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Abstract: 

The Tesla turbine seems to offer several points of attractiveness when applied to low-power applications. 
Indeed, it is a simple, reliable, and low cost machine. The principle of operation of the turbine relies on the 
exchange of momentum due to the shear forces originated by the flow of the fluid through a tight gap 
among closely stacked disks. 

The Tesla turbine did not raise much interest when Tesla first spread his idea; in recent years, as micro 
power generation gained attention on the energy market place, this original expander raised renewed 
interest. 

The mathematical model of the Tesla turbine rotor is revised in this paper, and adapted to real gas 
operation. The model is first validated by comparison with other assessed literature models. The optimal 
configuration of the rotor geometry is then investigated running a parametric analysis of the fundamental 
design parameters. High values of efficiency (isolated rotor) were obtained for the optimal configuration of 
the turbine, which appears interesting for small-scale power generation. The rotor efficiency depends on 
the configuration of the disks, particularly on the gap and on the outlet diameter, which determines largely 
the kinetic energy at discharge. 

Finally, the expander is located on the Balje diagram and it is found to be potentially competitive with 
volumetric expanders or drag turbines.  
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1. Micro generation and the Tesla Turbine 
In recent years, distributed micro generation of power has become of paramount consideration by 

industries, governments and research institutions. 

One of the main problems of micro generation of power in thermal energy conversion applications 

is related to the expander, as this component often presents high manufacturing costs and low 

reliability. The Tesla turbine seems to tackle these problems. Its simple structure ensures a very 

reliable and low-cost machine. 

The Tesla turbine was first patented by Tesla in 1913 [1]. The first description of the bladeless 

turbine was given in the patent (Figure 1). It can be described as a multiple parallel flat rigid disks 

assembly connected to a rotating shaft. The disks are arranged co-axially in order to maintain a very 

small gap between them. The radial-inflow admission of the working fluid is from one or more 

tangential nozzles, providing a strong tangential component. The working fluid moves from the 

inlet to the outlet radius due to the difference in pressure determined by friction and by the 

exchange of momentum, and exits from openings made on the disks and/or shaft at the inner radius. 
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Fig. 1 – Figures from Tesla’s Patent, 1913 [1] 

The Tesla turbine did not encounter much success when it was proposed, and eventually it was not 

investigated deeply and further developed for a long time. 

Only in the 1950s Armstrong was built an experimental test rig to investigate the performance of 

the disk turbine [2]. He  conducted a test campaign, with steam as working fluid and different 

nozzle configurations. A valuable result was the understanding of one of the causes of inefficiency. 

Indeed, it was found that the nozzle flow strongly affects the performance of the turbine. 

After the Armstrong tests the Tesla turbine was not investigated for another 15 years. Only with 

Rice [3], a sound analytic/numerical model, based on the physics of the flow, was developed. The 

radial velocity rises proceeding towards the centre due to the reduction of the flow area. The 

tangential velocity is determined by the local balance of the force components 

(momentum/friction). The mathematical model performed a notable simplification of the Navier-

Stokes equations, allowing tackling the solution with the first computers available at the time. The 

main assumptions were to consider steady flow of an inviscid incompressible working fluid.  

Rice built and tested 6 different types of disk turbines, with air as working fluid. The first turbine 

was carefully built following Tesla’s patent indications. The results of his work demonstrated the 

feasibility of the multiple-disk turbine for low-power application. On the other hand, he also found  

that the Tesla turbine would not be competitive with conventional turbines for medium to high 

power application, mainly because the sum of several losses (non-isentropic expansion in the 

nozzles, uncontrolled diffusion at the outlet of the rotor, bearing and seal losses…) increases with 

the power output.  

After Rice’s pioneer work, research on the Tesla turbine was set aside until recent times. Lately, 

new research has flourished on the subject. 

Hoya and Guha [4] designed and built a new test rig for measuring the output torque and power of a 

Tesla turbine. In a following work [5], Guha investigated the nozzle recognizing it as the source of 

the major irreversibility according to their test results; he demonstrates that a careful design of the 

nozzle could reduce the nozzle losses by 40-50 %. Also Neckel and Godinho [6] focused their 

research on nozzle geometry. In their research 10 nozzles were designed, manufactured and tested 

with air as working fluid. Their study confirmed that the nozzle is the critical component of the 

turbine and that an adequate design could contribute to increase the overall efficiency of the turbine. 

Carey [7] presented an assessment of the disc turbine for a small-scale application. He developed an 

analytical solution of the governing equations, declaring an achievable isentropic efficiency of 75% 

in optimal design conditions. A complete computational and theoretical modelling of the flow 
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inside a Tesla turbine was presented by Carey [8]. In this work, he fully explains the advantages and 

drawbacks of computational and analytical analysis. Furthermore, Carey also discusses the 

advantages of using this expander for green-energy applications. Guha and Sengupta [9, 10] 

developed an accurate fluid dynamics model of the turbine, analyzing individually the role of each 

force (centrifugal, Coriolis, inertial and viscous). Lemma et al. and Guha and Sengupta [11, 12], 

also developed a CFD analysis and a general characterization of the performance of the Tesla 

turbine. 

The development of a micro Tesla turbine was investigated by Romanin et al. [13]. In this study, the 

experimental data showed that a 1 cm rotor could achieve an efficiency of 36 %. Starting from these 

data, Krishan et al. developed scaling laws and gave recommendations for the development of a 1 

mm Tesla turbine [14]. Guha and Sengupta also developed a similitude study on the flow of the 

Tesla turbine [15]. The scaling laws were obtained through the use of Bucking Pi theorem, which 

lead to the definition of 7 fundamental non-dimensional numbers. A further study of Guha and 

Sengupta [16] demonstrated that the application of the Euler turbomachinery equation is consistent 

only if local velocity mass-averaged values are considered. Recent published work on the Tesla 

turbine deals with the investigation of nanofluids applications [17]; an increase of power output of 

30% appears to be possible when the volume fraction of nanoparticles increases from 0 to 0.05. 

There have been several interesting studies undertaken on experimental test rigs on the Tesla 

turbine and on the development of its mathematical model. However, there still exists a literature 

gap on the fluid dynamics optimization analysis of the rotor for compressible fluids, as well as for 

real-fluid effects which are likely using refrigerants or advanced working fluids already utilized for 

low-power and low-temperature applications. 

Therefore, the principal aim of this study is to build a mathematical model of the rotor in order to 

assess the optimum geometry, as well as to assemble a numerical tool to evaluate the performance 

of the Tesla turbine. 

Another objective is to set the machine on the Balje diagram in order to understand to which 

technologies it can be compared. 

2 Model of the Rotor Flow 

2.1 General Flow Equations and assumptions 

The model for the rotor flow is derived from [3, 7, 9] with some notable changes: 

 The hypothesis of incompressible flow with constant density is removed; 

 Density – as well as all other thermodynamic functions – is taken as a fluid property depending 

on the local variables (typically, pressure and temperature); 

 A real fluid model is applied (no perfect gas assumptions). 

Because of these assumptions, the equations are solved numerically with fluid properties locally 

evaluated by EES. In the following, the fundamental Navier-Stokes equations in cylindrical 

coordinates are briefly recalled: 
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The following assumptions allow to simplify the above equations: 

a) Steady, laminar flow;  

b) The viscous force is treated as a body force acting on the flow at each (r - θ) position; 

c) Two-dimensional flow: 

 𝑉𝑧 = 0; 

 Vr = constant across the channel  
 Vθ = constant across the channel 

d) Radial symmetric flow field, uniform at the inlet (r = r0). The flow field is thus the same for any 

θ, therefore the derivative 
∂

∂θ
 = 0 for all flow variables; 

e) (
∂p

∂θ
) negligible compared to wall friction forces. 

2.2 Simplified Flow Equations 

Taking into account the previous assumptions, the Navier-Stokes equations are reduced to:  

Continuity: 
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The integration of the reduced continuity equation (5) results in rρVr = 𝑐𝑜𝑠𝑡𝑎𝑛𝑡. Furthermore, 

knowing the mass flow rate inside each channel, it follows that locally: 

Vr =  −
mċ

2πrbρ
           (9) 
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2.3 Formulation of the viscous shear stress 

Considering a fluid element between the two disks defining the flow channel, a control volume Ve 

can be defined with base surface Ae and height b. The area wetted by the fluid Aw is Aw = 2Ae. 

Therefore, the hydraulic diameter Dh for the channel can be expressed as: 

Dh =
4[2π(r−ri)b]

[2π(r−ri)2]
= 2b         →     b =

Dh

2
       (10) 

Consequently, 
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Dh
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       (11) 

 

For laminar flow, the wall shear effect can be expressed as a function of a friction factor ζ and of 

the relative velocity of the flow. Equation (12) displays the expression of the wall shear stress, 

decomposing the relative velocity in its two components. 
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Considering U =  (
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So that: 
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The force resulting from wall friction force is given by the product of the wall shear with the wetted 

area: 

F = τwAw =
48μVe

(Dh)2
√(Vθ −  ωr)2 + Vr

2 =
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b2
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The wall friction force has a tangential and a radial component, which influence respectively the 

torque and the radial pressure gradient. 
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2.4 Solution of the rotor flow 

Figure 2 shows the local velocity triangle of the fluid element inside the rotor. 

 

U
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Vq

Vr, Wr

V

W

b

a

 

Fig. 2 – Local velocity triangle 

 

The radial component of the force is given by:  

Fr = F cos(β)           (17) 

Where β is the angle between relative velocity and the radial direction. Consequently cos(β) can be 

defined as: 

cos(β) =
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        (18) 

Substituting (18) in (17), a compact expression of the radial force is obtained:  
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Dividing (19) by the mass of the fluid element between two disks, the body force term in the radial 

direction can be expressed as: 

fr =
12μ

ρb2 Vr           (20) 

Proceeding in the same way for the  tangential direction, the wall friction term is given by: 

Fθ = −F sin(β)          (21) 
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Similarly, substituting (22) in (21), a compact expression of the tangential force is obtained: 

Fθ = −
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So that the body force term in tangential direction can be obtained: 

fθ = −
3μ

ρb2
(Vθ −  ωr)          (24) 

In order to determine the local pressure, (20) is  substituted in (6): 
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Finally, substituting (26) in (25) the pressure gradient in radial direction is given by: 
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Likewise, in order to define the tangential velocity, (24) can be  substituted in (7): 
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Obtaining finally: 
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Which determines the profile of Vq(r). 

 

2.5 Flow Model Results - Validation 

Equations (27) and (29) were programmed into a one-dimensional (r-direction) EES [18] code with 

a second-order finite difference approximation. In order to validate the model, it was decided to run 

the simulations for the same data documented in [3] and for incompressible fluid ( = constant). 

Table 1. Documented data from [3] and [7] 

Fluid Air 

Inlet Rotor Total Temperature 368 K 

Inlet Rotor Total Pressure 101 kPa 

Mass flow rate 0.00194 kg/s 

Inlet Rotor Diameter 0.1778 m 

Revolution per minute 6300 RPM 

 

The trends of pressure, tangential and radial velocity of the fluid for variable radius can be observed 

in Figure 3. The radial velocity increases decreasing the radius of the turbine, according to (9). The 

tangential velocity profile is determined by two main effects: the conservation of angular 
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momentum (which tends to increase the velocity of the fluid), and viscous forces (which conversely 

tend to decrease fluid velocity). At high xi values, viscous forces are predominant, whereas the 

conservation of angular momentum prevails at low xi values. 

 

Fig.3 Pressure, tangential and radial velocity components versus non-dimensional radius 

 

Figure 4 shows a comparison of the model results (relative tangential component of velocity) with 

the analytical formulations proposed in [7] and [9]. The results are coincident with the velocities 

calculated in [7]. The solution reported in [9] is slightly different: this is due to some different 

assumptions. In particular, the model reported in [9] considers a viscous flow, rather than 

introducing equivalent body forces along r and θ directions (simplifying hypothesis (b), assumed 

here and in [7]).  

 

 

Fig. 4 Comparison between model and literature; tangential component of relative velocity  
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3 Performance of the Tesla turbine rotor 

3.1 Performance indicators 

In order to assess the performance potential of the turbine, a parametric study needs to be 

performed. The parametric analysis should show the performance as a function of the main design 

variables, which are non-dimensionalized following common practice in turbomachinery [19]. All 

the results obtained in the parametric analysis refer to air as the working fluid. 

The flow and load coefficient can be expressed as:  

ϕ =
vr0

U0
           (30) 

ψ =
work

U0
2

2

=
Vθ0U0−Vθ1U1

U0
2

2

         (31) 

 

The specific speed and the non-dimensional specific diameter are given by:  
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(

ṁ
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)
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2
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g
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The total-to-static efficiency of the turbine is defined as:  

η =
work

∆h0s
=

Vθ0U0−Vθ1U1

(h0−h1)+
v0

2

2

         (34) 

 

Moreover, critical design parameters for the Tesla turbine were identified in the geometrical ratios 

(D1/D0) and (b0/D0); for output conditions the exit kinetic energy and the absolute flow angle, which 

should be as low as possible were identified as critical performance indicators. The exit kinetic 

energy is presented in non-dimensionalized form as:  

ξ1 =
Ekin,1

∆h0s
=

v1
2

2

(h0−h1)+
v0

2

2

          (35) 

 

And the exit fluid angle can be calculated as:  

α = tan−1 (
vθ1

vr1
)             (36) 
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3.2 Overall performance results 

The trend of the rotor efficiency as a function of (D1/D0) and (b0/D0) is shown in Figure 5. 

 

Fig. 5 Rotor Efficiency  vs D1/D0 and b0/D0 

 

The rotor efficiency is only slightly affected by different values of the exit diameter. With 

decreasing D1/D0, the larger kinetic energy at discharge, due to the higher axial component of 

velocity, appears to be somewhat compensated by the larger rotor surface available for momentum 

exchange between the fluid and the disks. 

On the other hand, the (b0/D0) parameter - the non-dimensional gap between two disks - strongly 

affects the efficiency of the rotor. This is due to the influence of the Reynolds number in the 

laminar flow regime, which can be best explained re-arranging its definition and remembering that 

b =
Dh

2
: 

Re =
ρ∗vr∗𝐷ℎ

𝜇
=  

mċ

2πrbρ
∗

ρ∗𝐷ℎ

𝜇
=

mċ

πrρ
        (37) 

 

Similarly, the trend of the load coefficient  versus (D1/D0) and (b0/D0) is shown in Figure 6.  is 

very sensitive to the reduction of (b0/D0); however – differently from rotor efficiency η- it also 

shows a sensitivity to (D1/D0). The momentum exchange is favoured as the wet area is increased; 

nevertheless, the exit diameter should not exceed a certain limit, the penalty being an increase of the 

residual tangential velocity, leading to higher discharge losses. On the whole, values of 0,35 < 

(D1/D0) < 0,45 and 0,005< (b0/D0)< 0,015 appear recommendable. 

An important parameter, which is strongly influenced by the gap between disks, is the absolute exit 

angle (Figure 7). In order to reduce it and render possible an efficient recovery of discharge kinetic 

energy, the exit fluid angle should be close to axial (a1  0). A reduction of the gap between the 

plates is definitely beneficial to this end. The decrease of α for smaller values of b0 is due to the 

reduction of the tangential component, as well as to the increase in the radial component of absolute 

velocity. The reduction of tangential velocity, as can be noted from (29), is due to the increase of 

viscous momentum transfer for small values of b0. On the other hand, the radial velocity increases 

because of the continuity (9). 
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Fig. 6 Rotor Load Coefficient  vs D1/D0 and b0/D0 

 

Fig. 7 Exit fluid angle α and efficiency of the turbine vs b0/D0, for D1/D0 = 0.44 

 

The trend of the absolute velocity and of its components with variable gap is displayed in figure 8. 

The modulus of velocity results from the combination of the radial and tangential components. The 

absolute exit velocity has a minimum, determined by opposite trends with b0/D0 of the two 

components of velocity (radial and tangential). The minimum of the exit kinetic energy Ekin1 

corresponds to maximization of the rotor efficiency. 

As for the influence of the flow coefficient, the absolute exit angle and the efficiency are plotted 

against  in figure 9. Increasing flow coefficient values, the absolute exit angle decreases. This is 

due to an increase of the radial component of the fluid, which therefore turns the fluid in the axial 

direction. If values of exit flow angles below 50° are sought, then a flow coefficient in the range  

= 0,2 should be selected; under these conditions, the rotor efficiency is still high – in the range of 

0,94. 

It is interesting to calculate Ns and Ds ((32) and (33)); the resulting placement of an optimized Tesla 

rotor on Balje’s diagram is shown in Figure 10. It can be seen that the performance of the Tesla 

rotor exceeds in its Ns – Ds range that of competing expanders (notably, rotary piston expanders or 

drag turbines). 
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Fig. 8 Exit kinetic energy vs non dimensional gap 

 

Fig.9 α1 and η versus  

 

 

Fig.10 The Tesla rotor on the Balje diagram  



PROCEEDINGS OF ECOS 2016 - THE 29TH INTERNATIONAL CONFERENCE ON 

EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS 

JUNE 19-23, 2016, PORTOROŽ, SLOVENIA 

 

 

The final geometry is summarized in table 2. 

Table 2. Final geometry of Tesla rotor (working fluid = air) 

Mass flow rate mċ  0.00194 [kg/s] 

Rotational speed 6300 [RPM] 

Inlet Mach number 1 

Inlet Diameter D0 0.1778 [m] 

Exit Diameter D1 0.0772 [m] 

Gap b0 0.00032 [m] 

Absolut exit angle α1 52 [°] 

Power produced for each channel 40.8 [W] 

Exit Mach number 0.1168 

Specific Speed, Ns 2.057 [RPM·ft3/4·s-1/2]  

Specific Diameter, Ds 20.69 [ft-1/4·s1/2] 

 

4 Conclusions 
An upgraded description of the Tesla turbine rotor flow was presented and validated against similar 

literature models. The new model has the advantage of considering variable density and to be easily 

adaptable to non-conventional fluids. Existing experience with prototypes of Tesla turbines have 

always been developed with air or steam as working fluid, so that the capability of dealing with 

general fluids looks potentially attractive. 

The model was applied to evaluate the sensitivity of performance to the most relevant design 

variables, that is: D1/D0; b0/D0; and the flow coefficient. The calculated performance parameters are 

efficiency and the work coefficient; moreover, non-dimensional variables suitable for comparison to 

expanders of different type (Ns and Ds) were calculated.  

The results indicate that the Tesla rotor appears potentially competitive with other expander 

designs, with special reference to the expander efficiency. 

These results certainly need further development, with special reference to the calculation of nozzle 

flow and to the evaluation of other relevant losses (leakage, heat transfer, …). Future works will 

explore different working fluids, applying the Tesla turbine concept to small Organic Rankine 

Cycles. 

Nomenclature 
 A  surface, m2 

 b  gap between two discs, m 

 Dh  hydraulic diameter, m 

 Ds  specific diameter, ft-1/4·s1/2 

 f  body force per unit mass, m/s2 

 E  kinetic energy, J/kg 

 F  force, N 

 h  enthalpy, J/kg 
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m   mass flow rate, kg/s 

 Ns  specific speed, RPM·ft3/4·s-1/2 

 p  pressure, Pa 

 Q  volume, m3 

 r  local radius, m 

 Re  Reynolds number (relative flow) 

 rpm  rotational speed, rpm 

 T  temperature, °C 

 U  tangential velocity, m/s 

 V  absolute velocity, m/s 

 x  non-dimensional radius 

 w  Relative velocity, m/s 

 W   power, W 

Greek symbols 

 a  absolute flow angle, ° 

 b  relative flow angle, ° 

   friction factor 

   total-to-static efficiency (rotor only) 

   dynamic viscosity, kg/(ms) 

 ν  kinematic viscosity, m2/s 

 ξ  non-dimensionalized kinetic energy 

 ρ  density, kg/m3 

 τ  wall shear stress, Pa 

   flow coefficient 

   load coefficient 

   rotational speed, rad/s 

 

Subscripts and superscripts 

 0  rotor inlet value 

 1  rotor outlet value 

 e  fluid element 

 i  point i 

 kin kinetic 

 r  radial direction 

 t  time, s 

 w  wetted wall 

 z  axial direction 

 q  tangential direction 
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