	 is	 accepted	 and	 the	 two	 following	 conditions	 are	

taken	into	account:	

• The	repair	rate	of	2/T	works	only	for	model	states	that	are	a	single	failure	away	from	

the	fully	operative	condition	and	this	is	acceptable	in	dual	redundant	systems	where	

the	failure	of	both	units	leads	to	complete	system	failure;	

• In	case	the	inspection	interval	is	large	compared	to	MTBF,	the	average	time	between	

failure	and	repair	approaches	T	hours	and	it	makes	sense	to	set	the	repair	rate	to	1/T;	

when	 inspection	 interval	 is	 the	 same	 order	 of	 magnitude	 of	 MTBF,	 instead,	 the	

corresponding	repair	rate	is	contained	in	the	interval	1/T	and	2/T	and,	for	first-order	

states,	the	rate	of	inspection/repair	transitions	is	the	following:		

	

                                                                       (161)	

	

Where	 	is	the	sum	of	all	the	failure	rates	in	the	full-up	state.		

	

	

4.6.3.2. State	Aggregation	For	High-Order	Models	
	

The	number	of	states	in	the	model	may	increase	exponentially	together	with	the	increase	of	

number	 of	 components.	 In	 a	 system	of	N	 components,	 in	 case	 each	 state	 is	 associated	 to	 a	

combination	of	failures,	the	model	will	contain	2N	states.	In	the	following	picture	are	shown	

the	diagrams	for	N	=	2,	3,	and	4.	
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Fig.	6.	State	models	in	function	of	the	number	of	components	making	up	the	system	

	

Supposing	a	system	made	of	N	identical	components,	each	failure	transition	has	the	same	rate	

λ	and	the	conditions	with	the	same	number	of	failures	can	be	collected	together	in	the	same	

state;	this	aggregation	reduces	the	model	to	N+1	states,	as	shown	in	Figure	7.	

However	 state	 aggregation	 may	 be	 a	 concrete	 solution	 for	 any	 system	 with	 identical	

configurations	that	can	be	gather	in	a	single	state.	

	

	

	

	

Fig.	7.	State	models	after	state	aggregation	

	

State	aggregation	is	also	useful	in	larger	systems	with	a	huge	number	of	possible	high-order	

failure	combinations:	in	case	only	the	single	and	double	failure	combinations	have	significant	

probabilities,	 all	 the	 other	 combinations	 are	 negligible	 and	 may	 be	 gathered	 in	 the	 total	

system	failure	state	[57].	

	

	

4.6.3.3. Periodic	Repairs	For	High-Order	Models	
	

The	 solutions	 described	 in	 the	 previous	 sections	 show	 the	 procedure	 to	 model	 periodic	

inspection/repair	of	states	that	are	one	failure	away	from	the	fully-operative	condition.		

This	solution	is	not	applicable	in	higher-order	models	however	it	is	possible	to	estimate	with	

great	accuracy	the	repair	transition	rates	for	T-hour	inspection/repair	intervals.	

The	 repair	 rate	 has	 a	minimum	value	 (1/T)	 and	 it	may	 assume	values	 greater	 than	2/T	 in	

case	of	higher-order	states:	this	is	caused	by	the	rate	of	going	into	higher-order	states	that	is	

not	 constant,	 but	 increases	 over	 time	 in	 correspondence	 to	 the	probabilities	 of	 the	 feeding	

states	increase.		

This	 is	 the	reason	why	going	 into	a	higher-order	state	 is	not	uniformly	distributed	over	the	

interval	and	it	is	weighted	toward	the	end	of	any	given	inspection	interval.	

Therefore	the	periodic	repair	rate	of	high-order	models	is	usually	difficult	to	assess	except	for	

some	 types	of	models	 such	as	 systems	consisting	of	N	 identical	units	with	 the	 same	 failure	

rate	λ	 (Figure	8).	The	system	 fails	 in	case	of	 failure	of	all	 the	N	components	and,	 in	case	of	
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failure,	the	component	is	repaired	immediately	in	order	to	bring	the	system	back	to	the	fully-

operative	state.		

The	maintenance	policy	 is	 based	only	 on	periodic	 inspections	 every	T	hours	 and,	 in	 case	 a	

component	is	found	failed,	it	is	repaired	at	that	time.	

	

	

	

	

Fig.	8.	Markov	model	for	generic	system	with	4	identical	components	

	

For	the	sake	of	simplicity	the	transition	rate	of	repair	transitions	is	considered	constant	for	

each	of	 the	 three	partially-failed	 stated	but	 actually	 the	 rates	differ	 each	other	because	 the	

mean	times	to	enter	the	corresponding	states	are	all	different.		

Usually	 for	 systems	with	 N	 identical	 components	 the	 periodic	 inspection/repair	 of	 a	 state	

that	 is	k	 failures	away	 from	the	 fully-repaired	condition	can	be	represented	by	a	 transition	

with	the	following	constant	rates:		

	

• 
	

in	case	the	inspection	interval	is	small	compared	to	MTBF;	

• 
	

in	case	the	inspection	interval	is	large	compared	to	MTBF.	

	

A	general	formula	to	cover	both	these	conditions	is:	

	

                                                                   (162)

	
This	is	true	for	the	simple	system	described	before	real	applications	force	to	face	with	more	

complex	architectures	with	different	components	and	different	maintenance	policies	for	each	

unit;	 in	 these	 systems	 it	 is	 necessary	 to	 carry	out	 an	 exact	 analysis	 of	 repair	 transitions	 to	

achieve	suitable	repair	rates	instead	of	using	the	approximate	solution.	

	

	

4.6.3.4. Model	Reduction	And	Simplification	
	

As	said	before,	one	of	the	greatest	problems	using	Markov	technique	in	reliability	analysis	is	

the	number	of	states	required	to	model	systems	with	large	number	of	components;	a	system	

of	N	components	has	2N	possible	states	supposing	each	component	has	two	states	(working	

µ =
k +1( )
T

µ =
1
T

µ =
1+ ke−λT
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and	 failed).	 This	 issue	may	 be	mitigated	with	 reduction	 techniques	 that	 can	 be	 applied	 to	

reduce	the	number	of	states	and	maintain	the	accuracy	of	the	model.	

The	simplest	and	smartest	practice	 is	to	 implement	a	design	that	should	eliminate	common	

mode	failures	and	isolate	redundant	functional	paths.	

Furthermore,	in	case	the	model	shows	multiple	levels	of	failure	contribution,	it	is	possible	to	

implement	 a	 truncation	 procedure.	 The	 failure	 rates	 of	 most	 real	 components	 are	 many	

orders	 of	 magnitude	 smaller	 than	 1	 so	 their	 combination	 may	 be	 negligible	 and,	 as	 a	

consequence,	 system	 should	 be	 simplified	 (e.g.	 in	 case	 the	 combination	 of	 three	 or	 more	

failures	are	negligible,	 it	 is	possible	 to	consider	 in	 the	model	only	single	and	double	 failure	

combinations	and	consider	the	transitions	after	double	failure	states	directly	to	the	complete	

system	failure	state).	

It’s	not	rare	in	complex	systems	to	find	different	elements	that	have	the	same	impact	in	case	

of	failure	so	the	result	of	these	elements	can	be	combined	without	any	loss	of	accuracy	in	the	

model	[64].	

Another	reduction	technique	to	achieve	the	probability	of	failure	of	the	target	event	considers	

the	 division	 of	 this	 top-level	 event	 into	 n	 sub-events	 that	 are	 modeled	 separately.	 The	

probability	of	the	sub-events	is	then	combined	to	assess	the	probability	of	the	top-event.	

 
 
4.7 Hidden	Markov	Models	
	

Hidden	Markov	Models	 (HMM)	 are	 statistical	models	 for	 system	modeling	 through	 a	 finite	

number	of	states.		

The	 states	 of	 the	 system	 are	 hidden	 to	 the	 observer	 but	 using	 HMMs	 it	 is	 possible	 to	

determine	which	state	the	system	is	currently	in.	

A	 Hidden	 Markov	 Model	 consists	 of	 several	 states	 with	 corresponding	 initial	 probability	

value,	a	transition	probability	matrix	that	indicates	the	likelihood	of	moving	from	one	state	to	

another	and	an	output	probability	distribution.	

Hidden	Markov	Models	are	divided	in	two	main	categories,	discrete	and	continuous,	differing	

for	the	input	they	are	able	to	accept	and	the	way	the	input	is	processed.	Discrete	HMMs	are	

based	on	a	limited	number	of	observations	while	continuous	models	are	able	to	handle	input	

(e.g.	real	numbers)	that	is	not	part	of	a	predefined	list.	

The	Hidden	Markov	Model	 of	 a	 complex	 system	 can	 be	 represented	with	 a	 single	HMM	or	

several	HMMs:	in	the	first	case,	each	state	of	the	model	corresponds	to	a	different	health	state	

of	the	system	while	using	multi	Markov	Models,	each	health	state	is	described	by	a	dedicated	

model.	The	 last	 solution	 is	preferable	 in	 case	 little	data	 is	available	 since	new	health	 states	

may	 be	 identified	 and	 new	 HMMs	 can	 be	 added	 to	 the	 system	 when	 other	 data	 becomes	

available.	

Hidden	 Markov	 models	 are	 widely	 used	 for	 failure	 coverage	 and	 their	 application	 in	

Condition-Based	Maintenance	is	described	in	the	following	paragraph.	
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4.7.1. Failure	Coverage	With	Markov	Modelling	
	

In	redundant	systems	the	fault	coverage	capability	of	the	system	must	be	taken	into	account	

and	the	possible	states	of	Markov	models	may	be	reduced	at	three	states:	good,	failed	covered	

and	 failed	 uncovered.	 The	 fail	 states	 are	mutually	 exclusive	 since	 a	 component	 cannot	 fail	

both	covered	and	uncovered.	

The	failure	coverage	deals	with	detection,	isolation	and	reconfiguration	and	can	be	associated	

to	fault	diagnosis	that	is	one	of	the	cornerstone	of	Condition-Based	Maintenance	[57].	

Assuming	 the	 system	 under	 analysis	 is	 a	 Markov	 process	 with	 unobserved	 states,	 fault	

diagnostics	can	be	achieved	using	Hidden	Markov	Models	(HMMs).	

Each	state	in	the	HMM	represents	a	different	health-state	of	the	system	and,	with	the	use	of	

HMMs,	it	is	possible	to	assess	different	tasks	that	are	described	in	the	following	list:	

	

• Detection	and	identification	of	anomalies	in	the	process	(anomaly	detection)	

This	 procedure	 refers	 to	 discovering	 data	 that	 the	HMMs	 have	 not	 been	 trained	 to	

recognize.	 In	 case	 the	 model	 is	 defined	 by	 an	 observation	 vector,	 it	 is	 possible	 to	

calculate	the	probability	that	the	observation	vector	belongs	to	the	HMM;	it	responds	

to	 the	presented	observations	and	a	 log-likelihood	estimate	 is	 generated	depending	

on	the	recognition	of	the	measurements.	The	log-likelihood	values	are	used	to	detect	

potential	anomalies.		

For	example,	if	is	taken	into	account	the	HMM	corresponding	to	a	state	of	good	health	

of	the	system,	the	only	training	data	available	are	those	corresponding	to	the	system	

in	 good	 health.	 The	 observations	 are	 taken	 from	 the	 measurements	 that	 were	 not	

used	to	train	the	HMM;	if	the	log-likelihood	of	the	data	received	is	closer	to	0	it	means	

that	 there	 is	 high	 probability	 that	 data	 belongs	 to	 the	HMM	 corresponding	 to	 good	

health.		

In	case	something	in	the	system	goes	wrong,	the	likelihood	drops	until	it	goes	below	a	

predefined	value:	at	 this	point	 it	 is	not	possible	 to	know	the	state	of	 the	system	but	

only	that	it	is	no	longer	in	the	good	health	condition.	

For	 this	 kind	 of	 applications	 the	 expert	 knowledge	 of	 the	 system	 together	with	 the	

detection	assessment	is	necessary	to	find	errors	and	train	the	HMM	and	detect	these	

errors	in	future	measurements.	

• Determine	the	current	health	of	the	system	(current	state	detection)	

With	this	procedure	it	is	possible	to	determine	the	current	state	of	the	system	among	

the	several	HMMs	the	system	has	been	trained	to.		

For	example,	if	two	HMMs	are	taken	into	account,	one	“good”	and	one	“bad”,	they	are	

competing	each	other	since	they	are	presented	with	the	same	observation	vector.		

The	 log-likelihood	 is	used	 to	determine	 the	winner	 that	will	be	 the	HMM	producing	

the	value	closest	 to	0;	as	a	 consequence,	 the	state	 system	will	be	 (probably)	 in	 that	

state	(there	is	no	100%	probability	since	the	winner	represents	the	most	likely	state	

the	system	is	in).	
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Similarly	for	anomaly	detection	applications,	also	for	the	determination	of	the	current	

system	 state	 an	 expert	 knowledge	 can	 help	 to	 define	 more	 error	 states	 and	 train	

HMMs	to	improve	the	classification	of	the	states	of	the	system.	

Furthermore	 huge	 variations	 in	 the	 training	 data	 values	may	 affect	 the	 capacity	 of	

HMMs	 to	 properly	 recognize	 the	 data:	 in	 these	 applications	 to	 detect	 errors	 more	

accurately	it	is	necessary	to	reduce	the	amount	of	training	data	and	consider	only	the	

measurements	with	similar	values.	

• Predict	the	future	health	of	the	system	(future	state	prediction)	

The	 aim	 of	 this	 procedure	 is	 to	 estimate	 when	 the	 state	 of	 the	 system	 is	 going	 to	

change;	 there	 aren’t	 procedures	 to	 know	 the	 exact	moment	 of	 the	 change	 but	 it	 is	

possible	to	estimate	when	the	system	is	expected	to	move	from	one	state	to	another.		

In	order	to	estimate	state	transition	points	it	is	necessary	to	analyze	the	training	data	

to	find	the	state	transition	points:	they	are	determined	following	the	same	procedure	

based	on	log-likelihood	trajectories	described	above	for	current	state	prediction.		

When	the	state	transition	points	of	the	training	data	have	been	established,	the	joint	

and	conditional	distributions	can	be	modelled	to	perform	future	state	predictions.	

This	 prediction	 of	 the	 state	 transitions	 becomes	 more	 accurate	 together	 with	 the	

growth	of	information	on	the	component	under	analysis	[57].	

	
	
4.8 Applications	of	Markov	Models		
	

In	 this	 section	 different	 system	 behaviours	 are	 presented	 using	Markov	modelling:	 repair,	

standby	 spares,	 sequence	 dependency,	 transient/intermittent	 faults	 and	 imperfect	 fault	

coverage.	

	

	

4.8.1. Repair	
	

Markov	 modelling	 is	 very	 well	 suited	 to	 model	 repair	 activities;	 repair	 involves	 the	

restoration	 of	 the	 functionality	 lost	 due	 to	 a	 failure	 in	 order	 to	 bring	 the	 system	 back	 to	

normal	running.	For	this	reason	modelling	repair	usually	adds	cycles	to	a	Markov	models.		

	

	
Fig.	9.	Markov	model	for	system	with	two	components	

	

The	Markov	chain	 in	 figure	represents	a	 system	with	 two	active	redundant	components.	 In	

the	starting	state	(2)	both	components	are	properly	functioning	and,	when	a	failure	occurs	in	

one	 of	 the	 two	 components	 (rate	 2λ),	 the	 system	 goes	 in	 a	 degraded	 state	 (1).	 In	 case	 of	

occurrence	of	a	second	failure	(rate	λ)	the	system	goes	to	a	failure	state	(F).		
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The	repair	procedure	is	represented	by	the	transition	from	state	(1)	to	state	(2)	and	it	follows	

the	repair	rate	μ;	in	case	of	perfect	repair,	full	system	functionalities	are	restored	and	system	

returns	to	the	initial	state	(2).	

As	a	result,	the	addition	of	the	repair	activity	adds	a	cycle	between	states	(2)	and	(1).	

This	 basic	 procedure	 for	 repair	modelling	 can	be	 generalized	 to	 represent	 a	wide	 range	 of	

repair	 resources	 and	 procedures	 e.g.	 dimension	 of	 the	 maintenance	 team,	 sequence	 of	

component	repairs,	number	of	required	failures	before	initiating	the	repair	activities,	etc.	

	

	

4.8.2. Standby	Spares	
	

Markov	models	 are	 suited	 to	 reproduce	 the	 three	 types	 of	 standby	 spares:	 hot,	warm	 and	

cold.	Standby	spares	are	considered	to	be	similar	or	identical	components	to	the	main	unit	for	

both	functionality	and	performance;	they	are	supposed	to	take	over	when	a	failure	arises	in	

order	 to	 give	 continuity	 to	 the	 process.	 In	 this	 condition	 the	 system	 keeps	 working	 in	 a	

degraded	mode	until	the	maintenance	service	repairs	the	failure	and	restore	redundancy.	

In	 a	 hot	 standby	 architecture,	 the	 second	 unit	 is	 continuously	 powered	 and	 ready-to-use	

during	normal	running	in	order	to	take	over	as	quickly	as	possible	in	case	of	main	equipment	

failure.	As	a	consequence,	the	standby	component	is	assumed	to	have	the	same	failure	rate	of	

the	main	unit;	furthermore	all	the	redundant	items	can	fail	at	any	time	and	the	failure	rate	at	

which	 a	 failure	 occurs	 is	 the	 sum	 of	 the	 failure	 rates	 for	 all	 active	 components	 (e.g.	 in	 a	

redundant	 system	 with	 main	 unit	 and	 two	 standby	 spares	 with	 failure	 rate	 λ	 each,	 the	

transition	rate	is	3λ).	

Note	 that	 the	 presence	 of	 standby	 units	 requires	 the	 presence	 of	 detection	 and	

reconfiguration	processes:	as	a	consequence	failure	coverage	probabilities	must	be	taken	into	

account	[55-58].	

	

In	 a	 cold	 standby	 configuration	 the	 support	 unit	 is	 powered	 down	 until	 the	 main	 unit	

experiences	a	 failure:	at	 that	 time	the	standby	component	 is	switched	 in	order	to	 take	over	

the	process	load.	For	this	reason	the	cold	spare	is	usually	considered	not	vulnerable	to	failure	

before	the	activation,	whereas	it	can	fail	at	any	time	during	fully	active	state.	

If	the	redundant	system	is	composed	by	three	units,	the	starting	state	is	defined	by	one	active	

functioning	device	and	two	cold	standby	spares	available.	

A	transition	resulting	from	a	failure	obviously	implies	that	the	main	unit	has	failed	(since	the	

standby	 spares	 are	 unpowered	 and	 cannot	 fail	 during	 quiescent	 period);	 when	 the	

destination	 state	 of	 the	 transition	 is	 reached,	 one	 of	 the	 unpowered	 spare	 units	 will	 have	

been	activated	in	order	to	take	over	the	process.	

The	 new	 state	 will	 indicate	 that	 one	 fewer	 spare	 component	 is	 available	 than	 before	 the	

failure:	the	transition	rate	is	λ	rather	than	3λ	of	hot	standby	architecture	since	only	the	main	

unit	 can	 fail	 and	 for	 this	 reason	 all	 transitions	 representing	 failures	 in	 the	 model	 have	 a	

transition	rate	of	λ,	regardless	the	number	of	spare	units	remain	available	[57].	

The	 last	 architecture	 is	 the	 warm	 standby	 configuration	 where	 spare	 components	 are	

powered	 during	 normal	 operation	 of	 the	 main	 unit	 although	 they	 are	 not	 fully	 operative:	
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these	 devices	 can	 fail	 during	 quiescent	 period	 because	 they	 are	 subjected	 to	 the	 same	

environmental	stress	of	the	main	unit.	As	a	consequence,	the	warm	spares	are	vulnerable	to	

failure	 with	 a	 lower	 failure	 rate	 than	 the	 fully	 active	 functioning	 and	 these	 failure	 rates	

contribute	to	the	rate	of	the	transition	representing	the	failure	of	the	main	component.	

So	the	transition	rate	representing	the	failure	of	a	component	is	the	sum	of	the	failure	rates	of	

all	active	components	including	warm	spares.	

The	resulting	state	after	the	transition	(failure	of	the	main	unit)	is	defined	by	one	fully	active	

device	and	one	remaining	warm	spare.		

	

	

4.8.3. Sequence	Dependency	
	

Since	Markov	models	are	based	on	sequences	of	states	connected	by	 transitions,	 they	are	a	

perfect	means	to	represent	sequence	dependent	behaviour.	

Some	 processes	 are	 based	 on	 the	 sequence	 in	which	 events	 occur	 and	 some	 examples	 are	

described	below:	

• Processes	with	 events	 that	 cannot	 take	 place	 until	 other	 events	 have	 occurred;	 e.g.	

cold	spare	activation	after	main	unit	failure;	

• Processes	where	certain	events	cause	other	events	to	occur,	or	preclude	other	events	

from	occurring	(functional	dependency);	

• Processes	 where	 future	 system	 behaviour	 can	 change	 depending	 on	 the	 order	 in	

which	some	other	events	occur;	this	situation	was	typically	modelled	with	fault	trees	

using	Priority-AND	(AND	gate	in	which	the	output	event	occurs	only	if	all	input	events	

occur	in	a	specific	sequence).		

	

	

4.8.4. Transient	and	Intermittent	Faults	
	

Markov	 models	 are	 a	 natural	 instrument	 to	 model	 processes	 involving	 transient	 and/or	

intermittent	faults.		

Transient	faults	are	faults	that	arise	and	can	cause	malfunctioning	for	a	finite	time;	then	they	

disappear	or	turn	in	a	friendly	state	(no	longer	cause	malfunctioning).			

Intermittent	 faults,	 instead,	are	 faults	 that	 randomly	oscillate	between	active	and	quiescent	

states	[56].	

	
Fig.	10.	Markov	model	for	system	with	transient	faults	
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4.8.5. Imperfect	Fault	Coverage	
	

When	a	failure	arises,	the	process	of	failure	detection	and	reconfiguration	sometimes	can	fail	

itself:	 in	 this	 case	 the	 fault	 is	 considered	 imperfectly	 covered	 and	 the	 probability	 that	

detection/reconfiguration	process	is	successful	is	called	coverage	probability.		

Imperfect	 fault	 coverage	 can	 be	 modeled	 using	 Markov	 processes	 using	 two	 outgoing	

transitions	for	each	imperfectly	covered	fault	that	can	occur	while	the	system	is	in	a	certain	

operational	state:	

• The	first	transition	outlines	the	success	of	detection/reconfiguration	processes	and	it	

leads	the	system	to	an	operative	state.	It	is	define	by	a	transition	rate	achieved	as	the	

product	 of	 the	 successful	 reconfiguration	 probability	 and	 the	 imperfect	 coverage	

occurrence.		

• The	second	transition	represents	an	unsuccessful	reconfiguration	process	that	 leads	

the	system	to	a	faulty	condition	(caused	by	the	uncovered	failure).	The	transition	rate	

is	 the	 product	 of	 the	 unsuccessful	 reconfiguration	 probability	 and	 the	 imperfect	

coverage	occurrence	[57].	

	

	
4.9 Case	Studies	
 
In	this	section	are	described	some	examples	of	Markov	models	involving	systems	differing	for	

application	and	number	of	components:	 this	 is	necessary	 to	prove	 if	Markov	modelling	 is	a	

suitable	 procedure	 to	 assess	 availability	 improvement	 during	 the	 early	 stages	 of	 product	

design.	

 
 

4.9.1. 1oo2	Redundancy	With	Dedicated	External	Fault	Monitoring	
	

The	system	is	shown	in	Figure	11	and	is	composed	by	three	devices:	main	unit,	standby	unit	

and	external	monitoring	unit.	

	

	

 
Fig. 11. 1oo2 system with external fault monitoring 

 
The	main	unit	is	equipped	with	continuous	on-board	fault	monitoring	and	it	is	also	controlled	

before	each	mission	that	lasts	10	hours	on	average.	In	case	a	failure	or	a	partial	efficiency	is	

detected	during	maintenance	procedure,	the	unit	is	repaired	before	the	following	start.	If	the	
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failure	displays	during	normal	 running,	 the	on-board	monitoring	has	 to	detect	 the	problem	

and	the	backup	device	is	activated	to	guarantee	the	continuity	of	the	process.	The	failure	rate	

of	main	device	is	λ1=4,9*10-5	failure/hour.	

On	 the	 other	hand,	 the	 standby	 system	 is	 not	 equipped	with	 on-board	diagnostics	 but	 it	 is	

continuously	monitored	 by	 the	 dedicated	 external	monitoring	 device	 so,	 in	 case	 of	 backup	

unit	 failure,	 it	 is	 repaired	before	 the	successive	missions	depart.	Since	 the	standby	unit	can	

fail	latently,	it	is	checked	every	50	hours.	

Clearly	also	the	external	unit	can	fail	and	in	this	circumstance	the	detection	coverage	is	lost;	

in	order	to	detect	latent	failures	this	device	is	checked	every	500	hours.		

If	the	backup	unit	is	found	faulty	at	one	of	these	checks	without	any	kind	of	warning	from	the	

control	device,	they	are	both	considered	failed	and	they	are	both	repaired.	

The	 failure	 rates	of	 standby	and	external	monitoring	 systems	are	 λ2=2,2*10-5	 failure/hours	

and	λ3=2,6*10-5	failure/hours.	

Mean	 time	 to	 failures	 is	 some	 order	 of	 magnitude	 greater	 than	 the	 intervals	 of	 scheduled	

inspection/repair	and	most	of	the	states	making	up	the	Markov	model	are	first-order	states	

since	they	are	just	one	failure	far	from	full-operation	so	there	is	no	loss	of	accuracy	if	these	

repairs	 are	 modeled	 with	 continuous	 transitions	 following	 constant	 rates	 μ=2/T	 for	 the	

respective	intervals.		

This	hypothesis	is	quiet	conservative	for	the	state	defined	by	both	monitor	and	backup	device	

failures	but	anyway	it	is	acceptable	and,	above	all,	convenient	to	use.		

Failure	and	repair	rates	for	the	three	devices	are	listed	in	Table	I	while	the	Markov	model	is	

shown	in	Figure	12.	

	

	

Tab. I – Failure and repair rates, MTBFs and MTTRs 

 

 
	

 
State	6	in	the	model	corresponds	to	the	total	failure	condition	where	all	components	are	not	

working	and,	for	the	sake	of	simplicity,	the	repair	rate	from	this	state	is	considered	infinite;	

this	assumption	allow	to	remove	State	6	from	the	system	equations.	

On	the	other	hand,	the	system	failure	rate	is	the	rate	of	going	into	that	state:	

	

                                                    

(163)

  

Device λ'
(failure/h)

μ'
(repair/h)

MTBF'
(h)

MTTR
'(h)

Main'Unit 4,9E?05 2,0E?01 20400 10

Standby'Unit 2,4E?05 4,0E?02 41700 50

External'Monitoring 2,6E?05 4,0E?03 38500 500

λSYS = (P1+P4 )λ2 + (P3+P5 )λ1
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Fig.	12.	Markov	model	of	1oo2	system	with	external	fault	monitoring	

	

	

The	equation	system	of	the	Markov	model	developed	is	shown	below	and	the	sixth	equation	

is	the	conservation	equation:	

	

	

	

	

                                                         (164)
 

	

	
	

The	corresponding	matrix	notation	is	the	following:	

	

 
                                                                                              (165)

 
	

	

	

	

	

	

	

λ1P0 − λ2 +λ3 +µ1( )P1 = 0

λ3P0 − λ1 +λ2 +µ3( )P2 +µ1P4 = 0

λ2P0 − λ1 +λ3 +µ1( )P3 = 0

λ3P1 +λ1P2 − λ2 +µ1( )P4 = 0

λ2P2 +λ3P3 − λ1 +µ2( )P5 = 0

P0 +P1 +P2 +P3 +P4 +P5 =1

λSYS = LC
−1U
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Where:	

	

 

	

		

The	failure	rate	of	the	modelled	system	is	λSYS=6,3*10-9	failure/hours.
	

The	 chart	 in	 Figure	 13	 represents	 a	 sensitivity	 analysis	 of	 system	 failure	 rate	 in	 case	 of	

modulation	of	 the	monitoring	 inspection	 interval	of	 the	backup	system	(ranging	 from	50	to	

800	hours).	This	plot	offers	a	great	support	to	design	engineers	to	optimize	the	maintenance	

interval	and	the	corresponding	cost.	
	

	
Fig.	13.		System	failure	rate	vs.	inspect/repair	interval	backup	unit	
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4.9.2. Redundant	Safety	System	
 
A	 system	 involved	 in	 safety	 applications	 often	 have	 one	 or	 more	 intermediate	 operating	

states	since	it	is	required	to	keep	running	during	the	repair	of	failed	components	and	during	

maintenance	intervals.		

In	these	applications	maintenance	intervals	and	duration	of	maintenance	become	important	

because	 the	 system	 is	 designed	 to	 guarantee	 continuous	 operation	 and	 may	 become	

vulnerable	during	maintenance	activity,	also	in	redundant	architectures.	

Markov	 modelling	 is	 performed	 considering	 three	 different	 system	 states:	 all	 components	

operating	normally,	one	or	more	components	in	failure	while	the	system	is	still	running	with	

reduced	capacity	and	the	third	state	in	which	one	or	more	components	are	in	failure	and	the	

system	is	no	longer	operative.	

	

The	system	under	analysis	is	shown	in	figure:	there	are	two	sections	in	series	(A	and	B)	each	

with	redundant	architectures.	
In	both	sections	A	and	B	there	are	two	branches,	main	and	standby	(warm	or	hot),	with	two	

and	three	items	respectively.	A	controller	is	in	common	between	the	sections	and	it	activates	

the	standby	train	if	a	failure	occurs	in	the	main	one;	this	operation	is	possible	only	in	case	the	

standby	device	is	available,	otherwise	a	system	failure	occurs.	

One	of	 the	branches	may	become	inoperable	due	to	a	 failure	or	 in	case	of	maintenance	and	

also	the	controller	may	produce	a	system	failure	too	since	it	is	a	single	item.	

	

	

 
Fig.	14.	Reliability	Block	Diagram	of	system	under	analysis	

	

Fig.	 15	 shows	 the	Markov	model	 of	 the	 system.	 There	 is	 one	 normal	 operating	 state	 (NR),	

three	half	operating	states	in	which	one	or	more	trains	are	not	working	(S1,	S2,	and	S3),	and	

five	states	of	system	failure	(FC,	F1,	F2,	F3,	and	F4).	
The	failure	rates	and	repair/restore	rates	of	the	components	in	the	system	are	listed	below:	

- Failure	rate	item	A:	λA=3,3*10-6	failure/hours	

- Failure	rate	item	B:	λA=3,1*10-6	failure/hours	

- Failure	rate	item	C:	λC=2,2*10-5	failure/hours	

- Failure	rate	item	D:	λB=2,9*10-5	failure/hours	

- Maintenance	rate:	μ=5,4*10-3	repair/hours	

- MTTR:	variable	between	4,	8,	12,	24	and	48	hours	
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The	states	considered	in	the	system	are	described	in	the	following	list:	

• NR:	normal	running	state	with	one	(i.e.	main)	branch	operating	in	each	section	while	

the	other	one	is	in	standby	(but	ready	to	supplant).	

• S1:	one	branch	in	Section	1	is	not	working	due	to	a	failure	or	maintenance	operation	

while	the	other	one	is	running.	

• S2:	one	branch	in	Section	2	is	not	working	due	to	a	failure	or	maintenance	operation	

while	the	other	one	is	running.	

• S3:	one	branch	in	Section	1	and	one	in	Section	2	are	not	working	due	to	a	failure	or	

maintenance	 operation,	 the	 remaining	 components	 in	 each	 section	 are	 normally	

running;		

• FC:	the	controller	fails	and	produces	a	system	failure	(absorbing	state);	

• F1:	one	branch	in	Section	1	or	2	is	not	working	and	the	controller	fails	with	resulting	

system	failure	(absorbing	state);	

• F2:	one	branch	in	Section	1	or	1	is	not	working	and	another	component	in	the	same	

section	fails	producing	system	failure	(absorbing	state);	

• F3:	 one	 branch	 in	 Section	 1	 and	 one	 in	 Section	 2	 are	 not	 working	 and	 also	 the	

controller	fails	with	resulting	system	failure	(absorbing	state);	

• F4:	 one	 branch	 in	 Section	 1	 and	 one	 in	 Section	 2	 are	 not	 working	 and	 another	

component	in	a	running	branch	fails	with	consequent	system	failure	(absorbing	state).	

 
 

 
	

Fig.	15.	System	Markov	model		

	

After	 the	 identification	 of	 system	 states	 and	 corresponding	 transitions,	 the	 transition	

probability	matrix	is	developed	in	order	to	estimate	the	failure	rate	of	the	system.	

The	resulting	equation	is	the	following:		

	

M = I −P[ ]−1                                                                         
(166) 
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Where	M	is	the	matrix	composed	by	the	elements	mij	indicating	the	time	spent	in	the	state	j	

supposing	the	system	started	in	state	i,	I	is	the	identity	matrix	and	P	is	the	truncated	

transition	probability	matrix	(without	rows	and	columns	containing	absorbing	states).	

	

MTTF = mij
j=1

n

∑ 				 RS =
1

MTTF 																																																	
(167)	

	

Where	MTTF	is	the	Mean	Time	To	Failure,	mij	are	the	elements	of	matrix	M.	

	

	

	

Fig.16. System failure rate vs. MTTR 

	

Markov	modelling	is	a	powerful	method	to	assess	system	maintainability	and	this	procedure	

can	be	a	valid	support	for	availability	assessment	but	it	is	usable	only	in	case	of	low-complex	

systems:	as	seen	above,	the	complexity	of	the	system	directly	translates	into	the	complexity	

of	the	corresponding	Markov	model	and	a	system	of	ten	components	may	produce	a	model	

with	hundred	states	and	even	more	transitions.	

Furthermore,	this	approach	requires	a	manual	construction	of	the	model	and	this	practice	is	

not	so	familiar	to	design	engineers	so	this	implies	cumbersome	and	error-prone	modelling.	

For	these	reasons	Markov	processes	are	not	the	most	suitable	practice	for	the	purpose	of	this	

study.	
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Chapter	5	
	

Diagnostics	And	Condition	Monitoring	
	

	

	

	

5.1 Diagnostics	And	Maintenance	Policy	
	

Diagnostics	plays	a	fundamental	role	in	industrial	engineering	and	nowadays	is	an	essential	

part	 of	 performance	 requirements.	 Fault	 diagnosis	 and	 condition	 monitoring	 are	 almost	

mandatory	 in	 particular	 for	 Oil&Gas	 applications	 where	 products	 are	 forced	 to	 endure	

extreme	process	and	environmental	conditions.	

With	 the	 introduction	 of	 fault	 diagnosis	 design	 engineers	 are	 allowed	 to	 improve	 standard	

scheduled	maintenance	methods	based	on	planned	actions	and	severe	timetables:	thanks	to	

diagnostics	both	corrective	and	predictive	maintenance	procedures	can	be	put	onto	practice.		

These	methods	are	a	great	step	 forward	comparing	with	scheduled	strategies	 that	can	be	a	

waste	of	time,	money	and	resources	if	maintenance	is	made	when	not	effectively	needed	and,	

on	the	other	hand,	it	can	miss	some	impending	issues.	Corrective	and	predictive	maintenance	

are	real-time	diagnostics	and	optimize	efforts	in	terms	of	costs	and	time	[27-31].		

The	 main	 added	 value	 of	 predictive	 maintenance	 is	 to	 allow	 convenient	 scheduling	 of	

corrective	 maintenance	 and	 prevent	 unexpected	 equipment	 failures	 or	 system	 emergency	

shutdowns	[65-66].	

Corrective	maintenance	is	assessed	in	case	of	fault	show	to	repair	the	failed	equipment	and	

restore	the	system	to	“normal	running”	state.		

This	 maintenance	 practice	 is	 performed	 in	 three	 steps:	 fault	 identification,	 isolation	 and	

correction.	

Predictive	maintenance,	instead,	checks	the	condition	of	on-line	equipment	and	decides	when	

maintenance	should	be	performed.		

In	this	way	tasks	are	performed	only	when	warranted	so	designers	achieve	cost	savings	over	

routine	 or	 time-based	 preventive	 maintenance.	 In	 other	 words,	 predictive	 maintenance	

allows	convenient	scheduling	of	corrective	maintenance	and	prevents	unexpected	equipment	

failures	or	system	emergency	shutdowns	[67-68].	

Diagnostic	information	is	used	to:	

• increase	equipment	lifetime;	

• increase	plant	safety;	

• guarantee	continuity	of	productive	process;	

• reduce	loss	of	productivity	due	to	system	accidental	shutdown;	

• optimized	spare	parts	handling.	
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Diagnostic	assessment	can	be	fulfilled	at	different	levels	depending	on	the	complexity	of	the	

system	 under	 analysis:	 if	 diagnosis	 is	 restricted	 to	 a	 single	 item,	 usually	 that	 device	 is	

equipped	 with	 dedicate	 on-board	 circuit	 that	 supplies	 information	 about	 working/failure	

state	to	the	logic	solver.	This	is	a	local	check	involving	only	that	device.	

Otherwise	system	diagnostics	 is	achievable	on	more	complex	devices	 (e.g.	 lube	oil	 console)	

using	 information	 from	many	 sensors	 placed	 in	 the	machinery;	 these	 instruments	monitor	

system	development	and	promptly	activate	a	dedicated	loop	when	required	[68-69].	

	

	

5.2 Fault	Detection,	Isolation	And	Reconfiguration	Methods	
	

Faults	 can	 be	 classified	 following	 different	 criteria	 and	 the	 most	 common	 ones	 are	 listed	

below:	

• Failure	based	on	equipment	involved	(e.g.	actuator,	plant	or	sensor);	

	

	

	

Fig.	1.	Failure	based	on	equipment	

	

• Failure	 based	 on	 fault	 form	 e.g.	 abrupt	 (stepwise),	 incipient	 (drift-like)	 and	

intermittent	faults	(with	interrupts);	

	

	
	

Fig.	2.	Failure	based	on	fault	form	

	

• Failure	based	on	the	modality	of	fault	addition	(additive	or	multiplicative).	

	

		

	

Fig.	3.	Failure	based	on	fault	addition	modality	

	

Fault	management	is	based	on	three	steps:	detection,	isolation	and	reconfiguration	(FDIR).	
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The	 first	 step	 is	 fault	 detection	 and	 obviously	 it	 is	 the	 most	 critical	 of	 the	 whole	 loop;	 in	

literature	there	are	many	methods	and	also	several	classification	standards.		

In	 this	 study	 the	 following	 is	 adopted:	 Data	 and	 Signal	 Methods,	 Process	 Model-based	

Methods,	Knowledge-based	Methods.	

	

	

5.2.1. Data	Methods	
	
Data	 based	 methods	 use	 only	 available	 experimental	 and	 historical	 data	 and	 the	 two	

reference	procedures	are	Limit/trend	checking	and	Data	analysis	(PCA).	

Limit	 checking	 requires	 two	 limit	 values	 (thresholds),	 a	maximal	 value	 ymax	 and	 a	minimal	

value	ymin.	In	normal	running	conditions:	

	

ymin ≤ y(t) ≤ ymax 																																																																		(168)	

	

Otherwise,	trend	checking	method	uses	first	derivative:	

	

y 'min ≤ y '(t) ≤ y 'max 																																																																(169)	

	

These	methods	are	very	simple	and	reliable	but	they	can	detect	only	large	change	of	feature.	

	

	

5.2.2. Signal	Methods	
	

Signal	analysis	can	be	applied	only	in	case	a	fault	in	a	process	produces	a	change	in	a	signal.	

By	 assuming	 mathematical	 models	 for	 the	 measured	 signal,	 suitable	 features	 such	 as	

amplitude,	phase	and	spectrum	are	assessed.	Normal	behaviour	values	are	used	as	 term	of	

reference	for	each	feature	(analytical	symptoms).	

In	Spectrum	Analysis,	the	extraction	of	fault-relevant	signal	characteristics	can	be	restricted	

to	 the	 amplitudes	 or	 amplitude	 densities	 within	 a	 certain	 signal	 bandwidth.	 Fast	 Fourier	

transform	 (FFT)	 can	 be	 used	 to	 calculate	 frequency	 content	 of	 signal	 in	 time	 domain	 x(t).	

During	normal	operation	component	amplitudes	Ai	fall	within	particular	range:	

	

x(t) = A0 + Ai
i=1

N

∑ sin(ωit +θi )
	
																																																									

(170)	

Ai,min ≤ Ai ≤ Ai,max 																																																																		(171)	

	

Another	method	is	Parametric	Signal	Model	such	as	ARMA	-	AutoRegressive	Moving	Average:	

ARMA(p,q)	refers	to	the	model	with	p	autoregressive	terms	φi	and	q	moving	average	terms	i,	
constant	c	and	error	terms	εt,	εt-i:	
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Xi = c+εt + ϕiXt−i +
i=1

p

∑ θiεt−i
i=1

q

∑ 																																																											
(172)

	

	

Parametric	models	are	very	sensitive	to	small	frequency	changes	[66-68].	

	
	

5.2.3. Knowledge-based	Methods	
	

The	most	used	knowledge-based	methods	are	found	on	expert	systems	and	Fuzzy	logic.		

Rule-based	expert	systems	obviously	require	expertise	and	experience	of	 the	system	under	

analysis	 but	 full	 understanding	 of	 system	 physical	 properties	 and	 operating	 principles	 is	

frequently	unavailable	or	too	costly.	

The	main	knowledge	source	is	the	experience	of	domain	specialists	and	the	main	advantages	

of	expert	system	are	easy-add	(removal)	of	 rules,	explanation	of	 the	reasoning	process	and	

induction	(deduction)	of	processes.	

Otherwise,	 some	 disadvantages	 are	 expensive	 development	 and	 maintenance,	 lack	 of	

generality	and	insufficient	familiarity	with	novel	situations.	

	

The	other	procedure	widely	utilized	to	assess	fault	detection	is	Fuzzy	logic	that	is	used	in	case	

a	 simple	binary	decision	 (based	on	 two	 states,	 fault/not	 fault)	 is	not	 enough	 to	 control	 the	

system.	

Fuzzy	controller	(Fig.	4)	 is	based	on	a	 linguistically	 interpretable	rule-based	model	built	on	

expert	knowledge	and	measured	data	[83].	

	

	

	
	

Fig.	4.	Fuzzy	logic	controller	logic	diagram	

	

The	Fuzzy	inference	process	involves	the	following	steps:	

• Fuzzification:	 inputs	 pass	 through	 the	 fuzzification	 process	 using	 membership	

functions	that	are	a	graphical	representation	of	the	magnitude	of	participation	of	each	

input.		

• Rule-based	 inference:	 all	 rules	 are	 evaluated	 in	 parallel	 using	 fuzzy	 logic	 and	 the	

process	of	Fuzzy	uses	membership	functions,	logical	operations	and	if-then	rules.	
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• Defuzzification:	 fuzzy	 information	 are	 converted	 to	 neat	 ones	 using	 the	 inference	

process	and	computing	the	"fuzzy	centroid"	of	the	area:	

	

x*=
µi (x)x dx∫
µi (x)dx∫

	

																																																																	
(173)

	

	

where	x*	is	the	defuzzified	value,	μi(x)	is	the	aggregated	membership	function	and	x	is	

the	output	variable.	

	

	

5.2.4. Process	Model-based	Methods	
	

Process	model-based	methods	for	fault	detection	often	utilize	the	concept	of	redundancy	that	

can	 be	 either	 analytical	 or	 hardware-based:	 analytical	 redundancy	 compares	 the	 system	

outcomes	with	a	mathematical	model	and	usually	 it	doesn’t	 require	additional	hardware.	 It	

can	be	divided	in	quantitative	model-based	method	(using	explicit	mathematical	models	and	

control	 theories	 to	 generate	 residuals)	 and	 qualitative	 model-based	 ones	 (using	 artificial	

intelligence	 techniques	 to	 capture	differences	between	observed	 and	predicted	behaviour).	

On	 the	 other	 hand,	 hardware-based	 redundancy	 compares	 the	 same	 signal	 measurements	

generated	by	various	hardware.		

Process	 model-based	 method	 involves	 two	 stages:	 residual	 generation	 and	 residual	

evaluation.	This	 approach	assumes	 that	 the	 structure	 and	 the	parameters	of	 the	model	 are	

precisely	known	[83-84].	

This	 study	 is	 focused	 on	 these	 fault	 detection	 methods	 and	 the	 whole	 fault	 management	

procedure	is	described	in	the	following	paragraphs.	

	

	

5.2.4.1. Fault	Management	Steps	
	

Fault	management	is	based	on	three	steps:	detection,	isolation	and	reconfiguration	(FDIR).	

The	 first	 step	 is	 to	 generate	 the	 residuals,	 a	 set	 of	 variables	 achieved	 using	 one	 or	 more	

residual	 generation	 procedures:	 these	 residuals	 should	 be	 zero	 in	 absence	 of	 faults	 and	

totally	 insensitive	 to	 noise	 and	 model	 uncertainties.	 In	 some	 applications	 two	 or	 more	

residual	generation	filters	(designed	to	be	sensitive	only	to	a	selective	set	of	faults)	are	used	

in	parallel	for	fault	isolation	assessment.	

The	 second	 step	 is	 failure	 isolation	 that	 concerns	 the	 identification	 of	 the	 type	 of	 failure	

occurred:	it	is	usually	achieved	using	statistical	tools	to	test	the	residual	deviation	from	zero.		

After	the	detection	and	the	isolation	of	fault,	the	final	step	is	the	system	reconfiguration.	

In	 the	 following	 paragraph	 four	 basic	 concepts	 of	 FDIR	 are	 described:	 system	 and	 fault	

modelling,	residual	generation,	fault	isolation,	decision	making	[84].	
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5.2.4.2. System	and	Fault	Modelling	
	

Figure	5	illustrates	a	general	model	for	fault	detection	and	isolation.		The	plant	dynamics	are	

modelled	as	follows:	

	

x(t +1) = (A+ΔA)x(t)+ (B+ΔB)u(t)+E1n1(t) 				
																																		

			(174)	

y(t) = (C +ΔC)x(t)+ (D+ΔD)u(t)+E2n2 (t) 																																											(175)	

Where	x	is	the	state	vector,	u	is	the	plant’s	input	vector,	y	is	the	output	vector	measured	by	

the	sensors	and	n1	and	n2	are	noise	and	unknown	disturbance	vectors;	ΔA,	ΔB,	ΔC	and	ΔD	are	

model	uncertainties.		

	

	

	

	

	

	

	

	

	

	

	

	
	

Fig.	5.	System	and	fault	modelling	

	

The	faults	in	the	considered	system	can	involve	actuators,	sensors	and	components:	actuator	

and	 sensor	 faults	 are	 usually	modelled	 as	 additive	 faults	 while	 component	 faults	 typically	

lead	to	changes	in	the	parameters	of	the	system	dynamics	and	they	are	commonly	modelled	

as	multiplicative	faults.	

A	general	fault	model	for	the	system	is	the	following:	

	

x(t +1) = (A+ΔA+ ΔAC)x(t)+ (B+ΔB+ ΔBC)u(t)+E1n1(t)+Bfa (t) 																						(176)	

y(t) = (C +ΔC +ΔCC )x(t)+ (D+ΔD+ΔDC )u(t)+E2n2 (t)+ fs (t) 																						(177)	

Where	fa(t)	represents	the	actuator	faults,	fs(t)	the	sensor	faults,	ΔAC	and	ΔBC	the	component	

faults.	

Obviously	the	main	objective	of	FDI	procedures	is	to	generate	residuals	which	are	insensitive	

to	noise,	disturbances,	and	model	uncertainties.	

Some	 algorithms	 are	 designed	 to	 be	 robust	 to	 additive	 noise	 and	 disturbances	while	more	

difficulties	 arises	 in	 case	 of	 multiplicative	 faults	 such	 as	 component	 faults	 and	 model	

uncertainties.	The	simplest	way	to	overcome	this	problem	is	to	model	ΔA,	ΔB	etc.	as	additive	

disturbances	 (using	 time-varying	 disturbance-to-state	 system	 matrices)	 and	 to	 replace	

component	faults	ΔAC	and	ΔBC	with	an	additive	fault	vector	fc(t).	The	corresponding	model	is	

shown	below:	
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x(t +1) = Ax(t)+Bu(t)+E1(t)n1(t)+Bfa (t)+F1(t) fc (t) 																																(178)	

y(t) =Cx(t)+Du(t)+E2 (t)n2 (t)+ fs (t)+F2 (t) fc (t) 																																				(179)	

The	 state-space	 model	 can	 be	 transformed	 into	 the	 input-output	 framework	 considering	

n(t) = n1(t) n2 (t)[ ]T 	as	the	noise	vector	and	 f (t) = fa(t) fs(t) fs (t)[ ]T 	as	the	fault	vector:	
	

y(t) =G(z)u(t)+F(z) f (t)+E(z)n(t) 																																														(180)	

	

Where:		

G(z) =C(zI − A)−1B+D 																																				
																			(181)	

F(z) = (zI − A)−1E1E2"# $% 	
	
																																		

		
																				

(182)	

E(z) = (zI − A)−1BI(zI − A)F1 +F2"# $% 		
	
																																		

								(183)	

	

	

5.2.4.3. Residual	Generation	
	

The	residual	is	defined	as	the	difference	between	the	measured	output	y(t)	and	the	estimated	
output	y’(t)	in	the	plant’s	model:	
	

r(t) = y(t)− y '(t) 		
																																		

		
																												

(184)	

 
The	 residual	 must	 satisfy	 two	 properties	 to	 accurately	 assess	 fault	 detection:	 invariance	

relation	and	fault	detectability.		

Invariance	relation	requires	that	in	absence	of	failures	the	mean	of	the	residual	is	zero;	fault	

detectability,	instead,	requires	that	in	case	of	failure	arising	the	residual	deviates	from	zero.		

In	 many	 applications	 residuals	 are	 conditioned	 by	 the	 presence	 of	 noise,	 unknown	

disturbances	and	system	model	uncertainties:	the	main	target	of	FDI	procedures	is	to	realize	

a	residual	model	that	is	sensitive	to	faults	and,	at	the	same	time,	insensitive	to	disturbances.	

There	are	different	methods	to	achieve	robust	residuals,	the	most	important	are	listed	below:	

• Observer-based	approach;	

• Parity	relations	approach;		

• Optimization-based	approach;		

• Kalman	filter-based	approach;	

• System	identification	approach;	

• Discrete	event	systems/hybrid	systems	approaches;	

• Parameter	estimation	approach;	

• Non-linear	approach.	
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Observer-based	 methods	 generate	 residuals	 from	 an	 observer:	 in	 absence	 of	 fault,	 the	

observer	tracks	the	actual	plant	and	the	residual	should	be	zero.		

In	 case	 of	 fault	 the	 observer	 is	 usually	 designed	 to	 produce	 residuals	 that	 facilitates	 fault	

isolation.	

The	basic	idea	of	the	observer	approach	is	to	reconstruct	the	outputs	of	the	system	from	the	

measurements	 with	 the	 aid	 of	 observers	 using	 the	 estimation	 error	 as	 residual	 for	 the	

detection	of	the	fault.	

In	 terms	 of	 the	 residual	 characteristics,	 the	 various	 observer-based	 methods	 (e.g.	 eigen-

structure	 assignment,	 fault	 detection	 filters,	 and	 unknown	 input	 observers)	 give	 identical	

results	of	an	equivalent	Parity	relation	method:	this	method	compares	the	process	behaviour	

with	a	process	model	describing	nominal	(and	non-faulty)	behaviour.	The	key	idea	is	to	check	

the	consistency	(parity)	of	the	mathematical	equations	of	the	system	[83].	

Parity	 equations	method	 and	 state	 observers	 differ	 in	 filtering	 of	 a	 residual	 but	 they	 have	

similar	equations	and	 they	both	convert	 input-output	 transfer	 function	or	plant	state-space	

models	 to	 generate	 directional/structural	 residual	 vectors	 directly.	 In	 more,	 these	 two	

approaches	 do	 not	 consider	multiplicative	 faults	 or	model	 uncertainties	 and	 they	 are	 also	

limited	to	linear	time-invariant	systems.	

Furthermore	in	the	presence	of	disturbances	not	modelled	or	model	uncertainties,	 the	fault	

detection	 algorithm	would	 fail	 to	 generate	 a	 zero-mean	 residual	 in	 absence	 of	 faults.	 This	

error	is	usually	compensated	with	the	choice	of	a	higher	detection	threshold	but	obviously	it	

increases	the	detection	delays.	

The	Optimization-based	methods	provide	solutions	to	the	FDI	problems	with	improvement	of	

some	 mathematical	 objective	 functions:	 these	 methods	 are	 widely	 used	 for	 nonlinear	 and	

time-varying	systems	and	they	are	designed	to	minimize	the	sensitivities	of	the	residuals	to	

noise,	disturbance,	and	model	uncertainties.	Anyway	their	application	could	be	complex	and	

there	is	no	guarantee	about	the	usefulness	and	performance	of	solutions.	

Also	 Kalman	 filter-based	 methods	 are	 complex	 if	 compared	 to	 observer	 based	 or	 parity	

relation	 methods,	 particularly	 when	 the	 number	 of	 failure	 modes	 is	 high;	 however	 they	

provide	 optimal	 filtering	 under	 normal	 operating	 conditions	 (in	 absence	 of	 faults)	 and,	

thanks	 to	 the	 filter	 parallel	 structure,	 they	 provide	 accurate	 state	 estimation	 after	 a	 fault	

occurs.	

The	 multiple	 model	 approach	 could	 be	 extended	 to	 nonlinear	 or	 time-varying	 systems	 to	

detect	multiplicative	(or	component)	faults	as	well	as	additive	ones.	

The	main	drawback	of	this	approach	is	the	assumption	that	fault	parameters	have	a	discrete	

value	belonging	to	finite	set.		

In	case	of	fault	with	continuous	values,	few	fault	models	may	be	used	to	describe	it:	however	

this	method	is	higher	in	complexity	and	may	increase	false	alarm	rate	[84].	

The	 presence	 of	 both	 continuous	 state	 dynamics	 and	 discrete	 state	 dynamics	 in	 hybrid	

systems	introduces	additional	difficulty	and	complexity	to	the	FDI	problem	[fonte].	Residual	
assessment	can	be	considered	robust	in	many	FDI	methods	in	case	of	unknown	disturbance	

or	 system	uncertainties	but	 in	hybrid	 systems	 the	discrete	 state	 transitions	 generate	other	

uncertainties	that	can’t	be	ignored.	
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System	identification	methods	are	applicable	to	both	linear	and	non-linear	systems	and	they	

are	also	useful	to	detect	small	or	incipient	faults.	However,	the	efficiency	of	these	methods	is	

closely	related	to	the	statistical	decision	techniques	used	to	detect	the	change	in	parameters.	

In	 case	 the	 process	 parameters	 are	 partially	 not	 known	 or	 not	 known	 at	 all,	 they	 can	 be	

determined	with	Parameter	estimation	methods	by	measuring	the	input	and	output	signal	(it	

is	required	to	know	the	basic	model	structure).		

Faults	of	a	dynamical	system	are	reflected	in	physical	parameters	(friction,	mass,	resistance,	

capacitance,	 inductance	etc.).	The	 idea	of	 the	parameter	 identification	approach	 is	 to	detect	

the	faults	with	the	estimation	of	parameters	of	the	mathematical	model.	

In	many	industrial	processes	it	is	not	possible	to	use	conventional	modelling	approaches	due	

to	 the	 lack	 of	 knowledge	 of	 the	 system	 and	 also	 due	 to	 non-linear	 behaviour.	 In	 cases	 a	

mathematical	process	model	is	not	available,	a	non-linear	model	can	be	employed	to	generate	

residuals.	One	of	the	most	used	ways	to	build	a	non-linear	model	is	to	use	neural	networks:	

this	 procedure	 does	 not	 require	 specific	 knowledge	 of	 process	 structure.	 Neural	 networks	

can	serve	as	black-box	models	for	nonlinear	multivariable	static	and	dynamic	systems.	

Neural	 networks	 are	 based	 on	 many	 parameters	 but	 these	 parameters	 are	 generally	 not	

suitable	for	physical	interpretation	of	the	modelled	system:	after	process	modelling,	however,	

fault	detection	can	be	assessed	with	parity	equations.	

	

The	 choice	 of	 the	 fault	 detection	 method	 is	 an	 important	 step	 of	 the	 fault	 management	

strategy	 and	many	 factors	must	 be	 considered:	 type	 of	 failures,	 process	 structure,	 process	

dynamics,	available	process	signals,	process	complexity,	 available	amount	of	process	 input-

output	data	and	process	suitability	for	description	in	terms	of	rules	[65-70].		

The	 simplest	 approach	 is	 the	 direct	 check	 of	 variable	 thresholds,	 whereas	 large	 scale	

processes	such	as	can	benefit	 from	multivariate	statistical	analysis,	 in	particular	PCA.	Some	

processes	 generate	 periodic	 or	 stochastic	 signals	 that	 can	 be	 used	 for	 fault	 detection	 if	

changes	in	signal	models	are	caused	by	process	faults.	

Pattern	 recognition	 methods	 (e.g.	 neural	 nets)	 can	 be	 use	 when	 large	 amount	 of	 process	

input-output	data	 can	be	obtained,	but	process	 structure	 is	unknown	or	 too	 complex	 to	be	

modelled.		

Process	 model-based	 fault	 detection	 includes	 process	 dynamics	 and	 non-measurable	 state	

variables,	and	it	 is	easy	to	use	in	well-defined	processes	(e.g.	electrical	and	mechanical)	but	

requires	accurate	model.	

In	case	basic	relationship	between	faults	and	symptoms	is	known,	knowledge	based	methods	

is	probably	the	best	choice	[83-84].	

	

	

5.2.4.4. Fault	Isolation	
	
The	isolation	of	faults	is	based	on	the	one-to-one	correspondence	between	process	deviation	

and	fault	cause:	each	residual	should	be	sensitive	to	faults	and	distinguish	between	different	

types	of	faults.		
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There	 are	 two	 methods	 to	 generate	 residuals	 oriented	 to	 fault	 isolation,	 directional	 and	

structured	residuals.	

Directional	 residual	 approach	 is	 based	 on	 generation	 of	 residual	 vectors	 being	 part	 of	 the	

residual	subspace:	each	vector	has	a	specified	direction	that	corresponds	to	a	specified	type	

of	fault.	This	way	fault	isolation	concerns	determining	the	direction	of	the	residual	vector.		

Structured	 residuals,	 instead,	 are	 sensitive	 to	 a	 single	 fault	 (or	 selective	 set	 of	 faults)	 and	

completely	 insensitive	 to	 the	 rest:	 these	 residuals	 are	 usually	 associated	 to	 incidence	

matrixes	 in	which	 the	 row	 corresponds	 to	 residuals	 and	 column	 to	 faults	 (value	 “1”	 in	 the	

matrix	represents	the	correspondence	between	a	residual	and	a	fault).	In	order	to	guarantee	

fault	isolation,	all	columns	must	be	different.	

	

	

5.2.4.5. Decision-Making	
	

The	 following	 step	 after	 residual	 assessment	 is	 to	 determine	 if	 a	 fault	 is	 occurred	 and	 its	

corresponding	 location	 and	 type;	 this	 decision	 is	 usually	 taken	 on	 statistical	 tests	 of	 the	

residuals.	

The	simplest	procedure	to	detect	a	fault	is	to	monitor	if	the	instantaneous	value	of	a	residual	

vector	exceeds	a	fixed	threshold.		

Sometime	stochastic	 system	models	are	used	and	 the	residuals	generated	are	associated	 to	

probability	 distributions:	 this	way	 it	 is	 possible	 to	 design	 decision	 tests	 based	 on	 adaptive	

thresholds.		

More	 robust	 decision	 procedures	 use	 the	 history	 and	 trend	 of	 the	 residuals,	 and	 utilize	

powerful	or	optimal	statistical	test	techniques.	

	

	

5.2.4.6. Reconfiguration	
	

The	 final	 step	 is	 reconfiguration	 that	 involves	 the	change	of	 the	controller/equipment	after	

fault	occurrence	and	detection	in	order	to	ensure	safe	or	satisfactory	operation	of	the	system.	

There	 are	 different	 methods	 of	 reconfiguration	 such	 as	 those	 based	 on	 online	 learning	 or	

system	identification.		

The	most	important	reconfiguration	methods	based	on	FDI	are	multiple	model	approach	and	

adaptive	control	approach.	

In	the	multiple-model	approach,	“n”	parallel	models	are	used	to	describe	the	system	during	

normal	operation	and	under	different	fault	conditions.		

Each	model	is	associated	to	a	corresponding	controller;	a	switching	mechanism	is	designed	to	

determine	the	mode	of	the	system	and	select	the	corresponding	controller	designed	for	that	

mode.		

This	results	in	robust	and	improved	performance	under	various	operating	conditions.	

The	second	approach	uses	an	adaptive	control	to	ensure	robust	or	acceptable	performance	in	

case	of	fault	and	it	is	classified	into	two	methods:	the	indirect	adaptive	control	method	(based	
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on	 a	 parameter	 isolation	 process)	 and	 the	 direct	 adaptive	 control	 method	 (where	 explicit	

parameter	isolation	is	not	required).	

	

	

5.2.4.7. Discussion	And	Remarks	
	

Fault	 Detection,	 Isolation	 and	 Reconfiguration	 is	 a	 procedure	 to	 ensure	 the	 desired	

performance	of	a	dynamic	system	both	in	the	absence	and	presence	of	faults.	

The	previous	paragraphs	show	the	procedures	and	approaches	for	each	step	of	FDIR	process	

that	are	different	in	terms	of	performance,	complexity,	residual	assessment	and	robustness.	

The	performance	of	fault	detection	procedures	is	a	trade-off	between	the	false	alarm	rate	and	

the	mean	detection	delay.	

Fault	 isolation,	 instead,	 depends	 on	 the	 structural	 and	 directional	 characteristics	 of	 the	

residuals.		

The	 robustness	 concerns	 the	 algorithm	 sensitivity	 to	 noise,	 disturbances,	 and	 model	

uncertainties.	

	
	

5.3 System	and	Process	Diagnostics:	Condition	Monitoring	
	
Condition	monitoring	(CM)	is	the	process	of	monitoring	one	or	more	condition	parameters	in	

machinery	 to	 identify	 some	 changes	 that	 are	 indicative	 of	 an	 incipient	 fault	 or	 equipment	

health	degradation	[70-71].			

In	 the	 past,	 condition	 monitoring	 was	 applied	 simply	 through	 routine	 manual	 diagnostic	

actions	 but,	with	 the	 introduction	 of	 low	 cost	 sensors	 and	 automated	monitoring	 systems,	

online	condition	monitoring	was	adopted.		

Condition	monitoring	systems	select	and	survey	parameters	 from	the	sensors	placed	 in	 the	

system	in	order	to	detect	a	change	in	the	health	machine	condition.		

This	 technique	 is	a	major	component	of	predictive	maintenance:	 the	use	of	CM	provides	all	

the	 information	 to	 schedule	 maintenance	 activities	 and	 prevent	 failures.	 Cost	 reduction	 is	

guaranteed	due	to	maximum	uptime	and	optimal	production	efficiency.	

The	 added	 values	 of	 online	 condition	 monitoring	 rather	 than	 offline	 and	 manual	 data	

collection	are	listed	below:	

• Workforce	optimization:	manual	diagnostics	requires	time	and	resource	allocation	to	

analyse	collected	data	and	assess	required	maintenance	targets.	

• Increase	 data	 storage:	 online	monitoring	 guarantees	 continuous	measurements	 for	

any	 piece	 of	machinery,	 avoids	mistakes	 in	 the	 registration	 of	 values	 and	 creates	 a	

trustworthy	database.	

• Improved	 diagnostics:	 more	 accuracy	 in	 failure	 prediction	 is	 achievable	 thanks	 to	

unique	database	for	historical	trend	and	baseline	data.	
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Condition	monitoring	consists	of	data	collection,	signal	processing	and	analysis;	 these	steps	

are	necessary	to	provide	a	complete	overview	of	machine	health	and	predict	remaining	useful	

life	(RUL)	of	each	component.		

Condition	 monitoring	 techniques	 are	 widely	 used	 on	 rotating	 equipment	 and	 other	

machinery	(e.g.	pumps,	electric	motors,	engines);	the	most	popular	methods	used	in	modern	

industries	are	vibration	analysis,	oil	analysis,	thermal	analysis	and	ultrasound	analysis	[71].		

	
	

5.3.1. Limit	Alarm	Trip	
	

A	 limit	 alarm	 trip	 is	 one	 of	 the	 simplest	 and	 most	 important	 applications	 of	 condition	

monitoring	 in	 industrial	 systems:	 process	 limit	 alarm	 monitors	 the	 signals	 provided	 by	

temperature,	pressure,	 level	or	flow	sensors	and	compares	it	against	a	pre-set	 limit.	 In	case	

the	process	 signal	goes	 to	an	undesirable	high	or	 low	condition,	 the	 limit	 alarm	activates	a	

relay	output	to	warn	of	trouble,	provide	on/off	control	or	command	an	emergency	shutdown.	

Limit	alarm	trip	allows	process	monitoring	in	points	of	the	system	that	are	considered	critical	

for	both	control	and	safety	purposes.	

There	are	two	types	of	alarm:	

• Hard	alarm:	it	is	an	independent	limit	alarm	trip	hard-wired	into	the	process	and	it	is	

usually	founded	on	relay	output;	

• Soft	 alarm:	 it	 is	 a	 software-implemented	 alarm	 based	 on	 DCS	 (distributed	 control	

systems)	or	PLC	(programmable	logic	controllers).	

	

In	many	applications	alarm	functions	are	performed	by	“soft”	practices,	anyway		“hard”	ones	

are	widely	used	 to	 implement	 low-cost	 redundancy,	 simple	 control	 and	backup	of	DCS	and	

PLC	strategies	in	critical	emergency	shutdown	and	Safety	Related	Systems	[71-72].	

Soft	 alarms,	 in	 fact,	 are	 susceptible	 to	 common-mode	 failures	 while	 hard	 alarms	 are	 not	

exposed	since	they	are	independent	from	the	DCS	or	PLC.	

Furthermore	 hard	 alarms	 provide	 continuous	 supervision	 of	 the	 individual	 monitored	

process	while	soft	practices	performs	intermittent	scanning.	

Limit	 alarm	 trip	 can	provide	many	different	 actions	 from	a	 simple	 annunciation	of	process	

unexpected	behaviour	to	a	system	emergency	shutdown.	

The	alarm	trip	receives	input	signals	from	monitoring	or	control	instrument	and,	in	case	the	

monitored	process	variable	moves	outside	 the	 set-point,	 the	alarm	 trip	 command	a	pre-set	

action.	There	are	two	thresholds,	high	and	low,	associated	to	the	pre-set	high	and	low	alarm	

points.		

Usually	 the	 alarm	 condition	 is	maintained	 until	 the	 process	 signal	moves	 back	 to	 “normal	

running”	 values	 and	 passes	 out	 the	 dead-band	 (it	 is	 the	 measurement	 range	 to	 reset	 the	

device	and	restore	the	“non-alarm”	state).	There	are	two	thresholds,	high	and	low,	associated	

to	the	pre-set	high	and	low	alarm	points.		

A	 limit	 alarm	 trip	 can	 have	 one,	 two	 or	 even	 four	 relay	 outputs:	 usually	 each	 relay	 output	

corresponds	to	a	dedicated	trip	point	[72].	
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Fig.	5.	Input	signal	vs.	Time		

	

	

5.4 Local	Diagnostics	
	
Many	devices	used	in	manufacturing	applications	e.g.	Oil&Gas	are	a	two	wire	4-20mA	sensor	

assembly	made	of	 one	or	more	 sensing	device	 (i.e.	 thermocouples	 or	RTDs	 in	 temperature	

instruments)	and	one	dedicated	transmitter	to	communicate	with	system	control	panel.	

The	 outcome	 of	 a	 field	 sensor	 can	 vary	 in	 response	 of	 changes	 in	 the	monitored	 physical	

quantity	or	in	case	of	failure.		

Diagnostics	clearly	play	an	essential	role	to	distinguish	between	these	two	conditions.	

	

	

5.4.1. On-board	Diagnostics	
	

If	the	sensor	is	provided	with	a	dedicated	on-board	circuit,	the	device	itself	communicates	its	

health	 status	 to	 the	 control	 logic	 using	 out-of-range	 outputs	 or	 dedicated	 communication	

channels.		

There	 are	 two	 main	 communication	 protocols:	 Highway	 Addressable	 Remote	 Transducer	
(HART®)	and	Foundation™	Fieldbus	(FF).	
HART	and	FF	both	bring	significant	benefits	to	process	industry	using	intelligent	field	devices	

with	 the	 difference	 that	 HART	 is	 a	 hybrid	 protocol	 fully	 compatible	 with	 4–20	mA	wiring	

while	FOUNDATION	fieldbus	is	a	distributed	control	system	based	on	a	multi-drop	bus.	The	

focus	 of	HART	protocol	 is	 to	 bring	 digital	 information	maintaining	 compatibility	with	 4-20	
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mA	 signal;	 on	 the	 other	 hand,	 the	 focus	 of	 Foundation	 fieldbus	 is	 to	 bring	 the	 control	

architecture	to	the	bus	and	bring	down	the	control	to	device	level	[73-74].	

The	 resulting	 protocols	 have	 different	 layout	 and	 capabilities	 that	 are	 described	 in	 the	

following	paragraphs.	

	

	

5.4.1.1. Highway	Addressable	Remote	Transducer	(HART)	
	

HART	 is	 a	master-slave	 communication	 protocol	 so	 each	 slave	 device	 (or	 field	 instrument	

such	 as	 transmitters,	 actuators,	 and	 controllers)	 during	 normal	 operation	 is	 initiated	 by	 a	

master	 device	 (e.g.	 distributed	 control	 system,	 programmable	 logic	 controller,	 personal	

computer).		

This	 communication	 protocol	 is	 widely	 used	 in	 Oil&Gas	 applications	 because	 can	

communicate	 over	 legacy	 4-20mA	 analog	 instrumentation	wiring	 sharing	 the	 pair	 of	wires	

used	by	the	standard	system.		

For	this	reason	HART	is	considered	a	“smart”	protocol	since	it	doesn’t	require	any	change	in	

the	wiring	and	can	be	implemented	in	a	pre-existing	system.		

HART	Protocol	 indeed	makes	use	of	 the	Bell	202	Frequency	Shift	Keying	 (FSK)	standard	 to	

superimpose	digital	communication	signals	(containing	additional	device	information	such	as	

device	 status	 and	 diagnostics)	 on	 top	 of	 the	 4-20mA	 (containing	 the	 primary	 measured	

value);	as	the	digital	FSK	signal	is	phase	continuous,	there	is	no	interference	with	the	4-20mA	

signal.	 Together,	 the	 two	 communication	 channels	 provide	 a	 low-cost	 and	 robust	 solution	

that	is	easy	to	use	and	implement.	

HART	 devices	 can	 operate	 in	 two	 network	 configurations,	 point-to-point	 or	multi-drop.	 In	

point-to-point	mode,	the	analog	4–20	mA	signal	is	used	to	communicate	one	process	variable	

and	 the	 additional	 info	 (e.g.	 process	 variables,	 configuration	 parameters,	 device	 data)	 are	

transferred	 digitally	 using	 the	 HART	 protocol.	 These	 secondary	 variables	 can	 be	 used	 for	

operations,	commissioning,	maintenance,	and	diagnostic	purposes.	

The	 multi-drop	 modality,	 instead,	 requires	 only	 a	 single	 pair	 of	 wires	 and,	 in	 some	

applications,	 safety	barriers	 and	auxiliary	power	 supply;	 all	 process	values	 are	 transmitted	

digitally.	Multi-drop	connection	is	usually	used	for	supervisory	control	installations	that	are	

widely	spaced	[73-76].	

The	benefits	of	HART	protocol	are	listed	below:	

• Backward	compatibility:	HART	implementation	is	compatible	with	the	installed	base	

of	instrumentation	in	use	in	the	pre-existing	system	so	it	doesn’t	require	any	change	

in	the	wiring.	

• Improved	plant	operations:	HART	protocol	improves	plant	performance	and	provides	

savings	in	commissioning	and	installation	(in	particular	for	wiring).	

• Improvement	 of	 plant	 operation	 quality:	 HART	 protocol	 provides	 access	 to	 all	

information	 in	multi-variable	devices	which	can	be	used	 for	verification	and	control	

of	the	whole	plant.	
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• Maintenance:	 cost-saving	 can	be	assessed	also	by	 reducing	downtime;	 in	 fact	HART	

diagnostic	 guarantees	 to	 minimize	 the	 time	 required	 to	 identify	 failures	 and	 take	

corrective	action.	

	

	

5.4.1.2. Foundation	Fieldbus	(FF)	
	

FOUNDATION	Fieldbus	 is	a	digital,	bi-directional	and	multi-drop	Local	Area	Network	(LAN)	

for	 process	 control	 sensors,	 actuators,	 and	 control	 devices;	 furthermore	 it	 is	 an	 open	

standard	that	allows	the	field	devices	to	run	both	input/output	and	control.	This	is	one	of	the	

main	 differences	 with	 PROFIBUS	 and	 HART	 protocols	 that	 do	 not	 implement	 control	 and	

require	 a	 separate	 controller:	 field	 devices	 take	 input	 measurements	 and	 send	 the	

information	 to	 a	 control	 unit	 for	 processing.	 In	 case	 of	 failure	 of	 the	 control	 device,	 field	

devices	go	 into	 some	pre-defined	 fail-safe	mode,	 leaving	actuators	 (e.g.	pumps,	valves,	 etc.)	

without	any	interactive	control	until	logic	solver	restores	[77].		

With	FF	control	is	brought	down	to	the	device	level	so	many	operations	can	be	assessed	even	

if	 the	 monitoring	 computer	 is	 disconnected;	 furthermore,	 field	 device	 operations	 such	 as	

calibration	 and	 testing	 can	 be	 done	 directly	 from	 the	 control	 room	 without	 manual	

operations.	

The	benefits	of	FOUNDATION	fieldbus	are	listed	below:	

• Distributed	 control:	 the	 control	 unit	 computer	 does	 not	 do	 it	 but	 it	 is	 assessed	 at	

device	level.		

• Open	 standard:	 customers	 can	 choose	 interchangeably	 products	 from	 different	

vendors.		

• The	Fieldbus	Foundation	standardized	 the	way	 the	user	can	bring	new	devices	 into	

the	network,	set	and	configure	them.		

• The	 building	 block	 in	 this	 system	 is	 the	 Device	 Description	 (DD)	 which	 tells	

everything	about	the	device	and	its	functionality	

• Wiring	and	controller	cost	reduction:	with	FF	users	need	only	one	twisted	wire	pair	

that	will	carry	multiple	signals	and	power,	and	they	can	drop	devices	off	the	network	

at	any	point.	4-20	mA	systems	require	one	pair	of	wires	per	device	while	FF	requires	

only	a	single	set	of	wires	to	connect	multiple	devices.	
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Fig.	6.	Wiring	comparison	of	FOUNDATION	Fieldbus	and	4-20mA	

	

	

5.4.1.3. HART	vs.	FF	
	

HART	 and	 FF	 are	 good	 protocols	 for	 configuration,	 calibration,	 diagnostics,	 and	 viewing	

internal	variables.	Furthermore	FF	is	used	for	real-time	closed	loop	control.	This	is	the	major	

difference	between	these	two	protocols	(in	HART	applications,	control	system	must	use	4-20	

mA	for	closed	loop	real-time	control).	

FF	is	completely	digital	end-to-end,	from	sensor	to	actuator	and	it	has	several	benefits	over	

loops	using	hardwired	4-20	mA	and	on/off	signals.		

Other	pros	of	FF	comparing	with	HART	are	the	following:		

• Balanced	(non-grounded)	signal	with	high	amplitude	for	noise	immunity;	

• Multiple	devices	 on	 the	 same	pair	 of	wires	 reducing	 cable,	 tray,	 junction	boxes	 and	

associated	manpower;	

• Reduction	of	I/O	cards	reducing	system	footprint	and	weight;	

• Elimination	 of	 I/O	 card	 selection,	 safety	 barrier	 selection	 and	 signal	 marshalling	

simplifying	engineering;	

• Easy	addition	of	devices	and	signals	in	devices;	

• Time	synchronized	control	and	fast	control	response	period.	

These	points	are	really	FF	advantages	over	4-20	mA	and	on/off	signals.	

Anyway	a	plant	using	4-20	mA	with	HART	 is	 far	better	 than	a	plant	using	only	4-20	mA	or	

other	proprietary	smart	protocols	[74-77].		

	

	

5.4.2. Logic	Solver	Diagnostics	
	

In	case	field	sensors	are	not	equipped	with	on-board	diagnostics	or	HART	protocol	is	not	put	

into	 practice,	 condition	monitoring	 is	 submitted	 to	 the	 logic	 solver	 that	 analyses	measure	

trends	 or	 compares	 different	 data	 coming	 from	 multiple	 devices	 (in	 case	 of	 redundant	

architectures).	

If	the	process	signal	moves	to	an	undesirable	high	or	low	condition,	the	logic	solver	performs	

the	safety	loop	e.g.	warning	relay	output	activation,	on/off	control	or	emergency	shutdown.	
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Usually	 the	control	 implementation	 is	associated	 to	different	 thresholds	 that	are	upper	and	

lower	 limits	 of	 the	 physical	 quantity	 under	 analysis.	 During	 normal	 operation	 these	

thresholds	 are	 used	 to	 define	 the	 operative	 range;	 in	 case	 the	measurement	 crosses	 those	

values,	the	control	panel	triggers	the	loop	following	the	implemented	logic.		

Temperature,	pressure,	level	and	flow	monitoring	in	Oil&Gas	application	is	usually	achieved	

with	a	 four	 threshold	strategy,	 shown	 in	Fig.	7:	 “H,	high”,	 “HH,	high-high”,	 “L,	 low”	and	“LL,	

low-low”.		

“H”	and	“L”	 threshold-crossing	usually	 leads	 to	a	visual	alarm	on	the	control	panel	 to	make	

the	operator	aware	of	the	problem;	“HH”	and	“LL”	values,	instead,	are	associated	with	more	

dangerous	 conditions.	 They	 lead	 to	 a	 progressive	 load	 reduction	 and	 gradual	 system	

shutdown	 or,	 in	 case	 of	 extremely	 critical	 loop,	 to	 an	 emergency	 shutdown	 that	 instantly	

stops	the	machine	(this	kind	of	event	is	always	associated	to	a	concrete	risk	for	environment	

and	health	and	safety	of	operators).	

	

	

	
	

Fig.	7.	Output	range	and	safety	thresholds	for	4-20mA	analog	sensor	

	

Field	 sensors	 can	be	 affected	by	different	 type	of	 failures	 that	 underline	 the	 importance	 of	

diagnostics	to	detect	failures	and	guarantee	safe	system	operation	[78-80].		

The	most	common	failure	modes	of	field	sensors	are	described	as	follows:		

• Out	of	calibration:	field	sensors	must	be	calibrated	against	a	known	standard	but	only	

short-term	 stability	 is	 checked	 during	 calibration;	 long-term	 stability	 should	 be	

monitored	and	determined	by	the	user.	This	kind	of	failure	can	be	observed	instantly	

after	installation	(faulty	assembly)	or	during	device	operation.	

• Out	of	range:	sensor	failure	is	usually	detected	by	performing	a	range	check	of	device	

outcomes:	all	 incoming	values	are	checked	against	a	given	range	by	the	 logic	solver.	
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Sensor	values	that	are	outside	that	range	are	assumed	to	be	incorrect	and	the	device	

is	considered	out	of	order.	High,	low	and	no	output	fall	into	this	category.	

• Stack	in-range:	sensors	are	usually	designed	to	fail	out	of	range	and	this	failure	mode	

is	 quite	 rare	 but	 anyway	 cannot	 be	 ignored.	 When	 stack	 in-range	 occurs,	 sensor	

outcome	 is	 fixed	 inside	 the	 standard	 range	of	 operation;	 for	 this	 reason	 this	 failure	

mode	is	undetectable	by	the	control	logic	without	a	dedicated	on-board	diagnostic.	

• Drift:	 signal	drift	 follows	a	gradual	and	 incremental	 trend	 towards	 the	upper/lower	

limit	 of	 operative	 range;	 for	 this	 reason	drift	 failures	 are	 critical	 since	 control	 logic	

cannot	 be	 aware	 of	 failure	 occurrence	 until	 device	 output	 goes	 out	 of	 range	 (in	

absence	of	on-board	diagnostics).	Drift	can	occur	very	slowly	and	that	period	of	time	

is	 rather	 critical	 because	 control	 logic	 is	 using	 wrong	 values	 coming	 from	 a	 faulty	

sensor.		

	

Out	of	calibration	and	stack	in-range	are	detectable	only	in	presence	of	on-board	diagnostics	

since	 the	 logic	 solver	by	 itself	 only	 compares	 sensor	outcomes	with	predefined	 thresholds.	

Anyway	out-of-range	and	drift	are	the	most	common	failure	modes	of	field	sensors	[81-83].	

In	 the	 following	 paragraphs	 two	 applications	 of	 logic	 solver	 diagnostics	 are	 shown:	 single	

item	 (Pressure	 Indicator	 Transmitter)	 and	 safety	 loop	 consisting	 of	 sensors	 in	 redundant	

architecture	(2oo3	Temperature	Indicator	Transmitter),	logic	solver	and	actuators.		

		

	

5.5 Case	study	1:	Pressure	Indicator	Transmitter	
	
Rosemount	developed	an	Advanced	Diagnostics	Suite	for	Pressure	Indicator	Transmitter	

3051S:	this	device	has	two	distinct	diagnostic	functions,	Statistical	Process	Monitoring	(SPM)	
and	Plugged	Impulse	Line	Detection	(PIL).	
	

	
	

Fig.	8.	Advanced	Diagnostic	block	diagram	

	

Statistical	 Process	 Monitoring	 (SPM)	 is	 used	 to	 detect	 changes	 in	 processes,	 in	 process	

equipment	or	installation	conditions	of	the	device:	this	technology	is	based	on	modelling	the	

process	noise	signature	using	statistical	values	such	as	mean	and	standard	deviation.		
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The	key	assumption	required	for	this	method	is	the	following:	all	dynamic	processes	have	a	

unique	 noise	 signature	 during	 normal	 conditions	 so	 any	 change	 in	 these	 signals	 is	

symptomatic	of	a	significant	change	in	the	process.	

The	baseline	corresponds	to	the	values	assumed	by	the	statistical	parameters	during	normal	

operation	 (normal	 running)	and	 these	values	are	 compared	 to	 current	values	over	 time;	 in	

case	a	significant	change	is	detected,	the	transmitter	can	generate	an	alert.	

Statistical	Process	Monitoring	perform	this	statistical	processing	on	either	the	primary	value	

of	the	field	device	(e.g.	pressure	measurement)	or	any	other	process	variable	available	(up	to	

four	variables	simultaneously	with	SPM1-SPM4).	
For	Rosemount	3051S	Pressure	Indicator	Transmitter,	 the	statistical	parameters	monitored	

to	detect	any	process	variation	are	mean	and	standard	deviation	of	the	input	pressure.	Fig.	9		

shows	how	 the	 standard	deviation	value	 (σ)	 is	 affected	by	 changes	 in	noise	 level	while	 the	

mean	or	average	value	(μ)	remains	constant.		

	

	
Fig.	9.	Input	pressure	with	noise	level	changes,	standard	deviation	and	mean	values	vs.	time	

	

Statistical	 Process	Monitoring	devices	 are	 equipped	with	 a	 learning	module	 and	 a	 decision	

module.	The	 first	one	 fixes	 the	process	baseline	values	 for	 comparison,	baselines	are	 set	 in	

normal	running	conditions	under	user	control	and	are	made	available	to	the	secondo	module	

that	compares	them	with	current	values	of	the	mean	and	standard	deviation.		

The	 statistical	 parameters	 can	 be	 provided	 to	 the	 user	 in	 two	 ways,	 with	 communication	

protocols	or	internal	software.	

Foundation	 fieldbus	communication	protocol	can	be	used	 to	 transfer	statistical	 information	

to	 the	 control	 room	 and,	 once	 available,	 these	 data	 are	 used	 to	 detect	 a	 change	 in	 process	

conditions	[65].	



	 	
	 	 	

119	

Otherwise,	 the	device	may	be	equipped	with	 internal	software	used	to	baseline	the	process	

noise	or	signature	via	a	learning	process.	Once	the	learning	process	is	completed,	the	device	

itself	can	detect	significant	changes	in	the	noise	or	variation,	and	produce	an	alarm.	

The	device	has	three	states:	learning,	verifying	and	monitoring	[81-83].		

During	 learning	 period,	 the	 baseline	 mean	 and	 standard	 deviation	 are	 calculated	 over	 a	

period	of	time	controlled	by	the	user	(default	is	15	minutes).		

Afterwards,	a	second	set	of	values	is	calculated	and	compared	to	the	original	set	to	validate	

the	 stability	 and	 repeatability	 of	 the	process:	 if	 also	 this	 stage	 is	 completed	 (the	process	 is	

stable),	the	monitoring	status	can	be	activated.	

During	 monitoring,	 new	 mean	 and	 standard	 deviation	 values	 are	 continuously	 calculated,	

with	new	values	available	every	few	seconds.		

Both	 the	mean	 value	 and	 standard	 deviation	 are	 compared	with	 baseline	 standards:	 if	 the	

difference	 exceeds	 the	 established	 threshold,	 likely	 a	 failure	 occurred	 and	 an	 alert	 is	

generated.	

	

	
	

Fig.	10.	Input	pressure	trend	and	alert	thresholds	
	
Plugged	Impulse	Line	(PIL)	is	the	second	algorithm	implemented	in	the	Rosemount	Advanced	

Diagnostics	Suite:	PIL	diagnostics	can	detect	the	presence	of	a	plug	in	pressure	measurement	

impulse	 lines	which	are	small	diameter	pipes	used	to	transmit	the	pressure	signal	 from	the	

process	to	the	transmitter.	Pressure	transmitters	are	rarely	connected	directly	to	the	pipe	or	

vessel	and,	 in	some	applications,	 these	 lines	can	become	plugged	with	solids	or	 frozen	fluid	

blocking	the	pressure	signals	[65].		

Without	a	dedicated	diagnostics,	the	user	can’t	become	aware	that	the	blockage	has	occurred;	

this	 event	 is	 rather	 critical	 because	 the	 transmitter	 may	 provide	 wrong	 values	 to	 control	

logic.	

This	problem	is	solved	with	PIL	diagnostics	that	produces	an	alarm	after	plugging	detection;	

furthermore	PIL	automatically	relearn	new	baseline	values	if	the	process	condition	changes.		

Since	the	plug	effectively	disconnects	the	transmitter	from	the	process,	 it	changes	the	noise	

pattern	received	by	the	transmitter.		

Both	 pressure	 and	 differential	 pressure	 signals	 usually	 show	 fluctuations	 or	 noise:	

fluctuations	are	produced	by	the	fluid	and	they	are	a	connected	to	system	layout	and	physical	
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features.	Noise	may	be	produced	by	pump	section	or	control	system	however	it	is	generally	

little	compared	to	average	pressure	value.		

The	noise	 signature	monitoring	 is	 the	key	 to	 recognize	 system	changes	and	 it	 is	one	of	 the	

best	way	to	assess	plugged	 impulse	 line	detection	since	 it	 isn’t	affected	by	small	changes	of	

the	average	pressure	value.	

When	impulse	lines	start	to	plug,	noise	signatures	in	both	time	and	frequency	domain	start	to	

take	 distance	 from	 normal	 running	 conditions:	 the	 transmitter	 may	 not	 receive	 the	 noise	

signal	 anymore	 or	 the	 noise	 may	 decrease	 significantly	 while	 the	 average	 pressure	 value	

remains	 the	same.	This	 is	 true	also	 for	differential	pressure	devices	 that	are	equipped	with	

two	impulse	lines	placed	at	high	and	low	pressure	sides	of	the	equipment-under-test;	in	this	

case	the	noise	signature	decreases	when	both	impulse	lines	start	plugging.	

During	 normal	 operations	 both	 lines	 are	 open	 and	 the	 sensor	 calculate	 the	 difference	

between	high	and	low-pressure	measurements.	

When	a	plug	occurs	 in	one	of	 the	 lines,	 there	 is	no	more	 common	mode	cancellation	and	a	

corresponding	 noise	 increase	 in	 the	 differential	 signal.	

PIL	diagnostics	calculate	the	mean	and	the	standard	deviation	of	the	pressure	measurement	

and,	in	case	standard	deviation	exceeds	the	established	threshold,	an	alert	is	generated.	

An	 important	 requirement	 for	 the	 process	 under	 analysis	 is	 its	 stability:	 a	 trustworthy	

baseline	is	necessary	to	compare	the	process	trend	and	recognize	the	presence	of	a	plug.	An	

unstable	 process	 is	 a	 poor	 candidate	 to	 assess	 Plugged	 Impulse	 Line	 diagnostics	 and	may	

produce	frequent	re-learning	procedures	and	false	trips.	

The	 length	 of	 the	 impulse	 line	 is	 another	 important	 feature:	 a	 long	 line	 can	 generate	

additional	noise	signals	(due	to	resonances)	overlapping	on	process	noise.	This	way,	in	case	

of	plug,	the	transmitter	does	not	detect	a	significant	change	in	noise	level	and	the	dangerous	

condition	is	undetectable	[81-83].	

	

	
5.6 Case	Study	2:	Safety	Loop	
	
Logic	 solver	diagnostics	may	be	 involved	 in	safety	applications:	 in	 this	 study	we’ll	 focus	on	

diagnostic	 procedures	 of	 2oo3	 TIT	 architecture	 that	 is	 a	 sensor	 assembly	 dedicated	 to	

thermal	analysis.	 It	plays	 the	role	of	 sensing	stage	of	a	Safety	 Instrumented	System	(SIS),	a	

particular	 control	 system	 capable	 to	 take	 the	 process	 to	 a	 safe	 state	 when	 hazardous	

condition	are	detected.	

Safety	 Instrumented	 Systems	 (Fig.	 11)	 are	 typically	 constituted	 by	 a	 combination	 of	 three	

fundamental	blocks	[28]:		

• Sensor(s)	detects	a	physical	quantity	and	provides	a	corresponding	electrical	output.		

Field	sensors	are	used	to	collect	information	and	determine	an	incipient	danger;	these	

sensors	evaluate	process	parameters	(e.g.	temperature,	pressure,	flow,	etc.)	 in	order	

to	determine	 if	 single	equipment	or	 the	whole	process	or	plant	 is	working	properly	

and	it	is	in	a	safe	state.	Such	sensors	do	not	monitor	the	normal	process	but	they	are	

usually	dedicated	to	SIS.	
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• Logic	solver(s)	receives	 the	 information	collected	by	 the	sensor	and	elaborates	 it	 to	

take	the	best	response.	It	 is	typically	a	controller	that	takes	actions	according	to	the	

defined	logic	in	order	to	prevent	hazardous	conditions.	

• Final	element(s)	implements	the	outcomes	of	the	logic	solver.	This	actuator	is	the	last	

element	of	the	loop	and	in	many	industrial	applications	is	represented	by	a	pneumatic	

valve.	

	

The	 aim	 of	 SIS	 is	 to	 implement	 one	 or	 more	 Safety	 Instrumented	 Functions	 (SIF):	 these	

functions	 control	 critical	 processes	 and	 avoid	 unacceptable	 or	 dangerous	 conditions	 for	

health	and	environment.	Each	SIF	is	associated	with	a	safety	loop	that	is	the	process	involving	

all	the	three	stages	described	above	(sensor,	logic	solver	and	final	element)	in	order	to	detect	

a	failure,	elaborate	the	collected	data	and	perform	the	corrective	action	[28].	

	

	
	

Fig.	11.	SIS	–	Safety	Instrumented	System	

	

	

5.6.1. Safety	Loop	Operation	
	

The	loop	activation	is	usually	associated	with	two	processes,	low	and	high	trip	corresponding	

to	lower	and	upper	threshold	monitoring:	

• Low	trip	level:	the	risk	is	associated	to	measurements	below	a	predefined	value	and,	

in	case	the	sensor	output	crosses	this	threshold,	the	safety	function	is	activated.	The	

best	 sensor	 for	 this	 kind	of	 application	 is	 a	 “fail	 low”	device	 that,	 in	 case	 of	 failure,	

goes	to	the	predefined	fail-safe	state	and	produces	a	current	<	3.6mA	to	activate	the	

safety	loop	(supposing	a	standard	4-20mA	analog	instrumentation).		

• High	 trip	 level:	 the	 risk	 is	 associated	 to	measurements	 above	 the	 threshold	 and,	 in	

case	 the	 sensor	 output	 crosses	 it,	 the	 safety	 function	 is	 activated.	 For	 this	 kind	 of	

application	 “fail	 high”	 sensors	 are	 required	 since,	 when	 a	 failure	 arises,	 the	 device	

goes	to	the	predefined	fail-safe	state	and	produces	a	current	>	21.5mA	(supposing	a	

standard	4-20mA	analog	instrumentation).	

The	logic	solver	is	the	second	stage	of	the	safety	loop	and	its	detection	strategy	can	influence	

the	effectiveness	of	the	safety	function.		

Table	I	shows	the	under-range	and	over-range	detection	capability	of	the	logic	solver,	where	

“λlow”	is	the	failure	rate	of	a	fail-low	device	(in	case	of	failure	it	goes	to	the	predefined	fail-safe	
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state	producing	a	current	<	3.6mA)	while	“λhigh”	is	the	failure	rate	of	a	fail-high	device	(in	this	

case	the	fail-safe	state	generates	a	current	>	21.5mA).		

The	 other	 failure	 rates	 (λSD,	 λSU,	 λDD,	 λDU)	 are	 distinguished	 by	 failure	 consequences	 and	

detection	likelihood	in	according	to	IEC	61508	where	the	first	subscript	letter	is	referred	to	

safe/dangerous	failure,	the	second	letter	concern	detection:	

• Safe	(S):	a	safe	failure	is	a	failure	that	causes	the	system	to	go	to	the	defined	fail-safe	

state	without	a	demand	from	the	process	so	it	does	not	compromise	the	system	safety	

integrity	(e.g.	a	failure	leading	to	a	safe	shut-down).	This	kind	of	failures	impact	only	

availability	and	productivity,	not	safety.	

• Dangerous	 (D):	 a	 dangerous	 failure	 is	 a	 failure	 leading	 to	 a	 safety-related	 system	

failing	to	function	and	compromise	system	safety	integrity.	

• Detected	(D):	a	failure	that	will	be	detected	by	diagnostic	tests.	

• Undetected	(U):	a	failure	that	will	be	undetected	by	diagnostic	tests.	

	

In	 “low	 trip”	 practice	 a	 fail-low	 is	 always	 associated	with	 a	 safe	 condition	while	 a	 fail-high	

produces	 a	 dangerous	 scenario	 because	 the	 failure	will	 prevent	 the	 device	 from	 indicating	

that	the	safety	action	needs	to	be	performed;	in	case	of	“high	trip”	applications	the	opposite	is	

true.	

The	difference	between	detected/undetected,	instead,	is	due	to	under/over	range	monitoring	

by	the	logic	solver:	a	sensor	failure	is	detectable	in	case	the	device	output	goes	fail-safe	in	the	

same	direction	of	the	monitored	threshold	(Fig.12).	

In	 this	 analysis	 it	 is	 assumed	 that	 the	 logic	 solver	 is	 able	 to	 detect	 under	 and	 over	 range	

currents	so	both	fail-low	and	fail-high	conditions	are	detectable;	 the	supposed	behaviour	of	

the	logic	solver	is	highlighted	in	Table	I.	

	

	

Table	I	-	Logic	Solver	behaviour	and	corresponding	failure	rates	

	

	

	

Application Logic,Solver,Behaviour λlow λhigh

Lo
w,
Tr
ip

<,4mA λSD λDU

>,20mA λSU λDD

<,4mA,and,>,20mA λSD λDD

x λSU λDU

Lo
w,
Tr
ip

Hi
gh
,Tr
ip

<,4mA λDD λSU

>,20mA λDU λSD

<,4mA,and,>,20mA λDD λSD

x λDU λSU

Hi
gh
,Tr
ip
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Fig.	12.	Fail-safe	drift	in	high-trip	threshold	direction	

	

	

5.6.2. Reliability	Block	Diagram	Approach	for	PFD	
	

In	order	 to	 assess	Probability	of	Failure	on	Demand	 (PFD),	 Safe	Failure	Fraction	 (SFF)	 and	

Diagnostic	Coverage	(DC)	Reliability	Block	Diagram	approach	is	used	for	PFD	assessment	in	

different	system	architectures.		

The	necessary	assumption,	in	compliance	with	IEC	61508,	are	shown	below:	

• Component	failure	rates	are	constant	over	the	life	of	the	system;	

• The	 sensor	 (input)	 subsystem	 comprises	 the	 actual	 sensor(s)	 and	 wiring	 but	 not	

includes	voting	or	other	processing	devices;	

• The	final	element	(output)	subsystem	comprises	all	the	components	and	wiring	from	

the	logic	solver	to	final	actuating	component(s);	

• For	each	safety	 function,	 there	 is	perfect	proof	 testing	and	repair	so	all	 failures	 that	

remain	undetected	are	detected	by	the	proof	test;	

• The	proof	test	interval	is	at	least	an	order	of	magnitude	greater	than	the	Mean	Repair	

Time	(MRT);	

• For	each	subsystem	there	is	a	single	proof	test	interval	and	MRT;	

• The	 expected	 interval	 between	 demands	 is	 at	 least	 an	 order	 of	 magnitude	 greater	

than	the	proof	test	interval.	

	

Legend:	

T1:	Proof	Test	Interval	(hour)	

T2:	interval	between	demands	(hour)	

MTTR:	Mean	Time	To	Restoration	(hour)	

MRT:	Mean	Repair	Time	(hour)	

DC:	Diagnostic	Coverage	

β:	Fraction	of	undetected	failures	that	have	a	common	cause	
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βD:	Fraction	of	detected	failures	that	have	a	common	cause	

PFDavg:	Average	Probability	of	Failure	on	Demand	

PFDSE:	Sensing	element	Probability	of	Failure	on	Demand	

PFDLS:	Logic	solver	Probability	of	Failure	on	Demand	

PFDFE:	Final	element	Probability	of	Failure	on	Demand	

PFDSYS:	System	Probability	of	Failure	on	Demand	

tCE:	 Channel	 equivalent	 MDT	 (combined	 down	 time	 for	 all	 the	 component	 in	 the	

channel	of	the	subsystem;	hour)	

tGE:	 Voted	 group	 equivalent	 MDT	 (combined	 down	 time	 for	 all	 the	 channels	 in	 the	

voted	group;	hour)	

	

The	 average	 probability	 of	 failure	 on	 demand	 of	 a	 safety	 function	 for	 the	 safety-related	

system	is	determined	by	the	combination	of	the	average	probability	of	failure	on	demand	for	

all	the	subsystems	involved	in	the	safety	function.	Average	PFD	can	be	expressed	as	follows:	

	

																																															
(185)

	

	

	

5.6.3. Sensor	Stage	
	

SIS	sensors	monitor	process	conditions	and	provide	process	parameters	in	order	to	recognize	

a	 potential	 hazard.	 Usually	 the	 monitored	 variables	 are	 the	 same	 used	 for	 control.	 The	

fundamental	requirement	for	sensors	in	safety	applications	is	accuracy	and	reliability.		

In	this	study	the	first	stage	of	the	safety	loop	under	analysis	is	a	2-out-of-3	(2oo3)	redundant	

architecture	 of	 temperature	 sensors	 widely	 used	 for	 Oil&Gas	 applications,	 Rosemount®	

3144P	HART	Temperature	Indicator	Transmitter	(TIT).	

	

	

5.6.3.1. Temperature	Indicator	Transmitter		
	

TIT	is	a	two	wire	4-20mA	temperature	sensor	assembly	made	of	one	or	more	temperature-

sensing	devices	(e.g.	Thermocouples	or	RTDs)	and	one	dedicated	transmitter	to	communicate	

with	system	control	panel:	for	Safety	Instrumented	Systems	the	4-20mA	output	is	used	as	the	

primary	safety	variable	by	the	safety	logic	solver.	

The	 outcome	 of	 a	 field	 sensor	 can	 vary	 in	 response	 of	 changes	 in	 the	monitored	 physical	

quantity	or	in	case	of	failure.	Diagnostics	clearly	play	an	essential	role	to	distinguish	between	

these	two	conditions	that	is	mandatory	in	particular	for	Safety	Instrumented	Systems;	if	the	

sensor	 is	 provided	 with	 a	 dedicated	 on-board	 circuit,	 the	 device	 itself	 communicates	 its	

health	 status	 to	 the	 control	 logic	 using	 out-of-range	 outputs	 or	 dedicated	 communication	

channel.	 Highway	 Addressable	 Remote	 Transducer	 (HART)	 Communication	 Protocol	 is	

widely	used	in	Oil&Gas	applications	because	it	can	communicate	over	legacy	4-20mA	analog	

instrumentation	wiring	 and	 share	 the	 pair	 of	 wires	 used	 by	 the	 standard	 system.	 For	 this	

reason	 HART	 is	 considered	 a	 “smart”	 protocol	 since	 it	 doesn’t	 require	 any	 change	 in	 the	

PFDSYS = PFDSE +PFDLS +PFDFE
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wiring	and	can	be	implemented	in	a	pre-existing	system.	HART	Protocol	indeed	makes	use	of	

the	Bell	 202	Frequency	Shift	Keying	 (FSK)	 standard	 to	 superimpose	digital	 communication	

signals	 (containing	 additional	device	 information	 such	as	device	 status	 and	diagnostics)	 on	

top	of	the	4-20mA	(containing	the	primary	measured	value);	as	the	digital	FSK	signal	is	phase	

continuous,	 there	 is	 no	 interference	 with	 the	 4-20mA	 signal.	 Together,	 the	 two	

communication	 channels	 provide	 a	 low-cost	 and	 robust	 solution	 that	 is	 easy	 to	 use	 and	

implement	[73-74].	

In	case	field	sensors	are	not	equipped	with	on-board	diagnostics	or	HART	protocol	is	not	put	

into	 practice,	 condition	monitoring	 is	 submitted	 to	 the	 logic	 solver	 that	 analyses	measure	

trends	 or	 compares	 different	 data	 coming	 from	 multiple	 devices	 (in	 case	 of	 redundant	

architectures).	The	limit	of	this	application	is	that	the	control	logic	can	detect	a	failure	only	if	

the	sensor	output	goes	out	of	range.		

Rosemount®	 3144P	 HART	 Temperature	 Transmitter	 is	 made	 of	 a	 transmitter	 and	 a	

temperature-sensing	device	(e.g.	thermocouple	or	RTD)	and	the	analysis	of	this	sensor	must	

be	separated	depending	on	the	nature	of	the	sensing	device.		

Table	II	shows	the	failure	rates	of	different	sensing	devices	in	different	stress	environments	

while	Table	IV	shows	the	percentage	of	each	failure	mode	for	thermocouples	and	thermistors.	

The	3144P	HART	Temperature	Transmitter	with	TC	will	detect	thermocouple	burnouts	and	

drive	 its	 output	 to	 the	 specified	 failure	 state;	 wire	 short	 and	 drift	 failures	 are	 considered	

dangerous	 undetected.	 In	 RTD	 architecture,	 otherwise,	 both	 open	 and	 short	 circuits	 are	

detectable.	

	

	

Table	II	-	Failure	rates	of	temperature	sensing	devices	depending	on	the	stress	environment	

	

	

	

	

	

	

	

	

	

	

Temperature)Sensing)
Device

Failure)Rate)(FITs)

TC#low#stress#
environment 5000

TC#high#stress#
environment 20000

RTD#low#stress#
environment 2000

RTD#low#stress#
environment 8000
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Table	III	-	Failure	mode	percentages	for	thermocouples	and	RTDs	

	

	

	

Table	 IV	 shows	 the	 failure	 rates	 for	 3144P	 Temperature	 Transmitter	 (in	 TC	 and	 RTD	

configuration	 respectively)	 according	 to	 IEC	 61508	 and	 assuming	 that	 the	 logic	 solver	 can	

detect	both	over-scale	and	under-scale	input	(so	both	fail-high	and	fail-low	are	detectable).	

According	to	IEC	61508	“no	effect”	(failure	of	a	component	part	of	the	safety	function	but	that	

has	 no	 effect	 on	 the	 safety	 function)	 and	 “annunciation	 undetected”	 (failure	 that	 does	 not	

directly	 impact	 the	 safety	but	 influence	 the	ability	 to	detect	 a	 future	 fault)	 are	 classified	as	

safe	undetected.	

	

	

Table	IV	-	Failure	rates	for	Temperature	Transmitter	in	TC	and	RTD	configuration	

	

	

	
	

As	 said	 before,	 fail-low	 and	 fail-high	 can	 either	 be	 safe	 or	 dangerous	 depending	 on	 the	

application	and	detected	or	undetected	depending	on	the	programming	of	the	logic	solver.	

In	this	study	the	Temperature	Transmitter	is	programmed	to	drive	its	output	low	on	detected	

failure	(fail-safe	state	is	under-range).	

Since	the	temperature	transmitter	and	the	sensing	device	are	in	series,	corresponding	failure	

rates	can	be	added;	the	failure	rate	contribution	for	the	RTD	in	a	low	stress	environment	is:	

Failure(Mode TC(
Percentage

RTD(
Percentage

Open%circuit 95% 70%

Wire%short/
Short%circuit 1% 29%

Drift 4% 1%

Failure(Category TC(
Failure(Rate((FITs)

RTD(
Failure(Rate((FITs)

Fail%high
%(detected%by%logic%solver) 28 28

Fail%low%
(detected%by%logic%solver) 302 295

Fail%Dangerous%
(undetected) 66 63

No%effect 104 104

Annunciation%undetected 5 5
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;				 								(186)	

	

The	failure	rate	contribution	of	temperature	transmitter	when	used	with	a	thermistor	is:	

	

;				 ;				 																														(187)	

	

The	total	failure	rates	of	the	temperature	sensor	assembly	are:	

	

;				 ;				 																													(188)	

	
Two	 important	 parameters	 for	 safety	 assessment	 are	 Diagnostic	 Coverage	 (DC)	 and	 Safe	

Failure	Fraction	(SFF).		

DC	 is	 the	ratio	of	 the	probability	of	detected	 failures	 to	 the	probability	of	all	 the	dangerous	

failures	 and	 it	 is	 a	measure	 of	 system	 ability	 to	 detect	 failures;	 SFF,	 instead,	 indicates	 the	

probability	of	the	system	failing	in	a	safe	state	so	it	shows	the	percentage	of	possible	failures	

that	are	self-identified	by	the	device	or	are	safe	and	have	no	effect	[28].	

	

				 																									

(189)	

	

Table	 V	 shows	 DC	 and	 SFF	 assessment	 for	 the	 Rosemount®	 3144P	 HART	 Temperature	

Transmitter	 in	 RTD	 configuration:	 in	 this	 architecture,	 high	 vibration	 and	 recurrent	

temperature	cycling	are	 the	key	stress	variables	 to	cause	cranks	 in	 the	substrate	 leading	 to	

failures.	

Table	VI	shows	DC	and	SFF	assessment	for	the	whole	temperature	sensor	assembly	made	of	

sensing	element	and	transmitter.	

Safe	Failure	Fraction	in	both	cases	is	the	same	for	high	and	low	trip	applications;	undetected	

failures	are	always	the	same	while	detected	ones	switch	themselves,	so	the	SFF	result	doesn’t	

change	within	the	architecture.	

A	noticeable	improvement	in	the	SFF	value	is	visible,	 instead,	from	the	single	transmitter	to	

the	sensor	system	assessment:	this	is	due	to	the	huge	growth	of	safe	detected	failures	and,	on	

the	other	hand,	thanks	to	the	reduced	increase	of	dangerous	undetected	[28].	

On	the	other	hand,	Diagnostic	Coverage	results	are	not	so	intuitive	and	they	require	some	in-

depth	analysis.	DC	in	fact	is	higher	in	high	trip	applications	rather	than	in	low	trip	ones:	the	

difference	between	these	two	practices	is	restricted	to	detected	failures.	As	said	before,	both	

safe	and	dangerous	undetected	failures	doesn’t	change	and	detected	ones	switch	themselves;	

since	DC	 assessment	 takes	 into	 account	 only	 dangerous	 failures,	 the	 number	 of	 dangerous	

undetected	 failures	 	has	 little	 incidence	 on	 the	 total	 dangerous	 failures	 amount	

	in	high	trip	mode	of	operation	so	the	Diagnostic	Coverage	value	is	higher.	

λL = (2000) ⋅ (0, 70+ 0,29) =1980FITs λDU = (2000) ⋅ (0, 01) = 20FITs

λL = 295FITs λH = 28FITs λDU = 63FITs

λL = 2275FITs λH = 28FITs λDU = 83FITs

DC =
λDD∑

λDD∑ + λDU∑
SFF =

λS∑ + λDD∑
λS∑ + λDD∑ + λDU∑

λDU∑
λDD∑
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So	in	terms	of	DC	the	use	of	a	fail-low	device	in	high	trip	applications	is	recommended	since	it	

produces	a	fewer	safe	detected	failures	and	more	dangerous	detected	ones.	

	

	

Table	V	-	Failure	rates	and	SFF	for	3144P	Temperature	Transmitter	in	RTD	configuration	

	

	

	

	

Table	VI	-	Failure	rates	and	SFF	for	Temperature	sensor	assembly	in	RTD	configuration	

	

	

	

	

In	 compliance	 with	 IEC	 61508,	 2oo3	 architecture	 consists	 of	 three	 channels	 connected	 in	

parallel	 with	 a	 major	 voting	 strategy:	 the	 safety	 function	 is	 required	 in	 case	 at	 least	 two	

channels	demand	it	and	the	system	state	is	not	changed	if	only	one	channel	gives	a	different	

result	which	disagrees	with	the	other	two	channels.	

The	necessary	assumption	for	PFD	assessment	are	shown	below:	

• Logic	solver	can	detect	both	over-scale	and	under-scale	currents;	

• Sensor	assembly	made	of	sensing	device	and	temperature	transmitter;	

• Sensing	device	 is	a	resistance	 temperature	detector	(RTD)	with	 fail	 safe	state	set	as	

fail-low;	

• 2-out-of-3	redundant	architecture;	

• Low	stress	environment;	

• Low	demand	mode	of	operation;	

• ;	

• ,	 ;	

• ;	

• ;	

• 1	year	proof	test	interval.	

	

	

	

Failure(Categories λSD((FIT) λSU((FIT) λDD((FIT) λDU((FIT) DC SFF

Low(Trip 295 109 28 63 30,77% 87,27%

High(Trip 28 109 295 63 82,40% 87,27%

Failure(Categories λSD((FIT) λSU((FIT) λDD((FIT) λDU((FIT) DC SFF

Low(Trip 2275 109 28 83 25,23% 96,67%

High(Trip 28 109 2275 83 96,48% 96,67%

λD = 0,5 ⋅10
−7

β =10% βD = 5%
DC = 90%
MTTR = 8h
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λD = λDD +λDU = 28+83( ) ⋅10−9 =1,11⋅10−7 failure / h
																											

(190)

	
	

tCE =
λDU
λD

T1
2
+MTTR

!

"
#

$

%
&+

λDD
λD

MTTR = 3,28 ⋅103h
																													

(191)

	

	

tGE =
λDU
λD

T1
3
+MTTR

!

"
#

$

%
&+

λDD
λD

MTTR = 2,19 ⋅103h
																												

(192)	

	

The	average	PFD	for	2oo3	architecture	is:	

(193)

	
PFDavgSE = 6 1−βD( )λDD + 1−β( )λDU( )

2
tCEtGE +βDλDDMTTR+βλDU

T1
2
+MTR

"

#
$

%

&
'= 3,68 ⋅10−5

	

	

5.6.3.2. Redundancy	in	SIS	
	
In	 the	 safety	 loop	 taken	 into	 account,	 the	 first	 stage	 is	 composed	 by	 three	 sensors	 in	

redundant	architecture	following	2-out-of-3	logic.	

Single	 Rosemount	 3144P	 Temperature	 Indicator	 Transmitter	 has	 a	 dangerous	 undetected	

failure	 rate	 of	 ~0.001	 /year.	 This	 means	 that	 1	 in	 1000	 devices	 in	 this	 application	 will	

experience	a	dangerous	and	hidden	failure	every	year.		

The	 introduction	 of	 a	 redundant	 architectures	 (such	 as	 1-out-of-2)	 can	 mitigate	 the	 risk	

associated	 to	 this	 dangerous	 event	 in	 case	 failures	 have	 no	 common	 cause:	 in	 1oo2	

configuration	the	process	keeps	operating	only	 if	process	conditions	are	considered	safe	by	

both	transmitters.		

With	 redundancy	 risk	 reduction	 is	 achieved	 but,	 at	 the	 same	 time,	 the	 risk	 of	 spurious	 or	

unnecessary	 trip	 increases:	 in	 fact	 each	 transmitter	 can	 cause	 a	 spurious	 trip	 so	 1oo2	

architecture	improves	safety	but	reduces	availability.	

In	 a	 2oo2	 arrangement	 with	 devices	 in	 series	 the	 process	 keeps	 operating	 if	 either	

transmitter	considers	the	system	in	a	safe	state;	the	risk	of	a	dangerous	failure	redoubles	due	

to	the	introduction	of	the	second	device	but	at	the	same	time	availability	improves.		

2oo3	is	the	best	architecture	for	this	kind	of	applications	because	both	safety	and	availability	

improve.	

However	the	transmitter	itself	is	only	one	of	all	the	causes	that	contribute	to	total	risk,	some	

other	 are	 the	 following:	 electrical	 noise	 (due	 to	 coating),	 material	 compatibility,	

environmental	conditions,	extreme	processes	and	temperatures,	installation	or	maintenance	

errors.	

The	real	enemy	of	redundancy	is	common	cause	failures:	if	any	of	the	conditions	listed	above	

affect	 more	 than	 one	 sensor,	 that	 is	 a	 common	 cause	 condition	 that	 nullifies	 redundancy	

benefits.	
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So	 redundancy	 may	 be	 a	 great	 enhancement	 for	 field	 devices	 but	 before	 introducing	

additional	components	all	common	causes	must	be	taken	into	account	during	design	phase.	

Therefore	diversity	is	better	than	quantity.	

Safety	improvement	should	follow	these	steps:	

• Improve	common	cause	strength;	

• Use	diversity;	

• Use	diagnostics;	

• Add	redundancy.	

	

Each	 step	 is	 associated	 with	 improvements	 in	 technology	 and	 installation/maintenance	

practices;	for	example,	in	order	to	improve	resistance	to	common	cause	failures	in	high	stress	

environments	due	to	high	temperatures,	a	designer	has	different	solutions	to	take:	

• Improve	 strength	 using	 more	 robust	 devices	 or	 installing	 them	 far	 from	 the	 heat	

source;	

• Use	diagnostics	using	transmitters	capable	to	predict	impending	failures;	

• Add	redundancy	with	one	or	more	backup	devices;	

• Use	diversity	to	choose	backup	technology	more	resistant	to	high	stresses.		

	

Obviously	 each	 choice	 is	 a	 trade-off	 between	 safety	 and	 costs:	 to	 take	 these	 decisions	

designers	 should	 select	 the	 best	 safety	 improvement	 taking	 into	 account	 not	 only	 data	

provided	by	suppliers	(usually	validated	in	a	 laboratory	environment)	but	considering	real-

world	installed	safety	(which	is	always	much	worse).	

Only	 by	 quantifying	 installed	 safety	 designers	 can	 evaluate	 the	 real	 world	 safety	 and	 cost	

impact	of	specific	technology.	

	

	

5.6.3.3. Benefits	of	Diagnostics	on	SIS	
	

Both	 redundant	 and	 non-redundant	 repairable	 control	 systems	 have	 improved	 availability	

and	safety	in	case	on-line	diagnostic	is	provided.	Other	benefits	are	the	reduction	of	time	the	

system	operates	in	dangerous	and	degraded	(not	completely	operational)	mode.	

Safety	is	improved	by	diagnostic	coverage	even	in	a	non-redundant	architecture.		

In	 a	 normally	 energized	 safety	 protection	 application,	 if	 a	 standard	 1oo1	 PLC	 architecture	

fails	with	outputs	de-energized,	the	process	is	inadvertently	shut	down	(false	trip).	Usually	to	

detect	a	process	shut	down	is	not	required	on-line	diagnostics	because	a	false	trip	is	usually	

quite	 apparent.	 However,	 if	 1oo1	 PLC	 fails	 with	 output	 energized,	 it	 cannot	 respond	 to	

demand	in	case	of	danger.	The	process	keeps	operating	with	no	safety	protection	and	there	is	

no	indication	that	something	is	faulty.	

The	main	added	value	of	diagnostics	 is	 the	detection	of	dangerous	 failures	 to	allow	a	quick	

repair	and	restore	of	the	system	[81].		

In	 case	 of	 failure	 in	 a	 redundant	 architecture	 (e.g.	 1oo2	 PLC	 configuration)	 diagnostics	

reduces	the	time	spent	in	the	degraded	mode:	the	output	of	PLC	modules	is	wired	in	series	so	
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if	one	module	fails,	the	other	can	still	provide	a	safety	protection	function	e.g.	energizing	the	

load	(in	a	normally	energized	protection	application).		

So	 diagnostics	 improve	 the	 safety	 of	 this	 architecture	 because	 if	 one	 module	 fails	

dangerously,	the	system	is	degraded	and	a	second	dangerous	failure	is	required	to	cause	the	

system	 to	 fail.	 At	 the	 same	 time,	 diagnostic	 capability	 will	 also	 allow	 quick	 repair	 and	

minimize	the	amount	of	time	the	system	operates	in	a	degraded	mode	[81-86].	

	

	
5.6.3.4. A2M	and	A3M	Architectures	

	

The	most	important	redundant	architectures	used	in	Oil&Gas	applications	are	A2M	and	A3M	

that	differs	for	the	number	of	devices	involved	(two	or	three	respectively).	

	

A2M	 architecture	 with	 on-board	 diagnostics	 is	 based	 on	 two	 signals:	 the	 process	

measurement	and	a	dedicated	boolean	variable	“unhealthy”.	

The	measurement	assumes	values	inside	the	4-20mA	range,	otherwise	it	is	considered	out-of-

range	 (this	 condition	 is	 associated	 to	 the	 corresponding	 state	 “OUT	 OF	 RANGE”).	

“UNHEALTHY”	 signal	 assumes	 two	values,	 false	or	 true,	 and	 it	 communicates	 sensor	 status	

(working	or	fault	respectively)	to	the	logic	solver.		

	

	
Fig.13.	A2M	architecture	
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Table	VII	-	Sensor	status	accordingly	to	unhealthy	and	out-of-range	signals	

	

UNHEALTHY	 OUT	OF	RANGE	 STATUS	

FALSE	 FALSE	 OK	
FALSE	 TRUE	 FAIL	
TRUE	 FALSE	 FAIL	
TRUE	 TRUE	 FAIL	ALL	

	

	

The	 logic	 solver	 calculates	 average,	 maximum	 or	 minimum	 of	 the	measurements	 received	

from	 field	 sensors	 depending	 on	 the	 values	 assumed	 by	 AVGSEL	 (average)	 and	 MAX	

(maximum)	 pins.	 Furthermore	 LS	 checks	 the	 spread	 between	 the	 two	 measurements	

(Spread=|In1-In2|):	 “high	 spread”	 is	 a	 boolean	 variable	 that	 is	 true	 in	 case	 the	 difference	

between	input	signals	exceeds	a	fixed	threshold.	

	

	

Table	VIII	-	Logic	solver	output	for	A2M		

	

Fault	management	

Fault	
tolerant	

Reliability	
model	
after	1°	
failure	

Reliability	
model	

Number	of	
working	
sensors	 AV

GS
EL
	

M
AX
	

H
IG
H
SP
R
EA
D
	

O
U
TP
U
T	

2	
	

no	 ND	 False	 AVG(Ini,Inj)	

No	 ND	 2oo2	1	
1	

	

True	 MAX(Ini,Inj)	

	0	 True	 Min(Ini,Inj)	

0	
1	 True/False	 MAX(Ini,Inj)	

	0	 True/False	 Min(Ini,Inj)	

1	 si	 1oo1	 ND	 Ini	 Yes	 1oo2	 1oo2	

	

	

High	 spread	 signal	 is	 “ND	 –	 not	 defined”	 in	 case	 the	measurements	 are	 not	 valid	 and	 the	

spread	is	not	achievable.	

“Default”	status	produces	a	pre-set	output	in	case	both	measurements	are	not	trustworthy.	

A2M	 logic	 may	 be	 used	 in	 either	 1oo2	 or	 2oo2	 architecture	 depending	 on	 the	 number	 of	

sensors	required	by	the	control	panel	to	execute	the	safety	loop.	

	

In	A2M	architecture	without	on-board	diagnostics,	out	of	calibration	and	stack	 in-range	are	

detectable	 only	 in	 presence	 of	 on-board	 diagnostics	 since	 the	 logic	 solver	 by	 itself	 only	

compares	 sensor	 outcomes	with	 predefined	 thresholds.	 Anyway	 out-of-range	 and	 drift	 are	

the	most	common	failure	modes	of	field	sensors.	
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Drift	 is	 a	 gradual	 and	 incremental	 signal	 trend	 towards	 the	 upper	 (or	 lower)	 limit	 of	

operative	range;	in	absence	of	on-board	diagnostics	and	corresponding	HEALTY/UNHEALTY	

signal	(only	OUT	OF	RANGE	is	provided),	control	logic	cannot	be	aware	of	failure	occurrence	

until	device	output	goes	out	of	range.	Drift	can	occur	very	slowly	and	that	period	of	 time	is	

rather	critical	because	control	logic	is	using	wrong	values	coming	from	a	faulty	sensor.		

Obviously	 drift	 is	 more	 critical	 in	 case	 it	 develops	 moving	 away	 from	 the	 monitored	

threshold.	

	

A3M	 architecture	with	 on-board	 diagnostics	 is	 based	 on	 three	 sensors;	 “UNHEALTHY”	 and	

“OUT	OF	RANGE”	 signals,	mode	 of	 operation	 and	measurement	management	 are	 the	 same	

used	in	A2M.	
	

	

	
Fig.14.	A3M	architecture	
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Table	IX	-	Logic	solver	output	for	A3M		

	

Fault	management	

Fault	
tolerant	

Reliability	
model	
after	1°	
failure	

Reliability	
model	

Number	of	
working	
sensors	 AV

GS
EL
	

M
AX
	

H
IG
H
SP
R
EA
D
	

O
U
TP
U
T	

3	 1/0	 1/0	 True/False	 MEDIAN(In1,In2,In3)	 No	 ND	 3oo3	

2	

1	 1/0	 False	 AVG(Ini,Inj)	

Yes	 2oo2	 2oo3	1	
1	

	

True	 Max(Ini,Inj)	

	0	 True	 Min(Ini,Inj)	

0	
1	 True/False	 Max(Ini,Inj)	

	0	 True/False	 Min(Ini,Inj)	

1	 1/0	 1/0	 ND	 Ini	 Yes	 1oo2	 1oo3	

	

	

The	mode	of	operation	of	A3M	architecture	without	on-board	diagnostics	is	the	same	of	A2M	

without	diagnostics:	in	fact	both	out	of	calibration	and	stack	in-range	are	undetectable	and	in	

absence	 of	 on-board	 diagnostics	 only	 “OUT	 OF	 RANGE”	 signal	 is	 provided	 so	 control	 logic	

cannot	be	aware	of	failure	occurrence	until	device	output	goes	out	of	range.		
A3M	 architecture	without	 on-board	 diagnostics	 is	more	 robust	 in	 terms	 of	 drift	 failures	 if	

compared	with	A2M:	median	calculation	takes	the	central	value	excluding	the	drifting	input	

that	comes	from	the	faulty	sensor.	

	

	

5.6.4. Logic	Solver	Stage	
	

The	 logic	 solver	 is	 the	 second	 stage	 of	 the	 safety	 loop.	 In	 a	 safety	 instrumented	 system	 it	

provides	 the	 intelligence	 to	 take	 any	 decision	 and	 perform	 other	 functions	 such	 as	

comparison,	filtering,	averaging,	etc.		

There	are	three	safety	logic	architectures	that	can	be	used	to	assess	safety	control:	

• Discrete	safety	using	dedicated	relay	and	micro	controller:	it	is	a	simple	solution	that	

requires	 simple	 installation	 but	 it	 is	 suitable	 for	 small	 applications	 (single	 control	

zone)	and	it	offers	a	low	safety	level;	diagnostics	on	the	relay	configuration	is	easy.	

• Modular	 and	 programmable	 safety	 using	modular	 relay	 or	 controller:	modular	 and	

expandable	 relay	 systems	 are	 capable	 of	 multiple	 zone	 control	 whereas	 safety	

controllers	 use	 a	 dedicated	 network;	 these	 are	 low	 to	medium	 cost	 solutions,	 they	

requires	simple	installation	and	offers	mid	safety	level.	



	 	
	 	 	

135	

• Integrated	 safety	 using	 safety	 PLC:	 safety	 PLC	 solutions	 are	 large,	 complex	 and	

distributed;	 they	 are	 flexible,	 expandable,	 they	 offers	 easy	 diagnostics	 using	 HMI,	

multiple	zones	of	control	and	high	safety	level.	

	

The	best	safety	system	solution	can	be	chosen	following	the	safety	life	cycle:	

• Hazard	or	risk	assessment	(identify	hazards	and	estimate	the	associated	risk);	

• Functional	 safety	 system	 requirements	 (based	 on	 risk	 assessment,	 system	

performance,	applicable	standards);	

• Design	 and	 verification	 (system	 architecture	 and	 safety	 critical	 circuit	 deisgn,	

validation	protocol);	

• Installation	 and	 validation	 (final	 site	 assembly,	 commissioning	 and	 final	 risk	

assessment	validation);	

• Maintain	 and	 improve	 (verify	 that	 system	 requirements	 operate	 within	 specified	

parameters	 for	production	and	safety	purposes;	preventive	maintenance	set	up	and	

system	upgrades).	

	
In	 complex	 systems	 used	Oil&Gas	 applications	 the	 best	 solution	 is	 obviously	 an	 integrated	

safety	system	using	PLCs.	

In	these	systems	the	logic	solver	task	is	to	evaluate	input	signals	coming	from	field	sensors,	

determine	 if	 a	 potentially	 hazardous	 condition	 exists	 and	 energize	 or	 de-energize	 the	

actuators	depending	on	the	application	[28].	

For	 example,	 in	 a	 de-energized	 to	 trip	 safety	 system,	 the	 output	 de-energizes	 to	move	 the	

process	to	a	safe	state:	if	any	of	the	components	in	the	single	path	fail	and	the	output	can’t	be	

de-energized,	the	PLC	won’t	be	able	to	provide	the	safety	protection	function.		

Programmable	Logic	Controllers	(PLCs)	are	devices	that	use	microprocessors	to	handle	logic	

control.	PLCs	used	in	safety	applications	are	named	“Safety	PLCs”.	These	devices	are	part	of	

the	safety	system	and	they	are	designed	to	satisfy	two	important	requirements:	the	former	is	

avoiding	to	fail	and,	 in	case	this	condition	cannot	be	prevented,	 failing	only	 in	a	predictable	

and	safe	way.	

Anyway	 there	 are	many	 similarities	 between	 safety	 and	 standard	PLCs:	 they	 both	 perform	

logic	and	math	calculations,	they	have	I/O	modules	to	interpret	signals	from	process	sensors	

and	actuate	 control	 final	 elements,	 furthermore	 they	 typically	have	digital	 communications	

ports.		

The	main	difference	 is	 that	common	PLCs	are	not	 initially	designed	to	be	 fault	 tolerant	and	

fail-safe.	

Fault	tolerance	is	obviously	fundamental	 in	safety	applications:	as	said	before,	a	fault	 in	the	

logic	solver	system	must	not	create	erroneous	inputs	or	outputs	nor	prevent	the	system	from	

functioning	as	designed.	

Also	 the	 fault	detection	 is	an	essential	 requirement	 to	aware	operators	about	 fault	 location	

and	 allow	 on-line	 repair	 in	 order	 to	 avoid	 interruption	 in	 operation	 and	 consequent	

availability	reduction.	
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Data	acquisition	is	the	first	task	of	logic	solver	stage;	it	is	the	process	of	measuring	a	physical	

phenomenon	 (e.g.	 voltage,	 current,	 temperature,	 pressure,	 etc.)	with	 sensors	 converting	 its	

physical	parameters	in	electrical	signals	that	are	ready	to	be	manipulated	by	a	computer.	

Therefore	 an	 acquisition	 system	 (DAQ)	 consists	 of	 sensors,	 measurement	 hardware	 and	 a	

computer	with	programmable	software.	

DAQ	 hardware	 acts	 as	 the	 interface	 between	 the	 computer	 and	 physical	 phenomena.	 The	

three	 key	 components	 of	 a	 DAQ	 device	 are	 signal	 conditioning	 circuitry,	 analog-to-digital	

converter	 and	 computer	 bus.	 Signal	 conditioning	 improve	 signal	 quality	 and	 manipulates	

them	 into	 a	 form	 that	 is	 suitable	 for	 analog-to-digital	 conversion	 (including	 amplification,	

attenuation,	 filtering,	 and	 isolation);	 since	 analog	 signals	 continuously	 vary	 over	 time,	 an	

analog-to-digital	 converter	 (ADC)	 is	 necessary	 to	 take	 periodic	 “samples”	 of	 the	 signal	 at	 a	

predefined	 rate	 and	 transfer	 them	 to	 a	 computer	 over	 a	 dedicated	 bus.	 The	 computer	 bus	

serves	 as	 the	 communication	 interface	 between	 the	 DAQ	 device	 and	 computer	 for	 passing	

instructions	and	measured	data.		

There	are	different	logic	solver	architectures	suitable	for	each	application.	For	example,	in	a	

dual	redundant	architecture,	the	two	sensors	can	be	connected	to	the	same	data	acquisition	

system	(fanned	input)	or	to	dedicated	boards	(spread	simplex	input).	

The	logic	solver	output	is	usually	a	command	to	energize	or	de-energize	the	actuators	and	the	

procedure	is	specular	to	the	input	one	described	before.	

In	 this	study	 the	 logic	solver	 is	 the	Moore	 Industries®	Safety	Trip	Alarm	(STA)	 logic	solver.	

This	device	acts	on	potentially	hazardous	process	conditions	in	order	to:	

• Warn	of	unwanted	process	conditions;	

• Provide	emergency	shutdown;	

• Provide	on/off	control	in	both	Safety	Instrumented	Systems	and	traditional	alarm	trip	

applications.	

	

STA	accepts	 signal	 input	 from	transmitters,	 temperature	sensors	and	a	wide	array	of	other	

monitoring	 and	 control	 instruments	 (e.g.	 current	 and	 voltage	 signals,	 resistance	 and	

potentiometer	devices,	etc.).	

With	regard	to	the	output,	the	logic	solver	is	equipped	with	two	programmable	relays	used	as	

process	trip	alarms	and	one	SPDT	(single	pole	double	throw)	relay	used	as	a	faulty	relay.	

This	logic	solver	is	used	in	Safety	Instrumented	Systems	to	implement	one	or	more	SIF	such	

as	 shutdown	 fuel	 supply	 to	 a	 furnace,	 open	 a	 valve	 to	 relieve	 excess	pressure,	 close	 a	 feed	

valve	 to	 prevent	 tank	 overflow,	 initiate	 release	 of	 a	 fire	 suppressant	 and	 initiate	 an	

evacuation	alarm.	

Component	 failures	 that	 cause	 the	 output	 relays	 to	 be	 de-energized	 are	 considered	 safe	

failures	whereas	failures	that	leave	the	relays	energized	are	to	be	considered	dangerous.		

There	 are	 three	 standard	 architectures	 for	 the	 logic	 solver	 under	 test:	 high	 integrity,	 high	

availability	and	1oo2	redundancy.	

High	integrity	architecture	offers	the	highest	trip	integrity	in	a	non-redundant	

Application:	three	relays	are	wired	in	series	so	any	trip	or	fault	alarm	will	execute	the	safety	

loop.	
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In	 high	 availability	 architecture	 the	 Safety	 Trip	 Alarm	 provides	 higher	 process	 or	 system	

availability;	the	fault	alarm	is	wired	separately	from	the	trip	relays	so	the	safety	system	may	

be	 informed	 that	 a	 component	 is	 not	 able	 to	 carry	 out	 its	 portion	 of	 the	 SIF	 without	

performing	the	safety	loop.	This	way	the	fault	should	be	removed	before	the	STA	can	provide	

proper	safety	coverage	[81].	

This	configuration	is	widely	used	in	applications	where	process	continuity	is	essential	and	for	

this	purpose	the	output	process	 trip	relays	are	connected	 in	a	1oo2	configuration	to	 trip	 in	

order	to	prevent	from	single	relay	failure.	

The	 last	 STA	 architecture	 is	 a	 1oo2	 redundant	 framework:	 in	 this	 case	 if	 a	 sensor	 input	

reaches	 a	 trip	 condition	 or	 a	 fault	 relay	 is	 activated,	 the	 safety	 loop	 is	 activated.	 This	

architecture	 offers	 improved	 reliability	 of	 trip	 action	 and	 reduced	 vulnerability	 to	 a	 single	

failure	compare	to	a	1oo1	architecture.		

In	 this	 study	 three	 STA	 logic	 solvers	 are	 required	 because	 the	 first	 stage	 is	 a	 2oo3	

Temperature	 Indicator	 Transmitter	 architecture	 and	 one	 Safety	 Trip	 Alarm	 is	 required	 for	

each	sensor	(using	4-20mA	loop);	the	2oo3	vote	is	then	performed	on	the	STA	relay	output.	

The	necessary	assumption	for	PFD	assessment	are	shown	below:	

• Type	B	

• SFF	of	90-99%	

• HFT=1	

• 2-out-of-3	redundant	architecture;	

• ,	βD =10% ;	

• ;	

• 1	year	proof	test	interval	

	

	

Table	X	-	Failure	rates	for	Safety	Trip	Alarm	

	

	

	

	

The	average	PFD	assessment	for	2oo3	architecture	is	the	following:	

	

λD = λDD +λDU = 28+83( ) ⋅10−9 = 2,56 ⋅10−7 failure / h
																											

(194)
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β =10%

MTTR = 8h

Device λSD((FIT) λSU((FIT) λDD((FIT) λDU((FIT) DC SFF

Safety(Trip(Alarm 0 660 170 86 66,41% 90B99%
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(197)	

PFDavgLS = 6 1−βD( )λDD + 1−β( )λDU( )
2
tCEtGE +βDλDDMTTR+βλDU

T1
2
+MTR

"

#
$

%

&
'= 3,83⋅10−5 	

	

	

5.6.5. Final	Element	Stage	
	

SIF	 applications	 can	 be	 very	 different	 depending	 on	 the	 monitored	 processes.	 Each	 SIF	

application	requires	a	dedicated	type	of	actuator	and	some	examples	of	applications	are	the	

following:	 system	 shutdown	 in	 a	 hazardous	 chemical	 plants,	 valve	 opening	 due	 to	 over	

pressure,	 control	 switch	 on/off	 to	 prevent	 tank	 overflow,	 furnace	 fuel	 supply	 shutdown,	

evacuation	alarm	initialization,	fire	suppressant	release,	etc.		

For	this	reason	different	devices	are	used	as	final	elements	in	safety	instrumented	functions:	

applications	may	 require	annunciation	devices	 (e.g.	 horns,	 flashing	 lights	or	 sirens),	 simple	

devices	 such	 as	 relays,	 motor	 controllers	 and	 solenoid	 valves	 or	 more	 complex	 systems	

[Safety	Instrumented	Systems	Verification:	Practical	Probabilistic	Calculations].	

However	in	the	process	industries	the	most	common	final	element	is	a	remote	actuated	valve	

consisting	of:	

• Pneumatic	or	hydraulic	control	assembly	such	as	three-way	solenoid,	a	smart	partial	

valve	stroke	box	or	a	complex	electro-pneumatic	assembly;	

• Actuators	that	are	defined	by	the	power	source	(electric,	hydraulic	or	pneumatic)	and	

range	of	motion	(linear,	partial	turn	or	multi-turn).	

• Valves	such	as	ball,	butterfly,	offset	butterfly,	gate,	globe	and	other	special	designs.	

	

	

	

	

Fig.14.	Remote	Actuated	Valve	Assembly	

	

Process	 material,	 pressures,	 temperatures	 and	 flow	 rates	 obviously	 have	 a	 deep	 impact	

during	 the	 selection	 of	 the	 type	 of	 valve.	 Design	 engineers	 must	 choose	 remote	 actuated	

valves	 very	 carefully	 to	 match	 process	 requirements	 taking	 into	 account	 materials	 of	
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construction,	 valve	 seat	 material,	 valve	 type,	 actuator	 type	 and	 controls	 characteristics.	

Actuators	are	dedicated	to	convert	power	to	motion	and,	as	said	before,	they	are	defined	by	

the	power	source	and	range	of	motion.	

For	example,	hydraulic	and	pneumatic	piston	and	diaphragm	actuators	provide	a	

linear	output	and	may	be	integrated	with	a	crank	arm	mechanism	(quarter	turn	output)	or	a	

rack	and	pinion	mechanism	(full	turn	output).	

Electric	 actuators	have	output	 ranges	 similar	 to	 the	hydraulic	 and	pneumatic	motor	drives	

but,	on	the	other	hand,	they	are	more	complex	due	to	the	additional	functionality	provided.	

In	any	case,	 the	most	 important	 feature	of	actuators	 involved	 in	 safety	applications	 is	 their	

fail-safe	attitude:	diaphragm	and	piston	actuators	driven	by	hydraulic	and	pneumatic	power	

have	 usually	 spring	 return	 valves	 so	 in	 case	 of	 failure	 the	 pressure	 source	 automatically	

drives	the	actuator	to	its	safe	position.	

With	 electrically	 powered	 actuators	 there	 is	 no	 solution	 to	 provide	 fail-safe	 functionality:	

nowadays	there	are	some	partial	turn	electric	actuators	that	have	a	spring	return	in	case	of	

total	loss	of	power	[86].	

Anyway	 during	 design	 stage	 the	 choice	 of	 the	 best	 combination	 od	 actuator	 and	 valve	 is	

critical	to	achieve	the	best	optimization	of	fail-safe	characteristics.	

	

	

5.6.5.1. Redundant	Control	System	
	

In	 this	 study	 the	 final	 element	 under	 analysis	 is	 a	 pneumatically	 actuated	 block	 valve	

controlled	 by	 ASCO®	 Redundant	 Control	 System	 (RCS):	 it	 is	 an	 electro-mechanical	 and	

pneumatic	system	consisting	of	two	solenoid	valves	and	one	pneumatic	valve.		

Three	pressure	 switches	 are	provided	on	each	valve	 for	diagnostic	purpose	 to	monitor	 the	

pneumatic	pressures	at	critical	points	of	the	RCS	assembly:	switches	are	required	to	confirm	

the	proper	position	of	the	valve.	

In	this	device	both	automatic	and	manual	diagnostic	tests	can	be	implemented	to	achieve	the	

safety	ratings.	

RCS	 achieves	 a	 high	 level	 of	 process	 safety	 and	 reliability	 thanks	 to	 a	 fault	 tolerant	

architecture,	high	diagnostic	coverage,	and	automated	testing	procedures.	

The	RCS	 is	 connected	 to	 the	 safety	 rated	 logic	 solver	 that	 is	 actively	 performing	 the	 safety	

function	as	well	as	automatic	diagnostics	designed	to	diagnose	potentially	dangerous	failures	

within	the	RCS.	

In	compliance	with	IEC	61508	for	safety	assessment	Redundant	Control	System	is	considered	

part	of	the	final	element	together	with	the	controlled	block	valve.	

Depending	on	 the	protected	process,	 the	safety	action	of	a	block	valve	can	either	be	spring	

return	open	or	close.	The	spring	block	valve	actuator	may	receive	air	supply	or	be	vented	in	

order	 to	move	 the	block	 valve	 to	 the	 safe-state	 “normally	 open”	 (NO)	 or	 “normally	 closed”	

(NC).	In	“double	acting”	(DA)	valves	the	piston	receives	air	to	one	side	and	it	is	vented	on	the	

other	to	move	the	block	valve	to	the	safe-state.	

So	 there	 are	 different	 configurations	 for	 RCS	 assembly:	 in	 normally-closed	 version,	 RCS	 is	

used	 to	 vent	 air	 from	 a	 spring-forced	 actuator	 if	 the	 solenoids	 are	 de-energized	 while	 in	
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normally-closed	version	it	is	used	to	supply	air	to	a	spring-forced	actuator	if	the	solenoids	are	

de-energized.		

The	choice	between	these	versions	directly	impacts	the	PFD	of	the	entire	SIS:	a	failure	in	the	

Redundant	Control	System	will	prevent	the	proper	working	of	the	block	valve	and	decrease	

safety	integrity.	

The	 selection	 of	 normally	 open/closed	 version	 is	 based	 on	 the	 spring	 forced	 state	 of	 the	

controlled	 actuator.	 Many	 safety	 applications	 require	 vented	 condition	 (spring	 forced	

position)	 as	 the	 block	 valve	 actuator	 safe-state	 while	 other	 ones	 require	 safe-state	 in	

pressurized	condition	and	unforced	spring	position.	

In	this	application	the	safe-state	is	achieved	with	de-energized	signals	so	at	 least	one	of	the	

two	solenoid	valves	has	to	be	energized	to	prevent	the	block	valve	from	moving	to	the	safe	

state.	 The	 pressure	 switch	 contacts	 are	 normally	 open	 so	 they	 are	 closed	 in	 presence	 of	

pressure.	

So	when	de-energized,	RCS	moves	to	the	fail-safe	position	(NC	or	NO)	and	air	will	be	supplied	

or	 vented	 depending	 on	 the	 application;	 in	 DA	 version,	 de-energy	 command	 will	

simultaneously	supply	air	to	one	side	of	the	cylinder	and	vent	the	opposite	one	[88-89].	

Figure	15	 shows	 the	RCS	 functional	 block	diagram	 in	NC	 configuration:	 SOV1	 and	SOV2	 are	

solenoid	valves	and	B/P	is	the	bypass	valve	(pneumatically	controlled).	

Bypass	valve	is	used	to	apply	pneumatic	supply	directly	to	the	block	valve	in	order	to	force	it	

to	remain	in	the	normal	condition	(not	safe	state,	maintenance	override),	while	isolating	and	

venting	solenoid	valves	and	all	three	pressure	switches.	

In	Fig.	15	both	solenoid	valves	are	de-energized	so	air	is	vented	from	the	block	valve	actuator	

and	the	spring	return	actuator	moves	the	block	valve	to	the	safe	state.	

	

	

	

Fig.15.	SIS	–	Functional	Block	Diagram	of	RCS	in	NC	configuration		
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Figure	16	shows	the	RCS	functional	block	diagram	in	NO	configuration:	SOV1	and	

SOV2	have	to	remain	de-energized	in	order	to	keep	block	valve	in	the	safe	state	position.	

In	Fig.	16	both	solenoid	valves	are	de-energized	so	air	is	supplied	to	the	block	valve	actuator	

and	actuator	spring	return	is	overcame	to	move	the	block	valve	to	the	safe	state.	

	

	
Fig.	16.	SIS	–	Functional	Block	Diagram	of	RCS	in	NO	configuration		

	

	

RCS	system	has	two	different	operational	mode	of	operation:	

• 2oo2D:	 in	 this	 mode	 both	 solenoids	 must	 de-energize	 for	 shutdown;	 the	 pressure	

switches	are	used	to	individually	alarm	in	case	one	of	the	solenoid	valves	goes	to	the	

vent	state	when	not	commanded.	

• 1oo1HS:I	n	this	mode	only	one	solenoid	valve	is	on-line	during	normal	operation.	Any	

spurious	trip	of	the	on-line	solenoid	valve	is	detected	by	the	logic	solver	using	signals	

coming	from	the	associated	pressure	switches;	in	response	to	spurious	trip	the	logic	

command	to	energize	the	second	solenoid	valve	in	order	to	maintain	air	supply	to	the	

block	valve.	

With	this	configuration,	RCS	achieves	the	safety	availability	of	a	1oo1	solenoid	valve	

and	the	reliability	of	a	2oo2	voted	solenoid	operated	valve	configuration.	

	

Since	 the	RCS	 architecture	 is	 not	 sufficient	 to	 achieve	 the	 required	diagnostic	 coverage	 for	

devices	used	in	critical	environments,	it	is	equipped	with	three	pressure	switches	in	order	to	

verify	 the	 system	 transitions	 into	 the	 safe	 state	 (on	 demand),	 detect	 illegal	 and	 degraded	

states	of	the	system	and	detect	the	bypass	(forced)	state	of	the	safety	function.	

Any	failure	detected	by	the	ADT	shall	be	annunciate	by	the	safety	rated	logic	solver.	
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Tables	 I	 shows	 failure	rates	 for	 the	ASCO	RCS	with	Automated	Diagnostic	Tests:	 the	 failure	

rates	are	valid	for	the	entire	useful	life	of	the	devices	expected	to	be	10	years	in	accordance	

with	manufacturer	endurance	tests	and	general	field	failure	data.	

	

	

Table	XI	-	Failure	rates	for	ASCO	RCS	with	Automated	Diagnostic	Tests	

	

	

	

	

Supposing	RCS	as	the	only	final	element,	the	design	can	met	SIL	3	with	HFT	=	0	based	on	SFF	

>	90%;	anyway	in	this	study	the	final	element	subsystem	includes	also	the	controlled	block	

valve.	

The	necessary	assumption	for	PFD	assessment	are	shown	below:	

• 	

• ADT	=	24h	

• MTTR	=	24h	

• Fast	switch	between	solenoid	valves	not	to	cause	a	trip	of	the	block	valve	

• 1oo1HS	mode	of	operation	
	

Using	Markov	modelling	the	average	PFD	for	RCS	with	ADT	is	the	following:	

	

	considering	1	year	proof	test	interval;	

	considering	2	years	proof	test	interval;	

	considering	3	years	proof	test	interval.	

	

Tables	XII	shows	failure	rates	for	the	ASCO	RCS	with	Manually	Initiated	Diagnostic	Tests:	the	

failure	 rates	 are	 valid	 for	 the	 entire	 useful	 life	 of	 the	 devices	 expected	 to	 be	 10	 years	 in	

accordance	with	manufacturer	endurance	tests	and	general	field	failure	data.	

	

	

	

	

	

	

	

Device λSD((FIT) λSU((FIT) λDD((FIT) λDU((FIT)

Solenoid(Valve 594 216 502 10

Bypass(Valve 57 88 7 0

Pressure(switch 444 5 0 0

β =1%

PFDavg =1,24 ⋅10
−4

PFDavg = 2,12 ⋅10
−4

PFDavg = 3,00 ⋅10
−4
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Table	XII	-	Failure	rates	for	ASCO	RCS	with	Manually	Initiated	Diagnostic	Tests	

	

	

	

	

Supposing	RCS	as	the	only	final	element,	the	design	can	met	SIL	2	with	HFT	=	0	based	on	SFF	

>	60%.	

The	necessary	assumption	for	PFD	assessment	are	shown	below:	

• 	

• Manual	diagnostic	interval	=	24h	

• Fast	switch	between	solenoid	valves	not	to	cause	a	trip	of	the	block	valve	

• 1oo1HS	mode	of	operation	
	

Using	Markov	modelling	the	average	PFD	for	RCS	with	Manually	Initiated	Diagnostic	Tests	is	

the	following:	

	

	considering	1	year	proof	test	interval;	

	considering	2	years	proof	test	interval;	

	considering	3	years	proof	test	interval.	

	

In	 this	 study	 RCS	 subsystem	 is	 provided	with	 Automatic	 diagnostic	 tests	 so	 considering	 1	

year	 of	 proof	 test	 interval	 the	 average	 probability	 of	 failure	 on	 demand	 is:	

.	

	

	

5.6.5.2. Controlled	Valve	
	

The	second	item	to	take	into	account	in	the	final	element	stage	is	the	controlled	block	valve.	

A	valve	involved	in	SIS	applications	has	different	features	from	a	standard	valve	used	in	basic	

process	 control	 systems	where	 life	 cycle	 and	 number	 of	 repetitive	 operations	 are	 the	 only	

requirements;	 furthermore	 the	 type	 of	 actuator	 impacts	 the	 distinction	 between	 safe	 and	

dangerous	failures.	

The	 dangerous	 failure	 modes	 can	 be	 divided	 in	 two	 categories:	 failure	 to	 move	 to	 safe	

position	and	failure	to	seal	upon	reaching	safe	position	[87-90].	

Failure	to	move	to	safe	position	can	occur	due	to	two	mechanisms:		

Device λSD((FIT) λSU((FIT) λDD((FIT) λDU((FIT)

Solenoid(Valve 0 855 0 512

Bypass(Valve 0 145 0 7

Pressure(switch 0 449 0 0

β =1%

PFDavg =1,11⋅10
−4

PFDavg =1,99 ⋅10
−4

PFDavg = 2,87 ⋅10
−4

PFDavg =1,24 ⋅10
−4



	 	
	 	 	

144	

• Binding:	this	failure	may	occur	between	the	closure	member	and	the	seat	(depending	

on	 the	 amount	 of	 contact	 the	 two	 surfaces	maintain)	 or	 between	 the	 stem	 and	 the	

stem	bore	(stems	with	large	surface	contact	area	will	have	significantly	more	binding	

failures).	Different	types	of	valves	suffer	some	failure	mechanisms	more	than	others:	

for	 example,	 binding	 failure	 have	 great	 incidence	 on	 ball	 valves,	 fewer	 on	 butterfly	

ones	and	no	effect	in	globe	valves.	On	the	other	hand,	the	linear	stem	of	a	globe	valve	

has	a	higher	binding	risk	than	the	quarter	turn	stem	of	a	ball	one.	

• Breakage:	 some	 valve	 weakness	may	manifest	 when	 there	 are	 increased	 operating	

loads	in	the	valve.	This	is	more	frequent	in	valves	with	long	stems	or	more	point	loads	

in	the	design	(e.g.	butterfly	valves).	

	

Failure	to	seal	upon	reaching	safe	position	corresponds	to	a	leakage	on	completion	of	stroke	

typically	 caused	 by	 damage	 to	 the	 seat	 or	 by	 solids	 holding	 the	 seat	 and	 closure	member	

apart.		

This	 varies	 by	 design	 and	 application	 and	 on	 the	 type	 of	 solids	 involved;	 obviously	 valves	

with	more	 closure	member	 to	 seat	 contact	 have	more	 opportunity	 to	manifest	 this	 kind	of	

damage.	

In	 this	 study	 the	 final	 element	 is	 a	 ball	 valve	 with	 floating	 ball	 design	 (Abc.	 X	 Series	 Ball	

Valve):	the	safety	function	is	to	move	to	the	designated	safe	position	within	the	required	time.	

Table	XIII	and	Table	XIV	show	 in	clean	and	severe	service	 respectively	 the	 failure	 rates	 for	

the	equipment	under	test	with	and	without	Partial	Valve	Stroke	Tests	(this	topic	is	developed	

in	Appendix	II).	

The	valve	operation	is	divided	as	follows:	

• Close	on	 trip:	 the	valve	 is	 closed	 (full	 stroke)	or	 the	valve	 is	 closed	and	sealed	with	

leakage	no	greater	than	the	defined	leak	rate	(tight-shutoff);	

• Open	on	Trip:	the	valve	is	open.	

	

	

Table	XIII	-	Failure	rates	for	ball	valve	w/o	PVST	in	clean	service	

	

	

	

	

Full$stroke Tight/shutoff Full$stroke Tight/shutoff

λSD 0 0 0 0 0 172

λSU 0 0 172 0 0 0

λDD 0 0 0 149 149 149

λDU 479 1370 307 330 1221 158

Residual 931 40 931 931 40 931

Failure$
category

Failure$rate$(FIT)
without$PVST

Failure$rate$(FIT)
with$PVST

Close$on$trip
Open$on$trip

Close$on$trip
Open$on$trip
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Table	XIV	-	Failure	rates	for	ball	valve	w/o	PVST	in	severe	service		

	

	

	

In	according	 to	 IEC	61508	 [88]	 the	residual	 failures	are	not	 included	 in	 the	SU	category:	 in	

fact	 these	 failures	will	 not	 affect	 system	reliability	or	 safety,	 and	 should	not	be	 included	 in	

spurious	trip	calculations.	

A	 word	 of	 clarification,	 the	 distinction	 “detected/undetected”	 is	 associated	 just	 with	

diagnostic	 tests	 (and	 corresponding	 DC	 factor);	 PVST	 coverage	 concerns	 only	 dangerous	

failures	 that	are	undetected	by	 the	diagnostics	and	that	may	be	revealed	by	stroke	 tests.	 In	

other	words,	 PVST	 is	 a	 procedure	of	 detection	of	 a	 part	 of	 normally	undetected	dangerous	

failures	 in	 absence	 of	 partial	 valve	 stroke	 testing.	 Since	 there	 are	 no	 other	 diagnostic	 tests	

implemented	 in	 the	 equipment	 under	 analysis,	 in	 Table	 I	 and	 Table	 II	 the	 failure	 rate	 of	

failures	detected	by	Partial	Valve	Proof	Tests	fall	into	dangerous	detected	class	[87-90].	

Since	the	PVST	is	put	into	practice,	it	is	necessary	to	follow	a	different	procedure	to	assess	the	

average	PFD.	

Partial	 Valve	 Stroke	 Test	 is	 assumed	 to	 be	 automatically	 performed	 at	 least	 an	 order	 of	

magnitude	more	frequent	than	the	Full	Valve	Proof	Test.	

As	a	result,	when	PVSTs	are	performed	at	regular	intervals,	the	ball	valve	contributes	less	to	

the	overall	PFDavg	of	the	Safety	Instrumented	Function	.	

A	complete	functional	test	of	the	valve	can	be	viewed	as	consisting	of	two	parts:	the	partial-

stroke	(PVST)	and	the	full-stroke	(FVST);	for	detail	about	this	practice	see	Appendix	II.	

Since	 the	 ball	 valve	 under	 analysis	 is	 provided	 of	 partial	 stroke	 testing,	 and	 the	 necessary	

assumptions	and	the	procedure	to	assess	the	average	PFD	are	the	following:	

• Mission	time	of	10	years;	

• MTTR	=	96	hours;	

• 2	months	partial	proof	test	interval	(1460h);	

• 6	months	full	proof	test	interval	(4380h);	

• Close	on	trip;	

• Full	stroke	operation	in	clean	service.	

	

In	 this	 study	 the	 fraction	 of	 dangerous	 undetected	 failures	 that	 are	 detected	 by	 the	Partial	

Valve	Proof	Test	is	considered	as	a	contribution	to	the	rate	of	dangerous	detected	failures:	for	

Full$stroke Tight/shutoff Full$stroke Tight/shutoff

λSD 0 0 0 0 0 317

λSU 0 0 317 0 0 0

λDD 0 0 0 259 259 259

λDU 858 2615 541 599 2356 282

Residual 1797 40 1797 1797 40 1797

Failure$
category

Failure$rate$(FIT)
without$PVST

Failure$rate$(FIT)
with$PVST

Close$on$trip
Open$on$trip

Close$on$trip
Open$on$trip
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this	reason	 in	Table	 I	 the	Dangerous	Detected	 failure	rates	 in	case	of	PVST	 implementation	

correspond	 to	 the	 fraction	 of	 dangerous	 undetected	 failures	 detected	 by	 the	 partial	 valve	

stroke	test.		

No	other	diagnostic	tests	are	implemented	so	in	case	of	close	on	trip	operation	(full	stroke)	in	

clean	service:	

λDU,PVST = λDD
	

																																																													(198)	

	

PC = λDU,PVST
λDU

=
λDD
λD

= 31%
				

1−PC = λD −λDD
λD

= 69%
																							

(199)

	

	

λD = λDD +λDU = 149+330( ) ⋅10−9 = 4, 79 ⋅10−7 failure / h
																									

(200)

	

PFDavgBV = PFDFVST +PFDPVST ≅ 1−PC( ) λD ⋅τFVST
2

+PC λD ⋅τPVST
2

=

=
λDU −λDD( ) ⋅τFVST

2
+
λDD ⋅τPVST

2

														(201)

	

	

So	the	average	PFD	for	1oo1	architecture	is:	

	

PFDavgBV = PFDFVST +PFDPVST ≅ 1−PC( ) λD ⋅τFVST
2

+PC λD ⋅τPVST
2

=

=
λDU −λDD( ) ⋅τFVST

2
+
λDD ⋅τPVST

2
= 5,05 ⋅10−4

														(202)	

	

The	average	probability	of	 failure	on	demand	of	 the	whole	 final	 element	 stage,	 considering	

one-year	proof	test	interval	is:	

	

PFDavgFE = PFDavgRCS +PFDavgBV = 6,29 ⋅10
−4

																									
(203)	

	

	

5.6.6. Safety	Loop	PFD	Assessment	
	

This	paragraph	contains	a	 summary	 to	 recap	all	 the	 requirements	and	specifications	of	 the	

complete	safety	loop	under	analysis.	

1st	 stage	 contains	 the	 sensing	 elements	 Rosemount®	 3144P	 HART	 Temperature	 Indicator	

Transmitter	(TIT)	and	the	necessary	assumptions	for	the	safety	assessment	are	listed	below:	

• RTD	temperature-sensing	device;	

• 2-out-of-3	redundant	architecture;	

• Temperature	 transmitter	 and	 sensing	 device	 are	 in	 series	 (failure	 rates	 can	 be	

added);	

• Temperature	 Transmitter	 is	 programmed	 to	 drive	 its	 output	 low	 (low-trip)	 on	

detected	failure,	fail	safe	state	set	as	fail-low	(under-range);	
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• Logic	solver	can	detect	both	over-scale	and	under-scale	 input	 (so	both	 fail-high	and	

fail-low	are	detectable);		

• “No	 effect”	 failures	 (with	 no	 effect	 on	 the	 safety	 function)	 and	 “annunciation	

undetected”	failures	(not	directly	impact	the	safety	but	influence	the	ability	to	detect	

a	future	fault)	are	classified	as	safe	undetected;	

• Low	stress	environment;	

• Low	demand	mode	of	operation;	

• Low	stress	environment;	

• Low	demand	mode	of	operation;	

• ;	

• ,	 ;	

• ;	

• ;	

• 1	year	proof	test	interval.	

	

The	average	PFD	for	2oo3	architecture	is:	

(204)	

PFDavgSE = 6 1−βD( )λDD + 1−β( )λDU( )
2
tCEtGE +βDλDDMTTR+βλDU

T1
2
+MTR

"

#
$

%

&
'= 3,68 ⋅10−5 	

	

2nd	 stage	 contains	 the	 logic	 solver	 Moore	 Industries®	 Safety	 Trip	 Alarm	 (STA)	 and	 the	

necessary	assumptions	for	the	safety	assessment	are	listed	below:	

• 2-out-of-3	redundant	architecture;	

• Type	B;	

• SFF	of	90-99%;	

• HFT=1;	

• 2-out-of-3	redundant	architecture;	

• βD =10% 	

• ;	

• 1	year	proof	test	interval.	

	

The	average	PFD	for	2oo3	architecture	is:	

(205)	

PFDavgLS = 6 1−βD( )λDD + 1−β( )λDU( )
2
tCEtGE +βDλDDMTTR+βλDU

T1
2
+MTR

"

#
$

%

&
'= 3,83⋅10−5 	

	

3rd	 stage	 contains	 the	 final	 elements	 ASCO®	 Redundant	 Control	 System	 (RCS)	 and	 Abc.	 X	

Series	Ball	Valve	and	the	necessary	assumption	for	RCS	safety	assessment	are	shown	below:	

• Automated	Diagnostic	Tests	implemented;	

• Safe-state	with	de-energized	signals;	

• RCS	fail-safe	position	is	“normally	closed”;	

λD = 0,5 ⋅10
−7

β =10% βD = 5%
DC = 90%
MTTR = 8h

β =10%
MTTR = 8h
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• Pressure	switch	contacts	normally	open,	close	in	presence	of	pressure;	

• Fast	switch	between	solenoid	valves	not	to	cause	a	trip	of	the	block	valve;	

• ;	

• ADT	=	24h;	

• MTTR	=	24h;	

• SFF	>	90%;	

• 1	year	proof	test	interval;	

• 1oo1HS	mode	of	operation.	
	

The	average	PFD	for	1oo1	architecture	is:	

	

																																																														(206)	

	

The	necessary	assumption	for	Ball	Valve	safety	assessment	are	shown	below:	

• Mission	time	of	10	years;	

• Clean	service;	

• Close	on	trip	and	full	stroke	operation	without	tight	shutoff	requirements;	

• Partial	Valve	Stroke	Test	implemented;	

• 2	months	partial	proof	test	interval	(1460h);	

• 6	months	full	proof	test	interval	(4380h);	

• MTTR	=	96	hours.	

	

The	average	PFD	for	1oo1	architecture	is:	

	

PFDavgBV = PFDFVST +PFDPVST ≅ 1−PC( ) λD ⋅τFVST
2

+PC λD ⋅τPVST
2

=

=
λDU −λDD( ) ⋅τFVST

2
+
λDD ⋅τPVST

2
= 5,05 ⋅10−4 													

(207)

	

	

The	average	probability	of	failure	on	demand	of	the	whole	final	element	stage	is:	

	

PFDavgFE = PFDavgRCS +PFDavgBV =1,03⋅10
−3

																																		
(208)	

	

The	 average	 probability	 of	 failure	 on	 demand	 of	 a	 safety	 function	 for	 the	 safety-related	

system	is	determined	by	the	combination	of	the	average	probability	of	failure	on	demand	for	

all	the	subsystems	involved	in	the	safety	function.	Average	PFD	can	be	expressed	as	follows:	

	

																																										
(209)

	

	

PFDavg = PFDavgSE ++PFDavgSL +PFDavgFE = 7,04 ⋅10
−4

																								
(210)

	

	

β =1%

PFDavg =1,24 ⋅10
−4

PFDSYS = PFDSE +PFDLS +PFDFE
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So	for	the	system	under	analysis,	SIL	3	range	is	achieved.	

A	reasonable	division	that	seems	to	be	widely	accepted	is	35-15-50%	to	the	sensor,	logic	and	

final	element	subsystems	respectively:	 in	this	application	89%	to	final	element	due	to	1oo1	

architecture.	



 
 
 
 
 
 
 
 
 
 

Table XV – PFD safety loop assessment 
 

 
	

λSD$(FIT) λSU$(FIT) λDD$(FIT) λDU$(FIT)
Common$Cause$
Beta$Factor

Diagnostic
Test$Coverage$

Proof$Test$
Coverage

Proof$Test$
Interval

Mean$Time$To$
Repair$[h]

Safe$Failure$
Fraction Type Architecture HFT PFDavg

RTD 1980 0 0 20 x x 6$months 8 99,00% B

Transmitter 295 109 28 63 30,77% 90% 6$months 8 87,27% B

LS 0 660 170 86 10% 66,41% 100% 1$year 8 90T99% B 2oo3 1 3,83ET05

Solenoid$Valve 594 216 502 10 1$year 24 A

Bypass$Valve 57 88 7 0 1$year 24 A

Pressure$Switch 444 5 0 0 1$year 24 A

0 0 149 330 x x 31% 2$months 96 X A

3,68ET052oo3 1

Redundant
Control
System

Safety$Trip$Alarm

x

6,29ET041oo1 0

Device

>$90%x 99%

SE

FE

Temperature$
Transmitter$
Assembly

10%

Ball$Valve
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Chapter	6	
	

Reliability	Assessment	Loop	
	

	
 

The	 reliability	 parameter	 prediction	 is	 one	 of	 the	 most	 common	 methods	 to	 evaluate	 the	
performance	 of	 the	 system	 under	 analysis	 and	 this	 practice	 is	 broadly	 used	 in	 industrial	
applications	 in	 particular	 to	 assess	 design	 feasibility,	 compare	 design	 choices,	 identify	
potential	failure	areas,	trade-off	system	design	factors	and	track	reliability	improvements	[32].		
This	thesis	is	focused	on	availability	improvement	and	takes	into	account	maintainability	and,	
in	particular,	reliability	roles	in	order	to	achieve	this	kind	of	target.		
	
The	 goal,	 as	 said	 before,	 is	 to	 develop	 a	 procedure	 for	 availability	 improvement	 that	
engineers	may	used	during	the	early	stages	of	product	design.	
RBDesigner®	is	a	brand	new	dedicated	 tool	 for	Oil&Gas	applications	and	 it	was	developed	 to	
achieve	reliability	prediction	in	the	early	product	design	stages	of	thermal-hydraulic	systems:	
these	 machineries	 (e.g.	 gas	 turbine	 auxiliary	 systems)	 are	 very	 complex	 and	 contain	 both	
mechanical	 equipment	 and	 electronic	devices.	The	 tool	 takes	 into	 account	 all	 these	 features	
and	provides	reliability	feedbacks	to	design	engineers	to	reduce	re-design	costs	and	time	for	
system	upgrades.		
	
For	this	reasons	RBDesigner®	represents	the	central	phase	of	the	Reliability	Assessment	Loop	
(see	Figure	1):	it	starts	from	the	sketches	of	the	thermal-hydraulic	system	and	following	three	
steps	the	Reliability	Block	Diagram	is	built	and	available	for	reliability	parameters	assessment.	
The	 three	 stages	 of	 this	 procedure	 are:	 automatic	model	 generation	 and	net-list	 production	
(XML	format),	semi-automatic	RBD	design	and	final	reliability	assessment	[32].	
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Fig.	1.	Reliability	assessment	loop	

	
 
 

6.1. Automatic	Model	Generation	
	
The	Reliability	Assessment	 Loop	 starts	with	 the	 “Automatic	model	 generation”:	 the	 starting	
point	of	the	procedure	is	a	P&ID	which	is	a	diagram	reproducing	a	thermal-hydraulic	system	
and	 containing	 equipment,	 instrumentation	 and	 piping	 of	 the	 process	 flow.	 A	 P&ID	 is	 the	
mandatory	input	to	achieve	reliability	assessment	with	the	proposed	procedure	since	the	first	
stage	is	the	generation	of	a	Functional	Block	Diagram	(FBD)	starting	from	the	P&ID	itself.		
The	 outcome	 of	 this	 procedure	 is	 a	 net-list	 in	 XML	 format	 containing	 all	 blocks	 and	
connections	making	up	 the	 system.	The	 exported	net	 accurately	 reproduces	 the	 topology	of	
the	thermal-hydraulic	system	and,	at	the	same	time,	each	block	is	directly	associated	with	the	
corresponding	 on	 the	 starting	 sketch	 keeping	 any	 attribute	 and	 feature	 (e.g.	 technical	
information,	position	within	the	system	and	generic	block	properties	where	expected).		
XML	format	was	chosen	for	 the	 fitting	perspective	to	many	different	purposes.	A	supporting	
tool	named	XML	Drawer	was	implemented	to	display	and	edit	the	XML	diagram:	this	software	
is	essential	to	fit	possible	mistakes	and	inaccuracies.		
Finally	 the	automatic	model	generation	process	reduces	potential	errors	 introduced	by	data	
transcriptions	or	human	mistakes	and	translates	P&ID	projects	into	a	universal	language.	
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Fig.	2.	Automatic	net-list	generation	

  
 
6.2. Semi-automatic	RBD	Design	

 
The	second	step	is	the	semi-automatic	RBD	design:	a	Reliability	Block	Diagram	can	be	created	
with	a	drag-and-drop	procedure	of	the	blocks	in	the	net-list	on	XML	Drawer	to	the	diagram	in	
RBDesigner®.	This	is	the	required	procedure:	

• Select	a	block	on	XML	Drawer	window;	
• Drag	the	block	to	RBDesigner®		input	window;	
• Drop	the	block	in	the	RBD	desired	position.	

 
The	RBD	generation	 is	guided	with	structural	restrictions	and	all	 the	rules	to	raise	a	correct	
diagram	 are	 fully	 integrated	 in	 order	 to	 permit	 only	 suitable	 block	 arrangement	 and	
connections;	in	case	different	structural	solutions	are	possible,	multi-architectural	suggestions	
are	shown	during	the	diagram	assembly	so	the	user	would	have	a	complete	overview	of	design	
feasibility.		
These	features	are	a	great	support,	 in	particular	for	users	with	 little	reliability	experience	to	
avoid	mistakes	and	facilitate	improvements.	
	

 

	
Fig.	3.	Semi-automatic	RBD	design	

 
Similarly	as	the	net-list	blocks,	also	RBD	components	keep	all	the	attributes	and	the	features	of	
the	 starting	 sketch	 but	 at	 this	 stage	 the	 user	 must	 add	 some	 parameters	 (such	 as	
failure/hazard	 rate,	 MTTF,	 etc.)	 necessary	 to	 achieve	 the	 reliability	 prediction:	 this	
information	can	be	manually	added	by	users	with	suitable	field	experience	or	loaded	from	two	
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integrated	 reliability	 databases	 (OREDA	 Handbook	 –	 Offshore	 Reliability	 Data	 and	 NSWC	
Handbook	–	Naval	Surface	Warfare	Center	[50]).	In	any	case	a	default	database	is	available	and	
user	can	edit	it	as	he	pleases.	
	
	

 
 

Fig.	4.	Multiple	database	connection	&	Reliability	Assessment	
 

Considering	 the	 advantages	 above	 mentioned,	 the	 generation	 of	 the	 reliability	 diagram	 is	
extremely	intuitive	and	even	users	without	a	huge	knowhow	can	enjoy	it,	otherwise	advanced	
editing	 procedures	 are	 provided	 for	 expert	 users	 that	 don’t	 need	 structural	 restrictions	 or	
architectural	suggestions.	
	
 

6.3. Reliability	Assessment	
 

The	last	step	consists	in	the	Reliability	Assessment.	Once	RBD	generation	is	completed,	all	the	
information	 concerning	 diagram	 structure	 and	 component	 reliability	 is	 used	 to	 obtain	 a	
reliability	prediction.	
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Fig.	5.	Design	improvement	throw	reliability	feedback	
	

Processing	phase	and	output	generation	are	achieved	on	Matlab®	platform	and	the	outputs	are	
listed	below:	

• Reliability	vs.	time	plot	(up	to	default	time,	3�105h);	
• Reliability	vs.	time	plot	(up	to	user	set-in	time);	
• Failure/hazard	rate	vs.	time	plot	(up	to	default	time,	3�105h);	
• Failure/hazard	rate	vs.	time	plot	(up	to	user	set-in	time);	
• Reliability	value	calculated	at	user	set-in	time	value;	
• Failure/hazard	rate	value	calculated	at	user	set-in	time	value;	
• System	MTTF	-	Mean	Time	To	Failure.	
	

Once	reliability	parameters	are	achieved,	 this	 feedback	 is	useful	 to	 take	re-design	actions	or	
prove	system	robustness	[32].	
 

 

6.4. Case	Study	A:	Mineral	Lube	Oil	Console	
 

A	 gas	 turbine	 is	 a	 “turbo-machinery”,	 term	 used	 in	 mechanical	 engineering	 to	 describe	
machinery	 that	 transfers	 energy	 between	 a	 rotor	 and	 a	 fluid.	 A	 gas	 turbine	 is	 a	 turbo-
machinery	that	converts	thermal	energy	in	mechanical	energy.	
The	 standard	 set-up	 of	 a	 gas	 turbine	 is	 an	 upstream	 rotating	 compressor	 coupled	 to	 a	
combustion	chamber	and	a	downstream	turbine	(Figure	6).	Gas	turbines	work	in	a	continuous	
thermodynamic	cycle	and	the	basic	operation	is	described	below.		
Atmospheric	air	 flows	 through	a	compressor	 that	brings	 it	 to	higher	pressure,	 than	a	 fuel	 is	
added	 into	 the	 air	 to	 create	 a	 high-temperature	 flow	 after	 ignition	 in	 combustion	 chamber.		
This	way	the	chemical	energy	of	the	air	mixture	(air	and	fuel)	is	converted	in	thermal	energy.	
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Fig.	6.	Gas	turbine	framework	

	
The	high-temperature	and	high-pressure	gas	enters	the	turbine:	here	it	expands	down	to	the	
exhaust	pressure	and	produces	mechanical	 energy.	The	output	of	 the	process	 is	 the	 turbine	
shaft	work	 that	 is	used	 to	drive	 the	compressor	and	other	devices	 coupled	 to	 the	 shaft	 (e.g.	
electric	 generator).	 The	 remaining	 energy	 that	 is	 not	 used	 for	 shaft	work	 comes	 out	 in	 the	
exhaust	gases.		
The	proper	working	of	 the	 turbo-machinery	 is	ensured	by	 the	gas	 turbine	auxiliary	systems	
such	 as	 starting	 system,	 lubrication	 system	 and	 control	 system	 (Figure	 7).	 One	 of	 the	most	
important	is	the	lubrication	system,	and	in	particular	the	mineral	lube	oil	console:	the	mineral	
oil	is	used	to	reduce	friction	and	fatigue	between	moving	surfaces	(e.g.	bearings)	and	for	this	
reason	 the	 efficiency	 of	 the	 console	 is	 critical	 for	 the	 proper	 workability	 of	 the	 whole	 gas	
turbine.	
	
	

	
	

Fig. 7. Gas turbine Functional Block Diagram 
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All	 the	 acronyms	 of	 the	 blocks	 used	 in	 the	 Reliability	 Block	 Diagram	 (Figure	 8)	 are	 listed	
below:	

• PDIT:	Pressure	Differential	Indicating	Transmitter;	
• LIT:	Level	Indicating	Transmitter;	
• PSV:	Pressure	Safety	Valve;	
• PIT:	Pressure	Indicating	Transmitter;	
• PCV:	Pressure	Control	Valve;	
• TCV:	Temperature	Control	Valve.	

	
In	the	mineral	oil	console	under	analysis	the	sub-system	that	mostly	affects	the	whole	system	
reliability	 is	 the	pumps	section	containing	 two	pumps	(main	and	auxiliary	respectively)	and	
each	pump	is	supplied	by	two	electrical	motors	(main	and	standby).		
These	 motors	 are	 in	 cold	 stand-by	 configuration	 being	 only	 main	 one	 operative;	 the	 other	
motor	is	disconnected	from	power	supply	and	is	activated	when	the	main	unit	fails.	
The	pump	branches,	instead,	can	be	considered	both	in	cold	or	warm	architecture,	on	the	basis	
of	 the	application	and	 the	response-time	required	 in	case	of	 failure.	This	choice	 is	matter	of	
project	engineer	that	must	take	this	decision	depending	on	specifications	and	requirements.	
In	order	to	compare	reliability	performance	achievable	with	these	two	different	architectures,	
“Reliability	vs.	time”	chart	(see	Figure	9)	was	built	using	data	from	referring	to	aero-derivative	
gas	 turbines;	 the	 failure	 rates	 of	 all	 items	 and	 the	 corresponding	 MTTF=1/λ	 are	 shown	 in	
Table	I.	In	Table	II,	instead,	is	shown	the	system	reliability	calculated	at	fixed	time	interval	(1	
year	≈	8700h).	
	
	

 

	
Fig. 8. Gas turbine Reliability Block Diagram 
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Table I – Failure Rates and MTBF 
 

Item 
Failure rate 

[failures/106h] 
MTTF [h] 

PDIT 0,66 1515728 

PIT 0,66 1515728 

LIT 2,45 408163 

TIT 3,42 292398 

Pump 1,54 648021 

Motor 1,76 567944 

PSV 0,66 1515728 

TCV 3,48 287356 

PCV 3,48 287356 

Filter 1,98 505243 

Fan 3,63 275200 

Heater 1,63 613496 

 

Table II – System Reliability vs. Time 
 

Time [h] 
(1 year ≈ 8700h) 

Rs(t) with warm standby 
pump branches 

Rs(t) with cold standby 
pump branches 

0 1 1 

8700 0,8183 0,8735 

17400 0,6678 0,7609 

26100 0,5436 0,6612 

34800 0,4414 0,5731 

43500 0,3576 0,4957 

52200 0,2891 0,4278 

60900 0,2333 0,3684 

69600 0,1879 0,3167 

78300 0,1510 0,2717 

87000 0,1212 0,2327 

95700 0,0971 0,1990 

104400 0,0776 0,1699 

 

 

Reliability	as	a	 function	of	 time	 in	 the	chart	(Figure	9)	has	 the	expected	trend:	 two	negative	
exponential	with	different	bending	due	to	different	system	failure	rates.	Significant	differences	
are	already	highlighted	starting	 from	the	 first	year	of	use	and	reach	 the	maximum	at	60900	
hours	(7	years).	
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Fig.	9.	Reliability	vs.	Time	chart	

	
The	 results	validate	 the	proposed	method	 to	assess	 reliability	of	 redundant	architectures	 in	
case	of	stand-by	items:	the	developed	procedure	reduces	to	zero	the	limits	in	the	complexity	of	
RBDs	under	analysis.		
The	implemented	tool	was	cross-validated	with	other	commercial	software.	This	comparison	
was	 performed	 considering	 several	 plants	 and	 architectures	 and	 results	 achieved	 using	
OREDA	 and	 NSWC	 [50]	 failure	 rates	 are	 very	 close	 compared	 to	 the	 expected	 ones	 and	
therefore	show	the	validity	of	the	proposed	approach.	
 
 

6.5. Case	Study	B:	Synthetic	Oil	Console	
	
Aero-derivative	gas	turbines	usually	have	two	lubricating	systems	and	the	synthetic	one	(Fig.	
10)	is	the	second	test	case	used	in	this	study	in	order	to	shows	the	potential	of	RBDesigner® .		
The	synthetic	oil	is	used	for	its	fire-resistant	property	and	it	is	used	in	a	dedicated	lubricating	
system	for	the	aero	gas	generator:	in	this	system	the	lubricating	oil	plays	a	fundamental	role	
for	lubricating	rotors	that	are	carried	on	ball-and-roller	antifriction	bearings.		
The	system	for	the	aero	gas	generator	uses	an	oil	cooler	to	reject	the	heat	removed	from	the	
engine	to	the	atmosphere.	Sometimes	in	liquid-fueled	installations	the	synthetic	oil	is	cooled	in	
a	shell-and-tube	heat	exchanger	by	the	incoming	fuel.	
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Fig.	10.	Synthetic	Oil	Console	RBD	–	Baseline	layout	

 
 
In	Table	III	are	shown	the	failure	rates,	Mean	Time	To	Failures	and	Time	To	Repairs	of	all	the	
components	in	the	system.		
RBDesigner®	 and	Reliability	 Importance	 practice	 show	 the	 components	 that	most	 affect	 the	
reliability	 of	 the	 whole	 system:	 Temperature	 Control	 Valve	 in	 both	 sub-systems	 1	 and	 2,	
Solenoid	Valve,	Filter	and	Pressure	Controlled	Valve	in	sub-system	3.		
Following	 these	 pieces	 of	 information	 the	 console	 design	 was	 changed	 (Fig.	 11)	 and	 the	
comparison	between	the	reliability	performances	of	the	two	configurations	is	shown	in	Fig.	12.	
	
The	actions	taken	to	improve	the	system	are	listed	below:	

• 1oo2	hot	standby	redundancy	was	introduced	for	the	Temperature	Controlled	Valves	
using	a	Ball	Valve	in	both	sub-systems	1	and	2;	

• Solenoid	Valve	downstream	sub-system	2	was	removed;	
• 1oo2	cold	standby	redundancy	was	introduced	for	the	Filter	and	Pressure	Controlled	

Valve	stage	in	sub-system	3;	
• Level	Indicator	Transmitter	(sub-system	1)	and	Pressure	Indicator	Transmitter	(sub-

system	3)	were	replaced	with	high-quality	components	that	offer	higher	reliability	and	
maintainability	performance.	
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Table	III	–	Synthetic	Oil	Console		
 

 
 

 
	

Fig.	11.	Synthetic	Oil	Console	RBD	–	Improved	layout	

	

	
	

Fig.	12.	Reliability	vs.	Time	chart	

Item Failure rate [failure/h] MTTF [h] TTR [h]
LIT 2,45E-06 4,08E+05 8

Heater 1,63E-06 6,13E+05 2
TIT 2,45E-06 4,08E+05 1

PDIT 6,59E-07 1,52E+06 4
Filter 1,98E-04 5,05E+03 6

Ball valve 6,59E-06 1,52E+05 8
TCV 3,48E-06 2,87E+05 2

3-way valve 6,59E-06 1,52E+05 1
TIT 2,45E-06 4,08E+05 4
PIT 6,59E-06 1,52E+05 6

Solenoid valve 1,63E-05 6,13E+04 2
PCV 3,48E-06 2,87E+05 3
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Fig.	12	shows	the	growth	of	System	Reliability:	the	baseline,	at	2500	hours,	offers	Rs	(t)	=	0,24	
while	the	improved	layout	guarantees	Rs	(t)	=	038,	a	14%	increase.	
System	MTBF	 of	 the	 standard	 layout	 is	 1823	 hours	while	 the	 improved	 layout	 offers	 2414	
hours	that	is	a	huge	gain	in	terms	of	reliability	(approximately	600	hours	increase).	
System	MTTR	of	the	standard	layout	is	3,9	hours	while	the	improved	layout	offers	2,4	hours;	
finally	System	Availability	increases	from	0,9979	to	0,9990.	
	
The	 results	 show	 the	 great	 impact	 that	RBDesigner®	and	Reliability	 Importance	have	during	
design	stage	since	they	are	fundamental	to	compare	different	design	solutions,	validate	design	
choices	and	achieve	reliability	and	availability	target.	
	
	

6.6. Discussion	and	Remarks		
	
The	results	of	the	two	case	studies	validate	the	proposed	method	for	the	reliability	assessment	
of	 complex	 systems	 containing	 stand-by	 redundant	 architectures:	 the	 developed	 procedure	
reduces	to	zero	the	limits	in	the	complexity	of	RBDs	under	analysis.		
Furthermore	using	RBDesigner®	project	engineers	are	able	to	achieve	a	reliability	prediction	of	
very	 complex	 systems	 in	 the	 early	 stages	 of	 product	 development.	 This	 feature	 is	 a	 huge	
improvement	in	industrial	applications	because	design	can	be	based	on	reliability	assessment.	
The	 results	 presented	 in	 this	 work	 prove	 the	 main	 advantages	 achievable	 with	 the	 use	 of	
RBDesigner®,	 that	 is:	 reduction	 of	 time-delivery	 and	 time	 for	 improvements,	 confidence	 in	
achievable	reliability	targets	and	reliability	performance	guarantee	to	costumers.	
The	implemented	tool	was	cross-validated	with	other	commercial	software.	This	comparison	
was	 performed	 considering	 several	 plants	 and	 architectures	 and	 results	 were	 always	 in	
compliance	with	expected	ones.	
The	 added	 values	 offered	 by	RBDesigner®	if	 compared	 with	 commercial	 software	 are	 listed	
below:		

• Customized	architecture	library	for	Oil&Gas	applications;	
• Real-time	multi-architecture	comparison;	
• User-friendly	interface	and	guided	RBD	generation;	
• No	 limit	 to	 RBD	 architecture	 complexity	 (in	 particular	 for	 standby	 redundancy	

configurations);	
• Multi-database	library	for	component	reliability	parameters;	
• Full-integration	with	piping	and	instruments	diagram	definition.	
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Conclusions	and	Final	Remarks	
	

	
	
	
The	 number	 and	 variety	 of	 failures	 are	 growing	 due	 to	modern	 technologies	 and	 business	
requirements	with	a	corresponding	increase	of	variety	and	complexity	in	the	manufacturing	
production.	
This	 study	 outlines	 how	 system	 downtime	 and	 unplanned	 outages	 massively	 affect	 plant	
productivity,	in	particular	for	Oil&Gas	applications	where	an	emergency	shutdown	produces	
an	 interruption	 of	 normal	 running	 operation	 with	 resulting	 reduction	 of	 productivity	 and		
loss	of	thousands	of	dollars.		
This	is	the	reason	why	this	study	is	focused	on	RAMS	disciplines	together	with	fault	diagnosis	
and	condition-monitoring	that	nowadays	are	almost	mandatory	in	Oil&Gas	applications.	
This	thesis	analyses	the	best	methods	to	improve	system	availability	and	takes	into	account	
reliability	and	maintainability	roles	in	order	to	achieve	this	kind	of	target.	
The	goal	of	 improving	system	availability	 is	to	detect	 incipient	failures,	minimize	downtime	
and	minimize	the	time	needed	to	restore	the	system	to	normal	working	conditions.		
	
The	first	method	described	to	achieve	high-availability	is	redundancy,	in	particular	in	case	of	
standby	architectures	that	are	widely	used	in	gas	turbine	auxiliary	systems	and	many	other	
Oil&Gas	 applications:	 cold	 and	 warm	 standby	 were	 analysed,	 compared	 and	 two	 new	
reliability	models	were	developed	to	describe	reliability	function	vs.	time.		
This	 innovative	approach	was	proposed	 to	assess	 reliability	 in	 complex	systems	containing	
redundant	 architectures	 and	 the	 outcomes	 of	 the	 test	 cases	 outline	 the	 different	 reliability	
performance	 achievable	 with	 these	 two	 configurations	 and,	 at	 the	 same	 time,	 their	 wide	
pertinence	 to	 complex	 	 system	modelling:	 the	main	added	value	 is	 that	 there	 is	no	 limit	 to	
RBD	 complexity	 and	 this	 feature	 is	 essential	 to	 achieve	 reliability	 prediction	 without	
restrictions	for	the	system	under	analysis.		
	
The	 second	 solution	 is	 reliability	 improvement	 using	 Reliability	 Allocation	 (RA):	 after	 a	
comparison	of	all	the	RA	methods	described	in	literature,	a	new	procedure	based	on	MEOWA	
technique	was	developed	and	successively	implemented	in	a	brand	new	dedicated	Reliability	
Allocation	tool.	This	software	was	developed	on	MathWorks	"Matlab	r2015a"	platform	and	it	
calculates	the	reliability	and	the	failure	rate	to	be	allocated	to	each	component	of	the	system.	
Reliability	Allocation	tool	was	also	tested	on	two	complex	case	studies	in	order	to	validate	it	
and	extend	its	applicability	to	more	complex	architectures.	
	
Reliability	Importance	methods,	instead,	are	the	third	solution	to	improve	system	reliability:	
this	study	shows	the	generic	procedure	of	Reliability	Importance	and	focuses	on	a	particular	
method	 named	 Credible	 improvement	 Potential	 (CIP)	 that	 has	 turned	 out	 to	 be	 the	 most	
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flexible	and	efficient	 index	to	measure	the	 impact	of	each	component	on	the	overall	system	
reliability.	
The	 trend	 of	 component	 Reliability	 Importance	 measures	 underlines	 the	 time-dependency	
behavior	 and	 the	 significance	 of	 RI	 assessment	 that	 is	 central	 to	 focus	 on	 the	 “right”	
components	and	take	the	best	design	decisions	for	money	and	time	saving.	
CIP	method	was	modified	and	adjusted	to	best-fit	the	application	required	and	it	turned	out	
to	 be	 particular	 effective	 in	 applications	 involving	 complex	 systems	 with	 different	 and	
composite	redundant	architectures.	
Reliability	Importance	assessment	confirmed	to	be	particularly	useful	if	hold	with	continuity	
during	 all	 the	 design	 stages	 of	 a	 product	 and	 this	 feature	 is	 mandatory	 to	 allow	 design	
engineers	to	take	structural	decisions	and	select	the	best	items	to	complete	the	mission.		
	
The	fourth	method	to	improve	system	availability	was	focused	on	maintenance,	in	particular	
on	condition-based	maintenance	and	Markov	models:	this	technique	is	very	helpful	in	case	of	
complex	 repair	 solutions,	 standby	 spares,	 sequential	 dependency	 and	 imperfect	 fault	
coverage	but	showed	some	limits	in	modelling	complex	systems	such	as	gas	turbine	auxiliary	
systems.	
In	 fact	 Markov	 modelling	 is	 a	 powerful	 method	 to	 assess	 system	 maintainability	 and	 this	
procedure	can	be	a	valid	support	 for	availability	assessment	but	 it	 is	usable	only	 in	case	of	
low-complex	systems:	the	complexity	of	the	system	directly	translates	into	the	complexity	of	
the	corresponding	Markov	model	and	a	system	of	ten	components	may	produce	a	model	with	
hundred	states	and	even	more	transitions.	
Furthermore,	this	approach	requires	a	manual	construction	of	the	model	and	this	practice	is	
not	so	familiar	to	design	engineers	so	this	implies	cumbersome	and	error-prone	modelling.	
For	these	reasons	Markov	processes	are	not	the	most	suitable	practice	for	the	purpose	of	this	
study.	
	
Finally,	 diagnostics	 and	 condition	 monitoring	 were	 the	 last	 solution	 to	 achieve	 high-
availability	performance.	This	study	contains	both	on-board	and	logic	solver	diagnostics	with	
a	detailed	application	on	a	gas	 turbine	safety	 loop	and	corresponding	Probability	of	Failure	
on	Demand	(PFD)	assessment.		
This	 target	was	 achieved	 defining	 a	 new	 system	 of	 thresholds	 to	 rule	 the	 logic	 solver	 (e.g.	
A2M	 and	 A3M	 architectures)	 that	 was	 calibrated	 taking	 into	 account	 the	 different	 failure	
modes	of	the	devices	involved	in	the	loop.	
	
In	 conclusion	 one	 of	 the	 best	 procedures	 to	 achieve	 high-availability	 taking	 into	 account	
reliability	 improvement	 is	 Reliability	 Importance,	 in	 particular	 using	 CIP	 analysis:	 this	
method	was	 implemented	 in	a	dedicated	tool,	RBDesigner®,	which	plays	a	 fundamental	role	
during	the	design	stage	of	gas	turbine	auxiliary	systems.		
Thanks	to	RBDesigner®,	project	engineers	are	able	to	achieve	a	reliability	prediction	of	very	
complex	 systems	 in	 the	 early	 stages	 of	 product	 development.	 This	 feature	 is	 a	 huge	
improvement	in	industrial	applications	because	design	can	be	based	on	reliability	assessment.		
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The	 results	 presented	 in	 this	 work	 prove	 the	main	 advantages	 achievable	 with	 the	 use	 of	
RBDesigner®:	reduction	of	time-delivery	and	time	for	improvements,	confidence	in	achievable	
reliability	targets	and	reliability	performance	guarantee	to	costumers.	
Furthermore	the	results	of	 the	two	described	case	studies	validate	the	proposed	method	for	
the	 reliability	 assessment	 of	 complex	 systems	 containing	 stand-by	 redundant	 architectures	
and	prove	that	the	developed	procedure	reduces	to	zero	the	limits	in	the	complexity	of	RBDs	
under	analysis.		
The	implemented	tool	was	also	cross-validated	with	other	commercial	software	considering	
several	plants	and	architectures	and	the	added	values	offered	are	the	following:	customized	
architecture	library	for	Oil&Gas	applications,	real-time	multi-architecture	comparison,	user-
friendly	 interface	and	guided	RBD	generation,	 limitless	RBD	architecture	complexity,	multi-
database	 library	 for	 component	 reliability	 parameters	 and	 full-integration	with	 piping	 and	
instruments	diagram	definition.	
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Appendix	I		
	

Sensing	Devices	
	

	
	
	
The	most	used	sensor	classes	 for	Oil&Gas	applications	are	 temperature,	pressure,	 flow	and	
level:	a	brief	description	of	each	type	is	shown	below.	
The	most	commonly	type	of	sensors	is	the	temperature	or	heat	ones:	these	sensors	measure	
the	amount	of	heat	energy	 that	 is	generated	by	 the	system,	allowing	 the	user	 to	detect	any	
physical	change	to	that	temperature.	There	are	many	different	classes	of	temperature	sensors	
and	 the	main	 distinction	 is	 between	 contact	 devices	 that	 require	 to	 be	 in	 physical	 contact	
with	the	object	under	sensing	and	uses	conduction	to	monitor	changes	 in	temperature,	and	
non-contact	devices	that	uses	convection	and	radiation	to	monitor	changes	[65-69].	
The	three	main	types	of	temperature	sensor	are	the	following:	

• Thermostat	 -	 TS:	 contact	 type	 electro-mechanical	 temperature	 sensor	made	 of	 two	
different	metals	(e.g.	nickel,	copper,	tungsten	or	aluminium)	bonded	together	to	form	
a	 bi-metallic	 strip.	 The	 different	 linear	 expansion	 rate	 of	 the	 two	 dissimilar	metals	
produces	a	mechanical	bending	of	the	strip	corresponding	to	temperature	change.	

• Thermistor	 -	RTD:	special	 type	of	 resistor	 that	changes	 its	physical	 resistance	when	
exposed	 to	 changes	 in	 temperature.	 They	 are	 passive	 resistive	 devices	 made	 of	
ceramic	materials	(e.g.	oxides	of	nickel,	manganese	or	cobalt	coated	in	glass)	so	it	 is	
necessary	to	pass	a	current	through	it	to	produce	a	measurable	voltage	output;	their	
main	advantage	is	the	fast	response	to	and	accuracy	of	measures.	

• Thermocouple	-	TC:	thermoelectric	sensors	made	of	two	junctions	of	different	metals	
(e.g.	 copper	 and	 constantan)	 welded	 together.	 The	 reference	 junction	 is	 kept	 at	 a	
constant	temperature	(cold	junction)	while	the	other	is	the	measuring	(hot)	junction.	
When	the	two	junctions	are	at	different	temperatures,	a	voltage	 is	developed	across	
the	 junction.	 Thermocouples	 have	 the	 widest	 temperature	 range	 of	 all	 the	
temperature	 sensors	 from	 below	 -200°C	 to	 over	 2000°C	 and	 are	 popular	 due	 to	
simplicity,	ease	of	use	and	speed	of	response.	

	
The	 measurement	 of	 pressure	 is	 generally	 associated	 with	 fluids,	 either	 liquids	 or	 gases;	
pressure	 is	 defined	 as	 force	 per	 unit	 area.	 There	 are	 different	 types	 of	 pressure	
measurements:	absolute	pressure	(measurement	referred	to	perfect	vacuum	e.g.	atmospheric	
pressure),	 gauge	 pressure	 (measurement	 referred	 to	 ambient	 pressure)	 and	 differential	
pressure	 (difference	 between	 two	 points	 of	measurement).	 Pressure	 sensor,	 depending	 on	
the	reference	pressure	used,	indicate	absolute,	gauge	or	differential	pressure.		
There	are	three	basic	categories	of	pressure	sensors:	
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• Piezoelectric:	uses	 the	piezoelectric	effect	distinctive	of	some	materials	 (e.g.	quartz)	
to	 measure	 the	 strain	 upon	 the	 sensing	 area	 due	 to	 pressure.	 This	 technology	 is	
widely	employed	for	the	measurement	of	highly	dynamic	pressures	with	fast	change	
in	pressure.	

• Piezoresistive:	 uses	 the	 piezoresistive	 effect	 of	 materials	 such	 as	 silicon	 to	 detect	
strain	due	to	applied	pressure;	deformation	causes	a	change	in	the	band	structure	of	
the	material	leading	to	a	change	in	the	resistivity	of	the	material.	This	change	can	be	
an	increase	or	a	decrease	according	to	the	orientation	of	the	resistors.	

• Capacitive:	two	different	plates	form	a	parallel	plate	capacitor,	a	fixed	element	having	
a	 rigid	 conductive	 surface	 (base	 plate)	 and	 a	 deformable	 conductive	 member	
(diaphragm).	 The	 capacitance	 of	 the	 sensor	 is	 inversely	 proportional	 to	 the	 gap	
between	the	central	portion	of	the	diaphragm	and	the	conductive	surface	of	the	fixed	
plate;	pressure	deforms	the	diaphragm	and	induces	the	capacitance	variation.	

	
Another	class	of	sensors	used	in	Oil&Gas	applications	is	flow	meter:	flow	is	the	rate	(volume	
or	area	per	unit	time)	at	which	a	fluid	travels	through	a	given	cross	section.	Flow	sensors	use	
acoustic	waves	 and	 electromagnetic	 fields	 to	measure	 the	 flow	 through	 a	 given	 area	 using	
physical	quantities	(e.g.	acceleration,	frequency,	pressure	and	volume).		
There	are	various	kinds	of	flow	sensors	and	flow	meters:	the	flow	rate	is	assessed	by	the	flow	
sensor	 and	 derived	 from	 other	 physical	 properties.	 The	 relationship	 between	 the	 physical	
properties	 and	 the	 flow	 rate	 is	 derived	 from	 fundamental	 fluid	 flow	 principles,	 such	 as	
Bernoulli’s	equation	[65-69].		
The	three	main	class	of	flow	sensor	are	the	following:	

• Differential	pressure:	sensors	work	according	to	Bernoulli’s	principle	so	the	pressure	
dropping	across	 the	meter	 is	proportional	 to	 the	square	of	 the	 flow	rate.	The	use	of	
pressure	drop	across	e.g.	a	pipe’s	cross	section	is	one	of	the	most	common	manners	to	
determine	a	 flow	measurement.	Some	kind	of	differential	pressure	 flow	sensors	are	
orifice	meters,	Pitot	tubes,	Venturi	tubes,	flow	nozzles.	

• Direct	force:	flow	meters	governed	by	balancing	forces	within	the	system;	some	of	the	
most	important	are	rotameters,	turbine	meters	and	Coriolis	mass	flow	meters.	

• Ultrasonic:	 there	 are	 two	 types	 of	 ultrasonic	meters,	 Doppler	 and	 transit	 time.	 The	
former	 use	 the	 frequency	 shift	 of	 an	 ultrasonic	 signal	 when	 it	 is	 reflected	 by	
suspended	particles	or	discontinuities	(e.g.	gas	bubbles)	in	motion.	The	Doppler	effect	
flowmeters	uses	reflected	ultrasonic	sound	to	measure	the	fluid	velocity.	Transit	time	
meters,	instead,	have	two	opposing	transducers	outside	the	pipe	to	measure	the	time	
of	 a	 signal	 sent	 from	 a	 transducer	 upstream	 to	 a	 transducer	 downstream	 and	 vice	
versa.	

	
Level	sensors	detect	the	level	of	liquids	and	fluids	that	become	horizontal	in	their	containers	
because	of	gravity.	This	measurement	can	be	either	continuous	or	point	values:	continuous	
level	devices	measure	the	exact	amount	of	substance	(within	a	range)	in	a	certain	place	while	
point-level	sensors	indicate	if	the	fluids	is	above	or	below	the	sensing	point.	There	are	many	
different	 classes	 of	 level	 sensors	 because	 a	 lot	 of	 variables	 are	 involved	 (e.g.	 phase,	
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temperature,	pressure,	density…).	Also	level	sensors	can	be	designed	using	variety	of	sensing	
principles.	Some	examples	are:	

• Magnetic	and	mechanical:	direct	contact	or	magnetic	operation	control	the	opening	or	
closing	of	a	mechanical	switch.	

• Ultrasonic:	 level	 sensors	 used	 for	 contactless	 level	 sensing	 in	 particular	 for	 highly	
viscous	liquids.	The	sensor	transmits	an	ultrasonic	beam	to	the	surface	level	and	the	
returned	echo	from	the	surface	is	detected	by	the	sensor	and	converted	into	a	digital	
representation	of	the	distance	between	the	sensor	and	the	surface	level.		

• Hydrostatic:	 used	 for	 measuring	 liquid	 levels	 in	 open	 or	 closed	 vessels.	 The	 level	
measure	 is	 detected	 measuring	 the	 liquid	 column	 pressure;	 with	 the	 pressure	
measure	and	the	fluid	specific	gravity	is	possible	to	calculate	the	fluid	column	height.		

		
In	the	following	tables	are	shown	all	 the	failure	modes	(Table	I)	and	mechanisms	(Table	II)	
related	to	both	mechanical	and	electronic	items	in	Oil&Gas	applications.	
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Table	I	–	Failure	modes	in	Oil&Gas	applications	in	compliance	with	UNI	EN	ISO	14224	

	

	
	

	
	
	
	
	
	
	

Failure(Mode Description
Abnormal)instrument)reading False)alarm,)faulty)instrument)indication

Breakdown Serious)damage)(seizure,)breakage)
External)leakage Oil,)gas,)condensate,)water,)lubricant,)cooling)water)leakage
Erratic)output Oscillating,)hunting,)instability)of)outcomes

Failure)to)connect Failure)to)connect)when)required
Failure)to)disconnect Failure)to)disconnect)when)demanded
Faulty)output)frequency Wrong/oscillating)output)frequency
Faulty)output)voltage Wrong/unstable)output)voltage
Failure)to)rotate Failure)to)rotate)whrn)required

Failure)to)close)on)demand Doesn't)close)on)demand
Failure)to)function)on)demand Doesn't)start)on)demand
Failure)to)function)as)intended General)operation)failure

Failure)to)lock/unlock Doesn't)lock)or)unlock)when)demanded
Failure)to)open)on)demand Doesn't)open)on)demand

Failure)to)regulate Absence)of)proper)setting
Failure)to)start)on)demand Doesn't)start)on)demand

High)output Overspeed/output)above)acceptance
Insufficient)heat)transfer Cooling/heating)below)acceptance

Internal)leakage Leakage)internally)of)process)or)utility)fluids
Loss)of)buoyancy Loss)of)buoyancy)in)idle)position

Low)oil)supply)pressure Oil)supply)pressure)below)acceptance
Leakage)in)closed)position Leak)through)e.g.)valve)in)closed)position

Load)drop Load)drop
Loss)of)barrier One)or)more)barriers)against)oil/gas)escape)lost
Low)output Delivery/output)below)acceptance

Loss)of)performance Performance)below)specifications
Loss)of)redundancy One)or)more)redundant)units)not)functioning
Mooring)failure Mooring)failure

Noise Abnormal/excessive)noise
No)immediate)effect No)effect)on)function

No)output Absence)of)output
Overheating Overheating)of)machine)parts,)exhaust,)cooling)water

Parameter)deviation Monitored)parameter)exceeding)limits,)e.g.)high/low)alarm
Plugged)/)Choked Partial)or)full)flow)restriction)due)to)contamination,)objects,)etc.
Insufficient)power Too)low)power)supply

Power/signal)transmission)failure Power/signal)transmission)failure
Minor)inSservice)problems Loose)items,)discoloration,)dirt
Failure)to)set/retrieve Failed)set/retrieve)operations

Spurious)high)alarm)level High)alarm)level)when)not)necessary
Spurious)low)alarm)level Low)alarm)level)when)not)necessary

Slippage Wire)slippage
Spurious)operation Unexpected)operation,)fails)to)operate)as)demanded
Spurious)stop Unexpected)shut)down

Structural)deficiency Material)damages)(cracks,)wear,)fracture,)corrosion,)rupture)
Failure)to)stop)on)demand Doesn't)stop)on)demand

Spurious)stop Unexpected)shutdown
Vibration Abnormal)vibration

Delayed)operatioin Expected)action)with)delay
Unknown No)information)available
Other Failure)modes)not)covered)above
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Table	II	–	Failure	mechanisms	in	Oil&Gas	applications	in	compliance	with	UNI	EN	ISO	14224	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Failure(Mechanism Description
General'mechanical'Failure A'failure'related'to'some'mechanical'defect,'no'further'details'are'known

Leakage External'and'internal'leakages,'either'liquids'or'gases
Vibration Abnormal'vibration

Clearance/alignment'failure Failure'caused'by'faulty'clearance'or'alignment
Deformation Distortion,'bending,'buckling,'denting,'yielding,'shrinking,'blistering,'creeping,'etc.
Looseness Disconnection,'loose'items
Sticking Sticking,'seizure,'jamming'due'to'reasons'other'than'deformation'or'clearance/alignment'failures

General'material'failure A'failure'related'to'a'material'defect,'no'further'details'known
Cavitation Relevant'for'equipment'such'as'pumps'and'valves
Corrosion All'types'of'corrosion,'both'wet'(electrochemical)'and'dry'(chemical)
Erosion Erosive'wear
Wear Abrasive'and'adhesive'wear,'e.g.'scoring,'galling,'scuffing,'fretting

Breakage Fracture,'breach'and'crack
Fatigue In'case'the'cause'of'breakage'can'be'traced'to'fatigue

Overheating Material'damage'due'to'overheating/burning
Burst Item'burst,'blown,'exploded,'imploded,'etc.

General'instrument'failure Failure'related'to'instrumentation,'no'details'known
Control'failure No'or'faulty'regulation

No'signal/indication/alarm No'signal/indication/alarm'when'expected
Faulty'signal/indication/alarm Signal/indication/alarm'is'wrong'in'relation'to'actual'process.'Can'be'spurious,'intermittent,'oscillating,'arbitrary

Out'of'adjustment Calibration'error,'parameter'drift
Software'failure Faulty'or'no'control/monitoring/operation'due'to'software'failure

Common'cause/mode'failure Several'instrument'items'failed'simultaneously'e.g.'redundant'fire'and'gas'detectors
General'electrical'failure Failures'related'to'the'supply'and'transmission'of'electrical'power,'no'further'details'known

Short'circuiting Short'circuit
Open'circuit Disconnection,'interruption,'broken'wire/cable

No'power/voltage Missing'or'insufficient'electrical'power'supply
Faulty'power/voltage Faulty'electrical'power'supply,'e.g.'overvoltage
Earth/isolation'fault Earth'fault,'low'electrical'resistance

General'external'influence Failure'caused'by'some'external'events'or'substances'outside'the'boundary,'no'further'details'known
Blockage/plugged Flow'restricted/blocked'due'to'fouling,'contamination,'icing,'flow'assurance'(hydrates),'etc.
Contamination Contaminated'fluid/gas/surface,'e.g.'lubrication'oil'contaminated,'gas'detector'head'contaminated

Miscellaneous'external'influences Foreign'objects,'impacts,'environmental'influence'from'neighbouring'systems
General'miscellaneous Failure'mechanism'that'does'not'fall'into'one'of'the'categories'listed'above

No'cause'found Failure'investigated'but'cause'not'revealed'or'too'uncertain
Combined'causes Several'causes

Other No'code'applicable
Unknown No'information'availableM
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In	the	following	tables	are	shown	the	failure	mechanisms	and	relative	failure	modes	for	each	
class	of	sensors.	
	

Table	III	–	Failure	mechanisms	and	modes	for	temperature	sensors	
	

	
	
	

Table	IV	–	Failure	mechanisms	and	modes	for	pressure	sensors		
	

	
	
	
	
	
	
	
	

Failure(Mechanism Description Failure(Mode
Vibration Abnormal,vibration Erratic,output

External,leakage
Low,output
Erratic,output

Breakage Fracture,,breach,and,crack No,output
High,output
Low,output

External,leakage
High,output
Low,output
No,output

Out,of,adjustment Calibration,error,,parameter,drift Spurious,operation
High,output
Low,output
No,output

Failure,to,function,on,demand
Open,circuit Disconnection,,interruption,,broken,wire/cable No,output

High,output
Low,output
High,output
Low,output

No,cause,found Failure,investigated,but,cause,not,revealed,or,too,uncertain Unknown
Combined,causes Several,causes Unknown

Corrosion

Overheating

Faulty,signal/indication/alarm

Software,failure

Contamination

All,types,of,corrosion,,both,wet,(electrochemical),and,dry,(chemical)

Material,damage,due,to,overheating/burning

Signal/indication/alarm,is,wrong,in,relation,to,actual,process.,Can,be,spurious,,intermittent,,oscillating,,arbitrary

Faulty,or,no,control/monitoring/operation,due,to,software,failure

Miscellaneous,external,influences

Contaminated,fluid/gas/surface,,e.g.,lubrication,oil,contaminated,,gas,detector,head,contaminated

Foreign,objects,,impacts,,environmental,influence,from,neighbouring,systems

Failure(Mechanism Description Failure(Mode
Erratic'output

Spurious'operation

External'leakage

Low'output

Erratic'output

Breakage Fracture,'breach'and'crack No'output

High'output

Low'output

Spurious'operation

No'output

External'leakage

High'output

Low'output

No'output

Out'of'adjustment Calibration'error,'parameter'drift Spurious'operation

High'output

Low'output

No'output

Failure'to'function'on'demand

Open'circuit Disconnection,'interruption,'broken'wire/cable No'output

No'power/voltage Missing'or'insufficient'electrical'power'supply No'output

Earth/isolation'fault Earth'fault,'low'electrical'resistance No'output

High'output

Low'output

High'output

Low'output

No'cause'found Failure'investigated'but'cause'not'revealed'or'too'uncertain Unknown

Combined'causes Several'causes Unknown

Miscellaneous'external'influences Foreign'objects,'impacts,'environmental'influence'from'neighbouring'systems

Contamination Contaminated'fluid/gas/surface,'e.g.'lubrication'oil'contaminated,'gas'detector'head'contaminated

Software'failure Faulty'or'no'control/monitoring/operation'due'to'software'failure

Faulty'signal/indication/alarm Signal/indication/alarm'is'wrong'in'relation'to'actual'process.'Can'be'spurious,'intermittent,'oscillating,'arbitrary

Burst Item'burst,'blown,'exploded,'imploded,'etc.

Fatigue In'case'the'cause'of'breakage'can'be'traced'to'fatigue

Corrosion All'types'of'corrosion,'both'wet'(electrochemical)'and'dry'(chemical)

Deformation Distortion,'bending,'buckling,'denting,'yielding,'shrinking,'blistering,'creeping,'etc.
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Table	V	–	Failure	mechanisms	and	modes	for	level	sensors	
	

	
	

Table	VI	–	Failure	mechanisms	and	modes	for	flow	sensors	
	

	
	
	 	

Failure(Mechanism Description Failure(Mode
Erratic'output

Spurious'operation
Erratic'output

Spurious'operation
Clearance/alignment'failure Failure'caused'by'faulty'clearance'or'alignment Erratic'output

Sticking Sticking,'seizure,'jamming'due'to'reasons'other'than'deformation'or'clearance/alignment'failures Erratic'output
Cavitation Relevant'for'equipment'such'as'pumps'and'valves Erratic'output

External'leakage
Low'output
Erratic'output

Breakage Fracture,'breach'and'crack No'output
Out'of'adjustment Calibration'error,'parameter'drift Spurious'operation

High'output
Low'output
No'output

Failure'to'function'on'demand
Open'circuit Disconnection,'interruption,'broken'wire/cable No'output

No'power/voltage Missing'or'insufficient'electrical'power'supply No'output
High'output
Low'output
No'output

Erratic'output
High'output
Low'output
High'output
Low'output

No'cause'found Failure'investigated'but'cause'not'revealed'or'too'uncertain Unknown
Combined'causes Several'causes Unknown

Blockage/plugged Flow'restricted/blocked'due'to'fouling,'contamination,'icing,'flow'assurance'(hydrates),'etc.

Contamination Contaminated'fluid/gas/surface,'e.g.'lubrication'oil'contaminated,'gas'detector'head'contaminated

Miscellaneous'external'influences Foreign'objects,'impacts,'environmental'influence'from'neighbouring'systems

Software'failure Faulty'or'no'control/monitoring/operation'due'to'software'failure

Faulty'power/voltage Faulty'electrical'power'supply,'e.g.'overvoltage

Deformation Distortion,'bending,'buckling,'denting,'yielding,'shrinking,'blistering,'creeping,'etc.

Looseness Disconnection,'loose'items

Corrosion All'types'of'corrosion,'both'wet'(electrochemical)'and'dry'(chemical)

Failure(Mechanism Description Failure(Mode
Vibration Abnormal,vibration Erratic,output

Erratic,output
Spurious,operation
Erratic,output

Spurious,operation
External,leakage
Low,output
Erratic,output

Breakage Fracture,,breach,and,crack No,output
No,signal/indication/alarm No,signal/indication/alarm,when,expected No,output

High,output
Low,output
No,output

Out,of,adjustment Calibration,error,,parameter,drift Spurious,operation
High,output
Low,output
No,output

Failure,to,function,on,demand
Open,circuit Disconnection,,interruption,,broken,wire/cable No,output

No,power/voltage Missing,or,insufficient,electrical,power,supply No,output
High,output
Low,output

Earth/isolation,fault Earth,fault,,low,electrical,resistance No,output
No,output

Erratic,output
High,output
Low,output
High,output
Low,output

No,cause,found Failure,investigated,but,cause,not,revealed,or,too,uncertain Unknown
Combined,causes Several,causes Unknown

Deformation

Looseness

Corrosion

Faulty,signal/indication/alarm

Software,failure

Faulty,power/voltage

Blockage/plugged

Contamination

Miscellaneous,external,influences

Distortion,,bending,,buckling,,denting,,yielding,,shrinking,,blistering,,creeping,,etc.

Disconnection,,loose,items

All,types,of,corrosion,,both,wet,(electrochemical),and,dry,(chemical)

Signal/indication/alarm,is,wrong,in,relation,to,actual,process.,Can,be,spurious,,intermittent,,oscillating,,arbitrary

Faulty,or,no,control/monitoring/operation,due,to,software,failure

Faulty,electrical,power,supply,,e.g.,overvoltage

Flow,restricted/blocked,due,to,fouling,,contamination,,icing,,flow,assurance,(hydrates),,etc.

Contaminated,fluid/gas/surface,,e.g.,lubrication,oil,contaminated,,gas,detector,head,contaminated

Foreign,objects,,impacts,,environmental,influence,from,neighbouring,systems
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Appendix II  
 

Functional Safety & Safety Instrumented Systems 
 

 
 
 
I. Functional	Safety	
 
The	 operation	 of	 many	 industrial	 processes,	 especially	 in	 chemical	 and	 oil	 &	 gas	 fields,	
involves	inherent	risk	to	persons,	property,	and	environment.		
The	goal	of	functional	safety	is	to	design,	built,	operate	and	maintain	systems	in	such	a	way	to	
prevent	 dangerous	 failures	 or,	 at	 least,	 to	 be	 able	 to	 control	 them	 in	 case	 of	 hazardous	
conditions.		
A	 risk-based	 approach	 is	 mandatory	 to	 determine	 the	 required	 performance	 of	 safety	
systems.	
The	 risk	 for	 a	 system	 is	 associated	 with	 an	 initiating	 event	 that	 leads	 the	 system	 into	 a	
degraded	state	in	which	the	integrity	of	the	system	itself	is	more	or	less	severely	impacted.	To	
mitigate	a	risk	the	solution	is	to	reduce	its	frequency	or	its	severity	or	both.		
Table	 I	 shows	 the	 risk	 matrix	 in	 terms	 of	 severity	 and	 frequency	 in	 compliance	 with	 IEC	
61508:	 this	 is	 a	 generic	 standard	 that	 provides	 the	 framework	 and	 core	 requirements	 for	
functional	 safety	 of	 safety	 related	 systems	 that	 use	 Electrical/Electronic/Programmable	
Electronic	(E/E/PE)	technologies	in	industrial	applications	[86-88].	
		
	

Table	I	-	Risk	matrix	in	compliance	with	IEC	61508	
	

	
	
There	are	many	sources	of	safety	failures:	incorrect	specifications	of	the	system,	omissions	in	
the	safety	requirements	specification,	random/systematic	hardware	failures,	common	cause	
failures,	 human	 errors,	 unplanned	 system	 changes	 after	 commissioning	 and	 environmental	
influences.		
In	 order	 to	 reduce	 the	 risk	 arising	 from	 industrial	 plants,	 it	 might	 be	 necessary	 to	
automatically	 activate	 safety	 measures	 when	 required	 to	 avoid	 dangerous	 situations:	

Negligible Marginal Critical Catastrophic

Minor&injuries&at&worst Major&injuries&to&one&or&
more&persons

Loss&of&a&single&life Multiple&loss&of&live

Frequent >&1083 Undesirable Unecceptable Unecceptable Unecceptable

Probable 1083&to&1084 Tolerable Undesirable Unecceptable Unecceptable

Occasional 1084&to&1085 Tolerable Tolerable Undesirable Unecceptable

Remote 1085&to&1086 Acceptable Tolerable Tolerable Undesirable

Improbable 1086&to&1087 Acceptable Acceptable Tolerable Tolerable

Incredible ≤&1087 Acceptable Acceptable Acceptable Acceptable

Fr
eq

ue
nc
y

Severity

Risk0matrix
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functional	safety	of	Electrical/Electronic/Programmable	Electronic	Safety-Related	Systems	is	
achieved	with	Safety	Instrumented	Systems	(SIS).	These	systems	are	specifically	designed	to	
protect	personnel,	equipment,	and	the	environment	by	reducing	the	likelihood	or	the	impact	
severity	of	hazardous	events.	
	

	
Fig.	1.	SIS	-	Safety	Instrumented	System	

	
Safety	Instrumented	Systems	(see	Fig.	I	and	Fig.	II)	are	typically	constituted	by	a	combination	
of	three	fundamental	blocks	[88-89]:		

• Sensor(s)	detects	a	physical	quantity	and	provides	a	corresponding	electrical	output.	
Field	sensors	are	used	to	collect	information	and	determine	an	incipient	danger;	these	
sensors	evaluate	process	parameters	(e.g.	temperature,	pressure,	flow,	etc.)	 in	order	
to	determine	 if	 single	equipment	or	 the	whole	process	or	plant	 is	working	properly	
and	it	is	in	a	safe	state.	Such	sensors	do	not	monitor	the	normal	process	but	they	are	
usually	dedicated	to	SIS.	

• Logic	solver(s)	receives	 the	 information	collected	by	 the	sensor	and	elaborates	 it	 to	
take	the	best	response.	It	 is	typically	a	controller	that	takes	actions	according	to	the	
defined	logic	in	order	to	prevent	hazardous	conditions.	

• Final	element(s)	implements	the	outcomes	of	the	logic	solver.	This	actuator	is	the	last	
element	of	the	loop	and	in	many	industrial	applications	is	represented	by	a	pneumatic	
valve.	

	

	
Fig.	2.	Safety	Instrumented	System	Functional	Block	Diagram	

	
The	aim	of	SIS	is	to	implement	one	or	more	Safety	Instrumented	Functions	(SIF)	in	order	to	
guarantee	 a	 Safety	 Integrity	 Level	 (SIL):	 SIFs	 control	 critical	 processes	 and	 avoid	
unacceptable	 or	 dangerous	 conditions	 for	 health	 and	 environment.	 Each	 SIF	 is	 associated	
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with	a	safety	loop	that	is	the	process	involving	all	the	three	stages	described	above	(sensor,	
logic	 solver	and	 final	element)	 in	order	 to	detect	a	 failure,	 elaborate	 the	collected	data	and	
perform	the	corrective	action.	
SIL	is	determined	by	the	Risk	Reduction	Factor	(RRF)	provided	by	the	SIS	to	the	equipment	
under	control.	The	inverse	of	the	RRF	is	the	Probability	of	Failure	on	Demand	(PFD)	that	is	a	
value	that	indicates	the	probability	of	a	system	failing	to	respond	to	a	demand.		
Average	Probability	 of	 Failure	 on	Demand	 (PFDavg)	 is	 the	 average	 probability	 of	 a	 system	
failing	to	respond	to	a	demand	in	a	specified	time	interval,	usually	called	Proof	Test	Interval.	
	

RFF = 1PFD 																																																																										
(211)	

There	are	two	modes	of	operation	for	a	safety	function,	low	and	high	(or	continuous)	demand	
mode.	
In	a	low	demand	mode	the	safety	function	is	only	performed	on	demand	in	order	to	lead	the	
EUC	to	a	specified	safe	state;	in	this	case	the	frequency	of	demands	is	no	greater	than	one	per	
year	 or	 twice	 the	 proof	 test	 frequency	 (frequency	 setting	 how	 often	 the	 safety	 system	 is	
completely	tested	and	insured	to	be	fully	operational).	
In	a	high	demand	mode	 the	safety	 function	 is	always	performed	on	demand	but	more	 than	
twice	 the	 proof	 check	 frequency;	 in	 continuous	 mode	 of	 operation,	 instead,	 the	 safety	
function	is	part	of	normal	operation.		
Low	demand	mode	is	defined	by	PFD	target	while	high	demand	and	continuous	mode	follow	
the	Probability	of	(dangerous)	Failure	per	Hour	(PFH).	
	
	

Table	II	-	SIL	and	corresponding	PFD	and	PFH	targets		
	

	
	
The	probability	to	 fail	on	demand	can	be	calculated	using	the	dangerous	failure	rate	λD	and	
the	testing	interval	T1	(assuming	that	systematic	failures	are	minimized)	as	follows:	
	

PFD = λD ⋅
T1
2 																																																																		

(212)	

	
The	 equation	 shows	 that	 the	 relationship	 between	 PFD	 and	 TI	 is	 linear	 so	 longer	 test	
intervals	lead	to	larger	PFDs.	
	

SIL
Low&demand&mode&of&operation&

PFDavg

High&demand&or&continuos&mode&of&operation
PFH&[h<1]

4 ≥"10%5"to"<"10%4 ≥"10%9"to"<"10%8

3 ≥"10%4"to"<"10%3 ≥"10%8"to"<"10%7

2 ≥"10%3"to"<"10%2 ≥"10%7"to"<"10%6

1 ≥"10%2"to"<"10%1 ≥"10%6"to"<"10%5
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II. Definitions	
	
Common	terms	related	to	Safety	Instrumented	Systems	are	listed	below	[88-89]:	

• Functional	safety:	part	of	 the	overall	 safety	relating	 to	 the	equipment	under	control	
(EUC)	 and	 the	 EUC	 control	 system	 that	 depends	 on	 the	 correct	 functioning	 of	 the	
E/E/PE	Safety-Related	System	and	other	risk	reduction	measures.	

• Safety-Related	 System:	 a	 system	 that	 implements	 the	 required	 safety	 functions	
necessary	to	achieve	or	maintain	a	safe	state	for	the	EUC	and	achieves	safety	integrity	
for	the	required	safety	functions.	

• Process	 Hazard	 Analysis	 (PHA):	 it	 requires	 identifications	 of	 hazards,	 causes	 of	
accidents,	possible	outcome	of	accidents,	safeguard	to	prevent	and	recommendation	
to	implement	measures	to	reduce	process	risk.	

• Safety	 Instrumented	Function	 (SIF):	 Safety	 function	with	a	 specified	 safety	 integrity	
level,	which	is	necessary	to	achieve	functional	safety.		

• Safety	 Instrumented	 System	 (SIS):	 Instrumented	 system	 used	 to	 implement	 one	 or	
more	safety	instrumented	functions.	A	SIS	is	composed	of	three	sub-systems,	sensors,	
logic	solvers,	and	final	elements.	

• Safety	 Integrity	 Level	 (SIL):	 A	 quantifiable	 measurement	 of	 risk	 used	 to	 establish	
safety	 performance	 targets	 for	 SIS	 systems.	 It	 is	 a	 classification	 of	 Safety	 Function	
ability	to	reduce	the	risk	for	accidents	in	industrial	processes.	

• Spurious	Trip:	Refers	to	the	shutdown	of	the	process	not	for	safety	reasons		
• Safe	 State:	 State	 that	 the	 equipment	 under	 control,	 or	 the	 process,	 shall	 attain	 as	

defined	by	the	Process	Hazard	Analysis.	
• Demand:	A	condition	or	event	 that	 requires	 the	 safety	 instrumented	system	 to	 take	

appropriate	action	to	prevent	an	arising	hazardous	event	or	mitigate	the	consequence	
of	a	hazardous	event.	

• Hardware	Fault	Tolerance	(HFT):	it	is	the	maximum	number	of	hardware	faults	that	
will	not	lead	to	a	dangerous	failure,	so	a	hardware	fault	tolerance	of	zero	means	that	a	
single	 fault	 can	 cause	 loss	 of	 the	 safety	 function.	 It	 is	 a	measure	 of	 the	 quality	 of	 a	
safety	function.		

• Probability	 of	 Failure	 on	Demand	 (PFD):	 A	 value	 that	 indicates	 the	 probability	 of	 a	
system	failing	to	respond	to	a	demand.	PFDavg	is	the	average	probability	of	a	system	
failing	to	respond	to	a	demand	in	a	specified	time	interval,	usually	called	Proof	Test	
Interval.	

• Redundancy:	Use	of	multiple	elements	or	systems	to	perform	the	same	function.		
• Random	 hardware	 failure:	 failure	 that	 occurs	 at	 random	 time	 and	 produces	 a	

degradation	mechanism	in	system	hardware.	
• Systematic	failure:	failure	that	cannot	be	accurately	predicted	(such	as	random	ones)	

and	requires	modification	of	the	design	to	be	solved.	
• Common	 Cause	 Failures	 (CCF):	 single	 failure	 that	 affects	 the	 operation	 of	 multiple	

(usually	 identical)	devices,	produces	concurrent	 failures	and	leads	to	system	failure.	
Common	cause	failures	can	result	in	the	SIS	failing	to	function	when	there	is	a	process	
demand.	
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• Safe/Dangerous	failure:	a	safe	failure	causes	the	system	to	go	to	the	defined	fail-safe	
state	without	a	demand	from	the	process	so	it	does	not	compromise	the	system	safety	
integrity	and	reduces	availability	and	productivity.	A	dangerous	failure,	instead,	leads	
to	a	safety-related	system	failing	to	function	and	compromise	system	safety	integrity.	

• Detected/undetected	failure:	a	failure	that	will	be	detected/undetected	by	diagnostic	
tests.	

	
	
III. Diagnostic	Coverage	And	Safe	Failure	Fraction	
	
There	 are	 four	 types	 of	 random	hardware	 failures	 depending	 on	 safe/dangerous	 scenarios	
and	detectability:	

• Safe	undetected	(λSU):	SIF	can	always	be	performed;	
• Safe	detected	(λSD):	SIF	can	always	be	performed;	
• Dangerous	 detected	 (λDD):	 SIF	 cannot	 be	 performed	but	 system	will	 quickly	 go	 into	

the	safe	state;	
• Dangerous	undetected	(λDU):	failure	occurs	without	notice	and	in	case	of	demand	the	

safety	system	cannot	perform	SIF.	
	
Two	 important	 parameters	 for	 safety	 assessment	 are	 Diagnostic	 Coverage	 (DC)	 and	 Safe	
Failure	Fraction	(SFF)	[28].		
DC	 is	 the	ratio	of	 the	probability	of	detected	 failures	 to	 the	probability	of	all	 the	dangerous	
failures	 and	 it	 is	 a	measure	 of	 system	 ability	 to	 detect	 failures;	 SFF,	 instead,	 indicates	 the	
probability	of	the	system	failing	in	a	safe	state	so	it	shows	the	percentage	of	possible	failures	
that	are	self-identified	by	the	device	or	are	safe	and	have	no	effect	[86].	
The	steps	required	for	DC	and	SFF	assessment	are	listed	below:	

• Starting	 from	 the	Reliability	Block	Diagram	 (RBD)	 of	 the	 system	 (which	 is	 a	 sketch	
containing	all	the	items	making-up	the	system	and	their	interconnections)	–	the	first	
step	is	to	assess	Failure	Mode	and	Effect	Analysis	(FMEA)	to	determine	the	effect	of	
each	failure	mode	of	the	components	on	the	behaviour	of	the	whole	system.	

• The	second	step	is	the	categorization	of	failure	modes	according	to	its	consequences:	
safe	or	dangerous	failures.	

• The	 third	 step	 is	 the	 estimation	 of	 failure	 rate	 (λ)	 of	 each	 component	 or	 group	 of	
components	and	 the	probability	of	 safe	 (λS)	and	dangerous	 (λD)	 failures.	The	 failure	
rate	of	each	component	or	group	of	components	can	be	estimated	using	data	from	a	
recognized	industry	source,	taking	the	application	environment	into	account.	

• For	each	component	or	group	of	components,	estimate	the	fraction	of	safe/dangerous	
failures	 that	 will	 be	 detected	 (“D”)	 or	 undetected	 (“U”)	 by	 diagnostic	 tests.	 The	
corresponding	 probabilities	 are	 λSD,	 λSU,	 λDD	 and	 λDU	 so	 the	 first	 subscript	 letter	 is	
referred	to	safe/dangerous	failure,	the	second	letter	concern	detection	likelihood.	
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DC =
λDD∑

λDD∑ + λDU∑ 					
SFF =

λS∑ + λDD∑
λS∑ + λDD∑ + λDU∑ 																										

(213)	

	
In	 order	 to	 assess	 DC	 and	 SFF	 the	 analyst	 has	 to	 include	 all	 the	 electrical,	 electronic,	
electromechanical	 and	 mechanical	 items	 necessary	 to	 allow	 the	 system	 to	 process	 the	
required	safety	functions.	
Similarly	it	is	mandatory	to	consider	all	of	the	possible	dangerous	modes	of	failure	that	could	
lead	to	an	unsafe	state,	prevent	a	safe	response	on	demand	or	compromise	the	system	safety	
integrity.	
Within	the	dangerous	failures,	it	is	necessary	to	estimate	for	each	component	the	fraction	of	
failures	 that	 are	 detected	 by	 the	 diagnostic	 tests:	 these	 tests	 (e.g.	 comparison	 checks	 in	
redundant	 architectures,	 additional	 built-in	 test	 routines	 and	 continuous	 condition	
monitoring)	are	a	huge	contribute	to	the	diagnostic	coverage.		
	
	
IV. Architectural	Constrains	
	
Architectural	constrains	on	hardware	safety	integrity	are	a	set	of	architectural	requirements	
that	influence	the	SIL	assessment	for	each	subsystem.	These	constraints	are	associated	with	
three	 parameters:	 Hardware	 Fault	 Tolerance,	 Safe	 Failure	 Fraction	 and	 “A/B-type”	
classification	[28].	
Hardware	 Fault	 Tolerance	 (HFT)	 is	 the	maximum	number	 of	 hardware	 faults	 that	will	 not	
lead	to	a	dangerous	failure.	HFT	of	“n”	means	that	“n+1”	faults	cause	a	loss	of	the	SIF.	
This	 type	 of	 fault	 tolerance	 can	 be	 increased	 by	means	 of	 system	 architecture:	 the	 limit	 of	
each	configuration	is	the	number	of	working	devices	required	to	perform	the	safety	function.	
As	for	all	redundant	architectures,	common-cause	failures	(CCF)	can	nullify	redundancy.		
There	are	three	different	stages	of	hardware	fault	tolerance:	

• HFT=0	 In	 a	 single	 channel	 architecture	 (1oo1)	 only	 in	 case	 of	 no	 failure	 the	 safety	
function	can	be	performed.	

• HFT=1	In	a	dual	redundancy	(1oo2	or	2oo3)	even	in	case	of	one	failure	in	the	sensing	
elements	or	logic	solvers	the	safety	function	can	still	be	performed.	

• HFT=2	In	a	triple	redundancy	(1oo3)	up	to	two	failures	can	be	tolerated	in	order	to	
perform	the	safety	function.	

	
The	 second	 parameter	 is	 Safe	 Failure	 Fraction	 described	 in	 the	 previous	 paragraph	 that	
represent	 the	 fraction	of	 failures	which	can	be	considered	“safe”	since	 they	are	detected	by	
diagnostic	tests	or	do	not	cause	a	loss	of	the	safety	function.	
The	 last	 architectural	 constrain	 is	 the	 subsystem	 classification	 in	 “A/B-type”;	 type	 A	
subsystems	have	consolidated	design	and	the	behaviour	 in	case	of	error	 is	well	known.	For	
type	B	subsystems,	instead,	the	behaviour	in	case	of	failure	is	not	completely	known	[88].	
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Table	III.	SIL	depending	on	SFF	and	HFT		
	

	
	

V. Probability	Of	Failure	On	Demand	And	Probability	Of	Failure	Per	Hour	
	
Probability	 of	 Failure	 on	 Demand	 (PFD)	 and	 Probability	 of	 Failure	 per	 Hour	 (PFH)	 can	 be	
assessed	by	understanding	how	the	components	of	the	SIS	can	fail:	there	are	two	basic	ways	
for	a	SIS	to	fail.		
The	 first	 way	 is	 commonly	 called	 a	 nuisance	 or	 spurious	 trip	 which	 usually	 results	 in	 an	
unplanned	process	 shutdown	without	 safety	 impact.	 So	 there	 is	 no	danger	 associated	with	
this	type	of	SIS	failure	and	it	only	reduces	availability	and	productivity	(safe	failure).	
The	second	type	of	 failure	does	not	cause	a	process	shutdown	or	nuisance	trip.	 In	 this	case	
the	 failure	 remains	 undetected,	 permitting	 continued	 process	 operation	 in	 an	 unsafe	 and	
dangerous	condition.	If	an	emergency	demand	occurred,	the	SIS	would	be	unable	to	respond	
properly	(dangerous	failure).		
In	low	demand	mode	of	operation,	IEC	61508	requires	the	PFDavg	assessment	starting	from	
Mean	Down	Time	(MDT).	
MDT(T)	is	the	mean	down	time	of	the	safety	system	over	the	period	[0,T];	for	components	in	
series,	MDT	is	the	sum	of	MDTs	of	each	part	[88].		
	

MDTSYS =MDTA +MDTB 																																																									(214)	

For	redundant	architectures:	
	

MDTSYS = PFDA (t) ⋅
0

T

∫ PFDB (t) ⋅dt
																																																

(215)	

For	a	Safety	Instrumented	System:	
	

MDTSYS =MDTSE +MDTLS +MDTFE 																																															(216)	

Dividing	by	T:	
	

PFDavgSYS = PFDavgSE +PFDavgLS +PFDavgFE 																																									(217)	

	

0"fault 1"fault 2"faults 0"fault 1"fault 2"faults

<"60% SIL$1 SIL$2 SIL$3 Not$allowed SIL$1 SIL$2

60&90% SIL$2 SIL$3 SIL$4 SIL$1 SIL$2 SIL$3

90&99% SIL$3 SIL$4 SIL$4 SIL$2 SIL$3 SIL$4

>"99% SIL$3 SIL$4 SIL$4 SIL$3 SIL$4 SIL$4

SFF"vs"HFT

Type"A Type"B

Hardware"Fault"Tolerance Hardware"Fault"Tolerance

Safe"Failure"
Fraction
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In	continuous	or	high	demand	mode	of	operation,	IEC	61508	requires	the	PFH	assessment:	it	
is	the	average	of	the	unconditional	failure	intensity	(also	called	failure	frequency)	w(t)	over	
the	period	of	interest:	

PFH (T ) = 1
T

w(t) ⋅dt
0

T

∫
																																																									

(218)	

	
VI. Reliability	Block	Diagram	Approach	For	PFD	
	
Reliability	 Block	 Diagram	 approach	 is	 used	 for	 PFD	 assessment	 in	 different	 system	
architectures.	 The	 necessary	 assumption,	 in	 compliance	 with	 IEC	 61508	 [88],	 are	 shown	
below:	

• Component	failure	rates	are	constant	over	the	life	of	the	system;	
• The	 sensor	 (input)	 subsystem	 comprises	 the	 actual	 sensor(s)	 and	 wiring	 but	 not	

includes	voting	or	other	processing	devices;	
• The	final	element	(output)	subsystem	comprises	all	the	components	and	wiring	from	

the	logic	solver	to	final	actuating	component(s);	
• For	each	safety	 function,	 there	 is	perfect	proof	 testing	and	repair	so	all	 failures	 that	

remain	undetected	are	detected	by	the	proof	test;	
• The	proof	test	interval	is	at	least	an	order	of	magnitude	greater	than	the	mean	repair	

time	(MRT);	
• For	each	subsystem	there	is	a	single	proof	test	interval	and	MRT;	
• The	 expected	 interval	 between	 demands	 is	 at	 least	 an	 order	 of	 magnitude	 greater	

than	the	proof	test	interval.	
	
Legend:	

• T1:	Proof	Test	Interval	(hour)	
• T2:	Interval	between	demands	(hour)	
• MTTR:	Mean	Time	To	Restoration	(hour)	
• MRT:	Mean	Repair	Time	(hour)	
• DC:	Diagnostic	Coverage	
• β:	Fraction	of	undetected	failures	that	have	a	common	cause	
• βD:	Fraction	of	detected	failures	that	have	a	common	cause	
• PFDavg:	Average	Probability	of	Failure	on	Demand	
• PFDSE:	Sensing	element	Probability	of	Failure	on	Demand	
• PFDLS:	Logic	solver	Probability	of	Failure	on	Demand	
• PFDFE:	Final	element	Probability	of	Failure	on	Demand	
• PFDSYS:	System	Probability	of	Failure	on	Demand	
• tCE:	 Channel	 equivalent	 MDT	 (combined	 down	 time	 for	 all	 the	 component	 in	 the	

channel	of	the	subsystem;	hour)	
• tGE:	 Voted	 group	 equivalent	 MDT	 (combined	 down	 time	 for	 all	 the	 channels	 in	 the	

voted	group;	hour)	
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The average probability of failure on demand of a safety function for the safety-related system is 
determined by the combination of the average probability of failure on demand for all the 
subsystems involved in the safety function [88]. Average PFD can be expressed as follows: 
 

PFDSYS = PFDSE +PFDLS +PFDFE                                                    (219) 
 

A. 1oo1		
 
The simplest structure is a single-item architecture (1oo1) that consists of a single channel where 
any dangerous failure leads to a failure of the safety function (when a demand arises). 
The dangerous failure rate for the channel is given by: 
 

λD = λDU +λDD
    

λDU = λD (1−DC)
    

λDD = λDDC                                 (220)

  
The channel can be considered made of two components, one with a dangerous failure rate λDU 
(resulting from undetected failures) and the other with a dangerous failure rate λDD (resulting from 
detected failures). 
It is possible to calculate the channel equivalent mean down time tCE by the sum of the individual 
down times of the two components, tc1 and tc2, taking into account the contribution of each 
component to the probability of failure of the channel:

  
 

tCE = tC1 + tC2 =
λDU
λD

T1
2
+MRT

!

"
#

$

%
&+

λDD
λD

MTTR
                                      

(221)

 
 
The PFD with down-time tCE resulting from dangerous failures is: 
 

PFD =1− e−λDtCE ≅ λDtCE                                                          (222) 
 

The average PFD for 1oo1 architecture is: 
 

PFDavg = (λDU +λDU )tCE                                                            
(223)

 
 

B. 1oo2		
 
This architecture consists of two channels connected in parallel and each channel can process the 
safety function. So there would have to be a dangerous failure in both channels before a safety 
function failed on demand. 
 

tGE =
λDU
λD

T1
3
+MRT

!

"
#

$

%
&+

λDD
λD

MTTR
                                             

(224)
 

 
 



	 	
	 	 	

192	

The average PFD for 1oo2 architecture is: 
 

PFDavg = 2 1−βD( )λDD + 1−β( )λDU( )
2
tCEtGE +βDλDDMTTR+βλDU

T1
2
+MTR

"

#
$

%

&
'

          
(225)

 
 

C. 2oo2		

 
This architecture consists of two channels connected in parallel but both channels need to demand 
the safety function before it can take place. The value of tCE is the same of 1oo1 architecture: 

tCE = tC1 + tC2 =
λDU
λD

T1
2
+MRT

!

"
#

$

%
&+

λDD
λD

MTTR
                                     

(226)
 

 
The average PFD for 2oo2 architecture is: 
    

PFDavg = (λDU +λDU )tCE                                                      
(227)

 

 
D. 1oo2D	

 
The detected safe failure rate for every channel is given by: 
 

λSD = λSDC                                                              (228)
 

 

tCE =
λDU

T1
2
+MRT

!

"
#

$

%
&+ λDD +λSD( )MTTR

λDU + λDD +λSD( )     
tGE =

T1
3
+MRT

                            
(229)

 

 
The average PFD for 1oo2D architecture is: 
 

PFDavg = 2 1−β( )λDU 1−β( )λDU + 1−βD( )λDD +λSD( ) tCEtGE +

+2 1−K( )λDDtCE +βλDU
T1
2
+MTR

⎛

⎝
⎜

⎞

⎠
⎟                            

(230)
 

 
E. 2oo3	

 
This architecture consists of three channels connected in parallel with a major voting strategy: the 
safety function is required in case at least two channels demand it and the system state is not 
changed if only one channel gives a different result which disagrees with the other two channels. 
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tCE =
λDU
λD

T1
2
+MTTR

!

"
#

$

%
&+

λDD
λD

MTTR
                                               

(231)
 

 

tGE =
λDU
λD

T1
3
+MTTR

!

"
#

$

%
&+

λDD
λD

MTTR
                                               

(232)
 

 
The average PFD for 2oo3 architecture is: 
 

PFDavg = 6 1−βD( )λDD + 1−β( )λDU( )
2
tCEtGE +βDλDDMTTR+βλDU

T1
2
+MTR

"

#
$

%

&
'

         
(233)

 

 
F. 1oo3	

 
This architecture consists of three channels connected in parallel with a voting device in series. The 
output state follows 1oo3 voting. 
It is assumed that any diagnostic testing would only report the faults found and would not change 
any output states or change the output voting. 
 

PFDavg = 6 1−βD( )λDD + 1−β( )λDU( )
3
tCEtGEtG2E +βDλDDMTTR+βλDU

T1
2
+MTR

"

#
$

%

&
'

     
(234)

 

Where: 

tG2E =
λDU
λD

T1
4
+MRT

!

"
#

$

%
&+

λDU
λD

MTTR
                                               

(235)
 

 
 

G. Case	study	for	low	demand	mode	of	operation	
 
Consider a safety loop composed by three sensors in 2oo3 architecture, two logic solvers voting 
1oo2D and two final elements both in 1oo1.  
The final elements are a single shut-down valve plus a single vent valve. Both the shut-down and 
vent valves need to operate in order to achieve the safety function so the actuator architecture is 
2oo2. 
The safety function requires	 a	 SIL	2	 system	and	 it	 is	 assumed	a	proof	 test	 period	of	 one	 year	
and	8	hours	MTTR	[88].	
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Fig.	3.		Safety	loop	IEC	334/2000	

	
Average	probability	of	failure	on	demand	for	the	subsystems	in	case	of	low	demand	mode	of	
operation	 is	 achievable	 by	 dedicated	 tables	 in	 61508,	 considering	 2oo3	 voting	 for	 sensors,	
1oo2D	voting	for	logic	solvers	and	finally	the	sum	of	1oo1	PFDavg	for	the	final	elements	[88].	
	

PFDavgSE = PFDavg2oo3 = 2,3⋅10
−4

																																																(236)	

	

PFDavgLS = PFDavg1oo2D = 4,8 ⋅10
−6

																																														(237)
	

	

PFDavgFE = PFDavg1oo1 +PFDavg1oo1 = 4, 4 ⋅10
−3 +8,8 ⋅10−3 =1,3⋅10−2 																						(238)

	
	

PFDSYS = PFDSE +PFDLS +PFDFE =1,3⋅10
−2
																																								(239)	

	
This	way	the	system	meet	SIL	1,	so	in	order	to	improve	safety	integrity	level,	there	are	two	
possibilities:	

• Reduce	the	proof	test	interval	to	six	months;		
	

PFDSYS = PFDSE +PFDLS +PFDFE =1,1⋅10
−4 + 2,6 ⋅10−6 +

+(2, 2 ⋅10−3 + 4, 4 ⋅10−3) = 6, 7 ⋅10−3 																														(240)	

• Change	the	1oo1	shutdown	valve	(which	is	the	output	device	with	the	lower	
reliability)	to	1oo2	architecture;	
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PFDSYS = PFDSE +PFDLS +PFDFE = 2,2 ⋅10
−4 + 4,8 ⋅10−6 +

+(4, 4 ⋅10−3 + 9, 7 ⋅10−4 ) = 5,6 ⋅10−3 																																	(241)	

	
In	both	cases,	SIL	2	requirement	is	achieved.	
	
	
VII. Reliability	Block	Diagram	approach	for	PFH	
 
Reliability	 Block	 Diagram	 approach	 is	 used	 also	 for	 PFH:	 the	 method	 for	 calculating	 the	
probability	 of	 failure	 of	 a	 safety	 function	 for	 an	 E/E/PE	 safety	 related	 system	operating	 in	
high	demand	or	continuous	mode	of	operation	is	the	same	of	the	one	seen	before	for	PFD	in	
low	demand	mode	of	operation.	Average	frequency	of	dangerous	failures	can	be	expressed	as	
follows	[88]:	

PFHSYS = PFHSE +PFHLS +PFHFE 																																																(242)	

A. 1oo1	
	
The	dangerous	failure	rate	for	the	channel	is	given	by:	
	

λD = λDU +λDD
				

λDU = λD (1−DC)
				
λDD = λDDC 																																			(243)	

	

The	channel	equivalent	mean	down	time	 tCE	 is	 the	sum	of	 the	 individual	down	 times	of	 the	
two	components,	tc1	and	tc2:	
	

tCE = tC1 + tC2 =
λDU
λD

T1
2
+MRT

!

"
#

$

%
&+

λDD
λD

MTTR
																																													

(244)
	

	
If	it	is	assumed	that	the	safety	system	puts	the	equipment	under	control	into	a	safe	state	on	
detection	of	any	failure,	for	a	1oo1	architecture	the	following	PFHavg	is	obtained:	
	

PFHavg = λDU 																																																																						(245) 

 
A. 1oo2	

	
If	it	is	assumed	that	the	safety	system	puts	the	equipment	under	control	into	a	safe	state	once	
there	 is	 detection	 of	 a	 failure	 in	 both	 channels	 and	 taking	 a	 conservative	 approach,	 the	
following	PFHavg	is	obtained:	
	

PFHavg = 2 1−βD( )λDD + 1−β( )λDU( ) 1−β( )λDUtCE +βλDU 																										(246)
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A. 2oo2	

	
Assuming	 that	 each	 channel	 is	 put	 into	 a	 safe	 state	 on	 detection	 of	 any	 fault,	 for	 a	 2oo2	
architecture,	the	following	PFHavg	is	obtained:	
	

PFHavg = 2λDU 																																																														(247)	

A. 1oo2D	
	

The	detected	safe	failure	rate	for	every	channel	is	given	by:	
	

λSD =
λ
2
DC

																																																														
(248)	

	

tCE ' =
λDU

T1
2
+MRT

!

"
#

$

%
&+ λDD +λSD( )MTTR

λDU +λDD +λSD 																																								
(249)

	

	
The	average	PFH	for	1oo2D	architecture	is:	

	

PFHavg = 2 1−β( )λDU 1−β( )λDU + 1−βD( )λDD +λSD( ) tCE '+ 2 1−K( )λDD +βλDU 					(250)
	

	
A. 2oo3	

	
If	it	is	assumed	that	the	safety	system	puts	the	equipment	under	control	into	a	safe	state	once	
there	 is	 detection	of	 a	 failure	 in	 any	 two	 channels	 and	 taking	 a	 conservative	 approach,	 the	
following	PFHavg	is	obtained:	
	

PFHavg = 6 1−βD( )λDD + 1−β( )λDU( ) 1−β( )λDUtCE +βDλDU 																						(251) 

 
 

A. 	1oo3	
	
If	it	is	assumed	that	the	safety	system	puts	the	equipment	under	control	into	a	safe	state	once	
there	 is	 detection	of	 a	 failure	 in	 any	 two	 channels	 and	 taking	 a	 conservative	 approach,	 the	
following	PFHavg	is	obtained:	
	

PFHavg = 6 1−βD( )λDD + 1−β( )λDU( )
2
1−β( )λDUtCEtGE +βDλDU 																(252)

	
	

A. Case	study	for	high	demand	mode	of	operation	
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Consider	 the	 safety	 loop	described	 in	 the	previous	paragraph	 composed	by	 two	 sensors	 in	
1oo2	architecture,	three	logic	solvers	voting	2oo3	and	one	final	elements	in	1oo1.		
The	final	elements	is	a	single	shut-down	contactor.		
The	safety	function	requires	a	SIL	2	system	and	it	is	assumed	a	proof	test	period	of	6	months	
and	8	hours	MTTR.	
	
	

	
Fig.	4.		Safety	loop	IEC	335/2000	

	
Average	probability	of	failure	on	demand	for	the	subsystems	in	case	of	low	demand	mode	of	
operation	 is	 achievable	 by	 dedicated	 tables	 in	 61508,	 considering	 1oo2	 voting	 for	 sensors,	
2oo3	voting	for	logic	solvers	and	finally	1oo1	PFDavg	for	the	final	element	[88].	
	

PFDavgSE = PFDavg1oo2 = 5,2 ⋅10
−7 / h 																																													(253)	

	

PFDavgLS = PFDavg2oo3 =1,0 ⋅10
−9 / h 																																													(254)

	
	

PFDavgFE = PFDavg1oo1 = 5,0 ⋅10
−7 / h 																																												(255)

	
	

PFDSYS = PFDSE +PFDLS +PFDFE =1,02 ⋅10
−6 / h 																															(256)	
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This	way	the	system	meet	SIL	1,	so	in	order	to	improve	safety	integrity	level,	there	are	two	
possibilities:	

• Change	the	input	sensor	type	in	order	to	improve	the	defenses	against	CCF	(e.g.	
improving	β	from	20%	to	10%	and	βD	from	10%	to	5%);	

	

PFDSYS = PFDSE +PFDLS +PFDFE = 2, 7 ⋅10−7 +1,0 ⋅10−9 + 5,0 ⋅10−7( ) / h = 7, 7 ⋅10−7 / h
		
(257)	

• Change	the	single	output	device	to	1oo2	architecture	(β	=	10%	and	βD	=	5%);	
	

PFDSYS = PFDSE +PFDLS +PFDFE = 2, 7 ⋅10−7 +1,0 ⋅10−9 + 5,0 ⋅10−7( ) / h = 7, 7 ⋅10−7 / h
					

(258)	
	
In	both	cases,	SIL	2	requirement	is	achieved.	
	
	

A. ISA-TR84.0.02	Standard	
	
This	paragraph	shows	the	PFD-calculation	according	to	another	standard,	ISA-TR84.0.02,	that	
includes	a	specific	guidance	in	the	application	of	SIS,	providing	methodologies	for	evaluating	
SIF	and	corresponding	SIL.	
In	 ISA-TR84.0.02	 [86]	 PFD	 equations	 are	 divided	 in	 two	 categories:	 with	 and	 without	
common	cause	factor.	
Equations	 for	 1oo1,	 1oo2	 and	 2oo3	 architectures	 are	 listed	 below,	 the	 first	 equation	 takes	
into	account	CCFs	and	MTTR,	the	second	is	the	simplified	one:	

• 1oo1	
	

PFDavg = λDU ⋅
T1
2 ;				

PFDavg = λDU ⋅
T1
2 																																										

(259)	

• 1oo2	
	

PFDavg = λDU( )2 ⋅ T1
2

3
"

#
$

%

&
'+ λDU ⋅λDD ⋅MTTR ⋅T1[ ]+ β ⋅λDU ⋅

T1
2

"

#$
%

&' ;				
PFDavg = λDU( )2 ⋅ T1

2

3 					
(260) 

 
• 2oo3	
	

PFDavg = λDU( )2 ⋅T12"
#

$
%+ 3λDU ⋅λDD ⋅MTTR ⋅T1[ ]+ β ⋅λDU ⋅

T1
2

"

#&
$

%' ;				
PFDavg = λDU( )2 ⋅T12 					

(261)	
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In	ISA-TR84.0.02	there	is	no	definition	of	SFF	and	DC	parameters,	there	is	not	differentiation	
between	Type-A	and	Type-B	devices	and	between	β	and	βD	either.	
In	the	IEC	61508	all	these	factors	are	considered	comparing	to	the	ISA-standard.	
However	 using	 both	 standards	 PFD	 values	 are	 in	 the	 same	 ranges,	 as	 long	 as	 not	 the	
simplified	calculations	of	the	ISA-standard	are	applied.	
	

VIII. SIS	Proof	and	Diagnostic	Tests	
	
A	Safety	Instrumented	System	(SIS)	is	usually	subjected	to	periodical	diagnostic	measures.		
Many	SISs	are	only	activated	when	a	process	demand	occurs	in	the	equipment	under	control	
and	 as	 a	 result	 some	 dangerous	 failures	 in	 SISs	 cannot	 be	 found	 until	 the	 systems	 are	
activated	or	tested.	
There	are	two	main	categories	of	tests:	proof	test	and	diagnostic	test.	
	

A. 						Proof	Tests		
	
A	Proof	Test	(PT)	is	a	periodic	test	performed	to	detect	dangerous	hidden	failures	in	a	safety-
related	system	so	that,	if	necessary,	a	repair	can	restore	the	system	to	an	“as	good	as	new”	or	
“as	good	as	possible”	depending	on	practical	conditions	[87].		
In	other	words,	a	proof	test	is	a	form	of	stress	test	with	the	aim	of	demonstrating	the	fitness	
of	equipment.	Usually	 it	 is	achieved	on	a	single	unit	and	 the	structure	 is	 subjected	 to	 loads	
above	 that	 expected	 in	 actual	 use,	 demonstrating	 safety	 and	 design	margin.	 Anyway	 proof	
testing	 is	 nominally	 a	 non-destructive	 test	 if	 both	 design	margins	 and	 test	 levels	 are	well-
chosen.		
Proof	tests	are	always	conducted	at	regular	intervals,	e.g.	once	per	year,	therefore	the	EUC	is	
not	protected	by	the	SIS	from	the	moment	when	a	dangerous	undetected	failure	occurs	until	
the	subsequent	proof	test;	redundant	structures	are	often	applied	in	SISs	in	order	to	achieve	
a	high	reliability.	
For	safety	valves,	a	functional	test	means	to	perform	a	full	stroke	operation	(Full	Valve	Stroke	
Test)	 however	many	 automatic	 procedure	were	 introduced	 to	 replace	 the	 need	 for	 offline	
testing.	
The	most	 common	 procedure	 to	 test	 final	 elements	 is	 the	 partial	 valve	 stroke	 test	 (PVST).	
This	 is	 a	 technique	 used	 in	 control	 systems	 to	 cover	 a	 percentage	 of	 the	 possible	 failure	
modes	of	a	shut	down	valve	without	closing	the	valve.		
Conducting	a	full	system	proof	test	is	usually	possible	only	when	the	process	is	shut	down.	In	
order	to	reduce	the	frequency	of	such	complete	tests,	the	PVST	are	the	best	solution.	
Many	dangerous	undetected	failure	modes	can	be	detected	just	with	a	small	valve	movement	
that	would	not	affect	system	availability	and	productivity.		
Partial	stroke	test	is	necessary	to	guarantee	that	the	safety	function	will	operate	on	demand	
but	it	is	not	sufficient	so	the	need	of	proof	testing	(fully	stroke	valves)	is	still	mandatory.	
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Partial	valve	proof	tests	must	be	performed	periodically	because	they	are	the	only	method	to	
discover	dangerous	undetected	 failures	and	avoid	severe	consequences	with	sufficient	high	
probability.	
The	 frequency	 to	 conduct	 these	 tests	 depends	 on	 the	 component's	 average	 probability	 of	
failure	 on	 demand	 (PFDavg):	 higher	 test	 frequency	 means	 lower	 PFDavg	 and	 higher	 risk	
reduction	factor	(RRF).	
In	the	statistical	mean	the	dangerous	undetected	failures	occur	at	half	of	the	interval	between	
two	tests	(proof	test	interval),	so:		
	

PFD = λD ⋅
T1
2 																																																																																	

(262)
	

	
There	are	several	different	types	of	partial	valve	stroke	testing.	
The	 simplest	 method	 involves	 a	 PLC	 and	 a	 dedicated	 switch:	 supposing	 that	 a	 remote	
actuated	valve	is	energized	during	normal	operation,	during	the	test	the	digital	output	of	the	
corresponding	 PLC	 is	 de-energized	 and	 the	 dedicated	 switch	 is	 used	 to	 detect	 any	 valve	
movement	as	a	result	of	the	momentary	off	pulse.	
A	 more	 sophisticated	 approach	 pulses	 the	 solenoid	 and	 measures	 the	 pressure	 response	
waveform:	default	patterns	in	the	pressure	response	indicate	a	failure	condition	of	the	valve.		
Analog	 methods	 usually	 offer	 better	 results	 to	 detect	 failures	 rather	 than	 simple	 digital	
feedback	 techniques;	 the	 effectiveness	 of	 the	 detection	 depends	 on	many	 factors	 e.g.	 PVST	
methodology,	application	conditions,	and	shut-off	requirements.	
A	 partial	 stroke	 test	 is	 a	 delicate	 procedure	 in	 particular	 in	 high	 energy	 and	 high	 flow	
applications	 where	 the	 PVST	 could	 generate	 a	 response	 (and	 instabilities)	 in	 the	 process	
control	system	or	in	the	safety	instrumented	system	leading	to	a	spurious	trip.	
Table	V	shows	coverage	factors	for	the	more	sophisticated	partial	valve	stroke	techniques	for	
different	product	types;	these	results	were	achieved	with	FMEDA	analysis	[86-89].	
Obviously	 the	application	of	a	valve	affects	 failure	rates,	 failure	modes	and	coverage	 factor:	
energize	or	de-energize	to	trip,	open	or	close	to	trip.	
Two	primary	categories	of	service	have	been	used,	clean	service	and	severe	service.	The	first	
means	 that	 the	 fluid	 involved	 in	 the	process	 is	 a	 clean	gas	or	a	 fluid	without	particulate	or	
droplets	 of	 water;	 the	 second	 means	 that	 the	 valve	 is	 exposed	 to	 particulates,	 abrasives	
and/or	corrosive	gases	or	fluids	that	produces	higher	stress	levels	[87].	
	
FVPT	procedure	consist	of	a	full	stroke	of	the	valve	following	these	steps:	

• Bypass	the	safety	function	and	take	appropriate	action	to	avoid	a	false	trip;	
• Interrupt	(or	change)	the	signal	to	the	actuator	to	force	the	valve	to	achieve	the	fail-

safe	condition	with	the	required	time;	
• Re-store	the	standard	signal	to	the	actuator	in	order	to	achieve	the	normal	operating	

state;	
• Inspect	the	valve	for	any	visible	damage,	leaks	or	contamination;	
• Remove	the	bypass;	
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• Confirm	the	valve	movement;	
• Monitor	 the	 travel	 of	 the	 valve	 and	 slew	 rate	 comparing	 the	 results	with	 expected	

outcomes	to	validate	the	test.	
	
	

Table	V.	Partial	Valve	Stroke	capability		
	

	
	
	
Full	Valve	Stroke	Tests	(FVST)	offer	greater	levels	of	diagnostic	coverage.	The	standard	setup	
for	on-line	achievement	of	this	kind	of	test	requires	two	valves	piped	in	a	2oo2	architecture:	
one	valve	can	be	completely	closed	while	the	other	remains	open	to	assure	continued	process	
operation.	However	FVST	are	usually	done	during	scheduled	system	shutdowns.		
The	 three	diagrams	 that	 follow	 illustrate	how	more-frequent	 testing	 can	 reduce	PFDavg	or	
extend	the	intervals	between	full	proof	tests.	
Probability	of	 failure	on	demand	 (PFD)	 increases	over	 time	but	 returns	 to	 its	original	 level	
when	a	full	proof	test	is	done	to	prove	that	everything	works	as	expected.		
Running	 the	 same	 partial	 test	 twice	 as	 often	 lowers	 the	 average	 PFD:	 this	 strategy	 allow	
design	engineer	to	meet	higher	SIL	requirement	using	the	same	equipment	or	choose	cheaper	
one	to	achieve	the	same	SIL.	

Product(Type Application Partial(Valve(Stroke(
Dangerous(Coverage(Factor

Solenoid De;energize(to(trip 99.0%

Pnuematic(Piston(Actuator,(clean(service De;energize(to(trip 99.3%

Pneumatic(Piston(Actuator,(severe(service De;energize(to(trip 99.6%

Pneumatic(Rack(&(Pinion(Actuator,(clean(service De;energize(to(trip 81.9%

Pneumatic(Rack(&(Pinion(Actuator,(severe(service De;energize(to(trip 88.0%

Scotch(Yoke(Actuator,(clean(service De;energize(to(trip( 92.6%

Scotch(Yoke(Actuator,(severe(service De;energize(to(trip 94.0%

Gate(Valve,(clean(service Close(to(trip 87.9%

Gate(Valve,(severe(service Close(to(trip 84.9%

Ball(Valve,(severe(service,(full(stroke(only Close(to(trip 45.2%

Ball(Valve,(severe(service,(tight(shut;off Close(to(trip 22.2%

Resilient(Butterfly(Valve,(clean(service (Open(to(trip 63.6%

Resilient(Butterfly(Valve,(clean(service( Close(to(trip 53.8%
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Another	 approach	 is	 to	 run	partial	 stroke	 tests	 frequently	 in	order	 to	double	 the	 full	 proof	
test	interval	and	maintain	the	same	average	PFD	[87].	
	
	

	

	
Fig.	5.		PFD	trend	in	case	of	full	proof	test	procedure	

	
	

	
Fig.	6.		PFD	trend	in	case	of	full	proof	test	procedure	and	partial	stroke	test	
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Table	VI.	Dangerous	valve	failure	modes,	effects	and	corresponding	test	strategy		
	

	
	
	
In	 IEC	61508	[88]	and	IEC	61511	[89]	dangerous	 failures	(λD)	are	divided	 in	detected	(λDD)	
and	 undetected	 (λDU)	 depending	 on	 the	 effectiveness	 of	 the	 diagnostic	 equipment;	 the	
Diagnostic	Coverage	(DC)	factor	is	the	fraction	of	dangerous	failures	that	are	detected	by	the	
diagnostics	 beside	 all	 dangerous	 failures	 and,	 at	 the	 same	 time,	 it	 is	 the	 conditional	
probability	that	a	dangerous	failure	is	detected	by	the	diagnostics	(in	presence	of	a	dangerous	
failure).	

DC = λDD
λD 																																																																	

(263)	

As	said	before,	in	order	to	reveal	potential	dangerous	undetected	failures,	final	elements	(in	
particular	 safety	valves)	are	usually	 tested	with	partial	 stroke	 tests	 and,	 to	a	 lower	extend,	
with	 functional	 tests	 (or	 full	 stroke	 tests):	 the	 “standard”	 failure	 rate	 λDU	may	 be	 split	 into	
λDU,PVST	and	λDU,FVST.	
Since	PVST	is	not	always	successful	it	is	necessary	to	introduce	a	dedicated	coverage	factor,	
the	Partial	Valve	Stroke	Test	Coverage	(PC).	
Similarly	 for	Diagnostic	Coverage,	 the	PVST	coverage	has	two	different	 interpretations:	 it	 is	
defined	as	the	fraction	of	dangerous	undetected	failures	detected	by	the	partial	valve	stroke	
test	 and	 the	 total	 number	of	 dangerous	undetected	 failures	 and,	 at	 the	 same	 time,	 it	 is	 the	
conditional	probability	that	a	dangerous	undetected	failure	 is	detected	by	the	PVST	(once	a	
dangerous	undetected	failure	is	present).	
	

PC = λDU,PVST
λDU 																																																																

(264)
	

Failure(Modes Effects Test(Strategy

Actuator(sizing(is(insufficient(to(actuate(valve(in(
emergency(conditions Valve(fails(to(close((or(open) (Not(tested

Valve(packing(is(seized Valve(fails(to(close((or(open) Test(valve(–(Partial(or(fullBstroke

Valve(packing(is(tight Valve(is(slow(to(move(to(closed(
or(open(position

Not(tested(unless(speed(of(closure(is(
monitored

Air(line(to(actuator(crimped( Valve(is(slow(to(move(to(closed(
or(open(position

Not(tested(unless(speed(of(closure(is(
monitored.(Physical(inspection

Air(line(to(actuator(blocked Valve(is(slow(to(move(to(closed(
or(open(position Test(valve(–(Partial(or(fullBstroke

Valve(stem(sticks( Valve(fails(to(close((or(open) Test(valve(–(Partial(or(fullBstroke

Valve(seat(is(scarred Valve(fails(to(seal(off FullBstroke(test(with(leak(test

Valve(seat(contains(debris Valve(fails(to(seal(off FullBstroke(test

Valve(seat(plugged(due(to(deposition(or(
polymerization Valve(fails(to(seal(off FullBstroke(test
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A	word	of	clarification,	as	said	before,	the	distinction	“detected/undetected”	is	associated	just	
with	diagnostic	tests	(and	corresponding	DC	factor);	PVST	coverage	concerns	only	dangerous	
failures	 that	are	undetected	by	 the	diagnostics	and	that	may	be	revealed	by	stroke	 tests.	 In	
other	words,	 PVST	 is	 a	 procedure	of	 detection	of	 a	 part	 of	 normally	undetected	dangerous	
failures	in	absence	of	partial	valve	stroke	testing.	
	

	
	

Fig.	7.		Dangerous	failure	rate	and	test	procedures	

	
When	PVST	 is	not	 implemented,	 the	average	probability	of	 failure	on	demand	of	 the	 safety	
valve	(supposing	a	low	demand	application)	is	the	following:		
	

PFD = PFDFVST +PFDDT ≅
λDU ⋅τ FVST

2
+
λDD ⋅τ DT

2 																													
(265)	

	
Where	 τFVST	 and	 τDT	 are	 the	 full	 stroke	 test	 interval	 and	 the	 diagnostic	 test	 interval	
respectively.	
IEC	61508	and	IEC	61511	recommend	that	the	diagnostic	test	interval	is	taken	into	account	
through	the	MTTR.	
	
In	 case	 a	PVST	 is	 implemented,	 it	 is	 a	 valid	 supplement	 to	 full-stroke	 testing	 to	 reduce	 the	
block	valve	PFD.	The	amount	of	the	reduction	is	dependent	on	the	valve	and	its	application;	
PVST	may	detect	a	fraction	of	the	dangerous	undetected	failures	corresponding	to	the	PVST	
coverage:	
	

PFD = PFDFVST +PFDPVST +PFDDT ≅ 1−PC( ) λDU ⋅τ FVST
2

+PC λDU ⋅τ PVST
2

+
λDD ⋅τ DT

2 			
(266)

	
Where	τPVST	is	the	Partial	Valve	Stroke	Test	interval.	The	PFD	with	and	without	PVST	is	shown	
in	Fig.	8.	
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Fig.	8.		PFD	comparison	with/without	PST		

	
As	 expected	 the	 average	 PFD	 is	 lower	 when	 partial	 valve	 stroke	 tests	 are	 implemented	
because	a	portion	of	dangerous	undetected	failures	may	be	detected	in	a	shorter	time	interval	
rather	than	by	functional	or	full	valve	stroke	testing.	The	PFD	improvement	depends	on	how	
frequent	the	PVST	is	performed	compared	to	the	functional	test	interval.	
	
The	 probability	 of	 failure	 on	 demand	 is	 the	 unknown	 unavailability	 of	 the	 safety	 valve.	
Unavailability	 may	 be	 “known”	 in	 case	 a	 failure	 has	 been	 detected	 by	 diagnostics,	 PVST,	
functional	 test	 or	 a	 real	 demand;	 this	 is	 known	 unavailability	 or	 downtime	 unavailability	
(DTU):	

DTU = DTUFVST +DTUPVST +DTUDT ≅

= 1−PC( )λDUMTTRFVST +PCλDUMTTRPVST +λDDMTTRDT 																					
(267)	

	
Where	MTTRFT,	MTTRPVST	and	MTTRDT	are	 the	Mean	Time	To	Repair	 in	 case	of	 failures	
detected	 by	 functional	 testing,	 partial	 valve	 stroke	 testing,	 and	 diagnostic	 testing,	
respectively.	
	
	

A. 						Diagnostic	Tests		
	
A	 diagnostic	 test,	 instead,	 is	 performed	periodically	 to	 detect	 some	of	 the	dangerous	 faults	
that	prevent	the	SIS	from	responding	to	a	demand.		
Some	SISs	may	conduct	self-diagnostic	testing	during	operation	in	order	to	detect	some	
dangerous	failures	immediately	when	they	occur.		
Diagnostic	tests	may	be	accomplished	using	a	variety	or	combination	of	methods,	such	as:	

• Monitoring	hardware	integrity	(e.g.,	impedance	monitoring	in	thermocouples)	
• Selecting	devices	 that	have	 internal	diagnostic	 capability	 (e.g.,	 input/output	module	

self-tests)	
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• Incorporating	external	diagnostic	capability	through	design	(e.g.,	automated	testing	of	
solenoid	valves;	partial	stroke	testing	of	isolation	valves;	or	comparison	of	redundant	
analog	signals)	

• Using	watchdog	timers	
• Using	end-of-line	monitoring	

	
Diagnostic	 tests	 can	 detect	 only	 a	 fraction	 of	 all	 dangerous	 failures	 (detected	 dangerous).	
Assume	therefore	that	at	the	end	of	a	time	interval	a	Proof	Test	is	performed:	the	strength	of	
the	proof	test	will	be	dependent	both	on	failure	coverage	and	repair	effectiveness.	In	any	case	
100%	 detection	 of	 hidden	 dangerous	 failures	 is	 easily	 achievable	 only	 for	 low-complexity	
E/E/PE	safety-related	systems.	
For	this	reason	the	dangerous	failure	rate	(λD)	is	split	 in	detected	(λDD,	e.g.	 failures	detected	
by	 a	 partial	 stroke	 test	 on	 a	 valve)	 and	 undetected	 (λDU,	 failures	 not	 detected	 by	 a	 partial	
stroke	test	but	detected	by	a	roof	test	at	the	end	of	the	scheduled	interval).	
As	 seen	 before,	 the	 Diagnostic	 Coverage	 factor	 DC	 is	 defined	 as	 the	 fraction	 of	 dangerous	
failures	detected	by	automatic	on-line	diagnostic	tests:		
	

DC = λDD
λDD +λDU 																																																																			

(268)	

	
Diagnostic	 tests	 are	 usually	 divided	 in	 three	 categories:	 manual,	 automatic	 and	
semiautomatic.		
Fig.	9	shows	the	formula	for	System	Diagnostic	Coverage	consisting	of	N	subsystems:	system	
DC	depends	on	 the	DC	 factor	of	each	subsystems	and	on	 the	parameters	characterizing	 the	
manual	and	the	automatic	parts	of	the	diagnostic	test	[86].	

	
Fig.	9.		System	Diagnostic	Coverage	assessment	

	
The	choice	between	manual	and	automatic	tests	is	a	trade-off	in	terms	of	costs	and	DC	factor	
requirements.		
In	compliance	with	EN	ISO	13849-1,	 in	a	system	with	n-subsystems	with	known	diagnostic	
coverage	 factor	 (DCi)	 and	mean	 time	 to	dangerous	 failure	 (MTTFDi),	 the	 average	diagnostic	
coverage	 factor	 (DCavg)	 of	 the	 total	 system	may	 be	 calculated	 as	 the	weighted	mean	 of	 the	
diagnostic	coverage	factors	of	subsystems	with	weight	factors	1/	MTTFDi:	
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DCavg =
DC1

MTTFD1
+

DC2
MTTFD2

+ ... +
DCn

MTTFDn
1

MTTFD1
+

1
MTTFD2

+ ... +
1

MTTFDn 																																																	
(269)	

	

MTTF = 1
λDD +λDU +λSD +λSU ;				

MTTFD =
1

λDD +λDU 																											
(270)	

	
Supposing	 that	 for	 each	 subsystem	 a	 set	 of	 different	 diagnostic	 measures	 is	 available	
(manual,	 automatic	 or	 semi-automatic).	 In	 order	 to	 quantify	 these	 diagnostic	 modes	
mathematically,	weighting	factors	are	now	introduced:	
αcomp:	weight	of	automatically	tested	components;	
μcomp	=	1	–	αcomp:	weight	of	manually	tested	components.	
If	 the	subsystem	is	assembled	by	n	components,	 this	means	that	“αcomp	 ·	n”	components	are	
tested	automatically	(na)	and	“μcomp	·	n”	components	are	tested	manually	(nm).	
This	way	there	are	three	different	diagnostic	modes:	

• automatic	diagnostic	mode,	all	components	are	tested	automatically	
αcomp	=	1,	μcomp	=	0;	

• manual	diagnostic	mode,	all	components	are	tested	manually		
αcomp	=	0,	μcomp	=	1;	

• semi-automatic	 diagnostic	 mode,	 some	 components	 are	 tested	 automatically,	 some	
manually	

• 0	<	αcomp	<	1,	0	<	μcomp	<	1.	
	
In	SIS	applications,	diagnostics	can	be	divided	in	two	groups:	reference	diagnostics	for	non-
redundant	architectures	and	comparison	diagnostics	for	redundant	ones	[88-89].	
Former	method	is	based	on	the	comparison	between	an	operating	value	and	a	predetermined	
reference;	it	can	be	assessed	by	a	single	unit	and	the	coverage	factor	varies	widely	between	
0.6	to	0.999	depending	on	the	application.	
The	 second	method	 is	 used	 in	 redundant	 architectures	 because	 it	 requires	 the	 comparison	
between	 outcomes	 of	 different	 operational	 units.	 The	 coverage	 factor	 depends	 on	 the	
implementation	but	standard	range	goes	from	0.9	to	0.999.		
In	 a	 dual	 configuration,	 any	 disagreement	may	 identify	 a	 fault.	 In	 a	 triple	 configuration,	 a	
voting	 circuit	 is	 usually	 used	 to	 identify	 drifts	 or	 disagreements	 of	 one	 device	 (a	
disagreement	likely	corresponds	to	a	failure).		

A. 						Field	Device	Coverage	
	
Diagnostics	must	be	extended	to	all	field	devices	and	associated	wiring:	this	is	mandatory	for	
process	sensors	and	other	field	devices	(e.g.	valves)	in	order	to	preserve	redundancy	benefits	
and	not	impair	system	failure	rate.	



	 	
	 	 	

208	

For	 this	 reason,	 a	 complete	 system	 safety	 and	 reliability	 analysis	 must	 include	 valves,	
sensors,	field	transmitters,	limit	switches,	solenoids,	and	other	devices,	along	with	associated	
wiring,	junction	boxes	and	connections.	
In	case	a	field	device	is	equipped	with	on-board	microprocessor	is	called	“smart	device”	and	
it	allows	diagnostic	capabilities.	
Usually	in	SISs	the	finale	element	is	a	remote-actuated	valve	that	is	activated	when	a	potential	
dangerous	condition	arises.	In	many	processes	this	is	quiet	a	rare	event	and	the	valve	may	sit	
motionless	for	a	very	long	time	(e.g.	years).		
There	are	many	different	failures	that	can	cause	the	valve	to	stick,	for	example	cold	welding	
of	O-rings	and	seals	and	corrosion	between	moving	parts.	A	partial	stroke	test	can	be	set	up	
to	test	the	valve	e.g.	moving	the	valve	a	small	amount)	and	indicate	the	failure:	this	procedure	
can	detect	most	of	dangerous	failures	in	the	final	elements.	
	
Failure	 detection	 can	 be	 assessed	 in	 some	 field	 devices	 with	 on-board	 diagnostics	 using	
sensor	output	current:	for	instance,	if	the	average	output	current	exceeds	an	upper	threshold	
for	 too	 long,	 this	 trend	usually	corresponds	 to	a	short	circuit	 failure	of	 the	 load	device	or	a	
faulty	 field	wiring.	Otherwise,	 if	a	channel	 is	operative	and	a	minimum	current	 is	not	being	
detected,	this	indicates	an	open	circuit	failure	of	device	or	associated	wiring.	
	
For	example,	 in	 solenoid-operated	valves	 (electro-valve)	a	 common	 failure	 is	 the	coil	burn-
out	that	arises	especially	 in	normally	energized	SIS	applications	where	the	coil	 is	energized	
24h/day.	 The	 coil	 can	 reach	 very	 high	 temperatures:	 this	 stress	 can	 break	 down	 the	
insulation	and	produce	a	short	out	adjacent	windings	in	the	coil.		
These	 circumstances	 produce	 an	 increase	 of	 the	 current	 consumption	 and	 temperatures	
giving	rise	to	an	eventual	burn-out	of	the	coil.		
Diagnostic	equipment	on	the	coil	can	detect	the	failure	before	the	burn-out	and,	 in	case	the	
repair	can	be	assessed	soon	enough,	a	system	false	trip	can	be	avoided	[86-89].	
	

A. 				Testing	Policy		

The	testing	policy	defines	the	way	to	test	components	in	redundant	architectures	in	order	to	
minimise	PFDavg.	The	most	important	policies	are	the	following:	

• Simultaneous	
With	 the	simultaneous	policy	all	 components	are	put	off-line	and	 tested	 following	a	
defined	scheduling;	during	the	test	the	safety	function	is	not	available.	

• Sequential	
With	the	sequential	policy	the	components	are	tested	at	fixed	intervals	but	one	after	
the	other	in	such	a	way	that	only	one	component	at	a	time	is	off-line	for	testing.		

• Staggered	
In	the	staggered	policy	components	are	tested	regularly	in	overlapping	sequence	e.g.	given	n	
components	in	parallel	configuration,	each	component	is	tested	every	“k”	hours,	but	the	time	
between	two	tests	is	“n/k”	hours.		
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B. 				Proof	Test	and	Diagnostics	on	1oo2	Shutdown	Valves	

If	two	shutdown	valves	are	installed	in	1oo2	architecture,	the	flow	can	be	stopped	in	case	of	
emergency	when	any	of	them	is	able	to	close	on	demand.	
Given	one	valve	has	dangerous	undetected	 failure,	 the	system	 is	 still	 functional	 if	 the	other	
one	can	work	well.		
Both	of	two	components	in	a	1oo2	system	can	have	dangerous	detected	failures,	and	if	such	a	
failure	is	detected,	the	system	becomes	a	1oo1	SIS	during	the	repair:	the	other	component	is	
assumed	to	perform	SIF	until	the	failed	one	is	restored.		
After	 restoration	activities	 the	maintenance	 team	can	 select	 to	 conduct	 a	proof	 test	on	 this	
newly	fixed	component	and	check	whether	there	is	a	hidden	failure.	
Then	 there	 are	 maintainability	 options	 available	 for	 the	 other	 component:	 test	 the	
component	 for	proof	as	soon	as	possible	or	 test	 the	component	 following	 the	regular	proof	
test	interval	[87-88].	
	

	
Fig.	10.		1oo2	shutdown	valves	

	
There	 are	 different	 strategies	 in	 case	 of	 dangerous	 detected	 failure	 arising	 in	 redundant	
architectures:	 each	potential	 test	 strategy	needs	 to	be	 identified	and	modelled	with	proper	
methods,	so	as	to	measure	their	impacts	on	the	reliability	of	SIS.		
For	 a	 1oo2	 SIS,	 such	 as	 the	 two	 shutdown	 valves	 in	 a	 high	 integrity	 pressure	 protection	
system	for	a	pipeline,	two	components	in	the	system	are	normally	tested	one	by	one	in	proof	
tests.	
If	a	dangerous	detected	failure	occurs	in	one	valve,	the	maintenance	team	can	fix	the	failure	
and	have	a	proof	 test	on	the	valve:	 then	they	can	decide	whether	or	not	 to	conduct	a	proof	
test	on	another	valve.	This	decision	is	usually	taken	on	the	working	conditions	and	available	
maintenance	resources.	
	
There	 are	 three	 main	 strategies	 possible	 to	 be	 adopted	 by	 the	 SIS	 operators	 in	 case	 of	
dangerous	detected	failure	in	1oo2	architecture:	

• Do	 not	 test	 the	 other	 component	 until	 the	 subsequently	 regular	 proof	 test,	 keep	
following	the	current	test	strategy;	
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• Test	the	other	component	and	keep	following	the	current	proof	test	schedule;	
• Test	 the	 other	 component	 and	 change	 the	 test	 scheduling,	 usually	 postponing	 the	

following	proof	test.	
In	all	these	three	strategies,	the	successive	proof	test	will	cover	both	components.	
	
In	case	a	proof	test	is	conducted	on	the	valve	without	dangerous	detected	failures,	it	can	be	
considered	 as	 an	 additional	 proof	 test	 between	 two	 regular	 ones;	 since	 such	 test	 also	
guarantee	to	find	all	hidden	failures	in	the	tested	valve,	it	is	necessary	to	decide	whether	the	
original	proof	test	schedule	needs	some	adjustments	[86].		
For	 example,	 supposing	 that	 proof	 tests	 are	 initially	 planned	 once	 a	 year	 at	 June	 1st.	 If	 an	
additional	proof	 test	 is	done	at	March	1st,	maintenance	 team	should	decide	 to	 schedule	 the	
next	proof	test	on	June	1st	or	March	1st	next	year.	
	
	

C. 			Benefits	of	Diagnostics	on	SISs		
	

Both	 redundant	 and	 non-redundant	 repairable	 control	 systems	 have	 improved	 availability	
and	safety	in	case	on-line	diagnostic	is	provided.	Other	benefits	are	the	reduction	of	time	the	
system	operates	in	dangerous	and	degraded	(not	completely	operational)	mode.	
Safety	is	improved	by	diagnostic	coverage	even	in	a	non-redundant	architecture.		
In	 a	 normally	 energized	 safety	 protection	 application,	 if	 a	 standard	 1oo1	 PLC	 architecture	
fails	with	outputs	de-energized,	the	process	is	inadvertently	shut	down	(false	trip).	Usually	to	
detect	a	process	shut	down	is	not	required	on-line	diagnostics	because	a	false	trip	is	usually	
quite	 apparent.	 However,	 if	 1oo1	 PLC	 fails	 with	 output	 energized,	 it	 cannot	 respond	 to	
demand	in	case	of	danger.	The	process	keeps	operating	with	no	safety	protection	and	there	is	
no	indication	that	something	is	faulty.	
The	main	added	value	of	diagnostics	 is	 the	detection	of	dangerous	 failures	 to	allow	a	quick	
repair	and	restore	of	the	system.		
In	 case	 of	 failure	 in	 a	 redundant	 architecture	 (e.g.	 1oo2	 PLC	 configuration)	 diagnostics	
reduces	the	time	spent	in	the	degraded	mode:	the	output	of	PLC	modules	is	wired	in	series	so	
if	one	module	fails,	the	other	can	still	provide	a	safety	protection	function	e.g.	energizing	the	
load	(in	a	normally	energized	protection	application).		
So	 diagnostics	 improve	 the	 safety	 of	 this	 architecture	 because	 if	 one	 module	 fails	
dangerously,	the	system	is	degraded	and	a	second	dangerous	failure	is	required	to	cause	the	
system	 to	 fail.	 At	 the	 same	 time,	 diagnostic	 capability	 will	 also	 allow	 quick	 repair	 and	
minimize	the	amount	of	time	the	system	operates	in	a	degraded	mode	[86-89].	
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