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Abstract

We prove constructive estimates for elastic plates modeled by the Reissner–Mindlin theory and made 
by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive 
quantitative stability and global H 2 regularity for the Neumann problem. Moreover, in case of isotropic 
material, we derive an interior three spheres inequality with optimal exponent from which the strong unique 
continuation property follows.
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1. Introduction

In the present paper we consider elastic plates modeled by the Reissner–Mindlin theory. This 
theory was developed for moderately thick plates, that is for plates whose thickness is of the order 
of one tenth of the planar dimensions of the middle surface [1], [2]. Our aim is to give a rigor-
ous, thorough and self-contained presentation of mathematical results concerning the Neumann 
problem, a boundary value problem which poses interesting features which, at our knowledge, 
have not yet been pointed out in the literature.

Throughout the paper we consider an elastic plate � × [−h
2 , h

2

]
, where � ⊂R2 is the middle 

surface and h is the constant thickness of the plate. A transversal force field Q and a couple 
field M are applied at the boundary of the plate. According to the Reissner–Mindlin model, 
at any point x = (x1, x2) of � we denote by w = w(x) and ωα(x), α = 1, 2, the infinitesimal 
transversal displacement at x and the infinitesimal rigid rotation of the transversal material fiber 
through x, respectively. Therefore, the pair (ϕ, w), with (ϕ1 = ω2, ϕ2 = −ω1), satisfies the fol-
lowing Neumann boundary value problem⎧⎪⎪⎨⎪⎪⎩

div (S(ϕ + ∇w)) = 0 in �, (a)
div (P∇ϕ) − S(ϕ + ∇w) = 0, in �, (b)
(S(ϕ + ∇w)) · n = Q, on ∂�, (c)
(P∇ϕ)n = M, on ∂�, (d)

(1.1)

where P and S are the fourth-order bending tensor and the shearing matrix of the plate, respec-
tively. The vector n denotes the outer unit normal to �.

The weak formulation of (1.1)(a)–(1.1)(d) consists in determining (ϕ, w) ∈ H 1(�, R2) ×
H 1(�) satisfying

a((ϕ,w), (ψ, v)) =
∫
∂�

Qv + M · ψ, ∀ψ ∈ H 1(�,R2),∀v ∈ H 1(�), (1.2)

where

a((ϕ,w), (ψ, v)) =
∫
�

P∇ϕ · ∇ψ +
∫
�

S(ϕ + ∇w) · (ψ + ∇v). (1.3)

The coercivity of the bilinear form a(·, ·) in the subspace

H =
⎧⎨⎩(ψ, v) ∈ H 1(�,R2) × H 1(�) |

∫
�

ψ = 0,

∫
�

v = 0

⎫⎬⎭
with respect to the norm induced by H 1(�, R2) ×H 1(�) is not standard. To prove this property 
– in other terms, the equivalence of the standard norm in H with the norm induced by the energy 
functional – we derive the following generalized Korn-type inequality

‖∇ϕ‖L2(�) ≤ C
(‖∇̂ϕ‖L2(�) + ‖ϕ + ∇w‖L2(�)

)
,∀ϕ ∈ H 1(�,R2),∀w ∈ H 1(�,R), (1.4)
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where ∇̂ denotes the symmetric part of the gradient and the constant C is constructively de-
termined in terms of the parameters describing the geometrical properties of the Lipschitz 
domain �. Inequality (1.4) allows to solve the Neumann problem and provides a quantitative 
stability estimate in the H 1 norm.

Assuming Lipschitz continuous coefficients and C1,1 regularity of the boundary, we prove 
global H 2 regularity estimates. For the proof, which is mainly based on the regularity theory 
developed by Agmon [3] and Campanato [4], a key role is played by quantitative Poincaré in-
equalities for functions vanishing on a portion of the boundary, derived in [5].

Finally, in case of isotropic material, we adapt arguments in [6] to H 2 solutions of the plate 
system (1.1)(a)–(1.1)(b), obtaining a three spheres inequality with optimal exponent and, as a 
standard consequence, we derive the strong unique continuation property.

Let us notice that the constructive character of all the estimates derived in the present pa-
per is crucial for possible applications to inverse problems associated to the Neumann problem 
(1.1)(a)–(1.1)(d). As a future direction of research, we plan to use such results to treat inverse 
problems concerning the determination of defects, such as elastic inclusions, in isotropic elastic 
plates modeled by the Reissner–Mindlin model. The interested reader can refer, for instance, to 
[7] for applications to the determination of inclusions in a thin plate described by the Kirchhoff-
Love model, which involves a single scalar fourth order elliptic equation.

The paper is organized as follows. In section 2 we collect the notation and in section 3 we 
present a self-contained derivation of the mechanical model for general anisotropic material. 
Section 4 contains the proof of the generalized Korn-type inequality (1.4), which is the key 
ingredient used in section 5 to study the Neumann problem. In section 6 we derive H 2 global 
regularity estimates. In section 7 we state and prove the three spheres inequality. Finally, section 8
is an Appendix where we have postponed some technical estimates about regularity up to the 
boundary.

2. Notation

Let P = (x1(P ), x2(P )) be a point of R2. We shall denote by Br(P ) the disk in R2 of radius 
r and center P and by Ra,b(P ) the rectangle Ra,b(P ) = {x = (x1, x2) | |x1 − x1(P )| < a, |x2 −
x2(P )| < b}. To simplify the notation, we shall denote Br = Br(O), Ra,b = Ra,b(O).

Definition 2.1. (Ck,1 regularity) Let � be a bounded domain in R2. Given k ∈ N, we say that a 
portion S of ∂� is of class Ck,1 with constants ρ0, M0 > 0, if, for any P ∈ S, there exists a rigid 
transformation of coordinates under which we have P = 0 and

� ∩ R ρ0
M0

,ρ0
= {x = (x1, x2) ∈ R ρ0

M0
,ρ0

| x2 > ψ(x1)},

where ψ is a Ck,1 function on 
(
− ρ0

M0
,

ρ0
M0

)
satisfying

ψ(0) = 0, ψ ′(0) = 0 when k ≥ 1,

‖ψ‖
Ck,1
(
− ρ0

M0
,

ρ0
M0

) ≤ M0ρ0.

When k = 0 we also say that S is of Lipschitz class with constants ρ0, M0.
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Remark 2.2. We use the convention to normalize all norms in such a way that their terms are 
dimensionally homogeneous with the L∞ norm and coincide with the standard definition when 
the dimensional parameter equals one. For instance, the norm appearing above in case k = 1 is 
meant as follows

‖ψ‖
C1,1
(
− ρ0

M0
,

ρ0
M0

) = ‖ψ‖
L∞
(
− ρ0

M0
,

ρ0
M0

) + ρ0‖∇ψ‖
L∞
(
− ρ0

M0
,

ρ0
M0

) + ρ2
0‖∇2ψ‖

L∞
(
− ρ0

M0
,

ρ0
M0

).
Similarly, we shall set

‖u‖L2(�) = ρ−1
0

⎛⎝∫
�

u2

⎞⎠
1
2

,

‖u‖H 1(�) = ρ−1
0

⎛⎝∫
�

u2 + ρ2
0

∫
�

|∇u|2
⎞⎠

1
2

,

and so on for boundary and trace norms such as ‖ · ‖L2(∂�), ‖ · ‖
H

1
2 (∂�)

, ‖ · ‖
H

− 1
2 (∂�)

.

Given a bounded domain � in R2 such that ∂� is of class Ck,1, with k ≥ 1, we consider 
as positive the orientation of the boundary induced by the outer unit normal n in the following 
sense. Given a point P ∈ ∂�, let us denote by τ = τ(P ) the unit tangent at the boundary in P
obtained by applying to n a counterclockwise rotation of angle π

2 , that is τ = e3 × n, where ×
denotes the vector product in R3, {e1, e2} is the canonical basis in R2 and e3 = e1 × e2.

We denote by M2 the space of 2 ×2 real valued matrices and by L(X, Y) the space of bounded 
linear operators between Banach spaces X and Y .

For every 2 × 2 matrices A, B and for every L ∈L(M2, M2), we use the following notation:

(LA)ij = LijklAkl, (2.1)

A · B = AijBij , |A| = (A · A)
1
2 . (2.2)

Notice that here and in the sequel summation over repeated indexes is implied.

3. The Reissner–Mindlin plate model

The Reissner–Mindlin plate is a classical model for plates having moderate thickness [1], 
[2]. The Reissner–Mindlin plate theory can be rigorously deduced from the three-dimensional 
linear elasticity using arguments of �-convergence of the energy functional, as it was shown 
in [8]. Our aim in this section is more modest, namely, we simply derive the boundary value 
problem governing the statical equilibrium of an elastic Reissner–Mindlin plate under Neumann 
boundary conditions following the engineering approach of the Theory of Structures. This allows 
us to introduce some notation useful in the sequel and to make the presentation of the physical 
problem complete.
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Let us consider a plate � × [−h
2 , h

2

]
with middle surface represented by a bounded domain 

� in R2 having uniform thickness h and boundary ∂� of class C1,1. In this section we adopt the 
convention that Greek indexes assume the values 1, 2, whereas Latin indexes run from 1 to 3.

We follow the direct approach to define the infinitesimal deformation of the plate. In particular, 
we restrict ourselves to the case in which the points x = (x1, x2) of the middle surface � are 
subject to transversal displacement w(x1, x2)e3, and any transversal material fiber {x} ×[−h

2 , h
2

]
, 

x ∈ �, undergoes an infinitesimal rigid rotation ω(x), with ω(x) · e3 = 0. In this section we 
shall be concerned exclusively with regular functions on their domain of definition. The above 
kinematical assumptions imply that the displacement field present in the plate is given by the 
following three-dimensional vector field:

u(x, x3) = w(x)e3 + x3ϕ(x), x ∈ �, |x3| ≤ h

2
, (3.1)

where

ϕ(x) = ω(x) × e3, x ∈ �. (3.2)

By (3.1) and (3.2), the associated infinitesimal strain tensor E[u] ∈M3 takes the form

E[u](x, x3) ≡ (∇u)sym(x, x3) = x3(∇xϕ(x))sym + (γ (x) ⊗ e3)
sym, (3.3)

where ∇x(·) = ∂
∂xα

(·)eα is the surface gradient operator, ∇sym(·) = 1
2 (∇(·) + ∇T (·)), and

γ (x) = ϕ(x) + ∇xw(x). (3.4)

Within the approximation of the theory of infinitesimal deformations, γ expresses the angular 
deviation between the transversal material fiber at x and the normal direction to the deformed 
middle surface of the plate at x.

The classical deduction of the mechanical model of a thin plate follows essentially from inte-
gration over the thickness of the corresponding three-dimensional quantities. In particular, taking 
advantage of the infinitesimal deformation assumption, we can refer the independent variables to 
the initial undeformed configuration of the plate.

Let us introduce an arbitrary portion �′ × [−h
2 , h

2

]
of plate, where �′ ⊂⊂ � is a subdomain 

of � with regular boundary. Consider the material fiber {x} × [−h
2 , h

2

]
for x ∈ ∂�′ and denote by 

t (x, x3, eα) ∈ R3, |x3| ≤ h
2 , the traction vector acting on a plane containing the direction of the 

fiber and orthogonal to the direction eα . By Cauchy’s Lemma we have t (x, x3, eα) = T (x, x3)eα , 
where T (x, x3) ∈ M3 is the (symmetric) Cauchy stress tensor at the point (x, x3). Denote by n
the unit outer normal vector to ∂�′ such that n · e3 = 0. To simplify the notation, it is convenient 
to consider n as a two-dimensional vector belonging to the plane x3 = 0 containing the middle 
surface � of the plate. By the classical Stress Principle for plates, we postulate that the two 
complementary parts �′ and � \ �′ interact with one another through a field of force vectors 
R = R(x, n) ∈ R3 and couple vectors M = M(x, n) ∈ R3 assigned per unit length at x ∈ ∂�′. 
Denoting by

R(x, eα) =
h/2∫

t (x, x3, eα)dx3 (3.5)
−h/2
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the force vector (per unit length) acting on a direction orthogonal to eα and passing through 
x ∈ ∂�′, the contact force R(x, n) can be expressed as

R(x,n) = T �(x)n, x ∈ ∂�′, (3.6)

where the surface force tensor T �(x) ∈ M3×2 is given by

T �(x) = R(x, eα) ⊗ eα, in �. (3.7)

Let P = I − e3 ⊗ e3 be the projection of R3 along the direction e3. T � is decomposed additively 
by P in its membranal and shearing component

T � = PT � + (I − P)T � ≡ T �(m) + T �(s), (3.8)

where, following the standard nomenclature in plate theory, the components T �(m)
αβ (= T

�(m)
βα ), 

α, β = 1, 2, are called the membrane forces and the components T �(s)
3β , β = 1, 2, are the shear 

forces (also denoted as T �(s)
3β = Qβ ). The assumption of infinitesimal deformations and the hy-

pothesis of vanishing in-plane displacements of the middle surface of the plate allow us to take

T �(m) = 0, in �. (3.9)

Denote by

M(x, eα) =
h/2∫

−h/2

x3e3 × t (x, x3, eα)dx3, α = 1,2, (3.10)

the contact couple acting at x ∈ ∂�′ on a direction orthogonal to eα passing through x. Note 
that M(x, eα) · e3 = 0 by definition, that is M(x, eα) actually is a two-dimensional couple field 
belonging to the middle plane of the plate. Analogously to (3.6), we have

M(x,n) = M�(x)n, x ∈ ∂�′, (3.11)

where the surface couple tensor M�(x) ∈ M3×2 has the expression

M�(x) = M(x, eα) ⊗ eα. (3.12)

A direct calculation shows that

M(x, eα) = e3 × eβMβα(x), (3.13)

where

Mβα(x) =
h/2∫

x3Tβα(x, x3)dx3, α,β = 1,2, (3.14)
−h/2
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are the bending moments (for α = β) and the twisting moments (for α �= β) of the plate at x (per 
unit length).

Denote by q(x)e3 the external transversal force per unit area acting in �. The statical equi-
librium of the plate is satisfied if and only if the following two equations are simultaneously 
satisfied:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
∂�′

T �nds +
∫
�′

qe3dx = 0, (a)

∫
∂�′

(
(x − x0) × T �n + M�n

)
ds +

∫
�′

(x − x0) × qe3dx = 0, (b)
(3.15)

for every subdomain �′ ⊆ �, where x0 is a fixed point. By applying the Divergence Theorem in 
�′ and by the arbitrariness of �′ we deduce{

divxT
�(s) + qe3 = 0, in �, (a)

divxM
� + (T �(s))T e3 × e3 = 0, in �. (b)

(3.16)

Consider the case in which the boundary of the plate ∂� is subjected simultaneously to a couple 
field M

∗
, M

∗ · e3 = 0, and a transversal force field Qe3. Local equilibrium considerations on 
points of ∂� yield the following boundary conditions:{

M�n = M
∗
, on ∂�, (a)

T �(s)n = Qe3, on ∂�, (b)
(3.17)

where n is the unit outer normal to ∂�. In cartesian components, the equilibrium equations 
(3.16)(a)–(3.17)(b) take the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

Mαβ,β − Qα = 0, in �,α = 1,2, (a)

Qα,α + q = 0, in �, (b)

Mαβnβ = Mα, on ∂�, (c)

Qαnα = Q, on ∂�, (d)

(3.18)

where we have defined M1 = M
∗
2 and M2 = −M

∗
1.

To complete the formulation of the equilibrium problem, we need to introduce the constitu-
tive equation of the material. We limit ourselves to the Reissner–Mindlin theory and we choose 
to regard the kinematical assumptions E33[u] = 0 as internal constraint, that is we restrict the 
possible deformations of the points of the plate to those whose infinitesimal strain tensor belongs 
to the set

M = {E ∈M3×3|E = ET ,E · A = 0, for A = e3 ⊗ e3}. (3.19)

Therefore, by the Generalized Principle of Determinism [9], the Cauchy stress tensor T at any 
point (x, x3) of the plate is additively decomposed in an active (symmetric) part TA and in a 
reactive (symmetric) part TR :
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T = TA + TR, (3.20)

where TR does not work in any admissible motion, e.g., TR ∈M⊥. Consistently with the Princi-
ple, the active stress TA belongs to M and, in cartesian coordinates, we have

TA = TAαβeα ⊗ eβ + TAα3eα ⊗ e3 + TA3αe3 ⊗ eα, α,β = 1,2, (3.21)

TR = TR33e3 ⊗ e3. (3.22)

In linear theory, on assuming the reference configuration unstressed, the active stress in a point 
(x, x3) of the plate, x ∈ � and |x3| ≤ h/2, is given by a linear mapping from M into itself by 
means of the fourth order elasticity tensor CM ∈ L(M3, M3):

TA =CME[u]. (3.23)

We assume that CM is constant over the thickness of the plate and satisfies the minor and major 
symmetry conditions expressed in cartesian coordinates as (we drop the subscript M)

Cijrs = Cjirs = Cijsr = Crsij , i, j, r, s = 1,2,3, in �. (3.24)

Using (3.20) and recalling (3.9), we have:

T � = T
�(s)
A , M� = M�

A , (3.25)

that is, both the shear forces and the moments have active nature. By (3.23), after integration over 
the thickness, the surface force tensor and the surface couple tensor are given by

T �(x) = hC(x)(γ ⊗ e3)
sym, in �, (3.26)

M�(x) = h3

12
EC(x)(∇xϕ(x))sym, in �, (3.27)

where E ∈ M3 is the unique skew-symmetric matrix such that Ea = e3 × a for every a ∈ R3. 
The constitutive equations (3.26), (3.27) can be written in more expressive way in terms of the 
cartesian components of shear forces and bending-twisting moments, namely

Qα = Sαβ(x)(ϕβ + w,β ), α = 1,2, (3.28)

Mαβ = Pαβγ δ(x)ϕγ,δ, α,β = 1,2, (3.29)

where the plate shearing matrix S ∈ M2 and the plate bending tensor P ∈ L(M2, M2) are given 
by

Sαβ(x) = hC3α3β(x), α,β = 1,2, (3.30)

Pαβγ δ(x) = h3

Cαβγ δ(x), α,β, γ, δ = 1,2. (3.31)

12
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From the symmetry assumptions (3.24) on the elastic tensor C it follows that the shearing matrix 
S is symmetric and the bending tensor P satisfies the minor and major symmetry conditions, 
namely (in cartesian coordinates)

Sαβ = Sβα, α,β = 1,2, in �, (3.32)

Pαβγ δ = Pβαγ δ = Pαβδγ = Pγδαβ, α,β, γ, δ = 1,2, in �. (3.33)

We recall that the symmetry conditions (3.33) are equivalent to

PA = PÂ, PA is symmetric, PA · B = PB · A, (3.34)

for every 2 × 2 matrices A, B , where, here and in the sequel, we denote for brevity Â = Asym.
On S and P we also make the following assumptions.

I) Regularity (boundedness)

S ∈ L∞(�,L(M2)), (3.35)

P ∈ L∞(�,L(M2,M2)). (3.36)

II) Ellipticity (strong convexity) There exist two positive constants σ0, σ1 such that

hσ0|v|2 ≤ Sv · v ≤ hσ1|v|2, a.e. in �, (3.37)

for every v ∈R2, and there exist two positive constants ξ0, ξ1 such that

h3

12
ξ0|Â|2 ≤ PA · A ≤ h3

12
ξ1|Â|2, a.e. in �, (3.38)

for every 2 × 2 matrix A.

Finally, under the above notation and in view of (3.28)–(3.29), the problem (3.18)(a)–(3.18)(d)
for q ≡ 0 in � takes the form (1.1)(a)–(1.1)(d), namely (in cartesian components)⎧⎪⎪⎪⎨⎪⎪⎪⎩

(Pαβγ δϕγ,δ),β −Sαβ(ϕβ + w,β ) = 0, in �, (a)

(Sαβ(ϕβ + w,β )),α = 0, in �, (b)

(Pαβγ δϕγ,δ)nβ = Mα, on ∂�, (c)
Sαβ(ϕβ + w,β )nα = Q, on ∂�. (d)

(3.39)

4. A generalized Korn inequality

Throughout this section, � will be a bounded domain in R2, with boundary of Lipschitz class 
with constants ρ0, M0, satisfying

diam(�) ≤ M1ρ0, (4.1)

Bs ρ (x0) ⊂ �, (4.2)
0 0
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for some s0 > 0 and x0 ∈ �. For any E ⊂ �, we shall denote by

xE = 1

|E|
∫
E

x, (4.3)

vE = 1

|E|
∫
E

v, (4.4)

the center of mass of E and the integral mean of a function v with values in Rn, n ≥ 1, respec-
tively.

In order to prove the generalized Korn inequality of Theorem 4.3, let us recall the constructive 
Poincaré and classical Korn inequalities.

Proposition 4.1 (Poincaré inequalities). There exists a positive constant CP only depending on 
M0 and M1, such that for every u ∈ H 1(�, Rn), n = 1, 2,

‖u − u�‖L2(�) ≤ CP ρ0‖∇u‖L2(�), (4.5)

‖u − uE‖H 1(�) ≤
(

1 +
( |�|

|E|
) 1

2
)√

1 + C2
P ρ0‖∇u‖L2(�). (4.6)

See for instance [5, Example 3.5] and also [10] for a quantitative evaluation of the con-
stant CP .

Proposition 4.2 (Korn inequalities). There exists a positive constant CK only depending on M0
and M1, such that for every u ∈ H 1(�, R2),

∥∥∥∥∇u − 1

2
(∇u − ∇T u)�

∥∥∥∥
L2(�)

≤ CK‖∇̂u‖L2(�), (4.7)

∥∥∥∥u − uE − 1

2
(∇u − ∇T u)E(x − xE)

∥∥∥∥
H 1(�)

≤ CE,�CK

√
1 + C2

P ρ0‖∇̂u‖L2(�), (4.8)

where

CE,� = 1 +
(

2
|�|
|E|
(

1 + M2
1

)) 1
2

. (4.9)

See the fundamental paper by Friedrichs [11] on second Korn inequality and also [5, Example 
5.3] for a proof of (4.8)–(4.9).

Notice that, when E = Bs0ρ0(x0), CE,� ≤ 1 + √
2
(
1 + M2

1

) 1
2 M1

s0
.

The following generalized Korn-type inequality is useful for the study of the Reissner–
Mindlin plate system.
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Theorem 4.3 (Generalized second Korn inequality). There exists a positive constant C only 
depending on M0, M1 and s0, such that, for every ϕ ∈ H 1(�, R2) and for every w ∈ H 1(�, R),

‖∇ϕ‖L2(�) ≤ C

(
‖∇̂ϕ‖L2(�) + 1

ρ0
‖ϕ + ∇w‖L2(�)

)
. (4.10)

Proof. We may assume, with no loss of generality, that 
∫
Bs0ρ0 (x0)

ϕ = 0. Let

S =
⎧⎨⎩∇w | w ∈ H 1(�),

∫
�

w = 0

⎫⎬⎭⊂ L2(�,R2).

S is a closed subspace of L2(�, R2). In fact, let ∇wn ∈ S and F ∈ L2(�, R2) such that ∇wn →
F in L2(�, R2). By the Poincaré inequality (4.5), wn is a Cauchy sequence in H 1(�), so that 
there exists w ∈ H 1(�) such that wn → w in H 1(�). Therefore F = ∇w ∈ S . By the projection 
theorem, for every ϕ ∈ L2(�, R2), there exists a unique ∇w ∈ S such that

‖ϕ − ∇w‖L2(�) = min∇w∈S
‖ϕ − ∇w‖L2(�) = min∇w∈S

‖ϕ + ∇w‖L2(�). (4.11)

Moreover, ∇w is characterized by the condition

ϕ − ∇w ⊥ ∇w in L2(�), for every ∇w ∈ S. (4.12)

Let us consider the infinitesimal rigid displacement

r = 1

2
(∇ϕ − ∇T ϕ)Bs0ρ0 (x0)(x − x0) := W(x − x0), (4.13)

where

W =
(

0 α

−α 0

)
,

that is

r = (α(x − x0)2,−α(x − x0)1).

Let us distinguish two cases:
i) � = Bs0ρ0(x0),
ii) Bs0ρ0(x0) � �.

Case i). Let us see that, when one takes ϕ = r in (4.11), with r given by (4.13), then its 
projection into S is

∇w = 0, (4.14)

that is, by the equivalent condition (4.12), r ⊥ ∇w in L2(�), for every ∇w ∈ S . In fact



822 A. Morassi et al. / J. Differential Equations 263 (2017) 811–840
∫
Bs0ρ0 (x0)

r · ∇w =
∫

Bs0ρ0 (x0)

α(x − x0)2wx1 − α(x − x0)1wx2 =

= α

∫
∂Bs0ρ0 (x0)

w ((x − x0)2ν1 − (x − x0)1ν2) . (4.15)

Since ν = x−x0
s0ρ0

, we have

(x − x0)2ν1 − (x − x0)1ν2 = (x − x0)2
(x − x0)1

s0ρ0
− (x − x0)1

(x − x0)2

s0ρ0
= 0,

so that ∫
Bs0ρ0 (x0)

r · ∇w = 0, for every ∇w ∈ S. (4.16)

Therefore, by (4.11) and (4.14),

‖r‖L2(�) ≤ ‖r + ∇w‖L2(�), for every ∇w ∈ S. (4.17)

By the definition of r and recalling that � = Bs0ρ0(x0), it follows trivially that

‖r‖2
L2(�)

= π

2
α2s4

0ρ2
0 = s2

0ρ2
0

4
‖∇r‖2

L2(�)
. (4.18)

By the Korn inequality (4.8), by (4.17) and (4.18), we have

‖∇ϕ‖L2(�) ≤ ‖∇(ϕ − r)‖L2(�) + ‖∇r‖L2(�) =

= ‖∇(ϕ − r)‖L2(�) + 2

s0ρ0
‖r‖L2(�) ≤ ‖∇(ϕ − r)‖L2(�) + 2

s0ρ0
‖r + ∇w‖L2(�) ≤

≤ ‖∇(ϕ − r)‖L2(�) + 2

s0ρ0
‖ϕ + ∇w‖L2(�) + 2

s0ρ0
‖ϕ − r‖L2(�) ≤

≤ C

(
‖∇̂ϕ‖L2(�) + 1

ρ0
‖ϕ + ∇w‖L2(�)

)
, (4.19)

with C only depending on M0, M1 and s0.

Case ii). Let r be the infinitesimal rigid displacement given by (4.13). By (4.12), its projection 
∇w into S satisfies ∫

r · ∇w =
∫

∇w · ∇w, for every ∇w ∈ S. (4.20)
� �



A. Morassi et al. / J. Differential Equations 263 (2017) 811–840 823
Choosing, in particular, w = w in (4.20), and by the same arguments used to prove (4.16), we 
have∫

�

|∇w|2 =
∫
�

r · ∇w =
∫

B s0ρ0
2

(x0)

r · ∇w +
∫

�\B s0ρ0
2

(x0)

r · ∇w =
∫

�\B s0ρ0
2

(x0)

r · ∇w, (4.21)

so that, by Hölder inequality,

‖∇w‖L2(�) ≤ ‖r‖L2(�\B s0ρ0
2

(x0))
. (4.22)

By a direct computation, we have

∫
�\B s0ρ0

2
(x0)

|r|2∫
�

|r|2 = 1 −
∫
B s0ρ0

2
(x0)

|r|2∫
�

|r|2 ≤ 1 −
∫
B s0ρ0

2
(x0)

|r|2∫
Bs0ρ0 (x0)

|r|2 = 15

16
, (4.23)

and, by (4.22) and (4.23),

‖∇w‖L2(�) ≤
√

15

4
‖r‖L2(�). (4.24)

Therefore

‖r − ∇w‖L2(�) ≥ ‖r‖L2(�) − ‖∇w‖L2(�) ≥
(

1 −
√

15

4

)
‖r‖L2(�). (4.25)

From (4.11) and (4.25), it follows that

‖r‖L2(�) ≤ 4

4 − √
15

‖r + ∇w‖L2(�), for every w ∈ H 1(�). (4.26)

Now, ∇r = W , |∇r|2 = 2α2, so that

∫
�

|∇r|2 ≤ 8α2πM2
1 ρ2

0 . (4.27)

Since |W(x − x0)|2 = α2|x − x0|2, by (4.27), we have

∫
|r|2 = α2

∫
|x − x0|2 ≥ π

2
α2s4

0ρ4
0 ≥
(

s2
0

4M1

)2

ρ2
0

∫
|∇r|2. (4.28)
� � �
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By (4.8), (4.26) and (4.28),

‖∇ϕ‖L2(�) ≤ ‖∇(ϕ − r)‖L2(�) + ‖∇r‖L2(�) ≤

≤ C

(
‖∇(ϕ − r)‖L2(�) + 1

ρ0
‖r‖L2(�)

)
≤ C

(
‖∇(ϕ − r)‖L2(�) + 1

ρ0
‖r + ∇w‖L2(�)

)
≤

≤ C

(
‖∇(ϕ − r)‖L2(�) + 1

ρ0
‖ϕ + ∇w‖L2(�) + 1

ρ0
‖ϕ − r‖L2(�)

)
≤

≤ C

(
‖∇̂ϕ‖L2(�) + 1

ρ0
‖ϕ + ∇w‖L2(�)

)
, (4.29)

with C only depending on M0, M1 and s0.
Notice that a more accurate estimate can be obtained by replacing Bs0ρ0

2
(x0) with Bs0ρ0(x0)

in (4.21) and in what follows, obtaining

‖∇w‖L2(�) ≤ √
γ ‖r‖L2(�), (4.30)

where the constant γ ,

γ =
∫
�\Bs0ρ0 (x0)

|r|2∫
�

|r|2 = 1 −
π
2 s4

0ρ4
0∫

�
|x − x0|2 < 1 (4.31)

can be easily estimated in terms of the geometry of �. �
Remark 4.4. Let us notice that, choosing in particular w ≡ 0 in (4.10), it follows that there exists 
a positive constant C only depending on M0, M1 and s0, such that for every u ∈ H 1(�, R2),

‖u‖H 1(�) ≤ C(ρ0‖∇̂u‖L2(�) + ‖u‖L2(�)). (4.32)

The above inequality was first proved by Gobert in [12] by using the theory of singular integrals, 
a different proof for regular domains being presented by Duvaut and Lions in [13].

5. The Neumann problem

Let us consider a plate � × [−h
2 , h

2

]
with middle surface represented by a bounded domain 

� in R2 having uniform thickness h, subject to a transversal force field Q and to a couple field 
M acting on its boundary. Under the kinematic assumptions of Reissner–Mindlin’s theory, the 
pair (ϕ, w), with ϕ = (ϕ1, ϕ2), where ϕα , α = 1, 2, are expressed in terms of the infinitesimal 
rigid rotation field ω by (3.2) and w is the transversal displacement, satisfies the equilibrium 
problem (1.1)(a)–(1.1)(d). The shearing matrix S ∈ L∞(�, L(M2)) and the bending tensor P ∈
L∞(�, L(M2, M2)), introduced in section 3, are assumed to satisfy the symmetry conditions 
(3.32), (3.33) and the ellipticity conditions (3.37), (3.38), respectively.

Summing up the weak formulation of equations (1.1)(a) and (1.1)(b), one derives the follow-
ing weak formulation of the equilibrium problem (1.1)(a)–(1.1)(d):
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A pair (ϕ, w) ∈ H 1(�, R2) × H 1(�) is a weak solution to (1.1)(a)–(1.1)(d) if for every ψ ∈
H 1(�, R2) and for every v ∈ H 1(�),∫

�

P∇ϕ · ∇ψ +
∫
�

S(ϕ + ∇w) · (ψ + ∇v) =
∫
∂�

Qv + M · ψ. (5.1)

Choosing ψ ≡ 0, v ≡ 1, in (5.1), we have ∫
∂�

Q = 0. (5.2)

Inserting ψ ≡ −b, v = b · x in (5.1), we have∫
∂�

b · (Qx − M) = 0, for every b ∈R2,

so that ∫
∂�

Qx − M = 0. (5.3)

We refer to (5.2)–(5.3) as the compatibility conditions for the equilibrium problem.

Remark 5.1. Given a solution (ϕ, w) to the equilibrium problem (1.1)(a)–(1.1)(d), then all its 
solutions are given by

ϕ∗ = ϕ − b, w∗ = w + b · x + a, ∀a ∈R,∀b ∈R2. (5.4)

It is obvious that any (ϕ∗, w∗) given by (5.4) is a solution. Viceversa, given two solutions (ϕ, w), 
(ϕ∗, w∗), by subtracting their weak formulations one has

∫
�

P∇(ϕ − ϕ∗) · ∇ψ +
∫
�

S((ϕ − ϕ∗) + ∇(w − w∗)) · (ψ + ∇v) = 0,

∀v ∈ H 1(�),∀ψ ∈ H 1(�,R2).

Choosing ψ = ϕ − ϕ∗, v = w − w∗, and by the ellipticity conditions (3.37), (3.38), we have

0 =
∫
�

P∇(ϕ − ϕ∗) · ∇(ϕ − ϕ∗) +
∫
�

S((ϕ − ϕ∗) + ∇(w − w∗)) · ((ϕ − ϕ∗) + ∇(w − w∗)) ≥

≥ h3

12
ξ0

∫
�

|∇̂(ϕ − ϕ∗)|2 + hσ0

∫
�

|(ϕ − ϕ∗) + ∇(w − w∗)|2. (5.5)
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From the generalized Korn inequality (4.10) it follows that ∇(ϕ − ϕ∗) = 0, so that there exists 
b ∈ R2 such that ϕ∗ = ϕ−b. By the above inequality we also have that ∇(w∗ −w) = ϕ−ϕ∗ = b, 
and therefore there exists a ∈R such that w∗ = w + b · x + a.

An alternative proof of ∇(ϕ − ϕ∗) = 0, that better enlightens the mathematical aspects of 
the Reissner–Mindlin model, is based on a qualitative argument which avoids the use of (4.10). 
Precisely, from (5.5), one has that ∇̂(ϕ − ϕ∗) = 0 and ∇(w − w∗) = ϕ∗ − ϕ. Therefore ϕ −
ϕ∗ = Wx + b for some skew symmetric matrix W =

(
0 α

−α 0

)
and some constant b ∈ R2

and ∇(w∗ − w) = Wx + b ∈ C∞. Hence we can compute (w∗ − w)x1x2 = (αx2 + b1)x2 = α, 
(w∗ − w)x2x1 = (−αx1 + b2)x1 = −α and, by the Schwarz theorem, α = 0, so that ϕ − ϕ∗ = b.

Proposition 5.2. Let � be a bounded domain in R2 with boundary of Lipschitz class with con-
stants ρ0, M0, satisfying (4.1)–(4.2). Let the second order tensor S ∈ L∞(�, L(M2)) and the 
forth order tensor P ∈ L∞(�, L(M2, M2)) satisfy the symmetry conditions (3.32), (3.33) and 
the ellipticity conditions (3.37), (3.38), respectively. Let M ∈ H− 1

2 (∂�, R2) and Q ∈ H− 1
2 (∂�)

satisfy the compatibility conditions (5.2)–(5.3) respectively. Problem (1.1)(a)–(1.1)(d) admits a 
unique solution (ϕ, w) ∈ H 1(�, R2) × H 1(�) normalized by the conditions∫

�

ϕ = 0,

∫
�

w = 0. (5.6)

Moreover

‖ϕ‖H 1(�) + 1

ρ0
‖w‖H 1(�) ≤ C

ρ2
0

(
‖M‖

H
− 1

2 (∂�)
+ ρ0‖Q‖

H
− 1

2 (∂�)

)
, (5.7)

with C only depending on M0, M1, s0, ξ0, σ0, ρ0
h

.

Proof. Let us consider the linear space

H =
⎧⎨⎩(ψ, v) ∈ H 1(�,R2) × H 1(�) |

∫
�

ψ = 0,

∫
�

v = 0

⎫⎬⎭ , (5.8)

which is a Banach space equipped with the norm

‖(ψ, v)‖H = ‖ψ‖H 1(�) + 1

ρ0
‖v‖H 1(�). (5.9)

The symmetric bilinear form

a :H×H → R

a((ϕ,w), (ψ, v)) =
∫
�

P∇ϕ · ∇ψ + S(ϕ + ∇w) · (ψ + ∇v), (5.10)

is continuous in H × H. Let us see that it is also coercive. By the ellipticity conditions (3.37), 
(3.38),
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a((ϕ,w), (ϕ,w)) ≥ h3

12
ξ0

∫
�

|∇̂ϕ|2 + hσ0

∫
�

|ϕ + ∇w|2 ≥

≥ h3 min

{
ξ0

12
, σ0

(ρ0

h

)2
}⎛⎝∫

�

|∇̂ϕ|2 + 1

ρ2
0

∫
�

|ϕ + ∇w|2
⎞⎠ . (5.11)

On the other hand, from Poincaré and Korn inequalities (4.5) and (4.10), and by the trivial esti-
mate ‖∇w‖L2(�) ≤ ‖ϕ + ∇w‖L2(�) + ‖ϕ‖L2(�), one has

‖(ϕ,w)‖H ≤ C
(
ρ0‖∇̂ϕ‖L2(�) + ‖ϕ + ∇w‖L2(�)

)
, (5.12)

with C only depending on M0, M1 and s0.
From (5.11)–(5.12), one has

a((ϕ,w), (ϕ,w)) ≥ Cρ3
0‖(ϕ,w)‖2

H, (5.13)

where C only depends on M0, M1, s0, ξ0, σ0, ρ0
h

.
Therefore the bilinear form (5.10) is a scalar product inducing an equivalent norm in H, which 

we denote by |||·|||.
The linear functional

F : H → R

F(ψ,v) =
∫
∂�

Q̂v + M̂ · ψ

is bounded and, by (5.13), it satisfies

|F(ψ,v)| ≤ Cρ0

(
‖M‖

H
− 1

2 (∂�)
‖ψ‖

H
1
2 (∂�)

+ ‖Q‖
H

− 1
2 (∂�)

‖v‖
H

1
2 (∂�)

)
≤

≤ Cρ0

(
‖M‖

H
− 1

2 (∂�)
+ ρ0‖Q‖

H
− 1

2 (∂�)

)
‖(ψ, v)‖H ≤

≤ Cρ
− 1

2
0

(
‖M‖

H
− 1

2 (∂�)
+ ρ0‖Q‖

H
− 1

2 (∂�)

)
|||(ψ, v)|||, (5.14)

so that

|||F |||∗ ≤ Cρ
− 1

2
0

(
‖M‖

H
− 1

2 (∂�)
+ ρ0‖Q‖

H
− 1

2 (∂�)

)
, (5.15)

with C only depending on M0, M1, s0, ξ0, σ0, ρ0
h

. By the Riesz representation theorem, there 
exists a unique (ϕ, w) ∈ H such that a((ϕ, w), (ψ, v)) = F(ψ, v) for every (ψ, v) ∈ H, that is 
(5.1) holds for every (ψ, v) ∈H. Moreover

|||(ϕ,w)||| = |||F |||∗. (5.16)
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Let us prove (5.1) for every (ψ, v) ∈ H 1(�, R2) × H 1(�). Given any ψ ∈ H 1(�, R2) and any 
v ∈ H 1(�), let

ψ̃ = ψ − ψ�, ṽ = v + ψ� · (x − x�) − v�.

We have that ψ̃ + ∇ṽ = ψ + ∇v. Hence, by the compatibility conditions (5.2)–(5.3),

∫
�

P∇ϕ · ∇ψ + S(ϕ + ∇w) · (ψ + ∇v) =
∫
∂�

M · ψ̃ + Qṽ =
∫
∂�

(M · ψ + Qv)−

− ψ� ·
∫
∂�

(M − Qx) − v�

∫
∂�

Q −
⎛⎝ψ� · x�

∫
∂�

Q

⎞⎠=
∫
∂�

M · ψ + Qv. (5.17)

Finally, (5.7) follows from (5.13), (5.15) and (5.16). �
6. H 2 regularity

Our main result is the following global regularity theorem.

Theorem 6.1. Let � be a bounded domain in R2 with boundary of class C1,1, with con-
stants ρ0, M0, satisfying (4.1), (4.2). Let S ∈ C0,1(�, L(M2)) and P ∈ C0,1(�, L(M2, M2))

satisfy the symmetry conditions (3.32), (3.33) and the ellipticity conditions (3.37), (3.38). Let 
M ∈ H

1
2 (∂�, R2) and Q ∈ H

1
2 (∂�) satisfy the compatibility conditions (5.2), (5.3), respec-

tively. Then, the weak solution (ϕ, w) ∈ H 1(�, R2) × H 1(�) of the problem (1.1)(a)–(1.1)(d), 
normalized by the conditions (5.6), is such that (ϕ, w) ∈ H 2(�, R2) × H 2(�) and

‖ϕ‖H 2(�) + 1

ρ0
‖w‖H 2(�) ≤ C

ρ2
0

(
‖M‖

H
1
2 (∂�)

+ ρ0‖Q‖
H

1
2 (∂�)

)
, (6.1)

where the constant C > 0 only depends on M0, M1, s0, ξ0, σ0, ρ0
h

, ‖S‖C0,1(�) and ‖P‖C0,1(�).

The proof of the theorem is mainly based on the approach to regularity for second order elliptic 
systems adopted, for instance, in [3] and [4]. For the sake of completeness, the main steps of the 
proof are recalled in the sequel.

Let us introduce the following notation. Let

B+
σ = {(y1, y2) ∈ R2| y2

1 + y2
2 < σ 2, y2 > 0} (6.2)

be the hemidisk of radius σ , σ > 0, and let

�σ = {(y1, y2) ∈ R2| −σ ≤ y1 ≤ σ, y2 = 0} (6.3)

and

�+ = ∂B+ \ �σ (6.4)
σ σ
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be the flat and the curved portion of the boundary ∂B+
σ , respectively. Moreover, let

H 1
�+

σ
(B+

σ ) = {g ∈ H 1(B+
σ )| g = 0 on �+

σ }. (6.5)

Without loss of generality, hereinafter we will assume ρ0 = 1. Moreover, the dependence of 
the constants C on the plate thickness h will be not explicitly indicated in the estimates below.

By the regularity of ∂�, we can construct a finite collection of open sets �0, {�j }Nj=1 such that 

� = �0 ∪
(⋃N

j=1 T −1
(j) (B+

σ
2
)
)

, �0 ⊂ �δ0 , where �δ0 = {x ∈ � | dist (x, ∂�) > δ0}, δ0 > 0 only 
depends on M0, and N only depends on M0, M1. Here, T(j), j = 1, ..., N , is a homeomorphism 
of C1,1 class which maps �j into Bσ , �j ∩� into B+

σ , �j ∩ ∂� into �σ , and ∂�j ∩� into �+
σ .

The estimate of (‖ϕ‖H 2(�0)
+ ‖w‖H 2(�0)

) is a consequence of the following local interior 
regularity result, whose proof can be obtained, for example, by adapting the arguments illustrated 
in [4].

Theorem 6.2. Let us denote by Bσ the open ball in R2 centered at the origin and with radius σ , 
σ > 0. Let (ϕ, w) ∈ H 1(Bσ , R2) × H 1(Bσ ) be such that

a((ϕ,w), (ψ, v)) = 0, for every (ψ, v) ∈ H 1(Bσ ,R2) × H 1(Bσ ), (6.6)

where

a((ϕ,w), (ψ, v)) =
∫
Bσ

P∇ϕ · ∇ψ +
∫
Bσ

S(ϕ + ∇w) · (ψ + ∇v), (6.7)

with P ∈ C0,1(Bσ , L(M2, M2)), S ∈ C0,1(Bσ , L(M2)) satisfying the symmetry conditions 
(3.32), (3.33) and the ellipticity conditions (3.37), (3.38). Then, (ϕ, w) ∈ H 2(Bσ , R2) ×H 2(Bσ )

and we have

‖ϕ‖H 2(B σ
2

) + ‖w‖H 2(B σ
2

) ≤ C
(‖ϕ‖H 1(Bσ ) + ‖w‖H 1(Bσ )

)
, (6.8)

where the constant C > 0 only depends on ξ0, σ0, ‖S‖C0,1(Bσ ) and ‖P‖C0,1(Bσ ).

In order to complete the proof of the regularity estimate, let us control the quantity 
(‖ϕ‖H 2(�j ∩�) + ‖w‖H 2(�j ∩�)) for every j ∈ {1, ..., N}.

For every v ∈ H 1
∂�j ∩�(�j ∩ �) and for every ψ ∈ H 1

∂�j ∩�(�j ∩ �, R2), the solution (ϕ, w)

to (1.1)(a)–(1.1)(d) satisfies the weak formulation

∫
�j ∩�

P(x)∇xϕ · ∇xψdx +
∫

�j ∩�

S(x)(ϕ + ∇xw) · (ψ + ∇xv)dx =

=
∫

�j ∩∂�

(Qv + M · ψ)dsx. (6.9)
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Let us introduce the change of variables

y = T(j)(x), y ∈ B+
σ , (6.10)

x = T −1
(j) (y), x ∈ �j ∩ �, (6.11)

and let us define

w̃(y) = w(T −1
(j) (y)), ϕ̃r (y) = ϕr(T −1

(j) (y)), r = 1,2, (6.12)

ṽ(y) = v(T −1
(j) (y)), ψ̃r (y) = ψr(T −1

(j) (y)), r = 1,2. (6.13)

Then, the pair (ϕ̃, ̃w) ∈ H 1(B+
σ , R2) × H 1(B+

σ ) satisfies

ã+((ϕ̃, w̃), (ψ̃, ṽ)) = F̃+(ψ̃, ṽ), for every (ψ̃, ṽ) ∈ H 1
�+

σ
(B+

σ ,R2) × H 1
�+

σ
(B+

σ ), (6.14)

where

ã+((ϕ̃, w̃), (ψ̃, ṽ)) =

=
∫

B+
σ

P̃(y)∇yϕ̃ · ∇yψ̃dy +
∫

B+
σ

S̃(y)(ϕ̃ + LT ∇yw̃) · (ψ̃ + LT ∇y ṽ)dy, (6.15)

F̃+(ψ̃, ṽ) =
∫
�σ

(Q̃ṽ + M̃ · ψ̃)dsy, (6.16)

with

(L)ks = Lks = ∂Tk

∂xs

, k, s = 1,2, (6.17)

ι = |detL|, ι∗ =
√(

∂T −1(y)

∂y

)T
∂T −1(y)

∂y

∣∣
y1,y2=0 , (6.18)

(̃P(y))ilrk = P̃ilrk(y) =
2∑

j,s=1

Pijrs(T −1(y))LksLlj ι
−1, i, l, r, k = 1,2, (6.19)

S̃(y) = S(T −1(y))ι−1, (6.20)

Q̃(y) = Q(T −1(y))ι∗, M̃(y) = M(T −1(y))ι∗. (6.21)

Since L ∈ C0,1(�j ∩�, M2) is nonsingular and there exist two constants c1, c2, only depending 
on M0, such that 0 < c1 ≤ ι ≤ c2, c1 ≤ ι∗ ≤ c2 in �j , the fourth order tensor ̃P in (6.19) has the 
following properties:
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i) (major symmetry) for every 2 × 2 matrices A and B we have

P̃A · B = A · P̃B; (6.22)

ii) (strong ellipticity) there exists a constant κ0, κ0 > 0 and κ0 only depending on M0 and ξ0, 
such that for every pair of vectors a, b ∈R2 and for every y ∈ B

+
σ we have

P̃(y)(a ⊗ b) · (a ⊗ b) ≥ κ0|a|2|b|2; (6.23)

iii) (regularity) ̃P ∈ C0,1(B
+
σ , L(M2, M2)).

The matrix ̃S defined in (6.20) is symmetric and there exists a constant χ0, χ0 > 0 only depending 
on σ0 and M0, such that for every vector a ∈R2 and for every y ∈ B

+
σ we have

S̃(y)a · a ≥ χ0|a|2. (6.24)

Moreover, S̃ ∈ C0,1(B
+
σ , M2).

We now use the regularity up to the flat boundary of the hemidisk B+
1 stated in the next 

theorem, whose proof is postponed in the Appendix.

Theorem 6.3. Under the above notation and assumptions, let (ϕ̃, ̃w) ∈ H 1(B+
σ , R2) × H 1(B+

σ )

defined in (6.12) be the solution to (6.14). Then (ϕ̃, ̃w) ∈ H 2(B+
σ
2
, R2) × H 2(B+

σ
2
) and we have

‖ϕ̃‖H 2(B+
σ
2

) + ‖w̃‖H 2(B+
σ
2

)

≤ C

ρ2
0

(
‖Q̃‖

H
1
2 (�σ )

+ ‖M̃‖
H

1
2 (�σ )

+ ρ2
0

(
‖ϕ̃‖H 1(B+

σ ) + ‖w̃‖H 1(B+
σ )

))
, (6.25)

where the constant C > 0 only depends on M0, ξ0, σ0, ‖S‖C0,1(�) and ‖P‖C0,1(�).

Recalling that � = �0 ∪
(⋃N

j=1 T −1
(j) (B+

σ
2
)
)

, the estimate (6.1) follows by applying the inverse 

mapping T −1
(j) to (6.25), j = 1, ..., N , and by using the interior estimate (6.8).

7. Three spheres inequality and strong unique continuation

Our approach to derive a three spheres inequality for the solutions to the Reissner–Mindlin 
system consists in the derivation of a new system of four scalar differential equations in Laplacian 
principal part from (1.1)(a)–(1.1)(b). This can be made following the approach developed by Lin, 
Nakamura and Wang in [6], which is based on the introduction of a new independent variable, 
see (7.18) below. In order to perform this reduction, it is essential to assume that both the plate 
bending tensor P and the plate shearing matrix S are isotropic.

In the present section we assume that � is a bounded domain in R2 of Lipschitz class with 
constants ρ0, M0 and we assume that the plate is isotropic with Lamé parameters λ, μ. We 
assume that λ, μ ∈ C0,1(�) and that, for given positive constants α0, α1, γ0, they satisfy the 
following conditions
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μ(x) ≥ α0, 2μ(x) + 3λ(x) ≥ γ0, (7.1)

and

‖λ‖C0,1(�) + ‖μ‖C0,1(�) ≤ α1. (7.2)

We assume that the plate shearing matrix has the form SI2 where S ∈ C0,1(�) is the real 
valued function defined by

S = Eh

2(1 + ν)
, (7.3)

where

E = μ(2μ + 3λ)

μ + λ
, ν = λ

2(μ + λ)
(7.4)

and we assume that plate bending tensor P has the following form

PA = B
[
(1 − ν)Â + νtr(A)I2

]
, for every 2 × 2 matrix A, (7.5)

where

B = Eh3

12(1 − ν2)
. (7.6)

By (7.1) and (7.2) and noticing that S = hμ, we have that

hσ0 ≤ S, in �, ‖S‖C0,1(�) ≤ hσ1 (7.7)

and

h3

12
ξ0|Â|2 ≤ PA · A ≤ h3

12
ξ1|Â|2, in �, (7.8)

for every 2 × 2 matrix A, where

σ0 = α0, σ1 = α1, ξ0 = min{2α0, γ0}, ξ1 = 2α1. (7.9)

Theorem 7.1. Under the above hypotheses on �, S and P, let (ϕ, w) ∈ H 2
loc(�, R2) × H 2

loc(�)

be a solution of the system{
div (S(ϕ + ∇w)) = 0, in �, (a)

div (P∇ϕ) − S(ϕ + ∇w) = 0, in �. (b)
(7.10)

Let x̄ ∈ � and R1 > 0 be such that BR1(x̄) ⊂ �. Then there exists θ ∈ (0, 1), θ depending on 
α0, α1, γ0, 

ρ0 only, such that if 0 < R3 < R2 < R1 and R3 ≤ R2 ≤ θ then we have

h R1 R1
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∫
BR2 (x̄)

|V |2 ≤ C

⎛⎜⎝ ∫
BR3 (x̄)

|V |2
⎞⎟⎠

τ ⎛⎜⎝ ∫
BR1 (x̄)

|V |2
⎞⎟⎠

1−τ

(7.11)

where

|V |2 = |ϕ|2 + 1

ρ2
0

|w|2, (7.12)

τ ∈ (0, 1) depends on α0, α1, γ0, R3
R1

, R2
R1

, ρ0
h

only and C depends on α0, α1, γ0, R2
R1

, ρ0
h

only. In 
addition, keeping R2, R1 fixed, we have

τ =O
(
|logR3|−1

)
, as R3 → 0. (7.13)

Proof. It is not restrictive to assume that x̄ = 0 ∈ �. In order to prove (7.11), first we introduce 
an auxiliary unknown which allows us to obtain a new system of equations with the Laplace 
operator as the principal part, then we obtain (7.11) by applying [6, Theorem 1.1]. By (7.3) and 
(7.5) we have

div (P∇ϕ) − S(ϕ + ∇w) =

= h3

12

[
div
(
μ
(
∇ϕ + ∇T ϕ

))
+ ∇

(
2λμ

2μ + λ
divϕ

)
− 12μ

h2
(ϕ + ∇w)

]
. (7.14)

Now we denote

a = 2μ + 3λ

4(λ + μ)
, b = 4(λ + μ)

2μ + λ
, (7.15)

G =
(
∇ϕ + ∇T ϕ

) ∇μ

μ
−
[∇μ

μ
+ μ(2μ + 3λ)

2μ + λ
∇
(

1

μ

)]
divϕ

and

v = bdivϕ. (7.16)

By (7.14) we have

div (P∇ϕ) − S(ϕ + ∇w) = h3μ

12

[
�ϕ + ∇(av) + G − 12

h2
(ϕ + ∇w)

]
,

therefore equation (7.10)(b) is equivalent to the equation

�ϕ + ∇(av) + G − 12
(ϕ + ∇w) = 0. (7.17)
h2
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Now, noticing that (7.15) gives a + 1
b

= 1, we have

div (�ϕ + ∇(av)) = �
(v

b

)
+ �(av) = �

((
a + 1

b

)
v

)
= �v. (7.18)

Now we apply the divergence operator to both the sides of (7.17) and by (7.18) we get

�v + divG − 12

h2
div (ϕ + ∇w) = 0. (7.19)

Finally, observing that by equation (7.10)(a) we have

div (ϕ + ∇w) = div

(
1

S
S(ϕ + ∇w)

)
= ∇

(
1

S

)
· S(ϕ + ∇w),

by (7.19) we obtain

�v + divG − 12

h2
∇
(

1

S

)
· S(ϕ + ∇w) = 0. (7.20)

On the other side by (7.16) we have

div (S(ϕ + ∇w)) = S�w + S

b
v + ∇S · ϕ + ∇S · ∇w, (7.21)

therefore, by (7.21), (7.10)(a), (7.3) and (7.4), we have

�w + 2μ + λ

4(λ + μ)
v + ∇S

S
· ϕ + ∇S

S
· ∇w = 0. (7.22)

Now, in order to satisfy the homogeneity of norms we define

w̃ = w, ϕ̃ = ρ0ϕ, ṽ = ρ2
0v

and

G̃ = ρ0G =
(
∇ϕ̃ + ∇T ϕ̃

) ∇μ

μ
−
[∇μ

μ
+ μ(2μ + 3λ)

2μ + λ
∇
(

1

μ

)]
div ϕ̃.

By (7.17), (7.20), (7.22), we have that w̃, ̃ϕ, ̃v satisfy the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
�w̃ + 2μ+λ

4ρ2
0 (λ+μ)

ṽ + ∇S
ρ0S

· ϕ̃ + ∇S
S

· ∇w̃ = 0, in �,

�ϕ̃ + ∇( a
ρ0

ṽ) + G̃ − 12
h2 (ϕ̃ + ρ0∇w̃) = 0, in �,

�ṽ + ρ0div G̃ − 12
2 ρ0∇

(
1
)

· S(ϕ̃ + ρ0∇w̃) = 0, in �.

(7.23)
h S
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The above system has the same form of system (1.5) of [6]. As a matter of fact, as soon as we 
introduce the following notation

u = (w̃, ϕ̃) ,

P1(x, ∂)̃v =
⎛⎝ 2μ+λ

4ρ2
0 (λ+μ)

ṽ

∇( a
ρ0

ṽ)

⎞⎠ , P2(x, ∂)u =
( ∇S

ρ0S
· ϕ̃ + ∇S

S
· ∇w̃

G̃ − 12
h2 (ϕ̃ + ρ0∇w̃),

)

Q1(x, ∂)̃v = 0, Q2(x, ∂)u = −12

h2
ρ0∇

(
1

S

)
· S(ϕ̃ + ρ0∇w̃),

system (7.23) is equivalent to{
�u + P1(x, ∂)̃v + P2(x, ∂)u = 0, in �,

�ṽ + Q1(x, ∂)̃v + Q2(x, ∂)u + ρ0div G̃ = 0, in �.
(7.24)

Notice that, likewise to [6], Pj (x, ∂) and Qj(x, ∂), j = 1, 2, are first order operators with L∞
coefficients. In addition, although G̃ is slightly different from the term G of [6], the proof of 
Theorem 1.1 (after the scaling x → R1x) of such a paper can be used step by step to derive 
(7.11). �
Corollary 7.2. Assume that S, P and � satisfy the same hypotheses of 7.1, let x0 ∈ � and let 
(ϕ, w) ∈ H 2

loc(�, R2) × H 2
loc(�) be a solution of the system (7.10)(a)–(7.10)(b) such that

‖ϕ‖L2(Br (x̄)) + 1

ρ0
‖w‖L2(Br (x̄)) =O

(
rN
)

, as r → 0, ∀N ∈ N (7.25)

then ϕ ≡ 0, w ≡ 0 in �.

Proof. It is standard consequence of the inequality (7.11) and of the connectedness of �. For 
more details see [7, Corollary 6.4]. �
8. Appendix

In this appendix we sketch a proof of Theorem 6.3.
Without loss of generality, we can assume σ = 1. Our proof consists of two main steps. As 

first step, we estimate the partial derivatives ∂
∂y1

∇ϕ̃, ∂
∂y1

∇w̃ along the direction e1 parallel to the 

flat boundary �1 of B+
1 . The second step will concern with the estimate of the partial derivatives 

∂
∂y2

∇ϕ̃, ∂
∂y2

∇w̃ along the direction orthogonal to the flat boundary �1.

First step. (Estimate of the tangential derivatives)
Let ϑ ∈ C∞

0 (R2) be a function such that 0 ≤ ϑ(y) ≤ 1 in R2, ϑ ≡ 1 in Bρ , ϑ ≡ 0 in R2 \ Bη, 
and |∇kϑ | ≤ C, k = 1, 2, where ρ = 3

4 , η = 7
8 and C > 0 is an absolute constant.

For every functions ψ̃ ∈ H 1
�+

1
(B+

1 , R2), ̃v ∈ H 1
�+

1
(B+

1 ), we still denote by ψ̃ ∈ H 1(R2+, R2), 

ṽ ∈ H 1(R2+) their corresponding extensions to R2+ obtained by taking ψ̃ = 0, ̃v = 0 in R2+ \ B+.
1
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Given a real number s ∈ R \ {0}, the difference operator in direction y1 of any function f is 
defined as

(τ1,sf )(y) = f (y + se1) − f (y)

s
. (8.1)

In the sequel we shall assume |s| ≤ 1
16 . We note that if ϕ̃ ∈ H 1(B+

1 , R2), w̃ ∈ H 1(B+
1 ), then 

τ1,s(ϑϕ̃) ∈ H 1
�+

1
(B+

1 , R2) and τ1,s(ϑw̃) ∈ H 1
�+

1
(B+

1 ).

We start by evaluating the bilinear form ̃a+((·, ·), (·, ·)) defined in (6.15) with ϕ̃, w̃ replaced 
by τ1,s(ϑϕ̃), τ1,s(ϑw̃), respectively. Next, we elaborate the expression of ̃a+((·, ·), (·, ·)) and, by 
integration by parts, we move the difference operator in direction y1 from the functions ϑϕ̃, ϑw̃

to the functions ψ̃ , ̃v. After these calculations, we can write

ã+((τ1,s (ϑϕ̃), τ1,s(ϑw̃)), (ψ̃, ṽ)) = −ã+((ϕ̃, w̃), (ϑτ1,−sψ̃, ϑτ1,−s ṽ)) + r̃ , (8.2)

where the remainder ̃r can be estimated as follows

|̃r| ≤ C
(
‖ϕ̃‖H 1(B+

1 ) + ‖w̃‖H 1(B+
1 )

)(
‖∇ψ̃‖L2(B+

1 ) + ‖∇ṽ‖L2(B+
1 )

)
, (8.3)

where the constant C > 0 depends on M0, ‖P‖C0,1(�) and ‖S‖C0,1(�) only. It should be noticed 
that a constructive Poincaré inequality for functions belonging to H 1(B+

1 ) and vanishing on the 
portion �+

1 of the boundary of B+
1 has been used in obtaining (8.3), see, for example, [10].

Since ψ̃ ∈ H 1
�+

1
(B+

1 , R2), ̃v ∈ H 1
�+

1
(B+

1 ), the functions ϑτ1,−sψ̃ , ϑτ1,−s ṽ are test functions in 

the weak formulation (6.14), so that the opposite of the first term on the right hand side of (8.2)
can be written as

ã+((ϕ̃, w̃), (ϑτ1,−sψ̃, ϑτ1,−s ṽ)) = F̃+(ϑτ1,−sψ̃, ϑτ1,−s ṽ) (8.4)

and, by using trace inequalities, we have

|F̃+(ϑτ1,−sψ̃, ϑτ1,−s ṽ)| ≤ C

(
‖Q̃‖

H
1
2 (�1)

· ‖∇ṽ‖L2(B+
1 ) + ‖M̃‖

H
1
2 (�1)

· ‖∇ψ̃‖L2(B+
1 )

)
,

(8.5)

where C > 0 only depends on M0. By (8.2)–(8.5) we have

ã+((τ1,s (ϑϕ̃), τ1,s(ϑw̃)), (ψ̃, ṽ)) ≤

≤ C

(
‖Q̃‖

H
1
2 (�1)

+ ‖M̃‖
H

1
2 (�1)

+ ‖ϕ̃‖H 1(B+
1 ) + ‖w̃‖H 1(B+

1 )

)
·

·
(
‖∇ṽ‖L2(B+

1 ) + ‖∇ψ̃‖L2(B+
1 )

)
, (8.6)

for every (ψ̃, ̃v) ∈ H 1
�+

1
(B+

1 , R2) ×H 1
�+

1
(B+

1 ), where C > 0 only depends on M0, ‖P‖C0,1(�) and 

‖S‖ 0,1 .
C (�)



A. Morassi et al. / J. Differential Equations 263 (2017) 811–840 837
We choose in (8.6) the test functions

ψ̃ = τ1,s(ϑϕ̃), ṽ = τ1,s(ϑw̃). (8.7)

The next step consists in estimating from below the quadratic form ̃a+((·, ·), (·, ·)). To perform 
this estimate, we write

ã+((τ1,s (ϑϕ̃), τ1,s(ϑw̃)), (τ1,s (ϑϕ̃), τ1,s(ϑw̃)) = ãP̃+(τ1,s(ϑϕ̃)) + ãS̃+(τ1,s(ϑϕ̃), τ1,s(ϑw̃)),

(8.8)

where

ãP̃+(τ1,s(ϑϕ̃)) =
∫

B+
1

P̃∇(τ1,s(ϑϕ̃)) · ∇(τ1,s(ϑϕ̃)), (8.9)

ãS̃+(τ1,s(ϑϕ̃), τ1,s (ϑw̃)) =

=
∫

B+
1

S̃
(
τ1,s(ϑϕ̃) + LT ∇(τ1,s(ϑw̃))

)
·
(
τ1,s(ϑϕ̃) + LT ∇(τ1,s(ϑw̃))

)
. (8.10)

By (6.24), the matrix S̃ is definite positive, and then ̃aS̃+(·, ·) can be easily estimated from below 
as follows

ãS̃+(τ1,s(ϑϕ̃), τ1,s (ϑw̃)) ≥ C

∫
B+

1

|τ1,s(ϑϕ̃) + LT ∇(τ1,s(ϑw̃))|2, (8.11)

where C > 0 only depends on M0 and σ0.
The fourth order tensor ̃P neither has the minor symmetries nor is strongly convex. Then, in 

order to estimate from below ̃aP̃+(τ1,s(ϑϕ̃)), we found convenient apply the inverse transforma-
tion T −1

(j) (see (6.11)) and use the strong convexity of the tensor P. To simplify the notation, let 

f̃ ≡ τ1,s(ϑϕ̃) ∈ H 1
�+

1
(B+

1 , R2). We have

ãP̃+(f̃ ) =
∫

B+
1

P̃(y)∇yf̃ · ∇yf̃ dy =
∫

�j ∩�

P(x)∇xf · ∇xf dx ≥ C

∫
�j ∩�

|∇̂xf |2dx, (8.12)

where f (x) = f̃ (T(j)(x)) and C > 0 is a constant only depending on ξ0. By Korn’s inequality on 
H�+

1
(B+

1 , R2) (see, for example, Theorem 5.7 in [5]) and by the change of variables y = T(j)(x), 
we have∫

�j ∩�

|∇̂xf |2dx ≥ C

∫
�j ∩�

|∇xf |2dx =
∫

B+
|∇yf̃ L|2ι−1dy ≥ C′

∫
B+

|∇yf̃ |2dy, (8.13)
1 1
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where C′ > 0 only depends on M0, and in the last step we have taken into account that the matrix 
L is nonsingular. Then, by (8.12) and (8.13), we have

ãP̃+(τ1,s(ϑϕ̃)) ≥ C

∫
B+

1

|∇(τ1,s(ϑϕ̃))|2, (8.14)

where C > 0 only depends on M0 and ξ0. Now, by inserting the estimates (8.11) and (8.14) in 
(8.6), with ψ̃ , ̃v as in (8.7), and by Poincaré’s inequality in H 1

�+
1
(B+

1 ), we have

‖∇(τ1,s(ϑϕ̃))‖L2(B+
1 ) + ‖τ1,s(ϑϕ̃) + LT ∇(τ1,s(ϑw̃))‖L2(B+

1 ) ≤

≤ C

(
‖Q̃‖

H
1
2 (�1)

+ ‖M̃‖
H

1
2 (�1)

+ ‖ϕ̃‖H 1(B+
1 ) + ‖w̃‖H 1(B+

1 )

)
(8.15)

where C > 0 only depends on M0, ξ0, σ0, ‖P‖C0,1(�) and ‖S‖C0,1(�). Taking the limit as s → 0
and by the definition of the function ϑ , we have

∥∥∥∥ ∂

∂y1
∇ϕ̃

∥∥∥∥
L2(B+

ρ )

+
∥∥∥∥ ∂ϕ̃

∂y1
+ LT ∂

∂y1
∇w̃

∥∥∥∥
L2(B+

ρ )

≤

≤ C

(
‖Q̃‖

H
1
2 (�1)

+ ‖M̃‖
H

1
2 (�1)

+ ‖ϕ̃‖H 1(B+
1 ) + ‖w̃‖H 1(B+

1 )

)
(8.16)

where C > 0 only depends on M0, ξ0, σ0, ‖P‖C0,1(�) and ‖S‖C0,1(�). Therefore, the tangential 

derivatives ∂
∂y1

∇ϕ̃, ∂
∂y1

∇w̃ exist and belong to L2(B+
ρ ).

Second step. (Estimate of the normal derivatives)
To obtain an analogous estimate of the normal derivatives ∂

∂y2
∇ϕ̃, ∂

∂y2
∇w̃ we need to prove 

the following two facts:∣∣∣∣∣∣∣
∫

B+
ρ

∂ϕ̃r

∂y2

∂ψ̃

∂y2

∣∣∣∣∣∣∣≤ C‖ψ̃‖L2(B+
ρ ), for every ψ̃ ∈ C∞

0 (B+
ρ ), r = 1,2, (8.17)

∣∣∣∣∣∣∣
∫

B+
ρ

∂w̃

∂y2

∂ṽ

∂y2

∣∣∣∣∣∣∣≤ C‖̃v‖L2(B+
ρ ), for every ṽ ∈ C∞

0 (B+
ρ ), (8.18)

for some constant C > 0 depending only on the data. Since

ã+((ϕ̃, w̃), (ψ̃, ṽ)) = 0, for every (ψ̃, ṽ) ∈ C∞
0 (B+

ρ ,R2) × C∞
0 (B+

ρ ), (8.19)

by integration by parts we have
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∫
B+

ρ

Pir ϕ̃r,2ψ̃i,2 +
∫

B+
ρ

S22w̃,2 ṽ,2 =
∫

B+
ρ

2∑
i,j,r,s=1

(j,s)�=(2,2)

(P̃ijrs ϕ̃r,s),j ψ̃i−

−
∫

B+
ρ

⎛⎜⎜⎝S̃ϕ̃ · ψ̃ − (S̃ij ϕ̃j (L
T )ik),k ṽ + S̃(LT ∇w̃) · ψ̃ −

2∑
i,j=1

(i,j)�=(2,2)

((LS̃LT )ij w̃,j ),i ṽ

⎞⎟⎟⎠ , (8.20)

for every (ψ̃, ̃v) ∈ C∞
0 (B+

ρ , R2) × C∞
0 (B+

ρ ), where

Pir = P̃i2r2, i, r = 1,2, S22 = (LS̃LT )22. (8.21)

By the properties (6.22)–(6.23) of P̃ and the definite positiveness of S̃ (see (6.24)), the matrix 
(Pir )i,r=1,2 is symmetric and positive definite and S22 > 0.

Let ̃v = 0 in (8.20). Then, by using estimate (8.16) we have

∣∣∣∣∣∣∣
∫

B+
ρ

Pir ϕ̃r,2ψ̃i,2

∣∣∣∣∣∣∣≤
≤ C

(
‖Q̃‖

H
1
2 (�1)

+ ‖M̃‖
H

1
2 (�1)

+ ‖ϕ̃‖H 1(B+
1 ) + ‖w̃‖H 1(B+

1 )

)
‖ψ̃‖L2(B+

ρ ), (8.22)

for every ψ̃ ∈ C∞
0 (B+

ρ ), where the constant C > 0 only depends on M0, ξ0, σ0, ‖P‖C0,1(�) and 

‖S‖C0,1(�). This inequality implies the existence in L2(B+
ρ ) of the derivative ∂

∂y2

(∑2
r=1 Pir ϕ̃r,2

)
, 

i = 1, 2. Then, it is easy to see that this condition implies ∂
2ϕ̃r

∂y2
2

∈ L2(B+
ρ ), r = 1, 2.

Similarly, choosing ψ̃ = 0 in (8.20) we have

∣∣∣∣∣∣∣
∫

B+
ρ

S22w̃,2 ṽ,2

∣∣∣∣∣∣∣≤
≤ C

(
‖Q̃‖

H
1
2 (�1)

+ ‖M̃‖
H

1
2 (�1)

+ ‖ϕ̃‖H 1(B+
1 ) + ‖w̃‖H 1(B+

1 )

)
‖̃v‖L2(B+

ρ ), (8.23)

for every ̃v ∈ C∞
0 (B+

ρ ), where the constant C > 0 only depends on M0, ξ0, σ0, ‖P‖C0,1(�) and 

‖S‖C0,1(�). As before, this condition implies the existence in L2(B+
ρ ) of ∂

2w̃

∂y2
2

.

Finally, from (8.22) and (8.23), the L2-norm of ∂2ϕ̃r

∂y2
2

, r = 1, 2, and ∂2w̃

∂y2
2

can be estimated in 

terms of known quantities, and the proof of Theorem 6.3 is complete.
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