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We show how angular momentum conservation can stabilize a symmetry-protected quasitopological
phase of matter supporting Majorana quasiparticles as edge modes in one-dimensional cold atom gases.
We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling.
The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides
an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs.
The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by
density-matrix-renormalization-group simulations. Our results pave the way toward the observation of
Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for
our recipe—spin-orbit coupling and strong interorbital interactions—have been experimentally realized

over the last two years.
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Introduction.—The past two decades have witnessed an
impressive progress in understanding how to harness quan-
tum systems supporting topological order, one of the ultimate
goals being the observation of quasiparticles with non-
Abelian statistics—non-Abelian anyons [1-5]. A pivotal
role in this search has been the formulation of a model for
one-dimensional (1D) p-wave superconductors [6] that
supports a symmetry-protected topological phase with
Majorana quasiparticles (MQPs) as edge modes. The key
element for the stability of such edge modes is the presence of
a Z, parity symmetry. At the mean-field level, this can be
realized via proximity-induced superconductivity in solid-
state settings [7—12], or via coupling to molecular Bose-
Einsten condensates in cold atoms [13]. Remarkably, it is
possible to stabilize MQPs even taking fully into account
quantum fluctuations by considering canonical settings
[14-18], where the parity symmetry emerges via, e.g.,
engineered pair tunneling between pairs of wires [19-21].
However, it is an open challenge to understand whether, in
these number-conserving setups, there exist fundamental
microscopic symmetries that can serve as a pristine mecha-
nism for the realization of MQPs, which is genuinely distinct
from reservoir-induced superconductivity.

Here, we show how angular momentum conservation
enables the realization of a symmetry-protected quasitopo-
logical phase supporting MQPs in one-dimensional number-
conserving systems [22]. In particular, we show how a
combination of spin-exchange interactions and crossed
spin-orbit couplings in orbital Hubbard models [see
Figs. 1(a), 1(b)] naturally gives rise to a Z, spin symmetry.

0031-9007/17/118(20)/200404(6)

This symmetry serves as the enabling tool to realize MQPs,
and, as we discuss below, its robustness is guaranteed by the
fact that all terms breaking it are not present in the micro-
scopic dynamics, as they would violate angular momentum
conservation. Remarkably, these models find direct and
natural realization using alkaline-earth-like atoms (AEAs)
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FIG. 1. Schematics of the orbital Hubbard model in the

presence of spin-orbit coupling as realized with alkaline-earth-
like atoms. (a)—(b) The model we consider in Eq. (1) describes
tunneling (H,), spin-orbit-coupling (H,,), and spin-exchange
processes (Hy). In cold atom settings, the spin degree of freedom
is represented by different Zeeman states with nuclear spin m,
mp + 1, while the orbital degree of freedom is encoded in
different electronic states, 'Sy and *Py. In these systems, Hy,
and Hg, are described by the gray and red arrows, respectively.
(c) In the quasitopological phase of the model, the entanglement
spectrum displays a characteristic twofold degeneracy: eigenval-
ues of the reduced density matrix with the same number of
particles come in pairs with opposite parities (see text).
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in optical lattices [24-32]: in these settings, both spin-
exchange interactions [33,34] and spin-orbit couplings
[35-37] have already been demonstrated, providing an ideal
setting to realize MQPs using state-of-the-art experimental
platforms within the paradigm described in the present work.

Model Hamiltonian.—OQOur starting point is a one-
dimensional Hubbard model describing four fermionic
species, with annihilation operators c;, ,, with j € [1, L]
asite index, L the length of the system, a € [1, | ] describing
apseudospin encoded in a pair of Zeeman states mp, mp + 1
[depicted in Figs. 1(a), 1(b) as arrows], and p € [-1, 1]
describing orbital degrees of freedom, encoded in the
electronic state ground ('S, blue) and metastable (3P,
orange) states. The system Hamiltonian reads

HZZ(Ht,j+HU.j+HW,j+Hso,j)§ (1)
J

(in the following we also use the notation H, =} H, ;).
The first two terms represent tunneling along the wire,
H ;= —Za’pt(c;a’pcj +1.ap +H.c.), and diagonal inter-
actions, HU/ = Zp Upnj’T,pnj’\L.p + Uzaﬁnj!a!_lnj‘ﬂql .
The third term, visualized by gray arrows in Fig. 1, describes
spin-exchange interactions [38]:

HW] = W(C},T._lc';,l’lcj"i’_] cj,T.l + HC) (2)
The last term describes a generalized spin-orbit coupling:
Hg ;= Z{(O‘R + b)C;,T,pCj+1,¢,—p
P
+ (b- aR)CLl,T,pCj,i,—n +H.c.}, (3)

where ay denotes the Rashba velocity, and the b term may be
seen as a momentum-dependent Zeeman field [39-41].

In microscopic implementations, the last two terms in H
are embodied by strong interorbital spin-exchange inter-
actions (gray arrows) [33,34], and by the possibility of
engineering crossed spin-orbit couplings (red arrows) via
clock lasers [35-37]. The combination of these two
ingredients breaks explicitly the global spin-symmetry
from SU(2) x SU(2) down to Z,—namely, the number
of states in each pair of states coupled by spin-orbit
coupling is conserved modulo 2, due to the presence
of the spin-exchange interactions. Indeed, while for
ag = b =0 the Hamiltonian has a SU(2) x SU(2) spin
symmetry [24,25], for generic values of ag, b # 0, the
spin symmetry is reduced to Z,, whose correspondent
conserved charge is the mutual parity between the two
subsets [(1,1),(},—=1)] and [(?,—1),({,1)] connected
by the spin exchange interaction Hy, i.e., P, =
mody {[>2;(njp 1 + 15y 1) = (njp 1 +n;0)]/2}. The
robustness of this emergent parity symmetry stems from
angular momentum conservation: this symmetry may only

be broken in the presence of terms such as, e.g., CIT__I Citt

which generate a quantum of electronic angular momentum
while preserving nuclear spin. The mechanism of establish-
ing a Z, symmetry is reminiscent of pair hopping of
coupled wires [21], although here it emerges naturally, and
thus it is experimentally accessible in a physical setting.

This symmetry is the building tool for the realization of a
symmetry-protected quasitopological phase whose spin
sector has the same universal properties of Kitaev’s
model—in particular, it hosts MQPs as edge modes. In
the following, we discuss the emergence of such a phase
using a combination of analytical methods and density-
matrix-renormalization-group [42,43] (DMRG) simula-
tions [see Fig. 1(c) for typical entanglement spectrum
results, as in the Kitaev model]. We further elucidate the
anyon nature of the edge modes by showing how, upon
addition of additional four-body interactions, Eq. (1) can be
adiabatically connected to a model with exactly soluble
ground state properties [19,20], where braiding statistics
was recently proved [20].

Low-energy field theory.—In order to underpin the
existence of a quasitopological phase supporting MQPs as
edge modes, we rely on a field theory based on bosonization
[44,45]. Within this framework, the essential point is to
identify a sector in the low-energy field theory that displays
the same physics of Kitaev’s chain. Here, we outline the main
steps of our treatment (see Ref. [46] for a detailed treatment).
Following conventional bosonization [44,45], we start
by replacing each fermionic mode with a pair of right
and left movers, ¢; . , = Wy p:ir(ja@) + Wo p. (ja), which are
given by

Wa pr(x) — M ei'9a47 E eiquﬁ‘.xz.pxe_iqr(/}a.p (4)
2ra 7

with r=(-1,1) for L/R, and ¢,, and 8,, being
conjugated bosonic operators describing density and phase
fluctuations, respectively (a is the lattice spacing). 7, ., are
Klein factors, ensuring fermionic commutation relations.

The low-energy Hamiltonian can then be recast into four
(three spin, one charge) sectors. The dynamics in these
sectors can be understood after applying two canonical
transformations: the first one introduces the bosonic fields
@rs/a = (@15 £ @) ;)/V2 (and similarly for 9 /4), with
f = *1. These bosonic fields describe the behavior of each
pair of states coupled by H,: in particular, 9;5/4 and
d_1 /4 describe the {c; .c; i} and {c;_j.c|} pair,
respectively. The second transformation considers combi-
nations of these fields in the form

Kkprs+5a Kkprs— 54 (5)

Ve V2K

where « denotes the first harmonic commensurate with the
spin-orbit term, and is a function of kz. After this mapping,

Pr1 = Prar =
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one is left with a gapless charge sector, described by the
fields 9, =9, + 9_1 11/V/2, two gapped spin sectors
which play no major role in the dynamics, and a third
spin sector, described by the field 9, = 8, ,, —9_,;;/ V2,
and a Hamiltonian,

o Vo (ax(/)o’)z 2
H, = 2/dx< K + K,(0,9,)

W / dx cos[\/379,), (6)

with W « W, and v,, K, the sound velocity and Luttinger
parameter, respectively. This Hamiltonian describes the
low-energy physics of the Kitaev model, to which it can be
mapped exactly at the Luther-Emery point K, = 2 [16,21].
It supports a gapless phase for K, <1, and a gapped,
topological phase for K, > 1. In the latter, there are two
degenerate ground states under open boundary conditions,
labeled by different mutual parities P = =£1: this is possible
since the model exhibits a Z, symmetry, which serves as a
symmetry protection mechanism for the quasitopological
phase [46].

In summary, for sufficiently large W/t, the model in
Eq. (1) supports a quasitopological phase, with gapless
charge excitations, and decoupled gapped spin excitations
describing a ground state of a Kitaev model, thus support-
ing MQPs. The role of additional, diagonal interactions can
affect the spin sector [46]: since K,—1=—(W + U),
attractive interactions further stabilize the quasitopological
phase, while repulsive interactions require larger values
of W to open a gap in the spin sector. Equipped with the
guideline provided by the low-energy field theory, we
present in the following a nonperturbative analysis of the
model based on numerical simulations.

DMRG results.—In order to demonstrate the existence of a
symmetry-protected quasitopological phase supporting
MQPs as edge modes, we employ DMRG simulations based
on a rather general decimation prescription for an efficient
truncation of the Hilbert space. Typically, we use up to
m = 140 states, which ensure converge on all observables
of interest over all parameter regimes [46]. Following the
theoretical discussion above, our analysis is based on four
observables: (i) degeneracies in the entanglement spectrum;
(i) finite-size scaling of energy gaps; (iii) bulk decay of
correlation functions; and (iv) edge-to-edge correlations.
For convenience, we set t = 1 as the energy unit.

Given the reduced density matrix p, with respect to a
bipartition of the system cutting the Zth link of the lattice,
the entanglement spectrum is the collection of its eigen-
values {4,}, and is known to provide striking signatures of
topological order via degeneracies [47,48]. In Fig. 1(c), we
show typical results for the entanglement spectrum in the
quasitopological phase at the representative point W = —8§,
ar = b =4, U =0 (these features are stable in a broad
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FIG. 2. DMRG analysis of the topological properties of the
ground state for model H, at fixed parity, with parameters
W =-=8, ar =b =4, U=0, at distinct fillings n = 1/4 and
n=1/6. (a) Algebraic scaling of the gap computed at fixed
parity, compatible with ~L~!. (b) Exponential scaling of the gap
between the distinct parity sectors. (c)—(d) Single particle
correlations G(j,¢) = <c;mcm’1> at the bulk (c) and at the
edges (d), for a system with L = 48 sites.

parameter range [49]). Indeed, the low-lying spectrum
displays robust degeneracies for both n = N/4L = 1/4
and n = 1/6 (with N and L the total numbers of particles
and sites, respectively), as expected for a topological phase
supporting MQPs edge modes.

In Fig. 2(a), we show the decay of the fixed parity gap
with open boundary conditions (OBCs), defined as

A, =E}[N.P| - E}[N.P], (7)

where EJ} [N, P] denotes the n-lowest-energy state at size L
with number of particles N and mutual parity P. The
ground state, with energy E? [N, PJ, is always in the P = 1
sector. In the quasitopological phase, this gap should decay
algebraically due to the presence of a gapless charge
excitation. This is confirmed by the DMRG results, as
shown in Fig. 2(a). Instead, the parity gap

Ap = EYN.~1] = E§[N. 1] (®)

is sensitive exclusively to spin excitations. As such, it
closes exponentially with the system size L, exactly as in
the Kitaev chain, as shown in Fig. 2(b).

The presence of a finite bulk gap in the spin sector is
signaled by an exponential decay of the Green functions,
e.g. G(j.£) =(c]4 crpa), in the bulk [45]. This is
portrayed in Fig. 2(c), which shows that coherence is
rapidly lost as a function of distance in the bulk.

Crucially, the Green functions are also sensitive to the
presence of MQPs edge modes, as these operators locally
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switch parity. In Fig. 2(d), we show the correlation of one
boundary site with the rest of the chain, G(1, ). While the
correlation rapidly decays in the bulk due to the presence of
a spin gap, there is a strong revival close to the edge of the
system, signaling the presence of MQP edge modes. We
note that the edge-edge correlation is considerably stronger
for filling fractions away from commensurate densities,
where the presence of additional (albeit irrelevant) oper-
ators is expected to slightly degrade the edge modes, as
observed in the Kitaev wire in the presence of repulsive
interactions [50,51].

Adiabatic continuity of the ground state to an exactly
solvable point.—Remarkably, it is possible to provide direct
evidence for the MQP nature of the edge states by showing
how the quasitopological phase discussed above is adiabati-
cally connected to the toy model of spinless fermions with
exactly solvable ground state properties [19,20], where Ising
anyon braiding was recently demonstrated [20].

The strategy to show adiabatic continuity, discussed in
detail in Ref. [46], consists of three steps. First, for each pair
of states coupled by spin-orbit coupling, we restrict the
dynamics to the lower band, following a procedure intro-
duced in Ref. [39,52]. Then, coupling between the lowest
bands is introduced via the spin-exchange interaction, and
additional four-Fermi couplings. This enlarged Hamiltonian
is characterized by two parameters (/3,1): the point (0, 0.9)
represents the model studied in the previous section, while
the points (1,0.9) and (1,1) represents two points in the phase
diagram of the exactly solvable model [19]. We note that all
symmetries of the problem are kept for arbitrary (f3, 1).

Within this enlarged parameter space, we have carried out
DMRG simulations to show that the gap in the spin sector
does not close. The latter was extracted from the decay of
the Green function in the bulk, G(j,¢) = e~%li~?l and is
depicted in Fig. 3(a). Along the full path in parameter space,
the gap stays open, implying that our quasitopological state is
the same phase as in Ref. [19]. Another striking signature of
adiabatic continuity is the fact that all diagnostics applied
before signal topological order all along the path. This is
illustrated in Fig. 3(b), where we plot the edge-edge Green
function at several points along the path itself.

Realization using alkaline-earth-like atoms in optical
lattices.—The model discussed above finds a natural
implementation using fermionic isotopes of AEA in optical
lattices [26], such as '7'YD, '73YDb, and 87Sr. As illustrated
in Fig. 1, the orbital degree of freedom is encoded in the
electronic state: the 'S, ground state manifold representing
p =—1, and the long-lived excited state manifold 3P,
representing p = 1. The spin degree of freedom is instead
encoded in the nuclear spin state, which for AEA is
basically decoupled from the electronic degree of freedom
for both the ground and low-lying excited states. In '”1'Yb,
the nuclear spin is I = 1/2, so all degrees of freedom are
immediately available as required here. For '7*Yb and ¥'Sr,
which do have I =5/2 and 9/2, respectively, unwanted

(@)
0.8
&
3
0.4{ )
; ; > 0070 20 30 40 50
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FIG.3. DMRG analysis for the adiabatic continuity of model H

9

to an exactly solvable model. (a) Parity gap “a,” along the
adiabatic continuity path (f=0,1=9/10) - (f=1,1=1).
Inset illustrates the Hamiltonian parameters varied along the path.
(b) Single particle edge correlations along the adiabatic path—
similar behavior follows for n = 1/6. In all plots we consider a
system with L = 48 sites and use m = 140 number of kept states
in the DMRG simulations.

Zeeman states can be excluded from the dynamics either
employing state-dependent light shifts [31], or by exploit-
ing the fact that the clock frequency is m dependent due to
different linear Zeeman shifts in the 'S, and P, manifold.

The two key elements of our proposal, large spin-
exchange interactions and spin-orbit couplings on the
so-called clock transition, build upon state-of-the-art exper-
imental progresses in AEA physics. As demonstrated in
recent experiments with '7>Yb [33,34], the spin-exchange
interaction in these settings can be extremely large, of the
order of 5/10 kHz in optical lattices, guaranteeing that the
driven interaction strength in our system is considerably
larger than typical temperatures. Moreover, the ratio W/t
can be tuned via modifying either the optical lattice depth
or the trapping in the transverse direction. Spin-orbit
coupling between ground and excited states has been
recently demonstrated both at JILA [37] and at LENS
[36] realizing single-particle band structures akin to the one
employed here, albeit with slightly different microscopic
Hamiltonians (following Ref. [39], the precise form we
use here requires a tilting of the lattice or a superlattice
structure). In concrete, considering typical tunneling
rates of order ¢ = 100k Hz, spin-orbit couplings of order
400h Hz and spin-exchange interactions of order 8004 Hz
would give direct access to the quasitopological phase. In
these experimental settings, the quasitopological phase can
be characterized using both correlation function and spec-
tral properties, as discussed above. The nature of the edge
modes can be demonstrated using a variety of techniques
[55]. In particular, time-of-flight imaging and edge spec-
troscopy can be used to demonstrate the existence of zero-
energy modes and their inherent correlations. Moreover, the
fact that our model is adiabatically connected to an exactly
solvable point provides a qualitative guidance on the shape
of the MQP wave function—generically hard to analyti-
cally access in interacting systems—opening up a concrete
perspective to realize braiding operations in such settings.
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Conclusions.—We have shown how Majorana quasipar-
ticles can emerge as edge modes of orbital Hubbard models
in the presence of spin-orbit interactions. The key element
for the realization of the quasitopological phase supporting
them is angular momentum conservation, an epitome
building block of atomic physics experiments. The stability
of the mechanism we propose paves the way toward the
investigation of interacting topological states and Majorana
edge modes in both atomic clocks and optical lattice
experiments, where the main ingredients of our proposal
are naturally realized and have been experimentally dem-
onstrated over the last two years.

The numerical part of this work has been performed
using the DMRG code released within the “Powder with
Power” project [56].
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Note added.—While completing this work, a Ref. [57]
appeared, where the commensurate regime of a model
combining spin-exchange interactions with a different type
of spin-orbit coupling was investigated.
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