UNIVERSITA
DEGLI STUDI

FIRENZE

FLORE
Repository istituzionale dell'Universita degli Studi
di Firenze

Kinematic Constraints and ns-3 Mobility Models: The AUV Issue

Questa ¢ la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:

Kinematic Constraints and ns-3 Mobility Models: The AUV Issue / Franchi, Matteo; Pecorella, Tommaso;
Ridolfi, Alessandro; Fantacci, Romano; Allotta, Benedetto. - ELETTRONICO. - (2017), pp. 103-109.
(Intervento presentato al convegno Workshop on ns-3 tenutosi a Porto (PT) nel 13/06/2017)
[10.1145/3067665.3067673].

Availability:
This version is available at: 2158/1087213 since: 2019-09-12T12:17:12Z7

Publisher:
ACM

Published version:
DOI: 10.1145/3067665.3067673

Terms of use:
Open Access

La pubblicazione & resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per I'accesso aperto dell'Universita degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-0a-2016-1.pdf)

Publisher copyright claim:

(Article begins on next page)

26 April 2024

Kinematic Constraints and ns-3 Mobility Models: the AUV Issue

Matteo Franchi
Dpt. Industrial Engineering
Universita di Firenze
Firenze, Italy
matteo.franchi@unifi.it

Romano Fantacci
Dpt. Information Engineering
Universita di Firenze
Firenze, Italy
romano.fantacci@unifi.it

ABSTRACT

Recently there has been a renewed interest in ns-3 as a tool for Un-
derwater Acoustic communications, with the integration of World
Ocean Simulation System (WOSS, [4, 6]) into ns-3. However, the
current implementation of ns-3 does not provide specific models
suitable for AUVs (Autonomous Underwater Vehicles) mobility. An
old proposal is available, made by Andrea Sacco during his Google
Summer of Code (GSoC) 2010 project. However, the code has never
been integrated into ns-3. In order to simulate the communications
of AUVs, it is mandatory to rely also on simple and effective mobil-
ity systems, where the kinematic constraints of the node are taken
into account. The requirements of a mobility model for AUVs is to
be able to take into account the kinematic model of the real device
and to set up a feasible path between two (or more) points. This
paper presents a new extensible architecture based on kinematic
models, which greatly simplifies the simulation complexity.

CCS CONCEPTS

» Networks — Network simulations; Network mobility;

KEYWORDS
ns-3, Mobility Models, AUV

ACM Reference format:

Matteo Franchi, Tommaso Pecorella, Alessandro Ridolfi, Romano Fantacci,
and Benedetto Allotta. 2017. Kinematic Constraints and ns-3 Mobility Mod-
els: the AUV Issue. In Proceedings of the 2017 Workshop on ns-3, Porto, Portu-
gal, June 2017 (WNS3 2017), 7 pages.

DOI: http://dx.doi.org/10.1145/3067665.3067673

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3 2017, Porto, Portugal

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5219-2/17/06. ... $15.00

DOI: http://dx.doi.org/10.1145/3067665.3067673

Tommaso Pecorella
Dpt. Information Engineering
Universita di Firenze
Firenze, Italy
tommaso.pecorella@unifi.it

Alessandro Ridolfi
Dpt. Industrial Engineering
Universita di Firenze
Firenze, Italy
alessandro.ridolfi@unifi.it

Benedetto Allotta
Dpt. Industrial Engineering
Universita di Firenze
Firenze, Italy
benedetto.allotta@unifi.it

1 INTRODUCTION

AUVs are increasingly used for data collecting (e.g. optical images,
acoustic images, measurements about water properties and qual-
ity, etc.) in industrial, military, environment protection, geology,
biology, and, recently, submarine archaeology.

An AUV can be used as a single unit, performing most of the
task in a given operation. However, teams of AUVs, each of them
designed to accomplish a particular task, can be used to optimize the
investment and operation costs and to quickly execute a complex
mission [2].

A single AUV needs a communication channel to be monitored
by the command and control system, and to offload the gathered
data once the mission is over. On the opposite, communications
play an important role in AUVs teams, because there is the need
to coordinate the single units sub-missions in order to perform a
larger scope goal, and the instantaneous data gathered by a node
can require changes to the overall mission plan. As an example, a
swarm of AUVs could be used to track a pollutant or to inspect a
submarine archeological site. Upon finding an ‘interesting’ point,
an AUV can request other, more specialized, AUVs to assist.

Unlike terrestrial networking technologies, underwater com-
munication systems are in early development stages. As a matter
of fact, acoustic channel models are more complex and acoustic
modem devices are often using proprietary protocols, making it
difficult to perform simulations. Recently a new standard named
JANUS (7] has been proposed for underwater communications, but
it is relatively slower than the proprietary protocols used by many
acoustic modems.

Beside the actual communication standard used by the devices,
it is important to create an accurate mobility model suitable for
AUVs in order to have simulation scenarios that are close to reality.
The current implementation of ns-3 does not provide a model, or a
support altogether, for mobility-constrained devices.

This paper presents a new kinematic model for AUV. It takes
into account the capabilities of a mobile node to perform straight-
line movements and rotations, along with assert conditions on
meaningful physical quantities. The proposed solution performs
a good trade-off between computational complexity and accurate
modeling and, it can be extended to other mobile node types, e.g.,
other AUV, etc..

Pitch

Sway axis

Roll Body frame

T Yaw

Heav e axis

Figure 1: Generic AUV.

The rest of the paper is structured as follow. Section 2 describes
the existing AUVs mobility models, along with their limitations. Our
proposal is presented in Section 3. Section 4 shows some simulation
examples their results. Lastly, Section 5 draws the conclusions and
discusses limitations and future developments.

2 MOBILITY ISSUES AND STATE OF THE ART

This section briefly describes the AUV mobility model requirements
and the ns-3 mobility limitations, both the ones already included
in ns-3 and the ones proposed by Andrea Sacco in 2010.

2.1 AUV Kinematics

An AUV can be represented by a solid object moving in a 3D space
(see Figure 1). It is important to notice that, depending on the
vehicle, a given movement could be impossible to perform directly.
As an example, it is safe to assume that a movement along the Surge
axis is always possible, but a rigid translation along the Heave and
Sway axes requires additional thrusters. Similarly, a rotation along
the yaw axis requires two thrusters (one on the front and one on
the back of the AUV), while a change in the Pitch angle can be
performed with a buoyancy control or through diving planes.

The propelling type, the allowed movements along various axes,
and the limitations on some angular quantities are the most impor-
tant elements differentiating the various AUV types.

It must be noted that the differences do not impact (usually)
if an AUV can move from point A to point B, but it changes the
intermediate points used to reach the final destination. In other
terms, two different AUVs will use different paths to reach the same
destination.

2.2 Mobility in ns-3

In the current ns-3 release, the MobilityModel tracks the node posi-
tion and its time evolution with respect to a Cartesian coordinate
system with only three coordinates: (x, y, z). Le., the mobile object
is represented as a body-less and dimensionless point in space.
Unfortunately, this kind of representation is not sufficient when
the object orientation (i.e., its attitude) is important as well. An AUV,
for example, may need to rotate around itself or modify the pitch
angle (see Figure 1) when changing direction. Summarizing, the
three coordinates system is not sufficient to model an AUV. As a

MOBILITY MODEL

>“

| AUV WAYPOINT MOBILITY MODEL I_ - _>| AUV MOBILITY MODEL
I |
I 1

GLIDER

Figure 2: A. Sacco’s AUV mobility models (simplified UML).

result, AUVs will need an extended coordinate system, considering
not only the actual node position but also the head direction (at
least).

It must be pointed out that also the Antenna module has a similar
issue. The antenna “orientation” (for non-isotropic antennas) is not
automatically updated when the node changes its course. This could
be beneficial (for gyroscopically stabilized antennas) or not (for
fixed mounted antennas).

2.3 Current AUV Mobility Models

The aim of this work is to enhance the current AUV mobility models
developed by Andrea Sacco and not yet included in ns-3. The class
diagram of the models is shown in Figure 2. Two types of AUVs are
considered: Remus [1] and SeaGlider [5].

It is evident how the design in Figure 2 has some drawbacks. First
and foremost, the class AuvWaypointMobilityModel has a member
variable of type AuvMobilityModel (for real one of its sub-classes).
Both AuvWaypointMobilityModel and AuvMobilityModell are de-
rived from the MobilityModel class, which is the one used by a node
to know its kinematic state.

This structure is not optimal because both AuvWaypointMobili-
tyModel and AuvMobilityModel derived classes have their own node
status (i.e., its extended coordinates), and they will need to have
them both updated and in sync.

For real, the instance used by the node is the AuvWaypointMo-
bilityModel, while the AuvMobilityModel derived class is used by
the owning instance to verify the movement feasibility (i.e., if the
movement is allowed). It is worth noticing that, theoretically, the
classes derived from AuvMobilityModel could be used directly by a
node.

The core of the system is based on the class AuvWaypointMobil-
ityModel which permits to go from point A to point B. The class
allows defining a list of intermediate points to be used, along with
the time they need to be reached. However, all the points pairs have
to satisfy the kinematic constraints defined by the RemusMobility-
Model or GliderMobilityModel. Moreover, if a constraint is not met,
an assert is raised, and the simulation is blocked. As a consequence,
an application trying to control the node movements should know
in advance the node kinematic constraints, making it redundant to
check them later.

Object

i
| |

DeviceEnergyModel MobilityModel

AN ZF

1 o
AuvMobilityM |

RemusEnergyModel uvMobilityMode

KinematicConstraints

- — = —>{#NodeAttitude

+CheckPath ()

GliderEnergyModel

TyphoonEnergyModel

i
|

RemusKinematicConstraints

+CheckPath ()

TyphoonKinematicConstraints

GliderKinematicConstraints

+CheckPath ()

+CheckPath ()

Figure 3: The proposed mobility model.

Lastly, MobilityModel class presents the defects outlined in Sec-
tion 2.2: only the three spatial coordinates (x, y, z) are considered,
i.e., the robot is seen as a material point: the node attitude (pitch,
yaw and roll angles) is not taken into account.

3 NEW AUV MOBILITY MODELS

This section describes the new features introduced by our proposal
and it illustrates in detail the system for two particular types of
AUVs called Typhoon and MARTA which have been developed at
the University of Firenze, Italy (see [2, 3]). In Section 3.3, a brief
sketch about other classes of AUVs is given.

3.1 New Features

The structure of the system in Figure 2 has been revised and the
new class diagram is shown in Figure 3.

The main idea is that there should be an AUV-specific class
defining the movement capabilities and able to calculate a set of
intermediate points between two given Start/Stop points.

The KinematicConstraints class derives directly from Object. It
is an abstract class and it defines the interface to query a concrete
class the intermediate path. There are three different AUVs concrete
constraints classes (at the moment):

o TyphoonKinematicConstraint: for Typhoon and MARTA
class AUVs.

e RemusKinematicConstraint: for Remus class AUVs.

e GliderKinematicConstraint: for SeaGlider class AUVs.

Each class implements the KinematicContraints::CheckPath func-
tion (an abstract, virtual function). The input parameters are two
points and the time the node should be in each one. Le., defined a
point in space-time P as (x, y, z, T), the function accepts two points:
Pstart, Pstop- The function output is either a list of intermediate

points P;, i € 0..n, or an assert when no feasible path can be found.
The returned points are then added by the caller (typically AuvWay-
pointMobilityModel::AddWaypoint). In this way, the responsibility
to choose the AUV path is logically split into two components: the
first is an high-level decision (where the AUV should pass by and
when), and one low-level one (build a feasible path between each
pair of points).

With the new design, it is possible to consider both the 3D kine-
matic limitations (e.g., maximum pitch) and the motor capabilities
(i.e., maximum speed along any axis). Practically, the asserts are hit
only if the AUV reaches its limit operational depth or if there is no
time to reach the end point, i.e., the required speed to too high.

Moreover, the KinematicContraints derived classes can memo-
rize the previous node movement direction, in order to expand the
Mobility model representation and apply the needed rotations to
the AUV before an actual movement is performed.

It is possible to calculate the node attitude from the movement
direction, provided that we neglect external forces (e.g., currents).
In the present work, this assumption is met. As a consequence,
the KinematicContraints class tracks the node attitude. A better
solution is outlined in the conclusions. In order to avoid ambiguities
at the simulation start, we decided that any AUV will begin the
simulation being pointed toward the intended destination with a
pitch and roll set to zero. This is, of course, arbitrary.

The actual mobility model used by the AuvWaypointMobility-
Model, i.e., the one that links the intermediate points, is a constant
velocity mobility model. It is possible to overcome this limitation by
adding more intermediate points (i.e., splitting the acceleration and
deceleration phases is constant-speed segments) or by extending
the model to take into account also this parameter.

As a final remark, the new model allows considering the time re-
quired to reach a correct attitude between two movement segments

me

LATERAL
THRUSTERS

Figure 4: The Typhoon AUV.

(i-e., to rotate the AUV along its axis). Summarizing, we think that
the split between the movement mode and the constraint model is
a flexible solution to the AUV mobility problem and that it could
be also extended to other mobile nodes.

3.2 Implementation Details

As explained in the previous section, the functions overriding Kine-
maticContraints::CheckPath must take into account the constraints
of the AUV. Therefore it differentiates, at the kinematic level, the
behavior of the vehicle.

In this section, we will explain in detail the actual movement
pattern of a particular type of AUVs (Typhoon, see Figure 4), which
has been built at the MDM Lab, Dpt. of Industrial Engineering
of University of Florence. This class of AUVs has the following
properties:

o The robot can move along all the axes (surge, heave, and
sway) and can rotate around the heave axis (yaw angle).
o The pitch angle is usually set to zero, whereas the roll angle
is neglected.
e The robot has the following technical limitations:
— Max speed along the surge axis (horizontal) = 2.5 m/s;
- Max speed along the heave axis (vertical) = 0.26 m/s;
— Max angular speed around the heave axis = 0.3 rad/s;
— Max operating depth = 300 m

The MARTA class is almost identical, with a limitation of 1.5 m/s
on the surge axis speed and 100 m maximum depth. It is worth
to point out that these are not limitations of the model, but they
represents the actual behavior of the vehicle. The steps below are
also shown in Algorithm 1.

In the following, unless otherwise stated, we will indicate with
the word ‘point” a 3D point plus a time. Given two points called

Algorithm 1: TyphoonConstraints::CheckPath
Data: START(x, y, z, t), STOP(x, y, z, t)
Result: Intermediate waypoints
Initialization: AUV aligned toward the next waypoint
// Check the requirements

if stop.position.z < 0 || stop.position.z > maxDepth then
L abort;

// Reach the right depth
if stop.position.z != start.position.z then
dive / rise;
if actual.position == stop.position then
if required speed > max vertical speed then
L abort;

else
L return

Set dive / rise speed to max;
Calculate intermediate point P;;
// Move to the end point
if Required yaw is different from actual yaw then
Rotate;
if actual.time > stop.time then
L abort;

Calculate intermediate point Py;

Move to the end point;

if required speed > max horizontal speed then
L abort;

return Py, P

as ‘start point’ (the first one) and ‘stop point’ (the last one) the
TyphoonConstraints::CheckPath function works as follow:

As a preliminary step, a check about the general feasibility of
the stop point is performed, i.e., if the required depth is larger than
the maximum operating depth or it is negative. In both cases, the
run is stopped with an error.

The other steps represent the core of the function.

The first operation is to reach the desired depth, i.e., go from start
point depth to stop point depth. This is performed at the maximum
allowed vertical speed. Note that the choice to use the maximum
vertical speed is arbitrary, but it has been confirmed by the AUV
designers that this is the “standard” procedure.

Afterward, unless the stop point was immediately below the start
point, it is necessary to perform a horizontal plane movement. In
this case, the movement is split between two sub-steps:

(1) The AUV rotates along the yaw angle in order to head
toward the destination, and
(2) The AUV moves linearly until it reaches the stop point.

The rotation is performed at the maximum rotation speed (also
in this case it is an arbitrary choice). On the opposite, the last
movement is proportional to the time left to reach the stop point.
Each movement is associated with an execution time (including
the rotation), and if the time required to perform an operation at
the maximum speed exceeds the available time, an assert is raised.

Figure 5: Remus class AUVs.

Figure 6: SeaGlider class AUVs.

In other words, the TyphoonConstraints::CheckPath function makes
the AUV rise/dive if necessary, then it rotates (if necessary) and it
moves on a plane towards the ‘stop point’.

The TyphoonConstraints::CheckPath returns the intermediate
points, i.e., the one when the AUV did reach the right depth (if
any) and the point when the AUV did reach the right orientation
(if any).

3.3 Remus and SeaGlider Mobility Models

The Remus [1] AUV (Figure 5) is quite different from Typhoon. The
first, very noticeable, thing is that the AUV lacks vertical (and
side) thrusters. As a consequence, it is unable to perform a direct
descend or ascend (motion along the heave axis, see Figure 1). On
the contrary, it is able to modify its pitch angle and proceed in a
diagonal direction.

The intermediate points returned by RemusConstraints::CheckPath
are similar to the ones produced by TyphoonConstraints::CheckPath,
with one big difference: the descent/ascent is performed diagonally.

The pitch adjustment speed has been guessed because Remus
changes its pitch by changing its buoyancy and by moving its
direction fins and activating the thrusters.

The yaw rotation, on the contrary, is a misbehavior of the model.
A real Remus AUV can not rotate along the yaw angle: the AUV
would perform this movement by doing a small circle because
Remus AUVs does not have side thrusters.

The SeaGlider [5] (Figure 6) design is even more different: the
AUV moves taking advantage of its buoyancy, therefore the path
towards the subsequent points is characterized by an up/down be-
havior. Like for the Remus case, the yaw rotation is not realistically
modeled.

3.4 Energy Models

Energy models were already present in Andrea Sacco’s early models.
We added the relevant class for Typhoon, and we slightly adapted
all the classes to the new design.

All the energy consumption is calculated according to the node
movements. As a consequence, the energy update is triggered by
the CourseChange Trace, or by an explicit request to the energy
model. The main energy parameters for the three AUV types are in
Table 1.

The SeaGlider energy consumption parameters are not shown
because they are dependent on the buoyancy and required vertical
speed. The used parameters and formulas can be found in [5].

4 SIMULATION RESULTS

We used a simple 2-points scenario to evaluate the different AUVs
behavior and the correctness of the simulations. The AUVs are
required to reach a point at a given depth and distance from the
starting point. Although very simple, the example shows almost
all the different AUVs behaviors (with the exception of the yaw
rotation). Of course, the start and stop points have been chosen so
as to avoid a direct, feasible path by one of the AUVs. Le., all the
three AUVs need to have at least one intermediate point. The refer-
ence frame is centered on the sea surface with the z-axis pointing
downwards.
The start and stop points are:

Start {0,000} matTy=0s
Stop {15,0,40} m at T; = 200 s - for Typhoon and Remus
Stop {15,0,40} m at T; = 2000 s — for SeaGlider

for SeaGlider the time to reach the stop point has been increased
because it is much slower than the other two AUVs.

It is worth noticing that, as we said in the previous sections, the
AUVs are supposed to start their movements with the right direc-
tion, i.e., the very first rotation is neglected. As a consequence, in
order to show a rotation along the yaw axis, it is necessary to have a
course of three or more points. Of course, without the yaw rotation,
any 3D path can be translated to a 2D one. As a consequence, we
decided to use 2D graphs to show the AUVs movements in order to
better highlight the different AUVs behaviors.

The AUVs parameters are summarized in Table 1 (they can be
changed though Attributes).

Each AUV type has its own limitations. Some parameters have
a maximum and minimum value, while some others are marked
with the sign ‘-’, which means that the correspondent physical
quantity is not considered in the kinematic model. For example,
Typhoon does not usually modify its pitch angle during a mission,
maintaining it around the zero value.

Table 1: List of cinematic and energetic parameters: Ty-
phoon (‘Ty’), Remus (‘Re’) and SeaGlider (‘GI’).

Parameters Ty Re Gl
Max. operating depth [m] 300 100 1000
Max. heave speed [m/s] 0.26 - -
Cruise. surge speed [m/s] 1.5 23 05
Max. surge speed [m/s] 2.5 23 05
Max. pitch rate [rad/s] - 03 -
Max. yaw rate [rad/s] 0.3 03 03
Max. pitch [rad] - 1.05 1.045
Min. pitch [rad] - - 0.24
Power const. heave motion [W s3/m3] 1200 - -
Power const. surge motion [W s3/m3] 110 45 -

The simulation results are shown in Table 2 and Figure 7. Table 2
reports the list of waypoints from the ‘start point’ to the ‘stop point’
along with the action performed by each AUV (e.g., rotation along
an axis, movement, etc.).

It can be seen that the proposed mobility models take into ac-
count all the constraints described in Section 3. In particular, the
rotations and the time required to reach an attitude from a previous
one. The roll angle (see Figure 1) is always neglected. Neverthe-
less, its value is usually fixed at a specific value (zero, in our case),
because its change can lead to instability.

From a qualitative point of view, it easy to understand that the
mobility model for Remus is more complex than the one for Typhoon
because Remus has more choices. As an example, we decided to use
a single dive path and one horizontal path, but also a double dive
path (a zig-zag path similar to the SeaGlider one) could have been
performed.

The SeaGlider model complexity is similar to the Remus one,
with the simplification that the path is bound to be a zig-zag one.

Of course, there could have been a number of other equivalent
paths. As a matter of fact, any path with a lesser slope (for Remus
and SeaGlider) would have meant more intermediate points, more
changes of direction, a longer overall path, and more consumed
energy. Only for Typhoon, an increase of the intermediate points
would have no effect on the energy consumption, but we decided
to prefer a simpler movement over a more complex one.

We also derived the total energy consumption for each AUV.
Typhoon consumed 3419.19 J, Remus 10978.53 J, and SeaGlider 1.6 J.
The difference is striking, but we want to stress that the scenario
used is particularly well suited for Glider. Moreover, the energy
consumption is not linearly dependent on the speed, and using a
maximum speed in some parts of the path is not the right choice.

5 CONCLUSIONS

In this paper, we proposed a new model to take into account the
kinematic constraints of an AUV. The proposed system can be easily
extended to other kinds of mobile objects, like aerial drones (UAVs)
or cars.

The separation of concerns allows a better and faster develop-
ment of position-dependent algorithms because the algorithm can

Table 2: List of AUVs actions

Time (s) X (m) Z (m) Action

Typhoon

0 0 0 Dive

153.85 0 40 Go straight

200 15 40 Stop

Remus

0 0 0 Set pitch angle

35 0 0 Go straight

23.55 22.95 40 Set pitch angle

27.05 22.95 40 Set yaw angle

37.52 22.95 40 Go straight

200 15 40 Stop

SeaGlider

0 0 0 Dive

1000 21.13 36.42 Set yaw angle

1010.47 21.13 36.42 Dive

2000 15 40 Stop

0 F® Startpoint ‘ Tyhoon/Marta ——]
Remus
5 Glider —s— 4

Depth [m]

25 -

30 -

35 -

40 |

“Stop point

0 5 10 15 20
Distance [m]

Figure 7: Simple path of three AUVs.

focus on where to move the node, and not on how to perform the
movement.

While the new models represent an improvement over the exist-
ing ones, several improvements could be foreseen for them.

About the AUV models, in particular, the attitude changes have
been extrapolated and should be properly validated. About the
energy models, the consumption for some movement types (in
particular the yaw rotations) is not yet modeled, and the energy
minimization should be considered when choosing a path (in par-
ticular for what concerns the object speed).

Another possible refinement is to move the attitude represen-
tation in the main Mobility classes, in order to have a standard
description of where the mobile object is pointing. With this im-
provement, the node would be represented by:

e Three coordinates for the position,
e Three angular coordinates for the attitude,

e nx3 sets of values for the movement description (dependent
on the mobility model).

Moreover, the mobility model could (or could not) modify the node
attitude during a movement. As an example, a node could be able
to move sideways without changing its attitude. This attitude rep-
resentation will be needed for UAVs, where the effects of the wind
can bot be neglected and the actual node attitude can not be derived
from the movement direction.

Another improvement could be to improve the mobility models
in order to consider more realistic movement types (e.g., by taking
into account the body mass and the time to reach a given speed).
Moreover, the composition of different mobility models should be
allowed. This could enable the development of disturbance models
like marine currents and tides (or wind for aerial drones).

An even more precise representation would be to use the real
node dynamic behavior, i.e., to take into account the mechanical
and electrical transients, the body mass, body shape, etc. However,
this would probably lead to an over-accurate model, not useful
in a high-level simulation. For this reason, we believe that the
simplified models are more appropriate for ns-3 and that only the
marine current (or the wind) effects should be part of a future
development.

The antenna radiation (or the acoustic modem directional pat-
tern) can be easily described with proper antenna model extensions.
In any case, we believe that the node attitude and the antenna
models should be integrated more tightly, in order to allow more
precise results, consistent with the actual antenna position on the
node (e.g., top/bottom placement).

The proposed kinematic solution has been tested in the simu-
lation phase of the SUNRISE/BRUCE EU project. The goal was to
enhance the network connectivity among underwater heteroge-
neous communicating acoustic nodes, exploiting a mobile AUV
that acts as a bridging node. The proposed model greatly simplified
the scenario definition, allowing to set only the relevant waypoints
in the AUV path.

The code is available at https://codereview.appspot.com/312460043.

ACKNOWLEDGMENTS

This work has been supported by the project SUNRISE/BRUCE, that
has received funding from the European Union’s Seventh Frame-
work Programme within “SUNRISE - Open Call 2 for new benefi-
ciaries” under Grant Agreement No.: 611449.

REFERENCES

[1] B. Allen, R. Stokey, T. Austin, N. Forrester, R. Goldsborough, M. Purcell, and C.
von Alt. 1997. REMUS: A Small, Low Cost AUV; System Description, Field Trials
and Performance Results. In OCEANS *97. MTS/IEEE Conference Proceedings, Vol. 2.
Halifax, Nova Scotia, Canada, 994-1000. DOI : https://doi.org/10.1109/OCEANS.
1997.624126

[2] B. Allotta, A. Caiti, R. Costanzi, F. Di Corato, D. Fenucci, N. Monni, L. Pugi, and
A. Ridolfi. 2016. Cooperative Navigation of AUVs via Acoustic Communication
Networking: Field Experience with the Typhoon Vehicles. Autonomous Robots
40, 7 (2016), 1229-1244.

[3] B.Allotta, R. Costanzi, A. Ridolfi, C. Colombo, F. Bellavia, M. Fanfani, F. Pazzaglia,
O. Salvetti, D. Moroni, M.A. Pascali, M. Reggiannini, M. Kruusmaa, T. Salumée, G.
Frost, N. Tsiogkas, D.M. Lane, M. Cocco, L. Gualdesi, D. Roig, HT. Giindogdu, E.I
Tekdemir, M.I.C. Dede, S. Baines, F. Agneto, P. Selvaggio, S. Tusa, S. Zangara, U.
Dresen, P. Litti, T. Saar, and W. Daviddi. 2015. The ARROWS Project: Adapting
and Developing Robotics Technologies for Underwater Archaeology. IFAC-
PapersOnLine 48, 2 (2015), 194 — 199. DOI:https://doi.org/10.1016/j.ifacol.2015.
06.032

[4] P. Casari, C. Tapparello, F. Guerra, F. Favaro, I. Calabrese, G. Toso, S. Azad, R.
Masiero, and M. Zorzi. 2014. Open Source Suites for Underwater Networking:
WOSS and DESERT Underwater. IEEE Network 28, 5 (September 2014), 38-46.
DOI : https://doi.org/10.1109/MNET.2014.6915438

[5] C.C.Eriksen,T.]. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard,
and A. M. Chiodi. 2001. Seaglider: A Long-Range Autonomous Underwater
Vehicle for Oceanographic Research. IEEE Journal of Oceanic Engineering 26, 4
(Oct 2001), 424-436. DOI:https://doi.org/10.1109/48.972073

[6] F. Guerra. 2017. WOSS - World Ocean Simulation System. (2017). http://telecom.
dei.unipd.it/ns/woss/

[7] J.Potter, J. Alves, D. Green, G. Zappa, 1. Nissen, and K. McCoy. 2014. The JANUS
Underwater Communications Standard. In 2014 Underwater Communications and
Networking (UComms). Sestri Levante, Italy, 1-4. DOI : https://doi.org/10.1109/
UComms.2014.7017134

https://codereview.appspot.com/312460043
https://doi.org/10.1109/OCEANS.1997.624126
https://doi.org/10.1109/OCEANS.1997.624126
https://doi.org/10.1016/j.ifacol.2015.06.032
https://doi.org/10.1016/j.ifacol.2015.06.032
https://doi.org/10.1109/MNET.2014.6915438
https://doi.org/10.1109/48.972073
http://telecom.dei.unipd.it/ns/woss/
http://telecom.dei.unipd.it/ns/woss/
https://doi.org/10.1109/UComms.2014.7017134
https://doi.org/10.1109/UComms.2014.7017134

	Abstract
	1 Introduction
	2 Mobility Issues and State of the Art
	2.1 AUV Kinematics
	2.2 Mobility in ns-3
	2.3 Current AUV Mobility Models

	3 New AUV Mobility Models
	3.1 New Features
	3.2 Implementation Details
	3.3 Remus and SeaGlider Mobility Models
	3.4 Energy Models

	4 Simulation Results
	5 Conclusions
	Acknowledgments
	References

