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STATIONARY CRITICAL POINTS OF
THE HEAT FLOW IN THE PLANE

ROLANDO MAGNANINI axp SHIGERU SAKAGUCHI
May 10, 2000

ABSTRACT. In the previous papers [MS 1, 2], we considered stationary critical points
of solutions of the initial-boundary value problems for the heat equation on bounded
domains in RV, N > 2.

In [MS 1], we showed that a solution w has a stationary critical point O if and
only if u satisfies some balance law with respect to O for any time. Furthermore, we
proved necessary and sufficient conditions relating the symmetry of the domain to
the initial data uo; in this way, we gave a characterization of the ball in RN ([MS 1])
and of centrosymmetric domains ([MS 2]).

In the present paper, we consider a rotation Ag by an angle 27/d,d = 2, for
planar domains and we give some necessary and some sufficient conditions on wug
which relate to domains invariant under A4. We also establish some conjectures.

1. Introduction. In this paper we consider stationary critical points of the heat
flow particularly in the plane. Let us recall known results for the heat flow in
RN (N = 2). Let Bs(0) be an open ball in RN centered at the origin with radius

§ > 0, and let Q be a bounded smooth domain in RY with Bs(0) C Q. We consider
the following initial-boundary value problem:

Ou = Au in Q x (0, 00),
u(z,0) = ugp(z) x € Q, (1.1)
(l—a)%—i—auzo on 99 x (0, 00),
v

where v denotes the exterior normal unit vector to the boundary 02, and « is a
constant with 0 £ o < 1. Let ®, @, be families of initial data ug defined by

& = {ug € C§°(Bs(0)) / wug(rw)dw = 0 for any r € [0,6) },
SN*I

&, = {ug € C5°(Bs(0)) : ug(x) =up(—=z) for any = € Bs(0) }.
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Here in (1.2) w = (w1, ...,wn) is a vector in the standard (N-1)-dimensional unit
sphere S¥~1 in RY | and dw is the volume element of S™~1. Note that ®, C ®. In
the previous papers [MS 1, 2] we have proved the following results.

Theorem 1.1 [MS 1]. For any ug € ® the corresponding solution u of (1.1)
always satisfies Vu(0,t) = 0 for any t > 0, if and only if Q = Bg(0) for some
R>0.

Theorem 1.2 [MS 2]. For any ug € ®. the corresponding solution u of (1.1)
always satisfies Vu(0,t) = 0 for any t > 0, if and only if Q is centrosymmetric
with respect to the origin.

In [MS 2, Section 6, p. 711] we posed the question:

Does there exist another subset of ® which relates to some symmetry of the
domain 2

Theorems 1.1 and 1.2 mean that ® relates to radial symmetry of €2, and ®. does
to centrosymmetry. In the present paper, we consider the action of the rotation Ay
of angle 27 /d on planar domains and we introduce the family ®4 of initial data,
compactly supported in Bs(0), and invariant under the action of Ag.

In Section 2, we prove that domain invariance under Ay relates to ®g4, if d = 2 or
3 (Theorem 2.3), while ®4 characterizes centrosymmetric domains (Theorem 2.5).
Also, we prove that there exists another family of initial data characterizing cen-
trosymmetric domains (Theorem 2.6). This family consists of functions symmetric
with respect to both coordinates axes.

In Section 3, we prove related symmetry theorems (Theorems 3.1 and 3.2) for
Poisson’s equation.

In Section 4, we give a relation between subfamilies of ® and essential symmetry
subgroups of the orthogonal group O(N), whose relationship to stationary critical
points was studied by Chamberland and Siegel [CS] (see Proposition 4.1). Finally,
we pose three conjectures.

2. Symmetry results: the parabolic case. It is convenient to use the complex
variable z = x + iy € C. Let 2 be a bounded and simply connected domain in

C with boundary 052, and let Bs(0) C €. Consider the following initial-Dirichlet
problem for the heat equation:

Ou = Au in Q x (0,00),
u(z,0) = ug(2) z €1, (2.1)
u=0 on 0 x (0,00).

Let A = Ay € O(2) be the matrix of rotation of angle 27/d with an integer d = 2.
We will use the convenient identification A = 2™/, Then, A% is the identical trans-
formation and {1, A4, ..., A1} is an essential symmetry group as in Chamberland
and Siegel [CS] (see Section 4 of the present paper for its definition). We introduce
the family ®4 of initial data ug by

b, = { Uug € CSO(B(;(O)) : Uo(z) = U()(AZ) for any z € B5(0) } (22)

Here note that &4 C ®. Our starting point is the following theorem that generalizes
a result in [CS].



Theorem 2.1. Consider the initial-Dirichlet problem (2.1). If € is invariant
under the action of A = Aq, then the solution u satisfies Vu(0,t) =0 for any t €
(0,00) and for any initial data ug € Pgq.

Proof. Take any ug € ®4. Then, it follows from the uniqueness of the solution
of (2.1) that u(z,t) = u(Az,t) for any ¢ € (0,00). This implies that Vu(0,t) =
0 for any t e (0,00). O

In the sequel, we will show that the converse of Theorem 2.1 is true for d = 2
and 3 but not for d = 4. In preparation to these results, we will prove the following
fact.

Theorem 2.2. Let D be the unit disk in C centered at the origin. If the solution
w of the initial-Dirichlet problem (2.1) satisfies Vu(0,t) = 0 for any t € (0,00) and
for any initial data ug € @4, then there exists a conformal mapping f : Q — D with
f(0) = 0 and such that for any z € Bs(0) \ {0}

d—1

d—1
k2) = an 71 =
> f(Akz) =0 d kz:; A% 0. (2.3)

k=0

Proof. For any v € C§°(B5(0)), put ug(z) = Zz;éw(Akz); then uy € ®4. Let
K = K(z,(,t) be the Green’s function for problem (2.1). We have

u(z,t) = ) K(z,(,t)up(C) dédn, (2.4)

where ¢ = £ 4 i and d€dn denotes the area element.
By the assumption, for any ¢ € C§°(Bs(0)) and for any ¢t > 0 we get

0 = Vu(0,t)
d—1
_ / V.K(0,6,8) S w(AkC) dgdn
B;(0) k=0

d—1

/Ba(o) {1;
Since 1 is arbitrary, we get
d—1
D> V.K(0,A%C,t)=0 for any (¢,t) € Bs(0) x (0,00). (2.5)

k=0

Recall that the Green’s function G = G(z, () of —A under the homogeneous Dirich-
let boundary condition is given by

G(z0) = / K(2.t) d.
3



Hence integrating (2.5) with respect to ¢ from 0 to co yields

d—1

> V.G(0,4%¢) =0 for any ¢ € B5(0) \ {0}. (2.6)

Since € is simply connected, it follows from the Riemann mapping theorem that
there exists a conformal mapping f : @ — D with f(0) = 0. Then we have an
explicit representation of the Green’s function G for 2 (see [N, Exercise 1, p. 182]
for example) :

1 zZ)—
G(z.0) = —5- % 7 (2.7)
where F(C) is the complex conjugate of £(¢). The latter formula gives
2V.G0.0) = i 60.0 =T (-1 + L5 ). e
where 2 =1 (£ + ). Then from (2.6) and (2.8), it follows that
S ey f(AR2)
kzzo [—f(A 2) + W] =0, (2.9)
or » R
kZ:Of(Akz) = kZ:O (W) for any z € Bs(0) \ {0}. (2.10)

Observe that (2.10) shows that each side of (2.10) is both holomorphic and anti-
holomorphic in B;s(0) \ {0}. Therefore both sides must be a constant and equal
zero since f(0) = 0, that is, (2.3) must hold. O

Theorem 2.3. Let d = 2 or 3. If the solution u of the initial-Dirichlet problem
(2.1) satisfies Vu(0,t) = 0 for any t € (0,00) and for any initial data ug € ®g4, then
Q is invariant under the action of A = Aq.

Proof. Since the case d = 2 is contained in Theorem 2 in [MS 2], let us suppose
that d = 3. By eliminating f(A4%z) from (2.3) and by rearranging the terms, we

have: 1
A, 6 L,
fz)  f(Az)
Hence, the function h(z) = f;éz) satisfies the quadratic equation h?(2)+h(z)+1 =0

whose roots are A and A. Since h(z) — A as z — 0, we obtain that h(z) = A, and
hence

f(Az) = Af(2).

This implies that g(Aw) = Ag(w) for any w € f(Bs(0)), where g : D — Q is the
inverse mapping of f. Therefore, since g is holomorphic in D, we conclude that

g(Aw) = Ag(w) in D.
This means that Q = g(D) is invariant under the action of A. O
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Remark 2.4. If d is not a prime number, Theorem 2.3 does not hold. Indeed,
suppose that d is not a prime number. Then, there exists a prime number p dividing
d, and ®; C ®,. Let € be invariant under the action of A, and not invariant under
the action of A4. Here, the solution u of (2.1) satisfies Vu(0,¢) = 0 for any ¢ €
(0,00) and for any initial data ug € ®,, then also for any initial data ug € @g4.

Related to Remark 2.4, when d = 4, we have

Theorem 2.5. Let d = 4. Consider the initial-Dirichlet problem (2.1). Then,
the solution u satisfies Vu(0,t) = 0 for any t € (0,00) and for any initial data
ug € Py, if and only if Q is invariant under the action of Az (that is, € is
centrosymmetric with respect to the origin).

Proof. Tt suffices to show “only if”part. Suppose that Vu(0,#) = 0 for any ¢ €
(0,00) and for any initial data ug € ®4. Then, Theorem 2.2 implies that for any

z € Bs(0) \ {0}
F(2) + fiz) + [(i%2) + [ (i°2) = 0,
N SRS SRS N (2.11)
f(z) © fliz) ~ f(@%2) © f(Bz)
where f: Q — D is a conformal mapping with f(0) = 0 and D is the unit disk in
C centered at the origin. Then, by using (2.11) we get for any z € Bs(0) \ {0}

. 1 1 -
0+ 16 (777 ~ FEET) =° 212)

Since (f(2) + f(i2))'|s=0 = (1 +14)f'(0) # 0, it follows from (2.12) that
F(2)f(iz) = f(=2)f(—iz) for any z € Bs(0). (2.13)
Replacing z by —iz yields
f(—iz)f(z) = f(iz)f(—z) for any z € Bs(0). (2.14)
Combining (2.13) with (2.14) gives
(f(2))*f(i2) f(—iz) = (f(~2))?f(iz) f(~iz) for any 2 € Bs(0),
and hence
(f(2) = f(=2)) (f(z) + f(=2)) = 0 for any z € Bs(0). (2.15)
Since (f(z) — f(—2))|.=0 = 2f'(0) # 0, we conclude that
f(=2) = —f(2) for any z € Bs(0). (2.16)
By the same argument as in the proof of Theorem 2.3, we show that
g(—w) = —g(w) in D
for the inverse mapping g : D — Q of f, and we conclude that Q = g(D) is invariant

under the action of A5. [
5



Theorem 2.5 means that &, characterizes centrosymmetric domains. Further-
more, let us show that there exists another family of initial data characterizing
centrosymmetric domains. Precisely, let R € O(2) be the matrix of reflection with
respect to the real axis. Then, Rz = Z, and {+I,+R} is an essential symmetry
group, where I denotes the identity matrix. We introduce the family ®x of initial
data ug by

D = { up € C5°(B5(0)) : up(z) = up(z) = up(—2) for any z € Bs(0) }. (2.17)

Here note that ®x ; Do(= D), P ¢ Py, and P4 ¢ Pgyy. For each uy €
C§°(Bs(0)), up belongs to ®g if and only if ug is symmetric with respect to both
real and imaginary axes. Then another characterization of centrosymmetric do-
mains is

Theorem 2.6. Consider the initial-Dirichlet problem (2.1). Then, the solution u
satisfies Vu(0,t) = 0 for any t € (0,00) and for any initial data uy € Pg, if and
only if O is invariant under the action of Ay (that is, § is centrosymmetric with
respect to the origin).

Proof. Tt suffices to show “only if”part. Suppose that Vu(0,#) = 0 for any ¢ €
(0,00) and for any initial data ug € ®g3. For any ¢ € C5°(B;(0)), put

uo(2) = P(2) + P(=2) + ¥(2) + P(=2). (2.18)

Then ug € Pp. Proceeding as in the proof of Theorem 2.2 yields that for any
¢ € Bs(0)\ {0}

sz(Oa C) + VZG(Oa _C) + VZG(OaZ) + VZG(Oa _Z) = 0’ (219)

and hence for any z € Bs(0) \ {0}

I R
fz)  f(=2)  F(z)  f(=2)

where f : © — D is a conformal mapping with f(0) = 0. By rearranging the terms,
we have for any z € Bs(0) \ {0}

F(2) + F(=2) + F@) + 1(-7) = ( ) (2.20)

1 1 1 1
F(2) + f(=2) - (—_+—_> - <—+—) () + £(-2). (221
D= Ge tiee) T e e TV IR e
Observe that (2.21) shows that each side of (2.21) is both holomorphic and anti-
holomorphic in Bs(0) \ {0}. Therefore both sides must be a constant, say co.

Let us show that ¢y = 0. Indeed, since f is conformal and f(0) = 0, f is expanded
into the Taylor series about the origin in Bg(0):

f(z)= Z anz" with ay # 0. (2.22)
n=1
Then 1/f(z) is expanded into the Laurent series about the origin in Bs(0) \ {0}:
1 R
— = —+ b, 2" 2.23
f(z) a1z Z (2:23)

n=0
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Hence we have in Bs(0) \ {0}

1 1 e 2
f(z)Jrf(z)_QkZ:ob% : (2.24)

Then, since f(0) = 0, the left hand side of (2.21) at z = 0 equals —2bg, and the
right hand side of (2.21) at z = 0 equals 2by. Thus, by = 0 and hence ¢y = 0.
Therefore, we conclude that

1 1
JO+ () = 5+ = (2.25)
and
F@+ (8 = e+ (2.26)
RN |

for any z € B;s(0) \ {0}. Combining (2.25) and (2.26) and rearranging the terms,
give

ARl B TE ey o] (220

for any z € B;s(0) \ {0}. Since f(0) = 0, (2.27) implies that
f(=2z) = —f(z) for any z € Bs(0).
By the same argument as in the proof of Theorem 2.3, we show that
g9(-=w) = —g(w) in D

for the inverse mapping g : D — Q of f, and we conclude that Q = g(D) is invariant
under the action of A5. [

3. Symmetry results: the elliptic case. Let 2 be a bounded and simply
connected domain in R? with Bs(0) C €, and let A = A; € O(2) be the matrix of
rotation of angle 27 /d with an integer d = 2. Cousider the boundary value problem:

—Au=¢; inQ, and u=0 on 9Q, (3.1)
where ¢ = @¢(2) = 3220 0¢,(2), ¢ € 0B5(0), ¢; = AI¢, and §¢(z) denotes a

Dirac measure at (. Denote by G(z,() the positive Green’s function. Then we
have u(z) = Z;i;é G(z,(;). Also, we use multiindices:

v =(a,8) € (NU{0}D)?, 7| =a+43, 0] = <(%)a <3%>B'



Theorem 3.1. Consider the boundary value problem (3.1). Then, the solution u
of (3.1) satisfies Ju(0) = 0 for any v with 1 < |y| < d—1 and for any ( € 0Bs(0),
if and only if € is invariant under the action of A = Agy.

Proof. Suppose that € is invariant under the action of A = A;. Take any
¢ € 9B;s(0). Then, by the uniqueness of the solution of the boundary value prob-
lem (3.1), the solution w satisfies u(z) = u(Az) for any z € Q. Then, the origin
must be a critical point of u. Recall that critical points of non-constant harmonic
functions are isolated and each critical point has finite integral multiplicity (see [W]
or [A]). Observe that € is simply connected, u is harmonic in € except d points
{Coy- "+ ,Ci—1}, u = +00 at such points, and u = 0 on 0.

We claim that the origin is the only critical point of w in Q\ {(o, -+, 41}
Indeed, if there were another critical point, then, by using the rotational symmetry,
we could infer that u would have a total of at least d + 1 critical points, which
contradicts Theorem 1.1 in [AM]. Hence, by the same theorem, the origin has exact
multiplicity d — 1, which implies that

0Ju(0) =0 for any v with 1 < |y| < d - 1.
Conversely, suppose that this holds for any ¢ € 9B5s(0). Let
1
F(Z, C) - _% log ‘Z - C| and G(Z, C) = F(Zv C) + H(zv C) (32)

Then H is smooth in Q x Q and satisfies

H(z,() = H(C,z) together with A,H = 0. (3.3)
Let us write
d—1 d—1
u(z) =Y T(zG)+ > H(z¢)
7=0 7=0
= g(2) + h(2). (3-4)

Since we know that

07g(0) =0 for any v with 1 < |y| £ d —1 and for any ¢ € Bs(0) \ {0}, (3.5)
by the assumption we see that
d7h(0) =0 for any v with 1 < |y| £ d — 1 and for any ¢ € 9B5(0). (3.6)

Since any derivative 07h(0) in (3.6) is harmonic in ¢, by the maximum principle
we see that

07h(0) =0 for any v with 1 < |y| £ d — 1 and for any ¢ € Bs(0). (3.7)

Therefore we get by (3.5) and (3.7)

07u(0) =0 for any v with 1 < |y| £ d — 1 and for any ¢ € Bs(0) \ {0}. (3.8)
8



Let
Q;={C: Ai¢eQ} foreach j=0,1,...d— 1. (3.9)

Let C be the connected component of ﬂ?;(l) €2; containing the origin. Then, (3.8)
and the analyticity in ¢ imply that

07u(0) = 0 for any v with 1 < |y| £d — 1 and for any ¢ € C \ {0}. (3.10)
On the other hand, by the boundary condition:
G(z,() =0 for any ¢ € 092

we have
07G(0,() =0 for any ¢ € 02 and for any ~. (3.11)

Therefore, we get for any v and for any j =0,...,d — 1
97G(0,A7¢) =0 for any ¢ € 09;. (3.12)

Now, it suffices to show that dC' C (7_y 9. Let ¢* € OC. Since dC C Ji—; 9,

‘7:
there exists a jo such that ¢* € 0€;,. Then it suffices to show that ¢* € 9€2; for

any j =0,...,d — 1. Suppose that (* € Q, for some £ # jo. Then, by putting

v(z) = Z G(2,¢), (3.13)

0<j<d—1
J#jo

from (3.10) and (3.12) we see that v satisfies
07v(0) =0 for any v with 1 < |y] £ d— 1. (3.14)

Since v is not constant, this is a contradiction. Indeed, observe that € is simply
connected, v is harmonic in §2 except at most d — 1 points, v = 400 at such points,
and v = 0 on 0. Therefore, with the help of a result of [AM, Theorem 1.1, pp.
567-568], we see that the multiplicity of the origin is at most d —2. This contradicts
(3.14). O

For any ¢ € &4, we consider the boundary value problem:
—Au=¢ inQ, and u=0 on JN. (3.15)

In view of the proofs of Theorems 2.2, 2.3, 2.5, and 2.6, we have

Theorem 3.2. Consider the boundary value problem (3.15). Then, the following
hold:
(i) Suppose that d = 2 or 3. Then the solution u of (3.15) satisfies Vu(0) = 0
for any ¢ € @4, if and only if Q is invariant under the action of Aq.
(ii) The solution u of (3.15) satisfies Vu(0) = 0 for any ¢ € ®y4, if and only if
Q is invariant under the action of As.
(iii) The solution u of (3.15) satisfies Vu(0) = 0 for any ¢ € P, if and only if
Q is invariant under the action of As.

9



Remark 3.3. When d = 3, it follows from the proof of Theorem 2.3 that the
solution u of (3.1) satisfies Vu(0) = 0 for any y € 9B5(0), if and ounly if Q is
invariant under the action of Az. Namely, when d = 3 in Theorem 3.1, we can
replace the condition that 0)u(0) = 0 for any v with 1 < |y| < 2 by Vu(0) = 0.

4. Conjectures. There is a relation between the families of initial data and the
essential symmetry groups, which were introduced by Chamberland and Siegel [CS].
Let N > 2 and let Bs(0) be a ball in RN centered at the origin with radius § > 0.
Consider a subgroup G of the orthogonal group O(N). Let us introduce the family
®(G) of initial data ug by

O(G) ={ up € C;°(Bs(0)) : wuo(x) =ug(gx) for any (z,g) € Bs(0) x G }. (4.1)

Recall that G is said to be essential, if for any x # 0 there exists g € GG satisfying
gx # x. Then we have:

Proposition 4.1. G is essential, if and only if ®(G) C P.

Proof.  Suppose that G is essential. Let us show that ®(G) C ®. Take any
ug € ®(G). Consider the Cauchy problem for the heat equation:

du=Au in RN x (0,00), and wu(z,0)=ug(zx) in RV, (4.2)

Take any g € G. Since ug € ®(G), by the uniqueness of the solution of (4.2) we
have that u(z,t) = u(gz,t) in RN x (0,00). This implies that

Vu(0,t) = gVu(0,t) for any g € G and t > 0. (4.3)
Since G is essential, we get
Vu(0,t) =0 for any ¢ > 0.

Hence, by [MS 1, Theorem 1, p. 239]
/ wiug(rw)dw =0 for any r € [0,0). (4.4)
SN—1
Namely, ug € ® and then ®(G) C o.

Suppose that G is not essential. Let us show that ®(G) ¢ ®. By the definition
there exists a unit vector z € RV satisfying

gz =z forany g € G. (4.5)

Take an orthogonal transformation 7 € O(N) satisfying 7e; = z where e; =
(1,0,...,0) € RN. Then, denoting by 7* the transposed matrix of 7 yields

T*gTe; = ey for any g € G. (4.6)

Hence for any g € G we have

1 0 0
. 0 h22 th
T gT = . . .
0 hNg hNN

10



for some h = [h;;] € O(N —1). Let us introduce the change of variables: z = 7y.
Counsider the function

uo(z) = (Y)Y (Y2, - yn) (= n(y)Y(7)),

where n € CP(R), % € CP(RN71), and ¢ is a (N — 1)-dimensional radially
symmetric and nonnegative function. Then, by choosing the supports of n and v
sufficiently small, we get up € ®(G). Furthermore, we may assume that for some
0<e<p<3d

supp n = [—p,pl, supp ¥ = B={j = (ya,....yn) : [J° =y + - +y¥ <2},
n(—=y1) = —n(y1) and n(y1) > 0 for any y; € (0, p).

On the other hand, by the change of variables: x = 7y we have

/ wug(rw)dw =7 </ w'n(rw))y(rwh, ..., rw&)dw') .
SN*I SN*I

By choosing r € (e, p), we compute
TN_l/N 1w'ln(rw'l)l/)(rwé,...,rwﬁv)dw'
SN

:/a ) (g, ... yn)dor,

B.(0) T
_ T2_|g|2 2 ~19 ~ |g|2 ~
—o [ MW TP @) 1+ o —dg
P 3]
- / n(V/r? = [ (§)dg > 0.

B

Here we used the fact that n(—y1) = —n(y1). This computation shows that this
function ug does not belong to ®. Therefore we get that ®(G) ¢ ®. The proof is
completed. [

Remark 4.2. In the case N = 2, let G4 be the cyclic group generated by the
rotation of the angle 27/d with an integer d = 2. Then G is essential. We notice
that d is prime if and only if G is the only subgroup of G4 which is essential.

Let us pose three conjectures. The first one is related to Theorem 2.3 and
Remark 2.4.

Conjecture 4.3. Let d = 2 be an arbitrary prime number and let A = Ay be
the matriz of rotation of angle 2m/d. Consider the initial-Dirichlet problem (2.1).
Then, the solution u satisfies Vu(0,t) = 0 for any t € (0,00) and for any initial
data ug € ®g4, if and only if € is invariant under the action of Ag.

More general conjectures related to Theorems 2.5 and 2.6 are the following;:

Conjecture 4.4. Let d 2 2 be an arbitrary integer and let A = Ay be the matrix
of rotation of angle 2w /d. Consider the initial-Dirichlet problem (2.1). Then, the
solution u satisfies Vu(0,t) = 0 for any t € (0,00) and for any initial data uy €
Dy, if and only of there exists a prime number p dividing d such that € is invariant
under the action of A,.
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Conjecture 4.5. Let G be an essential subgroup of O(N). Consider the initial-
boundary value problem (1.1) for the heat equation. Then, the solution u satisfies
Vu(0,t) =0 for any t € (0,00) and for any initial data ug € ®(G), if and only if
there exists an essential subgroup H of G such that Q s invariant under the action

of H.
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