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RIASSUNTO 

La comprensione dei meccanismi che regolano le interazioni multitrofiche della 

rizosfera è fondamentale per migliorare l'efficacia dei biopesticidi in agricoltura. In 

quest’ottica, il sequenziamento dei genomi è un utile strumento per la 

caratterizzazione dei microrganismi di interesse agronomico. Bacillus 

amyloliquefaciens subsp. plantarum S499 è un rizobatterio che mostra un’attività 

di antagonismo diretto contro i funghi fitopatogeni e, inoltre, è particolarmente 

efficace come elicitore di resistenza sistemica indotta (ISR) nelle piante. Tali 

attività sono correlate alla produzione di metaboliti secondari bioattivi, quali i 

lipopeptidi ciclici appartenenti alle famiglie delle fengicine, iturine e surfattine.  

Mediante sequenziamento, assembly e annotazione del genoma di S499, sono stati 

identificati i principali geni coinvolti nella colonizzazione radicale e nell’attività di 

stimolazione di crescita e di difesa delle piante. Questi geni condividono un’elevata 

percentuale di identità nucleotidica con i loro omologhi nel ceppo FZB42, il ceppo 

tipo della sottospecie batterica. Uno dei principali elementi genetici di distinzione 

tra S499 e FZB42 è la presenza di DNA extracromosomico: il plasmide pS499. La 

presenza di tale plasmide è stata evidenziata attraverso il sequenziamento del 

genoma, che ha permesso inoltre di identificare sul plasmide le sequenze codificanti 

per un sistema regolatore (Rap-Phr) coinvolto nel quorum sensing. 

Attraverso un approccio di plasmid curing, è stata fatta una prima caratterizzazione 

funzionale di pS499. In primo luogo, è stato studiato l'impatto della perdita del 

plasmide sulla fisiologia del batterio, confrontando i comportamenti di S499, S499 

P- (ceppo senza plasmide) e FZB42 sul mezzo Luria-Bertani (LB). La crescita, 

l’attività proteolitica extracellulare e la modulazione della produzione dei 

lipopeptidi sono state significativamente influenzate dalla perdita di pS499. In 

accordo con un maggior rilascio di surfattina, è stato osservato anche uno swarming 

più rapido in S499 P-, mentre la sua capacità di produzione di biofilm in vitro 

risultava ridotta. Non è stato invece osservato alcun effetto sull'evoluzione delle 

popolazioni batteriche in planta in termini di colonizzazione radicale, nonostante 

un’accentuata produzione di surfattine sulle radici di pomodoro da parte di S499 P- 

rispetto a S499 e FZB42. I risultati della quantificazione dell'espressione relativa 

dei geni srfA e rap suggeriscono un effetto inibitore della sintesi di surfattina da 

parte del sistema Rap-Phr codificato dal plasmide. Inoltre, su LB, l’attività 

antagonistica contro i funghi fitopatogeni era limitata per S499 P-, molto 

probabilmente a causa di una verificata riduzione della secrezione di iturine. 

Benché in modo meno evidente, un effetto simile è stato osservato su un mezzo 

(RE) che riproduce la composizione tipica degli essudati radicali. Globalmente, i 

risultati ottenuti mostrano che pS499 regola diversamente il fenotipo di S499 a 

seconda del contesto nutrizionale. Ulteriori prove sono necessarie per dimostrare 

che pS499 è importante per la fitness del rizobatterio nel suo habitat naturale.  
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ABSTRACT 

Understanding how soil-borne microorganisms can modulate the plant defence 

responses and which factors affect rhizosphere multitrophic interactions is crucial 

to improve the efficacy of biopesticides in agriculture. From this perspective, 

whole-genome sequencing is a powerful tool to characterize the bacterial strains of 

agronomic interest. Among these, Bacillus amyloliquefaciens subsp. plantarum 

strain S499 is a plant-beneficial rhizobacterium that shows direct antagonistic 

properties against phytopathogenic fungi and, in addition, a remarkable efficacy as 

elicitor of induced systemic resistance (ISR) in plants. In these activities, the 

production of bioactive secondary metabolites, such as cyclic lipopeptides 

belonging to the fengycin, iturin and surfactin families, is involved. 

By sequencing, assembling and annotating S499 genome, we identified the 

principal genes involved in root colonization, plant-growth promotion and 

biocontrol activities. These genes share a high percentage of nucleotide identity 

with their homologs in the strain FZB42, the type strain of the bacterial subspecies. 

One of the main genetic elements distinguishing S499 from FZB42 is the presence 

of extrachromosomal DNA (plasmid pS499). This small rolling circle plasmid was 

unknown before S499 genome sequencing, which also allowed to identify on pS499 

the genes encoding a Rap-Phr regulatory system involved in quorum sensing. 

Through a plasmid-curing approach, we carried out a functional characterization of 

pS499. First, we studied the impact of the plasmid loss on the bacterial physiology, 

by comparing the behaviours of S499, its plasmid-cured derivative, S499 P-, and 

FZB42 on Luria-Bertani (LB) medium. Growth rate, extracellular proteolytic 

activity and the regulation of lipopeptide production were significantly affected in 

S499 P-. In agreement with an increased release of surfactins, swarming motility 

improved after curing, whereas biofilm production was reduced in vitro. When the 

evolution of bacterial populations was compared in planta, pS499 seemed not to 

influence the root colonization ability, although we observed an over-production of 

surfactins by S499 P- also on tomato roots. The quantification of the relative 

expression of srfA and rap genes suggested an inhibitory effect of the plasmid-

encoded Rap-Phr system on surfactin synthesis. Moreover, on LB, the antagonistic 

effect against phytopathogenic fungi was limited for S499 P-, most probably due to 

a verified reduction of iturin secretion. Although less clearly, an impact of plasmid 

curing on the biocontrol ability was observed also on a medium (RE) that 

reproduced the typical composition of plant root exudates. Globally, our results 

show that pS499 differently modulates S499 phenotype depending on the 

nutritional context. More evidences are required to prove that pS499 is relevant for 

the fitness of the rhizobacterium in its natural environment.  
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INTRODUCTION  
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1.1 Plant-growth-promoting rhizobacteria 

The rhizosphere is the portion of soil near plant roots that is directly 

influenced by their growth, respiration, and nutrient exchanges. It is a highly 

dynamic environment that actually represents a hotspot of biodiversity compared 

with the surrounding bulk soil: up to 1011 microbial cells and, among these, more 

than 30 thousand bacterial species can be found around each gram of root 

(Egamberdieva, et al., 2008; Mendes et al., 2011). Plants can modulate the 

composition and the activity of the rhizosphere community through the exudation 

of metabolites and signalling molecules (Doornbos et al., 2012).  

Beneficial rhizosphere-associated microbes constitute the root microbiome 

(Figure 1), which contributes to the plant health as the gut microbiome does in 

animals (Mendes et al., 2013). Indeed, rhizobacteria and mycorrhizal fungi can 

improve plant nutrition and often grant disease protection (Berendsen et al., 2012). 

 

Figure 1: The root microbiome. Plant-associated microorganisms carry out multiple beneficial 

functions at the rhizosphere level (modified from http://www.lallemandplantcare.com). 

 

Vice versa, soil-borne phytopathogens negatively affect plant health, by 

damaging the plant through production of phytotoxic substances or tissue infection. 

In this group, pathogenic fungi, oomycetes and bacteria are included (Mendes et 
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al., 2013). Other microorganisms establish neutral interactions, either with the plant 

or with the pathogens, as they occupy different ecological niches; however, these 

commensal microbes can influence other organisms and eventually produce an 

effect on the complex rhizosphere networks (Berendsen et al., 2012). Such 

multifaceted interactions occurring below ground play a fundamental role in several 

aspects of the ecosystem, from soil stability to plant productivity (Haichar et al., 

2008). 

Most of beneficial plant-microbe relationships are mutualistic or associative 

symbioses, as plants and microorganisms shared costs and benefits of the 

association (Vacheron et al., 2014) The expression “plant-growth-promoting 

rhizobacteria” (PGPR) designates the prokaryotic microorganisms that inhabit the 

rhizosphere and are beneficial for the host plants (Lugtenberg and Kamilova, 2009). 

Indeed, PGPR can affect plant development either directly, e.g. by improving plant 

mineral uptake, or indirectly, by conferring protection against soil-borne diseases 

and abiotic stressors, or also in both ways (Table 1). In a broad sense, the well-

characterized rhizobia providing nitrogen to leguminous host plants are included 

among PGPR (Gray and Smith, 2005). 

Table 1. Principal modes of action of plant-growth-promoting rhizobacteria. 

Direct mechanisms Indirect mechanisms 

Nitrogen fixation Detoxification 

Phosphate solubilisation Enhancement of stress resistance 

Iron solubilisation Biocontrol 

Phytohormones production                    Direct     Competition 

ACCa deaminase activity                                  Antagonism 

Stimulation by AHLsb                                  Hyperparasitism 

Stimulation by VOCsc                   Indirect   ISRd 
  

aACC: 1-aminocyclopropane-1-carboxylate; AHLs; bN-acyl-L-homoserine lactones; cVOCs: 
volatile organic compounds; dISR: induced systemic resistance. 

 

Depending on their level of association with root tissues, PGPR can be 

classified into extracellular PGPR (ePGPR) and intracellular PGPR (iPGPR), the 

former locating on the rhizoplane or between the cells of root cortex, while the latter 
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colonizing specialized nodular structures of the root cells (Bhattacharyya and Jha, 

2012). The genera Agrobacterium, Arthrobacter, Azoarcus, Azotobacter, 

Azospirillum, Bacillus, Burkholderia, Caulobacter, Chromobacterium, 

Clostridium, Enterobacter, Erwinia, Flavobacterium, Gluconacetobacter, 

Micrococcus, Pseudomonas, and Serratia encompass several beneficial strains that 

mostly belongs to ePGPR, whereas those belonging to the family of Rhizobiaceae 

(Allorhizobium, Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, etc.) 

and Frankia spp. are regarded as iPGPR (Gray and Smith, 2005). Among all these 

genera, Bacillus, Pseudomonas and Rhizobium have been the most studied so far. 

The regulation of the symbiotic processes is known in the case of the rhizobia-

legumes relationship, where bacteria utilize the carbohydrates synthestized by the 

host and, in turn, they supply ammonia and amino acids to the plant. Nonetheless, 

PGPR are able to exert their positive effects on many crop plants, including wheat, 

maize, potato and many other vegetables (Rai, 2006; Lugtenberg and Kamilova, 

2009; Bhattacharyya and Jha, 2012). 

1.1.1 Rhizosphere competence 

1.1.1.1 The process of root colonization 

Rhizosphere competence is an essential prerequisite for PGPR. It involves 

the active root colonization, combined with the ability to survive and multiply on 

the growing roots over a period of time, dealing with other microorganisms that 

share the same ecological niche (Kumar et al., 2011). Generally, microbes are 

attracted by the nutritious environment created by roots through a phenomenon 

known as rhizodeposition (Haichar et al., 2008). Plant roots secrete a variety of 

organic compounds, including sugars, phenolic compounds, nucleotides, amino 

acids, sterols, vitamins and organic acids, in different proportions. In particular, root 

border cells can release in the rhizosphere large amounts of carbon-rich material 

(Hawes et al. 1998). However, although this nutritious environment favours 

microbe proliferation, the populations of rhizobacteria do not attain the same levels 

than in nutrient-rich artificial media and, for this reason, their lifestyle is regarded 

as a starvation status (Lugtenberg and Kamilova, 2009). In this context, the species 
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that can better metabolize the principal exudate components, like some 

Pseudomonas spp. that are able to efficiently metabolize carbon sources and have 

to compete for only few compounds, achieve the best root colonization (Somers et 

al., 2004). 

Motility constitutes a major trait for root colonization. Bacteria employ 

several mechanisms to move, which are known as swarming, swimming, twitching, 

gliding and sliding (Kearns, 2010). Swarming and swimming are flagella-driven 

movements, involved in root colonization by PGPR, the former occurring in a 

multicellular way across a surface while the latter is characterising single cells in a 

liquid medium. Swimming motility is oriented by chemotaxis, i.e. the direction of 

the movements depends on the concentration of certain compounds. For example, 

malic and citric acids present in the root exudates of Arabidopsis thaliana and 

tomato (Solanum lycopersicum L.) are chemoattractants for Bacillus and 

Pseudomonas spp. (de Weert et al., 2002; Rudrappa et al., 2008). 

As root exudates composition differs among plant species, a putative role in 

determining host specificity has been ascribed to chemotaxis. For example, in the 

bacterial genus Azospirillum the chemotactic responses differ from strain to strain 

and this specificity relies on the ecological origin of the strains (Drogue et al., 

2012). The relationship between PGPR and chemotaxis towards root exudate 

components of their original hosts was confirmed also for Bacillus spp. (Zhang et 

al., 2014). However, the composition of root exudates depends not only on the plant 

species, but also on the growth substrate and on the developmental stage and 

physiological conditions of the plant. Interestingly, tomato plants recruit beneficial 

bacteria by enhancing the release of malic acid when attacked by pathogens 

(Rudrappa et al., 2008; Lugtenberg and Kamilova, 2009). 

However, swarming motility plays a greater role than chemotaxis in tomato 

root colonization, at least for some strains of B. subtilis (Gao et al., 2016). Indeed, 

PGPR usually spread over the root surfaces in the form of biofilm, rather than as 

planktonic cells in a liquid medium (Ongena and Jacques, 2008). Biofilms are single 

or multispecies aggregates of microbial cells encapsulated in a matrix of 

extracellular polymeric substances and adherent to biotic or abiotic surfaces. In 
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biofilms, PGPR can better protect themselves from environmental stresses and 

microbial competition (Seneviratne et al., 2010). 

Adsorption and anchoring are two independent mechanisms used by PGPR 

for the adhesion on the rhizoplane. Adsorption is a weaker interaction mediated by 

type I and IV pili, fimbriae and specialized surface proteins that function like 

adhesins (e.g. flagellins). Lipopolysaccharides, exopolysaccharides and capsular 

polysaccharides are involved instead in bacterial anchoring to root surfaces, where 

specific receptors are located. Indeed, genetic determinants of both partners are 

putatively involved in these processes (Dutta and Podile, 2010; Drogue et al., 

2012). According to Compant et al. (2010), the ability to synthesize vitamin B1, 

NADH dehydrogenases, outer membrane proteins, and a site-specific recombinase 

involved in phase variation are other bacterial traits responsible for rhizosphere 

competence. 

PGPR establish their populations mainly in the junctions between epidermal 

cells and the points where lateral roots emerge (Lugtenberg and Kamilova, 2009). 

Root tips and root hair regions, which are other zones of extensive release of 

exudates, are preferential sites of colonization as well. Depending on the plant 

species, one strain can display different colonization patterns (Drogue et al., 2012). 

Some Azospirillum spp. are supposed to enter the intercellular spaces upon the 

enzymatic degradation of plant cell wall middle lamellae, through β-glucosidase, 

cellulolytic and pectinolytic activity (Khammas and Kaiser, 1991; Bekri et al., 

1999; Faure et al., 2001;). As reported above, iPGPR colonize also internal tissues, 

behaving as endophytes, thus they must overcome the plant defence mechanisms. 

During the establishments of these associations, root-bacterium communication 

plays a fundamental role (Somers et al., 2004). 

The crosstalk between leguminous plants and symbiotic rhizobia probably 

represents the best-characterised example of signal exchange in the process of root 

colonization (Cooper, 2007). The plant releases flavonoid compounds that induce 

the bacterium to secrete Nod factors, in the form of lipo-chitooligosaccharides. Nod 

factors are perceived through specific LYK receptors by plant root hairs and 

stimulate the formation of root nodules, where rhizobial populations can settle and 

fix the atmospheric nitrogen (Figure 2). Different rhizobia secrete structurally 
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diverse Nod factors, which suggests that the plant host can recognize the signal 

produced by the compatible rhizobial symbiont (Van Loon, 2007; Liang et al., 

2014). 

 

Figure 2: The formation of root nodules. (a) The early stages of infection of root hairs by rhizobia 

and the growth of a nodule on roots. Images (b), (c) and (d) were taken from Pisum sativum or Vicia 

hirsuta inoculated with a lacZ-constitutively expressing strain of Rhizobium leguminosarum. Root 

samples were stained for β-galactosidase, showing bacterial cells in blue. (b). A normal infection 

thread (arrow) is shown. (c) A nodO nodE double mutant of R. leguminosarum that forms infection 

foci but not an infection thread. (d) Infection threads grow through root cells to the growing nodule 

primordium (circled). The bars represent 20 µm in (b) and (c) and 100 µm in (d) (Oldroyd and 

Downie, 2004). 

 

1.1.1.2 Quorum sensing in the rhizosphere 

Bacteria can regulate the expression of certain cellular functions in a 

population density-dependent way: the quorum sensing (QS; Bassler, 1999). In 

bacterial communication, the term “autoinducers” refers to the signalling molecules 

that are released in the medium and act via QS. A threshold concentration of an 

autoinducer is responsible for the activation or repression of a determined molecular 

pathway that leads to the quorum response (Bassler, 1999). In this way, bacteria 

can synchronize particular behaviours on a population-wide scale. Several aspects 

related to the rhizosphere competence of PGPR, such as biofilm formation and 

swarming motility, are controlled by QS (Compant et al., 2010; Dutta and Podile, 

2010). 
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The best-characterized autoinducers for Gram-negative species, like 

Pseudomonas spp., are N-acyl-L-homoserine lactones (AHLs), which vary based 

on the length, substitution and saturation of their acyl side chains. These differences 

in structure confer specificity to the signalling molecules (Auchtung, 2006). 

Secreted AHLs increase in concentration with increasing cell density and, once 

imported in the cytoplasm, they interact with their cognate LuxR receptors, which 

are cytoplasmic transcriptional activators or repressors (Waters and Bassler, 2005). 

Diketopiperazines are also implicated in QS in Gram-negative bacteria, whereas γ-

butyrolactone and modified oligopeptides recognized by two-component sensor 

kinases are autoinducers for Gram-positive species, such as Bacillus spp. 

(Auchtung, 2006; Dutta and Podile, 2010). The best-known QS system in B. subtilis 

is the ComQXPA system, which is mainly involved in coordinating developmental 

pathways, producing extracellular products in effective concentration and surviving 

under competitive conditions (Comella and Grossman, 2005). 

Rhizobacteria can perceive autoinducers produced by other bacterial species 

(Steidle et al., 2001), interfere with their signalling processes through a quorum 

quenching mechanism (Dong et al., 2002) or respond to QS-like molecules released 

by plants (Teplitski et al., 2000). Indeed, besides regulating cell responses on a 

population-wide scale, quorum sensing allows communication within and between 

species. For instance, several plants can recognize AHLs and consequently 

modulate defence and growth responses (Ortíz‐Castro et al., 2008), as for Medicago 

truncatula, which produces proteins involved in isoflavone production, stress 

response and cytoskeleton structure (Dutta and Podile, 2010). 

The rhizosphere contains a greater concentration of AHL-producing 

bacteria than bulk soil, suggesting that they play a role in colonization (Elasri et al., 

2001). The importance of QS in root colonization was demonstrated with a LuxR-

mutant strain of P. fluorescens that was impaired in biofilm formation and 

colonization of wheat rhizosphere (Wei and Zhang, 2006). Conversely, derivative 

of Serratia spp. not producing AHLs were not impaired in colonization ability of 

tomato and oilseed rape roots (Schuhegger et al., 2006; Müller et al., 2009). 

However, it might be that QS is indirectly involved in rhizosphere competence, by 

influencing the competitive ability of PGPR under natural conditions (Compant et 
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al., 2010). For example, in B. subtilis, quorum responses contribute to the 

production of lytic enzymes and antibiotics, which plays fundamental roles in 

microbial competition (Comella and Grossman, 2005). 

Figure 3 summarizes the discussed relevant traits involved in PGPR host 

recognition and colonization. 

 

Figure 3: Different molecules produced by plant-growth-promoting rhizobacteria (PGPR) 

that are involved in host root recognition and colonization. QS: quorum sensing; AHLs: N-acyl-

L-homoserine lactones; MOMPs: major outer membrane proteins; LPSs: lipopolysaccharides (Dutta 

and Podile, 2010). 

 

1.1.2 Modes of action of PGPR 

1.1.2.1 Improvement of plant nutrition 

PGPR can enhance nutrient status of host plants by different mechanisms, 

namely the fixation of atmospheric nitrogen (N2), the increase of the availability of 

minerals in the rhizosphere, the augmentation of root surface area, and the 

promotion of other beneficial symbioses of the host (Bhattacharyya and Jha, 2012). 

Often, more than one mechanisms is involved, as in the case of Azospirillum spp. 

that, besides being capable of fixing N2, also increase water and mineral uptake by 

increasing root development (Lugtenberg and Kamilova, 2009). 
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Atmospheric nitrogen fixation and the solubilisation of inorganic nutrients, 

such as phosphates and iron, are widely distributed among Allorhizobium, 

Azorhizobium, Azotobacter, Bacillus, Bradyrhizobium, Rhizobium, Enterobacter, 

Mesorhizobium, Pseudomonas, and Sinorhizobium spp. (Vessey, 2003). The ability 

of PGPR to solubilize mineral phosphate is very attractive, as plants can absorb 

phosphorous in only two soluble forms, the monobasic (H2PO4
-) and the dibasic 

(HPO4
2-) ions, but levels of soluble phosphate are limited in soil (Glass, 1989). 

Secretion of organic acids or protons, chelation and exchange reactions are 

processes that favour phosphorous solubilisation (Bhattacharyya and Jha, 2012). 

Moreover, the production of enzymes, such as phytases, phosphatases, and C-P 

lyases, enables bacteria to release soluble phosphorus from organic compounds, 

like organophosphonates (Rodríguez et al., 2006). 

Similarly, PGPR facilitate the acquisition of iron by plant roots (Lugtenberg 

and Kamilova, 2009). Iron is another essential nutrient with little availability in soil. 

Ferric (Fe3+) ions readily precipitate in oxidised forms and to avoid precipitation 

plants usually secrete organic chelators. Next to root surfaces, Fe3+ is reduced to 

ferrous ion (Fe2+), which is immediately absorbed. Alternatively, plants can 

produce siderophores, which chelate Fe3+ and are then imported into the cells. Some 

bacterial species also produce siderophores and a number of plants is able to 

assimilate them, although most of research on microbial siderophores in the 

rhizosphere focuses on their role in the competition against plant pathogens 

(Vessey, 2003). 

1.1.2.2 Production of plant growth regulators 

PGPR can directly improve plant growth through the production of 

phytohormones and the release of enzymes, such as the 1-aminocyclopropane-1-

carboxylate (ACC) deaminase (Van Loon, 2007). By producing phytohormones 

PGPR can modify root morphology. For instance, Azospirillum brasilense produces 

indole-3-acetic acid, an auxin that stimulates lateral root formation (Tien et al., 

1979). Strains of P. fluorescens can induce seedling emergence and increase root 

length of several crop species by producing cytokinins, instead (Bent et al., 2001; 

García de Salamone et al., 2001). Moreover, the genus Bacillus encompasses strains 
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that can release high levels of gibberellins, which 

promote stem and shoot elongation (Gutiérrez‐

Mañero et al., 2001; Gray and Smith, 2006).  

As reported above, AHLs are also elicitors 

of plant growth, as well as some volatile organic 

compounds (VOCs), like acetoin and 2,3-

butanediol, which are produced by Bacillus spp. and 

have been demonstrated to have a positive effect on 

both plant and bacterial fitness (Figure 4) (Ryu et 

al., 2003; Yi et al., 2016). 

Ethylene, on the contrary, inhibits shoot and 

root elongation and accelerates senescence (Abeles 

et al., 2012). The direct precursor of ethylene in 

plants is 1-aminocyclopropane-1-carboxylate 

(ACC); therefore, PGPR able to synthesize ACC 

deaminases can reduce endogenous levels of this 

hormone in favour of root growth (Van Loon, 2007). 

Bacterial populations benefit from this interaction as 

well, since the hydrolyzation of ACC provides sources of nitrogen and carbon 

(ammonia and α-ketobutyrate; Doornbos et al., 2012). 

1.1.2.3 Biocontrol of plant diseases 

PGPR can promote plant growth indirectly by enhancing stress tolerance or 

by detoxifying heavy metals and pathogen virulence factors (e.g. albicidin produced 

by Xanthomonas albilineans, fusaric acid by Fusarium spp.; Compant et al., 2005.). 

Most importantly, diverse mechanisms conferring plant disease protection were 

reported. It is worthy to recall here that the term “biological control”, or 

“biocontrol”, in plant pathology refers to the use of microbial antagonists to 

suppress diseases as well as the use of host-specific pathogens to control weed 

populations. The “biological control agent” (BCA) is the organism that antagonizes 

the pathogen (Pal and Gardener, 2006). 

Figure 4: Plant-growth-

promotion through volatiles. 
Effect of VOCs produced by 

Bacillus amyloliquefaciens 

subsp. plantarum FZB42 on 

Arabidopsis thaliana growth 

(negative control below) (Giulia 

Molinatto, 2015). 
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Through different kinds of interactions, such as competition, antagonism 

and hyperparasitism, BCAs can influence the pathogens’ population density and 

their temporal and spatial dynamics. Alternatively, beneficial microorganisms 

and/or some compounds they release are perceived as elicitors of immune responses 

by the plant (Raaijmakers et al., 2009). 

1.1.2.3.1 Competition, antagonism and hyperparasitism 

Competition takes place for space and nutrients when pathogenic and 

beneficial microorganisms develop in the same microbial ecological niche. For 

example, colonization of the rhizosphere microenvironment is a prerequisite for the 

efficacy of soil-borne BCAs (Lemanceau and Alabouvette, 1991). Nutritional 

competition for carbon compounds and for soluble iron are essential modes of 

action for a number of biocontrol fungi and bacteria. As already discussed, iron is 

a limiting factor in soil because of its low solubility, and the ability to secrete 

siderophores that can be assimilated through specific receptors constitutes a 

determining advantage for some Pseudomonas strains (Doornbos et al., 2012). The 

ability to use nitrate as an alternative electron acceptor is also involved in 

competitiveness: being able to switch from one metabolic pathway to another, some 

strains can dominate in an environment that might be depleted of oxygen by root 

respiration (Somers et al., 2004). 

Antagonism is mainly based on the secretion of secondary antimicrobial 

metabolites (antibiosis) and lytic enzymes (predation) active on phytopathogens. A 

variety of antibiotics and bacteriocins is known to be involved in biocontrol, but for 

many of these molecules the mechanism of action has not been elucidated yet. The 

targets may be metalloenzymes like cytochrome c oxidases (hydrogen cyanide), the 

electron transport chain (phenazines, pyrrolnitrin), or cell membrane and zoospores 

of phytopathogenic fungi and oomycetes (2,4-diacetylphloroglucinol, cyclic 

lipopeptides; Raaijmakers et al., 2009). The regulation of antibiotic synthesis is 

related to the overall metabolic status of the cell, which in turn depends on nutrient 

availability, pH, temperature, and various other parameters (Milner et al., 1995; 

Duffy and Défago, 1999; Ownley et al., 2003). In addition, some antagonists can 

attack the cell wall of pathogens through the release of cellulases, chitinases and 
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proteases. Otherwise, extracellular lytic enzymes can neutralize virulence factors, 

or degrade autoinducers, hence conferring plant disease protection in an alternative 

way (Compant et al., 2005). 

Hyperparasitism is another form of direct biocontrol against soil-borne 

phytopathogens, even if it is better characterized in the context of fungal BCAs. For 

example, Trichoderma mycelia can penetrate the hyphae of pathogenic fungi, after 

inducing a cell wall damage through the production of endochitinases (Harman, 

2006). Nonetheless, some bacteria can grow at the expense of living fungi through 

a phenomenon known as bacterial mycophagy (Leveau and Preston, 2008). For 

example, Collimonas fungivorans feeds on fungal hyphae under nutrient-poor 

conditions, although its biocontrol activity seems to depend mostly on a mechanism 

of competition (Kamilova et al., 2007). 

1.1.2.3.2 Induced systemic resistance 

Systemic resistance is a broad-spectrum immune reaction that makes plants 

less susceptible to subsequent attacks in distal tissues. This effect is evident when 

the root colonization by plant-beneficial microorganisms has a positive outcome 

against aboveground pathogens. Induced systemic resistance (ISR) has been 

discovered 25 years ago when it was noticed that some beneficial Pseudomonas 

strains could reduce disease symptoms even when maintained separated from the 

pathogens (Van Peer et al., 1991; Wei et al., 1991). The phenomenon revealed a 

plant-mediated protective effect of the application of BCAs, which was later 

confirmed in several other genera of bacteria such as Bacillus and Serratia 

(Lugtenberg and Kamilova, 2009). Upon root colonization by ISR-inducing 

rhizobacteria, the plant falls in a unique physiological state known as “priming” 

(Conrath et al., 2006). 

In many cases, the microbial determinants involved in ISR are known. The 

list includes lipopolysaccharides, siderophores, flagella, some antibiotics, 

biosurfactants and volatile organic compounds (Bakker et al., 2013). These factors 

are named “microbe-associated molecular patterns” (MAMPs), to be distinguished 

from “pathogen-associated molecular patterns” (PAMPs) and “damage-associated 

molecular patterns” (DAMPs); all are elicitors of plant defences. PAMPs and 
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DAMPs trigger systemic acquired resistance (SAR), while MAMPs induce ISR. 

Plant hormones play a significant role in the signalling network that coordinates 

plant defences: if SAR mainly depends on salicylic acid, in ISR jasmonic acid and 

ethylene are primarily involved. Both pathways then converge by being controlled 

by the same transcription factor NPR1 (Henry et al., 2012). 

The root-specific transcription factor MYB2 emerged as an early node of 

convergence in the ISR-inducing pathways (Segarra et al., 2009). Interestingly, the 

Arabidopsis mutant myb72 that was impaired in ISR also displayed a reduced 

colonization by Pseudomonas strains that are able to trigger ISR compared to the 

wild type (Doornbos et al., 2009), suggesting the occurrence of a cross 

communication among roots and beneficial bacteria (Bakker et al., 2013). 

1.1.3 The use of plant-beneficial microorganisms for soil 

fertilization and crop protection 

The demand for food production is expected to increase by 70% in 2050, 

because of the growth of global population and change of diet in developing 

countries (Popp et al., 2013). The Food and Agriculture Organization (FAO) 

defines food security as “the possibility to have access to sufficient, safe and 

nutritious food to meet dietary needs and food preferences for an active and healthy 

life” (Flood, 2010). To guarantee global food security for a growing population we 

need to maximize productivity while minimizing the resources required. Soil 

microorganisms (bacteria, but also fungi and protozoa) promoting plant growth can 

help in this way, as they can be used in agriculture as biofertilizers (Vessey, 2003; 

Rai, 2006). Mainly by enhancing the efficacy of mineral uptake (nitrogen, 

phosphorous and potassium) by plants, such useful microorganisms can play a 

fundamental role in the crop productivity, promoting at the same time an agriculture 

system with a lower environmental impact (Malusà et al., 2016). 

Since plant pathogens represent one of the major threats to crops worldwide, 

plant disease protection is of crucial importance in agriculture. The global potential 

yield loss due to plant diseases is estimated around 16% and it is increasing, because 

the producers often choose to cultivate varieties that provide greater yields but are 

less resistant to pathogens, and also because of the more and more frequent trade 
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and travel exchanges (Anderson, 2004; Oerke, 2006). Therefore, a reduction of crop 

losses through efficient strategies of plant disease protection is now more than ever 

required. 

When pathogens cannot be controlled by agronomic practices or the use of 

resistant varieties, the application of pesticides becomes necessary. Chemical 

pesticides are applied on many crops as the main method of protection from 

pathogens and from their vectors (insects and nematodes) (Strange and Scott, 2005). 

However, this extensive use of targeted products may lead to the emergence of 

resistance in pathogen’s population, which compromises their efficacy. Moreover, 

a reduction of chemical pesticides would meet the demand for a sustainable 

agriculture, meaning the adoption of farming techniques that preserve the 

environment and the health of growers and consumers, allowing future generations 

to do the same. Biological control, especially in a context of integrated pest 

management strategy, is a valid alternative to chemicals, although much effort is 

still required to improve the efficacy and the applicability of biopesticides 

(Leadbeater and Gisi, 2010). 

Although the use of plant-beneficial microorganisms may have great 

advantages in terms of lowering the negative impact of plant disease control, it has 

also several limitations, as inconsistent efficacy under field conditions and costs of 

development and registration (Fravel, 2005). A better understanding of the biology 

of the complex interactions occurring in soil is an important step towards an 

improved use of such valuable tools.  
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1.2 Bacillus genus as source of plant-beneficial strains 

The genus Bacillus is one of the most important genera of PGPR and 

encompasses a wide variety (in terms of genetics and ecology) of Gram-positive, 

aerobic, rod-shaped bacteria, which can form robust dormancy structures called 

endospores (Turnbull, 1996). This is an important trait in the development of 

biopesticides, because spore formation facilitates the storage of the product by 

extending the shelf life and makes the inoculants more resistant to environmental 

stress. Moreover, some Bacillus spp. are facultative anaerobes and are able to adapt 

to oxygen limitation, which is another advantage for their survival in soil (Nakano 

and Hulett, 1997). 

Several species, like B. amyloliquefaciens, B. cereus, B. licheniformis, B. 

megaterium, B. mycoides, B. pumilus, B. subtilis and B. sphaericus, include strains 

known for their biocontrol and/or plant-growth-promoting potential, among which 

some have already been commercialized as foliar or soil inoculants (Pérez-García 

et al., 2011). Bacillus thuringiensis has been used as biopesticide since the 

beginning of 20th century, thanks to its insecticidal toxins (Cry proteins). It later 

became the source of genes for the genetically modified “Bt” crops resistant to 

insects. Nowadays, it shares more than 70% of the total market of BCAs sensu lato 

(Sanauhja et al., 2011). Other Bacillus-based products account for about half of the 

remaining sales (Choudhary and Johri, 2009; Cawoy et al., 2011). Several of these 

bioformulates (e.g. Ballad® and Sonata® with B. pumilus, Serenade® with B. 

subtilis) are used to control diseases, such as rusts, downy and powdery mildews, 

on many vegetables and fruit crops. 

The plant-beneficial effects of Bacillus spp. rely on the combined action of 

multiple mechanisms, from the improvement of plant nutrition to the biocontrol 

activity in both ISR-independent and dependent way (Figure 5). These mechanisms 

mostly depend on the efficient production of a broad range of secondary 

metabolites, which are involved not only in the antibiotic activity of the bacteria but 

also in the interactions with the host plant and in the processes that favour niche 

colonization (Ongena and Jacques, 2008; Kumar et al., 2011). 
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Figure 5: Modes of action of Bacillus PGPR. Plant growth promotion by rhizosphere Bacillus spp. 

results from a combination of multiple mechanisms (Kumar et al., 2011). 

 

1.2.1 Structures and roles of Bacillus secondary metabolites 

Members of Bacillus genus are known to be good producers of bioactive 

molecules. Indeed, up to 8.5% of the bacterial genome can be devoted to the 

synthesis of secondary metabolites, as for B. amyloliquefaciens subsp. plantarum 

FZB42 (Chen et al., 2009). A large part of those molecules is non-ribosomally 

synthesized by complex enzymatic machineries (Sieber and Marahiel, 2003). Some 

antibiotics are synthesized by ribosomes as linear precursor peptides and 

subsequently processed through proteolysis and post-translational modifications 

(Stein, 2005). 

1.2.1.1 Bacteriocins 

The term “bacteriocins” refers to a heterogeneous group of antimicrobial 

peptides produced by ribosomal synthesis (Riley and Wertz, 2002), which can be 

important in competitive interactions of PGPR, especially against phytopathogenic 

bacteria and nematodes (Chowdhury et al., 2015). Bacillus bacteriocins represent 

the second biggest group after those produced by lactic acid bacteria, and they 

display a variety of different chemical structures. They have been divided into three 
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classes: post-translationally modified peptides (class I, mainly lantibiotics), non-

modified peptides (class II) and large proteins (class III; Abriouel et al., 2011). 

Lanthionine-containing antibiotics are known as lantibiotics and 

distinguished by the presence of inter-residual thioether bonds, which are formed 

after the dehydration of L-serine and L-threonine and the addition of cysteine thiol 

groups (Stein, 2005). The gene clusters involved in their synthesis (10-15 kb) 

include structural genes and genes responsible for the modifications, the regulation, 

the export, and the immunity of the producer strain (Fickers, 2012). 

Subtilin is the best-characterized lantibiotic produced by B. subtilis and it is 

structurally related to the biopreservative nisin produced by Lactococcus lactis 

(Figure 6). Its mature form is a 32-residue pentacyclic peptide that is active against 

a broad range of Gram-positive bacteria. Subtilin causes the dissipation of the 

transmembrane proton motive force following the formation of pores in the 

cytoplasmic membrane (Stein, 2005). 

Ericin A and ericin S are other lantibiotics having antimicrobial activity 

comparable to subtilin and similar structure (Figure 6) (Stein, 2005). On the 

contrary, mersacidin has a more globular structure and acts by preventing cell wall 

biosynthesis upon binding to the cell wall precursor lipid II (Brötz et al., 1995). 

Subunits of haloduracin, lichenicidin, amylolysin, and other Bacillus lantibiotics 

show the same pattern of lanthionine bridges of mersacidin. Sublancin 168 and 

subtilisin A are also included in class I 

even if structurally different from 

typical lanthipeptides (Abriouel et al., 

2011; Arguelles-Arias et al., 2013). 

Class II of non-modified 

peptides includes antibiotics 

characterised by a molecular weight 

below 5 kDa. Among these ones, 

coagulin displays antilisterial activity 

(Le Marrec et al., 2000) and thuricin 

17 has an additional function of plant-

growth promotion (Lee et al., 2009). 

Figure 6: Structures of nisin A, subtilin and 

ericins. Conserved residues at identical positions 

to all four bacteriocins are highlighted in green, 

while those conserved only in subtilin and ericins 

are in yellow; other conserved residues are in 

light red (modified from Abriouel et al., 2010). 
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Megacins belong instead to class III that groups heat sensitive proteins with a 

molecular weight higher than 30 kDa. These proteins have phospholipase A2 

activity, as they convert phospholipids to lysophospholipids (Abriouel et al., 2011; 

Fickers, 2012). 

1.2.1.2 Polyketides and non-ribosomally synthesized peptides 

Polyketides macrolactin, difficidin and bacillaene are produced by B. 

amyloliquefaciens and B. subtilis strains, which possess the corresponding large 

gene clusters (Chen et al., 2009). Indeed, these molecules are synthesized in a non-

ribosomal way by polyketides synthases (PKS), which are modularly organized 

enzymes that coordinate the assembly of a large class of secondary metabolites, 

through the condensation of acil-CoA monomers and subsequent modifications by 

dehydratase, methylation, ketoreductase, enoylreductase, oxidation, 

methyltransferase, and cyclase domains (Fickers, 2012). 

The functions of polyketydes span from antibacterial to immunosuppressive 

and antitumor activities. For example, difficidin has received special attention for 

its suppressive action against Erwinia amylovora, a devastating plant pathogen 

causing fire blight disease of apple, pear and other rosaceous plants (Fickers, 2012). 

Cyclic lipopeptides of surfactin, fengycin and iturin families, whose 

production is widespread among B. amyloliquefaciens, B. licheniformis, B. pumilus 

and B. subtilis, are non-ribosomally synthesized peptides. Due to their amphiphilic 

structure composed of a polar peptidic ring linked to a hydrophobic lipid tail 

(Figure 7), these molecules have potent biosurfactants properties and thus they 

have multiple biotechnological applications (Ongena and Jacques, 2008). 

Surfactins are heptapeptides interlinked with a β-hydroxy fatty acid (C12-

C17) to form a cyclic lactone ring structure (Figure 7). They display haemolytic, 

antibacterial, antimycoplasma and antiviral activity but they are not fungitoxic 

(Peypoux et al., 1999). Surfactins are also involved in swarming motility (Kinsinger 

et al., 2003) and biofilm formation on roots (Bais et al., 2004), besides playing a 

fundamental role as elicitors of ISR in plants (Ongena et al., 2007; Cawoy et al., 

2014). Interestingly, a recently published study revealed that structural variants of 
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surfactins act individually on the respective producing strain as paracrine signals 

for biofilm formation and root colonization (Aleti et al., 2016). 

Fengycins (also called plipastatins) are lipodecapeptides with an internal 

lactone ring in the peptidic moiety, plus a saturated or unsaturated β-hydroxy fatty 

acid chain (C14-C19) (Figure 7), and display antifungal activity (Vanittanakom et 

al., 1986). Iturins include seven variants, among which bacillomycins and 

mycosubtilin are the best known; all of them are heptapeptides linked to a β-amino 

fatty acid chain (C14-C17) (Figure 7). Iturins have limited antibacterial activity but 

strong haemolytic and antifungal effect (Maget-Dana and Peypoux, 1994). The 

effectiveness of several Bacillus strains in controlling fungal soil-borne, foliar and 

post-harvest pathogens has been related mainly to fengycin and iturin production. 

Their proposed mode of action is pore formation in cell membranes, leading to an 

imbalance of transmembrane ion fluxes and to a general disorganization of 

cytoplasm (Pérez-García et al., 2011). 

 

Figure 7: Representative structures of the three main families of Bacillus cyclic lipopeptides. 

 

A multicarrier thiotemplate mechanism is responsible for the production of 

non-ribosomally synthesized peptides, in which megaenzymes termed non-

ribosomal peptide synthetases (NRPS) participate. NRPS are composed of modular 

catalytic domains that are involved in adenylation, thiolation and condensation 

cycles of the peptide elongation process (Figure 8). The loading module is involved 

in the incorporation of the first amino acid, while the termination module releases 

the newly synthesized peptide through a thioesterase domain (Sieber and Marahiel, 
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2003). Moreover, NRPS often include other domains for specific modifications, 

such as oxidation, reduction, methylation, formylation, epimerisation, and 

heterocyclisation. This leads to the generation of a broad diversity of structures, 

which is directly linked to the variety of biological activities of these molecules 

(Fickers, 2012). The gene clusters encoding NRPS modules can be longer than 150 

kb and their assembly follows the colinearity rule (Chen et al., 2009). 

 

Figure 8: Surfactin synthetase. Example of non-ribosomal peptide synthetases: the surfactin 

synthetase consists of 24 individual domains responsible for 24 chemical reactions. These domains 

catalyse activation (A), covalent binding (T), elongation (C), epimerization (E), and release (TE) by 

either cyclization or hydrolysis. The domains are organized in modules, which incorporate the 

building blocks into the growing peptide chain. The peptide chain is covalently tied to the 

multienzyme via the cofactor phosphopantetheine (ppan). FA, fatty acid chain (Sieber and Marahiel, 

2003). 

 

Among antibiotics, bacilysin is a dipeptide active against bacteria and yeast, 

whereas bacillibactin is another non-ribosomally synthesized peptide that acts as a 

siderophore. Indeed, it is involved in a particular transport system that allows 

Bacillus cells to accumulate and import iron ions present in the environment at low 
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concentrations (Chen et al., 2009). Bacillus cereus UW85 produces zwittermicin 

A, a fungistatic antibiotic, whose biosynthesis is a hybrid of NRPS and PKS 

pathway. It controls some Gram-positive and Gram-negative bacteria, besides being 

involved in the suppression of the fruit rot of cucumber and the damping-off disease 

of alfalfa induced by Phytophthora medicaginis (Silo-Suh, et al., 1998). 

The synthesis of many polyketides and lipopeptides depends on the 

membrane protein YczE (Chen et al., 2007) and on a functional phospho-

pantetheinyl transferase Sfp, an enzyme that activates PKS and NRPS by 

transferring 4’-phosphopantetheine from coenzyme A to the carrier proteins 

(Nakano et al., 1992; Lambalot et al., 1996). Indeed, the domesticated strain B. 

subtilis 168 is not able to produce surfactin due to a frameshift mutation in sfp gene, 

but the introduction of a native sfp allele induced surfactin synthesis in B. subtilis 

168 (Nakano et al., 1992; Stein, 2005). 

Surfactin synthesis usually occurs in the transition from the exponential to 

the stationary growth phase, whereas the production of fengycins and iturins begins 

later in the stationary phase (Raaijmakers et al., 2010). Surfactin expression is 

related to population density and with the development of cellular competence, i.e. 

the ability of exogenous DNA uptake, as the gene of the competence regulator comS 

is embedded within the surfactin synthetase gene cluster, which is controlled by the 

quorum sensing via ComX (Stein, 2005). ComX is an extracellular signalling 

peptide that, upon reaching a critical concentration, activates the histidine kinase 

ComP, which phosphorylates the transcriptional activator ComA. Phosphorylated 

ComA regulates the expression of various genes, including the surfactin synthetase 

operon (Roggiani and Dubnau, 1993; Comella and Grossman, 2005). The activity 

of ComA is also modulated by Rap-Phr quorum-sensing systems (Boguslawski et 

al., 2015), and the expression of the surfactin synthetase genes is regulated by 

several other transcription factors such as AbrB, CodY, DegU and PerR 

(Raaijmakers et al., 2010). The two-component response regulator DegU is also 

required for the expression of the fengycins and iturins operons (Koumoutsi et al., 

2007; Tsuge et al., 2007), although little is known about the modulation of their 

expession. 
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1.2.1.3 The primary role of cyclic lipopeptides in the antagonistic activity 

of Bacillus amyloliquefaciens/subtilis against fungal phytopathogens 

A comparative study that included several strains of B. 

amyloliquefaciens/subtilis group showed that the secretion of cyclic lipopeptides 

(CLPs) plays a key role in the direct inhibition of fungal phytopathogens (Cawoy 

et al., 2015). Those strains were selected according to their lipopeptide signatures 

and divided into three groups: producers of the three families of CLPs (surfactin, 

fengycin and iturin), producers of surfactin and fengycin but not iturin, and non-

producers. The first group, which included among others B. amyloliquefaciens 

subsp. plantarum S499, was the most efficient in the growth inhibition of some 

foliar (Cladosporium cucumerinum, Botrytis cinerea) and soil-borne (Fusarium 

oxysporum, Pythium aphanidermatum) pathogens confronted on an artificial rich 

medium. Iturin production seemed to be determinant in the antagonistic ability, as 

the second group was significantly less active compared with the first (Figure 9). 

Inhibition size against B. cinerea and F. oxysporum well correlated with total 

amounts of fengycins and iturins detected in the medium, while the inhibition of C. 

cucumerinum mainly depended on iturin production. The biocontrol effect against 

P. aphanidermatum was limited, probably due to the different composition of 

oomycete cell walls compared with true fungi. 

 

Figure 9: Role of cyclic lipopeptides in Bacillus antagonistic activity. Inhibition of 

phytopathogenic fungi by some representative strains of three groups of Bacillus 

amyloliquefaciens/subtilis: producers of the three families of CLPs (left), producers of surfactin and 

fengycin but not iturin (middle), and non-producers (right) (Cawoy et al., 2015). 

 

Cawoy et al. (2015) evaluated also the antagonistic potential and the 

production of CLPs by selected Bacillus strains, including B. amyloliquefaciens 

subsp. plantarum S499, when grown in natural root exudates. Bacteria were still 
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active in inhibiting mycelial growth and, interestingly, MALDI-MS imaging 

showed that mostly iturins accumulated at the front of fungal arrest. Other 

antibiotics, such as bacteriocins and polyketides, were not detected in the assays, 

confirming a primary function of CLPs in the biocontrol activity of the tested 

isolates. 

1.2.1.4 Surfactin as elicitor of induced systemic resistance in plants 

Among CLPs, surfactin is the most efficient in stimulating plant immunity 

(Henry, 2013). Previously, Ongena et al. (2007) demonstrated that pure surfactins 

induced ISR in bean at similar levels of living cells of B. amyloliquefaciens subsp. 

plantarum S499. They also showed that the overexpression of surfactin synthetase 

gene in the naturally poor producer B. subtilis 168 enhanced its protective effect, 

since a significant disease reduction was observed in treated plants. Indeed, 

lipoxygenase and lipid hydroperoxidase activities were stimulated in bacterized 

tomato plants. Moreover, strains of B. amyloliquefaciens/subtilis identified as 

reliable producers of surfactins (S499, 98S) were more effective in reducing disease 

incidence in tobacco plants challenged by B. cinerea compared with medium 

(FZB42, QST713) and non-producers (56, BN01; Figure 10) (Cawoy et al., 2014). 

 

     

Figure 10: Role of surfactins in ISR. (A) Disease reduction on tomato leaves inoculated with 

Botrytis cinerea after root inoculation with the six selected Bacillus strains compared with non-

inoculated control plants. (B) Containment of typical spreading lesions in plants inoculated with B. 

amyloliquefaciens subsp. plantarum S499 before infection with B. cinerea (modified from Cawoy 

et al., 2014). 

 

The role of surfactin as MAMP was studied in vitro as well, by adding the 

CLPs in micromolar concentrations to tobacco cell suspensions (Jourdan et al., 
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2009). Surfactin (but not fengycin nor iturin) triggered extracellular medium 

alkalization, ion fluxes and the production of reactive oxygen species, which are 

well-known defence-related early events. An induction of phenylalanine ammonia-

lyase and lipoxygenase gene expression, coupled with an increased activity of these 

enzymes and with the accumulation of phenols, was also observed in the elicited 

cells. These responses are strictly linked to Ca2+ influx and to dynamic changes in 

protein phosphorylation. At the same time, a phytotoxic effect of surfactins could 

be excluded for concentrations up to 10 µM. Indeed, such amphiphilic molecules 

are putatively involved in a temporary destabilization of plant plasma membranes, 

which does not induce irreversible pores formation, but may prompt a signalling 

cascade leading to defensive responses (Jourdan et al., 2009). 

Protein receptors for rhizobacterial MAMPs has not been identified yet. 

Henry and colleagues (2011) focused on various approaches to study the 

mechanism governing the perception of surfactins by plant cells. They observed 

oxidative burst induction in tobacco cells, structure/activity relationship, 

competitive inhibition, insertion kinetics within plant membranes, and they 

combined those data with a thermodynamic determination of binding parameters 

on model membranes. Their results confirmed that surfactin perception more likely 

relies on a lipid-driven process at the plasma membrane level, namely a transient 

channelling, rather than on the presence of receptors. Considering the hypothesis of 

dynamic membrane compartmentalization, the induction of ISR could be related to 

the ability to temporally and spatially organize protein complexes, which would in 

turn activate the signalling pathway (Henry, 2013). 

1.2.2 Bacillus amyloliquefaciens subsp. plantarum, model PGPR for 

unravelling plant-microbe interactions: genomics and taxonomy 

Bacillus spp. were originally classified according to their ecophysiology and 

their metabolic diversity into three main groups: pathogenic, environmental and 

industrial species (Hamdache et al., 2013). In 1997, a consortium of 46 laboratories 

sequenced the complete genome sequencing of B. subtilis 168, which was selected 

as a paradigm of Gram-positive bacteria. Indeed, its genetic, physiology and 

biochemical features had been extensively studied for several decades (Kunst et al., 
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1997). Later on, the progress in next generation sequencing (NGS) technologies 

allowed easier, cheaper and faster analyses that led to the publication of thousands 

of prokaryotic genomes (Loman et al., 2012). Among these, several genomes of 

PGPR, including strains of Bacillus spp., have been deposited in public databases, 

either in the form of a draft (i.e. a set of fragmented sequences covering the most 

part of the genome) or as a sequence representing the whole genome. Comparative 

analyses of genomic data within Bacillus genus indicated that B. amyloliquefaciens, 

B. licheniformis and B. subtilis are closely related species, while B. anthracis, B. 

cereus and B. thuringiensis form a distinct phylogenetic group, as for B. clausii and 

B. halodurans (Hamdache et al., 2013). 

Initially, B. amyloliquefaciens species received attention for their abundant 

release of α-amylases and proteases (Priest, 1987). Indeed, the name B. 

amyloliquefaciens was chosen by the Japanese scientist who discovered the species 

(Fukumoto, 1943) because it produced (“-faciens”) a liquefying (“-lique-”) amylase 

(“amylo-”). To group all the plant-associated B. amyloliquefaciens strains, a 

subgroup named “Bacillus amyloliquefaciens subspecies plantarum” was instituted 

and B. amyloliquefaciens FZB42 was elected as the type strain of the taxon (Figure 

11) (Borriss et al., 2011). The rhizobacteria belonging to B. amyloliquefaciens 

subsp. plantarum are known for improving plant growth and for their antagonistic 

activity against plant pathogens. The strain FZB42 is particularly efficient against 

phytopathogens bacteria and fungi and already present on the market as BCA 

(Borriss, 2011). Its ability in the root colonization of Arabidopsis thaliana, Zea 

mays and Lemna minor was assessed with a FZB42 derivative labelled with the 

green fluorescent protein through a confocal laser scanning microscopy (Fan et al., 

2011). Moreover, the activities of plant growth stimulation and disease protection 

were reported for FZB42 and many other strains of B. amyloliquefaciens subsp. 

plantarum (Chowdhury et al., 2015). For these reasons, this taxon can be regarded 

as a model to study plant-beneficial interactions in Bacillus spp. 

The genome of the strain FZB42 was the first to be sequenced and analysed 

to identify the key genes involved in the plant-associated lifestyle (Koumoutsi et 

al., 2004; Chen et al., 2007). A big portion (8.5%) of FZB42 genome is devoted to 

the synthesis of secondary metabolites and, more precisely, nine gene clusters 
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involved in the production of bioactive peptides and polyketides were described 

(Figure 12) (Chen et al., 2009). Based on genotype and phenotype coherence, the 

taxon of B. amyloliquefaciens subsp. plantarum has undergone two 

reclassifications, first by being identified as a later heterotypic synonym of B. 

methylotrophicus (Dunlap et al., 2015) and then as a later heterotypic synonym of 

B. velezensis (Dunlap et al., 2016). 

The annotation and the functional characterization of PGPR genomes can 

contribute to an improved understanding of their ecology and of the mechanisms 

involved in biocontrol and in plant-growth promotion activities. For instance, a 

comparative study that included the genomes of 12 Bacillus spp. with PGPR 

activity identified specific features involved in root colonization, growth promotion 

and biocontrol, among which specific genes linked with carbon usage, transport 

systems, signalling and production of secondary metabolites (Hossain et al., 2015). 

Moreover, genome mining enables to identify the gene clusters encoding ribosomal 

and non-ribosomal bioactive secondary metabolites that are generally silent, which 

can generate an underestimation of the biosynthetic potential of some isolates 

(Hamdache et al., 2013).  
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Figure 12: The genome of Bacillus amyloliquefaciens subsp. plantarum FZB42. Outmost circle: 

genes and gene clusters involved in synthesis and export (detoxification) of secondary metabolites: 

srf, surfactin; sfp, phospho-panthetheinyl-transferase; pksA, regulator polyketide synthesis; mln, 

macrolactin; bae, bacillaene, bmy, bacillomycin D; fen, fengycin; dif, difficidin; Rbce, bacitracin 

export; nrs, hybrid polyketide/cysteine-containing peptide; dbh, bacillibactin; Rspa, subtilin 

immunity; bac,  bacilysin; Rmrs, mersacidin immunity. First circle: all genes in colour code 

according to their functions: cell envelope and cellular processes, green; information pathways, 

orange; intermediary metabolism, pink; other functions, red; unknown, black. Second circle: genes 

not conserved in Bacillus subtilis including four gene clusters involved in synthesis of secondary 

metabolites (orange); Third circle: the numbered 17 DNA islands (green), 4th circle: GC content 

profile, 5th circle: rRNAs (green), 6th circle: tRNAs (cyan), 7th circle: prophages (black), transposons, 

and IS elements (red), 8th circle: scale (bp) (Chen et al., 2007).  
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1.2.3 Impact of environmental factors on lipopeptide production in 

the rhizosphere 

Root exudates not only act as chemoattractants for PGPR, but they are also 

the primary nutrients that support their growth in the rhizosphere. Therefore, the 

host plant imposes to the associated bacteria a particular nutritional environment, 

which influences their cellular physiology, besides determining the selection of 

specific microbial populations (Hartmann et al., 2009). Other factors, such as the 

interaction with niche competitors or physicochemical parameters like humidity, 

pH, temperature, mineral content, and oxygen availability, contribute to shape the 

size and the behaviour of rhizobacterial communities. Studying which and how 

environmental factors affect the physiology of plant-beneficial Bacillus, including 

the production of secondary metabolites, is necessary to improve their efficacy 

(Nihorimbere et al., 2009).  

1.2.3.1 Modulation by plant determinants and rhizosphere competitors 

Several works showed that the pattern of CLPs secreted by B. 

amyloliquefaciens subsp. plantarum S499 is substantially modulated in favour of 

surfactins upon root colonization. In laboratory conditions (i.e. planktonic cells 

grown in rich medium), this strain efficiently produces all the three families of CLPs 

in their various forms, but mainly surfactins were detected on Arabidopsis, bean, 

corn, lettuce, tobacco, tomato, and wheat roots (Figure 13) (Nihorimbere et al., 

2012; Debois et al., 2014; Debois et al., 2015). Indeed, surfactin synthesis is 

stimulated by the presence of organic acids that are abundant in plant root exudates 

(Nihorimbere et al., 2012; Kamilova et al., 2006). 

Time-of-flight secondary ion mass spectrometry imaging revealed that 

higher quantities of C14 and C15 surfactins compared to C12 and C13 homologues are 

released by root-adhering colonies (Figure 13). Similar proportions were found in 

bacteria developing as biofilm, where surfactins were still the main CLPs produced 

(Nihorimbere et al., 2012). Interestingly, long-chain surfactins are also the most 

active as ISR elicitors (Jourdan et al., 2009). 
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A recent study demonstrated that C14 and C15 homologues are secreted very 

early by root-colonizing cells and that the presence of root exudates is not essential 

for surfactin accumulation. Moreover, certain plant cell wall polysaccharides, such 

as xylan and arabinogalactan, are perceived by S499 and closely related strains 

(FZB42, QST713) as signals that trigger surfactin production (Debois et al., 2015). 

The same polysaccharides have been shown to induce the formation of biofilm in 

several strains of Bacillus amyloliquefaciens/subtilis, suggesting that they may play 

a key role in the crosstalk that leads to root colonization (Beauregard et al., 2013). 

In parallel, the pattern of Bacillus CLPs is modulated by the presence of 

other microorganisms in the same ecosystem. Certain phytopathogenic fungi and 

not others boost the production of fengycins and iturins in B. amyloliquefaciens. 

Since this occurs without any physical contact among the microbial colonies, it is 

conceivable that the bacteria perceive specific chemicals signals emitted by some 

pathogens, which might up-regulate the expression of antibiotics (Cawoy et al., 

2014). Analyses of gene expression confirmed that different soil-borne fungal 

pathogens induce varying levels of transcription of the genes involved in the 

Figure 13: TOF-SIMS 

imaging of lipopeptides 

produced by Bacillus 

amyloliquefaciens subsp. 

plantarum S499 colonizing 

tomato roots. Optical 

microscope images of (a) the 

colonized root and (b) part of 

the colonization pattern after 

transfer onto the silicon wafer. 

(c) Video image of the scanned 

zone. (d) High-definition scan 

of the lipopeptide distribution: 

images of the sum of surfactins 

(S), iturins (I) and fengycins 

(F) ions and (e) relative 

distribution of surfactin 

homologues in the same 

pattern are shown. The 

maximum ion count recorded 

in a pixel in the image is 

indicated on the colour scale 

bar (Nihorimbere et al., 2012). 
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synthesis of CLPs, indicating that B. amyloliquefaciens evolved to give species-

specific responses to competitors in the environment (Li et al., 2014). 

1.2.3.2 Effect of temperature, water and oxygen availability 

Physicochemical factors such as temperature, pH and water availability can 

influence the physiology of both host plants and associated rhizobacteria. In this 

context, the study by Pertot et al. (2013) assessed the impact of low and high 

temperatures and drought on the interaction between B. amyloliquefaciens subsp. 

plantarum S499 and plants (bean, tomato and zucchini). Regarding surfactin 

productivity, a positive effect of low temperatures (15°C) was observed. In those 

conditions, a slower population growth could end in a higher accumulation of the 

CLPs, in agreement with the fact that a reduced growth rate enhances surfactin 

synthetase gene expression in B. subtilis (Nihorimbere et al., 2009). Consistently, 

the ISR effect was more evident in bean and tomato plants grown at 15°C than on 

plants cultivated at 25°C. An increased surfactin production could therefore 

compensate the adverse effect of cold stress on other traits involved in rhizosphere 

fitness, e.g. motility and biofilm formation, which resulted impaired in cold 

conditions. By contrast, no differences in root colonization nor in disease protection 

activity emerged between bacterized plants treated with low water regime and those 

regularly irrigated (Pertot et al., 2013). 

The effect of pH and temperature on iturin production was studied by Leães 

et al. (2013). By qRT-PCR, they demonstrated that ituD gene expression increased 

more than 20 times upon growing Bacillus sp. P11 at pH 6 compared to pH 7.4, and 

almost ten times at the temperature of 37°C compared to bacterial growth at 30°C. 

On the contrary, by increasing the temperature to 42°C and the pH to 8 ituD gene 

expression in the strain decreased. However, Fickers et al. (2008) showed that 

lowering growth temperature from 37°C to 25°C fostered the biosynthesis of 

mycosubtilin (CLP of the iturin family) in B. subtilis ATCC6633 and its derivative 

strain BBG100 without visible changes in gene expression, indicating that 

temperature may also affect mycosubtilin synthetase turnover. 

Oxygen concentration was another parameter monitored for its effect on 

lipopeptide production. Oxygen is often a limiting factor in soil and especially in 
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the rhizosphere, because it is consumed by root and root-associated 

microorganisms. Soil-borne aerobic bacteria, such as Bacillus spp., may thus be 

affected by oxygen depletion in their natural habitat. When B. amyloliquefaciens 

subsp. plantarum S499 was grown under different aeration rates, surfactins, 

fengycins and iturins were more efficiently produced under low oxygen 

concentrations. Anyway, changing the aeration conditions did not change the 

relative proportion of the three families of CLPs released, therefore this factor 

cannot explain the surfactin-enriched lipopeptide signature in planta (Nihorimbere 

et al., 2012). The impact of oxygen concentration on lipopeptide biosynthesis was 

also demonstrated with other strains, such as B. subtilis ATCC6633 (Guez et al., 

2008) and B. subtilis BBG21 (Fahim et al., 2012).  
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A sustainable agriculture aims at reducing the release of synthetic chemical 

products in the environment. For this reason, the use of alternatives as microbial 

biopesticides is increasing worldwide. Several PGPR, and in particular the strains 

of B. amyloliquefaciens subsp. plantarum, display biofertilizer activity and/or have 

the ability to contain plant diseases. However, field efficacy of most of these 

bacterial strains is still unsatisfying. Indeed, as the rhizosphere is a complex and 

dynamic system, the efficacy of PGPR inoculants can be impaired by several biotic 

and abiotic factors. In many cases, molecular crosstalk determining the colonization 

of the host plant, or allowing to survive over niche competitors, or yet the 

mechanisms underlying adaptation to environmental stresses, are poorly known. 

Therefore, a deeper understanding of major traits regulating rhizosphere 

interactions may help in improving the efficacy of plant beneficial strains in crop 

systems. 

The general aim of this thesis is to broaden the knowledge on biological 

mechanisms underlying the crosstalk between PGPR belonging to B. 

amyloliquefaciens subsp. plantarum, host plants and phytopathogenic fungi, 

especially focusing on the bacterial features. Hence, the specific objectives of the 

thesis are: 

(I) B. amyloliquefaciens subsp. plantarum strain S499 genome sequencing, 

assembly and annotation, and S499 genome mining for genes putatively 

involved in rhizosphere interactions; 

(II) search for strain-specific genetic features of S499, in comparison with 

closely related strains, and in particular with the type strain B. 

amyloliquefaciens subsp. plantarum FZB42; 

(III) characterization of a peculiar extrachromosomal element (plasmid pS499), 

encoding a quorum-sensing regulatory system, under nutrient-rich growth 

conditions; 

(IV) elucidating the role played by the plasmid pS499 in the rhizosphere, by 

growing bacteria on tobacco and tomato roots and on a “recomposed root 

exudates” medium.  
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Supplementary Material 

 

Supplementary Table 1: Microorganisms used in this study. 

Phylum Strain ID 

Bacteria 

Bacillus amyloliquefaciens subsp. plantarum S499 S499 

Bacillus amyloliquefaciens subsp. plantarum S499 P- S499 P- 

Bacillus amyloliquefaciens subsp. plantarum FZB42 FZB42 

Bacillus amyloliquefaciens GA1 GA1 

Bacillus subtilis/amyloliquefaciens 23 23 

Bacillus subtilis/amyloliquefaciens 76 76 

Bacillus subtilis/amyloliquefaciens 98R 98R 

Bacillus subtilis/amyloliquefaciens 98S 98S 

Bacillus subtilis/amyloliquefaciens 104 104 

Fungi 
Cladosporium cucumerinum   

Fusarium oxysporum f. sp. radicis-lycopersici   
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Supplementary Table 2: Genetic sequences analysed to describe the frequency 

of plasmids similar to pS499. Sequences were present on the NCBI Genome 

Assembly and Annotation reports for Bacillus amyloliquefaciens subsp. plantarum 

and B. amyloliquefaciens subsp. amyloliquefaciens, and the Plasmid Annotation 

report for B. subtilis (http://www.ncbi.nlm.nih.gov). 

Species Strain / Plasmid Accession no. 

Bacillus amyloliquefaciens subsp. plantarum FZB42 CP000560 

CAU B946 HE617159 

YAU B9601-Y2 HE774679 

M27 AMPK00000000 

AS43.3 CP003838 

UCMB5036 HF563562 

UCMB-5033 HG328253 

UCMB5113 HG328254 

NAU-B3 HG514499 

SK19.001 AOFO00000000 

TrigoCor1448 CP007244 

AH159-1 JFBZ00000000 

SQR9 CP006890 

W2 JOKF00000000 

JS25R CP009679 

AP183 JXAM00000000 

GR4-5 JYGH00000000 

KACC 13105 JTKJ00000000 

NJN-6 CP007165 

JJ-D34 CP011346 

YJ11-1-4 CP011347 

G341 CP011686 

OB9 LGAU00000000 

B26 LGAT00000000 

KCTC 13012 LHCC00000000 

NBIF-003 LJJY00000000 

NRRL B-4257 LLZC00000000 

KACC 18228 LLZA00000000 

NRRL B-4257 LLZB00000000 

FKM10 LNTG00000000 

RC218 LQCL00000000 

B25 LN999829 
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Bacillus amyloliquefaciens subsp. amyloliquefaciens DSM7 FN597644 

TA208 CP002627 

LL3 CP002634 

XH7 CP002927 

Y2 CP003332 

DC-12 AMQI00000000 

EGD-AQ14 AVQH00000000 

UASWS BA1 AWQY00000000 

CC178 CP006845 

LFB112 CP006952 

EBL11 JCOC00000000 

B1895 JMEG00000000 

CMW1 BBLH00000000 

X1 JQNZ00000000 

HB-26 AUWK00000000 

JJC33M JTJG00000000 

LPL-K103 JXAT00000000 

TF28 JUDU00000000 

L-H15 CP010556 

KHG19 CP007242 

12B JZDI00000000 

L-S60 CP011278 

516_BAMY JVEA00000000 

Lx-11 AUNG00000000 

629 LGYP00000000 

Bs006 LJAU00000000 

XK-4-1 LJDI00000000 

RHNK22 LMAG00000000 

Jxnuwx-1 LMAT00000000 

MBE1283 CP013727 

11B91 LPUP00000000 

B4140 LQYO00000000 

B425 LQYP00000000 

UMA56639 CP006058 

UMAF6614 CP006960 

B15 CP014783 
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Bacillus subtilis pIM13 M13761 

pTA1040 U32378 

pTA1015 U32379 

pTA1060 U32380 

p1414 AF091592 

pBS608 AY836798 

pLS30 AB243053 

pPL1 DQ140187 

pLS20 AB615352 

pLS32 AB615353 

pBS32 KF365913 

pSU01 ANIP01000001 

unnamed1 CP014472 

unnamed2 CP014473 

pBEST195S AP011542 

 

  

http://www.ncbi.nlm.nih.gov/nuccore/M13761
http://www.ncbi.nlm.nih.gov/nuccore/U32378
http://www.ncbi.nlm.nih.gov/nuccore/U32379
http://www.ncbi.nlm.nih.gov/nuccore/U32380
http://www.ncbi.nlm.nih.gov/nuccore/AF091592
http://www.ncbi.nlm.nih.gov/nuccore/AY836798
http://www.ncbi.nlm.nih.gov/nuccore/AB243053
http://www.ncbi.nlm.nih.gov/nuccore/DQ140187
http://www.ncbi.nlm.nih.gov/nuccore/AB615352
http://www.ncbi.nlm.nih.gov/nuccore/AB615353
http://www.ncbi.nlm.nih.gov/nuccore/KF365913
http://www.ncbi.nlm.nih.gov/nuccore/ANIP01000001
http://www.ncbi.nlm.nih.gov/nuccore/CP014472
http://www.ncbi.nlm.nih.gov/nuccore/CP014473
http://www.ncbi.nlm.nih.gov/nuccore/AP011542
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Supplementary Table 3. Primers used in this study. Oligonucleotides were 

designed by Primer3web version 4.0.0 (Untergasser et al., 2012). 

Target gene Primers Sequence (5’-3’) References 

16S rRNA 
9-F GAGTTTGATCCTGGCTCAG Weisburg 

et al.(1991) 1512-R ACGGCTACCTTGTTACGACTT 

cheA 
CheA-F  AGAGCTGCCCATACGCTGAAAGGCATGAGC 

This study 
CheA-R  GGTTTCTACCGGCACCATCCGCATATTAAG 

gyrA 

Gyr-F GAGACGCACTGAAATCGTGA 
This study 

Gyr-R GCCGGGAGACGTTTAACATA 

GyrA-F CAGTCAGGAAATGCGGACATCCTT 
This study 

GyrA-R CAAGATAATGCTCCAGACATTGTT 

rap 

Rap-F AGGACATGGAAGAGGACCAA 
This study 

Rap-R GTCCGGTCCCTTCAGATTTT 

Rap1-F ATACGAATTCATTATCGTTGCGGCATGTCG 
This study 

Rap1-R ATTAGGATCCTCTAAGAGTCCGCCCCATT 

rep 
Rep-F CATAGAATTCGAGGACTAGCATCAGAAGGAGT 

This study 
Rep-R ATTAGGATCCTGAAGTCCAAGCCTTTCCG 

srfA 
Srf-F ATTGTTTACGGTGGCTCTGG Debois et 

al.(2015) Srf-R CGCTGCGATAGTCAAAATCA 
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Supplementary Table 4: Genes present in the Bacillus amyloliquefaciens subsp. 

plantarum S499 genome not shared by the FZB42 genome and vice versa. 

Unique CDS were identified using the sequence based comparison tool on SEED 

Viewer version 2.0 (Overbeek et al., 2005) and verified with NCBI annotations 

(http://www.ncbi.nlm.nih.gov) on S499 (CP014700) and FZB42 (CP000560) 

genomes. 

S499 specific genes FZB42 specific genes 

Locus tag Function Locus tag Function 

AS588_RS00475 ABC transporter, permease protein RBAM_RS00685 30S ribosomal protein S12 

AS588_RS00490 hypothetical protein RBAM_RS00710 30S ribosomal protein S10 

AS588_RS00500 
tRNA-guanine transglycosylase (EC 
2.4.2.29) 

RBAM_RS00735 30S ribosomal protein S19 

AS588_RS00505 
putative aminoglycoside 6-

adenylyltansferase 
RBAM_RS00740 50S ribosomal protein L22 

AS588_RS00730 collagen adhesion protein RBAM_RS00745 30S ribosomal protein S3 

AS588_RS00735 sortase A, LPXTG specific RBAM_RS00765 50S ribosomal protein L14 

AS588_RS03020 phage protein RBAM_RS00830 50S ribosomal protein L36 

AS588_RS03025 hypothetical protein RBAM_RS00840 30S ribosomal protein S11 

AS588_RS03040 phage replication initiation RBAM_RS00850 50S ribosomal protein L17 

AS588_RS03045 helicase loader DnaI RBAM_RS00880 30S ribosomal protein S9 

AS588_RS03050 hypothetical protein RBAM_RS01165 membrane protein 

AS588_RS03060 hypothetical protein RBAM_RS01170 hypothetical protein 

AS588_RS03065 hypothetical protein RBAM_RS01175 hypothetical protein 

AS588_RS03070 hypothetical protein RBAM_RS01205 acriflavin resistance protein 

AS588_RS03075 hypothetical protein RBAM_RS01865 hypothetical protein 

AS588_RS03080 
C-5 cytosine-specific DNA methylase 

family protein 
RBAM_RS02315 hypothetical protein 

AS588_RS03085 methyltransferase RBAM_RS02595 ester cyclase 

AS588_RS03090 hypothetical protein RBAM_RS02600 hypothetical protein 

AS588_RS03095 dimeric dUTPase (EC 3.6.1.23) RBAM_RS02650 TetR family transcriptional regulator 

AS588_RS03105 hypothetical protein RBAM_RS02670 transcriptional regulator 

AS588_RS03115 phage-related protein RBAM_RS02685 CarD family transcriptional regulator 

AS588_RS03125 hypothetical protein RBAM_RS02795 hypothetical protein 

AS588_RS03135 hypothetical protein RBAM_RS02805 hypothetical protein 

AS588_RS03145 
phage terminase-like protein, small 
subunit 

RBAM_RS02830 hypothetical protein 

AS588_RS03150 phage terminase, large subunit RBAM_RS02890 SAM-dependent methyltransferase 

AS588_RS03155 phage portal protein RBAM_RS02905 TVP38/TMEM64 family protein 

AS588_RS03160 phage head maturation protease RBAM_RS02920 DUF6 transmembrane transporter 

AS588_RS03165 phage major capsid protein RBAM_RS03570 

type I restriction-modification 

system, DNA-methyltransferase 

subunit M 

AS588_RS03170 phage tail fiber protein RBAM_RS03575 

type I restriction-modification 

system, DNA-methyltransferase 
subunit S 

AS588_RS03175 hypothetical phagelike protein RBAM_RS03580 

type I restriction-modification 

system, DNA-methyltransferase 
subunit R 

AS588_RS03180 FIG01228293: hypothetical protein RBAM_RS03585 hypothetical protein 

AS588_RS03185 FIG01225884: hypothetical protein RBAM_RS03590 McrA protein 
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AS588_RS03190 FIG01229968: hypothetical protein RBAM_RS03620 RNA-binding protein, RRM domain 

AS588_RS03195 phage major tail protein RBAM_RS03700 membrane protein, putative 

AS588_RS03200 FIG01246408: hypothetical protein RBAM_RS03725 putative hydroxylase 

AS588_RS03205 
phage tail length tape-measure 
protein 

RBAM_RS03730 hypothetical protein 

AS588_RS03210 
putative tail or base plate protein 

gp17 [Bacteriophage A118] 
RBAM_RS03735 plantazolicin synthase D 

AS588_RS03230 phage protein RBAM_RS03740 dehydrogenase 

AS588_RS03235 phage protein RBAM_RS03745 caax amino protease family 

AS588_RS03250 hypothetical protein RBAM_RS03750 SAM-dependent methyltransferase 

AS588_RS03255 hypothetical protein RBAM_RS03885 
collagen like triple helix with GXT 

repeats 

AS588_RS03260 hypothetical protein RBAM_RS04120 membrane protein 

AS588_RS03330 hypothetical protein RBAM_RS04525 hypothetical protein 

AS588_RS05315 hypothetical protein RBAM_RS04720 metallophosphatase 

AS588_RS06535 hypothetical protein RBAM_RS05095 hypothetical protein 

AS588_RS06555 transcriptional regulator RBAM_RS05320 mep operon protein MepB 

AS588_RS06565 hypothetical protein RBAM_RS05540 cytochrome P450 

AS588_RS06685 
DnaJ-class molecular chaperone 
CbpA 

RBAM_RS05910 sporulation protein YjcZ 

AS588_RS08085 sporulation protein YjcZ RBAM_RS05990 hypothetical protein 

AS588_RS08315 hypothetical protein RBAM_RS05995 hypothetical protein 

AS588_RS08915 FIG01238565: hypothetical protein RBAM_RS06000 DUF3037 domain-containing protein 

AS588_RS08920 
phage-like element PBSX protein 

xkdU 
RBAM_RS06030 hypothetical protein 

AS588_RS08925 phage baseplate RBAM_RS06105 Kelch repeat protein 

AS588_RS08930 
phage-like element PBSX protein 

xkdS 
RBAM_RS06110 hypothetical protein 

AS588_RS08935 FIG01234021: hypothetical protein RBAM_RS07145 sporulation protein YjcZ 

AS588_RS08940 
phage-like element PBSX protein 
xkdQ 

RBAM_RS07155 hypothetical protein 

AS588_RS08945 
phage-like element PBSX protein 

xkdP 
RBAM_RS07270 hypothetical protein 

AS588_RS08950 
phage tail length tape-measure 

protein 
RBAM_RS07275 hypothetical protein 

AS588_RS08955 
phage-like element PBSX protein 
xkdN 

RBAM_RS07275 hypothetical protein 

AS588_RS08960 phage tail fibers RBAM_RS07925 50S ribosomal protein L19 

AS588_RS08965 
phage-like element PBSX protein 

xkdK 
RBAM_RS08250 30S ribosomal protein S15 

AS588_RS08970 hypothetical protein RBAM_RS08560 hypothetical protein 

AS588_RS08975 
phage-like element PBSX protein 

xkdJ 
RBAM_RS19045 phage integrase 

AS588_RS08980 Lin1275 protein RBAM_RS08720 YoaW 

AS588_RS08985 
phage-like element PBSX protein 
xkdH 

RBAM_RS08745 
DUF4944 domain-containing protein 
YoaO 

AS588_RS08990 hypothetical protein RBAM_RS08750 hypothetical protein 

AS588_RS08995 
phage-like element PBSX protein 

xkdG 
RBAM_RS08780 hypothetical protein 

AS588_RS09000 FIG01230357: hypothetical protein RBAM_RS09015 hypothetical protein 

AS588_RS09005 
phage-like element PBSX protein 

xkdE 
RBAM_RS09020 hypothetical protein 

AS588_RS09010 
phage terminase, large subunit [SA 
bacteriophages 11, Mu50B] 

RBAM_RS09025 hypothetical protein 

AS588_RS09090 
lanthionine biosynthesis protein 

LanM 
RBAM_RS09320 IS231-related transposase 

AS588_RS09100 
lanthionine biosynthesis protein 

LanM 
RBAM_RS09325 predicted short chain dehydrogenase 
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AS588_RS09105 hypothetical protein RBAM_RS09370 YoaF 

AS588_RS09120 hypothetical protein RBAM_RS09840 
FAD-dependent pyridine nucleotide-
disulphide oxidoreductase, 

GBAA2537 homolog 

AS588_RS09125 
bacitracin ABC transporter, permease 
protein, putative 

RBAM_RS09865 hypothetical protein 

AS588_RS09240 hypothetical protein RBAM_RS09870 hypothetical protein 

AS588_RS09255 hypothetical protein RBAM_RS09875 site-specific recombinase 

AS588_RS09325 
lactoylglutathione lyase and related 

lyases 
RBAM_RS10990 DNA-binding protein 

AS588_RS09350 hypothetical protein RBAM_RS11795 30S ribosomal protein S21 

AS588_RS09370 hypothetical protein RBAM_RS11960 GCN5-related N-acetyltransferase 

AS588_RS09375 gene 22 RBAM_RS11985 
phosphate-starvation-inducible 

protein PsiE 

AS588_RS09380 phage minor structural protein RBAM_RS11990 
two component system histidine 
kinase (EC 2.7.3.-) 

AS588_RS09385 phage tail protein RBAM_RS12000 
protein of unknown function 

DUF418 

AS588_RS09390 
phage tail length tape-measure 

protein 
RBAM_RS12005 GCN5-related N-acetyltransferase 

AS588_RS09395 hypothetical protein RBAM_RS12840 hypothetical protein 

AS588_RS09400 phage protein RBAM_RS12915 50S ribosomal protein L35 

AS588_RS09405 
phage major tail protein, TP901-1 
family 

RBAM_RS13270 hypothetical protein 

AS588_RS09410 tail protein RBAM_RS13275 hypothetical protein 

AS588_RS09415 phage capsid and scaffold RBAM_RS13285 hypothetical protein 

AS588_RS09420 phage capsid and scaffold RBAM_RS13295 hypothetical protein 

AS588_RS09430 hypothetical protein RBAM_RS13300 hypothetical protein 

AS588_RS09435 hypothetical protein RBAM_RS13305 hypothetical protein 

AS588_RS09440 phage major capsid protein RBAM_RS13525 
transcriptional regulator, DeoR 

family 

AS588_RS09445 phage protein RBAM_RS13675 predicted NRPS adenylation domain 

AS588_RS09450 phage minor capsid protein RBAM_RS19050 

amino acid adenylation domain-

containing protein( 

EC:3.1.2.14,EC:5.1.1.3 ) 

AS588_RS09455 portal protein, phage associated RBAM_RS13695 conserved domain protein 

AS588_RS09460 phage terminase, large subunit RBAM_RS16640 hypothetical protein 

AS588_RS09465 YqaS RBAM_RS16650 hypothetical protein 

AS588_RS09475 cysteine protease RBAM_RS17225 hypothetical protein 

AS588_RS09480 transcriptional regulator RBAM_RS17230 hypothetical protein 

AS588_RS09490 hypothetical protein RBAM_RS17255 hypothetical protein 

AS588_RS09495 DNA Methyltransferase RBAM_RS17365 hypothetical protein 

AS588_RS09500 hypothetical protein RBAM_RS17370 hypothetical protein 

AS588_RS09505 hypothetical protein RBAM_RS17375 hypothetical protein 

AS588_RS09525 hypothetical protein RBAM_RS17380 hypothetical protein 

AS588_RS09535 prophage Lp1 protein 19 RBAM_RS17485 protein liaG 

AS588_RS09540 hypothetical protein RBAM_RS17490 
bacitracin transport permease protein 

BCRB 

AS588_RS09545 hypothetical protein RBAM_RS17810 hypothetical protein 

AS588_RS09555 
chain A, Nmr Structure Of Bacillus 
Subtilis Protein Yqai, Northeast 

Structural Genomics Target Sr450 

RBAM_RS18100 hypothetical protein 

AS588_RS09560 DNA, complete sequence RBAM_RS18305 MrsG 

AS588_RS09565 transcriptional regulator RBAM_RS18310 lantibiotic ABC transporter permease 

AS588_RS09570 phage regulatory protein RBAM_RS18410 hypothetical protein 



86 

 

AS588_RS09575 DNA-binding protein RBAM_RS18465 hypothetical protein 

AS588_RS09580 transcriptional regulator RBAM_RS19055 hypothetical protein 

AS588_RS09590 hypothetical protein RBAM_RS19060 resolvase domain-containing protein 

AS588_RS09600 phage integrase RBAM_RS18520 hypothetical protein 

AS588_RS09670 sporulation protein YjcZ RBAM_RS18530 hypothetical protein 

AS588_RS10115 hypothetical protein RBAM_RS18535 hypothetical protein 

AS588_RS10325 hypothetical protein RBAM_RS18660 hypothetical protein 

AS588_RS11480 hypothetical protein RBAM_RS18815 transporter, LysE family 

AS588_RS11485 hypothetical protein RBAM_RS18890 YnaF 

AS588_RS11525 
MFS transporter, tetracycline 
resistance protein 

RBAM_RS18895 
response regulator aspartate 
phosphatase 

AS588_RS11550 serine transporter RBAM_RS18945 30S ribosomal protein S18 

AS588_RS11645 hypothetical protein   

AS588_RS11685 hypothetical protein   

AS588_RS11690 FRG domain-containing protein   

AS588_RS11700 hypothetical protein   

AS588_RS11710 FtsK/SpoIIIE family protein   

AS588_RS11975 hypothetical protein   

AS588_RS12450 hypothetical protein   

AS588_RS13030 
adenine-specific DNA modification 

methyltransferase 
  

AS588_RS13035 hypothetical protein   

AS588_RS13045 chromosome segregation ATPase   

AS588_RS15260 SAM-dependent methyltransferase   

AS588_RS15340 hypothetical protein   

AS588_RS15925 hypothetical protein   

AS588_RS16115 FIG01238735: hypothetical protein   

AS588_RS16285 hypothetical protein   

AS588_RS16730 hypothetical protein   

AS588_RS16755 FIG01242153: hypothetical protein   

AS588_RS16760 NAD(P)H-dependent oxidoreductase   

AS588_RS16780 hypothetical protein   

AS588_RS16795 hypothetical Cytosolic Protein   

AS588_RS16995 hypothetical protein   

AS588_RS17325 
respiratory nitrate reductase alpha 

chain (EC 1.7.99.4) 
  

AS588_RS17365 phosphatase   

AS588_RS17375 pXO1-41   

AS588_RS17380 hypothetical protein   

AS588_RS17440 hypothetical protein   

AS588_RS17460 hypothetical protein   

AS588_RS18150 hypothetical protein   

AS588_RS18155 hypothetical protein   

AS588_RS18160 hypothetical protein   

AS588_RS18165 hypothetical protein   

AS588_RS18170 hypothetical protein   

AS588_RS18190 hypothetical protein   
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AS588_RS18410 hypothetical protein   

AS588_RS18525 
fructose-1,6-bisphosphatase, Bacillus 
type (EC 3.1.3.11) 

  

AS588_RS18530 
superfamily I DNA/RNA helicase 

protein 
  

AS588_RS18535 FIG01240834: hypothetical protein   

AS588_RS18540 nucleotide pyrophosphohydrolase   

AS588_RS18555 DEAD-like helicase   

AS588_RS18570 hypothetical protein   

AS588_RS18615 FIG038982: hypothetical protein   

AS588_RS18695 hypothetical protein   

AS588_RS18865 LysR family transcriptional regulator   

AS588_RS18920 
transcriptional regulator, Cro/CI 

family 
  

AS588_19070 Rep protein   

AS588_19090 mobilization protein   
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Supplementary Figure 1: Extracellular proteolytic activity. Bacterial culture filtrates of Bacillus 

amyloliquefaciens subsp. plantarum FZB42, S499 and its plasmid-cured derivative, S499 P-, tested 

with azocasein assay. Absorbance at 600nm (OD600) indicates cell growth after 6 h incubation at 

28°C in LB medium. Absorbance at 405nm (OD405) indicates the quantity of digested casein by the 

extracellular protease released in culture filtrates. Average values of three replicates from one 

representative experiment are shown. Error bars represent standard errors. Different letters indicate 

significant differences according to Tukey’s test (α = 0.05). The experiment was repeated 

 

 

 

 

 

 

 

Supplementary Figure 2: Production of cyclic lipopeptides. Surfactin, fengycin and iturin 

concentrations detected through UPLC-ESI-MS in the bacterial culture filtrates of Bacillus 

amyloliquefaciens subsp. plantarum FZB42, S499 and its plasmid-cured derivative, S499 P-, upon 

24 h growth at 28°C in LB medium. Production values correspond to the resulting averages of 

standardised data [Z=(X/µ)*100] from three independent experiments. Error bars represent standard 

errors. Different letters indicate significant differences according to Tukey’s test (α = 0.05).  
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Supplementary Figure 3: Surfactin production and relative quantity of srfA gene expression. 

Surfactin production (lines) and fold-increase of srfA gene expression compared to “time 0” 

(histograms) in B. amyloliquefaciens subsp. plantarum S499 (A), its plasmid-cured derivative, S499 

P- (B) and FZB42 (C). Production values correspond to the resulting averages of standardised data 

[Z=(X/µ)*100] from three independent experiments. Average RQ values of the three experiments 

are shown. Error bars represent standard errors.
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Supplementary Data Sheet 

 

Supplementary Data 1. Alignment of 16SrDNA. Sequences were aligned with EMBOSS 

Needle Pairwise Sequence Alignment tools (http://www.ebi.ac.uk/Tools/psa/). 

 

#======================================= 

# 

# Aligned_sequences: 2 

# 1: S499_16S 

# 2: S499P-_16S 

# Matrix: EDNAFULL 

# Gap_penalty: 10.0 

# Extend_penalty: 0.5 

# 

# Length: 1399 

# Identity:    1399/1399 (100.0%) 

# Similarity:  1399/1399 (100.0%) 

# Gaps:           0/1399 ( 0.0%) 

# Score: 6995.0 

#  

# 

#======================================= 

 

S499_16S           1 TCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTG     50 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S         1 TCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTG     50 

 

S499_16S          51 AGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACC    100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S        51 AGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACC    100 

 

S499_16S         101 GGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGG    150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       101 GGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGG    150 

 

S499_16S         151 TGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGG    200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       151 TGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGG    200 

 

S499_16S         201 TGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTG    250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       201 TGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTG    250 

 

S499_16S         251 ATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC    300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       251 ATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC    300 

 

S499_16S         301 AGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGT    350 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       301 AGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGT    350 

 

S499_16S         351 GAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAA    400 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       351 GAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAA    400 

 

S499_16S         401 GTGCCGTTCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCAC    450 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       401 GTGCCGTTCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCAC    450 
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S499_16S         451 GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGT    500 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       451 GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGT    500 

 

S499_16S         501 CCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATG    550 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       501 CCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATG    550 

 

S499_16S         551 TGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTG    600 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       551 TGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTG    600 

 

S499_16S         601 AGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGA    650 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       601 AGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGA    650 

 

S499_16S         651 GATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGAC    700 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       651 GATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGAC    700 

 

S499_16S         701 GCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGT    750 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       701 GCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGT    750 

 

S499_16S         751 CCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAG    800 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       751 CCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAG    800 

 

S499_16S         801 TGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGA    850 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       801 TGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGA    850 

 

S499_16S         851 CTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTG    900 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       851 CTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTG    900 

 

S499_16S         901 GTTTAATTTGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTG    950 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       901 GTTTAATTTGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTG    950 

 

S499_16S         951 ACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTG   1000 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S       951 ACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTG   1000 

 

S499_16S        1001 CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAAC   1050 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1001 CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAAC   1050 

 

S499_16S        1051 GAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGG   1100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1051 GAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGG   1100 

 

S499_16S        1101 TGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCA   1150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1101 TGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCA   1150 

 

S499_16S        1151 TGCCCCCTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGG   1200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1151 TGCCCCCTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGG   1200 

 

S499_16S        1201 GCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCG   1250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1201 GCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCG   1250 
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S499_16S        1251 GATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGC   1300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1251 GATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGC   1300 

 

S499_16S        1301 GGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC   1350 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1301 GGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC   1350 

 

S499_16S        1351 GTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTA   1399 

                     ||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_16S      1351 GTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTA   1399 

 

 

#--------------------------------------- 

#--------------------------------------- 

  

 

Supplementary Data 2. Alignment of partial gyrA gene. Sequences were aligned with 

EMBOSS Needle Pairwise Sequence Alignment tools (http://www.ebi.ac.uk/Tools/psa/). 

#======================================= 

# 

# Aligned_sequences: 2 

# 1: S499_GyrA 

# 2: S499P-_GyrA 

# Matrix: EDNAFULL 

# Gap_penalty: 10.0 

# Extend_penalty: 0.5 

# 

# Length: 925 

# Identity:     925/925 (100.0%) 

# Similarity:   925/925 (100.0%) 

# Gaps:           0/925 ( 0.0%) 

# Score: 4625.0 

#  

# 

#======================================= 

 

S499_GyrA          1 ATCCCGGGCGCTTCCGGATGTGCGTGACGGTCTGAAGCCGGTTCACAGAC     50 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA        1 ATCCCGGGCGCTTCCGGATGTGCGTGACGGTCTGAAGCCGGTTCACAGAC     50 

 

S499_GyrA         51 GGATTTTGTACGCAATGAATGATTTAGGCATGACCAGTGACAAACCATAT    100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA       51 GGATTTTGTACGCAATGAATGATTTAGGCATGACCAGTGACAAACCATAT    100 

 

S499_GyrA        101 AAAAAATCTGCCCGTATCGTCGGTGAAGTTATCGGTAAGTACCACCCGCA    150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      101 AAAAAATCTGCCCGTATCGTCGGTGAAGTTATCGGTAAGTACCACCCGCA    150 

 

S499_GyrA        151 CGGTGACTCAGCGGTTTACGAATCAATGGTCAGAATGGCGCAGGATTTTA    200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      151 CGGTGACTCAGCGGTTTACGAATCAATGGTCAGAATGGCGCAGGATTTTA    200 

 

S499_GyrA        201 ACTACCGCTACATGCTTGTTGACGGACACGGCAACTTCGGTTCGGTTGAC    250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      201 ACTACCGCTACATGCTTGTTGACGGACACGGCAACTTCGGTTCGGTTGAC    250 

 

S499_GyrA        251 GGCGACTCAGCGGCCGCGATGCGTTACACAGAAGCGAGAATGTCAAAAAT    300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      251 GGCGACTCAGCGGCCGCGATGCGTTACACAGAAGCGAGAATGTCAAAAAT    300 
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S499_GyrA        301 CGCAATGGAAATTCTGCGTGACATTACGAAAGACACGATTGACTATCAAG    350 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      301 CGCAATGGAAATTCTGCGTGACATTACGAAAGACACGATTGACTATCAAG    350 

 

S499_GyrA        351 ATAACTATGACGGTTCAGAAAGAGAGCCTGCCGTCATGCCTTCGAGATTT    400 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      351 ATAACTATGACGGTTCAGAAAGAGAGCCTGCCGTCATGCCTTCGAGATTT    400 

 

S499_GyrA        401 CCGAATCTGCTCGTAAACGGGGCTGCCGGTATTGCGGTCGGAATGGCGAC    450 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      401 CCGAATCTGCTCGTAAACGGGGCTGCCGGTATTGCGGTCGGAATGGCGAC    450 

 

S499_GyrA        451 AAACATTCCCCCGCATCAGCTTGGGGAAGTCATTGAAGGCGTGCTTGCCG    500 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      451 AAACATTCCCCCGCATCAGCTTGGGGAAGTCATTGAAGGCGTGCTTGCCG    500 

 

S499_GyrA        501 TAAGTGAGAATCCTGAGATTACAAACCAGGAGCTGATGGAATACATCCCG    550 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      501 TAAGTGAGAATCCTGAGATTACAAACCAGGAGCTGATGGAATACATCCCG    550 

 

S499_GyrA        551 GGCCCGGATTTTCCGACTGCAGGTCAGATTTTGGGCCGGAGCGGCATCCG    600 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      551 GGCCCGGATTTTCCGACTGCAGGTCAGATTTTGGGCCGGAGCGGCATCCG    600 

 

S499_GyrA        601 CAAGGCATATGAATCCGGACGGGGATCAATCACGATCCGGGCTAAGGCTG    650 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      601 CAAGGCATATGAATCCGGACGGGGATCAATCACGATCCGGGCTAAGGCTG    650 

 

S499_GyrA        651 AAATCGAAGAGACTTCATCGGGAAAAGAAAGAATTATTGTCACGGAACTT    700 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      651 AAATCGAAGAGACTTCATCGGGAAAAGAAAGAATTATTGTCACGGAACTT    700 

 

S499_GyrA        701 CCTTATCAGGTGAACAAAGCGAGATTAATTGAAAAAATCGCGGATCTTGT    750 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      701 CCTTATCAGGTGAACAAAGCGAGATTAATTGAAAAAATCGCGGATCTTGT    750 

 

S499_GyrA        751 CCGAGACAAAAAAATCGAAGGAATTACCGATCTGCGAGACGAATCCGACC    800 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      751 CCGAGACAAAAAAATCGAAGGAATTACCGATCTGCGAGACGAATCCGACC    800 

 

S499_GyrA        801 GTAACGGAATGAGAATCGTCATTGAGATCCGCCGTGACGCCAATGCTCAC    850 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      801 GTAACGGAATGAGAATCGTCATTGAGATCCGCCGTGACGCCAATGCTCAC    850 

 

S499_GyrA        851 GTCATTTTGAATAACCTGTACAAACAAACGGCCCTGCAGACGTCTTTCGG    900 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_GyrA      851 GTCATTTTGAATAACCTGTACAAACAAACGGCCCTGCAGACGTCTTTCGG    900 

 

S499_GyrA        901 AATCAACCTGCTGGCGCTCGTTGAC    925 

                     ||||||||||||||||||||||||| 

S499P-_GyrA      901 AATCAACCTGCTGGCGCTCGTTGAC    925 

 

 

#--------------------------------------- 

#--------------------------------------- 
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Supplementary Data 3. Alignment of partial cheA gene. Sequences were aligned with 

EMBOSS Needle Pairwise Sequence Alignment tools (http://www.ebi.ac.uk/Tools/psa/). 

#======================================= 

# 

# Aligned_sequences: 2 

# 1: S499_CheA 

# 2: S499P-_CheA 

# Matrix: EDNAFULL 

# Gap_penalty: 10.0 

# Extend_penalty: 0.5 

# 

# Length: 850 

# Identity:     850/850 (100.0%) 

# Similarity:   850/850 (100.0%) 

# Gaps:           0/850 ( 0.0%) 

# Score: 4250.0 

#  

# 

#======================================= 

 

S499_CheA          1 ATCTGGCGCATTTAACCCACCTGATGGAAAATGTGCTGGACGCCATCCGC     50 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA        1 ATCTGGCGCATTTAACCCACCTGATGGAAAATGTGCTGGACGCCATCCGC     50 

 

S499_CheA         51 AACGGAGAAATGCCCGTTACATCGGATTGGCTGGACGTGCTGTTTGAAGC    100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA       51 AACGGAGAAATGCCCGTTACATCGGATTGGCTGGACGTGCTGTTTGAAGC    100 

 

S499_CheA        101 GCTTGATCATCTTGAAGAGATGGTGCAGTCCATTATTGACGGAGGAGACG    150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      101 GCTTGATCATCTTGAAGAGATGGTGCAGTCCATTATTGACGGAGGAGACG    150 

 

S499_CheA        151 GCAAACGTGATATTTCTGAAGTAAGTGCGAAGCTCGACGTAAATGCGGTG    200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      151 GCAAACGTGATATTTCTGAAGTAAGTGCGAAGCTCGACGTAAATGCGGTG    200 

 

S499_CheA        201 CATGAGACTGCGGCTTCAGCCGAAACAGCAGAACCGCCGGCTTCAAAACA    250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      201 CATGAGACTGCGGCTTCAGCCGAAACAGCAGAACCGCCGGCTTCAAAACA    250 

 

S499_CheA        251 ACAGACTTCAACTGAATGGAATTATGATGAGTTCGAACGGACTGTTATTG    300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      251 ACAGACTTCAACTGAATGGAATTATGATGAGTTCGAACGGACTGTTATTG    300 

 

S499_CheA        301 AAGAGGCGGAAGAGCAAGGATTCAGCCGCTATGAAATAACGGTTTCCCTG    350 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      301 AAGAGGCGGAAGAGCAAGGATTCAGCCGCTATGAAATAACGGTTTCCCTG    350 

 

S499_CheA        351 AATGAAAGCTGCATGCTCAAAGCCGTGCGCGTGTACATGATATTTGAAAA    400 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      351 AATGAAAGCTGCATGCTCAAAGCCGTGCGCGTGTACATGATATTTGAAAA    400 

 

S499_CheA        401 GCTGAATGAAGCCGGGGAAGTCGCAAAAACGATACCTGCCGCGGAAGTGC    450 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      401 GCTGAATGAAGCCGGGGAAGTCGCAAAAACGATACCTGCCGCGGAAGTGC    450 

 

S499_CheA        451 TTGAGACGGAAGATTTCGGAACGGATTTTCAGGTGTGTTTCTTGACAAAG    500 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      451 TTGAGACGGAAGATTTCGGAACGGATTTTCAGGTGTGTTTCTTGACAAAG    500 

 

S499_CheA        501 CAGCCTGCTGAAGAAATTAAAGAACTCATCAGCGGCATTTCAGAAGTGGA    550 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      501 CAGCCTGCTGAAGAAATTAAAGAACTCATCAGCGGCATTTCAGAAGTGGA    550 
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S499_CheA        551 GAATGTCGAAATTTCTGCCGGTGCGCCGTTAAAAACGGCCGAAAAACCGC    600 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      551 GAATGTCGAAATTTCTGCCGGTGCGCCGTTAAAAACGGCCGAAAAACCGC    600 

 

S499_CheA        601 AAGCAGCTGAACCGGTGAAGGAAACTCCGGTTAAAAAGGCTGAAAAACAG    650 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      601 AAGCAGCTGAACCGGTGAAGGAAACTCCGGTTAAAAAGGCTGAAAAACAG    650 

 

S499_CheA        651 CCGAAACCGCAAGCGAAAACGGAAGAGCAGCCGAAGCATCACAGCGGCTC    700 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      651 CCGAAACCGCAAGCGAAAACGGAAGAGCAGCCGAAGCATCACAGCGGCTC    700 

 

S499_CheA        701 GAAAACGATTCGCGTCAACATTGAAAGACTGGATTCTTCAATGAACCTTT    750 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      701 GAAAACGATTCGCGTCAACATTGAAAGACTGGATTCTTCAATGAACCTTT    750 

 

S499_CheA        751 TTGAAGAACTTGTCATTGACCGCGGACGTCTTGAGCAGATCGCCAAAGAG    800 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      751 TTGAAGAACTTGTCATTGACCGCGGACGTCTTGAGCAGATCGCCAAAGAG    800 

 

S499_CheA        801 CTTGACCACAATGAGCTGACTGAAACCGTTGAACGCCTGACCAGAATTTC    850 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

S499P-_CheA      801 CTTGACCACAATGAGCTGACTGAAACCGTTGAACGCCTGACCAGAATTTC    850 

 

 

#--------------------------------------- 

#--------------------------------------- 

 

The PhD candidate carried out all the experiments, analysed the data and wrote 

the manuscript (refer also to “Author contributions” in the text). 
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Chapter 5 

PLASMID pS499 AFFECTS Bacillus 

amyloliquefaciens subsp. plantarum S499 

SURFACTIN PRODUCTION ON PLANT ROOTS AND 

GROWTH AND BIOCONTROL ACTIVITY ON 

RECOMPOSED ROOT EXUDATES MEDIUM 
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5.1 Introduction 

Genome sequencing of the plant-beneficial rhizobacterium B. 

amyloliquefaciens subsp. plantarum S499 (S499) allowed to identify for the first 

time a small plasmid (pS499; 8,008 bp) endogenous to this bacterial strain 

(Molinatto et al., 2016). In soil, rhizobacteria can benefit from the acquisition of 

small rolling circle plasmids in multiple ways. Plasmids can confer niche-specific 

functions (e.g. antibiotic or metal resistances), which are useful under selective 

pressure, or they can improve particular metabolic functions, by increasing the copy 

number of related genes (Thomas, 2004). Moreover, an increased gene copy 

number correspond to an accelerated mutation rate, resulting in a greater adaptive 

ability (Metzgar and Wills, 2000). Additionally, plasmids can favour the adaptation 

to the environment by promoting recombination in the host cells through their 

rolling circle replication mechanism (Guglielmetti, 2007). 

To functionally characterise pS499, a plasmid-cured derivative of S499 

(S499 P-) was obtained. On a nutrient-rich medium (Luria-Bertani, LB), pS499 is 

involved in regulating growth, extracellular proteolytic activity and cyclic 

lipopeptide (CLP) production, most probably through the expression of the rap-phr 

cassette located in its sequence (Molinatto et al., 2017). Indeed, Rap-Phr quorum-

sensing regulators are known to have pleiotropic effects on several cellular 

processes in Bacillus spp. (Pottahil and Lazazzera, 2003). In particular, other 

plasmid-encoded Rap-Phr systems had already been proven to be involved in 

controlling the production of exoproteases and surfactins in B. subtilis and B. 

amyloliquefaciens (Koetje et al., 2003; Parashar et al., 2013, Yang et al., 2015). In 

addition, our results suggested that pS499 is involved in the regulation of some 

important features related to rhizosphere competence, such as swarming motility, 

biofilm production and antifungal activity (Molinatto et al., 2017). However, to our 

knowledge, the role of a plasmid-encoded Rap-Phr system have never been 

investigated in planta or under growth conditions that reproduce the rhizosphere 

environment. 

According to our genome comparative analysis, pS499 represents a major 

genetic difference between S499 and the type strain of B. amyloliquefaciens subsp. 

plantarum, FZB42 (FZB42) (Molinatto et al., 2017). Moreover, S499 P- showed an 
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intermediate behaviour between S499 and FZB42 when some bacterial features, 

such as growth rate, extracellular proteolytic activity, surfactin production and 

swarming ability, were compared in LB medium (Molinatto et al., 2017). 

Therefore, we can speculate that the presence of the plasmid could contribute to 

determine the differences observed in the behaviour of S499, when compared to 

FZB42. 

In this work, we aim at understanding the role of pS499 in the rhizosphere 

and, at the same time, evaluating the contribution of pS499 in shaping S499 

distinctive phenotype under growth conditions that mimic the natural habitat of the 

rhizobacterium. To this end, we compare S499, S499 P- and FZB42 behaviours on 

tomato and tobacco roots and on a substrate containing the main components of 

root exudates (“recomposed root exudates” medium, RE; Nihorimbere et al., 2012). 

5.2 Materials and methods 

5.2.1 Bacterial and fungal strains 

Bacillus amyloliquefaciens subsp. plantarum S499, its plasmid-cured 

derivative S499 P- and B. amyloliquefaciens subsp. plantarum FZB42 were stored 

at length in glycerol 30% at -80°C and routinely grown at 28°C on LB broth 

(tryptone 10 g l-1, yeast extract 5 g l-1, NaCl 10 g l-1, pH 7) amended with agar 16 g 

l-1 (LBA). The phytopathogenic fungi Cladosporium cucumerinum and Fusarium 

oxysporum f. sp. radicis-lycopersici were grown on Potato Dextrose Agar (Sigma-

Aldrich Corp, USA) 39 g l-1, pH 7 (PDA) at 28°C and stored at length on PDA 

slants at room temperature. 

5.2.2 Colonization of tobacco and tomato roots in gnotobiotic 

systems 

Root colonization ability of the bacterial strains S499, S499 P- and FZB42 

was assessed on tobacco (Nicotiana tabacum L. cv. “Xanthi”) and tomato (Solanum 

lycopersicum L. cv. “Moneymaker”) plantlets grown in a gnotobiotic system. 

Tobacco and tomato seeds were surface sterilized by dipping them in 75% 

ethanol for 2 min and subsequently in a 30% commercial bleach solution amended 
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with 0.1% Tween 80 for 15 min. Seeds were then rinsed thoroughly with sterile 

distilled water and laid on Hoagland medium [Ca(NO3)2·4H2O 825 mg l-1, 

CuSO4·5H2O 0.05 mg l-1, EDTA 5.20 mg l-1, FeSO4·7H2O 3.90 mg l-1, H3BO3 1.40 

mg l-1, KH2PO4 170 mg l-1, KNO3 316 mg l-1, MgSO4·7H2O 513 mg l-1, 

MnCl2·4H2O 0.90 mg l-1, NaMoO4·2H2O 0.02 mg l-1, ZnSO4·7H2O 0.10 mg l-1, pH 

6.5] amended with agar 14 g l-1 and solidified in square Petri dishes (120 ×120 × 16 

mm). 

Tobacco seeds were bacterized with S499, S499 P- or FZB42 by dipping 

them in 1 ml of a bacterial cell suspension [Optical Density at 600 nm (OD600) = 1] 

corresponding to 1 × 108 CFU ml-1, whereas tomato plantlets were inoculated two 

days after germination by pipetting on the root collar a volume of 4 µl of a cell 

suspension (OD600 = 1) corresponding to 1 × 108 CFU ml-1. Once the inoculum had 

dried, dishes were incubated in a vertical position at 25°C with a photoperiod 14/10 

(light/dark). 

Tobacco roots were sampled at 14 and 21 days post-inoculation (dpi), by 

removing two plugs (10 mm), including the root segment and the surrounding 

medium, from each plantlet. Tomato roots were sampled at 24, 48 and 72 hours 

post-inoculation (hpi). Samples were collected at 1 and 4 cm from the point of 

inoculation by removing a plug (10 mm) that included the root segment and the 

surrounding medium. Two plugs from different tomato roots were pooled in each 

sample. Bacterial cells were harvested from the plugs through three cycles of gentle 

sonication (15-20 s at 25-30% of the power of the device, Sonopuls HD 2070, 

Bandelin GmbH, Germany) in 1 ml of sterile dH2O. Subsequently, serial dilutions 

of the cell suspensions were plated on LBA and colonies were counted after 24 h 

of incubation at 30°C. At least five and three samples per strain were used as 

replicates to estimate the bacterial population densities on tobacco and tomato roots, 

respectively. 

5.2.3 Surfactin productivity on tomato and tobacco roots 

In planta surfactin productivity was evaluated on additional samples (plugs) 

collected in the experiments of root colonization. At each time of sampling, ten and 
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six samples per strain were collected from tobacco and tomato roots, respectively, 

as described above. 

Lipopeptides were extracted from the plugs in 1 ml of 50% acetonitrile and 

0.1% formic acid by regular vortexing for 2 h at room temperature. Then, samples 

were centrifuged and filtered through a 0.2 µm membrane (Sartorius AG, Germany) 

before being injected in ultra-performance liquid chromatography - electrospray 

ionization mass spectrometry (UPLC-ESI-MS) columns. Samples were analysed 

using reverse phase UPLC (Acquity class H, Waters Corp., USA) coupled with a 

single quadrupole MS (SQ Detector, Waters Corp.) on an Acquity UPLC BEH C18 

2.1 × 50 mm, 1.7 μm column (Waters Corp.). Elution started at 30% acetonitrile 

(flow rate of 0.60 ml min−1). After 2 min and 26 s, the percentage of acetonitrile 

was brought up to 95% and held for 5 min and 12 s. Then, the column was stabilised 

at 30% acetonitrile for 1 min and 42 s. Surfactins were identified based on their 

retention times compared to authentic standards (98% purity; Lipofabrik Society, 

France) and the masses detected in the SQDetector. Ionization and source 

conditions were set as follows: source temperature was 130°C, desolvation 

temperature was 400°C, nitrogen flow was 1000 l h−1 and cone voltage was 120 V. 

Surfactin productivity was calculated as the ratio between the 

concentrations of extracted surfactins and the average bacterial population density 

estimated at the same time of sampling. 

5.2.4 Relative gene expression of srfA and rap in bacterial cells 

colonizing tomato roots 

Bacterial gene expression was analysed on tomato roots in a gnotobiotic 

system. Tomato plantlets (Solanum lycopersicum L. cv. “Moneymaker”) were 

grown and inoculated as described above (5.2.2). Roots were sampled at 24, 48 and 

72 hpi. At each time point, ten roots per strain were cut below the point of 

inoculation and pooled; bacterial cells were collected by vortexing the roots in 10 

ml of TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0). The suspensions were 

centrifuged for 5 min at 16,000 g and cell pellets were used for RNA extraction. 

Total RNA was extracted with NucleoSpin® RNA kit (Macherey-Nagel 

GmbH & Co. KG, Germany) according to manufacturer’s instructions. Relative 
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expression of srfA and rap genes was quantified by reverse transcription Real-time 

PCR (StepOnePlusTM, Thermo Fisher Scientific Inc., USA) with qPCRBIO 

SyGreen 1-Step Hi-ROX kit (PCR Biosystems Ltd, UK). The housekeeping gene 

gyrA was used as endogenous control. Primers used in the reactions (Table 1) were 

designed by Primer3web version 4.0.0 (Untergasser et al., 2012). The qRT-PCR 

program consisted of a first step of 10 min at 48°C followed by 2 min at 95°C and 

40 cycles in a series of 5 s at 95°C and 30 s at 60°C. 

Table 1. Primers used in this study. 

Target gene Primers Sequence (5’-3’) 

gyrA 
Gyr-F GAGACGCACTGAAATCGTGA 

Gyr-R GCCGGGAGACGTTTAACATA 

rap 
Rap-F AGGACATGGAAGAGGACCAA 

Rap-R GTCCGGTCCCTTCAGATTTT 

srfA 
Srf-F ATTGTTTACGGTGGCTCTGG 

Srf-R CGCTGCGATAGTCAAAATCA 

 

 

The relative gene expression was calculated according to the comparative 

CT method (Livak and Schmittgen, 2001). At each time point, ΔCT was determined 

by subtracting the threshold cycle (CT) value of gyrA from the CT value of the target 

gene; then the ΔCT of sample “time 0” was subtracted from the ΔCT values of the 

following times of sampling, obtaining ΔΔCT values. Finally, the relative quantity 

(RQ) of gene expression was calculated according to the formula: RQ = 2-ΔΔCT. 

5.2.5 Antifungal activity and lipopeptide production on 

recomposed root exudates medium 

The antifungal activity of S499, S499 P- and FZB42 was tested against two 

phytopathogenic fungi, C. cucumerinum and F. oxysporum f. sp. radicis-

lycopersici, on RE medium adapted from Nihorimbere et al. (2012) [(NH4)2SO4 1 

g l-1, CuSO4 1.6 mg l-1, Fe2(SO4)3 1.2 mg l-1, KCl 0.5 g l-1, KH2PO4 0.7 g l-1, 

MgSO4·7H2O 0.5 g l-1, MnSO4 0.4 mg l-1, MOPS 21 g l-1, Na2MoO4·2H2O 4 mg l-

1, casamino acids 0.5 g l-1, citrate 2 g l-1, fructose 1.7 g l-1, fumarate 0.5 g l-1, glucose 



102 

 

1 g l-1, malate 0.5 g l-1, maltose 0.2 g l-1, oxalate 2 g l-1, ribose 0.3 g l-1, succinate 

1.5 g l-1, yeast extract 1 g l-1, pH 6.5] amended with agar 16 g l-1. 

A loopful of a 5-day-old mycelium of C. cucumerinum was collected from 

PDA plates and streaked over the whole RE medium surface in Petri dishes. 

Subsequently, a volume of 5 µl of bacterial cell suspension (OD600 = 1) 

corresponding to 1 × 108 CFU ml-1 was inoculated onto it. Once inoculated, dishes 

were incubated at 28°C for 72 h. At the end of the incubation period, the inhibition 

zone (distance between mycelium and bacterial colonies) was measured. 

To test F. oxysporum f. sp. radicis-lycopersici, the bacterial inoculum (same 

volume and concentration as above) was spotted on RE surface, 2 cm from the edge 

of Petri dishes. Once inoculated, dishes were incubated at 28°C for 72 h. Then, 

plugs (5 mm) of mycelium were cut away from the edge of 5-day-old colonies of 

F. oxysporum f. sp. radicis-lycopersici grown on PDA and placed at 2.5 cm from 

the bacterial colonies. Petri dishes not inoculated with the bacterial strains were 

used as a control. After a new incubation at 28°C for 72 h, the radius of mycelia 

was measured. The inhibition zone was calculated as the reduction of the radius of 

mycelium facing the bacteria compared to the untreated control. 

In both confrontation assays, two plugs (5 mm) of medium were removed 

from the zones comprised between the bacterial colonies and the mycelia and 

subsequently transferred to 1.5 ml microfuge tubes containing 1 ml of 50% 

acetonitrile and 0.1% formic acid. Lipopeptides were extracted by regular vortexing 

for 2 h at room temperature. Then, samples were centrifuged and filtered through a 

0.2 µm membrane (Sartorius AG) before being injected in UPLC-ESI-MS columns 

to identify and quantify the CLPs, according to the procedure described above 

(5.2.3). Three dishes for each combination were used as replicates and the 

experiment was repeated. 

5.2.6 Growth and lipopeptide production in recomposed root 

exudates broth 

A SpectraMax M2E Multi-Mode Microplate Reader (Molecular Devices 

LLC, USA) was used to determine the cell growth rates of S499, S499 P- and 

FZB42 in RE broth (1:1, diluted 1:2, 1:5, 1:10 or deprived of casamino acids and 
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yeast extract). For the growth curves in the different RE dilutions, a volume of 10 

µl of a bacterial cell suspension (OD600 = 0.001) corresponding to 1 × 105 CFU ml-

1 was inoculated in 1 ml of medium. The assays were carried out in sterile 48-well 

plates. For the growth curves in RE without yeast extract and casaminoacids, a 

volume of 25 µl of a bacterial cell suspension (OD600 = 0.1) corresponding to 1 × 

107 CFU ml-1 was inoculated in 250 µl of medium. The assays were carried out in 

sterile 96-well plates. Plates were incubated with continuous shaking for 40 h at 

28°C and OD600 was measured every 30 min. Three wells were used for each strain 

and the experiments were repeated. 

The supernatants of RE (1:1) cultures were filtered through a 0.2 µm 

membrane (Sartorius AG) at the end of the incubation period (40 h), after pooling 

the content of three wells (repetitions) for each strain. To identify and quantify the 

CLPs, the culture filtrates were analysed through UPLC-ESI-MS according to the 

procedure reported above (5.2.3). 

5.2.7 Statistical analysis 

All data were subjected to one-way analysis of variance (ANOVA), except 

for the data of mycelial growth inhibition obtained in the antagonism experiments, 

which were subjected to multifactorial ANOVA. Data obtained in the root 

colonization and surfactin productivity assays on tomato roots were analysed with 

Duncan’s test (α = 0.05) to detect significant differences. Tukey’s test (α = 0.05) 

was applied in mean pairwise comparisons of bacterial population density and 

surfactin productivity on tobacco roots, mycelial growth inhibition and CLP 

production in RE medium. Statistical analysis was carried out with Excel 

(Microsoft Corp., USA) and Statistica (Dell Inc., USA). 
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5.3 Results 

5.3.1 Impact of the plasmid pS499 on the root colonization ability 

On tobacco roots, the bacterial population densities of B. amyloliquefaciens 

subsp. plantarum S499, its plasmid-cured derivative S499 P- and the type strain 

FZB42 were not significantly different at 14 dpi (p > 0.05). Conversely, at 21 dpi, 

S499 P- population was significantly reduced (p < 0.05) compared to FZB42 but 

not compared to its parental strain S499 (Figure 1). 

 

Figure 1: Colonization of tobacco roots at 14 and 21 days post inoculation (dpi). For each time 

of sampling, mean values of population density measured on at least five inoculated roots are shown. 

Vertical bars represent standard errors. Different letters indicate significant differences within values 

of each time of sampling according to Tukey’s test (α = 0.05). 

Under the same experimental conditions, tomato seedlings grew much faster 

and formed larger roots allowing a more detailed assessment of the evolution of 

populations over the first 72 hpi. On tomato roots, FZB42 was the fastest strain in 

colonization, whereas S499 and S499 P- showed similar behaviours. Indeed, at 24 

hpi, FZB42 population was greater in the zone of the root closer to the point of 

inoculation (a) compared to both S499 and S499 P- (p < 0.05). Conversely, at 48 

hpi, FZB42 showed a major growth (p < 0.01) in the zone more distant from the 

point of inoculation (b), indicating that the strain was faster in spreading along the 

root. At 72 hpi, the three strains reached the same level of population density in 

both zones of the roots (p > 0.05) (Figure 2). 
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Figure 2: Colonization of tomato roots at 24, 48 and 72 hours post inoculation (hpi). Samples 

were collected at 1 (a) and 4 (b) cm from the point of inoculation (root collar). For each zone and 

time of sampling, mean values of population density measured on six inoculated roots are shown. 

Vertical bars represent standard errors. Different letters indicate significant differences within values 

of each zone and time of sampling according to Duncan’s test (α = 0.05). 

 

5.3.2 Influence of pS499 on the surfactin productivity of bacterial 

cells colonizing tomato and tobacco roots 

The production of CLPs by B. amyloliquefaciens subsp. plantarum S499, its 

plasmid-cured derivative S499 P- and the type strain FZB42 was assessed in planta 

on tobacco and tomato roots growth under gnotobiotic conditions. In both plant 

systems and for all the three strains, only surfactins were detected in considerable 

quantities after extraction and analysis by UPLC-ESI-MS.  

More specifically, on tobacco roots, S499 and S499 P- did not display 

significant differences in surfactin productivity at 14 dpi. However, S499 was 

significantly more efficient compared to FZB42 (p < 0.01). At 21 dpi, the values of 

S499 and S499 P- productivity were similar and for both strains significantly higher 

than FZB42 (p < 0.01) (Figure 3). On tomato roots, S499 and S499 P- productivity 

was higher compared to FZB42 at 24 hpi (p < 0.05). Conversely, at 48 hpi and 72 

hpi, S499 P- resulted more efficient than S499 and FZB42. More precisely, S499 P- 
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productivity was significantly higher compared to S499 and FZB42 at 48 h (p < 

0.01), but only compared to FZB42 at 72 h (p < 0.05) (Figure 4). 

 

 

Figure 3: Surfactin productivity on tobacco roots at 14 and 21 days post inoculation (dpi). The 

quantity of surfactins extracted from each plug was divided by the average value of population of 

the corresponding strain and time of sampling to obtain surfactin productivity. For each time point, 

mean values calculated on ten inoculated roots are shown. Vertical bars represent standard errors. 

Different letters indicate significant differences according to Tukey’s test (α = 0.05). 

 

 

 

Figure 4: Surfactin productivity on tomato roots at 24, 48 and 72 hours post inoculation (hpi). 

Average quantities of surfactins detected in the plugs removed at 1 and 4 cm from the point of 

inoculation were divided by the average value of population of the corresponding strain and time of 

sampling to obtain surfactin productivity. For each time point, mean values calculated on 12 

inoculated roots are shown. Vertical bars represent standard errors. Different letters indicate 

significant differences according to Duncan’s test (α = 0.05). 
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5.3.3 Modulation of srfA and rap gene expression in bacterial cells 

colonizing tomato roots 

Relative srfA gene expression was evaluated in bacterial cells developing on 

tomato roots to compare the kinetics of surfactin synthesis. As expected, relative 

quantification (RQ) values of srfA gene expression were higher in S499 P-, 

especially at 48 hpi and 72 hpi. Conversely, RQ levels were similar for S499 and 

FZB42 (Figure 5A). 

In parallel, to understand how the plasmid-encoded Rap-Phr system could 

be involved in the regulation of surfactin production in planta, the expression of the 

rap gene was assessed in S499 cells. Interestingly, a higher RQ of rap gene 

expression was associated with a down-regulation of srfA gene at 72 hpi (Figure 

5B). 

 

Figure 5: Relative gene expression of srfA and rap in bacterial cells colonizing tomato roots. 
Relative quantities (RQ) of srfA transcripts in S499, S499 P- and FZB42 (A) and srfA and rap (B) 

transcripts at 24, 48 and 72 hours post inoculation (hpi) compared to “time 0”. At each time of 

sampling, the cell material collected from ten inoculated tomato roots was pooled for RNA 

extraction and Real-time qRT-PCR. Gene expression of gyrA was used as endogenous control. 

Average RQ values of two technical replicates are shown and vertical bars represent standard 

deviations. 

 

5.3.4 Impact of pS499 on the antifungal activity on recomposed root 

exudates medium 

To understand the role that pS499 could play in the biocontrol activity 

against phytopathogenic fungi, such as C. cucumerinum and F. oxysporum f. sp. 

radicis-lycopersici, the antagonistic ability of S499, S499 P- and FZB42 was 

compared on RE solid medium. Mycelial growth inhibition was significantly 
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affected by the pathogen type (p < 0.01), the Bacillus strain (p < 0.01) and the 

pathogen × Bacillus strain (p < 0.05), according to the multifactorial ANOVA. 

More specifically, the size of the inhibition zones was significantly lower 

for S499 P- (2.4 ± 0.5 mm, average ± standard error) compared to S499 (5.1 ± 0.4 

mm) against C. cucumerinum. In these assays, FZB42 showed an intermediate 

behaviour (4.2 ± 0.5 mm). Conversely, mycelial growth inhibition was similar for 

S499 and S499 P- (6.1 ± 0.4 mm and 5.9 ± 0.7 mm, respectively) against F. 

oxysporum f. sp. radicis-lycopersici, whereas FZB42 displayed a stronger 

antagonistic activity against this pathogen (8.6 ± 0.6 mm) (Figure 6). 

 

Figure 6: Antifungal activity on recomposed root exudates (RE) medium. Values correspond to 

the averages of the inhibition zones measured after 72 hours of incubation in the presence of the 

pathogen in two independent experiments. In each experiment, three replicates were used for each 

combination. Vertical bars represent standard errors. Different letters indicate significant differences 

according to Tukey’s test (α = 0.05). 

To study the lipopeptide production pattern of the bacteria facing the 

pathogens, plugs of RE medium were removed from the inhibition zones and the 

extracted CLPs were identified and quantified through UPLC-ESI-MS analysis. In 

the plugs removed from the inhibition zone of C. cucumerinum, iturins were 

detected in lower amounts for S499 P- and FZB42 (1.64 ± 0.38 µg plug-1 and 1.51 

± 0.27 µg plug-1, respectively) than for S499 (2.14 ± 0.11 µg plug-1), but the 

statistical analysis did not find any significant difference (p > 0.05). In these 

extractions, fengycin were not detected and the production of surfactins was limited 

and similar for the three strains (1.58 ± 0.64 µg plug-1, 1.07 ± 0.40 µg plug-1 and 

0.97 ± 0.61 µg plug-1 for S499, S499 P- and FZB42, respectively; p > 0.05). 
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In the confrontation assays against F. oxysporum f. sp. radicis-lycopersici, 

S499 P- produced much more surfactins (11.65 ± 1.23 µg plug-1) than S499 and 

FZB42 (1.66 ± 0.35 µg plug-1 and 1.53 ± 0.25 µg plug-1, respectively; p < 0.01). 

The production of fengycins (p < 0.05) and iturins (p > 0.05) was higher for FZB42 

(1.64 ± 0.54 µg plug-1 and 6.07 ± 2.52 µg plug-1, respectively) than for S499 (0.29 

± 0.14 µg plug-1 and 2.53 ± 0.71 µg plug-1) and S499 P- (0.32 ± 0.11 µg plug-1 and 

3.54 ± 0.89 µg plug-1), although not always significantly higher (Figure 7). 

However, regression analyses did not highlight any effect of the concentration of 

the released CLPs on the mycelial growth inhibition (p > 0.05). 

 

Figure 7: Cyclic lipopeptides detected in the confrontation assays against Fusarium oxysporum 

f. sp. lycopersici. Surfactins, fengycins and iturins were quantified after 72 hours of incubation in 

the presence of the pathogen in RE dishes. Means and standard error values were calculated on the 

pool of six replicates per strain from two independent experiments. Different letters indicate 

significant differences according to Tukey’s test (α = 0.05). 

 

5.3.5 Growth and lipopeptide production in recomposed root 

exudates broth 

The influence of pS499 under nutritional conditions that mimic the natural 

environment of B. amyloliquefaciens subsp. plantarum was evaluated also in liquid 

cultures of S499, S499 P- and FZB42. However, in RE broth, the plasmid-cured 

strain S499 P- showed a very limited growth. FZB42 was faster than S499 in 

entering the logarithmic phase, consistently with its behaviour in planta, 

nevertheless S499 reached a higher OD at the end of the incubation period (Figure 

8). 
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Figure 8: Growth of S499, S499 P- and FZB42 in recomposed root exudates (RE) medium. For 

each curve, values correspond to the average of Optical Density (600 nm) reads from three wells of 

one representative experiment. 

 

Lipopeptide production was assessed in RE broth. Strain S499 significantly 

produced more surfactins than FZB42, while FZB42 significantly produced more 

fengycins and iturins than S499 (p < 0.01). As expected, surfactin production by 

S499 P-, which was impaired in growth, was very low and the other CLPs were not 

detected at all (Figure 9). 

 

Figure 9: Lipopeptide production in recomposed root exudates (RE) medium. Values of CLP 

production correspond to the average of four repetitions, in which quantities were obtained by 

pooling three wells per strain. Vertical bars represent standard deviations. Different letters indicate 

significant differences according to Tukey’s test (α = 0.05). 

 

To exclude a toxic effect of some components of RE medium on S499 P- 

growth, several assays were carried out in different dilutions of RE broth (1:2, 1:5 

and 1:10), in order to dilute the putative inhibitor. However, S499 P- did not grow 
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in these media, suggesting a deficiency in the nutrient assimilation. The differences 

observed between FZB42 and S499 growth curves were conserved in the diluted 

RE media (Figure 10). 

 

Figure 10: Growth of S499, S499 P- and FZB42 in diluted RE media. For each curve, values 

correspond to the average of Optical Density (600 nm) reads from three wells of one representative 

experiment. 

 

Further assays were carried out in RE broth deprived of yeast extract and 

casamino acids. When these complex nitrogen sources were removed from RE, 

S499 P- grew reaching an OD similar to that of S499. Conversely, FZB42 started 

to grow very late (Figure 11). 

 

Figure 11: Growth of S499, S499 P- and FZB42 in recomposed root exudates (RE) medium 

without complex nitrogen sources. For each curve, values correspond to the average of Optical 

Density (600 nm) reads from three wells of one representative experiment. 

  



112 

 

5.4 Discussion 

In this work, we investigated on the putative role of a small rolling circle 

plasmid (pS499; Molinatto et al., 2017) of B. amyloliquefaciens subsp. plantarum 

S499 under growth conditions closer to the natural environment of the 

rhizobacterium. Moreover, we studied the impact that pS499 may have on the 

distinct behaviour shown by S499 in comparison with FZB42, regarded as the type 

strain of the subspecies (Borriss et al., 2011). 

According to our results, pS499 seems not to play a fundamental role in the 

process of colonization. Indeed, although the plasmid-cured strain (S499 P-) had 

previously shown a faster growth and an improved swarming ability in LB medium 

(Molinatto et al., 2017), we could not appreciate any significant difference between 

S499 and S499 P- in the evolution of bacterial populations on tobacco and tomato 

roots. Therefore, the differences observed between S499 and FZB42 in the 

colonization ability are unlikely related to the presence of pS499. Considering the 

growth curves obtained in RE broth, we could ascribe the faster root colonization 

shown by FZB42 to a higher cell growth rate in presence of root exudates. In the 

long term, S499 reached similar levels of population density on roots, as well as its 

biomass lately increased in RE broth. 

In LB broth, the faster growth of FZB42 and S499 P- compared to S499 was 

associated to a higher extracellular proteolytic activity (Molinatto et al., 2017). 

Similarly, an earlier entrance in the logarithmic phase by FZB42 might be ascribed 

to a higher production of exoproteases in RE, given the presence of some complex 

nitrogen sources (yeast extracts and casamino acids) in this medium. Although 

S499 P- was impaired in growing in RE broth, it is worth noting that its limited 

increase of biomass occurred before the entrance in the logarithmic phase by S499. 

In other words, S499 P- displayed an intermediate behaviour between S499 and 

FZB42, as previously observed in LB medium (Molinatto et al., 2017). Hence, we 

can hypothesize that pS499 contributes to the control of exoprotease production 

under multiple growth conditions. 

To verify if the anticipated growth of FZB42 could be explained by a greater 

proteolytic activity, we set up new assays in RE broth deprived of yeast extract and 

casamino acids. Besides confirming that FZB42 growth mainly depends on the 
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presence of the complex nitrogen sources, the results of these assays indicate that 

S499 is more efficient in the utilization of sugars and organic acids, representing 

the main components of RE broth (Nihorimbere et al., 2012). This could explain 

why in the complete RE medium S499 produced more biomass than FZB42. 

Moreover, in absence of yeast extract and casamino acids, S499 P- restored 

the ability of its parental strain to efficiently grow on the carbon sources. Therefore, 

it is tempting to speculate that in S499 cells the plasmid-encoded Rap-Phr 

regulatory system may slow down the production of exoproteases favouring the 

utilization of sugars and organic acids. Similarly, Koetje et al. (2003) put forward 

the hypothesis that B. subtilis strains may benefit from the presence of a plasmid-

borne Rap-Phr quorum-sensing system suppressing the production of exoproteases. 

At low cell densities, this inhibition may promote the utilization of the readily 

available energy sources. However, further data in support of these preliminary 

considerations are needed. 

Surfactins were the only family of CLPs that we could detect on inoculated 

tobacco and tomato roots under gnotobiotic conditions. This is in line with previous 

observations (Nihorimbere et al., 2012; Debois et al., 2014) and confirms the 

importance of surfactins in plant-bacteria interactions from the early stages of root 

colonization. Nonetheless, our results suggest that the plasmid-encoded Rap-Phr 

system could be involved in limiting S499 surfactin production in planta. In fact, 

we observed an abnormal synthesis of surfactins in the plasmid-cured strain (S499 

P-), especially during the first hours of tomato root colonization. Moreover, our data 

suggest that the rap gene expression could reduce srfA transcription, confirming an 

inhibitory effect already demonstrated in vitro for a similar plasmid-encoded Rap 

protein (Yang et al., 2015). 

At all events, pS499 seems not to be involved in the mechanisms governing 

the divergent regulation of surfactin production in S499 and FZB42 when cells are 

growing on roots. Indeed, globally both S499 and S499 P- released surfactins more 

efficiently than FZB42 in planta. These results are consistent with previous studies 

correlating in a dose-response manner a higher surfactin production with the higher 

ability of certain strains, including S499, in triggering early-defence responses in 

tobacco cells and ISR in tomato plants (Cawoy et al., 2014). 
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In RE broth, CLP production by S499 was clearly modulated in favour of 

surfactins, consistently with previous observations (Nihorimbere et al., 2012). 

Conversely, CLP production by FZB42 was less affected by the nutritional context, 

as similar relative proportions of the three families were retrieved in RE and LB 

media (Molinatto et al., 2017). A reduced surfactin production by FZB42 compared 

to S499 in RE broth was already reported by Cawoy et al. (2014). Although we 

could not study the impact of pS499 on this phenomenon, our data confirmed that 

these two strains differently modulate their CLP profiles in presence of sugars and 

organic acids typically found in root exudates. 

The release of surfactins is important for root colonization, because they 

help the bacteria in swarming motility and induce biofilm formation (Kinsinger et 

al., 2003; Bais et al., 2004). However, the higher surfactin productivity by S499 P- 

on tomato roots did not improved its colonization ability compared to S499 and 

FZB42. On the contrary, a faster colonization by FZB42 was associated with a 

lower surfactin productivity compared to S499 P- and S499, suggesting that limited 

amounts of surfactins can grant an efficient colonization. In fact, Cawoy et al. 

(2014) reported that different Bacillus isolates, distinguished for their surfactin 

productivity, formed similar consistent biofilms on roots. 

A surfactin overproduction by S499 P- was observed also on RE medium, 

in the confrontation assays against F. oxysporum f. sp. radicis-lycopersici. 

Conversely, the effects of plasmid curing on the modulation of fengycin and iturin 

production were not visible under these nutritional conditions. In agreement with 

this, the growth reduction of Fusarium mycelium by S499 and S499 P- was similar 

in size, whereas we can ascribe the greater antagonistic ability of FZB42 to a higher 

release of the antifungal CLPs, as previously reported (Cawoy et al., 2015). In the 

confrontation assays against C. cucumerinum, a general low lipopeptide production 

did not allow finding a relation between the antifungal activity and the 

concentration of a specific kind of CLPs, which was found for iturins on LB 

medium (Molinatto et al., 2017). As S499 P- was anyhow impaired in the 

antagonism against C. cucumerinum, the impact of pS499 on the biocontrol activity 

merits additional investigation.  
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 FUTURE PERSPECTIVES  
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Bacillus amyloliquefaciens subsp. plantarum strain S499 (S499) is a plant-

beneficial rhizobacterium that revealed direct antagonistic properties against 

phytopathogenic fungi and, in addition, a remarkable efficacy as elicitor of plant 

ISR (Ongena et al., 2005a; Ongena et al., 2005b). These features were mainly 

ascribed to the production of cyclic lipopeptides (CLPs) belonging to the fengycin, 

iturin and surfactin families (Ongena et al., 2007; Cawoy et al., 2014; Cawoy et al., 

2015). Surfactins play also a major role in determining the rhizosphere competence 

of Bacillus spp. (Ongena and Jacques, 2008). For its attractive features, S499 was 

previously elected as a model bacterial strain for the molecular characterization of 

the interactions between plant roots and Bacillus spp. (Henry et al., 2011; 

Nihorimbere et al., 2012; Debois et al., 2015). Furthermore, it was also studied to 

determine the impact of environmental factors on the bacterial fitness, which is 

crucial for improving the efficacy of biofungicides (Pertot et al., 2013). 

To achieve an in-depth genetic characterization of this plant-beneficial 

rhizobacterium, we carried out the S499 genome sequencing, assembly and 

annotation. We found that S499 is equipped with a chromosome of 3,927,922 bp 

and a considerable portion of the identified genes is putatively involved in cellular 

functions related to its root-associated lifestyle (Molinatto et al., 2016). In addition, 

we identified genes involved in the synthesis of amylolysin, amylocyclicin and 

butirosin, antimicrobials that were not previously known to be part of S499 arsenal. 

These compounds are active mainly against other bacteria (Lewellyn et al., 2007; 

Arguelles-Arias et al., 2013; Scholz et al., 2014), an aspect of S499 biocontrol 

properties that have received less attention so far. It would be interesting to 

understand in which conditions S499 expresses those genes and what are the 

environmental factors that drive their activation. 

Through comparative genomics, we confirmed that S499 belongs to B. 

amyloliquefaciens subsp. plantarum, sharing a high degree of genetic conservation 

with strain FZB42 (FZB42), the type strain of this bacterial taxon. Noteworthy, the 

genes known to be involved in the rhizosphere competence displayed a high level 

of nucleotide identity (Molinatto et al., 2017). On the other hand, the majority of 

unique coding sequences of S499 and FZB42 genomes was annotated as 

hypothetical proteins, which hampered to elucidate their contribution in shaping the 
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phenotypes of these bacterial strains. Indeed, although belonging to the same 

subspecies, S499 and FZB42 showed different behaviours, especially regarding the 

modulation of CLP production (Cawoy et al., 2014; Cawoy et al., 2015). Such 

differences were confirmed by our results. In fact, S499 produced more surfactins 

than FZB42 in the recomposed root exudates (RE) medium and in planta, whereas, 

FZB42 produced more fengycins and iturins than S499 in Luria-Bertani (LB). 

The sequencing of S499 genome allowed to identify a plasmid of 8,008 bp 

(pS499), which was unknown before and represented one of the most evident 

genetic features distinguishing S499 and FZB42 (Molinatto et al., 2017). 

Interestingly, this small plasmid encodes a response regulator aspartate phosphatase 

(Rap) and a phosphatase regulatory peptide (Phr). We verified that the plasmid-

encoded rap gene was expressed in both LB and RE media, as well as in S499 cells 

colonizing tomato roots, suggesting an active role in the regulation of the bacterial 

physiology. Indeed, Rap-Phr systems are well-characterized quorum-sensing 

regulatory systems in B. subtilis (Pottathil and Lazazzera, 2003) and, besides, they 

are involved in the regulation of surfactin production in B. amyloliquefaciens (Yang 

et al., 2015). For this reason, we hypothesized that the presence of pS499 could 

contribute to explain the differences observed between S499 and FZB42 regarding 

CLP production and rhizosphere competence. 

To elucidate the role played by pS499 in S499 cells, a plasmid-cured 

derivative of S499 (S499 P-) was obtained (Molinatto et al., 2017). In LB medium, 

S499 P- was similar to FZB42 in several aspects: faster growth linked to an 

increased proteolytic activity, improved swarming motility, enhanced lipopeptide 

production and anticipated srfA gene expression compared to S499 (Molinatto et 

al., 2017). However, different results were obtained in planta. Indeed, S499 and 

S499 P- showed similar patterns of root colonization, despite S499 P- had a reduced 

ability to form biofilm in LB broth. This result underlines the importance of the 

nutrient sources in determining the behaviour of the bacterial strains. Moreover, the 

cell physiology may be affected by the different growing conditions (planktonic 

cultures vs. populations devoloping as microcolonies on roots). Thus, depending on 

the environmental conditions, the impact of pS499 in the regulation of cell 

metabolism may be more or less evident. 
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Similarly to what observed in LB medium, surfactin synthesis in the cured 

strain was enhanced also on tomato roots. As FZB42 showed an opposite behaviour 

compared to S499 P- in terms of surfactin productivity in planta, it is hard to find a 

direct relation between the presence of pS499 and the different phenotypes of S499 

and FZB42 observed on plant roots. In addition, the increased surfactin productivity 

of S499 P- did not produce any visible effect on rhizosphere competence. It might 

be of interest to verify how the colonized plants respond in terms of ISR, since 

surfactins are the main elicitors of plant immunity among CLPs (Cawoy et al., 

2014). 

Lipopeptide production by S499 P- could not be evaluated in RE broth, since 

its growth was drastically impaired. The reason of this metabolic restraint have not 

been understood yet, but further investigation on this intriguing aspect is being 

carried out. However, in the antagonism assays on gelified RE medium, which was 

anyhow conducive for S499 P- growth, we could not detect any significant 

difference with the wild-type S499 in fengycin and iturin production. Conversely, 

S499 P- produced less iturins than S499 on LB agar, which correlated with a 

reduced antifungal activity (Molinatto et al., 2017). As a reduced pathogen 

inhibition by S499 P- was also observed on RE, further analyses are necessary to 

elucidate how pS499 may affect the biocontrol ability of S499 in the rhizosphere. 

From the growth curves obtained for S499 and FZB42 in RE broth, it is clear 

that these two strains of B. amyloliquefaciens subsp. plantarum differently regulates 

the assimilation and utilization of nitrogen and carbon sources. This may explain 

the different early colonization rates shown by S499 and FZB42 on tomato roots. 

Additional studies are in progress in order to confirm this hypoyhesis and better 

understand the regulation of the bacterial metabolism. 

Globally, our results reveal that pS499 differently affects the S499 

behaviours depending on the nutritional context. This modulation is likely related 

to the expression of the plasmid-encoded rap-phr cassette. Nonetheless, more 

evidences are required to prove that pS499 is relevant for the fitness of the 

rhizobacterium in its natural environment. If a direct effect on the interactions 

between S499 and plant roots can be ultimately excluded, more attention should be 

addressed to the putative regulatory role of pS499 in the antagonistic activity. From 
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this perspective, the plasmid may provide S499 with an ecological advantage in 

terms of niche occupation. 

In conclusion, from S499 genome sequencing we collected more 

information on the biotechnological potential of this bacterial strain, besides 

providing a complete genetic background that can support the future investigation 

on S499 interactions in the rhizosphere. Moreover, we were able to explore novel 

genetic features, also by obtaining a useful tool (S499 P-) to investigate on their 

functions. Although the data did not allow to have a clear picture of pS499 influence 

on S499 physiology, our study provided some bases to direct further researches in 

this field.  
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