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Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency 

syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency 

causing intellectual disability, seizures, movement and autistic-like behavioral disturbances, 

language and speech impairment. Since no data are available about the neural and molecular 

underpinnings of this disease, we performed a longitudinal analysis of behavioral and 

pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found 

precocious cognitive and autistic-like defects, mimicking the early key features of human 

CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term 

declarative memory denoting an early brain aging. Pathological examination showed a 

prominent loss of GABAergic synapses, marked activation of microglia, reduction of 

hippocampal neurogenesis and accumulation of autofluorescent lipofucsin. Our data suggest 

that brain Cr depletion causes both early intellectual disability and late progressive cognitive 

decline, and identify novel targets to design intervention strategies aimed at overcoming brain 

CCDS1 alterations. 

 

 

 

 

 

 

 

 

 

 

Page 2 of 55Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 3 

Introduction 

Creatine (Cr) has a fundamental role in the energy metabolism of cells, particularly in tissues with 

high-energy demand. Cr kinase (CK) catalyzes the reversible conversion of Cr and ATP to 

phosphoCr (PCr) and ADP. Most of cells, indeed, do not rely on ATP/ADP free diffusion and the 

CK/PCr/Cr system serves as energy storage for immediate regeneration of ATP and as shuttle of 

high- energy phosphates between sites of ATP production and consumption (1). In physiological 

conditions, Cr is obtained by diet and by endogenous synthesis, which involves the enzymes l-

arginine:glycineamidinotransferase (AGAT) and S-adenosyl-l-methionine:N-

guanidinoacetatemethyltransferase (GAMT). Additionally, Cr is a polar hydrophilic molecule 

unable to cross the plasma membrane and a specific Na+/Cl−- dependent transporter (Cr transporter, 

CrT) is required for Cr to enter the cells (2). 

The great relevance of Cr/PCr system for the normal functioning of brain cells is well 

supported by the recent discovery of three different pathologies characterized by defects of Cr 

metabolism that lead to primary neurological symptoms. AGAT (3) and GAMT disorders (4) are 

autosomal recessive conditions impairing Cr biosynthesis, while CrT deficiency (CCDS1) is an X- 

linked condition affecting cellular uptake of Cr (5). These disorders share the depletion of brain Cr 

and a similar clinical phenotype with intellectual disability, behavioral autistic-like abnormalities, 

language and speech disturbances, seizures and movement disorders (2, 6). Very little is known 

about Cr regulation and function in the brain. In the central nervous system, AGAT, GAMT and 

CrT are widely expressed in brain cells, including neurons, oligodendrocytes, and endothelial cells 

of the blood-brain barrier (7, 8). The lack of knowledge about the effects of Cr deficiency on 

neuronal circuits stems at least partially from the paucity of studies on animal models. Two 

germline murine models of CCDS1 and one model of GAMT deficiency are available so far (9–11), 

and they have been analyzed only in some  behavioral domains and at neurochemical level, while 

studies on AGAT-deficient mice are limited to metabolic effects of Cr deficiency (12). Learning 
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and memory deficits, impaired motor activity and Cr depletion in brain and muscles have been 

reported in GAMT and CrT models in the adult age (9–11). However, little is known about the 

presence of autistic-like behavioral features and the onset and progression of the phenotype.  

Several papers found that the disturbed energy metabolism caused by prolonged and 

sustained Cr depletion might resonate in molecular networks resulting in abnormal metabolism. 

Accordingly, the skeletal muscle of AGAT deficient mice display a marked increase of inorganic 

phosphate/bATP ratio and overall mitochondrial content, while ATP levels were reduced by nearly 

half (13). Patients with Cr deficiency syndrome are reported to have increased oxidative stress and 

reactive oxygen species (ROS)-induced apoptotic cell loss (14), whereas Cr supplementation in 

senescent mice improved neurobehavioral outcomes and prolonged median survival with a trend 

towards lower ROS (15). We speculated that the disturbed energy metabolism caused by prolonged 

and sustained Cr depletion might set in motion the precocious activation of detrimental cellular and 

molecular mechanisms typical of brain aging leading to a progressive cognitive regression. The lack 

of the antioxidant activity of Cr (16, 17) in CCDS1 might also contribute to this process (18). This 

hypothesis would explain the observation that intellectual disability of CCDS1 patients seems to 

become more pronounced with age (19). Intriguingly, our surmise could also be relevant for normal 

brain aging  as suggested by recent data showing that Cr levels are downregulated in aged human 

brain (20, 21). 

Thus, we performed a longitudinal evaluation of cognitive functions in CrT deficient mice 

and we examined various age-related brain phenotypes including neuronal degeneration, 

hippocampal neurogenesis, synaptic loss, neuroinflammation and oxidative stress. Our results show 

that reduced Cr levels accelerate the brain aging process, indicating that CCDS1 could be 

considered an age-dependent disorder and that alterations of Cr metabolism are directly involved in 

brain aging.  

 

Results 
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Reduced body weight growth in CrT
–/y

 mice 

A first clue indicating that CrT deficiency elicits age-related detrimental effects emerged from the 

general appearance of mutant animals. Mice were weighed at different ages and compared with WT 

littermates. Even though no particular problems of breeding were observed and the face of CrT–/y 

mice was normal till P40, CrT−/y animals (n = 12) showed a significantly reduced body weight 

compared to CrT+/y animals at P60, P100 and P180 (n = 13; Two way ANOVA on rank transformed 

data, p < 0.001 effect of genotype, p < 0.001 interaction between genotype and age; post hoc Holm 

Sidak method, p = 0.092 at P40, p < 0.001 in all other comparisons; Fig. S1). 

 

Age-related deterioration of cognitive functions in Cr deficiency conditions 

In  previous behavioral investigation performed at P40, we highlighted that CrT−/y mice exhibit a 

general cognitive impairment across different learning and memory tests (11). To understand 

whether a progressive deterioration of behavioral impairment is present in CrT−/y mice, we studied 

four different stages: 1. during the early brain development (postnatal day (P) 28 at the beginning of 

testing), 2. during the late brain development (P40 at the beginning of testing), 3. in the adult age 

(P100 at the beginning of testing), and 4. in the middle age (P180 at the beginning of testing). 

Interestingly, a progressive worsening of cognitive symptoms was detectable in CrT−/y mutant mice, 

suggesting that age is a key feature of Cr deficiency disease. 

Y maze. We first analyzed the performance of CrT−/y animals at P28 using the Y maze spontaneous 

alternation, which is an optimal task for probing memory in juveniles (Fig. 1a; (22)). Animals of 

both groups equally explored all the three arms of the maze. Indeed, no effect of genotype was 

detected for either the number of entries in the single arms of the maze (designated A, B, C) or the 

total number of arm entries, indicating that the exploratory disposition of mutant animals (n = 9) 

was not altered compared to WT littermates (n = 11; Two-Way ANOVA on rank transformed data, 

post hoc Holm-Sidak method, p = 0.506, p = 0.941, p = 0.276, p = 0.391 respectively, Fig. 1a). 

However, while in young WT mice alternation rate was about 60% of total arm choices, in CrT−/y 
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animals it dropped to the chance level (50%; Fig. 1b), demonstrating that CrT disruption in the 

mouse model could reproduce the early pathological phenotype of CCDS1 patients. The same 

impairment was detected at P40, P100 and P180 with CrT−/y mice performing at chance level 

whereas WT age-matched controls showed significant spontaneous alternation (t test, p < 0.01 for 

P40, p < 0.05 for P100 and P180, Fig. S2). These data also indicated that the spontaneous 

alternation paradigm cannot reveal age-dependent cognitive decline in CrT mutants because of the 

ceiling effect in the arm alternation deficit masking the effect of the age variable. 

Object recognition test (ORT). We assessed declarative memory abilities in the ORT, a test based 

on the spontaneous tendency of rodents to spend more time exploring a novel object than a familiar 

one. No difference in short-term recognition memory between P40 CrT−/y mice (n = 9) and age-

matched WT animals (n = 7) could be detected (t-test, p = 0.285). In contrast, the discrimination 

index at 24 h was significantly lower in mutant mice, indicating that their capacity to recall the 

familiar object was impaired (t-test, p < 0.05; Fig. 2a). This memory deficit became more 

pronounced two months later (CrT−/y n = 11, CrT+/y n = 10; P100, t-test, p < 0.01 at 24h; Fig. 2b), 

and eventually affecting both short and long-term memories at P180. Indeed, at P180 CrT−/y mice 

showed a marked memory deficit both at 1- and 24-h interval between the sample and the test phase 

with respect to CrT+/y mice (CrT−/y n = 10, CrT+/y n = 9; t-test, p < 0.05 for both comparisons; Fig. 

2c), indicating that the longer the time during which neural circuits are forced to work without Cr 

energy buffer the worse the cognitive performance of CrT−/y animals. 

Morris water maze (MWM). We further assessed memory abilities in the MWM, a cognitive 

paradigm that allows testing spatial learning and memory. The probe test highlighted a spatial 

memory impairment in Cr deficient mice at all the different ages tested: WT animals, indeed, spent 

significantly longer time in the quadrant where the platform was located during the training days 

(NE*; Two-Way RM ANOVA, post hoc Holm-Sidak method, p < 0.05 for all comparisons), while 

mutant mice did not remember the location of the hidden platform and equally explored the four 

quadrants of the maze (Two-Way RM ANOVA, post hoc Holm-Sidak method; Fig. S3). 
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The results obtained in the training phase of the MWM test, however, showed a clear 

progression of cognitive deficits in CrT−/y mice. Since a main effect of genotype was found on mean 

swimming speed recorded all along the training phase at the different ages tested (t-test, p < 0.05 

(P40); Mann-Whitney Rank Sum test, p < 0.05 (P100); t-test, p < 0.01 (P180); Fig. S4), we 

analyzed the length of path covered to find the submerged platform. At P40 CrT−/y animals (n = 12) 

were able to learn the task as well as their age-matched WT controls (n = 10): although the mean 

distance to locate the submerged platform on the last three days of training was longer in mutant 

mice compared to CrT+/y littermates (t test, p < 0.05), they exhibited a progressive reduction of the 

path length similar to WT littermates (Two-Way RM ANOVA, p = 0.084 effect of genotype) with a 

significant difference between the two groups only at the day 5 of training (post hoc Holm-Sidak 

method, p < 0.05; Fig. 3a). The same was true in P100 animals (CrT−/y: n = 8, CrT+/y: n = 7; Two-

Way RM ANOVA on rank transformed data, p = 0.132 effect of genotype, post hoc Holm-Sidak 

method, p < 0.05 at day 5; Fig. 3b). In contrast, CrT−/y mice (n = 7) were significantly slower 

learners with respect to age-matched WT mice (n = 9) at P180 so much so that the distance to locate 

the platform was different between the two groups at days 3, 4, 5 and 6 of training (Two-Way RM 

ANOVA on rank transformed data, genotype, p < 0.001, interaction between genotype and day p < 

0.001; post hoc Holm-Sidak method, p < 0.05 for day 3 and 6, p < 0.01 for day 4 and 5; Fig. 3c).  

To further corroborate the hypothesis of a premature cognitive decline in CrT null mice, we 

compared the performance in the MWM of P180 CrT−/y animals and one-year old wild-type mice (n 

= 4). The mean distance to locate the platform on the last three days of training (t-test, p = 0.968; 

Fig. S5a) and the probe test revealed a similar learning and memory impairment in these two 

experimental groups (Two-Way RM ANOVA, p = 0.479; Fig. S5b). 

  

Emotional phenotype is not altered in CrT mutant animals 

To rule out the possibility that significant differences in cognitive capacities reflect changes in the 

ability to cope with stress in challenging task conditions, we analyzed general activity and anxiety-
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related behavior of CrT−/y and CrT+/y mice in the open field arena at the different ages used for 

cognitive assessment. We found that the time spent by CrT−/y mutant mice (n = 12 for P40 and 

P100, n = 11 for P180) in both the central and peripheral portion of the apparatus was not different 

from that recorded for WT animals (n = 13 for P40 and P100, n = 11 for P180) at any of the time 

point tested (Two Way ANOVA, post hoc Holm-Sidak method, p = 0.725 (P40), p = 0.508 (P100) 

and p = 0.348 (P180)), indicating that the vulnerability to stress and anxiety responses are not 

sensitive to CrT deletion and excluding the hypothesis that the progression of cognitive deficit 

might be related to altered emotionality (Fig. S6). 

 

CrT
–/y

 mice exhibit increased repetitive and stereotyped behavior 

Since the clinical picture of CCDS1 patients include multiple traits linked to autism spectrum 

disorders (ASDs), we also examined social behavior in CrT null mice. Although we used two 

different social interaction paradigms, we detected no abnormalities in CrT–/y mice at P180. In the 

social preference test, indeed, both CrT–/y (n = 8) and CrT+/y (n = 6) animals spent significantly 

more time exploring the wire cup housing the conspecific subject (Mann-Whitney Rank Sum test, p 

= 0.662; Fig. 4a). Similarly, the discrimination index measured in the social novelty task did not 

differ between mutant and WT mice (t-test, p = 0.784; Fig. 4a). 

        The second core ASD symptom domain includes repetitive and stereotyped movements, 

routines, and rituals (23) and several mouse lines with ASD-associated mutations exhibit enhanced 

learning on the accelerating rotarod, a task that requires formation and consolidation of a repetitive 

motor routine (24). Thus, we tested rotarod abilities of CrT–/y (n = 12 for P40, n = 11 for P100 and n 

= 9 for P180) and CrT+/y (n = 13 for P40 and P100, n = 11 for P180) animals, with the speed of 

rotation accelerating from 4 to 40 rpm over 600 s. The performance of CrT–/y mutant mice diverged 

from that of wild-type mice, with a significant increase of fall latency from the drum at all ages 

tested (Two Way ANOVA, effect of genotype p < 0.001, post hoc Holm Sidak method, p < 0.01 at 

P40 and P100, p < 0.05 at P180; Fig. 4b).  We next examined self-grooming, another stereotyped 
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behavior in mice (25). While no difference was present at P40 (CrT–/y, n = 9; CrT+/y, n = 7; Two 

Way ANOVA on rank transformed data, post hoc Holm Sidak method, p = 0.912) CrT null mice 

spent about threefold as much time grooming themselves as littermate WT mice at P180 (CrT–/y, n 

= 7; CrT+/y, n = 11; p < 0.01; Fig. 4c).  

 

CrT deletion leads to a widespread Cr reduction in young and adult mice 

To understand whether the progression of cognitive deficits in CrT−/y mice was due to a gradual 

reduction of brain Cr content, we measured Cr levels in various tissues in 1-month- and 6-month-

old animals using GC/MS. At both ages, we observed a significant reduction of Cr in the brain 

(both cerebral cortex and hippocampus; Two Way ANOVA on rank transformed data, post hoc 

Holm-Sidak method, p < 0.001), muscle (p < 0.001), heart (p < 0.001) and kidney (p < 0.05) of 

CrT−/y mice with respect to wild-type (WT) littermates (n = 4/tissue for each group; Table 1). 

Importantly, no difference was detected in Cr levels measured in the different tissues between P30 

and P180 CrT−/y mice, except for the muscle: a Three way ANOVA on rank transformed data 

analysis revealed a significant interaction (p < 0.001) between genotype and age only at level of 

muscular tissue with a significant reduction of Cr levels in P180 CrT−/y mice (post hoc Holm-Sidak 

method, p < 0.001). A moderate change in GAA levels was observed in some tissues (Table 2) 

suggesting that Cr deficiency leads to a compensatory attempt by upregulating Cr biosynthesis. 

Also in this case GAA content measured in P180 animals reproduced the levels reported in younger 

tissues: a Three way ANOVA on rank transformed data revealed a significant interaction (p < 

0.001) between genotype and age only at level of muscular tissue, but this analysis only stressed a 

significant reduction of GAA levels in P180 CrT−/y (post hoc Holm-Sidak method, p < 0.05) and 

WT mice (p < 0.001). These results allow rejecting the hypothesis that higher GAA toxicity could 

underlie the age-related decline of cognitive functions in CrT−/y animals. 

 

Morphological characterization of neural circuits in CrT
−/y

 mice 

Page 9 of 55 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 10

The morpho-functional organization of neural circuits in mice carrying CrT mutations has never 

been studied so far. Thus, we have investigated whether the accelerated decline of learning and 

memory functions in CrT-deficient mice was accompanied by pathological changes in brain 

morphology. The cerebral cortex and the hippocampus were analyzed because they are strictly 

involved with the symptoms caused by CrT deficiency in mice and in humans. In the same animals 

subjected to behavioral characterization, we first evaluated the neuroanatomical architecture of 

prefrontal (PFC) and cingulate cortex (ACC) of P180 mice (n = 6 for both groups). Cortical 

thickness and neuronal cell density was estimated on NeuN stained sections. No difference in the 

cortical thickness (t-test, p = 0.785 for PFC and p = 0.880 for ACC; Fig. S6) and neuronal density 

across cortical layers was observed in mutant animals  (Two Way ANOVA, p = 0.683 for PFC; 

Two Way ANOVA on rank transformed data, p = 0.146 for ACC; Fig. S7). 

 

Loss of GABAergic synapses in the cerebral cortex of CrT
−/y

 mice 

Since synaptic dysfunction is a feature commonly observed in normal aging and neurodegenerative 

disorders likely contributing to pathology progression (26), we analyzed the synaptic punctate 

expression of vGlut1 and vGAT, respectively as synaptic markers of excitatory and inhibitory 

neurons, in the cerebral cortex of CrT−/y mice. While excitatory synapses were not affected by Cr 

deficiency (n = 6 for both groups; Mann-Whitney Rank Sum test, p = 0.792 for PFC; t-test, p = 

0.340 for ACC; Fig. 5a), we detected a prominent loss of vGAT staining both in PFC and ACC, 

suggesting a specific contribution of GABAergic synaptic alterations to the neuropathological 

phenotype of CCDS1 (n = 9 for CrT−/y group, n = 8 CrT+/y group; t-test, p < 0.05 for both 

comparisons; Fig. 5b). Importantly, the loss of vGAT-positive  synapses overspread all the cortical 

layers. These results are also consistent with previous studies on CCDS1 patients exhibiting 

evidence for an epileptic phenotype (27) that could be predictive of a dysfunction of inhibitory 

interneurons. 

 

Page 10 of 55Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 11

Microglial cell dysregulation in the Cr deficient brain 

Since aberrant microglia activation is one of the main pathological hallmarks of brain aging (28, 

29), we have also evaluated Iba-1 expression as a marker of possible morphological changes of 

microglia in the cerebral cortex (PFC) and the hippocampus (HP) of mutant mice. During aging 

microglia cells undergo morphological changes towards a reactive phenotype with short, thickened 

and less ramified processes (30). We found a strong increase of activated microglial cells in the 

brain of CrT null animals as compared to wild-type controls (n = 8 for both groups), with a parallel 

reduction of resting cells (Two Way ANOVA, post hoc Holm Sidak method, p < 0.01 for PFC and 

p < 0.05 for HP; Fig. 6a,b), indicating that the metabolic deficit caused by Cr deficiency leads to a 

dysfunction of brain-immune cells interactions and to a neuroinflammatory state that can contribute 

to the cognitive decline reported in CrT−/y mice. 

 

Reduced neurogenesis and enhanced lipofuscin accumulation in the hippocampus of  CrT
−/y

 

mice 

It is well-known that the rate of neurogenesis declines dramatically with age and dysregulation of 

hippocampal neurogenesis is an important mechanism underlying the cognitive impairment 

associated with normal aging (31). In order to investigate whether CrT deficiency could affect 

hippocampal structure and impinge on the neurogenesis process, we examined neuronal 

proliferation through Ki67 labelling in the dentate gyrus (DG) of wild type and CrT−/y mice (n = 6 

for both groups). Stereological analysis first revealed that the hippocampal volume of mutant 

animals was markedly reduced with respect to that measured in control mice (t-test, p < 0.05; Fig. 

7a). Accordingly, the number of Ki67-positive cell was significantly lower in the DG of CrT−/y 

animal at P180, with approximately 30% reduction (t-test, p < 0.01; Fig. 7b,d). We also evaluated 

the number of immature neurons in hippocampal DG using the neuroblast marker doublecortin 

(DCX). DCX-positive cells were also significantly reduced in CrT null mice DG (t-test, p < 0.001; 
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Fig. 7c,e), demonstrating the impairment of adult hippocampal neurogenesis and suggesting another 

cellular substrate of the cognitive deficit present in the CrT null model. 

Another characteristic neuropathological finding in CrT mice was the massive accumulation 

of autofluorescent material (lipofuscin). Lipofuscin is a lipopigment consisting of aggregated 

products of lysosomal degradation, including oxidized and misfolded proteins, lipids, defective 

mitochondria and metal ions (32). We observed a marked accumulation of autofluorescent 

lipofuscin throughout the brain, but the most prominent autofluorescent signal was seen in the DG 

hippocampal region. Lipofuscin deposition and accumulation within the hippocampal neurons is a 

marker of cellular senescence (33); (34).  Thus, we compared the area of lipofuscin granules in the 

brain cells of 6-month-old CrT−/y (n = 6) mice and their CrT+/y siblings (n = 5). The accumulation of 

lipofuscin was significantly exacerbated in the hippocampal DG of CrT−/y animals at P180 (t-test, p 

< 0.05, Fig. 7f,g).   

 

A conditional brain-specific model of CCDS1 recapitulates the phenotype displayed by CrT
−/y

 

mice 

Since CrT−/y mice with ubiquitous deletion of the CrT gene showed a marked Cr depletion also in 

peripheral tissues, we analyzed a novel mouse model in which a conditional CrT allele was deleted 

in postmitotic neurons, glial cells and BBB endothelial cells by using the Nestin promoter to drive 

Cre-recombinase expression (35; nes-CrT mice).  

As expected, biochemical analysis in these mice highlighted a depletion of Cr (and a parallel 

increase of GAA), similar to that of the null CrT mouse, totally restricted to  

the brain tissue, with peripheral tissues being not affected (Table 3, 4). Importantly, we also 

observed that CrTfl/y animals not expressing Cre recombinase did not present a hypomorph 

phenotype, with normal levels of Cr in different tissues (Table 3, 4). Behavioral investigation 

highlighted that mutant (nes-CrT-/y) animals showed an impaired performance in the object 

recognition test (Fig. 8a) and a lower alternation rate in the Y maze (Fig. 8b), demonstrating an 
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impairment of both declarative and working memory reminiscent of the deficit described in the 

ubiquitary model. More specifically, at P180 nes-CrT−/y mice displayed an impaired discrimination 

index with respect to nes-CrT+/y mice both at 1- and 24-h interval between the sample and the test 

phase (nes-CrT−/y n = 6, nes- CrT+/y n = 8; t-test, p < 0.05 for both comparisons; Fig. 8a). In the Y 

maze, the alternation rate of nes-CrT-/y mice (n = 6) was about 10% lower of that reported for nes-

CrT+/y animals (n = 6; t-test, p < 0.05; Fig. 8b).  We also investigated whether selective CrT 

deficiency could affect hippocampal neurogenesis. Stereological analysis revealed that the number 

of Ki67-positive cell was significantly lower in the DG of nes-CrT−/y animal at P180 compared to 

age-matched controls (n = 6 for both group; t-test, p < 0.05; Fig. 8c). These results prove that the 

lack of CrT protein exclusively restricted to brain cells is sufficient to recapitulate the cognitive and 

cellular defects displayed by global knock-out mice. 

 

Discussion 

CCDS1 is known to cause brain Cr depletion and several neurological deficits, but nothing is 

known about the neurobiological basis of this disease. We performed the first analysis of 

morphological, cellular and behavioral impairments in a CCDS1 mouse model. The results report 

the earliest cognitive phenotype observed so far in CCDS1 mice, and a novel behavioral phenotype 

consisting in enhanced stereotypies. Moreover, we found that phenotypes associated with brain 

aging, including a progressive learning and memory deterioration, synaptic loss, microglial cell 

activation, neurogenesis impairment and lipofuscin deposition already occurs in adult animals. The 

significant differences in learning and memory performance of CrT−/y mice reflected changes in 

cognitive abilities per se: indeed, the open field test revealed that mutant mice display anxiety 

levels in the range of normal values, indicating that their capacity to cope with stressful conditions 

of behavioral tests is not altered. 

It is essential noticing that the main organ affected in human CCDS1 is the brain, with 

patients showing normal cardiac function and unaltered Cr levels in the muscle (2). In contrast, 
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CrT−/y mice displayed a marked reduction of Cr also in peripheral tissues. To understand whether 

the cognitive phenotype observed in CrT null mice depends on brain CrT deletion or if peripheral 

factors may also play a key role, we analyzed  learning and memory in a mouse model in which 

CrT deletion was restricted to the brain. Our results demonstrate that Cr brain-specific depletion is 

sufficient to cause a cognitive impairment indistinguishable from that of mice with ubiquitous CrT 

deletion. 

 

The role of Cr deficiency in aging process: novel mechanistic insights 

An important question raised by the premature aging of CrT−/y mice concerns the role of Cr 

deficiency in the aging process. It is worth noting that the cognitive regression of CrT−/y animals 

was not paralleled by either a decrease of Cr levels in the brain tissue or a rise of GAA toxicity, 

suggesting that the prolonged lack of Cr energy buffer may set in motion cellular compensatory 

mechanisms leading to the gradual shutdown of brain function. We detected a significant reduction 

of Cr levels in P180 CrT−/y mice with respect to P30 CrT null mice only at level of muscular tissue, 

indicating that the compensatory upregulation of Cr biosynthesis in the muscle declines with age. 

Despite the ubiquitary pattern of CrT deletion, only few CCDS1 patients displayed an alteration of 

muscular Cr levels and strength (36). Our results raise the possibility that a muscular phenotype 

could occur also in patients later in life. 

We have considered the possibility that the accelerated decline in cognitive performance in 

mature CrT−/y animals could be related to the documented neuroprotective (e.g., (15, 36, 38)) and 

anti-apoptotic effects of Cr (39). However, when we examined neuronal density in the cerebral 

cortex, we did not detect any significant reduction in the number of NeuN-positive cells either in 

the PFC or in the ACC. In contrast, we found a marked impairment of hippocampal neurogenesis in 

the brain of mature CrT−/y mice. This was assessed by observing significantly reduced numbers of 

Ki67-positive proliferating cells along with DCX-positive immature neurons in the hippocampal 

DG region. These results are consistent with the notion that the creation of new neurons is an 
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energetically expensive process (40) and that the hippocampus is particularly vulnerable to 

metabolic alterations (41). Since adult hippocampal neurogenesis plays a vital role in maintaining 

normal cognitive processing (41, 42), an impairment of this process could conceivably compromise 

hippocampal function and represent a key substrate of the cognitive defects seen in CrT−/y mice. 

Accordingly, most studies indicate a correlation between a compromised neurogenic niche and 

impaired performance in hippocampus-dependent cognitive tasks in aged mice (31). 

In addition, we observed that long-term Cr deficiency induce a more subtle and specific 

reorganization of neuronal circuits consisting in significantly lower expression of the vescicular 

GABA transporter. This alteration, which has been detected in two brain regions fundamentally 

involved in the processing of learning and memory tasks such as the PFC and the ACC, could be 

mirrored by a significant dysfunction of synaptic activity leading to increased cognitive frailty. It 

has been reported, indeed, that alterations in inhibitory interneurons contribute to cognitive deficits 

associated with aging and neurological diseases (43, 44). 

One of the principal findings of this work is the demonstration that neuroinflammation plays 

a critical role in the progression of CrT disorder. It is apparent that Cr deficiency causes an aberrant 

activation of microglial cells in the brain of mature CrT−/y animals and activated microglia may 

release a number of cytokines and chemokines, which in turn activate many proinflammatory signal 

transduction pathways. It is known that co-activation of proinflammatory and cytotoxic products 

during neuroinflammation process are detrimental to neurons and may alter synaptic proteins (45). 

Several studies, indeed, showed a significant downregulation of protein and mRNA levels of 

synaptic markers in animal models of neuroinflammation such as a non-infectious rat model of 

HIV-1 and rats treated with a high dose of lipopolysaccharide (46, 47). Recent evidence 

demonstrates that neuroinflammation also negatively affects hippocampal neurogenesis (48, 49). 

We could hypothesize that activated microglia-neuron crosstalk have detrimental effects on 

hippocampal neurogenesis and brain synaptic connectivity in CrT−/y animals. Thus, the 
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dysregulation of microglial behavior appears to be a critical component of the negative progression 

of CrT deficiency pathology. 

A possible trigger of neuroinflammation is the increased concentration of damaged 

macromolecules and protein aggregates as a result of an increase in oxidative stress as well as of 

mitochondrial dysfunction leading to excessive generation of reactive oxygen species (ROS) and 

oxidative damage to lipids, proteins and DNA. The Cr/PCr system is strongly implicated in cellular 

bioenergetic function and several studies have revealed a correlation between Cr levels and 

intracellular ROS inasmuch Cr exhibits antioxidant activity through either direct interaction with 

oxidant species or metabolic action conferring antioxidant protection (16, 17). Accordingly, we 

found an enhanced accumulation of lipofuscin in the brain of CrT−/y mice that could be the result of 

increased oxidative damage (50). The presence of lipofuscin can also influence important cellular 

processes, such as autophagy, by inhibiting the fusion between autophagosomes and lysosomes, 

thus further exacerbating the accumulation of degradation products and cognitive impairment (51). 

Since our morphological analysis of mutant brain was all performed in adult animals, future 

studies will need to check the developmental profile of markers modifications to better dissect 

cellular defects underlying the onset and progression of the pathological behavioral phenotype in 

CrT null mice. 

 

Impact on CCDS1 patients 

Present results have demonstrated that CrT null mice undergo to an early onset of brain aging. One 

fundamental conclusion emerging from this work is that CCDS1 is a metabolic disorder associated 

with early brain aging and that age should be a key factor to deal with in the clinical evaluation of 

patients. It has been previously reported that patient intellectual disability becomes more 

pronounced with age (6), but longitudinal studies in patients are totally lacking and little is known 

about the progression of the disease. 
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In addition, our CrT mouse model allowed us to discover alterations of cellular and 

molecular mechanisms that play a pivotal role in the generation of the CCDS1 neurological 

phenotype. Mutant mice displayed alteration of GABAergic system, reduction of hippocampal 

neurogenesis, marked activation of microglia, and altered oxidative metabolism, leading to a 

general cognitive deterioration progressively worsening with age. This knowledge opens the 

important possibility to design targeted-drug intervention protocols aimed at overcoming brain 

alterations. If we could rescue brain alterations underlying CCDS1, indeed, both clinical and 

behavioral amelioration should be achieved. The use of non-invasive methods for behavioral 

assessment suitable for longitudinal analysis and the morphological characterization of brain 

alterations in CrT−/y mice set a firm background for translational studies using this model, providing 

normative data and protocols necessary to validate potential treatment strategies prior to launching 

costly clinical trials. Finally, our data also suggest that CrT−/y animals may serve as a useful model 

for exploring the mechanisms of age-related damage in the brain. A large number of 

neurodevelopmental and neurological disorders, including Down syndrome, Batten disease, 

progranulin deficiency, brain iron dysregulation, have been associated with early brain aging (52–

55). Thus, a better understanding of factors that accelerate age-related deterioration of cognitive 

performance is critical both for improving the likelihood for successful aging and for revealing 

pathological changes of translational value.   

Material and methods 

Animals 

As CrT deficiency is an X-linked pathology, male mice were selected for this study. CrT-/y and 

CrT+/y mice on a C57BL/6 J background were generated as described previously (11). Animals 

were maintained at 22°C under a 12-h light–dark cycle (average illumination levels of 1.2 cd/m2). 

Food (4RF25 GLP Certificate, Mucedola) and water were available ad libitum. To target CrT 

deletion to neuronal and glial cells of the central nervous system we used a mouse (35) expressing 
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Cre recombinase under the Nestin promoter (Nestin:Cre). CrT+/fl females were crossed with 

Nestin:Cre male mice to generate a mouse line carrying the floxed CrT and Nestin:Cre alleles. Mice 

with three genotypes were used as experimental animals: mice carrying the brain specific deletion 

of CrT (Nestin:Cre-CrT-/y, nes-CrT-/y), mice expressing the floxed allele but not Cre-recombinase 

(CrTfl/y), and mice expressing Cre-recombinase but not carrying the floxed allele (Nestin:Cre-

CrT+/y, nes-CrT+/y). These genotypes were obtained in the same litters. Since CrTfl/y mice did not 

display any difference in Cr levels with respect to nes-CrT+/y animals, we performed behavioral and 

anatomical investigation only in the other two experimental groups. All experiments were carried 

out in accordance with the European Communities Council Directive of 24 November 1986 

(86/609/EEC) and were approved by the Italian Ministry of Health (authorization number 

259/2016-PR). 

Detection of Slc6a8 mutation by PCR 

Genomic DNA was isolated from mouse tail using a kit, and the protocol suggested by the 

manufacturer (DNeasy Blood & Tissue Kit, Qiagen, USA). DNA was amplified for CrT mutant and 

wild-type (WT) allele using a standard PCR protocol with the following primers: 

F:AGGTTTCCTCAGGTTATAGAGA; R:CCCTAGGTGTATCTAACATCT; R1: 

TCGTGGTATCGTTATGCGCC. Primers for Cre recombinase expression were: F: 

AACGCACTGATTTCGACC; R: CAACACCATTTTTTCTGACCC. For PCR amplification we 

used 300 ng of DNA in a 25 µL reaction volume containing 0.2 mM of each dNTP, 2 µM of F 

primer, 1 µM of R, 1 µM of R1 primer and 0.5 U/µL Red Taq DNA polymerase (Sigma-Aldrich, 

Italy). The PCR conditions were as follows: 94°C for 4 min followed by 37 cycles at 94°C for 30 s, 

58°C for 30 s, 72°C for 40 s and a final extension at 72°C for 7 min. Amplicons were separated 

using 2% agarose gel and visualized under UV light after staining with Green Gel Plus (Fisher 

Molecular Biology, Rome, Italy). Amplicon sizes were: WT allele = 462 bp; mutant allele = 371 

bp; Cre allele = 310 bp.  
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Behavioral testing 

The testing order for behavioral assessment performed in the same animals consisted of: open field 

(1 day duration), object recognition test (ORT) at 1h (1 day), ORT at 24h (3 days), Y maze (1 day), 

Morris water maze (MWM) with hidden platform (7 days), rotarod (1 day), three chamber social 

test (1 day) and self-grooming (1 day). The mice were tested on one task at a time with the next 

behavioral test starting at least 1 days after the completion of the previous one. While open field, 

ORT, Y maze, rotarod and self-grooming were longitudinally administered to the same animals, 

MWM was performed in separate groups of animals at the different ages tested. Y maze has been 

also used to test cognitive functions in juvenile animals (P28). Social behavior has been tested only 

in 6-month-old animals. In order to reduce the circadian effects, behavioral tests were performed 

during the same time interval each day (14:00–18:00h; light phase). All behavioral tests were 

conducted in blind with respect to the genotype of animals. Animals not performing the task 

required were excluded from the analysis. Mice were weighed at the end of experiments. 

Open field and object recognition test (ORT) 

The apparatus consisted of a square arena (60 × 60 × 30 cm) constructed in poly(vinyl chloride) 

with black walls and a white floor. The mice received one session of 10-min duration in the empty 

arena to habituate them to the apparatus and test room. Animal position was continuously recorded 

by a video tracking system (Noldus Ethovision XT). In the recording software an area 

corresponding to the center of the arena (a central square 30 × 30 cm), and a peripheral region 

(corresponding to the remaining portion of the arena) were defined. The total movement of the 

animal and the time spent in the center or in the periphery area were automatically computed. 

Mouse activity during this habituation session was analyzed for evaluating the behavior in the open 

field arena. The ORT consisted of two phases: sample and testing phase. During the sample phase, 

two identical objects were placed in diagonally opposite corners of the arena, approximately 6 cm 
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from the walls, and mice were allowed 10 min to explore the objects, then they were returned to 

their cage. The objects to be discriminated were made of plastic, metal, or glass material and were 

too heavy to be displaced by the mice. The testing phase was performed either 1h or 24h after the 

sample phase. One of the two familiar objects was replaced with a new one, while the other object 

was replaced by an identical copy. The objects were placed in the same locations as the previous 

ones. The mice were allowed to explore objects for 5 min. To avoid possible preferences for one of 

two objects, the choice of the new and old object and the position of the new one were randomized 

among animals. The amount of time spent exploring each object (nose sniffing and head orientation 

within <1.0 cm) was recorded and evaluated by the experimenter blind to the mouse genotype. 

Arena and objects were cleaned with 10% ethanol between trials to stop the build-up of olfactory 

cues. Mice exploring the two objects for less than 10 s during the sample phase were excluded from 

testing. A discrimination index was computed as DI = (T new - T old)/(T new + T old), where T new is 

the time spent exploring the new object, and T old is the time spent exploring the old one (11). 

Y maze spontaneous alternation 

We used a Y-shaped maze with three symmetrical grey solid plastic arms at a 120-degree angle (26 

cm length, 10 cm width, and 15 cm height). Mice were placed in the center of the maze and allowed 

to freely explore the maze for 8 minutes. The apparatus was cleaned with 10% ethanol between 

trials to avoid the build-up of odor traces. All sessions were video-recorded (Noldus Ethovision XT) 

for offline blind analysis. The arm entry was defined as all four limbs within the arm. A triad was 

defined as a set of three arm entries, when each entry was to a different arm of the maze. The 

number of arm entries and the number of triads were recorded in order to calculate the alternation 

percentage (generated by dividing the number of triads by the number of possible alternations and 

then multiplying by 100; (11). 

Morris water maze 
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Mice were trained for four trials per day and for a total of 7 days (11) in a circular water tank, made 

from grey polypropylene (diameter, 120 cm; height, 40 cm), filled to a depth of 25 cm with water 

(23°C) rendered opaque by the addition of a non-toxic white paint. Four positions around the edge 

of the tank were arbitrarily designated North (N), South (S), East (E), and West (W), which 

provided four alternative start positions and also defined the division of the tank into four 

quadrants, i.e., NE, SE, SW, and NW. A square clear Perspex escape platform (11 × 11 cm) was 

submerged 0.5 cm below the water surface and placed at the midpoint of one of the four quadrants. 

The hidden platform remained in the same quadrant during training, while the start positions (N, S, 

E, or W) were randomized across trials. The pool was situated in a room containing extra-maze 

cues that provide specific visual reference points for locating the submerged platform. Mice were 

allowed up to 60 s to locate the escape platform, and their swimming paths were automatically 

recorded by the Noldus Ethovision system. If the mouse failed to reach the platform within 60 s, the 

trial was terminated, and the mouse was guided onto the platform for 15 s. On the last trial of the 

last training day, mice received a probe trial, during which the escape platform was removed from 

the tank and the swimming paths were recorded over 60 s while mice searched for the missing 

platform. The swimming paths were recorded and analyzed with the Noldus Ethovision system. 

 

Rotarod 

Motor coordination and abilities were assessed using the rotarod test as described in (56). Animals 

were placed on a drum with increasing rotation speed from 4 to 40 rpm. The time spent on the drum 

was recorded by an automated unit, which stops as the mouse fall. Motor abilities were assessed by 

conducting the test for four consecutive times with an interval of 5 min in the same day. 

 

Three-chamber social test 

The three-chamber paradigm test has been successfully employed to study sociability and 

preference for social novelty in several mutant mouse lines. "Sociability" is defined as propensity to 
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spend time with a conspecific, as compared to time spent alone in an identical but empty chamber; 

"preference for social novelty" is defined as propensity to spend time with a new mouse rather than 

with a familiar mouse (57). We adapted the protocol reported in (58). The apparatus consisted in a 

rectangular, three-chamber box made from clear Plexiglas (72 cm wide ×  50 cm length × 33 high). 

Each chamber is 24 x 50 cm and the dividing walls are made from clear Plexiglas, with an open 

middle section, which allows free access to each chamber. Two identical, wire cup-like containers 

with removable lids were placed inside the apparatus, one in each side chamber. Each container was 

made of metal wires allowing for air exchange between the interior and exterior of the cup but small 

enough to prevent direct physical interactions between the inside animal and the subject mouse. 

Two classes of mouse were used in this experiment, one acting as a control, naïve animal, while the 

other is the test subject. The control mouse was a mouse of the same background, age, gender and 

weight, without any prior contact with the subject mouse. Two control mice were required per 

experiment, one used for session I (Stranger 1) and another for session II (Stranger 2). The same 

control mice were used between trials. Control mice were gradually habituated to wire-cup housing 

in the three-chamber box for 4 days (30 min per day) before the starting of test session. After 10 

min of habituation in the arena with empty wire cups of the subject mouse, we placed Stranger 1 

inside one of the wire cups. The subject mice were allowed to explore each of the three chambers 

for 10 min (session I). Animal position was continuously recorded by a video tracking system 

(Noldus Ethovision XT). The amount of time spent exploring each wire cup was recorded and 

evaluated by the experimenter blind to the mouse genotype. A discrimination index was computed 

as DI = (Tsoc - Tobj)/(Tsoc + Tobj), where T soc is the time spent exploring the cup housing the 

Stranger 1, and Tobj is the time spent exploring the other cup. In session II we placed Stranger 2 

inside the wire cup in the opposite side chamber. Duration of session II was 10 min and we 

calculated the same DI described above, differentiating the exploration time of the subject mouse 

between Stranger 1 and Stranger 2. The placement of Stranger 1 and Stranger 2 in the left or right 
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side of the box was randomized between trials. Arena and wire cups were cleaned with 10% ethanol 

between trials to prevent olfactory cue bias. 

 

Self-grooming 

Mice were scored for spontaneous grooming behaviors as described earlier (59). Each mouse was 

placed individually into a clean, empty, standard mouse cage (27 length × 20 cm wide × 15 cm 

high) without bedding. Animal behaviors were videotaped for 20 min. After a 10-min habituation 

period in the test cage, each mouse was scored with a stopwatch for 10 min for cumulative time 

spent grooming all body regions. 

Biochemical analysis 

For Cr and GAA assay, mouse tissues, immediately frozen on dry ice and stored at -80°C until the 

analysis, were homogenized in 0.7 ml PBS buffer (Sigma-Aldrich, Italy) at 4°C using a ultrasonic 

disruptor (Microson Heat System, NY, USA) for brain or a glass manual homogenizer (VWR, Italy) 

for kidney, heart and muscle. After centrifugation (600 × g for 10 min at 4°C) an aliquot of the 

homogenate (50 µl) was assayed for protein content and the supernatant used for Cr assay as 

previously described (60). Briefly, 50 µl of saturated sodium hydrogen carbonate and 50 µl of a 

mixture containing 2- phenylbutyric acid (I.S.) in toluene (6.09 mmol/l; Sigma-Aldrich, Italy) were 

added to 200 µl of homogenate or to 100 µl of serum and urine, respectively. After adding 1 ml of 

toluene and 50 µl of hexafluoro-2,4-pentanedione (Sigma-Aldrich, Italy) to form bis-

trifluoromethyl- pyrimidine derivatives, the mixture was stirred overnight at 80°C. The organic 

layer was centrifuged, dried under nitrogen and 2 µl of the residue derivatized at room temperature 

with 100 µl of BSTFA+TMCS (Sigma-Aldrich, Italy) injected into the Gas Chromatography/Mass 

Spectrometry (GC/MS) instrument. GC analyses were performed using an Agilent 6890N GC 

equipped with an HP5MS capillary column (0.25 mm × 30 m, film thickness 0.25 ìm) and an 

Agilent mass spectrometer 5973N (Agilent Technologies, Italy). The mass spectrometer was set in 
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EI- single ion monitoring mode (SIM). The ions with m/z of 192 for I.S., 258 for Cr and 225 for 

guanidinoacetic acid (GAA) were used for calculation of the metabolites, using standard curves 

ranging 5–90 µmol/L and 0.30–6 µmol/L for Cr and GAA, respectively. Data were processed by 

the G1701DA MSD ChemStation software. All the aqueous solutions were prepared using ultrapure 

water produced by a Millipore system.   

 

Immunohistochemistry 

Animals were perfused transcardially with 4% paraformaldehyde in phosphate buffer. Brains were 

post-fixed and impregnated with 30% sucrose in phosphate buffered saline (PBS). Coronal brain 

sections (40 µm) were cut on a freezing microtome and collected in PBS before being processed for 

immunohistochemistry. After a blocking step, free-floating slices were incubated O/N at 4°C in a 

solution of primary antibody (NeuN, Millipore, 1:500; Ki67, Abcam, 1:400; DCX, Abcam, 1:200; 

vGlut1, Synaptic System, 1:500; vGAT, Synaptic System, 1:1,000; Iba-1, Wako, 1:400) and 

antigen-antibody interaction was revealed with suitable Alexa Fluor-conjugated secondary 

antibodies (1:400, Invitrogen). Immunostaining for Ki67 involved an additional treatment with 

sodium citrate for antigen retrieval. Sections were then counterstained with Hoechst dye (1: 500, 

Sigma), mounted on microscope slides and coverslipped using Vectashield mounting medium for 

fluorescence (Vector Laboratories Inc.). 

 

Image analysis 

NeuN and Iba1- To quantify the density of neuronal and microglial cells in the cerebral cortex we 

used the StereoInvestigator software (MicroBrightField) equipped with motorized X–Y sensitive 

stage and video camera connected to a computerized image analysis system. NeuN-positive cells 

were counted using 20x magnification and sampling boxes (250 x 250 x 40 µm) located in both 

superficial and deep layers of PFC and ACC cortex. Iba1-positive cells were counted using 40x 

magnification and sampling boxes (250 x 250 x 40 µm) located in both superficial and deep layers 
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of PFC cortex. Cell density was calculated by averaging values obtained from at least 6-8 counting 

boxes per animal. Ki67 and DCX- Examination of Ki67 and DCX-positively labelled cells was 

confined to the hippocampal dentate gyrus (DG), specifically to the granule cell layer (GCL) and 

the subgranular zone of the hippocampus defined as a two-cell body-wide zone along the border 

between the GCL and hilus. Quantification of Ki67 or DCX-immunoreactive cells was conducted 

from 1-in-6 series of immunolabelled sections using 20x magnification and spanning the 

rostrocaudal extent of DG. All immunostained sections were analysed using the StereoInvestigator 

software. The reference volume was determined as the sum of the traced areas multiplied by the 

distance between the sampled sections. Densities of immunopositive cells were then calculated by 

dividing the number of positive cells by the reference volume. Numbers of positively labelled 

neurons were normalized as density per unit of volume (mm3). vGlut1 and vGAT- To quantify the 

density of vGlut1- and vGAT-positive puncta, the parameters of acquisition (laser intensity, gain, 

offset) were optimized at the beginning of the acquisition and then held constant throughout image 

acquisition. All sections were acquired in random order in a single session to minimize fluctuation 

in laser output and degradation of fluorescence. We imaged superficial and deep layers of PFC and 

ACC on a Zeiss laser-scanning Apotome microscope using a 63x oil immersion objective. For each 

section, we imaged serial optical sections at 0.33 µm intervals for a total of at least 15 optical 

sections (5 µm). From each animal we imaged 6 sections (3 in superficial layers and 3 in deep 

layers). Maximum intensity projections (MIPs) were generated from the group of 5 consecutive 

sections yielding the higher mean pixel intensity. These MIPs were imported in ImageJ and 

quantified using Puncta analyzer plugin (61). The number of positive puncta was measured within 

the entire acquired area. 

 

Determination of lipofuscin accumulation by autofluorescence 

Coronal brain sections were mounted on microscope slides and coverslipped using Vectashield 

mounting medium for fluorescence (Vector Laboratories Inc.). We imaged hippocampal DG on a 
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Zeiss laser-scanning Apotome microscope using a 40x oil immersion objective. The parameters of 

acquisition were optimized at the beginning of the experiment and then held constant. Lipofuscin 

level was measured as the presence of autofluorescence at 550 nm in the region of interest. For each 

section, we imaged serial optical sections at 0.5 µm intervals for a total of at least 80 optical 

sections (40 µm). From each animal we imaged 3-4 sections. MIPs were generated from the group 

of 5 consecutive sections yielding the higher mean pixel intensity. These MIPs were imported in 

ImageJ and quantified using Threshold plugin. The area of positive puncta and mean pixel intensity 

were measured within the entire acquired area. 

Statistical analysis 

All statistical analyses were performed using SigmaStat Software. Differences between two groups 

were assessed with a two-tailed t test. The significance of factorial effects and differences among 

more than two groups were evaluated with ANOVA/RM ANOVA followed by Holm-Sidak test. 

Rank transformation was exploited for data not normally distributed. The level of significance was 

p < 0.05.  
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Legends to figures 

Figure 1. Early deficiency of working memory in CrT
–/y

 mice. (a) Schematic diagram of the Y 

maze apparatus. The mean number of entries in the single arms of the maze (A, B, C) and the total 

number of arm entries were comparable for the different experimental groups (Two-Way ANOVA 

on rank transformed data, post hoc Holm-Sidak method, p = 0.506, p = 0.941, p = 0.276, p = 0.391 

respectively).   (b) Alternation rate in the Y maze was significantly lower in CrT–/y mice (n = 9) 

compared to that recorded for CrT+/y littermates (n = 11; t test, p < 0.05) at P28. * p < 0.05. Error 

bars, s.e.m. 

 

Figure 2. Progressive impairment of object recognition memory in CrT
-/y

 mice. Top, a 

schematic representation of the object recognition task. Histograms display object discrimination 

indexes of CrT+/y and CrT-/y during the testing phase performed after a delay of 1 and 24h since the 

sample phase at different ages. (a) P40. While both experimental groups can recognize the new 
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object in the test at 1h (t-test, p = 0.285), a significantly lower discrimination index was found in 

CrT–/y mice (n = 9) compared to CrT+/y animals (n = 7; t-test, p < 0.05). (b) P100. Even if still not 

significant, the recall capacity of CrT–/y animals at 1h was reduced (t test, p = 0.242). At 24h, a t-

test revealed that the performance of CrT–/y animals (n = 11) was strongly impaired with respect to 

controls (n = 10; p < 0.01). (c) P180. A significant deficit of both short (t-test, p < 0.05) and long-

term (t-test, p < 0.05) memory was detected in mutant mice (n = 10) compared to controls (n = 9). * 

p < 0.05; ** p < 0.01. Error bars, s.e.m. 

 

Figure 3. CrT deletion progressively deteriorates spatial learning and memory in mutant 

mice. (a) Left, learning curves for CrT+/y (n = 10, white) and CrT-/y mice (n = 12, grey) at P40. A 

significant difference was detected at day 5 (Two way RM ANOVA, post hoc Holm-Sidak method, 

p < 0.05). Right, histograms showing the mean swimming path covered to locate the submerged 

platform on the last three days of training for the two groups. A significant difference between CrT–

/y and CrT+/y animals was present (t-test, p < 0.01). Representative examples of swimming path 

during the day 3 of the training phase for a CrT+/y (top) and a CrT-/y mouse (bottom) are also 

reported. (b) Left, learning curves for CrT+/y (n = 7, white) and CrT-/y mice (n = 8, grey) at P100. A 

significant difference was detected at day 5 (Two way RM ANOVA, post hoc Holm-Sidak method, 

p < 0.05). Right, histograms showing the mean swimming path on the last three training days for 

the two groups. A significant difference between CrT+/y and CrT-/y animals was present (t-test, p < 

0.05). Representative examples of swimming path during the day 3 of the training phase for a 

CrT+/y (top) and a CrT-/y mouse (bottom) are also reported. (c) Left, learning curves for CrT+/y (n = 

9, white) and CrT-/y mice (n = 7, grey) at P180: mutant mice were poorer learners with respect to 

control littermates and a significant difference was detected at day 3, 4, 5 and 6 (Two way RM 

ANOVA on rank transformed data, post hoc Holm-Sidak method, p < 0.05 for day 3 and 6, p < 0.01 

for day 4 and 5). Right, histograms showing the mean swimming path on the last three day of 

training. A t-test analysis showed a statistical difference between CrT+/y and CrT-/y animals (p < 
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0.01). Representative examples of swimming path during the day 3 of the training phase for a 

CrT+/y (top) and a CrT-/y mouse (bottom) are also depicted. * p < 0.05; # < 0.01. Error bars, s.e.m. 

 

Figure 4. CrT mutation enhance repetitive and stereotyped behaviors. (a) Social interaction 

behaviors in CrT–/y mice. Histograms display discrimination indexes of CrT+/y (n = 6) and CrT-/y (n 

= 8) mice during the social preference (session I) and the social novelty phase (session II). No 

difference was detected between the two groups (Mann-Whitney Rank Sum test, p = 0.662 for 

session I; t-test, p = 0.784 for session II). A schematic representation of the three-chamber test is 

also depicted. (b) Performance of littermate wild-type (n = 11) and CrT–/y mice (n = 9) on the 

accelerating rotarod. Inset shows an illustration of the rotarod apparatus. A Two Way ANOVA 

showed a significant effect of genotype (p < 0.001). Post hoc Holm-Sidak test revealed that the fall 

latency of mutant animals was significantly different from that of wild-type mice at all ages tested 

(p < 0.01 at P40 and P100, p < 0.05 at P180). A schematic representation of the rotarod test is also 

depicted. (c) Histograms display mean time spent self-grooming in CrT+/y and CrT-/y animals at P40 

and P180. While no difference was detected at P40 (CrT+/y, n = 7; CrT–/y, n = 9; Two Way ANOVA 

on rank transformed data, post hoc Holm Sidak method, p = 0.912), CrT null mice exhibit increased 

grooming behavior at P180 (CrT+/y, n = 11; CrT–/y, n = 7; p < 0.01). A schematic representation of 

self-grooming behavior is reported.* p < 0.05; # < 0.01. Error bars, s.e.m. 

   

Figure 5. Synaptic neurotransmission in CrT
+/y

 and CrT
-/y

 animals at P180. (a) Left, 

representative immunostaining for vGlut1 from PFC and ACC of a CrT+/y and a CrT-/y mouse. 

Right, no difference in vGlut1 staining was detected between the two experimental groups (n = 6 

for both groups) either in PFC  (t-test, p = 0.792) or ACC (t-test, p = 0.340). (b) Left, representative 

immunostaining for vGAT from PFC and ACC of a CrT+/y and a CrT-/y mouse. The number of 

vGAT-positive puncta was significantly reduced both in the PFC and the ACC of mutant animals (n 

Page 36 of 55Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 37

= 9) with respect to controls (n = 8; t-test, p < 0.05 for both comparisons). * p < 0.05. Calibration 

bars: 25 µm. Error bars, s.e.m. 

 

Figure 6. Pathological activation of microglial cells in CrT
−/y

 animals (a) Left, representative 

immunostaining for Iba1 from prefrontal cortex (PFC) of a CrT+/y and a CrT-/y mouse. Right, a 

significant increase of the percentage of activated microglial cells, with a parallel decrease of 

resting microglia, was detected in mutant mice with respect to wild-type animals (n = 8 for both 

groups; Two Way ANOVA, post hoc Holm Sidak method, p < 0.01). (b) Left, representative 

immunostaining for Iba1 from the hippocampus (HP) of a CrT+/y and a CrT-/y mouse. Right, the 

percentage of activated microglia was increased in mutant mice, whereas the relative number of 

resting cells was reduced compared to controls (n = 8 for both groups; Two Way ANOVA, post hoc 

Holm Sidak method, p < 0.05). * p < 0.05; ** p < 0.01. Calibration bar: 100 µm. Error bars, s.e.m. 

 

Figure 7. Neurogenesis impairment and enhanced lipofuscin accumulation in the 

hippocampus of CrT
−/y

 animals at P180. (a) The hippocampal volume of CrT-/y mice was smaller 

compared to CrT+/y mice (n = 6 for both groups; t-test, p < 0.05). (b) Stereological counting 

revealed that the density of Ki67-positive cells was significantly reduced in the DG of CrT-/y mice, 

with approximately 30% reduction with respect to wild-type littermates (n = 6 for both groups; t- 

test, p < 0.01). (c) A significant decrease of the DCX-positive immature neurons was detected in the 

hippocampus of adult CrT-/y mice compared to controls (n = 6 for both groups; t-test, p < 0.001). (d) 

Representative immunostaining for Ki-67, a nuclear protein required for cellular proliferation, from 

a CrT+/y and a CrT-/y mouse. (e) Representative immunostaining for DCX, a microtubule-associated 

phosphoprotein expressed in early neuronal differentiation, from a CrT+/y and a CrT-/y mouse. (f) 

Representative images for lipofuscin autofluorescence from a CrT+/y and a CrT-/y mouse. (g) Six-

month-old CrT-/y mice (n = 6) show extensive accumulation of autofluorescent material throughout 

the brain when compared to the wild-type control (n = 5). A significant increase of abnormal 
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autofluorescent storage was mainly found in DG granular and polymorph layer of CrT-/y mice (t-

test, p < 0.05). * p < 0.05; ** p < 0.01; *** p < 0.001. Calibration bars: 50 µm. Error bars, s.e.m. 

 

Figure 8. A selective brain deletion of CrT is sufficient to impair cognitive functions and 

hippocampal neurogenesis. (a) Histograms display object discrimination indexes of nes-CrT+/y 

and nes-CrT-/y during the testing phase performed after a delay of 1 and 24h since the sample phase 

at P180. A significant deficit of both short (t-test, p < 0.05) and long-term (t-test, p < 0.05) memory 

was detected in mutant mice (n = 6) compared to controls (n = 8). (b) Alternation rate in the Y maze 

was significantly lower in nes-CrT–/y mice (n = 6) compared to that recorded for nes-CrT+/y 

littermates (n = 9; t test, p < 0.05) at P180. (c) A significant decrease of the Ki67-positive cells was 

detected in the hippocampus of P180 nes-CrT-/y mice compared to age-matched controls (n = 6 for 

both groups; t-test, p < 0.05).  * p < 0.05. Error bars, s.e.m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 38 of 55Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 39

Tissue (nmol/mg protein) 

P30 P180 

CrT
+/y CrT

-/y CrT
+/y CrT

-/y 

Cerebral cortex 76.36 ± 3.16 13.61 ± 1.06*** 92.41 ± 0.66 14.15 ± 0.66*** 

Hippocampus 83.69 ± 4.37 14.14 ± 1.52*** 88.73 ± 4.97 14.79 ± 1.46*** 

Muscle 310.20 ± 31.59 111.57 ± 21.27*** 365.38 ± 8.19 15.94 ± 5.55*** 

Heart 89.92 ± 5.15 1.19 ± 0.27*** 100.91 ± 3.36 2.39 ± 0.61*** 

Kidney 9.60 ± 0.65 1.59 ± 0.13* 10.36 ± 0.80 1.80 ± 0.78** 

 

Table 1. Cr levels (mean ± SEM) in CrT
+/y

 and CrT
-/y

 animals at P30 and P180 (n = 4 per tissue 

for both groups). Cr levels have been measured by GC/MS. A reduction of Cr content was evident 

in the brain, muscle, heart and kidney of mutant animals at both P30 and P180 (Two Way ANOVA 

on rank transformed data, post hoc Holm-Sidak method). * p < 0.05; ** p < 0.01; *** p < 0.001.  

 

 

 

 

 

 

 

 

 

 

 

Page 39 of 55 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 40

Tissue (nmol/mg protein) 

P30 P180 

CrT
+/y CrT

-/y CrT
+/y CrT

-/y 

Cerebral cortex 0.060 ± 0.002 0.114 ± 0.016*** 0.050 ± 0.006 0.066 ± 0.005 

Hippocampus 0 0.091 ± 0.007 *** 0.026 ± 0.015 0.079 ± 0.009** 

Muscle 0.106 ± 0.006 0.282 ± 0.068** 0.026 ± 0.010 0.150 ± 0.050** 

Heart 0.094 ± 0.010 0.060 ± 0.004*** 0.052 ± 0.007 0.033 ± 0.015 

Kidney 10.700 ± 0.627 9.758 ± 0.712 2.205 ± 0.259 2. 411 ± 0.112 

 

Table 2. GAA levels (mean ± SEM) in CrT
+/y

 and CrT
-/y

 animals at P30 and P180 (n = 4 per 

tissue for both groups). At P30, a moderate increase of GAA content was evident in the brain and 

the muscle of mutant animals (Two Way ANOVA on rank transformed data, post hoc Holm-Sidak 

method, p < 0.05), whereas GAA was decreased in the heart of CrT–/y animals (p < 0.05) and no 

difference was detected in the kidney tissue (p = 0.359). At P180, GAA levels were higher in the 

hippocampus and the muscle of mutant animals (Two Way ANOVA on rank transformed data, post 

hoc Holm-Sidak method, p < 0.01), whereas no difference was detected in cortex, heart and kidney 

(p = 0.175, p = 0.320 and p = 0.920, respectively). ** p < 0.01; *** p < 0.001. 
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Tissue (nmol/mg protein) nes-CrT
+/y nes-CrT

-/y CrT
fl/y 

Cerebral cortex 73.29 ± 1.88 17.36 ± 0.87*** 71.55 ± 4.15 

Hippocampus 87.45 ± 4.17 17.13 ± 2.22 *** 94.62 ± 4.35 

Muscle 382.97 ± 20.46 390.58  ± 22.66 385.36 ± 27.59 

Heart 78.24 ± 3.72 70.35 ± 3.10 68.02 ± 1.79 

Kidney 6.10 ± 0.81 3.11 ± 0.27 7.60 ± 1.22 

 

 

Table 3. Cr levels (mean ± SEM) in nes-CrT
+/y

, nes-CrT
-/y

 and CrT
fl/y

 animals at P180 (n = 4 

per tissue for all groups). A reduction of Cr content was evident in the brain of mutant animals, 

while peripheral tissues were not affected (Two Way ANOVA on rank transformed data, post hoc 

Holm-Sidak method). *** p < 0.001.  
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Tissue (nmol/mg protein) nes-CrT
+/y nes-CrT

-/y CrT
fl/y 

Cerebral cortex 0.048 ± 0.005 0.059 ± 0.004*** 0.048 ± 0.004 

Hippocampus 0.068 ± 0.005 0.131 ± 0.018* 0.074 ± 0.011 

Muscle 0.054 ± 0.006 0.061 ± 0.002 0.059 ± 0.003 

Heart 0.045 ± 0.004 0.047 ± 0.003 0.054 ± 0.007 

Kidney 1.705 ± 0.373 1.231 ± 0.099 3.051 ± 0.914 

 

Table 4. GAA levels (mean ± SEM) in nes-CrT
+/y

, nes-CrT
-/y

 and CrT
fl/y

 animals at P180 (n = 4 

per tissue for all groups). An increase of GAA content was evident in the brain of mutant animals, 

while peripheral tissues were not affected (Two Way ANOVA on rank transformed data, post hoc 

Holm-Sidak method). * p < 0.05; *** p < 0.001.  
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Point to point response letter to the Reviewers’ comments: 

In the revised version of the manuscript, corrections to the former manuscript have been highlighted 

in yellow to simplify the reviewing process. 

 

Response to Reviewer #1: (reviewer’s comments are in italics) 

This is a very well designed study in a creatine transporter deficient mouse model demonstrating a 

variety of cognitive and behavioral abnormalities in the knock-out model. Most importantly the 

study points to early brain aging associated with creatine depletion. The manuscript is well written 

and the conclusions are reasonable. Would be nice to have a bit more of a discussion about the fact 

that younger mice are not as creatine depleted in the muscle as compared to older age (P180).  

 

We discussed the difference in muscular Cr levels between young (P30) and adult (P180) mice (p. 

15). We detected a significant reduction of Cr levels in P180 CrT-/y mice with respect to P30 CrT 

null mice only at level of muscular tissue, indicating that the compensatory upregulation of Cr 

biosynthesis in the muscle declines with age. Despite the ubiquitary pattern of CrT deletion, only 

few CCDS1 patients displayed an alteration of muscular Cr levels and strength (Puusepp et al., 

2010). Our results raise the possibility that a muscular phenotype could occur also in patients later 

in life. 

 

Also adding the guanidinoacetate concentrations to the table (why is this a figure 5?) would be 

helpful, instead of putting it in the supplement.  

 

We included the results about guanidinoacetate levels in the main body of the manuscript (Table 2), 

as suggested by the reviewer. Figure 5 is now Table 1. 
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BTW, the mouse chow (4RF21 GFP, Mucedola) is composed of 3.5% animal protein; therefore it is 

NOT a creatine free chow. The statement ‘the chow was not added with Cr (personal 

communication of the manufacturer) (P17, l 13) is misleading.  

 

We removed the misleading sentence as suggested by the reviewer. 

 

Response to Reviewer #2: 

The creatine transporter (CrT) deficiency is an X-linked inherited neurometabolic disorder 

characterized by severe intellectual disability, epilepsy and autistic behaviors. The syndrome, 

caused by mutations in SLC6A8, the creatine transporter 1 protein gene, is currently untreatable 

due to the fact that creatine cannot pass the blood barrier. Very little is known on how deficiency in 

brain creatine affects the development of neuronal circuits and their function in adulthood. In the 

present manuscript, Baroncelli and colleagues provided significant novel data pointing to 

important insights in the cellular and molecular mechanisms underlying the progression of the 

disorder in the CrT mutant mice. The authors performed a longitudinal evaluation of cognitive 

functions in CrT deficient mice and analyzed aging-related markers including synaptic number, 

neuronal degeneration, hippocampal neurogenesis and neuroinflammation. They found a 

progressive worsening of cognition as evaluated by novel object recognition, Y maze and Morris 

Water Maze starting as early as postnatal day 28 until P180. At the cellular level, the authors 

revealed a significant reduction of vGAT but not vGlut1 positive synapses across cortical layers 

suggesting compromised inhibitory circuits. This was also accompanied by increased activated 

microglia as indicated by iba-1 elevated expression, accumulation of autofluorescent lipofuscin 

mainly in the dentate gyrus of hippocampus and reduced neurogenesis. The authors concluded that 

loss of creatine induces precocious aging of neuronal circuits and progressive worsening of 

cognitive performances. 
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The manuscript is well written, organized and the experiments are well executed with a significant 

number of animals in each group and proper statistical analysis performed. The results are novel 

and relevant.  

 

There are only few points that the authors should address before the manuscript is suitable for 

publication in Human Molecular Genetics. 

1) It is important to keep in mind that in humans, the CNS is the main organ affected by creatine 

deficiency syndrome. Indeed patients appear to have normal cardiac function and normal creatine 

levels in the muscles. This is different from what the authors report here in the mouse model. 

Therefore, it is important to understand whether a selective deletion of CrT in neuron would be 

sufficient to recapitulate the cognitive and cellular defects described in the global deletion model. 

The authors do not need to repeat the complete set of experiments performed in the total KO. 

Rather they could focus in adulthood and perform cognitive behavioral evaluation together with 

analysis of GABA circuits, microglia activation accumulation of lipofuscin. 

 

We totally agree with the reviewer about the importance to understand whether a selective deletion 

of CrT in the central nervous system could be sufficient to recapitulate the phenotype displayed by 

the ubiquitary knock-out model. Indeed, we had already developed a mouse carrying a floxed 

Slc6a8 gene. To target CrT deletion to neuronal and glial precursors widespread in the nervous 

system, we crossed the floxed Slc6a8 mouse with the Nestin::Cre recombinase mouse Tg(Nes-

cre)1Kln mouse from Jackson (http://jaxmice.jax.org/strain/003771.html). The resulting neural 

specific KO displayed a selective loss of Cr and a slight GAA upregulation in cortex and 

hippocampus but normal Cr levels in the periphery (Table 3, 4). Our behavioral investigation 

highlighted that mutant (nes-CrT-/y) animals showed an impaired performance in the object 

recognition test and a lower alternation rate in the Y maze, demonstrating an impairment of both 

declarative and working memory reminiscent of the deficit described in the ubiquitary model. We 
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also investigated whether selective CrT deficiency could affect hippocampal neurogenesis. 

Stereological analysis revealed that the number of Ki67-positive cell was significantly lower in the 

DG of nes-CrT−/y animal at P180. These results prove that the lack of CrT protein exclusively 

restricted to brain cells is sufficient to recapitulate the cognitive and cellular defects displayed by 

global knock-out mice. We included this new set of data in the manuscript by adding a new 

paragraph in the result section and by presenting Figure 8. We also included a new paragraph in the 

method section describing generation and genotyping of conditional CrT−/y animals, and we 

discussed these new results. 

 

2) The immunohistochemistry analysis of synaptic markers, microglia activation, neurogenesis, 

were all performed at P180. These are very important data, however still do not tell us whether 

these defects precede or accompany the onset of behavioral defects the author found already in the 

juvenile animals. At a minimum, the authors should repeat the analysis at younger ages (P28 

and/or P40) and compare the results with P180. In addition to corroborate the conclusion of 

premature aging in CrT mice, the authors should analyze older control mice (>one year). 

 

We agree with the reviewer that a comparative analysis of synaptic markers, microglia activation 

and neurogenesis in young and adult animals would increase the knowledge about cellular defects 

underlying the onset and progression of pathological behavioral phenotype of CrT null mice. At 

present, however, we do not have samples from young animals in storage and the length of time 

required to obtain a sufficient number of CrT−/y and CrT+/y for this analysis would considerably 

exceed the deadline for manuscript revision. Future studies will need to check the developmental 

profile of markers modifications. We acknowledged this point in the discussion.  

 

To further corroborate the hypothesis of a premature cognitive decline in CrT null mice, we 

compared the performance in the MWM of P180 CrT−/y animals and one-year old wild-type mice. 
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The mean distance to locate the platform on the last three days of training and the probe test 

revealed a similar memory impairment in these two experimental groups. We included this new set 

of data in the manuscript by adding a new paragraph in the Result section and by presenting Figure 

S5.  

 

Minor point: 

1) The color scheme used (white= mutant; grey = wild type) and the scheme presentation (first 

mutant then control) make difficult to understand the results presented. I suggest to switch to white 

for WT and solid color for the mutant and switch the order of the data, plotting first the control and 

then the CrT-/y. 

 

We changed the color scheme and the scheme presentation of figures as suggested by the reviewers. 
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Figure 1. Early deficiency of working memory in CrT–/y mice. (a) Schematic diagram of the Y maze 
apparatus. The mean number of entries in the single arms of the maze (A, B, C) and the total number of 
arm entries were comparable for the different experimental groups (Two-Way ANOVA on rank transformed 

data, post hoc Holm-Sidak method, p = 0.506, p = 0.941, p = 0.276, p = 0.391 respectively).   (b) 
Alternation rate in the Y maze was significantly lower in CrT–/y mice (n = 9) compared to that recorded for 

CrT+/y littermates (n = 11; t test, p < 0.05) at P28. * p < 0.05. Error bars, s.e.m.  
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Figure 2. Progressive impairment of object recognition memory in CrT-/y mice. Top, a schematic 
representation of the object recognition task. Histograms display object discrimination indexes of CrT+/y 
and CrT-/y during the testing phase performed after a delay of 1 and 24h since the sample phase at 

different ages. (a) P40. While both experimental groups can recognize the new object in the test at 1h (t-
test, p = 0.285), a significantly lower discrimination index was found in CrT–/y mice (n = 9) compared to 
CrT+/y animals (n = 7; t-test, p < 0.05). (b) P100. Even if still not significant, the recall capacity of CrT–/y 
animals at 1h was reduced (t test, p = 0.242). At 24h, a t-test revealed that the performance of CrT–/y 

animals (n = 11) was strongly impaired with respect to controls (n = 10; p < 0.01). (c) P180. A significant 
deficit of both short (t-test, p < 0.05) and long-term (t-test, p < 0.05) memory was detected in mutant 

mice (n = 10) compared to controls (n = 9). * p < 0.05; ** p < 0.01. Error bars, s.e.m.  
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Figure 3. CrT deletion progressively deteriorates spatial learning and memory in mutant mice. (a) Left, 
learning curves for CrT+/y (n = 10, white) and CrT-/y mice (n = 12, grey) at P40. A significant difference 
was detected at day 5 (Two way RM ANOVA, post hoc Holm-Sidak method, p < 0.05). Right, histograms 

showing the mean swimming path covered to locate the submerged platform on the last three days of 
training for the two groups. A significant difference between CrT–/y and CrT+/y animals was present (t-test, 
p < 0.01). Representative examples of swimming path during the day 3 of the training phase for a CrT+/y 
(top) and a CrT-/y mouse (bottom) are also reported. (b) Left, learning curves for CrT+/y (n = 7, white) 

and CrT-/y mice (n = 8, grey) at P100. A significant difference was detected at day 5 (Two way RM ANOVA, 
post hoc Holm-Sidak method, p < 0.05). Right, histograms showing the mean swimming path on the last 
three training days for the two groups. A significant difference between CrT+/y and CrT-/y animals was 
present (t-test, p < 0.05). Representative examples of swimming path during the day 3 of the training 
phase for a CrT+/y (top) and a CrT-/y mouse (bottom) are also reported. (c) Left, learning curves for 
CrT+/y (n = 9, white) and CrT-/y mice (n = 7, grey) at P180: mutant mice were poorer learners with 
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respect to control littermates and a significant difference was detected at day 3, 4, 5 and 6 (Two way RM 
ANOVA on rank transformed data, post hoc Holm-Sidak method, p < 0.05 for day 3 and 6, p < 0.01 for day 
4 and 5). Right, histograms showing the mean swimming path on the last three day of training. A t-test 
analysis showed a statistical difference between CrT+/y and CrT-/y animals (p < 0.01). Representative 

examples of swimming path during the day 3 of the training phase for a CrT+/y (top) and a CrT-/y mouse 
(bottom) are also depicted. * p < 0.05; # < 0.01. Error bars, s.e.m.  
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Figure 4. CrT mutation enhance repetitive and stereotyped behaviors. (a) Social interaction behaviors in 
CrT–/y mice. Histograms display discrimination indexes of CrT+/y (n = 6) and CrT-/y (n = 8) mice during 
the social preference (session I) and the social novelty phase (session II). No difference was detected 

between the two groups (Mann-Whitney Rank Sum test, p = 0.662 for session I; t-test, p = 0.784 for 
session II). A schematic representation of the three-chamber test is also depicted. (b) Performance of 
littermate wild-type (n = 11) and CrT–/y mice (n = 9) on the accelerating rotarod. Inset shows an 

illustration of the rotarod apparatus. A Two Way ANOVA showed a significant effect of genotype (p < 0.001). 
Post hoc Holm-Sidak test revealed that the fall latency of mutant animals was significantly different from 

that of wild-type mice at all ages tested (p < 0.01 at P40 and P100, p < 0.05 at P180). A schematic 
representation of the rotarod test is also depicted. (c) Histograms display mean time spent self-grooming in 
CrT+/y and CrT-/y animals at P40 and P180. While no difference was detected at P40 (CrT+/y, n = 7; CrT–
/y, n = 9; Two Way ANOVA on rank transformed data, post hoc Holm Sidak method, p = 0.912), CrT null 
mice exhibit increased grooming behavior at P180 (CrT+/y, n = 11; CrT–/y, n = 7; p < 0.01). A schematic 

representation of self-grooming behavior is reported.* p < 0.05; # < 0.01. Error bars, s.e.m.  
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Figure 5. Synaptic neurotransmission in CrT+/y and CrT-/y animals at P180. (a) Left, representative 
immunostaining for vGlut1 from PFC and ACC of a CrT+/y and a CrT-/y mouse. Right, no difference in 

vGlut1 staining was detected between the two experimental groups (n = 6 for both groups) either in PFC  (t-
test, p = 0.792) or ACC (t-test, p = 0.340). (b) Left, representative immunostaining for vGAT from PFC and 
ACC of a CrT+/y and a CrT-/y mouse. The number of vGAT-positive puncta was significantly reduced both in 

the PFC and the ACC of mutant animals (n = 9) with respect to controls (n = 8; t-test, p < 0.05 for both 
comparisons). * p < 0.05. Calibration bars: 25 µm. Error bars, s.e.m.  
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Figure 6. Pathological activation of microglial cells in CrT−/y animals (a) Left, representative 
immunostaining for Iba1 from prefrontal cortex (PFC) of a CrT+/y and a CrT-/y mouse. Right, a significant 
increase of the percentage of activated microglial cells, with a parallel decrease of resting microglia, was 
detected in mutant mice with respect to wild-type animals (n = 8 for both groups; Two Way ANOVA, post 

hoc Holm Sidak method, p < 0.01). (b) Left, representative immunostaining for Iba1 from the hippocampus 
(HP) of a CrT+/y and a CrT-/y mouse. Right, the percentage of activated microglia was increased in mutant 

mice, whereas the relative number of resting cells was reduced compared to controls (n = 8 for both 
groups; Two Way ANOVA, post hoc Holm Sidak method, p < 0.05). * p < 0.05; ** p < 0.01. Calibration 

bar: 100 µm. Error bars, s.e.m.  
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Figure 7. Neurogenesis impairment and enhanced lipofuscin accumulation in the hippocampus of CrT−/y 
animals at P180. (a) The hippocampal volume of CrT-/y mice was smaller compared to CrT+/y mice (n = 6 
for both groups; t-test, p < 0.05). (b) Stereological counting revealed that the density of Ki67-positive cells 
was significantly reduced in the DG of CrT-/y mice, with approximately 30% reduction with respect to wild-
type littermates (n = 6 for both groups; t- test, p < 0.01). (c) A significant decrease of the DCX-positive 
immature neurons was detected in the hippocampus of adult CrT-/y mice compared to controls (n = 6 for 

both groups; t-test, p < 0.001). (d) Representative immunostaining for Ki-67, a nuclear protein required for 
cellular proliferation, from a CrT+/y and a CrT-/y mouse. (e) Representative immunostaining for DCX, a 

microtubule-associated phosphoprotein expressed in early neuronal differentiation, from a CrT+/y and a 
CrT-/y mouse. (f) Representative images for lipofuscin autofluorescence from a CrT+/y and a CrT-/y mouse. 
(g) Six-month-old CrT-/y mice (n = 6) show extensive accumulation of autofluorescent material throughout 
the brain when compared to the wild-type control (n = 5). A significant increase of abnormal autofluorescent 
storage was mainly found in DG granular and polymorph layer of CrT-/y mice (t-test, p < 0.05). * p < 0.05; 

** p < 0.01; *** p < 0.001. Calibration bars: 50 µm. Error bars, s.e.m.  
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Figure 8. A selective brain deletion of CrT is sufficient to impair cognitive functions and hippocampal 
neurogenesis. (a) Histograms display object discrimination indexes of nes-CrT+/y and nes-CrT-/y during the 
testing phase performed after a delay of 1 and 24h since the sample phase at P180. A significant deficit of 

both short (t-test, p < 0.05) and long-term (t-test, p < 0.05) memory was detected in mutant mice (n = 6) 
compared to controls (n = 8). (b) Alternation rate in the Y maze was significantly lower in nes-CrT–/y mice 

(n = 6) compared to that recorded for nes-CrT+/y littermates (n = 9; t test, p < 0.05) at P180. (c) A 
significant decrease of the Ki67-positive cells was detected in the hippocampus of P180 nes-CrT-/y mice 

compared to age-matched controls (n = 6 for both groups; t-test, p < 0.05).  * p < 0.05. Error bars, s.e.m. 
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