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Abstract. The equation w2
x + w2

y + n2(x, y) = 0, which arises in generalizations of geometrical
optics, is investigated from a theoretical point of view. Here x and y denote rectangular coordinates
in the Euclidean plane, and n is real-valued and strictly positive. A framework is set up that involves
a Bäcklund transformation relating Re(w) and Im(w), second-order partial differential equations in
divergence and nondivergence form governing Re(w), a variational integral, and related free boundary
problems, boundary value problems, and viscosity solutions. The present paper is a continuation of
a preceding one [R. Magnanini and G. Talenti, Contemp. Math. 283, AMS, Providence, RI, 1999,
pp. 203–229], where qualitative properties of smooth solutions are offered. Here the existence of the
real part of solutions, which need not be smooth, is derived.
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1. Introduction.

1.1. General. Let x and y denote rectangular coordinates in the Euclidean plane
R

2, and let n be a real-valued function of x and y. Let n be sufficiently smooth and
strictly positive; should the range of x and y be unbounded, let n decay fast enough at
infinity. The present paper, its predecessor [26], and forthcoming others are devoted
to a tentative theory of the partial differential equation

(
∂w

∂x

)2

+

(
∂w

∂y

)2

+ n2(x, y) = 0,(1.1)

all of whose solutions are complex-valued.
Versions of (1.1) arise in acoustics and optics. Suppose that a two-dimensional

isotropic nondissipative medium is under consideration and that n represents the
relevant refractive index. Since (1.1) turns into

w2
x + w2

y = n2(x, y)

on replacing w by ±iw, the solutions to (1.1) whose real part is zero call for processes
of classical geometrical optics. (We denote

√−1 by i throughout and denote differ-
entiations either by ∂/∂x and ∂/∂y or by subscripts.) On the other hand, solutions
to (1.1) whose real part is different from zero are alleged to account for an optical
process that is inherently excluded from geometrical optics—the development of ev-
anescent waves. Evanescent waves occur beyond a caustic, on the dark side where
the geometric optical rays do not penetrate, or else on the optically thinner side of
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†Dipartimento di Matematica U. Dini, Università di Firenze, viale Morgagni 67/A, 50134 Firenze,

Italy (magnanin@math.unifi.it, talenti@math.unifi.it).

805



806 ROLANDO MAGNANINI AND GIORGIO TALENTI

an interface that disconnects two different media and totally reflects a wave incident
from the optically denser side. A theory, put forward by Felsen and coworkers some
twenty years ago and sometimes called evanescent wave tracking (EWT), claims that
features of evanescent waves can be portrayed by retaining the asymptotic expansion

electromagnetic field ∼ exp[−iν · (time)] · (amplitude) · exp[iν · (eikonal)],

which lies at the very root of geometrical optics, but allowing the eikonal and the
components of the amplitude to take complex values; here the amplitude and the
eikonal are functions of space coordinates only, and ν, the wave number, tends to
infinity. A key to EWT amounts precisely to (1.1) and its three-dimensional analogue.
By the way, these same objects appear also in a more exhaustive asymptotic analysis
of the electromagnetic field, which leads to uniform expansions near caustics, and in
modeling deeper diffraction processes. More information can be found in [4], [5], [10],
[11], [14], [15], [18], [20], [21], [24], [25], [23], and in the recent surveys [3] and [6].

1.2. Preparatory results. We warm up by recollecting some material from
[26]. Let u and v be real-valued functions of x and y, and let

w = u + iv

be the complex-valued function of x and y whose real and imaginary parts are u and v,
respectively. w is a solution to (1.1) if and only if u and v obey the following system:

u2
x + u2

y − v2
x − v2

y + n2 = 0,
uxvx + uyvy = 0.

(1.2)

u and v obey (1.2) if and only if either

ux = uy = 0 and v2
x + v2

y = n2

or the condition

u2
x + u2

y > 0

and the following equations

[
vx
vy

]
= ±

√
1 +

n2

u2
x + u2

y

[ −uy

ux

]
,(1.3)

∂

∂x

{√
1 +

n2

u2
x + u2

y

ux

}
+

∂

∂y

{√
1 +

n2

u2
x + u2

y

uy

}
= 0(1.4)

prevail.
Equations (1.3), which result from algebraic manipulations of (1.2), define a

Bäcklund transformation. (An account of Bäcklund transformations which fits well
into the present context is in [30].) Equation (1.4), which amounts to the integra-
bility of (1.3), is a second-order partial differential equation in divergence form. If
sufficiently smooth solutions are considered whose gradient is different from 0, (1.4)
can be recast in the form

[(u2
x + u2

y)2 + n2u2
y]uxx − 2n2uxuyuxy + [(u2

x + u2
y)2 + n2u2

x]uyy

+ n
(
u2
x + u2

y

)
(nxux + nyuy) = 0,(1.5)



COMPLEX EIKONAL EQUATION 807

a semilinear second-order partial differential equation with polynomial nonlinearities.
Equations (1.4) and (1.5) are elliptic-parabolic or degenerate elliptic. A real-valued
solution u to either (1.4) or (1.5) is elliptic if u2

x + u2
y > 0; a degeneracy occurs at any

point where ux = uy = 0.
It should be stressed that (1.4) and (1.5) are not equivalent. First, perfectly

smooth solutions to (1.5) exist, whose gradients vanish exclusively in a set of measure
0, and that do not satisfy (1.4) in the sense of distributions; they make the left-hand
side (l.h.s.) of (1.4) a well-defined distribution which is supported by the set of the
critical points but is not zero. The identity

l.h.s. of (1.5) = (n2 + u2
x + u2

y)
1
2 (u2

x + u2
y)

3
2 × { l.h.s. of (1.4)}

gives evidence to such a statement. In the case in which n ≡ 1, one of the last
mentioned solutions is constructed by selecting a constant C such that 0 < C < 1
(e.g., C = 10−10) and letting

domain of u = {(x, y) : x2/(1 − C2) − y2/C2 < 1},√
2 · u(x, y) = (((1 − x2 − y2)2 + 4y2)1/2 + 1 − x2 − y2)1/2;(1.6)

see [26, Proposition 2.2.1]. Second, we shall demonstrate in the present paper that a
conventional boundary condition need not determine a solution to (1.4) in the whole
of a domain prescribed in advance, whereas the same boundary condition does suit
appropriate solutions to (1.5).

The two theorems below, which bring critical points into relation with rays, ex-
press distinctive properties of the equations in hand. Recall the following. A point
where the gradient vanishes is qualified as critical. A critical point where the Hessian
determinant vanishes is qualified as degenerate. (The implicit function theorem states
that the gradient of a sufficiently smooth real-valued function acts as a diffeomorphism
from a neighborhood of a nondegenerate critical point into a neighborhood of the ori-
gin. Therefore, any nondegenerate critical point is isolated, and, conversely, all non-
isolated critical points are degenerate.) The geodesics belonging to the Riemannian
metric

n(x, y)
√

(dx)2 + (dy)2,(1.7)

i.e., the paths making ∫
n(x, y)

√
(dx/ds)2 + (dy/ds)2 ds

either stationary or a minimum, are nicknamed rays and are characterized by the
differential equation

(gradient of logn) · (principal normal) = 1.(1.8)

Theorem 1.1. Assume n is strictly positive and w is a smooth solution to (1.1).
If the gradient of Re(w) vanishes at some point, then the same gradient vanishes
everywhere on a ray passing through that point.

Theorem 1.2. Suppose n is smooth and strictly positive. Suppose u is smooth
and real-valued and satisfies either (1.4) or (1.5) in every open subset of its domain
where u2

x + u2
y > 0. We make the following assertions:

(i) Any critical point of u is degenerate.
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(ii) If ux = uy = 0 and u2
xx + 2u2

xy + u2
yy > 0 at some point, then ux = uy = 0

everywhere on a smooth curve passing through that point.
(iii) If ux = uy = 0 and u2

xx + 2u2
xy + u2

yy > 0 at every point of a smooth curve,
then this curve is a ray.

Theorem 1.1 makes arguments from [14] rigorous. It also offers a proof of the
following statement, which plays a role in the so-called theory of complex rays and
was alleged in [11, section 3.2]. Let w be a solution to (1.1); if a point obeys the
principle of locality, i.e., is a critical point of Re(w), then the phase path crossing that
point, i.e., the level line of Re(w) containing the point in question, is a ray.

Theorem 1.2 basically shows that (1.5), unlike more conventional second-order
partial differential equations, prevents its solutions from having isolated critical points.
The degeneracy at critical points is a feature of (1.5) that causes critical points to
cluster.

Another relevant feature is the architecture of (1.5), which exhibits geometric
ingredients. If critical points are ignored and h is defined by either

h = − (u2
x + u2

y

)−3/2 (
u2
yuxx − 2uxuyuxy + u2

xuyy

)
or

h = −div

( ∇u

|∇u|
)
,

then (1.5) reads both

|∇u| ∆u− n2

{
h−∇ log n · ∇u

|∇u|
}

= 0

and (
ux

|∇u|
∂

∂x
+

uy

|∇u|
∂

∂y

)
log
√

n2 + |∇u|2 = h.

(We denote the divergence operator by div and the gradient operator by ∇. We denote
the length of a vector by vertical bars and the scalar product of two vectors by either
a dot or parentheses. For instance, we let

|∇u| =
√

u2
x + u2

y and ∇u · ∇v = (∇u,∇v) = uxvx + uyvy

in case that u and v are real-valued. As usual,

∆ = ∂2/∂x2 + ∂2/∂2y,

the Laplace operator.) Observe the following. First, the principal normal to the level
lines of u is

(1/h)
∇u

|∇u| ;

in other words, the value of h at any point (x, y) is a signed curvature at (x, y) of the
level line of u crossing (x, y). Second, the value of

∇ log n · ∇u

|∇u|
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at (x, y) equals a signed curvature at (x, y) of the ray which is tangent at (x, y) to a
level line of u. Third,

ux

|∇u|
∂

∂x
+

uy

|∇u|
∂

∂y

is a directional derivative along the lines of steepest descent of u. (The first statement
follows from Frenet’s formulas; the second statement is a consequence of the differ-
ential equation (1.8), which characterizes rays; the third one amounts to saying that
the lines of steepest descent are the trajectories of the gradient.)

1.3. Background. The present paper rests upon a background that we fix now.
We borrow terminology from [1], [28], [29], [31], [33], [34], and the theory of distribu-
tions and offer apropos details in the next paragraphs.

Equation (1.4) is reminiscent of the Euler–Lagrange equation of a variational
integral. Let

Ω = some open nonempty subset of R
2,(1.9)

let a real function f be defined by

f(ρ) =
1

2
[ρ
√

ρ2 + 1 + log(ρ +
√

ρ2 + 1)](1.10)

for every nonnegative ρ, and let a functional J be defined by

J(u) =

∫
Ω

f

( |∇u|
n

)
n2dxdy(1.11)

for every u from some set of nice real-valued functions of x and y.
Observe that, if the Riemannian metric (1.7) is in force, the expressions

|∇u|
n

and n2dxdy,

which appear in (1.11), equal the Riemannian length of the covariant derivative of u
and the Riemannian area element, respectively. As will be clear presently, the right-
hand side (r.h.s.) of (1.11) would become the Riemannian area of the graph of u if f
were replaced by its derivative f ′.

Equation (1.10) gives f(0) = 0,

f ′(ρ) =
√

ρ2 + 1,

and

f ′′(ρ) = ρ/f ′(ρ)

for every nonnegative ρ; moreover, f ′′′ = (f ′)−3. We infer that f is nonnegative, van-
ishes only at 0, and is strictly increasing and strictly convex—a good Young function.
Therefore, functional J is strictly convex, provided a convex domain is supplied to it.

Roughly, a domain that fits J well consists of real-valued functions defined in Ω
whose first-order derivatives are square-integrable in Ω. In fact, the formula

2f(ρ) = inf{λ + ρ2 · cothλ : λ > 0},
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which holds for every nonnegative ρ and follows from (1.10), implies either

2J(u) ≤ λ ·
∫

n2dxdy + cothλ ·
∫

|∇u|2dxdy

for every u and every positive λ or

J(u) ≤
∫

n2dxdy × f

(√∫ |∇u|2dxdy∫
n2dxdy

)

for every u. Moreover, an appropriate analysis shows that

sup

{
f(ρ1) − f(ρ2)

ρ1 − ρ2
: 0 ≤ ρ1 < ρ2, ρ

2
1 + ρ2

2 = 2M2

}
= f ′(M),

provided M is positive; hence

|J(u1) − J(u2)|2 ≤
∫

|∇u1 −∇u2|2dxdy

×
{∫

n2dxdy +
1

2

∫
|∇u1|2dxdy +

1

2

∫
|∇u2|2dxdy

}

for every u1 and u2.
As a working hypothesis, we propose any member of the domain of J to addi-

tionally obey a boundary condition, e.g., to take prescribed values on the boundary,
∂Ω, of Ω. (On occasion, ∂ denotes either differentiation or the operation which results
in the boundary of a point set.) Formal definitions follow.

(i) W 1,2(Ω) = completion of C∞(Ω) under the norm defined by

‖u‖2
W 1,2(Ω) = 4

∫
Ω

u2(x2 + y2 + 4)−2 dxdy +

∫
Ω

|∇u|2dxdy.

W 1,2
0 (Ω) = closure of C∞

0 (Ω) in W 1,2(Ω), i.e., the subset of W 1,2(Ω) consisting of
those functions that vanish on ∂Ω in a generalized sense. (As usual, C∞(Ω) is the set
of infinitely differentiable real-valued functions defined in Ω, and C∞

0 (Ω) is the subset
of C∞(Ω) consisting of those functions that vanish out of a compact subset of Ω.)

(ii) Let j be any given member of W 1,2(Ω); define

domain of J = j + W 1,2
0 (Ω),(1.12)

i.e., the set of functions u from W 1,2(Ω) such that u− j belongs to W 1,2
0 (Ω).

The following assumptions will be made throughout. First, the measure of Ω in
Riemannian metric (1.7) is finite; i.e.,∫

Ω

n2dxdy < ∞.(1.13)

Second, Ω is essentially different from R
2; i.e.,

measure of (R2 \ Ω) > 0.(1.14)

Note that Ω is allowed to be either bounded or unbounded. (Relevantly to the
present context, Ω may be an exterior domain, i.e., an open connected set whose com-
plement is compact.) In the former case, the measure (x2 + y2 + 4)−2dxdy, appearing
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in (i) above, may be virtually replaced by the standard Lebesgue measure dxdy; hence
W 1,2(Ω) coincides with the collection of functions that are square-integrable in Ω and
whose first-order weak derivatives are square-integrable in Ω—a standard Sobolev
space. In any case, the measure in question can be thought of as the area element
on the two-dimensional unit sphere S

2 parametrized via a stereographic projection;
hence W 1,2(Ω) can be identified with a space of standard Sobolev functions defined
in an open subset of S

2.
Theorem 2.1 below claims that J does possess a minimum and that the relevant

minimizer is unique within the domain specified above.
Since J was born convex, a necessary and sufficient condition for a member of

the domain of J to render J a minimum is the Euler–Lagrange equation. J fails
to be smoothly differentiable, however. Therefore, the Euler–Lagrange equation of
J involves a set-valued subdifferential and must be cast in the form of an inclusion.
Details follow.

Let u belong to the domain of J. If ϕ is any test function, i.e., any member of
W 1,2

0 (Ω), we have

J(u + ϕ) − J(u) =

∫
{(x,y):∇u(x,y) �=0}

[
f

( |∇u + ∇ϕ|
n

)
− f

( |∇u|
n

)]
n2dxdy

+

∫
{(x,y):∇u(x,y)=0}

f

( |∇ϕ|
n

)
n2dxdy;

moreover,

t−1

∫
{(x,y):∇u(x,y) �=0}

[
f

( |∇u + t∇ϕ|
n

)
− f

( |∇u|
n

)]
n2dxdy

→
∫
{(x,y):∇u(x,y) �=0}

n

|∇u|f
′
( |∇u|

n

)
(∇u,∇ϕ) dxdy

as t approaches 0, and

t−1

∫
{(x,y):∇u(x,y)=0}

f

(
t|∇ϕ|
n

)
n2dxdy

→ f ′(0) ·
∫
{(x,y):∇u(x,y)=0}

|∇ϕ| n dxdy

as t approaches 0 through positive values. Therefore,

lim
t↓0

[J(u + tϕ) − J(u)] /t,

the one-sided directional derivative of J at u with respect to ϕ, equals∫
{(x,y):∇u(x,y) �=0}

√
1 + n2|∇u|−2 (∇u,∇ϕ) dxdy +

∫
{(x,y):∇u(x,y)=0}

|∇ϕ| n dxdy.

Recall that the subdifferential of J, ∂J, may be characterized thusly: (i) ∂J(u) is
a convex set of distributions; (ii) a distribution T belongs to ∂J(u) if and only if the
directional derivative of J at u with respect to ϕ is greater than or equals T (ϕ) for
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every test function ϕ. Consequently, ∂J(u) is the collection of those distributions T
satisfying ∫

{(x,y):∇u(x,y) �=0}

√
1 + n2|∇u|−2 (∇u,∇ϕ) dxdy

+

∫
{(x,y):∇u(x,y)=0}

|∇ϕ| n dxdy ≥ T (ϕ)

for every test function, ϕ. Such a formula implies that ∂J(u) �= ∅, i.e., that J is
everywhere subdifferentiable, and, moreover, that any member T of ∂J(u) obeys

T = −div{
√

1 + n2|∇u|−2∇u}
in any open set O contained in Ω and essentially contained in

{(x, y) ∈ Ω;∇u(x, y) �= 0},
i.e., satisfying

measure of O ∩ {(x, y) ∈ Ω : ∇u(x, y) = 0} = 0.

We see, in particular, that J is differentiable at u if the set of the critical points of u
has measure zero; J fails to be differentiable at u if the set of the critical points of u
has a positive measure.

The analysis provided may be summarized in this way. The appropriate Euler–
Lagrange equation of J reads

∂J(u) � 0,

an inclusion that implies the following: (1.4) holds in the sense of distributions in any
open subset of Ω which is essentially contained in {(x, y) ∈ Ω : ∇u(x, y) �= 0}.

In other words, a solution u to the Euler–Lagrange equation of J solves a free
boundary problem for (1.4), the relevant free boundary being

Ω ∩ ∂{(x, y) ∈ Ω : ∇u(x, y) �= 0}.
(Let a manifold M, a class of nice functions defined in M, and a differential equation
be given. Suppose a member u of the given function class and a subset N of M are
sought such that (i) u solves the given equation in any open subset of N or in any
open set which is essentially contained in N; (ii) u obeys special conditions either
on ∂N ∩ M or out of N. It is usual to say that a free boundary problem is in hand.
∂N ∩ M, the boundary of N relative to M, is called the free boundary. [16] and [19]
are exhaustive references on this matter.)

What is the geometry and the physical meaning of these free boundaries? The
results recorded in the present paper, though not equal to a full proof, give evidence to
the following statements. The free boundaries in question (i) either are empty or are
genuine curves—rather than collections of isolated points; and (ii) separate regions
where evanescent waves develop from regions where geometrical optics prevails—hence
coincide with caustics. (Recall that the envelopes of rays are nicknamed caustics, and
thus caustics are precisely the contours near and beyond which geometrical optics
break down.)

Samples of free boundaries, which affect solutions to (1.4), appear in [26, section
2.4] or can be detected in Figure 1.1.
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1.4. Summary of results. We have sketched an existence result that is a key to
our investigations; i.e., the minimizer u of an apposite functional both takes prescribed
boundary values and solves a free boundary value problem for (1.4). The main issues
of the present paper, which are detailed in section 2, can be summarized as follows.

Suppose n is differentiable and its first-order derivatives belong to L2
loc(Ω). (As

usual, L2(Ω) is the space of the real-valued functions that are square-integrable in Ω,
and L2

loc(Ω) is the space of functions ϕ such that ϕ · ψ belongs to L2(Ω) for every ψ
from C∞

0 (Ω). Occasionally, we will need to replace 2 by some exponent p larger than
or equal to 1.)

(i) u is locally twice differentiable in a suitable generalized sense and obeys (1.5)
in the whole of domain Ω.

(ii) u is a viscosity solution to (1.5).
We loosely imitate ideas from [7], [8], [12], and [13, Chapter 10] and mean the

following: uε approaches u in an appropriate topology as ε approaches zero. Here ε
is a strictly positive constant parameter, and uε is the twice differentiable real-valued
function that obeys a restored version of (1.5) and takes the relevant boundary values.
Such a version results from adding the extra term

ε · n2
(
n2 + |∇u|2) · ∆u

to the l.h.s. of (1.5), i.e., reads

ε · n2
(
n2 + |∇u|2) · ∆u

+
{|∇u|4 + n2u2

y

} · uxx − 2n2uxuy · uxy +
{|∇u|4 + n2u2

x

} · uyy

+ n|∇u|2(∇n · ∇u) = 0.(1.15)

Observe that (1.15) is uniformly elliptic and that its leading part balances the first-
order terms properly; in other words, the injection of viscosity cures degeneracy. In
fact, if a11, a12, and a22 denote the coefficients of uxx, uxy, and uyy in (1.15) and ρ
and ω are defined by

|∇u| = nρ, ux : cosω = uy : sinω,

then [
a11 a12

a12 a22

]

= n4

[
cosω − sinω
sinω cosω

] [
ρ4+ε(1 + ρ2) 0

0 (1+ρ2)(ε+ρ2)

] [
cosω sinω
− sinω cosω

]
.(1.16)

Therefore, the eigenvalues of [aij ] obey

smaller eigenvalue

larger eigenvalue
≥ √

ε · (2 +
√
ε)(1 +

√
ε)−2,

and we have

|first-order term|
larger eigenvalue

≤ (1 +
√
ε)−2 × |∇n|

n
× the first power of |∇u|.

Viscosity solutions are focused on in section 5, where we show that (i) a viscosity
solution to (1.5) is uniquely determined by its boundary values; (ii) a smooth solution
to the same equation need not do the same—therefore, a smooth solution to (1.5)
need not be a viscosity solution.
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Fig. 1.1. Typical plots of u and |∇u|. Here u is a viscosity solution to (1.5).

1.5. Future developments. Viscosity solutions to (1.5) can be computed effi-
ciently either by finite difference methods or by finite element methods. Details and
relevant codes will appear elsewhere.

By way of an example, let u be the viscosity solution that obeys (1.5) in the
domain

]0, 1[×]0, 1[

and satisfies the following boundary conditions:

u(x, 0) = u(x, 1) = 0 if 0 ≤ x ≤ 1,

u(0, y) = u(1, y) = [sin(πy)]2 if 0 ≤ y ≤ 1.

Figure 1.1 shows plots of u and |∇u|, respectively. There, u is approximated by the
solution to (1.15) that takes the boundary values in hand, ε = 10−8, finite differences
are used, and a 200 × 200 uniform grid is involved. Note a peculiarity—the solution
in question develops caustics, i.e., an inner plateau.

In part three of our work, which will be assembled in a future paper, we will
show how the present results, Bäcklund trasformations, and suitable extra ingredients
supply solutions to either (1.1) or (1.2) and guarantee their uniqueness.

The referees pointed out that Theorem 9.3 from [9] should be referenced here.
Such a theorem claims that if Ω is any open subset of R

2, ϕ is any Lipschitz continuous
map from Ω into R

2, and n is real-valued and continuous, then system (1.2) admits
solutions that are Lipschitz continuous in Ω and equal to ϕ on ∂Ω.

This theorem departs from our point of view for a couple of reasons. First, we
are interested in tractable solutions, i.e., smooth enough, unique, and actually com-
putable. Second, we do not address system (1.2) in the present paper. Treating (1.2)
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by the present methods cannot be done in few words and deserves further investiga-
tion.

2. Main results. Let J be defined by (1.9), (1.10), (1.11), and (1.12). Assume
conditions (1.13) and (1.14).

Let ε be a parameter satisfying

0 < ε ≤ 1/2.

Let a real function fε be defined by

fε(ρ) =

∫ ρ

0

t

(
1 + t2

ε + t2

) 1
2(1−ε)

dt(2.1)

for every nonnegative ρ; let a functional Jε be defined by

domain of Jε = domain of J,

Jε(u) =

∫
Ω

fε

( |∇u|
n

)
n2dxdy.(2.2)

Theorem 2.1. Functional J achieves a minimum and has a unique minimizer.
Theorem 2.2. (i) Functional Jε achieves a minimum and has a unique mini-

mizer.
(ii) Let u and uε denote the minimizer of J and the minimizer of Jε, respectively;

then uε converges to u both in L2
loc(Ω) and weakly in W 1,2(Ω) as ε approaches 0.

Theorem 2.3. Suppose n is differentiable and the first-order derivatives of n
belong to L2

loc(Ω); let u and be uε be as above. We make the following assertions:
(i) uε is twice differentiable in the usual generalized sense, the second-order deriva-

tives of uε belong to L2
loc(Ω), and uε obeys (1.15).

(ii) uε converges to u uniformly on every compact subset of Ω as ε approaches 0;
∇uε converges to ∇u in Lp

loc(Ω) × Lp
loc(Ω) for every p larger than or equal to 1.

(iii) u is twice differentiable in a generalized sense and obeys the inequality

{∫
{(x,y):dist((x,y),R2\K)≥r}

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

)
dxdy

} 1
2

≤ 6

{∫
K

|∇n|2 dxdy

} 1
2

+ 2r−1

{∫
K

(
n2 + |∇n|2) dxdy

} 1
2

(2.3)

provided that K is a nice compact subset of Ω and r is a positive number. Moreover,
u makes

(n2 + |∇u|2)−
3
2 × {l.h.s. of (1.5)}

both locally integrable in Ω and equal to 0; in other words, u obeys (1.5) in the whole
of Ω.

3. Proofs of Theorems 2.1 and 2.2.

3.1. An inequality. A proof of Theorem 2.1 relies upon the following lemma.
Lemma 3.1. Let Ω obey (1.9) and (1.14), and let C be any constant such that

C ≥
{

4

π

∫
R2\Ω

dxdy

(x2 + y2 + 4)2

}−1

.
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Then

4

∫
R2

ϕ2(x2 + y2 + 4)−2 dxdy ≤ (C − 1)

∫
R2

(
ϕ2
x + ϕ2

y

)
dxdy

provided that ϕ is smooth enough and real-valued, and

support of ϕ ⊆ Ω.

Proof. The metric induced by

(dx)2 + (dy)2

[1 + (x2 + y2)/4]
2

makes R
2 a Riemannian manifold M that is locally conformal to a unit sphere and

enjoys the following properties. First, the Riemannian area element equals[
1 + (x2 + y2)/4

]−2
dxdy.

Second, the length of the Riemannian gradient of any smooth scalar field equals[
1 + (x2 + y2)/4

]× length of the Euclidean gradient.

Thus the Riemannian area of R
2 equals 4π, and

Riemannian area of Ω ≤ 4π(1 − 1/C);

moreover, ∫
R2

ϕ2
[
1 + (x2 + y2)/4

]−2
dxdy =

∫
M

ϕ2,

and ∫
R2

(
ϕ2
x + ϕ2

y

)
dxdy =

∫
M

|Riemannian gradient of ϕ|2.

We must show that∫
M

ϕ2 ≤ 4(C − 1)

∫
M

|Riemannian gradient of ϕ|2.(3.1)

Let µ and ϕ∗ be the distribution function and the decreasing rearrangement of
ϕ, respectively. µ is the map from [0,∞[ into [0, 4π] such that

µ(t) = Riemannian area of {(x, y) : |ϕ(x, y)| > t}
for every nonnegative t. ϕ∗ can be defined as the map from [0, 4π] into [0,∞[ which
is right-continuous, decreasing, and equidistributed with ϕ, i.e., such that

length of {s ∈ [0, 4π] : ϕ∗(s) > t} = µ(t)

for every nonnegative t.
We have ∫

M

ϕ2 =

∫ 4π

0

[ϕ∗(s)]
2
ds(3.2)
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since the very definitions of µ and ϕ∗ ensure that both sides equal
∫∞
0

t2[−dµ(t)]. On
the other hand, a version of an important inequality (see, e.g., [2, section 4]) tells us
that ϕ∗ is locally absolutely continuous in ]0, 4π[ and satisfies

∫
M

|Riemannian gradient of ϕ|2 ≥
∫ 4π

0

s(4π − s)

[
−dϕ∗

ds
(s)

]2
ds.(3.3)

The support of ϕ∗ is an interval whose endpoints are 0 and the Riemannian area
of the support of ϕ. Therefore, our hypotheses yield

support of ϕ∗ ⊆ [0, 4π(1 − 1/C)].

Such an inclusion informs us that ϕ∗ vanishes in a neighborhood of 4π. Thus an
integration by parts and a Schwarz inequality give successively

∫ 4π

0

[ϕ∗(s)]
2

ds = 2

∫ 4π

0

ϕ∗(s)s

[
−dϕ∗

ds
(s)

]
ds

and ∫ 4π

0

[ϕ∗(s)]
2

ds ≤ 4

∫ 4π

0

s2

[
−dϕ∗

ds
(s)

]2
ds.

The same inclusion also implies that

∫ 4π

0

s2

[
−dϕ∗

ds
(s)

]2
ds ≤ (C − 1)

∫ 4π

0

s(4π − s)

[
−dϕ∗

ds
(s)

]2
ds.

We infer ∫ 4π

0

[ϕ∗(s)]
2

ds ≤ 4(C − 1)

∫ 4π

0

s(4π − s)

[
−dϕ∗

ds
(s)

]2
ds.(3.4)

Equation (3.2) and inequalities (3.3) and (3.4) result in (3.1).

3.2. Proof of Theorem 2.1. Uniqueness of the minimizer results from the strict
convexity of functional J, while existence follows from the items below via standard
arguments of the calculus of variations.

(i) Boundedness of sublevel sets of J . The formula

f(ρ) = sup

{
ρ · λ

sinhλ
+ ρ2 · sinh(2λ) − 2λ

4(sinhλ)2
: λ > 0

}
,

which holds for every nonnegative ρ and follows from (1.10), gives successively

J(u) ≥ λ

sinhλ
·
∫

|∇u| n dxdy +
sinh(2λ) − 2λ

4(sinhλ)2
·
∫

|∇u|2dxdy

for every u and every positive λ and either

J(u) ≥
(∫ |∇u|ndxdy)2∫ |∇u|2dxdy × f

( ∫ |∇u|2dxdy∫ |∇u|ndxdy
)
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or

J(u) ≥
∫

|∇u|ndxdy,

or else

J(u) ≥ 1

2

∫
|∇u|2dxdy(3.5)

for every u.
Lemma 3.1 implies that every u from j + W 1,2

0 (Ω) obeys

‖u‖W 1,2(Ω) ≤ (1 +
√
C) · ‖j‖W 1,2(Ω) +

√
C ·
{∫

|∇u|2dxdy
}1/2

.(3.6)

Inequality (3.5) tells us that J is coercive. Inequalities (3.5) and (3.6) imply that
the sublevel sets of J, i.e., the function classes

{u ∈ domain of J : J(u) ≤ Constant},

are all bounded in the metric of W 1,2(Ω).
(ii) Compactness. The classical Riesz compactness theorem or an oversimplified

version of the Rellich–Kondrachov theorem (see, e.g., [1, Chapter V] or [34, section
2.5]) ensures that any sequence which is bounded in W 1,2(Ω) contains some subse-
quence which converges in L2

loc(Ω). The structure of the appropriate dual space (see,
e.g., [1, Chapter III] or [34, section 4.3]) ensures that any sequence which is bounded
in W 1,2(Ω) and converges in L2

loc(Ω) does converge in the weak topology of W 1,2(Ω).
(iii) Lower semicontinuity of J . The real function g defined by

g(ρ) = 0 if 0 ≤ ρ ≤ 1,

= 1
2 [ρ
√

ρ2 − 1 − log(ρ +
√

ρ2 − 1)] if ρ > 1

is the Young conjugate of f, i.e., obeys

f(ρ) = sup{ρ · λ− g(λ) : λ ≥ 0}

for every nonnegative ρ. Therefore, either an inspection or a theorem from [29] gives

J(u) = sup

{∫
(∇u, ϕ) dxdy −

∫
g

( |ϕ|
n

)
n2dxdy : ϕ ∈ L2(Ω) × L2(Ω)

}
(3.7)

for every u.
Since C∞

0 (Ω) is dense in L2(Ω), the former can replace the latter in the preceding
formula. Hence an integration by parts gives

J(u) = sup

{
−
∫

u · div ϕ dxdy −
∫

g

( |ϕ|
n

)
n2dxdy :ϕ ∈ C∞

0 (Ω) × C∞
0 (Ω)

}
(3.8)

for every u.
The supremum of a family of continuous functionals is lower semicontinuous.

Thus (3.7) and (3.8) imply that J is lower semicontinuous with respect to both the
weak topology of W 1,2(Ω) and the topology of L2

loc(Ω).
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3.3. Proof of Theorem 2.2. Proposition (i) is a replica of Theorem 2.1 and
can be demonstrated similarly. Ad hoc ingredients, such as the convexity and the
coerciveness of functional Jε, are provided by (2.1) and (2.2) and by propositions (i),
(ii), and (iii) of Lemma A.1.

Proposition (ii) is straightforward. Since (1.11) and (2.2) give

|J(ϕ) − Jε(ϕ)| ≤
∫

Ω

n2 dxdy × sup {|f(ρ) − fε(ρ)| : 0 ≤ ρ < ∞}

for every ϕ, proposition (iv) of Lemma A.1 implies that

sup
{|J(ϕ) − Jε(ϕ)| : ϕ ∈ W 1,2(Ω)

}
= O(

√
ε);(3.9)

that is, Jε converges uniformly to J as ε approaches 0.
On the other hand,

0 ≤ J(uε) − minJ ≤ 2 · sup
{|J(ϕ) − Jε(ϕ)| : ϕ ∈ W 1,2(Ω)

}
.(3.10)

Formulas (3.9) and (3.10) imply that

lim
ε→0

J(uε) = minJ ;

therefore,

{uεk}k=1,2,3,...

is a minimizing sequence relative to functional J whenever {εk}k=1,2,3,... obeys 0 <
εk ≤ 1/2 for every k and

lim
k→∞

εk = 0.

Suppose, by contradiction, that uε fails to approach u either in L2
loc(Ω) or in the

weak topology of W 1,2(Ω) as ε approaches 0. Then a neighborhood of u and a sequence
{εk}k=1,2,3,... exist such that uεk is out of this neighborhood and 0 < εk ≤ 1/(2k) for
every k.

The analysis made in section 3.2, while proving Theorem 2.1, shows that every
minimizing sequence relative to J contains a subsequence which converges to a min-
imizer of J both in L2

loc(Ω) and in the weak topology of W 1,2(Ω).
Therefore, a minimizer of J exists which is out of some neighborhood of u and

thus is different from u.
This is impossible because J is strictly convex, and a strictly convex functional

cannot have two different minimizers.

4. Proof of Theorem 2.3.

4.1. Proof of proposition (i) of Theorem 2.3. The proof is patterned on
conventional arguments of the calculus of variations and consists of the three items
below.

(i) Euler–Lagrange equation of Jε—weak form. Proposition (v) of Lemma A.1
tells us that

R
2 � (p, q) �→ n2 · fε(n−1 ·

√
p2 + q2)
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is twice continuously differentiable. If ρ and ω are defined by

p = nρ · cosω and q = nρ · sinω,

then the gradient of the above function equals

f ′
ε(ρ) ·

[
cosω
sinω

]
,

and its Hessian matrix, H, is given by

H =

[
cosω − sinω
sinω cosω

] [
f ′′
ε (ρ) 0
0 f ′

ε(ρ)/ρ

] [
cosω sinω
− sinω cosω

]
.(4.1)

Proposition (vi) of Lemma A.1 tells us that the eigenvalues involved obey

0 < eigenvalues ≤ ε−
1

2(1−ε) .

Therefore, Taylor’s formula gives

Jε(u + ϕ) − Jε(u) =

∫
Ω

n

|∇u| · f
′
ε

( |∇u|
n

)
· (∇u,∇ϕ) dxdy + a remainder,

0 ≤ 2 · (remainder) ≤ ε−
1

2(1−ε)

∫
Ω

|∇ϕ|2 dxdy

provided that u and ϕ are endowed with square-integrable first-order derivatives. We
infer that Jε is differentiable at every u from its domain, and

J ′
ε(u)(ϕ) =

∫
Ω

n

|∇u| · f
′
ε

( |∇u|
n

)
· (∇u,∇ϕ) dxdy

for every ϕ from W 1,2
0 (Ω); in other words,

J ′
ε(u) = −div

{
n · f ′

ε

( |∇u|
n

)
· ∇u

|∇u|
}

in the sense of distributions.
The analysis provided shows that the minimizer of Jε obeys the equation

div

{
n · f ′

ε

( |∇u|
n

)
· ∇u

|∇u|
}

= 0(4.2)

in the sense of distributions. Thus the Euler–Lagrange equation of functional Jε

amounts precisely to (4.2).
(ii) Extra regularity of extremals. Now we resort to the hypothesis made on n and

claim that, if u is a distributional solution to (4.2) and

∇u ∈ L2
loc(Ω) × L2

loc(Ω),

then u is twice differentiable and its second-order derivatives are in L2
loc(Ω).

A proof of such a claim can be outlined in this way.
Let ρ and ω be defined by

p = nρ · cosω and q = nρ · sinω,



COMPLEX EIKONAL EQUATION 821

let H be defined as in (4.1), and let either

F = [f ′
ε(ρ) − ρf ′′

ε (ρ)] · ∂n
∂x

·
[

cosω
sinω

]
or

F = [f ′
ε(ρ) − ρf ′′

ε (ρ)] · ∂n
∂y

·
[

cosω
sinω

]
;

consider the partial differential equation

div (H · ∇v) = div F.(4.3)

Proposition (ii) of Lemma 4.1 tells us that certain constants, depending only upon
ε, exist such that

0 < Constant ≤ eigenvalues of H ≤ Constant,

and

|F | ≤ Constant · |∇n|.
As a consequence, it can be shown that another constant, depending upon ε, exists
such that ∫

{(x,y):dist((x,y),R2\K)≥r}
|∇v|2 dxdy

≤ Constant ·
[∫

K

|∇n|2 dxdy + r−2

∫
K

v2 dxdy

]
(4.4)

provided that v is any distributional solution to (4.3), K is a nice compact subset of
Ω, and r is a positive number.

Inequality (4.4), which is sometimes referred to as Caccioppoli’s inequality, plus
an appropriate use of finite differences allow one to conclude that, if either

v = ∂u/∂x

or

v = ∂u/∂y,

then v actually obeys (4.3) in the sense of distributions and

∇v ∈ L2
loc(Ω) × L2

loc(Ω).

Details can be found, e.g., in [17, section 2.1], [22, sections 4.3 and 4.5], [27,
seciton 1.10 and 1.11]. The claim is demonstrated.

(iii) Euler–Lagrange equation of Jε—strong form. An appropriate smoothness
and appropriate symbols of relevant ingredients having been established, (4.3) can be
recast in the following form:[

f ′′
ε (ρ)(cosω)2 +

f ′
ε(ρ)

ρ
(sinω)2

]
uxx + 2

[
f ′′
ε (ρ) − f ′

ε(ρ)

ρ

]
cosω sinω uxy

+

[
f ′′
ε (ρ)(sinω)2 +

f ′
ε(ρ)

ρ
(cosω)2

]
uyy +

[
f ′
ε(ρ)

ρ
− f ′′

ε (ρ)

]
∇u · ∇ log n = 0.(4.5)
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As observed in the appendix, (2.1) implies (A.1) and (A.2); these equations give

f ′
ε(ρ)

ρ
:
[
(1 + ρ2)(ε + ρ2)

]
=

[
f ′
ε(ρ)

ρ
− f ′′

ε (ρ)

]
: ρ2 = (1 + ρ2)−

1−2ε
2(1−ε) (ε + ρ2)−

3−2ε
2(1−ε)

for every nonnegative ρ.
Consequently, (4.5) coincides with (1.15). In other words, (1.15) is another form

of the Euler–Lagrange equation for Jε.

4.2. Two lemmas. A proof of proposition (ii) of Theorem 2.3 relies upon the
following lemmas.

Lemma 4.1. Suppose A and B are 2 × 2 real symmetric matrices. Let A be
positive definite, and let

κ =
smaller eigenvalue

larger eigenvalue
,

a condition number of A. Then

(trAB)2

detA
− 2 · detB ≥ κ · tr(B2).(4.6)

(Here tr and det stand for trace and determinant, respectively.)
Proof. Denote the entries of A and B by aij and bij , respectively; let

M =
1

a11a22 − a2
12




a2
11

√
2a11a12 a2

12√
2a11a12 a11a22 + a2

12

√
2a12a22

a2
12

√
2a12a22 a2

22




and

m =


 b11√

2b12
b22


 .

We have

(trAB)2

detA
− 2 · detB = (Mm,m), tr(B2) = (m,m).

An inspection shows that the eigenvalues of M are 1/κ, 1, κ. Inequality (4.6)
follows.

Lemma 4.2. Let a real-valued function t be defined by

t(ρ) = tan

(
1

2
arctan ρ

)
(4.7)

for every nonnegative ρ, and let a mapping T be defined by

Tϕ = t

( |∇ϕ|
n

)
∇ϕ(4.8)

for every ϕ from a space of sufficiently smooth real-valued functions of x and y. As-
sume ∇(Tϕ) stands for the Jacobian matrix of Tϕ and

|∇(Tϕ)| =
√

tr [(∇(Tϕ))(∇(Tϕ))T ],
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a norm for such a matrix.
(i) If ρ and ω are defined by |∇ϕ| = n ρ, ϕx : cosω = ϕy : sinω, the following

equations hold:

∇(Tϕ) = −2

(
sin

(
1

2
arctan ρ

))2 [
nx cosω ny cosω
nx sinω ny sinω

]

+

[
cosω − sinω
sinω cosω

] [
1 0
0 1

2 + 1
2 (t(ρ))2

] [
cosω sinω
− sinω cosω

]

× |∇ϕ|√
n2 + |∇ϕ|2

[
ϕxx ϕxy

ϕxy ϕyy

]
,(4.9)

t

( |∇ϕ|
n

)[
ϕxx ϕxy

ϕxy ϕyy

]
= (t(ρ))2

[
nx cosω ny cosω
nx sinω ny sinω

]

+

[
cosω − sinω
sinω cosω

] [
1
2 + 1

2 (t(ρ))2 0
0 1

] [
cosω sinω
− sinω cosω

]
∇(Tϕ).(4.10)

(ii) The following inequalities hold:

|∇(Tϕ)| ≤ |∇n| +
|∇ϕ|√

n2 + |∇ϕ|2
√

ϕ2
xx + 2ϕ2

xy + ϕ2
yy,(4.11)

|∇ϕ|
2
√

n2 + |∇ϕ|2
√

ϕ2
xx + 2ϕ2

xy + ϕ2
yy ≤ |∇n| + |∇(Tϕ)|.(4.12)

(iii) If ϕ1 and ϕ2 are real-valued and sufficiently smooth, then

|Tϕ1 − Tϕ2| ≤ |∇ϕ1 −∇ϕ2|(4.13)

and

|∇ϕ1 −∇ϕ2| ≤ |Tϕ1 − Tϕ2| 12 · (4n + |Tϕ1 − Tϕ2|)
1
2 .(4.14)

Proof. Equation (4.7) provides us with the properties

t(ρ) =
ρ

1 +
√

1 + ρ2
,

t(ρ) =
ρ

2
√

1 + ρ2

[
1 + (t(ρ))2

]
, t(ρ) =

ρ

2

[
1 − (t(ρ))2

]
,

0 ≤ t(ρ) < 1,
ρ

2
√

1 + ρ2
≤ t(ρ) <

ρ√
1 + ρ2

,

ρ2t′(ρ) = 2

(
sin

(
1

2
arctan ρ

))2

, (ρt(ρ))′ =
ρ√

1 + ρ2
,(4.15)

which hold for every nonnegative ρ and play a role below.
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Differentiating both sides of (4.8) gives

∇(Tϕ) = −ρ2t′(ρ)

[
nx cosω ny cosω
nx sinω ny sinω

]

+

[
cosω − sinω
sinω cosω

] [
(ρt(ρ))′ 0

0 t(ρ)

] [
cosω sinω
− sinω cosω

] [
ϕxx ϕxy

ϕxy ϕyy

]
.

Equation (4.9) follows because of equations that appear in (4.15).
Inequalities (4.11) and (4.12) are easily derived from (4.9) and (4.10), respectively,

via some matrix algebra and inequalities that appear in (4.15).
Suppose ∇ϕ1 �= ∇ϕ2. Define ρ1 and ρ2 by

|∇ϕ1| = n ρ1 and |∇ϕ2| = n ρ2,

respectively; let θ be the angle between ∇ϕ1 and ∇ϕ2, i.e., be such that

0 ≤ θ ≤ π, |∇ϕ1||∇ϕ2| cos θ = (∇ϕ1,∇ϕ2).

Equation (4.8) gives successively

|Tϕ1 − Tϕ2|2
|∇ϕ1 −∇ϕ2|2 =

(ρ1t(ρ1))2 + (ρ2t(ρ2))2 − 2ρ1ρ2t(ρ1)t(ρ2) cos θ

ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ

and

∂

∂θ

|Tϕ1 − Tϕ2|2
|∇ϕ1 −∇ϕ2|2 = −2ρ1ρ2

(t(ρ1) − t(ρ2))(ρ2
1t(ρ1) − ρ2

2t(ρ2))

(ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ)2
sin θ.

We have either t(ρ1) ≤ t(ρ2) and ρ2
1t(ρ1) ≤ ρ2

2t(ρ2) or t(ρ1) > t(ρ2) and ρ2
1t(ρ1) >

ρ2
2t(ρ2) since both (4.7) and equations in (4.15) show that t is increasing. We infer

successively that

∂

∂θ

|Tϕ1 − Tϕ2|2
|∇ϕ1 −∇ϕ2|2 ≤ 0

and

ρ1t(ρ1) + ρ2t(ρ2)

ρ1 + ρ2
≤ |Tϕ1 − Tϕ2|

|∇ϕ1 −∇ϕ2| ≤
ρ1t(ρ1) − ρ2t(ρ2)

ρ1 − ρ2
.

On the other hand, we have

t

(
ρ1 + ρ2

2

)
≤ ρ1t(ρ1) + ρ2t(ρ2)

ρ1 + ρ2
and

ρ1t(ρ1) − ρ2t(ρ2)

ρ1 − ρ2
≤ 1

since equations in (4.15) show that 0 ≤ ρ → ρt(ρ) is convex and contractive. There-
fore,

t

( |∇ϕ1| + |∇ϕ2|
2n

)
≤ |Tϕ1 − Tϕ2|

|∇ϕ1 −∇ϕ2| ≤ 1.

We conclude with (4.13) and the inequality

t

( |∇ϕ1 −∇ϕ2|
2n

)
|∇ϕ1 −∇ϕ2| ≤ |Tϕ1 − Tϕ2|,

which leads to (4.14) via algebraic manipulations.
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4.3. Proof of proposition (ii) of Theorem 2.3. Suppose K is a compact
subset of Ω whose interior is not empty and whose boundary is sufficiently smooth;
let r > 0, and define

K(r) = {(x, y) : dist((x, y),R2 \K) ≥ r}.

Let T be as in Lemma 4.2.
The following bounds hold.
Bound 1.

∫
K(r)

|∇uε|2
n2 + |∇uε|2

[(
∂2uε

∂x2

)2

+ 2

(
∂2uε

∂x∂y

)2

+

(
∂2uε

∂y2

)2
]

dxdy

≤
∫
K

|∇n|2 dxdy + r−2

∫
K

(
n2 + |∇uε|2

)
dxdy.(4.16)

Bound 2.

{∫
K(r)

|∇(Tuε)|2dxdy
} 1

2

≤ 2

{∫
K

|∇n|2 dxdy

} 1
2

+ r−1

{∫
K

(
n2 + |∇uε|2

)
dxdy

} 1
2

,(4.17)

∫
K

|Tuε|2 dxdy ≤
∫
K

|∇uε|2 dxdy.(4.18)

Bound 3. If p ≥ 1, then

{∫
K

|∇uε′ −∇uε′′ |p dxdy

}2

≤
∫
K

|Tuε′ − Tuε′′ |p dxdy ×
∫
K

(4n + |Tuε′ − Tuε′′ |)p dxdy.(4.19)

Bound 4. ∫
Ω

|∇uε|2 dxdy ≤ Constant independent of ε.(4.20)

Proof of Bound 1. For notational convenience, we temporarily drop the subscript
ε and denote uε by u in short.

We have shown in proposition (i) of Theorem 2.3 that such a u obeys (1.15).
Equation (1.15) implies

|a11uxx + 2a12uxy + a22uyy| ≤ n · |∇u|3 · |∇n|,

where a11, a12, and a22 are given by (1.16). Equation (1.16) tells us that, in addition
to the inequalities appearing in section 1.4, [aij ] satisfies

smaller eigenvalue

larger eigenvalue
≥ |∇u|2

n2 + |∇u|2
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and

a11a22 − a2
12 ≥ n2 · |∇u|6.

Therefore, Lemma 4.1 gives

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

) ≤ 2
(
u2
xy − uxxuyy

)
+ |∇n|2,(4.21)

an instance of what is often called Bernstein’s inequality—see, e.g., [32].
An inspection shows that uxxuyy − u2

xy, the Hessian determinant of u, obeys

2
(
u2
xy − uxxuyy

)
= div

[
uyy −uxy

−uxy uxx

]
· ∇u;(4.22)

equivalently,

2
(
u2
xy − uxxuyy

)
dx ∧ dy = d

∣∣∣∣ ux uy

dux duy

∣∣∣∣ .(4.23)

Inequality (4.21) and either (4.22) or (4.23) give∫
K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

)
dxdy

≤
{∫

∂K(r)

(
n2 + |∇u|2)√(dx)2 + (dy)2

} 1
2

×
{∫

∂K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

) √
(dx)2 + (dy)2

} 1
2

+

∫
K(r)

|∇n|2 dxdy(4.24)

via the Gauss–Green formulas and the Cauchy–Schwarz inequality.
If we define two real-valued functions ϕ and ψ by

ϕ(r) =

∫
K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

)
dxdy −

∫
K

|∇n|2 dxdy

and

ψ(r) =

∫
K(r)

(
n2 + |∇u|2) dxdy,

then a version of the coarea formula (see, e.g., [34, section 2.7] and the equation

|∇dist((x, y),R2 \K)| = 1 for almost every (x, y) ∈ K

yield

−ϕ′(r) =

∫
∂K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

) √
(dx)2 + (dy)2
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and

−ψ′(r) =

∫
∂K(r)

(
n2 + |∇u|2) √(dx)2 + (dy)2

for almost every positive r. Thus (4.24) yields

ϕ(r) ≤
√

[−ϕ′(r)] [−ψ′(r)](4.25)

for almost every positive r.
As is easy to see, (4.25) implies

positive part of ϕ(r) ≤
{∫ r

0

dt

[−ψ′(t)]

}−1

for every positive r. Since

r2 ≤ ψ(0)

∫ r

0

dt

[−ψ′(t)]
,

we conclude that

positive part of ϕ(r) ≤ r−2ψ(0)(4.26)

for every positive r.
The inequality

∫
K(r)

|∇u|2
n2 + |∇u|2

[(
∂2u

∂x2

)2

+ 2

(
∂2u

∂x∂y

)2

+

(
∂2u

∂y2

)2
]

dxdy

≤
∫
K

|∇n|2 dxdy + r−2

∫
K

(
n2 + |∇u|2) dxdy

follows from (4.26). Bound 1 is demonstrated.
Proof of Bound 2. Inequality (4.17) follows from Bound 1 and proposition (ii) of

Lemma 4.2. Inequality (4.18) follows from proposition (iii) of Lemma 4.2.
Proof of Bound 3. Such a bound follows from proposition (iii) of Lemma 4.2 and

the Cauchy–Schwarz inequality.
Proof of Bound 4. The inequalities

ρ2

2
+

1

4
log(1 + 2ρ2) ≤ fε(ρ) ≤ f(ρ),

which hold for every nonnegative ρ and appear in Lemma A.1, tell us that

Jε ≤ J

and

1

2

∫
Ω

|∇uε|2dxdy ≤ Jε(uε).

Since

Jε(uε) = minJε,
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we obtain the inequality

1

2

∫
Ω

|∇uε|2dxdy ≤ minJ,

which proves (4.20).
Bound 2, Bound 4, and the Rellich–Kondrachov compactness theorem (see, e.g.,

[1, Chapter VI] or [34, section 2.5]) ensure that a sequence {εk}k=1,2,3,... exists such
that 0 < εk ≤ 1/2 for every k, εk → 0 as k → ∞, and

{Tuεk}k=1,2,3,... converges in Lp
loc(Ω) × Lp

loc(Ω)

for every p larger than or equal to 1. Consequently, Bound 3 ensures that

{∇uεk}k=1,2,3,... converges in Lp
loc(Ω) × Lp

loc(Ω)

for every p larger than or equal to 1. We now profit by a Sobolev inequality (see, e.g.,
[1, Chapter V] or [34, section 2.4] and infer that if K is any compact subset of Ω and

mk = (measure of K)−1 ·
∫
K

uεkdxdy,

then

{uεk −mk}k=1,2,3,...

converges uniformly in K.
Applying proposition (ii) of Theorem 2.2 leads to the conclusion.

4.4. Proof of proposition (iii) of Theorem 2.3. Proposition (ii) of Theorem
2.3, proposition (iii) of Lemma 4.2, and Bounds 2 and 4 (appearing in the preceding
subsection) show that

{∇(Tuε)}k=1,2,3,... converges weakly in
(
L2

loc(Ω)
)4

(4.27)

as ε approaches 0.
Having (4.27) in hand, we are in a position to resume a former notation, u, and

to establish the ultimate properties of u.
(i) Second-order derivatives. Previous ingredients, which include proposition (ii)

of Theorem 2.3, Bound 2, and (4.27), guarantee that Tu is differentiable and obeys

{∫
{(x,y):dist((x,y),R2\K)≥r}

|∇Tu|2dxdy
} 1

2

≤ 2

{∫
K

|∇n|2dxdy
} 1

2

+ r−1

{∫
K

(
n2 + |∇u|2) dxdy} 1

2

(4.28)

if K is a nice compact subset of Ω and r > 0. Propositions (i) and (ii) of Lemma 4.2
and inequality (4.28) show that u is twice differentiable and obeys (2.3).

(ii) Differential equation. The underlying idea is recasting both (1.5) and (1.15)
in a form in which second-order derivatives of u are replaced by the entries of ∇(Tu)
and then letting ε approach zero. Details follow.
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Combining proposition (i) of Lemma 4.2 and the identity

|∇ϕ|2 · ∇
{
n · f ′

ε

( |∇ϕ|
n

)
· ∇ϕ

|∇ϕ|
}

= nρ2[f ′
ε(ρ)/ρ− f ′′

ε (ρ)]

[
nxϕx nyϕx

nxϕy nyϕy

]

+

[
ϕx −ϕy

ϕy ϕx

] [
f ′′
ε (ρ) 0
0 f ′

ε(ρ)/ρ

] [
ϕx ϕy

−ϕy ϕx

] [
ϕxx ϕxy

ϕxy ϕyy

]

results in

|∇ϕ|3√
n2 + |∇ϕ|2 · ∇

{
n · f ′

ε

( |∇ϕ|
n

)
· ∇ϕ

|∇ϕ|
}

= nρ2t(ρ)

{
2f ′

ε(ρ)/ρ

1 + (t(ρ))2
− f ′′

ε (ρ)

}[
nxϕx nyϕx

nxϕy nyϕy

]

+

[
ϕx −ϕy

ϕy ϕx

][
f ′′
ε (ρ) 0

0
2f ′

ε(ρ)/ρ
1+(t(ρ))2

] [
ϕx ϕy

−ϕy ϕx

]
∇(Tϕ);(4.29)

here ϕ stands for any sufficiently smooth real-valued function, ρ = |∇ϕ| : n, and t is
given by (4.7).

As observed in the proof of Lemma A.1, (2.1) implies

ρf ′′
ε (ρ)

f ′
ε(ρ)

= 1 − ρ2

(1 + ρ2)(ε + ρ2)

for every nonnegative ρ. Therefore,

0 < ρ ·
[
ρf ′′

ε (ρ)

f ′
ε(ρ)

− ρ2

1 + ρ2

]
≤

√
ε

2
(4.30)

for every nonnegative ρ. In other words, ρ2f ′′
ε (ρ)/f ′

ε(ρ) converges to ρ3/(1 + ρ2)
uniformly with respect to ρ as ε approaches 0.

Mimicking the proof of proposition (iii) of Lemma 4.2 shows that∣∣∣∣∣ n√
n2 + |∇uε|2

∇uε − n√
n2 + |∇u|2 ∇u

∣∣∣∣∣ ≤ |∇uε −∇u|.(4.31)

Proposition (ii) of Theorem 2.3, (4.27), (4.29), and inequalities (4.30) and (4.31)
enable us to conclude that

n−4|∇uε|4
[1 + n−2|∇uε|2]3/2

· |∇uε|
f ′
ε (n−1|∇uε|) · div

{
n · f ′

ε

( |∇uε|
n

)
· ∇uε

|∇uε|
}

(4.32)

approaches

|∇u|
n2 + |∇u|2 · tr

{
nρ2t(ρ)

[
2

1 + (t(ρ))2
− ρ2

1 + ρ2

] [
nxux nyux

nxuy nyuy

]

+

[
ux −uy

uy ux

][ ρ2

1+ρ2 0

0 2
1+(t(ρ))2

] [
ux uy

−uy ux

]
∇(Tu)

}
(4.33)

in L1
loc(Ω) as ε approaches 0.
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If expression (4.33) is named A and

U = l.h.s. of (1.5),

then (4.7) and (4.8) cause the following equation to hold:

A = |∇u|2 × (n2 + |∇u|2)−
5
2 × U.

Proposition (i) of Theorem 2.3 implies (4.2); hence expression (4.32) is zero. We
infer

A = 0.

Now we let

B = (n2 + |∇u|2)−
3
2 × U

and claim that

B = 0.

In fact, if

C =
√

2 · |∇u| ·
√

u2
xx + 2u2

xy + u2
yy + n · |∇n|,

then inequality (2.3) informs us that C is locally integrable. We have

|B| ≤ |∇u|√
n2 + |∇u|2 × C

because of the Cauchy–Schwarz inequality; moreover,

A =
|∇u|2

n2 + |∇u|2 ×B.

Thus A is locally integrable, irrespective of whether it is zero or not; B is locally
integrable too, and the following inequality holds:

|B| ≤ |A|1/3 · |C|2/3,
which proves the claim.

Equation (1.5) follows. The proof of Theorem 2.3 is complete.

5. Remarks on viscosity solutions.
Theorem 5.1. A viscosity solution to (1.5) is uniquely determined by its bound-

ary values. A smooth solution to (1.5) need not be uniquely determined by its boundary
values.

Proof. Theorems 2.2 and 2.3 demonstrate the following property: any viscosity
solution to (1.5) which takes the relevant boundary values minimizes the functional J.
The former assertion results. The latter results via the analysis of an ad hoc example,
as shown below.

Suppose n ≡ 1 and u is given by (1.6). (For the sake of brevity, we denote the
domain of u by Ω.) Arguments from [26, section 2.2] tell us the following. First, u is
a smooth solution to (1.5). Second,

−div

(√
1 + |∇u|2 ∇u

|∇u|
)
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Fig. 5.1. A plot of the difference between function u given by (1.6) and a viscosity solution to
(1.5) that takes the same boundary values as u.

equals

C∞
0 (Ω) � ϕ �→ 2

∫ ∞

−∞
ϕ(0, y)dy

in the sense of distributions. The latter statement informs us that, provided that the
domain of J is adjusted as u + W 1,2

0 (Ω), the subdifferential of J at u consists of a
nonzero measure supported by the y-axis. Therefore, u does not minimize J. It follows
that u is not a viscosity solution to (1.5). In other words, u obeys (1.5) but differs
from the viscosity solution to (1.5) which is defined in Ω and equals u on ∂Ω.

Figure 5.1 helps one to visualize the proof above. It displays the difference between
the function u given by (1.6) and the viscosity solution to (1.5) that is defined in
]− 1

2 ,
1
2 [×]− 2, 2[ and takes the same values of u on the boundary of such a rectangle.

As a matter of fact, such a viscosity solution has been approximated by the solution uε

to (1.15) with ε = 10−8. Observe the scale in Figure 5.1; we stress that the difference
between the uε’s with ε = 10−8 and ε = 10−4 has order of magnitude 10−9.

Appendix. The following lemma, which analyzes (2.1) closely, is instrumental
in proving Theorem 2.2 and proposition (i) of Theorem 2.3.
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Lemma A.1. (i) fε is nonnegative, vanishes only at 0, and is strictly increasing
and strictly convex.

(ii) ρ
1 + ρ2

1/2 + ρ2
≤ f ′

ε(ρ) ≤ f ′(ρ),

and

ρ2

2
+

1

4
log(1 + 2ρ2) ≤ fε(ρ) ≤ f(ρ)

for every nonnegative ρ.
(iii) If Cε is defined by

2Cε = ε
1−2ε

2(1−ε) + log(1 +
√
ε) − ε− 1

2

∫ 1

ε

t−
1

2(1−ε) −√
t

1 − t
dt,

then

fε(ρ) = f(ρ) − Cε + O(ρ−2)

as ρ → ∞.
(iv) fε converges uniformly to f on [0,∞[ as ε approaches zero. In effect,

sup {|f(ρ) − fε(ρ)| : 0 ≤ ρ < ∞} = O(
√
ε).

(v) f ′
ε has a zero of multiplicity one at 0. In effect,

f ′
ε(ρ) = ε−

1
2(1−ε) · ρ ·

[
1 − 1

2ε
ρ2 +

3 + 2ε

8ε2
ρ4 − 15 + 14ε + 8ε2

48ε3
ρ6 + · · ·

]

if 0 ≤ ρ <
√
ε.

(vi)
f ′
ε(ρ)

ρ
< ε−

1
2(1−ε)

and

f ′′
ε (ρ) <

f ′
ε(ρ)

ρ

if ρ > 0;

f ′′
ε (ρ) ≥ 4ε

1−2ε
4(1−ε) [4 +

√
ε(12 + ε) + ε]

[2 +
√

ε(12 + ε) + ε]
1−2ε

2(1−ε) [
√

12 + ε + 3
√
ε]

3−2ε
2(1−ε)

and

f ′
ε(ρ) − ρf ′′

ε (ρ) ≤
√

2 ε−
ε

4(1−ε)
[√

12 + ε +
√
ε
] 3

2

[2 +
√

ε(12 + ε) + ε]
1−2ε

2(1−ε) [
√

12 + ε + 3
√
ε]

3−2ε
2(1−ε)

if ρ ≥ 0.
Proof. Equation (2.1) gives successively fε(0) = 0, and

f ′
ε(ρ) = ρ

(
1 + ρ2

ε + ρ2

) 1
2(1−ε)

,(A.1)
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f ′′
ε (ρ) = (1 + ρ2)−

1−2ε
2(1−ε) (ε + ρ2)−

3−2ε
2(1−ε) (ρ4 + ερ2 + ε)(A.2)

for every nonnegative ρ. Thus f ′
ε(ρ) equals zero if ρ equals zero and is positive if ρ is

positive; f ′′
ε (ρ) is positive if ρ is nonnegative. Proposition (i) follows.

Equation (A.1) yields

∂

∂ε
log f ′

ε(ρ) =
1

2(1 − ε)2

[
log

(
1 +

1 − ε

ε + ρ2

)
− 1 − ε

ε + ρ2

]
;

hence

∂

∂ε
f ′
ε(ρ) < 0

for every positive ρ. In other words, ε �→ f ′
ε(ρ) decreases if ρ > 0. Since the range of ε

is ]0, 1/2], proposition (ii) follows. (Incidentally, one might also show that ε �→ f ′
ε(ρ)

is log-convex for every positive ρ. Observe also that the difference between the r.h.s.
and the l.h.s. of the second inequality in (ii) increases as ρ increases from 0 to ∞,
approaches (1 + log 2)/4 as ρ approaches ∞, and thus is smaller than 0.423286 . . . .)

Equation (2.1) reads

2fε(ρ) = (1 − ε)

∫ (ε+ρ2)/(1+ρ2)

ε

t
1

2(1−ε)

(1 − t)2
dt.

Integrations by parts and manipulations give

2fε(ρ) = (1 + ρ2)
1

2(1−ε) (ε + ρ2)
1−2ε

2(1−ε) − ε
1−2ε

2(1−ε)

+ log

√
1 + ρ2 +

√
ε + ρ2

1 +
√
ε

+
1

2

∫ (ε+ρ2)/(1+ρ2)

ε

t−
1

2(1−ε) − t−
1
2

1 − t
dt

for every nonnegative ρ. Proposition (iii) follows.
Proposition (ii) ensures that f − fε is nonnegative and increasing, and proposi-

tion (iii) ensures that f(ρ) − fε(ρ) approaches Cε as ρ → ∞. Hence

sup {|f(ρ) − fε(ρ)| : 0 ≤ ρ < ∞} = Cε.

Proposition (iv) follows.
Proposition (v) follows from manipulations of (A.1).
Equation (A.1) tells us that f ′

ε(ρ)/ρ decreases strictly from ε−1/(2(1−ε)) to 1 as ρ
increases from 0 to ∞. Equations (A.1) and (A.2) imply that

ρf ′′
ε (ρ)

f ′
ε(ρ)

= 1 − ρ2

(1 + ρ2)(ε + ρ2)

if ρ > 0 and

f ′′′
ε (ρ) = (1 + ρ2)−

3−4ε
2(1−ε) (ε + ρ2)−

5−4ε
2(1−ε) ρ(ρ4 − ερ2 − 3ε)

if ρ ≥ 0. Therefore, f ′′
ε (ρ) is less than f ′

ε(ρ)/ρ if ρ is positive; if ρ = 0, then f ′′′
ε (ρ) and

f ′
ε(ρ) − ρf ′′′

ε (ρ) are an absolute maximum and an absolute minimum, respectively; if

ρ =

√
ε/2 +

√
3ε + ε2/4,

then f ′′′
ε (ρ) and f ′

ε(ρ)− ρf ′′′
ε (ρ) are an absolute minimum and an absolute maximum,

respectively. Proposition (vi) follows.
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